Merge remote-tracking branches 'asoc/topic/rockchip', 'asoc/topic/rt5514', 'asoc...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>  /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 #include "bnx2x.h"
63 #include "bnx2x_init.h"
64 #include "bnx2x_init_ops.h"
65 #include "bnx2x_cmn.h"
66 #include "bnx2x_vfpf.h"
67 #include "bnx2x_dcb.h"
68 #include "bnx2x_sp.h"
69 #include <linux/firmware.h>
70 #include "bnx2x_fw_file_hdr.h"
71 /* FW files */
72 #define FW_FILE_VERSION                                 \
73         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
74         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
75         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
76         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
77 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
78 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
79 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
80
81 /* Time in jiffies before concluding the transmitter is hung */
82 #define TX_TIMEOUT              (5*HZ)
83
84 static char version[] =
85         "QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver "
86         DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
87
88 MODULE_AUTHOR("Eliezer Tamir");
89 MODULE_DESCRIPTION("QLogic "
90                    "BCM57710/57711/57711E/"
91                    "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
92                    "57840/57840_MF Driver");
93 MODULE_LICENSE("GPL");
94 MODULE_VERSION(DRV_MODULE_VERSION);
95 MODULE_FIRMWARE(FW_FILE_NAME_E1);
96 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
97 MODULE_FIRMWARE(FW_FILE_NAME_E2);
98
99 int bnx2x_num_queues;
100 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
101 MODULE_PARM_DESC(num_queues,
102                  " Set number of queues (default is as a number of CPUs)");
103
104 static int disable_tpa;
105 module_param(disable_tpa, int, S_IRUGO);
106 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
107
108 static int int_mode;
109 module_param(int_mode, int, S_IRUGO);
110 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
111                                 "(1 INT#x; 2 MSI)");
112
113 static int dropless_fc;
114 module_param(dropless_fc, int, S_IRUGO);
115 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
116
117 static int mrrs = -1;
118 module_param(mrrs, int, S_IRUGO);
119 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
120
121 static int debug;
122 module_param(debug, int, S_IRUGO);
123 MODULE_PARM_DESC(debug, " Default debug msglevel");
124
125 static struct workqueue_struct *bnx2x_wq;
126 struct workqueue_struct *bnx2x_iov_wq;
127
128 struct bnx2x_mac_vals {
129         u32 xmac_addr;
130         u32 xmac_val;
131         u32 emac_addr;
132         u32 emac_val;
133         u32 umac_addr[2];
134         u32 umac_val[2];
135         u32 bmac_addr;
136         u32 bmac_val[2];
137 };
138
139 enum bnx2x_board_type {
140         BCM57710 = 0,
141         BCM57711,
142         BCM57711E,
143         BCM57712,
144         BCM57712_MF,
145         BCM57712_VF,
146         BCM57800,
147         BCM57800_MF,
148         BCM57800_VF,
149         BCM57810,
150         BCM57810_MF,
151         BCM57810_VF,
152         BCM57840_4_10,
153         BCM57840_2_20,
154         BCM57840_MF,
155         BCM57840_VF,
156         BCM57811,
157         BCM57811_MF,
158         BCM57840_O,
159         BCM57840_MFO,
160         BCM57811_VF
161 };
162
163 /* indexed by board_type, above */
164 static struct {
165         char *name;
166 } board_info[] = {
167         [BCM57710]      = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
168         [BCM57711]      = { "QLogic BCM57711 10 Gigabit PCIe" },
169         [BCM57711E]     = { "QLogic BCM57711E 10 Gigabit PCIe" },
170         [BCM57712]      = { "QLogic BCM57712 10 Gigabit Ethernet" },
171         [BCM57712_MF]   = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
172         [BCM57712_VF]   = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
173         [BCM57800]      = { "QLogic BCM57800 10 Gigabit Ethernet" },
174         [BCM57800_MF]   = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
175         [BCM57800_VF]   = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
176         [BCM57810]      = { "QLogic BCM57810 10 Gigabit Ethernet" },
177         [BCM57810_MF]   = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
178         [BCM57810_VF]   = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
179         [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" },
180         [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" },
181         [BCM57840_MF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
182         [BCM57840_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
183         [BCM57811]      = { "QLogic BCM57811 10 Gigabit Ethernet" },
184         [BCM57811_MF]   = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
185         [BCM57840_O]    = { "QLogic BCM57840 10/20 Gigabit Ethernet" },
186         [BCM57840_MFO]  = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
187         [BCM57811_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
188 };
189
190 #ifndef PCI_DEVICE_ID_NX2_57710
191 #define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
192 #endif
193 #ifndef PCI_DEVICE_ID_NX2_57711
194 #define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
195 #endif
196 #ifndef PCI_DEVICE_ID_NX2_57711E
197 #define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
198 #endif
199 #ifndef PCI_DEVICE_ID_NX2_57712
200 #define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
201 #endif
202 #ifndef PCI_DEVICE_ID_NX2_57712_MF
203 #define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
204 #endif
205 #ifndef PCI_DEVICE_ID_NX2_57712_VF
206 #define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
207 #endif
208 #ifndef PCI_DEVICE_ID_NX2_57800
209 #define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
210 #endif
211 #ifndef PCI_DEVICE_ID_NX2_57800_MF
212 #define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
213 #endif
214 #ifndef PCI_DEVICE_ID_NX2_57800_VF
215 #define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
216 #endif
217 #ifndef PCI_DEVICE_ID_NX2_57810
218 #define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
219 #endif
220 #ifndef PCI_DEVICE_ID_NX2_57810_MF
221 #define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
222 #endif
223 #ifndef PCI_DEVICE_ID_NX2_57840_O
224 #define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
225 #endif
226 #ifndef PCI_DEVICE_ID_NX2_57810_VF
227 #define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
228 #endif
229 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
230 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
231 #endif
232 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
233 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
234 #endif
235 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
236 #define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
237 #endif
238 #ifndef PCI_DEVICE_ID_NX2_57840_MF
239 #define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
240 #endif
241 #ifndef PCI_DEVICE_ID_NX2_57840_VF
242 #define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
243 #endif
244 #ifndef PCI_DEVICE_ID_NX2_57811
245 #define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
246 #endif
247 #ifndef PCI_DEVICE_ID_NX2_57811_MF
248 #define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
249 #endif
250 #ifndef PCI_DEVICE_ID_NX2_57811_VF
251 #define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
252 #endif
253
254 static const struct pci_device_id bnx2x_pci_tbl[] = {
255         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
256         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
257         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
258         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
259         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
260         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
261         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
262         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
263         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
264         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
265         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
266         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
267         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
268         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
269         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
270         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
271         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
272         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
273         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
274         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
275         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
276         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
277         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
278         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
279         { 0 }
280 };
281
282 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
283
284 /* Global resources for unloading a previously loaded device */
285 #define BNX2X_PREV_WAIT_NEEDED 1
286 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
287 static LIST_HEAD(bnx2x_prev_list);
288
289 /* Forward declaration */
290 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
291 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
292 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
293
294 /****************************************************************************
295 * General service functions
296 ****************************************************************************/
297
298 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
299
300 static void __storm_memset_dma_mapping(struct bnx2x *bp,
301                                        u32 addr, dma_addr_t mapping)
302 {
303         REG_WR(bp,  addr, U64_LO(mapping));
304         REG_WR(bp,  addr + 4, U64_HI(mapping));
305 }
306
307 static void storm_memset_spq_addr(struct bnx2x *bp,
308                                   dma_addr_t mapping, u16 abs_fid)
309 {
310         u32 addr = XSEM_REG_FAST_MEMORY +
311                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
312
313         __storm_memset_dma_mapping(bp, addr, mapping);
314 }
315
316 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
317                                   u16 pf_id)
318 {
319         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
320                 pf_id);
321         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
322                 pf_id);
323         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
324                 pf_id);
325         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
326                 pf_id);
327 }
328
329 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
330                                  u8 enable)
331 {
332         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
333                 enable);
334         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
335                 enable);
336         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
337                 enable);
338         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
339                 enable);
340 }
341
342 static void storm_memset_eq_data(struct bnx2x *bp,
343                                  struct event_ring_data *eq_data,
344                                 u16 pfid)
345 {
346         size_t size = sizeof(struct event_ring_data);
347
348         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
349
350         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
351 }
352
353 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
354                                  u16 pfid)
355 {
356         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
357         REG_WR16(bp, addr, eq_prod);
358 }
359
