xfs: fix overflow in xfs_attr3_leaf_verify
[sfrench/cifs-2.6.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014-2017 Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #define pr_fmt(fmt)                             "bcmgenet: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46
47 #include <asm/unaligned.h>
48
49 #include "bcmgenet.h"
50
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT        4
53
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY       0
56
57 #define GENET_Q16_RX_BD_CNT     \
58         (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT     \
60         (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61
62 #define RX_BUF_LENGTH           2048
63 #define SKB_ALIGNMENT           32
64
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
68
69 #define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
70                                 TOTAL_DESC * DMA_DESC_SIZE)
71
72 #define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
73                                 TOTAL_DESC * DMA_DESC_SIZE)
74
75 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
76 {
77         /* MIPS chips strapped for BE will automagically configure the
78          * peripheral registers for CPU-native byte order.
79          */
80         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
81                 __raw_writel(value, offset);
82         else
83                 writel_relaxed(value, offset);
84 }
85
86 static inline u32 bcmgenet_readl(void __iomem *offset)
87 {
88         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
89                 return __raw_readl(offset);
90         else
91                 return readl_relaxed(offset);
92 }
93
94 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
95                                              void __iomem *d, u32 value)
96 {
97         bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
98 }
99
100 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
101                                             void __iomem *d)
102 {
103         return bcmgenet_readl(d + DMA_DESC_LENGTH_STATUS);
104 }
105
106 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
107                                     void __iomem *d,
108                                     dma_addr_t addr)
109 {
110         bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
111
112         /* Register writes to GISB bus can take couple hundred nanoseconds
113          * and are done for each packet, save these expensive writes unless
114          * the platform is explicitly configured for 64-bits/LPAE.
115          */
116 #ifdef CONFIG_PHYS_ADDR_T_64BIT
117         if (priv->hw_params->flags & GENET_HAS_40BITS)
118                 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
119 #endif
120 }
121
122 /* Combined address + length/status setter */
123 static inline void dmadesc_set(struct bcmgenet_priv *priv,
124                                void __iomem *d, dma_addr_t addr, u32 val)
125 {
126         dmadesc_set_addr(priv, d, addr);
127         dmadesc_set_length_status(priv, d, val);
128 }
129
130 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
131                                           void __iomem *d)
132 {
133         dma_addr_t addr;
134
135         addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
136
137         /* Register writes to GISB bus can take couple hundred nanoseconds
138          * and are done for each packet, save these expensive writes unless
139          * the platform is explicitly configured for 64-bits/LPAE.
140          */
141 #ifdef CONFIG_PHYS_ADDR_T_64BIT
142         if (priv->hw_params->flags & GENET_HAS_40BITS)
143                 addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
144 #endif
145         return addr;
146 }
147
148 #define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
149
150 #define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
151                                 NETIF_MSG_LINK)
152
153 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
154 {
155         if (GENET_IS_V1(priv))
156                 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
157         else
158                 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
159 }
160
161 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
162 {
163         if (GENET_IS_V1(priv))
164                 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
165         else
166                 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
167 }
168
169 /* These macros are defined to deal with register map change
170  * between GENET1.1 and GENET2. Only those currently being used
171  * by driver are defined.
172  */
173 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
174 {
175         if (GENET_IS_V1(priv))
176                 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
177         else
178                 return bcmgenet_readl(priv->base +
179                                       priv->hw_params->tbuf_offset + TBUF_CTRL);
180 }
181
182 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
183 {
184         if (GENET_IS_V1(priv))
185                 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
186         else
187                 bcmgenet_writel(val, priv->base +
188                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
189 }
190
191 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
192 {
193         if (GENET_IS_V1(priv))
194                 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
195         else
196                 return bcmgenet_readl(priv->base +
197                                       priv->hw_params->tbuf_offset + TBUF_BP_MC);
198 }
199
200 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
201 {
202         if (GENET_IS_V1(priv))
203                 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
204         else
205                 bcmgenet_writel(val, priv->base +
206                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
207 }
208
209 /* RX/TX DMA register accessors */
210 enum dma_reg {
211         DMA_RING_CFG = 0,
212         DMA_CTRL,
213         DMA_STATUS,
214         DMA_SCB_BURST_SIZE,
215         DMA_ARB_CTRL,
216         DMA_PRIORITY_0,
217         DMA_PRIORITY_1,
218         DMA_PRIORITY_2,
219         DMA_INDEX2RING_0,
220         DMA_INDEX2RING_1,
221         DMA_INDEX2RING_2,
222         DMA_INDEX2RING_3,
223         DMA_INDEX2RING_4,
224         DMA_INDEX2RING_5,
225         DMA_INDEX2RING_6,
226         DMA_INDEX2RING_7,
227         DMA_RING0_TIMEOUT,
228         DMA_RING1_TIMEOUT,
229         DMA_RING2_TIMEOUT,
230         DMA_RING3_TIMEOUT,
231         DMA_RING4_TIMEOUT,
232         DMA_RING5_TIMEOUT,
233         DMA_RING6_TIMEOUT,
234         DMA_RING7_TIMEOUT,
235         DMA_RING8_TIMEOUT,
236         DMA_RING9_TIMEOUT,
237         DMA_RING10_TIMEOUT,
238         DMA_RING11_TIMEOUT,
239         DMA_RING12_TIMEOUT,
240         DMA_RING13_TIMEOUT,
241         DMA_RING14_TIMEOUT,
242         DMA_RING15_TIMEOUT,
243         DMA_RING16_TIMEOUT,
244 };
245
246 static const u8 bcmgenet_dma_regs_v3plus[] = {
247         [DMA_RING_CFG]          = 0x00,
248         [DMA_CTRL]              = 0x04,
249         [DMA_STATUS]            = 0x08,
250         [DMA_SCB_BURST_SIZE]    = 0x0C,
251         [DMA_ARB_CTRL]          = 0x2C,
252         [DMA_PRIORITY_0]        = 0x30,
253         [DMA_PRIORITY_1]        = 0x34,
254         [DMA_PRIORITY_2]        = 0x38,
255         [DMA_RING0_TIMEOUT]     = 0x2C,
256         [DMA_RING1_TIMEOUT]     = 0x30,
257         [DMA_RING2_TIMEOUT]     = 0x34,
258         [DMA_RING3_TIMEOUT]     = 0x38,
259         [DMA_RING4_TIMEOUT]     = 0x3c,
260         [DMA_RING5_TIMEOUT]     = 0x40,
261         [DMA_RING6_TIMEOUT]     = 0x44,
262         [DMA_RING7_TIMEOUT]     = 0x48,
263         [DMA_RING8_TIMEOUT]     = 0x4c,
264         [DMA_RING9_TIMEOUT]     = 0x50,
265         [DMA_RING10_TIMEOUT]    = 0x54,
266         [DMA_RING11_TIMEOUT]    = 0x58,
267         [DMA_RING12_TIMEOUT]    = 0x5c,
268         [DMA_RING13_TIMEOUT]    = 0x60,
269         [DMA_RING14_TIMEOUT]    = 0x64,
270         [DMA_RING15_TIMEOUT]    = 0x68,
271         [DMA_RING16_TIMEOUT]    = 0x6C,
272         [DMA_INDEX2RING_0]      = 0x70,
273         [DMA_INDEX2RING_1]      = 0x74,
274         [DMA_INDEX2RING_2]      = 0x78,
275         [DMA_INDEX2RING_3]      = 0x7C,
276         [DMA_INDEX2RING_4]      = 0x80,
277         [DMA_INDEX2RING_5]      = 0x84,
278         [DMA_INDEX2RING_6]      = 0x88,
279         [DMA_INDEX2RING_7]      = 0x8C,
280 };
281
282 static const u8 bcmgenet_dma_regs_v2[] = {
283         [DMA_RING_CFG]          = 0x00,
284         [DMA_CTRL]              = 0x04,
285         [DMA_STATUS]            = 0x08,
286         [DMA_SCB_BURST_SIZE]    = 0x0C,
287         [DMA_ARB_CTRL]          = 0x30,
288         [DMA_PRIORITY_0]        = 0x34,
289         [DMA_PRIORITY_1]        = 0x38,
290         [DMA_PRIORITY_2]        = 0x3C,
291         [DMA_RING0_TIMEOUT]     = 0x2C,
292         [DMA_RING1_TIMEOUT]     = 0x30,
293         [DMA_RING2_TIMEOUT]     = 0x34,
294         [DMA_RING3_TIMEOUT]     = 0x38,
295         [DMA_RING4_TIMEOUT]     = 0x3c,
296         [DMA_RING5_TIMEOUT]     = 0x40,
297         [DMA_RING6_TIMEOUT]     = 0x44,
298         [DMA_RING7_TIMEOUT]     = 0x48,
299         [DMA_RING8_TIMEOUT]     = 0x4c,
300         [DMA_RING9_TIMEOUT]     = 0x50,
301         [DMA_RING10_TIMEOUT]    = 0x54,
302         [DMA_RING11_TIMEOUT]    = 0x58,
303         [DMA_RING12_TIMEOUT]    = 0x5c,
304         [DMA_RING13_TIMEOUT]    = 0x60,
305         [DMA_RING14_TIMEOUT]    = 0x64,
306         [DMA_RING15_TIMEOUT]    = 0x68,
307         [DMA_RING16_TIMEOUT]    = 0x6C,
308 };
309
310 static const u8 bcmgenet_dma_regs_v1[] = {
311         [DMA_CTRL]              = 0x00,
312         [DMA_STATUS]            = 0x04,
313         [DMA_SCB_BURST_SIZE]    = 0x0C,
314         [DMA_ARB_CTRL]          = 0x30,
315         [DMA_PRIORITY_0]        = 0x34,
316         [DMA_PRIORITY_1]        = 0x38,
317         [DMA_PRIORITY_2]        = 0x3C,
318         [DMA_RING0_TIMEOUT]     = 0x2C,
319         [DMA_RING1_TIMEOUT]     = 0x30,
320         [DMA_RING2_TIMEOUT]     = 0x34,
321         [DMA_RING3_TIMEOUT]     = 0x38,
322         [DMA_RING4_TIMEOUT]     = 0x3c,
323         [DMA_RING5_TIMEOUT]     = 0x40,
324         [DMA_RING6_TIMEOUT]     = 0x44,
325         [DMA_RING7_TIMEOUT]     = 0x48,
326         [DMA_RING8_TIMEOUT]     = 0x4c,
327         [DMA_RING9_TIMEOUT]     = 0x50,
328         [DMA_RING10_TIMEOUT]    = 0x54,
329         [DMA_RING11_TIMEOUT]    = 0x58,
330         [DMA_RING12_TIMEOUT]    = 0x5c,
331         [DMA_RING13_TIMEOUT]    = 0x60,
332         [DMA_RING14_TIMEOUT]    = 0x64,
333         [DMA_RING15_TIMEOUT]    = 0x68,
334         [DMA_RING16_TIMEOUT]    = 0x6C,
335 };
336
337 /* Set at runtime once bcmgenet version is known */
338 static const u8 *bcmgenet_dma_regs;
339
340 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
341 {
342         return netdev_priv(dev_get_drvdata(dev));
343 }
344
345 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
346                                       enum dma_reg r)
347 {
348         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
349                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
350 }
351
352 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
353                                         u32 val, enum dma_reg r)
354 {
355         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
356                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
357 }
358
359 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
360                                       enum dma_reg r)
361 {
362         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
363                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
364 }
365
366 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
367                                         u32 val, enum dma_reg r)
368 {
369         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
370                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
371 }
372
373 /* RDMA/TDMA ring registers and accessors
374  * we merge the common fields and just prefix with T/D the registers
375  * having different meaning depending on the direction
376  */
377 enum dma_ring_reg {
378         TDMA_READ_PTR = 0,
379         RDMA_WRITE_PTR = TDMA_READ_PTR,
380         TDMA_READ_PTR_HI,
381         RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
382         TDMA_CONS_INDEX,
383         RDMA_PROD_INDEX = TDMA_CONS_INDEX,
384         TDMA_PROD_INDEX,
385         RDMA_CONS_INDEX = TDMA_PROD_INDEX,
386         DMA_RING_BUF_SIZE,
387         DMA_START_ADDR,
388         DMA_START_ADDR_HI,
389         DMA_END_ADDR,
390         DMA_END_ADDR_HI,
391         DMA_MBUF_DONE_THRESH,
392         TDMA_FLOW_PERIOD,
393         RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
394         TDMA_WRITE_PTR,
395         RDMA_READ_PTR = TDMA_WRITE_PTR,
396         TDMA_WRITE_PTR_HI,
397         RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
398 };
399
400 /* GENET v4 supports 40-bits pointer addressing
401  * for obvious reasons the LO and HI word parts
402  * are contiguous, but this offsets the other
403  * registers.
404  */
405 static const u8 genet_dma_ring_regs_v4[] = {
406         [TDMA_READ_PTR]                 = 0x00,
407         [TDMA_READ_PTR_HI]              = 0x04,
408         [TDMA_CONS_INDEX]               = 0x08,
409         [TDMA_PROD_INDEX]               = 0x0C,
410         [DMA_RING_BUF_SIZE]             = 0x10,
411         [DMA_START_ADDR]                = 0x14,
412         [DMA_START_ADDR_HI]             = 0x18,
413         [DMA_END_ADDR]                  = 0x1C,
414         [DMA_END_ADDR_HI]               = 0x20,
415         [DMA_MBUF_DONE_THRESH]          = 0x24,
416         [TDMA_FLOW_PERIOD]              = 0x28,
417         [TDMA_WRITE_PTR]                = 0x2C,
418         [TDMA_WRITE_PTR_HI]             = 0x30,
419 };
420
421 static const u8 genet_dma_ring_regs_v123[] = {
422         [TDMA_READ_PTR]                 = 0x00,
423         [TDMA_CONS_INDEX]               = 0x04,
424         [TDMA_PROD_INDEX]               = 0x08,
425         [DMA_RING_BUF_SIZE]             = 0x0C,
426         [DMA_START_ADDR]                = 0x10,
427         [DMA_END_ADDR]                  = 0x14,
428         [DMA_MBUF_DONE_THRESH]          = 0x18,
429         [TDMA_FLOW_PERIOD]              = 0x1C,
430         [TDMA_WRITE_PTR]                = 0x20,
431 };
432
433 /* Set at runtime once GENET version is known */
434 static const u8 *genet_dma_ring_regs;
435
436 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
437                                            unsigned int ring,
438                                            enum dma_ring_reg r)
439 {
440         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
441                               (DMA_RING_SIZE * ring) +
442                               genet_dma_ring_regs[r]);
443 }
444
445 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
446                                              unsigned int ring, u32 val,
447                                              enum dma_ring_reg r)
448 {
449         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
450                         (DMA_RING_SIZE * ring) +
451                         genet_dma_ring_regs[r]);
452 }
453
454 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
455                                            unsigned int ring,
456                                            enum dma_ring_reg r)
457 {
458         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
459                               (DMA_RING_SIZE * ring) +
460                               genet_dma_ring_regs[r]);
461 }
462
463 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
464                                              unsigned int ring, u32 val,
465                                              enum dma_ring_reg r)
466 {
467         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
468                         (DMA_RING_SIZE * ring) +
469                         genet_dma_ring_regs[r]);
470 }
471
472 static int bcmgenet_begin(struct net_device *dev)
473 {
474         struct bcmgenet_priv *priv = netdev_priv(dev);
475
476         /* Turn on the clock */
477         return clk_prepare_enable(priv->clk);
478 }
479
480 static void bcmgenet_complete(struct net_device *dev)
481 {
482         struct bcmgenet_priv *priv = netdev_priv(dev);
483
484         /* Turn off the clock */
485         clk_disable_unprepare(priv->clk);
486 }
487
488 static int bcmgenet_get_link_ksettings(struct net_device *dev,
489                                        struct ethtool_link_ksettings *cmd)
490 {
491         if (!netif_running(dev))
492                 return -EINVAL;
493
494         if (!dev->phydev)
495                 return -ENODEV;
496
497         phy_ethtool_ksettings_get(dev->phydev, cmd);
498
499         return 0;
500 }
501
502 static int bcmgenet_set_link_ksettings(struct net_device *dev,
503                                        const struct ethtool_link_ksettings *cmd)
504 {
505         if (!netif_running(dev))
506                 return -EINVAL;
507
508         if (!dev->phydev)
509                 return -ENODEV;
510
511         return phy_ethtool_ksettings_set(dev->phydev, cmd);
512 }
513
514 static int bcmgenet_set_rx_csum(struct net_device *dev,
515                                 netdev_features_t wanted)
516 {
517         struct bcmgenet_priv *priv = netdev_priv(dev);
518         u32 rbuf_chk_ctrl;
519         bool rx_csum_en;
520
521         rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
522
523         rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
524
525         /* enable rx checksumming */
526         if (rx_csum_en)
527                 rbuf_chk_ctrl |= RBUF_RXCHK_EN;
528         else
529                 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
530         priv->desc_rxchk_en = rx_csum_en;
531
532         /* If UniMAC forwards CRC, we need to skip over it to get
533          * a valid CHK bit to be set in the per-packet status word
534         */
535         if (rx_csum_en && priv->crc_fwd_en)
536                 rbuf_chk_ctrl |= RBUF_SKIP_FCS;
537         else
538                 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
539
540         bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
541
542         return 0;
543 }
544
545 static int bcmgenet_set_tx_csum(struct net_device *dev,
546                                 netdev_features_t wanted)
547 {
548         struct bcmgenet_priv *priv = netdev_priv(dev);
549         bool desc_64b_en;
550         u32 tbuf_ctrl, rbuf_ctrl;
551
552         tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
553         rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
554
555         desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
556
557         /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
558         if (desc_64b_en) {
559                 tbuf_ctrl |= RBUF_64B_EN;
560                 rbuf_ctrl |= RBUF_64B_EN;
561         } else {
562                 tbuf_ctrl &= ~RBUF_64B_EN;
563                 rbuf_ctrl &= ~RBUF_64B_EN;
564         }
565         priv->desc_64b_en = desc_64b_en;
566
567         bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
568         bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
569
570         return 0;
571 }
572
573 static int bcmgenet_set_features(struct net_device *dev,
574                                  netdev_features_t features)
575 {
576         netdev_features_t changed = features ^ dev->features;
577         netdev_features_t wanted = dev->wanted_features;
578         int ret = 0;
579
580         if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
581                 ret = bcmgenet_set_tx_csum(dev, wanted);
582         if (changed & (NETIF_F_RXCSUM))
583                 ret = bcmgenet_set_rx_csum(dev, wanted);
584
585         return ret;
586 }
587
588 static u32 bcmgenet_get_msglevel(struct net_device *dev)
589 {
590         struct bcmgenet_priv *priv = netdev_priv(dev);
591
592         return priv->msg_enable;
593 }
594
595 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
596 {
597         struct bcmgenet_priv *priv = netdev_priv(dev);
598
599         priv->msg_enable = level;
600 }
601
602 static int bcmgenet_get_coalesce(struct net_device *dev,
603                                  struct ethtool_coalesce *ec)
604 {
605         struct bcmgenet_priv *priv = netdev_priv(dev);
606         struct bcmgenet_rx_ring *ring;
607         unsigned int i;
608
609         ec->tx_max_coalesced_frames =
610                 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
611                                          DMA_MBUF_DONE_THRESH);
612         ec->rx_max_coalesced_frames =
613                 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
614                                          DMA_MBUF_DONE_THRESH);
615         ec->rx_coalesce_usecs =
616                 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
617
618         for (i = 0; i < priv->hw_params->rx_queues; i++) {
619                 ring = &priv->rx_rings[i];
620                 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
621         }
622         ring = &priv->rx_rings[DESC_INDEX];
623         ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
624
625         return 0;
626 }
627
628 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
629                                      u32 usecs, u32 pkts)
630 {
631         struct bcmgenet_priv *priv = ring->priv;
632         unsigned int i = ring->index;
633         u32 reg;
634
635         bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
636
637         reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
638         reg &= ~DMA_TIMEOUT_MASK;
639         reg |= DIV_ROUND_UP(usecs * 1000, 8192);
640         bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
641 }
642
643 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
644                                           struct ethtool_coalesce *ec)
645 {
646         struct net_dim_cq_moder moder;
647         u32 usecs, pkts;
648
649         ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
650         ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
651         usecs = ring->rx_coalesce_usecs;
652         pkts = ring->rx_max_coalesced_frames;
653
654         if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
655                 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
656                 usecs = moder.usec;
657                 pkts = moder.pkts;
658         }
659
660         ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
661         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
662 }
663
664 static int bcmgenet_set_coalesce(struct net_device *dev,
665                                  struct ethtool_coalesce *ec)
666 {
667         struct bcmgenet_priv *priv = netdev_priv(dev);
668         unsigned int i;
669
670         /* Base system clock is 125Mhz, DMA timeout is this reference clock
671          * divided by 1024, which yields roughly 8.192us, our maximum value
672          * has to fit in the DMA_TIMEOUT_MASK (16 bits)
673          */
674         if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
675             ec->tx_max_coalesced_frames == 0 ||
676             ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
677             ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
678                 return -EINVAL;
679
680         if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
681                 return -EINVAL;
682
683         /* GENET TDMA hardware does not support a configurable timeout, but will
684          * always generate an interrupt either after MBDONE packets have been
685          * transmitted, or when the ring is empty.
686          */
687         if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
688             ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low ||
689             ec->use_adaptive_tx_coalesce)
690                 return -EOPNOTSUPP;
691
692         /* Program all TX queues with the same values, as there is no
693          * ethtool knob to do coalescing on a per-queue basis
694          */
695         for (i = 0; i < priv->hw_params->tx_queues; i++)
696                 bcmgenet_tdma_ring_writel(priv, i,
697                                           ec->tx_max_coalesced_frames,
698                                           DMA_MBUF_DONE_THRESH);
699         bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
700                                   ec->tx_max_coalesced_frames,
701                                   DMA_MBUF_DONE_THRESH);
702
703         for (i = 0; i < priv->hw_params->rx_queues; i++)
704                 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
705         bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
706
707         return 0;
708 }
709
710 /* standard ethtool support functions. */
711 enum bcmgenet_stat_type {
712         BCMGENET_STAT_NETDEV = -1,
713         BCMGENET_STAT_MIB_RX,
714         BCMGENET_STAT_MIB_TX,
715         BCMGENET_STAT_RUNT,
716         BCMGENET_STAT_MISC,
717         BCMGENET_STAT_SOFT,
718 };
719
720 struct bcmgenet_stats {
721         char stat_string[ETH_GSTRING_LEN];
722         int stat_sizeof;
723         int stat_offset;
724         enum bcmgenet_stat_type type;
725         /* reg offset from UMAC base for misc counters */
726         u16 reg_offset;
727 };
728
729 #define STAT_NETDEV(m) { \
730         .stat_string = __stringify(m), \
731         .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
732         .stat_offset = offsetof(struct net_device_stats, m), \
733         .type = BCMGENET_STAT_NETDEV, \
734 }
735
736 #define STAT_GENET_MIB(str, m, _type) { \
737         .stat_string = str, \
738         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
739         .stat_offset = offsetof(struct bcmgenet_priv, m), \
740         .type = _type, \
741 }
742
743 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
744 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
745 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
746 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
747
748 #define STAT_GENET_MISC(str, m, offset) { \
749         .stat_string = str, \
750         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
751         .stat_offset = offsetof(struct bcmgenet_priv, m), \
752         .type = BCMGENET_STAT_MISC, \
753         .reg_offset = offset, \
754 }
755
756 #define STAT_GENET_Q(num) \
757         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
758                         tx_rings[num].packets), \
759         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
760                         tx_rings[num].bytes), \
761         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
762                         rx_rings[num].bytes),    \
763         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
764                         rx_rings[num].packets), \
765         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
766                         rx_rings[num].errors), \
767         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
768                         rx_rings[num].dropped)
769
770 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
771  * between the end of TX stats and the beginning of the RX RUNT
772  */
773 #define BCMGENET_STAT_OFFSET    0xc
774
775 /* Hardware counters must be kept in sync because the order/offset
776  * is important here (order in structure declaration = order in hardware)
777  */
778 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
779         /* general stats */
780         STAT_NETDEV(rx_packets),
781         STAT_NETDEV(tx_packets),
782         STAT_NETDEV(rx_bytes),
783         STAT_NETDEV(tx_bytes),
784         STAT_NETDEV(rx_errors),
785         STAT_NETDEV(tx_errors),
786         STAT_NETDEV(rx_dropped),
787         STAT_NETDEV(tx_dropped),
788         STAT_NETDEV(multicast),
789         /* UniMAC RSV counters */
790         STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
791         STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
792         STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
793         STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
794         STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
795         STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
796         STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
797         STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
798         STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
799         STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
800         STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
801         STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
802         STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
803         STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
804         STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
805         STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
806         STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
807         STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
808         STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
809         STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
810         STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
811         STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
812         STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
813         STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
814         STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
815         STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
816         STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
817         STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
818         STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
819         /* UniMAC TSV counters */
820         STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
821         STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
822         STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
823         STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
824         STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
825         STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
826         STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
827         STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
828         STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
829         STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
830         STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
831         STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
832         STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
833         STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
834         STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
835         STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
836         STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
837         STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
838         STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
839         STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
840         STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
841         STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
842         STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
843         STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
844         STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
845         STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
846         STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
847         STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
848         STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
849         /* UniMAC RUNT counters */
850         STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
851         STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
852         STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
853         STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
854         /* Misc UniMAC counters */
855         STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
856                         UMAC_RBUF_OVFL_CNT_V1),
857         STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
858                         UMAC_RBUF_ERR_CNT_V1),
859         STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
860         STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
861         STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
862         STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
863         /* Per TX queues */
864         STAT_GENET_Q(0),
865         STAT_GENET_Q(1),
866         STAT_GENET_Q(2),
867         STAT_GENET_Q(3),
868         STAT_GENET_Q(16),
869 };
870
871 #define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
872
873 static void bcmgenet_get_drvinfo(struct net_device *dev,
874                                  struct ethtool_drvinfo *info)
875 {
876         strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
877         strlcpy(info->version, "v2.0", sizeof(info->version));
878 }
879
880 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
881 {
882         switch (string_set) {
883         case ETH_SS_STATS:
884                 return BCMGENET_STATS_LEN;
885         default:
886                 return -EOPNOTSUPP;
887         }
888 }
889
890 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
891                                  u8 *data)
892 {
893         int i;
894
895         switch (stringset) {
896         case ETH_SS_STATS:
897                 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
898                         memcpy(data + i * ETH_GSTRING_LEN,
899                                bcmgenet_gstrings_stats[i].stat_string,
900                                ETH_GSTRING_LEN);
901                 }
902                 break;
903         }
904 }
905
906 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
907 {
908         u16 new_offset;
909         u32 val;
910
911         switch (offset) {
912         case UMAC_RBUF_OVFL_CNT_V1:
913                 if (GENET_IS_V2(priv))
914                         new_offset = RBUF_OVFL_CNT_V2;
915                 else
916                         new_offset = RBUF_OVFL_CNT_V3PLUS;
917
918                 val = bcmgenet_rbuf_readl(priv, new_offset);
919                 /* clear if overflowed */
920                 if (val == ~0)
921                         bcmgenet_rbuf_writel(priv, 0, new_offset);
922                 break;
923         case UMAC_RBUF_ERR_CNT_V1:
924                 if (GENET_IS_V2(priv))
925                         new_offset = RBUF_ERR_CNT_V2;
926                 else
927                         new_offset = RBUF_ERR_CNT_V3PLUS;