360 /* used only at init
361  * locking is done by mcp
362  */
363 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
364 {
365         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
366         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
367         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
368                                PCICFG_VENDOR_ID_OFFSET);
369 }
370
371 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
372 {
373         u32 val;
374
375         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
376         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
377         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
378                                PCICFG_VENDOR_ID_OFFSET);
379
380         return val;
381 }
382
383 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
384 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
385 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
386 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
387 #define DMAE_DP_DST_NONE        "dst_addr [none]"
388
389 static void bnx2x_dp_dmae(struct bnx2x *bp,
390                           struct dmae_command *dmae, int msglvl)
391 {
392         u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
393         int i;
394
395         switch (dmae->opcode & DMAE_COMMAND_DST) {
396         case DMAE_CMD_DST_PCI:
397                 if (src_type == DMAE_CMD_SRC_PCI)
398                         DP(msglvl, "DMAE: opcode 0x%08x\n"
399                            "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
400                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
401                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
402                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
403                            dmae->comp_addr_hi, dmae->comp_addr_lo,
404                            dmae->comp_val);
405                 else
406                         DP(msglvl, "DMAE: opcode 0x%08x\n"
407                            "src [%08x], len [%d*4], dst [%x:%08x]\n"
408                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
409                            dmae->opcode, dmae->src_addr_lo >> 2,
410                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
411                            dmae->comp_addr_hi, dmae->comp_addr_lo,
412                            dmae->comp_val);
413                 break;
414         case DMAE_CMD_DST_GRC:
415                 if (src_type == DMAE_CMD_SRC_PCI)
416                         DP(msglvl, "DMAE: opcode 0x%08x\n"
417                            "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
418                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
419                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
420                            dmae->len, dmae->dst_addr_lo >> 2,
421                            dmae->comp_addr_hi, dmae->comp_addr_lo,
422                            dmae->comp_val);
423                 else
424                         DP(msglvl, "DMAE: opcode 0x%08x\n"
425                            "src [%08x], len [%d*4], dst [%08x]\n"
426                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
427                            dmae->opcode, dmae->src_addr_lo >> 2,
428                            dmae->len, dmae->dst_addr_lo >> 2,
429                            dmae->comp_addr_hi, dmae->comp_addr_lo,
430                            dmae->comp_val);
431                 break;
432         default:
433                 if (src_type == DMAE_CMD_SRC_PCI)
434                         DP(msglvl, "DMAE: opcode 0x%08x\n"
435                            "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
436                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
437                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
438                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
439                            dmae->comp_val);
440                 else
441                         DP(msglvl, "DMAE: opcode 0x%08x\n"
442                            "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
443                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
444                            dmae->opcode, dmae->src_addr_lo >> 2,
445                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
446                            dmae->comp_val);
447                 break;
448         }
449
450         for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
451                 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
452                    i, *(((u32 *)dmae) + i));
453 }
454
455 /* copy command into DMAE command memory and set DMAE command go */
456 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
457 {
458         u32 cmd_offset;
459         int i;
460
461         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
462         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
463                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
464         }
465         REG_WR(bp, dmae_reg_go_c[idx], 1);
466 }
467
468 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
469 {
470         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
471                            DMAE_CMD_C_ENABLE);
472 }
473
474 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
475 {
476         return opcode & ~DMAE_CMD_SRC_RESET;
477 }
478
479 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
480                              bool with_comp, u8 comp_type)
481 {
482         u32 opcode = 0;
483
484         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
485                    (dst_type << DMAE_COMMAND_DST_SHIFT));
486
487         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
488
489         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
490         opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
491                    (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
492         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
493
494 #ifdef __BIG_ENDIAN
495         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
496 #else
497         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
498 #endif
499         if (with_comp)
500                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
501         return opcode;
502 }
503
504 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
505                                       struct dmae_command *dmae,
506                                       u8 src_type, u8 dst_type)
507 {
508         memset(dmae, 0, sizeof(struct dmae_command));
509
510         /* set the opcode */
511         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
512                                          true, DMAE_COMP_PCI);
513
514         /* fill in the completion parameters */
515         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
516         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
517         dmae->comp_val = DMAE_COMP_VAL;
518 }
519
520 /* issue a dmae command over the init-channel and wait for completion */
521 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
522                                u32 *comp)
523 {
524         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
525         int rc = 0;
526
527         bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
528
529         /* Lock the dmae channel. Disable BHs to prevent a dead-lock
530          * as long as this code is called both from syscall context and
531          * from ndo_set_rx_mode() flow that may be called from BH.
532          */
533
534         spin_lock_bh(&bp->dmae_lock);
535
536         /* reset completion */
537         *comp = 0;
538
539         /* post the command on the channel used for initializations */
540         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
541
542         /* wait for completion */
543         udelay(5);
544         while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
545
546                 if (!cnt ||
547                     (bp->recovery_state != BNX2X_RECOVERY_DONE &&
548                      bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
549                         BNX2X_ERR("DMAE timeout!\n");
550                         rc = DMAE_TIMEOUT;
551                         goto unlock;
552                 }
553                 cnt--;
554                 udelay(50);
555         }
556         if (*comp & DMAE_PCI_ERR_FLAG) {
557                 BNX2X_ERR("DMAE PCI error!\n");
558                 rc = DMAE_PCI_ERROR;
559         }
560
561 unlock:
562
563         spin_unlock_bh(&bp->dmae_lock);
564
565         return rc;
566 }
567
568 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
569                       u32 len32)
570 {
571         int rc;
572         struct dmae_command dmae;
573
574         if (!bp->dmae_ready) {
575                 u32 *data = bnx2x_sp(bp, wb_data[0]);
576
577                 if (CHIP_IS_E1(bp))
578                         bnx2x_init_ind_wr(bp, dst_addr, data, len32);
579                 else
580                         bnx2x_init_str_wr(bp, dst_addr, data, len32);
581                 return;
582         }
583
584         /* set opcode and fixed command fields */
585         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
586
587         /* fill in addresses and len */
588         dmae.src_addr_lo = U64_LO(dma_addr);
589         dmae.src_addr_hi = U64_HI(dma_addr);
590         dmae.dst_addr_lo = dst_addr >> 2;
591         dmae.dst_addr_hi = 0;
592         dmae.len = len32;
593
594         /* issue the command and wait for completion */
595         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
596         if (rc) {
597                 BNX2X_ERR("DMAE returned failure %d\n", rc);
598 #ifdef BNX2X_STOP_ON_ERROR
599                 bnx2x_panic();
600 #endif
601         }
602 }
603
604 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
605 {
606         int rc;
607         struct dmae_command dmae;
608
609         if (!bp->dmae_ready) {
610                 u32 *data = bnx2x_sp(bp, wb_data[0]);
611                 int i;
612
613                 if (CHIP_IS_E1(bp))
614                         for (i = 0; i < len32; i++)
615                                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
616                 else
617                         for (i = 0; i < len32; i++)
618                                 data[i] = REG_RD(bp, src_addr + i*4);
619
620                 return;
621         }
622
623         /* set opcode and fixed command fields */
624         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
625
626         /* fill in addresses and len */
627         dmae.src_addr_lo = src_addr >> 2;
628         dmae.src_addr_hi = 0;
629         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
630         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
631         dmae.len = len32;
632
633         /* issue the command and wait for completion */
634         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
635         if (rc) {
636                 BNX2X_ERR("DMAE returned failure %d\n", rc);
637 #ifdef BNX2X_STOP_ON_ERROR
638                 bnx2x_panic();
639 #endif
640         }
641 }
642
643 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
644                                       u32 addr, u32 len)
645 {
646         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
647         int offset = 0;
648
649         while (len > dmae_wr_max) {
650                 bnx2x_write_dmae(bp, phys_addr + offset,
651                                  addr + offset, dmae_wr_max);
652                 offset += dmae_wr_max * 4;
653                 len -= dmae_wr_max;
654         }
655
656         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
657 }
658
659 enum storms {
660            XSTORM,
661            TSTORM,
662            CSTORM,
663            USTORM,
664            MAX_STORMS
665 };
666
667 #define STORMS_NUM 4
668 #define REGS_IN_ENTRY 4
669
670 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
671                                               enum storms storm,