928
929                 val = bcmgenet_rbuf_readl(priv, new_offset);
930                 /* clear if overflowed */
931                 if (val == ~0)
932                         bcmgenet_rbuf_writel(priv, 0, new_offset);
933                 break;
934         default:
935                 val = bcmgenet_umac_readl(priv, offset);
936                 /* clear if overflowed */
937                 if (val == ~0)
938                         bcmgenet_umac_writel(priv, 0, offset);
939                 break;
940         }
941
942         return val;
943 }
944
945 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
946 {
947         int i, j = 0;
948
949         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
950                 const struct bcmgenet_stats *s;
951                 u8 offset = 0;
952                 u32 val = 0;
953                 char *p;
954
955                 s = &bcmgenet_gstrings_stats[i];
956                 switch (s->type) {
957                 case BCMGENET_STAT_NETDEV:
958                 case BCMGENET_STAT_SOFT:
959                         continue;
960                 case BCMGENET_STAT_RUNT:
961                         offset += BCMGENET_STAT_OFFSET;
962                         /* fall through */
963                 case BCMGENET_STAT_MIB_TX:
964                         offset += BCMGENET_STAT_OFFSET;
965                         /* fall through */
966                 case BCMGENET_STAT_MIB_RX:
967                         val = bcmgenet_umac_readl(priv,
968                                                   UMAC_MIB_START + j + offset);
969                         offset = 0;     /* Reset Offset */
970                         break;
971                 case BCMGENET_STAT_MISC:
972                         if (GENET_IS_V1(priv)) {
973                                 val = bcmgenet_umac_readl(priv, s->reg_offset);
974                                 /* clear if overflowed */
975                                 if (val == ~0)
976                                         bcmgenet_umac_writel(priv, 0,
977                                                              s->reg_offset);
978                         } else {
979                                 val = bcmgenet_update_stat_misc(priv,
980                                                                 s->reg_offset);
981                         }
982                         break;
983                 }
984
985                 j += s->stat_sizeof;
986                 p = (char *)priv + s->stat_offset;
987                 *(u32 *)p = val;
988         }
989 }
990
991 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
992                                        struct ethtool_stats *stats,
993                                        u64 *data)
994 {
995         struct bcmgenet_priv *priv = netdev_priv(dev);
996         int i;
997
998         if (netif_running(dev))
999                 bcmgenet_update_mib_counters(priv);
1000
1001         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1002                 const struct bcmgenet_stats *s;
1003                 char *p;
1004
1005                 s = &bcmgenet_gstrings_stats[i];
1006                 if (s->type == BCMGENET_STAT_NETDEV)
1007                         p = (char *)&dev->stats;
1008                 else
1009                         p = (char *)priv;
1010                 p += s->stat_offset;
1011                 if (sizeof(unsigned long) != sizeof(u32) &&
1012                     s->stat_sizeof == sizeof(unsigned long))
1013                         data[i] = *(unsigned long *)p;
1014                 else
1015                         data[i] = *(u32 *)p;
1016         }
1017 }
1018
1019 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1020 {
1021         struct bcmgenet_priv *priv = netdev_priv(dev);
1022         u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1023         u32 reg;
1024
1025         if (enable && !priv->clk_eee_enabled) {
1026                 clk_prepare_enable(priv->clk_eee);
1027                 priv->clk_eee_enabled = true;
1028         }
1029
1030         reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1031         if (enable)
1032                 reg |= EEE_EN;
1033         else
1034                 reg &= ~EEE_EN;
1035         bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1036
1037         /* Enable EEE and switch to a 27Mhz clock automatically */
1038         reg = bcmgenet_readl(priv->base + off);
1039         if (enable)
1040                 reg |= TBUF_EEE_EN | TBUF_PM_EN;
1041         else
1042                 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1043         bcmgenet_writel(reg, priv->base + off);
1044
1045         /* Do the same for thing for RBUF */
1046         reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1047         if (enable)
1048                 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1049         else
1050                 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1051         bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1052
1053         if (!enable && priv->clk_eee_enabled) {
1054                 clk_disable_unprepare(priv->clk_eee);
1055                 priv->clk_eee_enabled = false;
1056         }
1057
1058         priv->eee.eee_enabled = enable;
1059         priv->eee.eee_active = enable;
1060 }
1061
1062 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1063 {
1064         struct bcmgenet_priv *priv = netdev_priv(dev);
1065         struct ethtool_eee *p = &priv->eee;
1066
1067         if (GENET_IS_V1(priv))
1068                 return -EOPNOTSUPP;
1069
1070         if (!dev->phydev)
1071                 return -ENODEV;
1072
1073         e->eee_enabled = p->eee_enabled;
1074         e->eee_active = p->eee_active;
1075         e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1076
1077         return phy_ethtool_get_eee(dev->phydev, e);
1078 }
1079
1080 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1081 {
1082         struct bcmgenet_priv *priv = netdev_priv(dev);
1083         struct ethtool_eee *p = &priv->eee;
1084         int ret = 0;
1085
1086         if (GENET_IS_V1(priv))
1087                 return -EOPNOTSUPP;
1088
1089         if (!dev->phydev)
1090                 return -ENODEV;
1091
1092         p->eee_enabled = e->eee_enabled;
1093
1094         if (!p->eee_enabled) {
1095                 bcmgenet_eee_enable_set(dev, false);
1096         } else {
1097                 ret = phy_init_eee(dev->phydev, 0);
1098                 if (ret) {
1099                         netif_err(priv, hw, dev, "EEE initialization failed\n");
1100                         return ret;
1101                 }
1102
1103                 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1104                 bcmgenet_eee_enable_set(dev, true);
1105         }
1106
1107         return phy_ethtool_set_eee(dev->phydev, e);
1108 }
1109
1110 /* standard ethtool support functions. */
1111 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1112         .begin                  = bcmgenet_begin,
1113         .complete               = bcmgenet_complete,
1114         .get_strings            = bcmgenet_get_strings,
1115         .get_sset_count         = bcmgenet_get_sset_count,
1116         .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
1117         .get_drvinfo            = bcmgenet_get_drvinfo,
1118         .get_link               = ethtool_op_get_link,
1119         .get_msglevel           = bcmgenet_get_msglevel,
1120         .set_msglevel           = bcmgenet_set_msglevel,
1121         .get_wol                = bcmgenet_get_wol,
1122         .set_wol                = bcmgenet_set_wol,
1123         .get_eee                = bcmgenet_get_eee,
1124         .set_eee                = bcmgenet_set_eee,
1125         .nway_reset             = phy_ethtool_nway_reset,
1126         .get_coalesce           = bcmgenet_get_coalesce,
1127         .set_coalesce           = bcmgenet_set_coalesce,
1128         .get_link_ksettings     = bcmgenet_get_link_ksettings,
1129         .set_link_ksettings     = bcmgenet_set_link_ksettings,
1130 };
1131
1132 /* Power down the unimac, based on mode. */
1133 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1134                                 enum bcmgenet_power_mode mode)
1135 {
1136         int ret = 0;
1137         u32 reg;
1138
1139         switch (mode) {
1140         case GENET_POWER_CABLE_SENSE:
1141                 phy_detach(priv->dev->phydev);
1142                 break;
1143
1144         case GENET_POWER_WOL_MAGIC:
1145                 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1146                 break;
1147
1148         case GENET_POWER_PASSIVE:
1149                 /* Power down LED */
1150                 if (priv->hw_params->flags & GENET_HAS_EXT) {
1151                         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1152                         if (GENET_IS_V5(priv))
1153                                 reg |= EXT_PWR_DOWN_PHY_EN |
1154                                        EXT_PWR_DOWN_PHY_RD |
1155                                        EXT_PWR_DOWN_PHY_SD |
1156                                        EXT_PWR_DOWN_PHY_RX |
1157                                        EXT_PWR_DOWN_PHY_TX |
1158                                        EXT_IDDQ_GLBL_PWR;
1159                         else
1160                                 reg |= EXT_PWR_DOWN_PHY;
1161
1162                         reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1163                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1164
1165                         bcmgenet_phy_power_set(priv->dev, false);
1166                 }
1167                 break;
1168         default:
1169                 break;
1170         }
1171
1172         return 0;
1173 }
1174
1175 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1176                               enum bcmgenet_power_mode mode)
1177 {
1178         u32 reg;
1179
1180         if (!(priv->hw_params->flags & GENET_HAS_EXT))
1181                 return;
1182
1183         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1184
1185         switch (mode) {
1186         case GENET_POWER_PASSIVE:
1187                 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1188                 if (GENET_IS_V5(priv)) {
1189                         reg &= ~(EXT_PWR_DOWN_PHY_EN |
1190                                  EXT_PWR_DOWN_PHY_RD |
1191                                  EXT_PWR_DOWN_PHY_SD |
1192                                  EXT_PWR_DOWN_PHY_RX |
1193                                  EXT_PWR_DOWN_PHY_TX |
1194                                  EXT_IDDQ_GLBL_PWR);
1195                         reg |=   EXT_PHY_RESET;
1196                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1197                         mdelay(1);
1198
1199                         reg &=  ~EXT_PHY_RESET;
1200                 } else {
1201                         reg &= ~EXT_PWR_DOWN_PHY;
1202                         reg |= EXT_PWR_DN_EN_LD;
1203                 }
1204                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1205                 bcmgenet_phy_power_set(priv->dev, true);
1206                 break;
1207
1208         case GENET_POWER_CABLE_SENSE:
1209                 /* enable APD */
1210                 if (!GENET_IS_V5(priv)) {
1211                         reg |= EXT_PWR_DN_EN_LD;
1212                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1213                 }
1214                 break;
1215         case GENET_POWER_WOL_MAGIC:
1216                 bcmgenet_wol_power_up_cfg(priv, mode);
1217                 return;
1218         default:
1219                 break;
1220         }
1221 }
1222
1223 /* ioctl handle special commands that are not present in ethtool. */
1224 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1225 {
1226         if (!netif_running(dev))
1227                 return -EINVAL;
1228
1229         if (!dev->phydev)
1230                 return -ENODEV;
1231
1232         return phy_mii_ioctl(dev->phydev, rq, cmd);
1233 }
1234
1235 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1236                                          struct bcmgenet_tx_ring *ring)
1237 {
1238         struct enet_cb *tx_cb_ptr;
1239
1240         tx_cb_ptr = ring->cbs;
1241         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1242
1243         /* Advancing local write pointer */
1244         if (ring->write_ptr == ring->end_ptr)
1245                 ring->write_ptr = ring->cb_ptr;
1246         else
1247                 ring->write_ptr++;
1248
1249         return tx_cb_ptr;
1250 }
1251
1252 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1253                                          struct bcmgenet_tx_ring *ring)
1254 {
1255         struct enet_cb *tx_cb_ptr;
1256
1257         tx_cb_ptr = ring->cbs;
1258         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1259
1260         /* Rewinding local write pointer */
1261         if (ring->write_ptr == ring->cb_ptr)
1262                 ring->write_ptr = ring->end_ptr;
1263         else
1264                 ring->write_ptr--;
1265
1266         return tx_cb_ptr;
1267 }
1268
1269 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1270 {
1271         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1272                                  INTRL2_CPU_MASK_SET);
1273 }
1274
1275 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1276 {
1277         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1278                                  INTRL2_CPU_MASK_CLEAR);
1279 }
1280
1281 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1282 {
1283         bcmgenet_intrl2_1_writel(ring->priv,
1284                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1285                                  INTRL2_CPU_MASK_SET);
1286 }
1287
1288 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1289 {
1290         bcmgenet_intrl2_1_writel(ring->priv,
1291                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1292                                  INTRL2_CPU_MASK_CLEAR);
1293 }
1294
1295 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1296 {
1297         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1298                                  INTRL2_CPU_MASK_SET);
1299 }
1300
1301 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1302 {
1303         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1304                                  INTRL2_CPU_MASK_CLEAR);
1305 }
1306
1307 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1308 {
1309         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1310                                  INTRL2_CPU_MASK_CLEAR);
1311 }
1312
1313 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1314 {
1315         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1316                                  INTRL2_CPU_MASK_SET);
1317 }
1318
1319 /* Simple helper to free a transmit control block's resources
1320  * Returns an skb when the last transmit control block associated with the
1321  * skb is freed.  The skb should be freed by the caller if necessary.
1322  */
1323 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1324                                            struct enet_cb *cb)
1325 {
1326         struct sk_buff *skb;
1327
1328         skb = cb->skb;
1329
1330         if (skb) {
1331                 cb->skb = NULL;
1332                 if (cb == GENET_CB(skb)->first_cb)
1333                         dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1334                                          dma_unmap_len(cb, dma_len),
1335                                          DMA_TO_DEVICE);
1336                 else
1337                         dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1338                                        dma_unmap_len(cb, dma_len),
1339                                        DMA_TO_DEVICE);
1340                 dma_unmap_addr_set(cb, dma_addr, 0);
1341
1342                 if (cb == GENET_CB(skb)->last_cb)
1343                         return skb;
1344
1345         } else if (dma_unmap_addr(cb, dma_addr)) {
1346                 dma_unmap_page(dev,
1347                                dma_unmap_addr(cb, dma_addr),
1348                                dma_unmap_len(cb, dma_len),
1349                                DMA_TO_DEVICE);
1350                 dma_unmap_addr_set(cb, dma_addr, 0);
1351         }
1352
1353         return NULL;
1354 }
1355
1356 /* Simple helper to free a receive control block's resources */
1357 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1358                                            struct enet_cb *cb)
1359 {
1360         struct sk_buff *skb;
1361
1362         skb = cb->skb;
1363         cb->skb = NULL;
1364
1365         if (dma_unmap_addr(cb, dma_addr)) {
1366                 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1367                                  dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1368                 dma_unmap_addr_set(cb, dma_addr, 0);
1369         }
1370
1371         return skb;
1372 }
1373
1374 /* Unlocked version of the reclaim routine */
1375 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1376                                           struct bcmgenet_tx_ring *ring)
1377 {
1378         struct bcmgenet_priv *priv = netdev_priv(dev);
1379         unsigned int txbds_processed = 0;
1380         unsigned int bytes_compl = 0;
1381         unsigned int pkts_compl = 0;
1382         unsigned int txbds_ready;
1383         unsigned int c_index;
1384         struct sk_buff *skb;
1385
1386         /* Clear status before servicing to reduce spurious interrupts */
1387         if (ring->index == DESC_INDEX)
1388                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1389                                          INTRL2_CPU_CLEAR);
1390         else
1391                 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1392                                          INTRL2_CPU_CLEAR);
1393
1394         /* Compute how many buffers are transmitted since last xmit call */
1395         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1396                 & DMA_C_INDEX_MASK;
1397         txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1398
1399         netif_dbg(priv, tx_done, dev,
1400                   "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1401                   __func__, ring->index, ring->c_index, c_index, txbds_ready);
1402
1403         /* Reclaim transmitted buffers */
1404         while (txbds_processed < txbds_ready) {
1405                 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1406                                           &priv->tx_cbs[ring->clean_ptr]);
1407                 if (skb) {
1408                         pkts_compl++;
1409                         bytes_compl += GENET_CB(skb)->bytes_sent;
1410                         dev_consume_skb_any(skb);
1411                 }
1412
1413                 txbds_processed++;
1414                 if (likely(ring->clean_ptr < ring->end_ptr))
1415                         ring->clean_ptr++;
1416                 else
1417                         ring->clean_ptr = ring->cb_ptr;
1418         }
1419
1420         ring->free_bds += txbds_processed;
1421         ring->c_index = c_index;
1422
1423         ring->packets += pkts_compl;
1424         ring->bytes += bytes_compl;
1425
1426         netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1427                                   pkts_compl, bytes_compl);
1428
1429         return txbds_processed;
1430 }
1431
1432 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1433                                 struct bcmgenet_tx_ring *ring)
1434 {
1435         unsigned int released;
1436
1437         spin_lock_bh(&ring->lock);
1438         released = __bcmgenet_tx_reclaim(dev, ring);
1439         spin_unlock_bh(&ring->lock);
1440
1441         return released;
1442 }
1443
1444 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1445 {
1446         struct bcmgenet_tx_ring *ring =
1447                 container_of(napi, struct bcmgenet_tx_ring, napi);
1448         unsigned int work_done = 0;
1449         struct netdev_queue *txq;
1450
1451         spin_lock(&ring->lock);
1452         work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1453         if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1454                 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1455                 netif_tx_wake_queue(txq);
1456         }
1457         spin_unlock(&ring->lock);
1458
1459         if (work_done == 0) {
1460                 napi_complete(napi);
1461                 ring->int_enable(ring);
1462
1463                 return 0;
1464         }
1465
1466         return budget;
1467 }
1468
1469 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1470 {
1471         struct bcmgenet_priv *priv = netdev_priv(dev);
1472         int i;
1473
1474         if (netif_is_multiqueue(dev)) {
1475                 for (i = 0; i < priv->hw_params->tx_queues; i++)
1476                         bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1477         }
1478
1479         bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1480 }
1481
1482 /* Reallocate the SKB to put enough headroom in front of it and insert
1483  * the transmit checksum offsets in the descriptors
1484  */
1485 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1486                                             struct sk_buff *skb)
1487 {
1488         struct status_64 *status = NULL;
1489         struct sk_buff *new_skb;
1490         u16 offset;
1491         u8 ip_proto;
1492         __be16 ip_ver;
1493         u32 tx_csum_info;
1494
1495         if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1496                 /* If 64 byte status block enabled, must make sure skb has
1497                  * enough headroom for us to insert 64B status block.