672                                               int entry)
673 {
674         switch (storm) {
675         case XSTORM:
676                 return XSTORM_ASSERT_LIST_OFFSET(entry);
677         case TSTORM:
678                 return TSTORM_ASSERT_LIST_OFFSET(entry);
679         case CSTORM:
680                 return CSTORM_ASSERT_LIST_OFFSET(entry);
681         case USTORM:
682                 return USTORM_ASSERT_LIST_OFFSET(entry);
683         case MAX_STORMS:
684         default:
685                 BNX2X_ERR("unknown storm\n");
686         }
687         return -EINVAL;
688 }
689
690 static int bnx2x_mc_assert(struct bnx2x *bp)
691 {
692         char last_idx;
693         int i, j, rc = 0;
694         enum storms storm;
695         u32 regs[REGS_IN_ENTRY];
696         u32 bar_storm_intmem[STORMS_NUM] = {
697                 BAR_XSTRORM_INTMEM,
698                 BAR_TSTRORM_INTMEM,
699                 BAR_CSTRORM_INTMEM,
700                 BAR_USTRORM_INTMEM
701         };
702         u32 storm_assert_list_index[STORMS_NUM] = {
703                 XSTORM_ASSERT_LIST_INDEX_OFFSET,
704                 TSTORM_ASSERT_LIST_INDEX_OFFSET,
705                 CSTORM_ASSERT_LIST_INDEX_OFFSET,
706                 USTORM_ASSERT_LIST_INDEX_OFFSET
707         };
708         char *storms_string[STORMS_NUM] = {
709                 "XSTORM",
710                 "TSTORM",
711                 "CSTORM",
712                 "USTORM"
713         };
714
715         for (storm = XSTORM; storm < MAX_STORMS; storm++) {
716                 last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
717                                    storm_assert_list_index[storm]);
718                 if (last_idx)
719                         BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
720                                   storms_string[storm], last_idx);
721
722                 /* print the asserts */
723                 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
724                         /* read a single assert entry */
725                         for (j = 0; j < REGS_IN_ENTRY; j++)
726                                 regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
727                                           bnx2x_get_assert_list_entry(bp,
728                                                                       storm,
729                                                                       i) +
730                                           sizeof(u32) * j);
731
732                         /* log entry if it contains a valid assert */
733                         if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
734                                 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
735                                           storms_string[storm], i, regs[3],
736                                           regs[2], regs[1], regs[0]);
737                                 rc++;
738                         } else {
739                                 break;
740                         }
741                 }
742         }
743
744         BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
745                   CHIP_IS_E1(bp) ? "everest1" :
746                   CHIP_IS_E1H(bp) ? "everest1h" :
747                   CHIP_IS_E2(bp) ? "everest2" : "everest3",
748                   BCM_5710_FW_MAJOR_VERSION,
749                   BCM_5710_FW_MINOR_VERSION,
750                   BCM_5710_FW_REVISION_VERSION);
751
752         return rc;
753 }
754
755 #define MCPR_TRACE_BUFFER_SIZE  (0x800)
756 #define SCRATCH_BUFFER_SIZE(bp) \
757         (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
758
759 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
760 {
761         u32 addr, val;
762         u32 mark, offset;
763         __be32 data[9];
764         int word;
765         u32 trace_shmem_base;
766         if (BP_NOMCP(bp)) {
767                 BNX2X_ERR("NO MCP - can not dump\n");
768                 return;
769         }
770         netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
771                 (bp->common.bc_ver & 0xff0000) >> 16,
772                 (bp->common.bc_ver & 0xff00) >> 8,
773                 (bp->common.bc_ver & 0xff));
774
775         if (pci_channel_offline(bp->pdev)) {
776                 BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
777                 return;
778         }
779
780         val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
781         if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
782                 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
783
784         if (BP_PATH(bp) == 0)
785                 trace_shmem_base = bp->common.shmem_base;
786         else
787                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
788
789         /* sanity */
790         if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
791             trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
792                                 SCRATCH_BUFFER_SIZE(bp)) {
793                 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
794                           trace_shmem_base);
795                 return;
796         }
797
798         addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
799
800         /* validate TRCB signature */
801         mark = REG_RD(bp, addr);
802         if (mark != MFW_TRACE_SIGNATURE) {
803                 BNX2X_ERR("Trace buffer signature is missing.");
804                 return ;
805         }
806
807         /* read cyclic buffer pointer */
808         addr += 4;
809         mark = REG_RD(bp, addr);
810         mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
811         if (mark >= trace_shmem_base || mark < addr + 4) {
812                 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
813                 return;
814         }
815         printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
816
817         printk("%s", lvl);
818
819         /* dump buffer after the mark */
820         for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
821                 for (word = 0; word < 8; word++)
822                         data[word] = htonl(REG_RD(bp, offset + 4*word));
823                 data[8] = 0x0;
824                 pr_cont("%s", (char *)data);
825         }
826
827         /* dump buffer before the mark */
828         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
829                 for (word = 0; word < 8; word++)
830                         data[word] = htonl(REG_RD(bp, offset + 4*word));
831                 data[8] = 0x0;
832                 pr_cont("%s", (char *)data);
833         }
834         printk("%s" "end of fw dump\n", lvl);
835 }
836
837 static void bnx2x_fw_dump(struct bnx2x *bp)
838 {
839         bnx2x_fw_dump_lvl(bp, KERN_ERR);
840 }
841
842 static void bnx2x_hc_int_disable(struct bnx2x *bp)
843 {
844         int port = BP_PORT(bp);
845         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
846         u32 val = REG_RD(bp, addr);
847
848         /* in E1 we must use only PCI configuration space to disable
849          * MSI/MSIX capability
850          * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
851          */
852         if (CHIP_IS_E1(bp)) {
853                 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
854                  * Use mask register to prevent from HC sending interrupts
855                  * after we exit the function
856                  */
857                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
858
859                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
860                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
861                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
862         } else
863                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
864                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
865                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
866                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
867
868         DP(NETIF_MSG_IFDOWN,
869            "write %x to HC %d (addr 0x%x)\n",
870            val, port, addr);
871
872         /* flush all outstanding writes */
873         mmiowb();
874
875         REG_WR(bp, addr, val);
876         if (REG_RD(bp, addr) != val)
877                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
878 }
879
880 static void bnx2x_igu_int_disable(struct bnx2x *bp)
881 {
882         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
883
884         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
885                  IGU_PF_CONF_INT_LINE_EN |
886                  IGU_PF_CONF_ATTN_BIT_EN);
887
888         DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
889
890         /* flush all outstanding writes */
891         mmiowb();
892
893         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
894         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
895                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
896 }
897
898 static void bnx2x_int_disable(struct bnx2x *bp)
899 {
900         if (bp->common.int_block == INT_BLOCK_HC)
901                 bnx2x_hc_int_disable(bp);
902         else
903                 bnx2x_igu_int_disable(bp);
904 }
905
906 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
907 {
908         int i;
909         u16 j;
910         struct hc_sp_status_block_data sp_sb_data;
911         int func = BP_FUNC(bp);
912 #ifdef BNX2X_STOP_ON_ERROR
913         u16 start = 0, end = 0;
914         u8 cos;
915 #endif
916         if (IS_PF(bp) && disable_int)
917                 bnx2x_int_disable(bp);
918
919         bp->stats_state = STATS_STATE_DISABLED;
920         bp->eth_stats.unrecoverable_error++;
921         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
922
923         BNX2X_ERR("begin crash dump -----------------\n");
924
925         /* Indices */
926         /* Common */
927         if (IS_PF(bp)) {
928                 struct host_sp_status_block *def_sb = bp->def_status_blk;
929                 int data_size, cstorm_offset;
930
931                 BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
932                           bp->def_idx, bp->def_att_idx, bp->attn_state,
933                           bp->spq_prod_idx, bp->stats_counter);
934                 BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
935                           def_sb->atten_status_block.attn_bits,
936                           def_sb->atten_status_block.attn_bits_ack,
937                           def_sb->atten_status_block.status_block_id,
938                           def_sb->atten_status_block.attn_bits_index);
939                 BNX2X_ERR("     def (");
940                 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
941                         pr_cont("0x%x%s",
942                                 def_sb->sp_sb.index_values[i],
943                                 (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
944
945                 data_size = sizeof(struct hc_sp_status_block_data) /
946                             sizeof(u32);
947                 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
948                 for (i = 0; i < data_size; i++)
949                         *((u32 *)&sp_sb_data + i) =
950                                 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
951                                            i * sizeof(u32));
952
953                 pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
954                         sp_sb_data.igu_sb_id,
955                         sp_sb_data.igu_seg_id,
956                         sp_sb_data.p_func.pf_id,
957                         sp_sb_data.p_func.vnic_id,
958                         sp_sb_data.p_func.vf_id,
959                         sp_sb_data.p_func.vf_valid,
960                         sp_sb_data.state);
961         }
962
963         for_each_eth_queue(bp, i) {
964                 struct bnx2x_fastpath *fp = &bp->fp[i];
965                 int loop;
966                 struct hc_status_block_data_e2 sb_data_e2;
967                 struct hc_status_block_data_e1x sb_data_e1x;
968                 struct hc_status_block_sm  *hc_sm_p =
969                         CHIP_IS_E1x(bp) ?
970                         sb_data_e1x.common.state_machine :
971                         sb_data_e2.common.state_machine;
972                 struct hc_index_data *hc_index_p =
973                         CHIP_IS_E1x(bp) ?
974                         sb_data_e1x.index_data :
975                         sb_data_e2.index_data;
976                 u8 data_size, cos;
977                 u32 *sb_data_p;
978                 struct bnx2x_fp_txdata txdata;
979
980                 if (!bp->fp)
981                         break;
982
983                 if (!fp->rx_cons_sb)
984                         continue;
985
986                 /* Rx */
987                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
988                           i, fp->rx_bd_prod, fp->rx_bd_cons,
989                           fp->rx_comp_prod,
990                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
991                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
992                           fp->rx_sge_prod, fp->last_max_sge,
993                           le16_to_cpu(fp->fp_hc_idx));
994
995                 /* Tx */
996                 for_each_cos_in_tx_queue(fp, cos)
997                 {
998                         if (!fp->txdata_ptr[cos])
999                                 break;
1000
1001                         txdata = *fp->txdata_ptr[cos];
1002
1003                         if (!txdata.tx_cons_sb)
1004                                 continue;
1005
1006                         BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1007                                   i, txdata.tx_pkt_prod,
1008                                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
1009                                   txdata.tx_bd_cons,
1010                                   le16_to_cpu(*txdata.tx_cons_sb));
1011                 }
1012
1013                 loop = CHIP_IS_E1x(bp) ?
1014                         HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1015
1016                 /* host sb data */
1017
1018                 if (IS_FCOE_FP(fp))
1019                         continue;
1020
1021                 BNX2X_ERR("     run indexes (");
1022                 for (j = 0; j < HC_SB_MAX_SM; j++)
1023                         pr_cont("0x%x%s",
1024                                fp->sb_running_index[j],
1025                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1026
1027                 BNX2X_ERR("     indexes (");
1028                 for (j = 0; j < loop; j++)
1029                         pr_cont("0x%x%s",
1030                                fp->sb_index_values[j],
1031                                (j == loop - 1) ? ")" : " ");
1032
1033                 /* VF cannot access FW refelection for status block */
1034                 if (IS_VF(bp))
1035                         continue;
1036
1037                 /* fw sb data */
1038                 data_size = CHIP_IS_E1x(bp) ?
1039                         sizeof(struct hc_status_block_data_e1x) :
1040                         sizeof(struct hc_status_block_data_e2);
1041                 data_size /= sizeof(u32);
1042                 sb_data_p = CHIP_IS_E1x(bp) ?
1043                         (u32 *)&sb_data_e1x :
1044                         (u32 *)&sb_data_e2;
1045                 /* copy sb data in here */
1046                 for (j = 0; j < data_size; j++)
1047                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1048                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1049                                 j * sizeof(u32));
1050
1051                 if (!CHIP_IS_E1x(bp)) {
1052                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1053                                 sb_data_e2.common.p_func.pf_id,
1054                                 sb_data_e2.common.p_func.vf_id,
1055                                 sb_data_e2.common.p_func.vf_valid,
1056                                 sb_data_e2.common.p_func.vnic_id,
1057                                 sb_data_e2.common.same_igu_sb_1b,
1058                                 sb_data_e2.common.state);
1059                 } else {
1060                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1061                                 sb_data_e1x.common.p_func.pf_id,
1062                                 sb_data_e1x.common.p_func.vf_id,
1063                                 sb_data_e1x.common.p_func.vf_valid,
1064                                 sb_data_e1x.common.p_func.vnic_id,
1065                                 sb_data_e1x.common.same_igu_sb_1b,
1066                                 sb_data_e1x.common.state);
1067                 }
1068
1069                 /* SB_SMs data */
1070                 for (j = 0; j < HC_SB_MAX_SM; j++) {
1071                         pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1072                                 j, hc_sm_p[j].__flags,
1073                                 hc_sm_p[j].igu_sb_id,
1074                                 hc_sm_p[j].igu_seg_id,
1075                                 hc_sm_p[j].time_to_expire,
1076                                 hc_sm_p[j].timer_value);
1077                 }
1078
1079                 /* Indices data */
1080                 for (j = 0; j < loop; j++) {
1081                         pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1082                                hc_index_p[j].flags,
1083                                hc_index_p[j].timeout);
1084                 }
1085         }
1086
1087 #ifdef BNX2X_STOP_ON_ERROR
1088         if (IS_PF(bp)) {
1089                 /* event queue */
1090                 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1091                 for (i = 0; i < NUM_EQ_DESC; i++) {
1092                         u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1093
1094                         BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1095                                   i, bp->eq_ring[i].message.opcode,
1096                                   bp->eq_ring[i].message.error);
1097                         BNX2X_ERR("data: %x %x %x\n",
1098                                   data[0], data[1], data[2]);
1099                 }
1100         }
1101
1102         /* Rings */
1103         /* Rx */
1104         for_each_valid_rx_queue(bp, i) {
1105                 struct bnx2x_fastpath *fp = &bp->fp[i];
1106
1107                 if (!bp->fp)
1108                         break;
1109
1110                 if (!fp->rx_cons_sb)
1111                         continue;
1112
1113                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1114                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1115                 for (j = start; j != end; j = RX_BD(j + 1)) {
1116                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1117                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1118
1119                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1120                                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1121                 }
1122
1123                 start = RX_SGE(fp->rx_sge_prod);
1124                 end = RX_SGE(fp->last_max_sge);
1125                 for (j = start; j != end; j = RX_SGE(j + 1)) {
1126                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1127                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1128
1129                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1130                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
1131                 }
1132
1133                 start = RCQ_BD(fp->rx_comp_cons - 10);
1134                 end = RCQ_BD(fp->rx_comp_cons + 503);
1135                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1136                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1137
1138                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1139                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1140                 }
1141         }
1142
1143         /* Tx */
1144         for_each_valid_tx_queue(bp, i) {
1145                 struct bnx2x_fastpath *fp = &bp->fp[i];
1146
1147                 if (!bp->fp)
1148                         break;
1149
1150                 for_each_cos_in_tx_queue(fp, cos) {
1151                         struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1152
1153                         if (!fp->txdata_ptr[cos])
1154                                 break;
1155
1156                         if (!txdata->tx_cons_sb)
1157                                 continue;
1158
1159                         start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1160                         end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1161                         for (j = start; j != end; j = TX_BD(j + 1)) {
1162                                 struct sw_tx_bd *sw_bd =
1163                                         &txdata->tx_buf_ring[j];
1164
1165                                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1166                                           i, cos, j, sw_bd->skb,
1167                                           sw_bd->first_bd);
1168                         }
1169
1170                         start = TX_BD(txdata->tx_bd_cons - 10);
1171                         end = TX_BD(txdata->tx_bd_cons + 254);
1172                         for (j = start; j != end; j = TX_BD(j + 1)) {
1173                                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1174
1175                                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1176                                           i, cos, j, tx_bd[0], tx_bd[1],
1177                                           tx_bd[2], tx_bd[3]);
1178                         }
1179                 }
1180         }
1181 #endif
1182         if (IS_PF(bp)) {
1183                 bnx2x_fw_dump(bp);
1184                 bnx2x_mc_assert(bp);
1185         }
1186         BNX2X_ERR("end crash dump -----------------\n");
1187 }
1188
1189 /*
1190  * FLR Support for E2
1191  *
1192  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1193  * initialization.