1498                  */
1499                 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1500                 dev_kfree_skb(skb);
1501                 if (!new_skb) {
1502                         dev->stats.tx_dropped++;
1503                         return NULL;
1504                 }
1505                 skb = new_skb;
1506         }
1507
1508         skb_push(skb, sizeof(*status));
1509         status = (struct status_64 *)skb->data;
1510
1511         if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1512                 ip_ver = skb->protocol;
1513                 switch (ip_ver) {
1514                 case htons(ETH_P_IP):
1515                         ip_proto = ip_hdr(skb)->protocol;
1516                         break;
1517                 case htons(ETH_P_IPV6):
1518                         ip_proto = ipv6_hdr(skb)->nexthdr;
1519                         break;
1520                 default:
1521                         return skb;
1522                 }
1523
1524                 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1525                 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1526                                 (offset + skb->csum_offset);
1527
1528                 /* Set the length valid bit for TCP and UDP and just set
1529                  * the special UDP flag for IPv4, else just set to 0.
1530                  */
1531                 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1532                         tx_csum_info |= STATUS_TX_CSUM_LV;
1533                         if (ip_proto == IPPROTO_UDP &&
1534                             ip_ver == htons(ETH_P_IP))
1535                                 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1536                 } else {
1537                         tx_csum_info = 0;
1538                 }
1539
1540                 status->tx_csum_info = tx_csum_info;
1541         }
1542
1543         return skb;
1544 }
1545
1546 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1547 {
1548         struct bcmgenet_priv *priv = netdev_priv(dev);
1549         struct device *kdev = &priv->pdev->dev;
1550         struct bcmgenet_tx_ring *ring = NULL;
1551         struct enet_cb *tx_cb_ptr;
1552         struct netdev_queue *txq;
1553         int nr_frags, index;
1554         dma_addr_t mapping;
1555         unsigned int size;
1556         skb_frag_t *frag;
1557         u32 len_stat;
1558         int ret;
1559         int i;
1560
1561         index = skb_get_queue_mapping(skb);
1562         /* Mapping strategy:
1563          * queue_mapping = 0, unclassified, packet xmited through ring16
1564          * queue_mapping = 1, goes to ring 0. (highest priority queue
1565          * queue_mapping = 2, goes to ring 1.
1566          * queue_mapping = 3, goes to ring 2.
1567          * queue_mapping = 4, goes to ring 3.
1568          */
1569         if (index == 0)
1570                 index = DESC_INDEX;
1571         else
1572                 index -= 1;
1573
1574         ring = &priv->tx_rings[index];
1575         txq = netdev_get_tx_queue(dev, ring->queue);
1576
1577         nr_frags = skb_shinfo(skb)->nr_frags;
1578
1579         spin_lock(&ring->lock);
1580         if (ring->free_bds <= (nr_frags + 1)) {
1581                 if (!netif_tx_queue_stopped(txq)) {
1582                         netif_tx_stop_queue(txq);
1583                         netdev_err(dev,
1584                                    "%s: tx ring %d full when queue %d awake\n",
1585                                    __func__, index, ring->queue);
1586                 }
1587                 ret = NETDEV_TX_BUSY;
1588                 goto out;
1589         }
1590
1591         if (skb_padto(skb, ETH_ZLEN)) {
1592                 ret = NETDEV_TX_OK;
1593                 goto out;
1594         }
1595
1596         /* Retain how many bytes will be sent on the wire, without TSB inserted
1597          * by transmit checksum offload
1598          */
1599         GENET_CB(skb)->bytes_sent = skb->len;
1600
1601         /* set the SKB transmit checksum */
1602         if (priv->desc_64b_en) {
1603                 skb = bcmgenet_put_tx_csum(dev, skb);
1604                 if (!skb) {
1605                         ret = NETDEV_TX_OK;
1606                         goto out;
1607                 }
1608         }
1609
1610         for (i = 0; i <= nr_frags; i++) {
1611                 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1612
1613                 BUG_ON(!tx_cb_ptr);
1614
1615                 if (!i) {
1616                         /* Transmit single SKB or head of fragment list */
1617                         GENET_CB(skb)->first_cb = tx_cb_ptr;
1618                         size = skb_headlen(skb);
1619                         mapping = dma_map_single(kdev, skb->data, size,
1620                                                  DMA_TO_DEVICE);
1621                 } else {
1622                         /* xmit fragment */
1623                         frag = &skb_shinfo(skb)->frags[i - 1];
1624                         size = skb_frag_size(frag);
1625                         mapping = skb_frag_dma_map(kdev, frag, 0, size,
1626                                                    DMA_TO_DEVICE);
1627                 }
1628
1629                 ret = dma_mapping_error(kdev, mapping);
1630                 if (ret) {
1631                         priv->mib.tx_dma_failed++;
1632                         netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1633                         ret = NETDEV_TX_OK;
1634                         goto out_unmap_frags;
1635                 }
1636                 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1637                 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1638
1639                 tx_cb_ptr->skb = skb;
1640
1641                 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1642                            (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1643
1644                 if (!i) {
1645                         len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1646                         if (skb->ip_summed == CHECKSUM_PARTIAL)
1647                                 len_stat |= DMA_TX_DO_CSUM;
1648                 }
1649                 if (i == nr_frags)
1650                         len_stat |= DMA_EOP;
1651
1652                 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1653         }
1654
1655         GENET_CB(skb)->last_cb = tx_cb_ptr;
1656         skb_tx_timestamp(skb);
1657
1658         /* Decrement total BD count and advance our write pointer */
1659         ring->free_bds -= nr_frags + 1;
1660         ring->prod_index += nr_frags + 1;
1661         ring->prod_index &= DMA_P_INDEX_MASK;
1662
1663         netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1664
1665         if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1666                 netif_tx_stop_queue(txq);
1667
1668         if (!skb->xmit_more || netif_xmit_stopped(txq))
1669                 /* Packets are ready, update producer index */
1670                 bcmgenet_tdma_ring_writel(priv, ring->index,
1671                                           ring->prod_index, TDMA_PROD_INDEX);
1672 out:
1673         spin_unlock(&ring->lock);
1674
1675         return ret;
1676
1677 out_unmap_frags:
1678         /* Back up for failed control block mapping */
1679         bcmgenet_put_txcb(priv, ring);
1680
1681         /* Unmap successfully mapped control blocks */
1682         while (i-- > 0) {
1683                 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1684                 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1685         }
1686
1687         dev_kfree_skb(skb);
1688         goto out;
1689 }
1690
1691 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1692                                           struct enet_cb *cb)
1693 {
1694         struct device *kdev = &priv->pdev->dev;
1695         struct sk_buff *skb;
1696         struct sk_buff *rx_skb;
1697         dma_addr_t mapping;
1698
1699         /* Allocate a new Rx skb */
1700         skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1701         if (!skb) {
1702                 priv->mib.alloc_rx_buff_failed++;
1703                 netif_err(priv, rx_err, priv->dev,
1704                           "%s: Rx skb allocation failed\n", __func__);
1705                 return NULL;
1706         }
1707
1708         /* DMA-map the new Rx skb */
1709         mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1710                                  DMA_FROM_DEVICE);
1711         if (dma_mapping_error(kdev, mapping)) {
1712                 priv->mib.rx_dma_failed++;
1713                 dev_kfree_skb_any(skb);
1714                 netif_err(priv, rx_err, priv->dev,
1715                           "%s: Rx skb DMA mapping failed\n", __func__);
1716                 return NULL;
1717         }
1718
1719         /* Grab the current Rx skb from the ring and DMA-unmap it */
1720         rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1721
1722         /* Put the new Rx skb on the ring */
1723         cb->skb = skb;
1724         dma_unmap_addr_set(cb, dma_addr, mapping);
1725         dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1726         dmadesc_set_addr(priv, cb->bd_addr, mapping);
1727
1728         /* Return the current Rx skb to caller */
1729         return rx_skb;
1730 }
1731
1732 /* bcmgenet_desc_rx - descriptor based rx process.
1733  * this could be called from bottom half, or from NAPI polling method.
1734  */
1735 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1736                                      unsigned int budget)
1737 {
1738         struct bcmgenet_priv *priv = ring->priv;
1739         struct net_device *dev = priv->dev;
1740         struct enet_cb *cb;
1741         struct sk_buff *skb;
1742         u32 dma_length_status;
1743         unsigned long dma_flag;
1744         int len;
1745         unsigned int rxpktprocessed = 0, rxpkttoprocess;
1746         unsigned int bytes_processed = 0;
1747         unsigned int p_index, mask;
1748         unsigned int discards;
1749         unsigned int chksum_ok = 0;
1750
1751         /* Clear status before servicing to reduce spurious interrupts */
1752         if (ring->index == DESC_INDEX) {
1753                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1754                                          INTRL2_CPU_CLEAR);
1755         } else {
1756                 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1757                 bcmgenet_intrl2_1_writel(priv,
1758                                          mask,
1759                                          INTRL2_CPU_CLEAR);
1760         }
1761
1762         p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1763
1764         discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1765                    DMA_P_INDEX_DISCARD_CNT_MASK;
1766         if (discards > ring->old_discards) {
1767                 discards = discards - ring->old_discards;
1768                 ring->errors += discards;
1769                 ring->old_discards += discards;
1770
1771                 /* Clear HW register when we reach 75% of maximum 0xFFFF */
1772                 if (ring->old_discards >= 0xC000) {
1773                         ring->old_discards = 0;
1774                         bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1775                                                   RDMA_PROD_INDEX);
1776                 }
1777         }
1778
1779         p_index &= DMA_P_INDEX_MASK;
1780         rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1781
1782         netif_dbg(priv, rx_status, dev,
1783                   "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1784
1785         while ((rxpktprocessed < rxpkttoprocess) &&
1786                (rxpktprocessed < budget)) {
1787                 cb = &priv->rx_cbs[ring->read_ptr];
1788                 skb = bcmgenet_rx_refill(priv, cb);
1789
1790                 if (unlikely(!skb)) {
1791                         ring->dropped++;
1792                         goto next;
1793                 }
1794
1795                 if (!priv->desc_64b_en) {
1796                         dma_length_status =
1797                                 dmadesc_get_length_status(priv, cb->bd_addr);
1798                 } else {
1799                         struct status_64 *status;
1800
1801                         status = (struct status_64 *)skb->data;
1802                         dma_length_status = status->length_status;
1803                 }
1804
1805                 /* DMA flags and length are still valid no matter how
1806                  * we got the Receive Status Vector (64B RSB or register)
1807                  */
1808                 dma_flag = dma_length_status & 0xffff;
1809                 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1810
1811                 netif_dbg(priv, rx_status, dev,
1812                           "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1813                           __func__, p_index, ring->c_index,
1814                           ring->read_ptr, dma_length_status);
1815
1816                 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1817                         netif_err(priv, rx_status, dev,
1818                                   "dropping fragmented packet!\n");
1819                         ring->errors++;
1820                         dev_kfree_skb_any(skb);
1821                         goto next;
1822                 }
1823
1824                 /* report errors */
1825                 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1826                                                 DMA_RX_OV |
1827                                                 DMA_RX_NO |
1828                                                 DMA_RX_LG |
1829                                                 DMA_RX_RXER))) {
1830                         netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1831                                   (unsigned int)dma_flag);
1832                         if (dma_flag & DMA_RX_CRC_ERROR)
1833                                 dev->stats.rx_crc_errors++;
1834                         if (dma_flag & DMA_RX_OV)
1835                                 dev->stats.rx_over_errors++;
1836                         if (dma_flag & DMA_RX_NO)
1837                                 dev->stats.rx_frame_errors++;
1838                         if (dma_flag & DMA_RX_LG)
1839                                 dev->stats.rx_length_errors++;
1840                         dev->stats.rx_errors++;
1841                         dev_kfree_skb_any(skb);
1842                         goto next;
1843                 } /* error packet */
1844
1845                 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1846                              priv->desc_rxchk_en;
1847
1848                 skb_put(skb, len);
1849                 if (priv->desc_64b_en) {
1850                         skb_pull(skb, 64);
1851                         len -= 64;
1852                 }
1853
1854                 if (likely(chksum_ok))
1855                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1856
1857                 /* remove hardware 2bytes added for IP alignment */
1858                 skb_pull(skb, 2);
1859                 len -= 2;
1860
1861                 if (priv->crc_fwd_en) {
1862                         skb_trim(skb, len - ETH_FCS_LEN);
1863                         len -= ETH_FCS_LEN;
1864                 }
1865
1866                 bytes_processed += len;
1867
1868                 /*Finish setting up the received SKB and send it to the kernel*/
1869                 skb->protocol = eth_type_trans(skb, priv->dev);
1870                 ring->packets++;
1871                 ring->bytes += len;
1872                 if (dma_flag & DMA_RX_MULT)
1873                         dev->stats.multicast++;
1874
1875                 /* Notify kernel */
1876                 napi_gro_receive(&ring->napi, skb);
1877                 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1878
1879 next:
1880                 rxpktprocessed++;
1881                 if (likely(ring->read_ptr < ring->end_ptr))
1882                         ring->read_ptr++;
1883                 else
1884                         ring->read_ptr = ring->cb_ptr;
1885
1886                 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1887                 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1888         }
1889
1890         ring->dim.bytes = bytes_processed;
1891         ring->dim.packets = rxpktprocessed;
1892
1893         return rxpktprocessed;
1894 }
1895
1896 /* Rx NAPI polling method */
1897 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1898 {
1899         struct bcmgenet_rx_ring *ring = container_of(napi,
1900                         struct bcmgenet_rx_ring, napi);
1901         struct net_dim_sample dim_sample;
1902         unsigned int work_done;
1903
1904         work_done = bcmgenet_desc_rx(ring, budget);
1905
1906         if (work_done < budget) {
1907                 napi_complete_done(napi, work_done);
1908                 ring->int_enable(ring);
1909         }
1910
1911         if (ring->dim.use_dim) {
1912                 net_dim_sample(ring->dim.event_ctr, ring->dim.packets,
1913                                ring->dim.bytes, &dim_sample);
1914                 net_dim(&ring->dim.dim, dim_sample);
1915         }
1916
1917         return work_done;
1918 }
1919
1920 static void bcmgenet_dim_work(struct work_struct *work)
1921 {
1922         struct net_dim *dim = container_of(work, struct net_dim, work);
1923         struct bcmgenet_net_dim *ndim =
1924                         container_of(dim, struct bcmgenet_net_dim, dim);
1925         struct bcmgenet_rx_ring *ring =
1926                         container_of(ndim, struct bcmgenet_rx_ring, dim);
1927         struct net_dim_cq_moder cur_profile =
1928                         net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1929
1930         bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
1931         dim->state = NET_DIM_START_MEASURE;
1932 }
1933
1934 /* Assign skb to RX DMA descriptor. */
1935 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1936                                      struct bcmgenet_rx_ring *ring)
1937 {
1938         struct enet_cb *cb;
1939         struct sk_buff *skb;
1940         int i;
1941
1942         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1943
1944         /* loop here for each buffer needing assign */
1945         for (i = 0; i < ring->size; i++) {
1946                 cb = ring->cbs + i;
1947                 skb = bcmgenet_rx_refill(priv, cb);
1948                 if (skb)
1949                         dev_consume_skb_any(skb);
1950                 if (!cb->skb)
1951                         return -ENOMEM;
1952         }
1953
1954         return 0;
1955 }
1956
1957 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1958 {
1959         struct sk_buff *skb;
1960         struct enet_cb *cb;
1961         int i;
1962
1963         for (i = 0; i < priv->num_rx_bds; i++) {
1964                 cb = &priv->rx_cbs[i];
1965
1966                 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1967                 if (skb)
1968                         dev_consume_skb_any(skb);
1969         }
1970 }
1971
1972 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1973 {
1974         u32 reg;
1975
1976         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1977         if (enable)
1978                 reg |= mask;
1979         else
1980                 reg &= ~mask;
1981         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1982
1983         /* UniMAC stops on a packet boundary, wait for a full-size packet
1984          * to be processed
1985          */
1986         if (enable == 0)
1987                 usleep_range(1000, 2000);
1988 }
1989
1990 static void reset_umac(struct bcmgenet_priv *priv)
1991 {
1992         /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1993         bcmgenet_rbuf_ctrl_set(priv, 0);
1994         udelay(10);
1995
1996         /* disable MAC while updating its registers */
1997         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1998
1999         /* issue soft reset with (rg)mii loopback to ensure a stable rxclk */
2000         bcmgenet_umac_writel(priv, CMD_SW_RESET | CMD_LCL_LOOP_EN, UMAC_CMD);
2001         udelay(2);
2002         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
2003 }
2004
2005 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2006 {
2007         /* Mask all interrupts.*/
2008         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2009         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2010         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2011         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2012 }
2013
2014 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2015 {
2016         u32 int0_enable = 0;
2017
2018         /* Monitor cable plug/unplugged event for internal PHY, external PHY
2019          * and MoCA PHY
2020          */
2021         if (priv->internal_phy) {
2022                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2023         } else if (priv->ext_phy) {
2024                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2025         } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2026                 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2027                         int0_enable |= UMAC_IRQ_LINK_EVENT;
2028         }
2029         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2030 }
2031
2032 static void init_umac(struct bcmgenet_priv *priv)
2033 {
2034         struct device *kdev = &priv->pdev->dev;
2035         u32 reg;
2036         u32 int0_enable = 0;
2037
2038         dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2039
2040         reset_umac(priv);
2041
2042         /* clear tx/rx counter */
2043         bcmgenet_umac_writel(priv,
2044                              MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2045                              UMAC_MIB_CTRL);
2046         bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2047
2048         bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2049
2050         /* init rx registers, enable ip header optimization */
2051         reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2052         reg |= RBUF_ALIGN_2B;
2053         bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2054
2055         if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2056                 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2057
2058         bcmgenet_intr_disable(priv);
2059
2060         /* Configure backpressure vectors for MoCA */
2061         if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2062                 reg = bcmgenet_bp_mc_get(priv);
2063                 reg |= BIT(priv->hw_params->bp_in_en_shift);
2064
2065                 /* bp_mask: back pressure mask */
2066                 if (netif_is_multiqueue(priv->dev))
2067                         reg |= priv->hw_params->bp_in_mask;
2068                 else
2069                         reg &= ~priv->hw_params->bp_in_mask;
2070                 bcmgenet_bp_mc_set(priv, reg);
2071         }
2072
2073         /* Enable MDIO interrupts on GENET v3+ */
2074         if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2075                 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2076
2077         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2078
2079         dev_dbg(kdev, "done init umac\n");
2080 }
2081
2082 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2083                               void (*cb)(struct work_struct *work))
2084 {
2085         struct bcmgenet_net_dim *dim = &ring->dim;
2086
2087         INIT_WORK(&dim->dim.work, cb);
2088         dim->dim.mode = NET_DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2089         dim->event_ctr = 0;
2090         dim->packets = 0;
2091         dim->bytes = 0;
2092 }
2093
2094 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2095 {
2096         struct bcmgenet_net_dim *dim = &ring->dim;
2097         struct net_dim_cq_moder moder;
2098         u32 usecs, pkts;
2099
2100         usecs = ring->rx_coalesce_usecs;
2101         pkts = ring->rx_max_coalesced_frames;
2102
2103         /* If DIM was enabled, re-apply default parameters */
2104         if (dim->use_dim) {
2105                 moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2106                 usecs = moder.usec;
2107                 pkts = moder.pkts;
2108         }
2109
2110         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2111 }
2112
2113 /* Initialize a Tx ring along with corresponding hardware registers */
2114 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2115                                   unsigned int index, unsigned int size,
2116                                   unsigned int start_ptr, unsigned int end_ptr)
2117 {
2118         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2119         u32 words_per_bd = WORDS_PER_BD(priv);
2120         u32 flow_period_val = 0;
2121
2122         spin_lock_init(&ring->lock);
2123         ring->priv = priv;
2124         ring->index = index;
2125         if (index == DESC_INDEX) {
2126                 ring->queue = 0;
2127                 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2128                 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2129         } else {
2130                 ring->queue = index + 1;
2131                 ring->int_enable = bcmgenet_tx_ring_int_enable;
2132                 ring->int_disable = bcmgenet_tx_ring_int_disable;
2133         }
2134         ring->cbs = priv->tx_cbs + start_ptr;
2135         ring->size = size;
2136         ring->clean_ptr = start_ptr;
2137         ring->c_index = 0;
2138         ring->free_bds = size;
2139         ring->write_ptr = start_ptr;
2140         ring->cb_ptr = start_ptr;
2141         ring->end_ptr = end_ptr - 1;
2142         ring->prod_index = 0;
2143
2144         /* Set flow period for ring != 16 */
2145         if (index != DESC_INDEX)
2146                 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2147
2148         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2149         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2150         bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2151         /* Disable rate control for now */
2152         bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2153                                   TDMA_FLOW_PERIOD);
2154         bcmgenet_tdma_ring_writel(priv, index,
2155                                   ((size << DMA_RING_SIZE_SHIFT) |
2156                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2157
2158         /* Set start and end address, read and write pointers */
2159         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2160                                   DMA_START_ADDR);
2161         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2162                                   TDMA_READ_PTR);
2163         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2164                                   TDMA_WRITE_PTR);
2165         bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2166                                   DMA_END_ADDR);
2167
2168         /* Initialize Tx NAPI */
2169         netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2170                        NAPI_POLL_WEIGHT);
2171 }
2172
2173 /* Initialize a RDMA ring */
2174 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2175                                  unsigned int index, unsigned int size,
2176                                  unsigned int start_ptr, unsigned int end_ptr)
2177 {
2178         struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2179         u32 words_per_bd = WORDS_PER_BD(priv);
2180         int ret;
2181
2182         ring->priv = priv;
2183         ring->index = index;
2184         if (index == DESC_INDEX) {
2185                 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2186                 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2187         } else {
2188                 ring->int_enable = bcmgenet_rx_ring_int_enable;
2189                 ring->int_disable = bcmgenet_rx_ring_int_disable;
2190         }
2191         ring->cbs = priv->rx_cbs + start_ptr;
2192         ring->size = size;
2193         ring->c_index = 0;
2194         ring->read_ptr = start_ptr;
2195         ring->cb_ptr = start_ptr;
2196         ring->end_ptr = end_ptr - 1;
2197
2198         ret = bcmgenet_alloc_rx_buffers(priv, ring);
2199         if (ret)
2200                 return ret;
2201
2202         bcmgenet_init_dim(ring, bcmgenet_dim_work);
2203         bcmgenet_init_rx_coalesce(ring);
2204
2205         /* Initialize Rx NAPI */
2206         netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2207                        NAPI_POLL_WEIGHT);
2208
2209         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2210         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2211         bcmgenet_rdma_ring_writel(priv, index,
2212                                   ((size << DMA_RING_SIZE_SHIFT) |
2213                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2214         bcmgenet_rdma_ring_writel(priv, index,
2215                                   (DMA_FC_THRESH_LO <<
2216                                    DMA_XOFF_THRESHOLD_SHIFT) |
2217                                    DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2218
2219         /* Set start and end address, read and write pointers */
2220         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2221                                   DMA_START_ADDR);
2222         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2223                                   RDMA_READ_PTR);
2224         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2225                                   RDMA_WRITE_PTR);
2226         bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2227                                   DMA_END_ADDR);
2228
2229         return ret;
2230 }
2231
2232 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2233 {
2234         unsigned int i;
2235         struct bcmgenet_tx_ring *ring;
2236
2237         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2238                 ring = &priv->tx_rings[i];
2239                 napi_enable(&ring->napi);
2240                 ring->int_enable(ring);
2241         }
2242
2243         ring = &priv->tx_rings[DESC_INDEX];
2244         napi_enable(&ring->napi);
2245         ring->int_enable(ring);
2246 }
2247
2248 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2249 {
2250         unsigned int i;
2251         struct bcmgenet_tx_ring *ring;
2252
2253         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2254                 ring = &priv->tx_rings[i];
2255                 napi_disable(&ring->napi);
2256         }
2257
2258         ring = &priv->tx_rings[DESC_INDEX];
2259         napi_disable(&ring->napi);
2260 }
2261
2262 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2263 {
2264         unsigned int i;
2265         struct bcmgenet_tx_ring *ring;
2266
2267         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2268                 ring = &priv->tx_rings[i];
2269                 netif_napi_del(&ring->napi);
2270         }
2271
2272         ring = &priv->tx_rings[DESC_INDEX];
2273         netif_napi_del(&ring->napi);
2274 }
2275
2276 /* Initialize Tx queues
2277  *
2278  * Queues 0-3 are priority-based, each one has 32 descriptors,
2279  * with queue 0 being the highest priority queue.
2280  *
2281  * Queue 16 is the default Tx queue with
2282  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2283  *
2284  * The transmit control block pool is then partitioned as follows:
2285  * - Tx queue 0 uses tx_cbs[0..31]
2286  * - Tx queue 1 uses tx_cbs[32..63]
2287  * - Tx queue 2 uses tx_cbs[64..95]
2288  * - Tx queue 3 uses tx_cbs[96..127]
2289  * - Tx queue 16 uses tx_cbs[128..255]
2290  */
2291 static void bcmgenet_init_tx_queues(struct net_device *dev)
2292 {
2293         struct bcmgenet_priv *priv = netdev_priv(dev);
2294         u32 i, dma_enable;
2295         u32 dma_ctrl, ring_cfg;
2296         u32 dma_priority[3] = {0, 0, 0};
2297
2298         dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2299         dma_enable = dma_ctrl & DMA_EN;
2300         dma_ctrl &= ~DMA_EN;
2301         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2302
2303         dma_ctrl = 0;
2304         ring_cfg = 0;
2305
2306         /* Enable strict priority arbiter mode */
2307         bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2308
2309         /* Initialize Tx priority queues */
2310         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2311                 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2312                                       i * priv->hw_params->tx_bds_per_q,
2313                                       (i + 1) * priv->hw_params->tx_bds_per_q);
2314                 ring_cfg |= (1 << i);
2315                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2316                 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2317                         ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2318         }
2319
2320         /* Initialize Tx default queue 16 */
2321         bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2322                               priv->hw_params->tx_queues *
2323                               priv->hw_params->tx_bds_per_q,
2324                               TOTAL_DESC);
2325         ring_cfg |= (1 << DESC_INDEX);
2326         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2327         dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2328                 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2329                  DMA_PRIO_REG_SHIFT(DESC_INDEX));
2330
2331         /* Set Tx queue priorities */
2332         bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2333         bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2334         bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2335
2336         /* Enable Tx queues */
2337         bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2338
2339         /* Enable Tx DMA */
2340         if (dma_enable)
2341                 dma_ctrl |= DMA_EN;
2342         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2343 }
2344
2345 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2346 {
2347         unsigned int i;
2348         struct bcmgenet_rx_ring *ring;
2349
2350         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2351                 ring = &priv->rx_rings[i];
2352                 napi_enable(&ring->napi);
2353                 ring->int_enable(ring);
2354         }
2355
2356         ring = &priv->rx_rings[DESC_INDEX];
2357         napi_enable(&ring->napi);
2358         ring->int_enable(ring);
2359 }
2360
2361 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2362 {
2363         unsigned int i;
2364         struct bcmgenet_rx_ring *ring;
2365
2366         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2367                 ring = &priv->rx_rings[i];
2368                 napi_disable(&ring->napi);
2369                 cancel_work_sync(&ring->dim.dim.work);
2370         }
2371
2372         ring = &priv->rx_rings[DESC_INDEX];
2373         napi_disable(&ring->napi);
2374         cancel_work_sync(&ring->dim.dim.work);
2375 }
2376
2377 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2378 {
2379         unsigned int i;
2380         struct bcmgenet_rx_ring *ring;
2381
2382         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2383                 ring = &priv->rx_rings[i];
2384                 netif_napi_del(&ring->napi);
2385         }
2386
2387         ring = &priv->rx_rings[DESC_INDEX];
2388         netif_napi_del(&ring->napi);
2389 }
2390
2391 /* Initialize Rx queues
2392  *
2393  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2394  * used to direct traffic to these queues.