1194  */
1195 #define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1196 #define FLR_WAIT_INTERVAL       50      /* usec */
1197 #define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1198
1199 struct pbf_pN_buf_regs {
1200         int pN;
1201         u32 init_crd;
1202         u32 crd;
1203         u32 crd_freed;
1204 };
1205
1206 struct pbf_pN_cmd_regs {
1207         int pN;
1208         u32 lines_occup;
1209         u32 lines_freed;
1210 };
1211
1212 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1213                                      struct pbf_pN_buf_regs *regs,
1214                                      u32 poll_count)
1215 {
1216         u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1217         u32 cur_cnt = poll_count;
1218
1219         crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1220         crd = crd_start = REG_RD(bp, regs->crd);
1221         init_crd = REG_RD(bp, regs->init_crd);
1222
1223         DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1224         DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1225         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1226
1227         while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1228                (init_crd - crd_start))) {
1229                 if (cur_cnt--) {
1230                         udelay(FLR_WAIT_INTERVAL);
1231                         crd = REG_RD(bp, regs->crd);
1232                         crd_freed = REG_RD(bp, regs->crd_freed);
1233                 } else {
1234                         DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1235                            regs->pN);
1236                         DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1237                            regs->pN, crd);
1238                         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1239                            regs->pN, crd_freed);
1240                         break;
1241                 }
1242         }
1243         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1244            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1245 }
1246
1247 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1248                                      struct pbf_pN_cmd_regs *regs,
1249                                      u32 poll_count)
1250 {
1251         u32 occup, to_free, freed, freed_start;
1252         u32 cur_cnt = poll_count;
1253
1254         occup = to_free = REG_RD(bp, regs->lines_occup);
1255         freed = freed_start = REG_RD(bp, regs->lines_freed);
1256
1257         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1258         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1259
1260         while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1261                 if (cur_cnt--) {
1262                         udelay(FLR_WAIT_INTERVAL);
1263                         occup = REG_RD(bp, regs->lines_occup);
1264                         freed = REG_RD(bp, regs->lines_freed);
1265                 } else {
1266                         DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1267                            regs->pN);
1268                         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1269                            regs->pN, occup);
1270                         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1271                            regs->pN, freed);
1272                         break;
1273                 }
1274         }
1275         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1276            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1277 }
1278
1279 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1280                                     u32 expected, u32 poll_count)
1281 {
1282         u32 cur_cnt = poll_count;
1283         u32 val;
1284
1285         while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1286                 udelay(FLR_WAIT_INTERVAL);
1287
1288         return val;
1289 }
1290
1291 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1292                                     char *msg, u32 poll_cnt)
1293 {
1294         u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1295         if (val != 0) {
1296                 BNX2X_ERR("%s usage count=%d\n", msg, val);
1297                 return 1;
1298         }
1299         return 0;
1300 }
1301
1302 /* Common routines with VF FLR cleanup */
1303 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1304 {
1305         /* adjust polling timeout */
1306         if (CHIP_REV_IS_EMUL(bp))
1307                 return FLR_POLL_CNT * 2000;
1308
1309         if (CHIP_REV_IS_FPGA(bp))
1310                 return FLR_POLL_CNT * 120;
1311
1312         return FLR_POLL_CNT;
1313 }
1314
1315 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1316 {
1317         struct pbf_pN_cmd_regs cmd_regs[] = {
1318                 {0, (CHIP_IS_E3B0(bp)) ?
1319                         PBF_REG_TQ_OCCUPANCY_Q0 :
1320                         PBF_REG_P0_TQ_OCCUPANCY,
1321                     (CHIP_IS_E3B0(bp)) ?
1322                         PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1323                         PBF_REG_P0_TQ_LINES_FREED_CNT},
1324                 {1, (CHIP_IS_E3B0(bp)) ?
1325                         PBF_REG_TQ_OCCUPANCY_Q1 :
1326                         PBF_REG_P1_TQ_OCCUPANCY,
1327                     (CHIP_IS_E3B0(bp)) ?
1328                         PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1329                         PBF_REG_P1_TQ_LINES_FREED_CNT},
1330                 {4, (CHIP_IS_E3B0(bp)) ?
1331                         PBF_REG_TQ_OCCUPANCY_LB_Q :
1332                         PBF_REG_P4_TQ_OCCUPANCY,
1333                     (CHIP_IS_E3B0(bp)) ?
1334                         PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1335                         PBF_REG_P4_TQ_LINES_FREED_CNT}
1336         };
1337
1338         struct pbf_pN_buf_regs buf_regs[] = {
1339                 {0, (CHIP_IS_E3B0(bp)) ?
1340                         PBF_REG_INIT_CRD_Q0 :
1341                         PBF_REG_P0_INIT_CRD ,
1342                     (CHIP_IS_E3B0(bp)) ?
1343                         PBF_REG_CREDIT_Q0 :
1344                         PBF_REG_P0_CREDIT,
1345                     (CHIP_IS_E3B0(bp)) ?
1346                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1347                         PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1348                 {1, (CHIP_IS_E3B0(bp)) ?
1349                         PBF_REG_INIT_CRD_Q1 :
1350                         PBF_REG_P1_INIT_CRD,
1351                     (CHIP_IS_E3B0(bp)) ?
1352                         PBF_REG_CREDIT_Q1 :
1353                         PBF_REG_P1_CREDIT,
1354                     (CHIP_IS_E3B0(bp)) ?
1355                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1356                         PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1357                 {4, (CHIP_IS_E3B0(bp)) ?
1358                         PBF_REG_INIT_CRD_LB_Q :
1359                         PBF_REG_P4_INIT_CRD,
1360                     (CHIP_IS_E3B0(bp)) ?
1361                         PBF_REG_CREDIT_LB_Q :
1362                         PBF_REG_P4_CREDIT,
1363                     (CHIP_IS_E3B0(bp)) ?