2395  *
2396  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2397  */
2398 static int bcmgenet_init_rx_queues(struct net_device *dev)
2399 {
2400         struct bcmgenet_priv *priv = netdev_priv(dev);
2401         u32 i;
2402         u32 dma_enable;
2403         u32 dma_ctrl;
2404         u32 ring_cfg;
2405         int ret;
2406
2407         dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2408         dma_enable = dma_ctrl & DMA_EN;
2409         dma_ctrl &= ~DMA_EN;
2410         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2411
2412         dma_ctrl = 0;
2413         ring_cfg = 0;
2414
2415         /* Initialize Rx priority queues */
2416         for (i = 0; i < priv->hw_params->rx_queues; i++) {
2417                 ret = bcmgenet_init_rx_ring(priv, i,
2418                                             priv->hw_params->rx_bds_per_q,
2419                                             i * priv->hw_params->rx_bds_per_q,
2420                                             (i + 1) *
2421                                             priv->hw_params->rx_bds_per_q);
2422                 if (ret)
2423                         return ret;
2424
2425                 ring_cfg |= (1 << i);
2426                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2427         }
2428
2429         /* Initialize Rx default queue 16 */
2430         ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2431                                     priv->hw_params->rx_queues *
2432                                     priv->hw_params->rx_bds_per_q,
2433                                     TOTAL_DESC);
2434         if (ret)
2435                 return ret;
2436
2437         ring_cfg |= (1 << DESC_INDEX);
2438         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2439
2440         /* Enable rings */
2441         bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2442
2443         /* Configure ring as descriptor ring and re-enable DMA if enabled */
2444         if (dma_enable)
2445                 dma_ctrl |= DMA_EN;
2446         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2447
2448         return 0;
2449 }
2450
2451 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2452 {
2453         int ret = 0;
2454         int timeout = 0;
2455         u32 reg;
2456         u32 dma_ctrl;
2457         int i;
2458
2459         /* Disable TDMA to stop add more frames in TX DMA */
2460         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2461         reg &= ~DMA_EN;
2462         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2463
2464         /* Check TDMA status register to confirm TDMA is disabled */
2465         while (timeout++ < DMA_TIMEOUT_VAL) {
2466                 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2467                 if (reg & DMA_DISABLED)
2468                         break;
2469
2470                 udelay(1);
2471         }
2472
2473         if (timeout == DMA_TIMEOUT_VAL) {
2474                 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2475                 ret = -ETIMEDOUT;
2476         }
2477
2478         /* Wait 10ms for packet drain in both tx and rx dma */
2479         usleep_range(10000, 20000);
2480
2481         /* Disable RDMA */
2482         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2483         reg &= ~DMA_EN;
2484         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2485
2486         timeout = 0;
2487         /* Check RDMA status register to confirm RDMA is disabled */
2488         while (timeout++ < DMA_TIMEOUT_VAL) {
2489                 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2490                 if (reg & DMA_DISABLED)
2491                         break;
2492
2493                 udelay(1);
2494         }
2495
2496         if (timeout == DMA_TIMEOUT_VAL) {
2497                 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2498                 ret = -ETIMEDOUT;
2499         }
2500
2501         dma_ctrl = 0;
2502         for (i = 0; i < priv->hw_params->rx_queues; i++)
2503                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2504         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2505         reg &= ~dma_ctrl;
2506         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2507
2508         dma_ctrl = 0;
2509         for (i = 0; i < priv->hw_params->tx_queues; i++)
2510                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2511         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2512         reg &= ~dma_ctrl;
2513         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2514
2515         return ret;
2516 }
2517
2518 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2519 {
2520         struct netdev_queue *txq;
2521         struct sk_buff *skb;
2522         struct enet_cb *cb;
2523         int i;
2524
2525         bcmgenet_fini_rx_napi(priv);
2526         bcmgenet_fini_tx_napi(priv);
2527
2528         for (i = 0; i < priv->num_tx_bds; i++) {
2529                 cb = priv->tx_cbs + i;
2530                 skb = bcmgenet_free_tx_cb(&priv->pdev->dev, cb);
2531                 if (skb)
2532                         dev_kfree_skb(skb);
2533         }
2534
2535         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2536                 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2537                 netdev_tx_reset_queue(txq);
2538         }
2539
2540         txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2541         netdev_tx_reset_queue(txq);
2542
2543         bcmgenet_free_rx_buffers(priv);
2544         kfree(priv->rx_cbs);
2545         kfree(priv->tx_cbs);
2546 }
2547
2548 /* init_edma: Initialize DMA control register */
2549 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2550 {
2551         int ret;
2552         unsigned int i;
2553         struct enet_cb *cb;
2554
2555         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2556
2557         /* Initialize common Rx ring structures */
2558         priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2559         priv->num_rx_bds = TOTAL_DESC;
2560         priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2561                                GFP_KERNEL);
2562         if (!priv->rx_cbs)
2563                 return -ENOMEM;
2564
2565         for (i = 0; i < priv->num_rx_bds; i++) {
2566                 cb = priv->rx_cbs + i;
2567                 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2568         }
2569
2570         /* Initialize common TX ring structures */
2571         priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2572         priv->num_tx_bds = TOTAL_DESC;
2573         priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2574                                GFP_KERNEL);
2575         if (!priv->tx_cbs) {
2576                 kfree(priv->rx_cbs);
2577                 return -ENOMEM;
2578         }
2579
2580         for (i = 0; i < priv->num_tx_bds; i++) {
2581                 cb = priv->tx_cbs + i;
2582                 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2583         }
2584
2585         /* Init rDma */
2586         bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2587
2588         /* Initialize Rx queues */
2589         ret = bcmgenet_init_rx_queues(priv->dev);
2590         if (ret) {
2591                 netdev_err(priv->dev, "failed to initialize Rx queues\n");
2592                 bcmgenet_free_rx_buffers(priv);
2593                 kfree(priv->rx_cbs);
2594                 kfree(priv->tx_cbs);
2595                 return ret;
2596         }
2597
2598         /* Init tDma */
2599         bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2600
2601         /* Initialize Tx queues */
2602         bcmgenet_init_tx_queues(priv->dev);
2603
2604         return 0;
2605 }
2606
2607 /* Interrupt bottom half */
2608 static void bcmgenet_irq_task(struct work_struct *work)
2609 {
2610         unsigned int status;
2611         struct bcmgenet_priv *priv = container_of(
2612                         work, struct bcmgenet_priv, bcmgenet_irq_work);
2613
2614         netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2615
2616         spin_lock_irq(&priv->lock);
2617         status = priv->irq0_stat;
2618         priv->irq0_stat = 0;
2619         spin_unlock_irq(&priv->lock);
2620
2621         /* Link UP/DOWN event */
2622         if (status & UMAC_IRQ_LINK_EVENT) {
2623                 priv->dev->phydev->link = !!(status & UMAC_IRQ_LINK_UP);
2624                 phy_mac_interrupt(priv->dev->phydev);
2625         }
2626 }
2627
2628 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2629 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2630 {
2631         struct bcmgenet_priv *priv = dev_id;
2632         struct bcmgenet_rx_ring *rx_ring;
2633         struct bcmgenet_tx_ring *tx_ring;
2634         unsigned int index, status;
2635
2636         /* Read irq status */
2637         status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2638                 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2639
2640         /* clear interrupts */
2641         bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2642
2643         netif_dbg(priv, intr, priv->dev,
2644                   "%s: IRQ=0x%x\n", __func__, status);
2645
2646         /* Check Rx priority queue interrupts */
2647         for (index = 0; index < priv->hw_params->rx_queues; index++) {
2648                 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2649                         continue;
2650
2651                 rx_ring = &priv->rx_rings[index];
2652                 rx_ring->dim.event_ctr++;
2653
2654                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2655                         rx_ring->int_disable(rx_ring);
2656                         __napi_schedule_irqoff(&rx_ring->napi);
2657                 }
2658         }
2659
2660         /* Check Tx priority queue interrupts */
2661         for (index = 0; index < priv->hw_params->tx_queues; index++) {
2662                 if (!(status & BIT(index)))
2663                         continue;
2664
2665                 tx_ring = &priv->tx_rings[index];
2666
2667                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2668                         tx_ring->int_disable(tx_ring);
2669                         __napi_schedule_irqoff(&tx_ring->napi);
2670                 }
2671         }
2672
2673         return IRQ_HANDLED;
2674 }
2675
2676 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2677 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2678 {
2679         struct bcmgenet_priv *priv = dev_id;
2680         struct bcmgenet_rx_ring *rx_ring;
2681         struct bcmgenet_tx_ring *tx_ring;
2682         unsigned int status;
2683         unsigned long flags;
2684
2685         /* Read irq status */
2686         status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2687                 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2688
2689         /* clear interrupts */
2690         bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2691
2692         netif_dbg(priv, intr, priv->dev,
2693                   "IRQ=0x%x\n", status);
2694
2695         if (status & UMAC_IRQ_RXDMA_DONE) {
2696                 rx_ring = &priv->rx_rings[DESC_INDEX];
2697                 rx_ring->dim.event_ctr++;
2698
2699                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2700                         rx_ring->int_disable(rx_ring);
2701                         __napi_schedule_irqoff(&rx_ring->napi);
2702                 }
2703         }
2704
2705         if (status & UMAC_IRQ_TXDMA_DONE) {
2706                 tx_ring = &priv->tx_rings[DESC_INDEX];
2707
2708                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2709                         tx_ring->int_disable(tx_ring);
2710                         __napi_schedule_irqoff(&tx_ring->napi);
2711                 }
2712         }
2713
2714         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2715                 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2716                 wake_up(&priv->wq);
2717         }
2718
2719         /* all other interested interrupts handled in bottom half */
2720         status &= UMAC_IRQ_LINK_EVENT;
2721         if (status) {
2722                 /* Save irq status for bottom-half processing. */
2723                 spin_lock_irqsave(&priv->lock, flags);
2724                 priv->irq0_stat |= status;
2725                 spin_unlock_irqrestore(&priv->lock, flags);
2726
2727                 schedule_work(&priv->bcmgenet_irq_work);
2728         }
2729
2730         return IRQ_HANDLED;
2731 }
2732
2733 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2734 {
2735         struct bcmgenet_priv *priv = dev_id;
2736
2737         pm_wakeup_event(&priv->pdev->dev, 0);
2738
2739         return IRQ_HANDLED;
2740 }
2741
2742 #ifdef CONFIG_NET_POLL_CONTROLLER
2743 static void bcmgenet_poll_controller(struct net_device *dev)
2744 {
2745         struct bcmgenet_priv *priv = netdev_priv(dev);
2746
2747         /* Invoke the main RX/TX interrupt handler */
2748         disable_irq(priv->irq0);
2749         bcmgenet_isr0(priv->irq0, priv);
2750         enable_irq(priv->irq0);
2751
2752         /* And the interrupt handler for RX/TX priority queues */
2753         disable_irq(priv->irq1);
2754         bcmgenet_isr1(priv->irq1, priv);
2755         enable_irq(priv->irq1);
2756 }
2757 #endif
2758
2759 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2760 {
2761         u32 reg;
2762
2763         reg = bcmgenet_rbuf_ctrl_get(priv);
2764         reg |= BIT(1);
2765         bcmgenet_rbuf_ctrl_set(priv, reg);
2766         udelay(10);
2767
2768         reg &= ~BIT(1);
2769         bcmgenet_rbuf_ctrl_set(priv, reg);
2770         udelay(10);
2771 }
2772
2773 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2774                                  unsigned char *addr)
2775 {
2776         bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2777                         (addr[2] << 8) | addr[3], UMAC_MAC0);
2778         bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2779 }
2780
2781 /* Returns a reusable dma control register value */
2782 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2783 {
2784         u32 reg;
2785         u32 dma_ctrl;
2786
2787         /* disable DMA */
2788         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2789         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2790         reg &= ~dma_ctrl;
2791         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2792
2793         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2794         reg &= ~dma_ctrl;
2795         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2796
2797         bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2798         udelay(10);
2799         bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2800
2801         return dma_ctrl;
2802 }
2803
2804 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2805 {
2806         u32 reg;
2807
2808         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2809         reg |= dma_ctrl;
2810         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2811
2812         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2813         reg |= dma_ctrl;
2814         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2815 }
2816
2817 /* bcmgenet_hfb_clear
2818  *
2819  * Clear Hardware Filter Block and disable all filtering.
2820  */
2821 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2822 {
2823         u32 i;
2824
2825         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2826         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2827         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2828
2829         for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2830                 bcmgenet_rdma_writel(priv, 0x0, i);
2831
2832         for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2833                 bcmgenet_hfb_reg_writel(priv, 0x0,
2834                                         HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2835
2836         for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2837                         priv->hw_params->hfb_filter_size; i++)
2838                 bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2839 }
2840
2841 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2842 {
2843         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2844                 return;
2845
2846         bcmgenet_hfb_clear(priv);
2847 }
2848
2849 static void bcmgenet_netif_start(struct net_device *dev)
2850 {
2851         struct bcmgenet_priv *priv = netdev_priv(dev);
2852
2853         /* Start the network engine */
2854         bcmgenet_enable_rx_napi(priv);
2855
2856         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2857
2858         netif_tx_start_all_queues(dev);
2859         bcmgenet_enable_tx_napi(priv);
2860
2861         /* Monitor link interrupts now */
2862         bcmgenet_link_intr_enable(priv);
2863
2864         phy_start(dev->phydev);
2865 }
2866
2867 static int bcmgenet_open(struct net_device *dev)
2868 {
2869         struct bcmgenet_priv *priv = netdev_priv(dev);
2870         unsigned long dma_ctrl;
2871         u32 reg;
2872         int ret;
2873
2874         netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2875
2876         /* Turn on the clock */
2877         clk_prepare_enable(priv->clk);
2878
2879         /* If this is an internal GPHY, power it back on now, before UniMAC is
2880          * brought out of reset as absolutely no UniMAC activity is allowed
2881          */
2882         if (priv->internal_phy)
2883                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2884
2885         /* take MAC out of reset */
2886         bcmgenet_umac_reset(priv);
2887
2888         init_umac(priv);
2889
2890         /* Make sure we reflect the value of CRC_CMD_FWD */
2891         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2892         priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2893
2894         bcmgenet_set_hw_addr(priv, dev->dev_addr);
2895
2896         if (priv->internal_phy) {
2897                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2898                 reg |= EXT_ENERGY_DET_MASK;
2899                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2900         }
2901
2902         /* Disable RX/TX DMA and flush TX queues */
2903         dma_ctrl = bcmgenet_dma_disable(priv);
2904
2905         /* Reinitialize TDMA and RDMA and SW housekeeping */
2906         ret = bcmgenet_init_dma(priv);
2907         if (ret) {
2908                 netdev_err(dev, "failed to initialize DMA\n");
2909                 goto err_clk_disable;
2910         }
2911
2912         /* Always enable ring 16 - descriptor ring */
2913         bcmgenet_enable_dma(priv, dma_ctrl);
2914
2915         /* HFB init */
2916         bcmgenet_hfb_init(priv);
2917
2918         ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2919                           dev->name, priv);
2920         if (ret < 0) {
2921                 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2922                 goto err_fini_dma;
2923         }
2924
2925         ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2926                           dev->name, priv);
2927         if (ret < 0) {
2928                 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2929                 goto err_irq0;
2930         }
2931
2932         ret = bcmgenet_mii_probe(dev);
2933         if (ret) {
2934                 netdev_err(dev, "failed to connect to PHY\n");
2935                 goto err_irq1;
2936         }
2937
2938         bcmgenet_netif_start(dev);
2939
2940         return 0;
2941
2942 err_irq1:
2943         free_irq(priv->irq1, priv);
2944 err_irq0:
2945         free_irq(priv->irq0, priv);
2946 err_fini_dma:
2947         bcmgenet_dma_teardown(priv);
2948         bcmgenet_fini_dma(priv);
2949 err_clk_disable:
2950         if (priv->internal_phy)
2951                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2952         clk_disable_unprepare(priv->clk);
2953         return ret;
2954 }
2955
2956 static void bcmgenet_netif_stop(struct net_device *dev)
2957 {
2958         struct bcmgenet_priv *priv = netdev_priv(dev);
2959
2960         bcmgenet_disable_tx_napi(priv);
2961         netif_tx_stop_all_queues(dev);
2962
2963         /* Disable MAC receive */
2964         umac_enable_set(priv, CMD_RX_EN, false);
2965
2966         bcmgenet_dma_teardown(priv);
2967
2968         /* Disable MAC transmit. TX DMA disabled must be done before this */
2969         umac_enable_set(priv, CMD_TX_EN, false);
2970
2971         phy_stop(dev->phydev);
2972         bcmgenet_disable_rx_napi(priv);
2973         bcmgenet_intr_disable(priv);
2974
2975         /* Wait for pending work items to complete. Since interrupts are
2976          * disabled no new work will be scheduled.
2977          */
2978         cancel_work_sync(&priv->bcmgenet_irq_work);
2979
2980         priv->old_link = -1;
2981         priv->old_speed = -1;
2982         priv->old_duplex = -1;
2983         priv->old_pause = -1;
2984
2985         /* tx reclaim */
2986         bcmgenet_tx_reclaim_all(dev);
2987         bcmgenet_fini_dma(priv);
2988 }
2989
2990 static int bcmgenet_close(struct net_device *dev)
2991 {
2992         struct bcmgenet_priv *priv = netdev_priv(dev);
2993         int ret = 0;
2994
2995         netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2996
2997         bcmgenet_netif_stop(dev);
2998
2999         /* Really kill the PHY state machine and disconnect from it */
3000         phy_disconnect(dev->phydev);
3001
3002         free_irq(priv->irq0, priv);
3003         free_irq(priv->irq1, priv);
3004
3005         if (priv->internal_phy)
3006                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3007
3008         clk_disable_unprepare(priv->clk);
3009
3010         return ret;
3011 }
3012
3013 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3014 {
3015         struct bcmgenet_priv *priv = ring->priv;
3016         u32 p_index, c_index, intsts, intmsk;
3017         struct netdev_queue *txq;
3018         unsigned int free_bds;
3019         bool txq_stopped;
3020
3021         if (!netif_msg_tx_err(priv))
3022                 return;
3023
3024         txq = netdev_get_tx_queue(priv->dev, ring->queue);
3025
3026         spin_lock(&ring->lock);
3027         if (ring->index == DESC_INDEX) {
3028                 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3029                 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3030         } else {
3031                 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3032                 intmsk = 1 << ring->index;
3033         }
3034         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3035         p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3036         txq_stopped = netif_tx_queue_stopped(txq);
3037         free_bds = ring->free_bds;
3038         spin_unlock(&ring->lock);
3039
3040         netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3041                   "TX queue status: %s, interrupts: %s\n"
3042                   "(sw)free_bds: %d (sw)size: %d\n"
3043                   "(sw)p_index: %d (hw)p_index: %d\n"
3044                   "(sw)c_index: %d (hw)c_index: %d\n"
3045                   "(sw)clean_p: %d (sw)write_p: %d\n"
3046                   "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3047                   ring->index, ring->queue,
3048                   txq_stopped ? "stopped" : "active",
3049                   intsts & intmsk ? "enabled" : "disabled",
3050                   free_bds, ring->size,
3051                   ring->prod_index, p_index & DMA_P_INDEX_MASK,
3052                   ring->c_index, c_index & DMA_C_INDEX_MASK,
3053                   ring->clean_ptr, ring->write_ptr,
3054                   ring->cb_ptr, ring->end_ptr);
3055 }
3056
3057 static void bcmgenet_timeout(struct net_device *dev)
3058 {
3059         struct bcmgenet_priv *priv = netdev_priv(dev);
3060         u32 int0_enable = 0;
3061         u32 int1_enable = 0;
3062         unsigned int q;
3063
3064         netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3065
3066         for (q = 0; q < priv->hw_params->tx_queues; q++)
3067                 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3068         bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3069
3070         bcmgenet_tx_reclaim_all(dev);
3071
3072         for (q = 0; q < priv->hw_params->tx_queues; q++)
3073                 int1_enable |= (1 << q);
3074
3075         int0_enable = UMAC_IRQ_TXDMA_DONE;
3076
3077         /* Re-enable TX interrupts if disabled */
3078         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3079         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3080
3081         netif_trans_update(dev);
3082
3083         dev->stats.tx_errors++;
3084
3085         netif_tx_wake_all_queues(dev);
3086 }
3087
3088 #define MAX_MC_COUNT    16
3089
3090 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3091                                          unsigned char *addr,
3092                                          int *i,
3093                                          int *mc)
3094 {
3095         u32 reg;
3096
3097         bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3098                              UMAC_MDF_ADDR + (*i * 4));
3099         bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3100                              addr[4] << 8 | addr[5],
3101                              UMAC_MDF_ADDR + ((*i + 1) * 4));
3102         reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3103         reg |= (1 << (MAX_MC_COUNT - *mc));
3104         bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3105         *i += 2;
3106         (*mc)++;
3107 }
3108
3109 static void bcmgenet_set_rx_mode(struct net_device *dev)
3110 {
3111         struct bcmgenet_priv *priv = netdev_priv(dev);
3112         struct netdev_hw_addr *ha;
3113         int i, mc;
3114         u32 reg;
3115
3116         netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3117
3118         /* Promiscuous mode */
3119         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3120         if (dev->flags & IFF_PROMISC) {
3121                 reg |= CMD_PROMISC;
3122                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3123                 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3124                 return;
3125         } else {
3126                 reg &= ~CMD_PROMISC;
3127                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3128         }
3129
3130         /* UniMac doesn't support ALLMULTI */
3131         if (dev->flags & IFF_ALLMULTI) {
3132                 netdev_warn(dev, "ALLMULTI is not supported\n");
3133                 return;
3134         }
3135
3136         /* update MDF filter */
3137         i = 0;
3138         mc = 0;
3139         /* Broadcast */
3140         bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3141         /* my own address.*/
3142         bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3143         /* Unicast list*/
3144         if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3145                 return;
3146
3147         if (!netdev_uc_empty(dev))
3148                 netdev_for_each_uc_addr(ha, dev)
3149                         bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3150         /* Multicast */
3151         if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3152                 return;
3153
3154         netdev_for_each_mc_addr(ha, dev)
3155                 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3156 }
3157
3158 /* Set the hardware MAC address. */
3159 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3160 {
3161         struct sockaddr *addr = p;
3162
3163         /* Setting the MAC address at the hardware level is not possible
3164          * without disabling the UniMAC RX/TX enable bits.
3165          */
3166         if (netif_running(dev))
3167                 return -EBUSY;
3168
3169         ether_addr_copy(dev->dev_addr, addr->sa_data);
3170
3171         return 0;
3172 }
3173
3174 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3175 {
3176         struct bcmgenet_priv *priv = netdev_priv(dev);
3177         unsigned long tx_bytes = 0, tx_packets = 0;
3178         unsigned long rx_bytes = 0, rx_packets = 0;
3179         unsigned long rx_errors = 0, rx_dropped = 0;
3180         struct bcmgenet_tx_ring *tx_ring;
3181         struct bcmgenet_rx_ring *rx_ring;
3182         unsigned int q;
3183
3184         for (q = 0; q < priv->hw_params->tx_queues; q++) {
3185                 tx_ring = &priv->tx_rings[q];
3186                 tx_bytes += tx_ring->bytes;
3187                 tx_packets += tx_ring->packets;
3188         }
3189         tx_ring = &priv->tx_rings[DESC_INDEX];
3190         tx_bytes += tx_ring->bytes;
3191         tx_packets += tx_ring->packets;
3192
3193         for (q = 0; q < priv->hw_params->rx_queues; q++) {
3194                 rx_ring = &priv->rx_rings[q];
3195
3196                 rx_bytes += rx_ring->bytes;
3197                 rx_packets += rx_ring->packets;
3198                 rx_errors += rx_ring->errors;
3199                 rx_dropped += rx_ring->dropped;
3200         }
3201         rx_ring = &priv->rx_rings[DESC_INDEX];
3202         rx_bytes += rx_ring->bytes;
3203         rx_packets += rx_ring->packets;
3204         rx_errors += rx_ring->errors;
3205         rx_dropped += rx_ring->dropped;
3206
3207         dev->stats.tx_bytes = tx_bytes;
3208         dev->stats.tx_packets = tx_packets;
3209         dev->stats.rx_bytes = rx_bytes;
3210         dev->stats.rx_packets = rx_packets;
3211         dev->stats.rx_errors = rx_errors;
3212         dev->stats.rx_missed_errors = rx_errors;
3213         return &dev->stats;
3214 }
3215
3216 static const struct net_device_ops bcmgenet_netdev_ops = {
3217         .ndo_open               = bcmgenet_open,
3218         .ndo_stop               = bcmgenet_close,
3219         .ndo_start_xmit         = bcmgenet_xmit,
3220         .ndo_tx_timeout         = bcmgenet_timeout,
3221         .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3222         .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3223         .ndo_do_ioctl           = bcmgenet_ioctl,
3224         .ndo_set_features       = bcmgenet_set_features,
3225 #ifdef CONFIG_NET_POLL_CONTROLLER
3226         .ndo_poll_controller    = bcmgenet_poll_controller,
3227 #endif
3228         .ndo_get_stats          = bcmgenet_get_stats,
3229 };
3230
3231 /* Array of GENET hardware parameters/characteristics */
3232 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3233         [GENET_V1] = {
3234                 .tx_queues = 0,
3235                 .tx_bds_per_q = 0,
3236                 .rx_queues = 0,
3237                 .rx_bds_per_q = 0,
3238                 .bp_in_en_shift = 16,
3239                 .bp_in_mask = 0xffff,
3240                 .hfb_filter_cnt = 16,
3241                 .qtag_mask = 0x1F,
3242                 .hfb_offset = 0x1000,
3243                 .rdma_offset = 0x2000,
3244                 .tdma_offset = 0x3000,
3245                 .words_per_bd = 2,
3246         },
3247         [GENET_V2] = {
3248                 .tx_queues = 4,
3249                 .tx_bds_per_q = 32,
3250                 .rx_queues = 0,
3251                 .rx_bds_per_q = 0,
3252                 .bp_in_en_shift = 16,
3253                 .bp_in_mask = 0xffff,
3254                 .hfb_filter_cnt = 16,
3255                 .qtag_mask = 0x1F,
3256                 .tbuf_offset = 0x0600,
3257                 .hfb_offset = 0x1000,
3258                 .hfb_reg_offset = 0x2000,
3259                 .rdma_offset = 0x3000,
3260                 .tdma_offset = 0x4000,
3261                 .words_per_bd = 2,
3262                 .flags = GENET_HAS_EXT,
3263         },
3264         [GENET_V3] = {
3265                 .tx_queues = 4,
3266                 .tx_bds_per_q = 32,
3267                 .rx_queues = 0,
3268                 .rx_bds_per_q = 0,
3269                 .bp_in_en_shift = 17,
3270                 .bp_in_mask = 0x1ffff,
3271                 .hfb_filter_cnt = 48,
3272                 .hfb_filter_size = 128,
3273                 .qtag_mask = 0x3F,
3274                 .tbuf_offset = 0x0600,
3275                 .hfb_offset = 0x8000,
3276                 .hfb_reg_offset = 0xfc00,
3277                 .rdma_offset = 0x10000,
3278                 .tdma_offset = 0x11000,
3279                 .words_per_bd = 2,
3280                 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3281                          GENET_HAS_MOCA_LINK_DET,
3282         },
3283         [GENET_V4] = {
3284                 .tx_queues = 4,
3285                 .tx_bds_per_q = 32,
3286                 .rx_queues = 0,
3287                 .rx_bds_per_q = 0,
3288                 .bp_in_en_shift = 17,
3289                 .bp_in_mask = 0x1ffff,
3290                 .hfb_filter_cnt = 48,
3291                 .hfb_filter_size = 128,
3292                 .qtag_mask = 0x3F,
3293                 .tbuf_offset = 0x0600,
3294                 .hfb_offset = 0x8000,
3295                 .hfb_reg_offset = 0xfc00,
3296                 .rdma_offset = 0x2000,
3297                 .tdma_offset = 0x4000,
3298                 .words_per_bd = 3,
3299                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3300                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3301         },
3302         [GENET_V5] = {
3303                 .tx_queues = 4,
3304                 .tx_bds_per_q = 32,
3305                 .rx_queues = 0,
3306                 .rx_bds_per_q = 0,
3307                 .bp_in_en_shift = 17,
3308                 .bp_in_mask = 0x1ffff,
3309                 .hfb_filter_cnt = 48,
3310                 .hfb_filter_size = 128,
3311                 .qtag_mask = 0x3F,
3312                 .tbuf_offset = 0x0600,
3313                 .hfb_offset = 0x8000,
3314                 .hfb_reg_offset = 0xfc00,
3315                 .rdma_offset = 0x2000,
3316                 .tdma_offset = 0x4000,
3317                 .words_per_bd = 3,
3318                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3319                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3320         },
3321 };
3322
3323 /* Infer hardware parameters from the detected GENET version */
3324 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3325 {
3326         struct bcmgenet_hw_params *params;
3327         u32 reg;
3328         u8 major;
3329         u16 gphy_rev;
3330
3331         if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3332                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3333                 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3334                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3335         } else if (GENET_IS_V3(priv)) {
3336                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3337                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3338                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3339         } else if (GENET_IS_V2(priv)) {
3340                 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3341                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3342                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3343         } else if (GENET_IS_V1(priv)) {
3344                 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3345                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3346                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3347         }
3348
3349         /* enum genet_version starts at 1 */
3350         priv->hw_params = &bcmgenet_hw_params[priv->version];
3351         params = priv->hw_params;
3352
3353         /* Read GENET HW version */
3354         reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3355         major = (reg >> 24 & 0x0f);
3356         if (major == 6)
3357                 major = 5;
3358         else if (major == 5)
3359                 major = 4;
3360         else if (major == 0)
3361                 major = 1;
3362         if (major != priv->version) {
3363                 dev_err(&priv->pdev->dev,
3364                         "GENET version mismatch, got: %d, configured for: %d\n",
3365                         major, priv->version);
3366         }
3367
3368         /* Print the GENET core version */
3369         dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3370                  major, (reg >> 16) & 0x0f, reg & 0xffff);
3371
3372         /* Store the integrated PHY revision for the MDIO probing function
3373          * to pass this information to the PHY driver. The PHY driver expects
3374          * to find the PHY major revision in bits 15:8 while the GENET register
3375          * stores that information in bits 7:0, account for that.