1364                         PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1365                         PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1366         };
1367
1368         int i;
1369
1370         /* Verify the command queues are flushed P0, P1, P4 */
1371         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1372                 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1373
1374         /* Verify the transmission buffers are flushed P0, P1, P4 */
1375         for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1376                 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1377 }
1378
1379 #define OP_GEN_PARAM(param) \
1380         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1381
1382 #define OP_GEN_TYPE(type) \
1383         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1384
1385 #define OP_GEN_AGG_VECT(index) \
1386         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1387
1388 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1389 {
1390         u32 op_gen_command = 0;
1391         u32 comp_addr = BAR_CSTRORM_INTMEM +
1392                         CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1393         int ret = 0;
1394
1395         if (REG_RD(bp, comp_addr)) {
1396                 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1397                 return 1;
1398         }
1399
1400         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1401         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1402         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1403         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1404
1405         DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1406         REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1407
1408         if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1409                 BNX2X_ERR("FW final cleanup did not succeed\n");
1410                 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1411                    (REG_RD(bp, comp_addr)));
1412                 bnx2x_panic();
1413                 return 1;
1414         }
1415         /* Zero completion for next FLR */
1416         REG_WR(bp, comp_addr, 0);
1417
1418         return ret;
1419 }
1420
1421 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1422 {
1423         u16 status;
1424
1425         pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1426         return status & PCI_EXP_DEVSTA_TRPND;
1427 }
1428
1429 /* PF FLR specific routines
1430 */
1431 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1432 {
1433         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1434         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1435                         CFC_REG_NUM_LCIDS_INSIDE_PF,
1436                         "CFC PF usage counter timed out",
1437                         poll_cnt))
1438                 return 1;
1439
1440         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1441         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1442                         DORQ_REG_PF_USAGE_CNT,
1443                         "DQ PF usage counter timed out",
1444                         poll_cnt))
1445                 return 1;
1446
1447         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1448         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1449                         QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1450                         "QM PF usage counter timed out",
1451                         poll_cnt))
1452                 return 1;
1453
1454         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1455         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1456                         TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1457                         "Timers VNIC usage counter timed out",
1458                         poll_cnt))
1459                 return 1;
1460         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1461                         TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1462                         "Timers NUM_SCANS usage counter timed out",
1463                         poll_cnt))
1464                 return 1;
1465
1466         /* Wait DMAE PF usage counter to zero */
1467         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1468                         dmae_reg_go_c[INIT_DMAE_C(bp)],
1469                         "DMAE command register timed out",
1470                         poll_cnt))
1471                 return 1;
1472
1473         return 0;
1474 }
1475
1476 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1477 {
1478         u32 val;
1479
1480         val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1481         DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1482
1483         val = REG_RD(bp, PBF_REG_DISABLE_PF);
1484         DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1485
1486         val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1487         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1488
1489         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1490         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1491
1492         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1493         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1494
1495         val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1496         DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1497
1498         val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1499         DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1500
1501         val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1502         DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1503            val);
1504 }
1505
1506 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1507 {
1508         u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1509
1510         DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1511
1512         /* Re-enable PF target read access */
1513         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1514
1515         /* Poll HW usage counters */
1516         DP(BNX2X_MSG_SP, "Polling usage counters\n");
1517         if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1518                 return -EBUSY;
1519
1520         /* Zero the igu 'trailing edge' and 'leading edge' */
1521
1522         /* Send the FW cleanup command */
1523         if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1524                 return -EBUSY;
1525
1526         /* ATC cleanup */
1527
1528         /* Verify TX hw is flushed */
1529         bnx2x_tx_hw_flushed(bp, poll_cnt);
1530
1531         /* Wait 100ms (not adjusted according to platform) */
1532         msleep(100);
1533
1534         /* Verify no pending pci transactions */
1535         if (bnx2x_is_pcie_pending(bp->pdev))
1536                 BNX2X_ERR("PCIE Transactions still pending\n");
1537
1538         /* Debug */
1539         bnx2x_hw_enable_status(bp);
1540
1541         /*
1542          * Master enable - Due to WB DMAE writes performed before this
1543          * register is re-initialized as part of the regular function init
1544          */
1545         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1546
1547         return 0;
1548 }
1549
1550 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1551 {
1552         int port = BP_PORT(bp);
1553         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1554         u32 val = REG_RD(bp, addr);
1555         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1556         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1557         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1558
1559         if (msix) {
1560                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1561                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1562                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1563                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1564                 if (single_msix)
1565                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1566         } else if (msi) {
1567                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1568                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1569                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1570                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1571         } else {
1572                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1573                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1574                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1575                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1576
1577                 if (!CHIP_IS_E1(bp)) {
1578                         DP(NETIF_MSG_IFUP,
1579                            "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1580
1581                         REG_WR(bp, addr, val);
1582
1583                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1584                 }
1585         }
1586
1587         if (CHIP_IS_E1(bp))
1588                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1589
1590         DP(NETIF_MSG_IFUP,
1591            "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1592            (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1593
1594         REG_WR(bp, addr, val);
1595         /*
1596          * Ensure that HC_CONFIG is written before leading/trailing edge config
1597          */
1598         mmiowb();
1599         barrier();
1600
1601         if (!CHIP_IS_E1(bp)) {
1602                 /* init leading/trailing edge */
1603                 if (IS_MF(bp)) {
1604                         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1605                         if (bp->port.pmf)
1606                                 /* enable nig and gpio3 attention */
1607                                 val |= 0x1100;
1608                 } else
1609                         val = 0xffff;
1610
1611                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1612                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1613         }
1614
1615         /* Make sure that interrupts are indeed enabled from here on */
1616         mmiowb();
1617 }
1618
1619 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1620 {
1621         u32 val;
1622         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1623         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1624         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1625
1626         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1627
1628         if (msix) {
1629                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1630                          IGU_PF_CONF_SINGLE_ISR_EN);
1631                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1632                         IGU_PF_CONF_ATTN_BIT_EN);
1633
1634                 if (single_msix)
1635                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
1636         } else if (msi) {
1637                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1638                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1639                         IGU_PF_CONF_ATTN_BIT_EN |
1640                         IGU_PF_CONF_SINGLE_ISR_EN);
1641         } else {
1642                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1643                 val |= (IGU_PF_CONF_INT_LINE_EN |
1644                         IGU_PF_CONF_ATTN_BIT_EN |
1645                         IGU_PF_CONF_SINGLE_ISR_EN);
1646         }
1647
1648         /* Clean previous status - need to configure igu prior to ack*/
1649         if ((!msix) || single_msix) {
1650                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1651                 bnx2x_ack_int(bp);
1652         }
1653
1654         val |= IGU_PF_CONF_FUNC_EN;
1655
1656         DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1657            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1658
1659         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1660
1661         if (val & IGU_PF_CONF_INT_LINE_EN)
1662                 pci_intx(bp->pdev, true);
1663
1664         barrier();
1665
1666         /* init leading/trailing edge */
1667         if (IS_MF(bp)) {
1668                 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1669                 if (bp->port.pmf)
1670                         /* enable nig and gpio3 attention */
1671                         val |= 0x1100;
1672         } else
1673                 val = 0xffff;
1674
1675         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1676         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1677
1678         /* Make sure that interrupts are indeed enabled from here on */
1679         mmiowb();
1680 }
1681
1682 void bnx2x_int_enable(struct bnx2x *bp)
1683 {
1684         if (bp->common.int_block == INT_BLOCK_HC)
1685                 bnx2x_hc_int_enable(bp);
1686         else
1687                 bnx2x_igu_int_enable(bp);
1688 }
1689
1690 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1691 {
1692         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1693         int i, offset;
1694
1695         if (disable_hw)
1696                 /* prevent the HW from sending interrupts */
1697                 bnx2x_int_disable(bp);
1698
1699         /* make sure all ISRs are done */
1700         if (msix) {
1701                 synchronize_irq(bp->msix_table[0].vector);
1702                 offset = 1;
1703                 if (CNIC_SUPPORT(bp))
1704                         offset++;
1705                 for_each_eth_queue(bp, i)
1706                         synchronize_irq(bp->msix_table[offset++].vector);
1707         } else
1708                 synchronize_irq(bp->pdev->irq);
1709
1710         /* make sure sp_task is not running */
1711         cancel_delayed_work(&bp->sp_task);
1712         cancel_delayed_work(&bp->period_task);
1713         flush_workqueue(bnx2x_wq);
1714 }
1715
1716 /* fast path */
1717
1718 /*
1719  * General service functions
1720  */
1721
1722 /* Return true if succeeded to acquire the lock */
1723 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1724 {
1725         u32 lock_status;
1726         u32 resource_bit = (1 << resource);
1727         int func = BP_FUNC(bp);
1728         u32 hw_lock_control_reg;
1729
1730         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1731            "Trying to take a lock on resource %d\n", resource);
1732
1733         /* Validating that the resource is within range */
1734         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1735                 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1736                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1737                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1738                 return false;
1739         }
1740
1741         if (func <= 5)
1742                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1743         else
1744                 hw_lock_control_reg =
1745                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1746
1747         /* Try to acquire the lock */
1748         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1749         lock_status = REG_RD(bp, hw_lock_control_reg);
1750         if (lock_status & resource_bit)
1751                 return true;
1752
1753         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1754            "Failed to get a lock on resource %d\n", resource);
1755         return false;
1756 }
1757
1758 /**
1759  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1760  *
1761  * @bp: driver handle
1762  *
1763  * Returns the recovery leader resource id according to the engine this function
1764  * belongs to. Currently only only 2 engines is supported.
1765  */
1766 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1767 {
1768         if (BP_PATH(bp))
1769                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1770         else
1771                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1772 }
1773
1774 /**
1775  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1776  *
1777  * @bp: driver handle
1778  *
1779  * Tries to acquire a leader lock for current engine.
1780  */
1781 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1782 {
1783         return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1784 }
1785
1786 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1787
1788 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1789 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1790 {
1791         /* Set the interrupt occurred bit for the sp-task to recognize it
1792          * must ack the interrupt and transition according to the IGU
1793          * state machine.
1794          */
1795         atomic_set(&bp->interrupt_occurred, 1);
1796
1797         /* The sp_task must execute only after this bit
1798          * is set, otherwise we will get out of sync and miss all
1799          * further interrupts. Hence, the barrier.