3376          *
3377          * On newer chips, starting with PHY revision G0, a new scheme is
3378          * deployed similar to the Starfighter 2 switch with GPHY major
3379          * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3380          * is reserved as well as special value 0x01ff, we have a small
3381          * heuristic to check for the new GPHY revision and re-arrange things
3382          * so the GPHY driver is happy.
3383          */
3384         gphy_rev = reg & 0xffff;
3385
3386         if (GENET_IS_V5(priv)) {
3387                 /* The EPHY revision should come from the MDIO registers of
3388                  * the PHY not from GENET.
3389                  */
3390                 if (gphy_rev != 0) {
3391                         pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3392                                 gphy_rev);
3393                 }
3394         /* This is reserved so should require special treatment */
3395         } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3396                 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3397                 return;
3398         /* This is the good old scheme, just GPHY major, no minor nor patch */
3399         } else if ((gphy_rev & 0xf0) != 0) {
3400                 priv->gphy_rev = gphy_rev << 8;
3401         /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3402         } else if ((gphy_rev & 0xff00) != 0) {
3403                 priv->gphy_rev = gphy_rev;
3404         }
3405
3406 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3407         if (!(params->flags & GENET_HAS_40BITS))
3408                 pr_warn("GENET does not support 40-bits PA\n");
3409 #endif
3410
3411         pr_debug("Configuration for version: %d\n"
3412                 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3413                 "BP << en: %2d, BP msk: 0x%05x\n"
3414                 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3415                 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3416                 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3417                 "Words/BD: %d\n",
3418                 priv->version,
3419                 params->tx_queues, params->tx_bds_per_q,
3420                 params->rx_queues, params->rx_bds_per_q,
3421                 params->bp_in_en_shift, params->bp_in_mask,
3422                 params->hfb_filter_cnt, params->qtag_mask,
3423                 params->tbuf_offset, params->hfb_offset,
3424                 params->hfb_reg_offset,
3425                 params->rdma_offset, params->tdma_offset,
3426                 params->words_per_bd);
3427 }
3428
3429 static const struct of_device_id bcmgenet_match[] = {
3430         { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3431         { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3432         { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3433         { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3434         { .compatible = "brcm,genet-v5", .data = (void *)GENET_V5 },
3435         { },
3436 };
3437 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3438
3439 static int bcmgenet_probe(struct platform_device *pdev)
3440 {
3441         struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3442         struct device_node *dn = pdev->dev.of_node;
3443         const struct of_device_id *of_id = NULL;
3444         struct bcmgenet_priv *priv;
3445         struct net_device *dev;
3446         const void *macaddr;
3447         struct resource *r;
3448         unsigned int i;
3449         int err = -EIO;
3450         const char *phy_mode_str;
3451
3452         /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3453         dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3454                                  GENET_MAX_MQ_CNT + 1);
3455         if (!dev) {
3456                 dev_err(&pdev->dev, "can't allocate net device\n");
3457                 return -ENOMEM;
3458         }
3459
3460         if (dn) {
3461                 of_id = of_match_node(bcmgenet_match, dn);
3462                 if (!of_id)
3463                         return -EINVAL;
3464         }
3465
3466         priv = netdev_priv(dev);
3467         priv->irq0 = platform_get_irq(pdev, 0);
3468         priv->irq1 = platform_get_irq(pdev, 1);
3469         priv->wol_irq = platform_get_irq(pdev, 2);
3470         if (!priv->irq0 || !priv->irq1) {
3471                 dev_err(&pdev->dev, "can't find IRQs\n");
3472                 err = -EINVAL;
3473                 goto err;
3474         }
3475
3476         if (dn) {
3477                 macaddr = of_get_mac_address(dn);
3478                 if (!macaddr) {
3479                         dev_err(&pdev->dev, "can't find MAC address\n");
3480                         err = -EINVAL;
3481                         goto err;
3482                 }
3483         } else {
3484                 macaddr = pd->mac_address;
3485         }
3486
3487         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3488         priv->base = devm_ioremap_resource(&pdev->dev, r);
3489         if (IS_ERR(priv->base)) {
3490                 err = PTR_ERR(priv->base);
3491                 goto err;
3492         }
3493
3494         spin_lock_init(&priv->lock);
3495
3496         SET_NETDEV_DEV(dev, &pdev->dev);
3497         dev_set_drvdata(&pdev->dev, dev);
3498         ether_addr_copy(dev->dev_addr, macaddr);
3499         dev->watchdog_timeo = 2 * HZ;
3500         dev->ethtool_ops = &bcmgenet_ethtool_ops;
3501         dev->netdev_ops = &bcmgenet_netdev_ops;
3502
3503         priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3504
3505         /* Set hardware features */
3506         dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3507                 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3508
3509         /* Request the WOL interrupt and advertise suspend if available */
3510         priv->wol_irq_disabled = true;
3511         err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3512                                dev->name, priv);
3513         if (!err)
3514                 device_set_wakeup_capable(&pdev->dev, 1);
3515
3516         /* Set the needed headroom to account for any possible
3517          * features enabling/disabling at runtime
3518          */
3519         dev->needed_headroom += 64;
3520
3521         netdev_boot_setup_check(dev);
3522
3523         priv->dev = dev;
3524         priv->pdev = pdev;
3525         if (of_id)
3526                 priv->version = (enum bcmgenet_version)of_id->data;
3527         else
3528                 priv->version = pd->genet_version;
3529
3530         priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3531         if (IS_ERR(priv->clk)) {
3532                 dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3533                 priv->clk = NULL;
3534         }
3535
3536         clk_prepare_enable(priv->clk);
3537
3538         bcmgenet_set_hw_params(priv);
3539
3540         /* Mii wait queue */
3541         init_waitqueue_head(&priv->wq);
3542         /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3543         priv->rx_buf_len = RX_BUF_LENGTH;
3544         INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3545
3546         priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3547         if (IS_ERR(priv->clk_wol)) {
3548                 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3549                 priv->clk_wol = NULL;
3550         }
3551
3552         priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3553         if (IS_ERR(priv->clk_eee)) {
3554                 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3555                 priv->clk_eee = NULL;
3556         }
3557
3558         /* If this is an internal GPHY, power it on now, before UniMAC is
3559          * brought out of reset as absolutely no UniMAC activity is allowed
3560          */
3561         if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3562             !strcasecmp(phy_mode_str, "internal"))
3563                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3564
3565         reset_umac(priv);
3566
3567         err = bcmgenet_mii_init(dev);
3568         if (err)
3569                 goto err_clk_disable;
3570
3571         /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3572          * just the ring 16 descriptor based TX
3573          */
3574         netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3575         netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3576
3577         /* Set default coalescing parameters */
3578         for (i = 0; i < priv->hw_params->rx_queues; i++)
3579                 priv->rx_rings[i].rx_max_coalesced_frames = 1;
3580         priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
3581
3582         /* libphy will determine the link state */
3583         netif_carrier_off(dev);
3584
3585         /* Turn off the main clock, WOL clock is handled separately */
3586         clk_disable_unprepare(priv->clk);
3587
3588         err = register_netdev(dev);
3589         if (err)
3590                 goto err;
3591
3592         return err;
3593
3594 err_clk_disable:
3595         clk_disable_unprepare(priv->clk);
3596 err:
3597         free_netdev(dev);
3598         return err;
3599 }
3600
3601 static int bcmgenet_remove(struct platform_device *pdev)
3602 {
3603         struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3604
3605         dev_set_drvdata(&pdev->dev, NULL);
3606         unregister_netdev(priv->dev);
3607         bcmgenet_mii_exit(priv->dev);
3608         free_netdev(priv->dev);
3609
3610         return 0;
3611 }
3612
3613 #ifdef CONFIG_PM_SLEEP
3614 static int bcmgenet_suspend(struct device *d)
3615 {
3616         struct net_device *dev = dev_get_drvdata(d);
3617         struct bcmgenet_priv *priv = netdev_priv(dev);
3618         int ret = 0;
3619
3620         if (!netif_running(dev))
3621                 return 0;
3622
3623         bcmgenet_netif_stop(dev);
3624
3625         if (!device_may_wakeup(d))
3626                 phy_suspend(dev->phydev);
3627
3628         netif_device_detach(dev);
3629
3630         /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3631         if (device_may_wakeup(d) && priv->wolopts) {
3632                 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3633                 clk_prepare_enable(priv->clk_wol);
3634         } else if (priv->internal_phy) {
3635                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3636         }
3637
3638         /* Turn off the clocks */
3639         clk_disable_unprepare(priv->clk);
3640
3641         return ret;
3642 }
3643
3644 static int bcmgenet_resume(struct device *d)
3645 {
3646         struct net_device *dev = dev_get_drvdata(d);
3647         struct bcmgenet_priv *priv = netdev_priv(dev);
3648         unsigned long dma_ctrl;
3649         int ret;
3650         u32 reg;
3651
3652         if (!netif_running(dev))
3653                 return 0;
3654
3655         /* Turn on the clock */
3656         ret = clk_prepare_enable(priv->clk);
3657         if (ret)
3658                 return ret;
3659
3660         /* If this is an internal GPHY, power it back on now, before UniMAC is
3661          * brought out of reset as absolutely no UniMAC activity is allowed
3662          */
3663         if (priv->internal_phy)
3664                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3665
3666         bcmgenet_umac_reset(priv);
3667
3668         init_umac(priv);
3669
3670         /* From WOL-enabled suspend, switch to regular clock */
3671         if (priv->wolopts)
3672                 clk_disable_unprepare(priv->clk_wol);
3673
3674         phy_init_hw(dev->phydev);
3675
3676         /* Speed settings must be restored */
3677         bcmgenet_mii_config(priv->dev, false);
3678
3679         bcmgenet_set_hw_addr(priv, dev->dev_addr);
3680
3681         if (priv->internal_phy) {
3682                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3683                 reg |= EXT_ENERGY_DET_MASK;
3684                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3685         }
3686
3687         if (priv->wolopts)
3688                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3689
3690         /* Disable RX/TX DMA and flush TX queues */
3691         dma_ctrl = bcmgenet_dma_disable(priv);
3692
3693         /* Reinitialize TDMA and RDMA and SW housekeeping */
3694         ret = bcmgenet_init_dma(priv);
3695         if (ret) {
3696                 netdev_err(dev, "failed to initialize DMA\n");
3697                 goto out_clk_disable;
3698         }
3699
3700         /* Always enable ring 16 - descriptor ring */
3701         bcmgenet_enable_dma(priv, dma_ctrl);
3702
3703         netif_device_attach(dev);
3704
3705         if (!device_may_wakeup(d))
3706                 phy_resume(dev->phydev);
3707
3708         if (priv->eee.eee_enabled)
3709                 bcmgenet_eee_enable_set(dev, true);
3710
3711         bcmgenet_netif_start(dev);
3712
3713         return 0;
3714
3715 out_clk_disable:
3716         if (priv->internal_phy)
3717                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3718         clk_disable_unprepare(priv->clk);
3719         return ret;
3720 }
3721 #endif /* CONFIG_PM_SLEEP */
3722
3723 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3724
3725 static struct platform_driver bcmgenet_driver = {
3726         .probe  = bcmgenet_probe,
3727         .remove = bcmgenet_remove,
3728         .driver = {
3729                 .name   = "bcmgenet",
3730                 .of_match_table = bcmgenet_match,
3731                 .pm     = &bcmgenet_pm_ops,
3732         },
3733 };
3734 module_platform_driver(bcmgenet_driver);
3735
3736 MODULE_AUTHOR("Broadcom Corporation");
3737 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3738 MODULE_ALIAS("platform:bcmgenet");
3739 MODULE_LICENSE("GPL");