1800          */
1801         smp_wmb();
1802
1803         /* schedule sp_task to workqueue */
1804         return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1805 }
1806
1807 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1808 {
1809         struct bnx2x *bp = fp->bp;
1810         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1811         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1812         enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1813         struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1814
1815         DP(BNX2X_MSG_SP,
1816            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1817            fp->index, cid, command, bp->state,
1818            rr_cqe->ramrod_cqe.ramrod_type);
1819
1820         /* If cid is within VF range, replace the slowpath object with the
1821          * one corresponding to this VF
1822          */
1823         if (cid >= BNX2X_FIRST_VF_CID  &&
1824             cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1825                 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1826
1827         switch (command) {
1828         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1829                 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1830                 drv_cmd = BNX2X_Q_CMD_UPDATE;
1831                 break;
1832
1833         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1834                 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1835                 drv_cmd = BNX2X_Q_CMD_SETUP;
1836                 break;
1837
1838         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1839                 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1840                 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1841                 break;
1842
1843         case (RAMROD_CMD_ID_ETH_HALT):
1844                 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1845                 drv_cmd = BNX2X_Q_CMD_HALT;
1846                 break;
1847
1848         case (RAMROD_CMD_ID_ETH_TERMINATE):
1849                 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1850                 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1851                 break;
1852
1853         case (RAMROD_CMD_ID_ETH_EMPTY):
1854                 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1855                 drv_cmd = BNX2X_Q_CMD_EMPTY;
1856                 break;
1857
1858         case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1859                 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1860                 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1861                 break;
1862
1863         default:
1864                 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1865                           command, fp->index);
1866                 return;
1867         }
1868
1869         if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1870             q_obj->complete_cmd(bp, q_obj, drv_cmd))
1871                 /* q_obj->complete_cmd() failure means that this was
1872                  * an unexpected completion.
1873                  *
1874                  * In this case we don't want to increase the bp->spq_left
1875                  * because apparently we haven't sent this command the first
1876                  * place.
1877                  */
1878 #ifdef BNX2X_STOP_ON_ERROR
1879                 bnx2x_panic();
1880 #else
1881                 return;
1882 #endif
1883
1884         smp_mb__before_atomic();
1885         atomic_inc(&bp->cq_spq_left);
1886         /* push the change in bp->spq_left and towards the memory */
1887         smp_mb__after_atomic();
1888
1889         DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1890
1891         if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1892             (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1893                 /* if Q update ramrod is completed for last Q in AFEX vif set
1894                  * flow, then ACK MCP at the end
1895                  *
1896                  * mark pending ACK to MCP bit.
1897                  * prevent case that both bits are cleared.
1898                  * At the end of load/unload driver checks that
1899                  * sp_state is cleared, and this order prevents
1900                  * races
1901                  */
1902                 smp_mb__before_atomic();
1903                 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1904                 wmb();
1905                 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1906                 smp_mb__after_atomic();
1907
1908                 /* schedule the sp task as mcp ack is required */
1909                 bnx2x_schedule_sp_task(bp);
1910         }
1911
1912         return;
1913 }
1914
1915 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1916 {
1917         struct bnx2x *bp = netdev_priv(dev_instance);
1918         u16 status = bnx2x_ack_int(bp);
1919         u16 mask;
1920         int i;
1921         u8 cos;
1922
1923         /* Return here if interrupt is shared and it's not for us */
1924         if (unlikely(status == 0)) {
1925                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1926                 return IRQ_NONE;
1927         }
1928         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1929
1930 #ifdef BNX2X_STOP_ON_ERROR
1931         if (unlikely(bp->panic))
1932                 return IRQ_HANDLED;
1933 #endif
1934
1935         for_each_eth_queue(bp, i) {
1936                 struct bnx2x_fastpath *fp = &bp->fp[i];
1937
1938                 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1939                 if (status & mask) {
1940                         /* Handle Rx or Tx according to SB id */
1941                         for_each_cos_in_tx_queue(fp, cos)
1942                                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1943                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1944                         napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1945                         status &= ~mask;
1946                 }
1947         }
1948
1949         if (CNIC_SUPPORT(bp)) {
1950                 mask = 0x2;
1951                 if (status & (mask | 0x1)) {
1952                         struct cnic_ops *c_ops = NULL;
1953
1954                         rcu_read_lock();
1955                         c_ops = rcu_dereference(bp->cnic_ops);
1956                         if (c_ops && (bp->cnic_eth_dev.drv_state &
1957                                       CNIC_DRV_STATE_HANDLES_IRQ))
1958                                 c_ops->cnic_handler(bp->cnic_data, NULL);
1959                         rcu_read_unlock();
1960
1961                         status &= ~mask;
1962                 }
1963         }
1964
1965         if (unlikely(status & 0x1)) {
1966
1967                 /* schedule sp task to perform default status block work, ack
1968                  * attentions and enable interrupts.
1969                  */
1970                 bnx2x_schedule_sp_task(bp);
1971
1972                 status &= ~0x1;
1973                 if (!status)
1974                         return IRQ_HANDLED;
1975         }
1976
1977         if (unlikely(status))
1978                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1979                    status);
1980
1981         return IRQ_HANDLED;
1982 }
1983
1984 /* Link */
1985
1986 /*
1987  * General service functions
1988  */
1989
1990 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1991 {
1992         u32 lock_status;
1993         u32 resource_bit = (1 << resource);
1994         int func = BP_FUNC(bp);
1995         u32 hw_lock_control_reg;
1996         int cnt;
1997
1998         /* Validating that the resource is within range */
1999         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2000                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2001                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
2002                 return -EINVAL;
2003         }
2004
2005         if (func <= 5) {
2006                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2007         } else {
2008                 hw_lock_control_reg =
2009                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2010         }
2011
2012         /* Validating that the resource is not already taken */
2013         lock_status = REG_RD(bp, hw_lock_control_reg);
2014         if (lock_status & resource_bit) {
2015                 BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2016                    lock_status, resource_bit);
2017                 return -EEXIST;
2018         }
2019
2020         /* Try for 5 second every 5ms */
2021         for (cnt = 0; cnt < 1000; cnt++) {
2022                 /* Try to acquire the lock */
2023                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2024                 lock_status = REG_RD(bp, hw_lock_control_reg);
2025                 if (lock_status & resource_bit)
2026                         return 0;
2027
2028                 usleep_range(5000, 10000);
2029         }
2030         BNX2X_ERR("Timeout\n");
2031         return -EAGAIN;
2032 }
2033
2034 int bnx2x_release_leader_lock(struct bnx2x *bp)
2035 {
2036         return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2037 }
2038
2039 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2040 {
2041         u32 lock_status;
2042         u32 resource_bit = (1 << resource);
2043         int func = BP_FUNC(bp);
2044         u32 hw_lock_control_reg;
2045
2046         /* Validating that the resource is within range */
2047         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2048                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2049                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
2050                 return -EINVAL;
2051         }
2052
2053         if (func <= 5) {
2054                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2055         } else {
2056                 hw_lock_control_reg =
2057                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2058         }
2059
2060         /* Validating that the resource is currently taken */
2061         lock_status = REG_RD(bp, hw_lock_control_reg);
2062         if (!(lock_status & resource_bit)) {
2063                 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2064                           lock_status, resource_bit);
2065                 return -EFAULT;
2066         }
2067
2068         REG_WR(bp, hw_lock_control_reg, resource_bit);
2069         return 0;
2070 }
2071
2072 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2073 {
2074         /* The GPIO should be swapped if swap register is set and active */
2075         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2076                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2077         int gpio_shift = gpio_num +
2078                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2079         u32 gpio_mask = (1 << gpio_shift);
2080         u32 gpio_reg;
2081         int value;
2082
2083         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2084                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2085                 return -EINVAL;
2086         }
2087
2088         /* read GPIO value */
2089         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2090
2091         /* get the requested pin value */
2092         if ((gpio_reg & gpio_mask) == gpio_mask)
2093                 value = 1;
2094         else
2095                 value = 0;
2096
2097         return value;
2098 }
2099
2100 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2101 {
2102         /* The GPIO should be swapped if swap register is set and active */
2103         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2104                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2105         int gpio_shift = gpio_num +
2106                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2107         u32 gpio_mask = (1 << gpio_shift);
2108         u32 gpio_reg;
2109
2110         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2111                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2112                 return -EINVAL;
2113         }
2114
2115         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2116         /* read GPIO and mask except the float bits */
2117         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2118
2119         switch (mode) {
2120         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2121                 DP(NETIF_MSG_LINK,
2122                    "Set GPIO %d (shift %d) -> output low\n",
2123                    gpio_num, gpio_shift);
2124                 /* clear FLOAT and set CLR */
2125                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2126                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2127                 break;
2128
2129         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2130                 DP(NETIF_MSG_LINK,
2131                    "Set GPIO %d (shift %d) -> output high\n",
2132                    gpio_num, gpio_shift);
2133                 /* clear FLOAT and set SET */
2134                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2135                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2136                 break;
2137
2138         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2139                 DP(NETIF_MSG_LINK,
2140                    "Set GPIO %d (shift %d) -> input\n",
2141                    gpio_num, gpio_shift);
2142                 /* set FLOAT */
2143                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2144                 break;
2145
2146         default:
2147                 break;
2148         }
2149
2150         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2151         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2152
2153         return 0;
2154 }
2155
2156 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2157 {
2158         u32 gpio_reg = 0;
2159         int rc = 0;
2160
2161         /* Any port swapping should be handled by caller. */
2162
2163         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2164         /* read GPIO and mask except the float bits */
2165         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2166         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2167         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2168         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2169
2170         switch (mode) {
2171         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2172                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2173                 /* set CLR */
2174                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2175                 break;
2176
2177         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2178                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2179                 /* set SET */
2180                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2181                 break;
2182
2183         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2184                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2185                 /* set FLOAT */
2186                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2187                 break;
2188
2189         default:
2190                 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2191                 rc = -EINVAL;
2192                 break;
2193         }
2194
2195         if (rc == 0)
2196                 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2197
2198         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2199
2200         return rc;
2201 }
2202
2203 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2204 {
2205         /* The GPIO should be swapped if swap register is set and active */
2206         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2207                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2208         int gpio_shift = gpio_num +
2209                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2210         u32 gpio_mask = (1 << gpio_shift);
2211         u32 gpio_reg;
2212
2213         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2214                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2215                 return -EINVAL;
2216         }
2217
2218         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2219         /* read GPIO int */
2220         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2221
2222         switch (mode) {
2223         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2224                 DP(NETIF_MSG_LINK,
2225                    "Clear GPIO INT %d (shift %d) -> output low\n",
2226                    gpio_num, gpio_shift);
2227                 /* clear SET and set CLR */
2228                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2229                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2230                 break;
2231
2232         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2233                 DP(NETIF_MSG_LINK,
2234                    "Set GPIO INT %d (shift %d) -> output high\n",
2235                    gpio_num, gpio_shift);
2236                 /* clear CLR and set SET */
2237                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2238                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2239                 break;
2240
2241         default:
2242                 break;
2243         }
2244
2245         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2246         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2247
2248         return 0;
2249 }
2250
2251 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2252 {
2253         u32 spio_reg;
2254
2255         /* Only 2 SPIOs are configurable */
2256         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2257                 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2258                 return -EINVAL;
2259         }
2260
2261         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2262         /* read SPIO and mask except the float bits */
2263         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2264
2265         switch (mode) {
2266         case MISC_SPIO_OUTPUT_LOW:
2267                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2268                 /* clear FLOAT and set CLR */
2269                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2270                 spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2271                 break;
2272
2273         case MISC_SPIO_OUTPUT_HIGH:
2274                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2275                 /* clear FLOAT and set SET */
2276                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2277                 spio_reg |=  (spio << MISC_SPIO_SET_POS);
2278                 break;
2279
2280         case MISC_SPIO_INPUT_HI_Z:
2281                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2282                 /* set FLOAT */
2283                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2284                 break;
2285
2286         default:
2287                 break;
2288         }
2289
2290         REG_WR(bp, MISC_REG_SPIO, spio_reg);
2291         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2292
2293         return 0;
2294 }
2295
2296 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2297 {
2298         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2299
2300         bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2301                                            ADVERTISED_Pause);
2302         switch (bp->link_vars.ieee_fc &
2303                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2304         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2305                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2306                                                   ADVERTISED_Pause);
2307                 break;
2308
2309         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2310                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2311                 break;
2312
2313         default:
2314                 break;
2315         }
2316 }
2317
2318 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2319 {
2320         /* Initialize link parameters structure variables
2321          * It is recommended to turn off RX FC for jumbo frames
2322          *  for better performance
2323          */
2324         if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2325                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2326         else
2327                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2328 }
2329
2330 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2331 {
2332         u32 pause_enabled = 0;
2333
2334         if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2335                 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2336                         pause_enabled = 1;
2337
2338                 REG_WR(bp, BAR_USTRORM_INTMEM +
2339                            USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2340                        pause_enabled);
2341         }
2342
2343         DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2344            pause_enabled ? "enabled" : "disabled");
2345 }
2346
2347 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2348 {
2349         int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2350         u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2351
2352         if (!BP_NOMCP(bp)) {
2353                 bnx2x_set_requested_fc(bp);
2354                 bnx2x_acquire_phy_lock(bp);
2355
2356                 if (load_mode == LOAD_DIAG) {
2357                         struct link_params *lp = &bp->link_params;
2358                         lp->loopback_mode = LOOPBACK_XGXS;
2359                         /* Prefer doing PHY loopback at highest speed */
2360                         if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2361                                 if (lp->speed_cap_mask[cfx_idx] &
2362                                     PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2363                                         lp->req_line_speed[cfx_idx] =
2364                                         SPEED_20000;
2365                                 else if (lp->speed_cap_mask[cfx_idx] &
2366                                             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2367                                                 lp->req_line_speed[cfx_idx] =
2368                                                 SPEED_10000;
2369                                 else
2370                                         lp->req_line_speed[cfx_idx] =
2371                                         SPEED_1000;
2372                         }
2373                 }
2374
2375                 if (load_mode == LOAD_LOOPBACK_EXT) {
2376                         struct link_params *lp = &bp->link_params;
2377                         lp->loopback_mode = LOOPBACK_EXT;
2378                 }
2379
2380                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2381
2382                 bnx2x_release_phy_lock(bp);
2383
2384                 bnx2x_init_dropless_fc(bp);
2385
2386                 bnx2x_calc_fc_adv(bp);
2387
2388                 if (bp->link_vars.link_up) {
2389                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2390                         bnx2x_link_report(bp);
2391                 }
2392                 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2393                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2394                 return rc;
2395         }
2396         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2397         return -EINVAL;
2398 }
2399
2400 void bnx2x_link_set(struct bnx2x *bp)
2401 {
2402         if (!BP_NOMCP(bp)) {
2403                 bnx2x_acquire_phy_lock(bp);
2404                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2405                 bnx2x_release_phy_lock(bp);
2406
2407                 bnx2x_init_dropless_fc(bp);
2408
2409                 bnx2x_calc_fc_adv(bp);
2410         } else
2411                 BNX2X_ERR("Bootcode is missing - can not set link\n");
2412 }
2413
2414 static void bnx2x__link_reset(struct bnx2x *bp)
2415 {
2416         if (!BP_NOMCP(bp)) {
2417                 bnx2x_acquire_phy_lock(bp);
2418                 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2419                 bnx2x_release_phy_lock(bp);
2420         } else
2421                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2422 }
2423
2424 void bnx2x_force_link_reset(struct bnx2x *bp)
2425 {
2426         bnx2x_acquire_phy_lock(bp);
2427         bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2428         bnx2x_release_phy_lock(bp);
2429 }
2430
2431 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2432 {
2433         u8 rc = 0;
2434
2435         if (!BP_NOMCP(bp)) {
2436                 bnx2x_acquire_phy_lock(bp);
2437                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2438                                      is_serdes);
2439                 bnx2x_release_phy_lock(bp);
2440         } else
2441                 BNX2X_ERR("Bootcode is missing - can not test link\n");
2442
2443         return rc;
2444 }
2445
2446 /* Calculates the sum of vn_min_rates.
2447    It's needed for further normalizing of the min_rates.
2448    Returns:
2449      sum of vn_min_rates.
2450        or
2451      0 - if all the min_rates are 0.
2452      In the later case fairness algorithm should be deactivated.
2453      If not all min_rates are zero then those that are zeroes will be set to 1.
2454  */
2455 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2456                                       struct cmng_init_input *input)
2457 {
2458         int all_zero = 1;
2459         int vn;
2460
2461         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2462                 u32 vn_cfg = bp->mf_config[vn];
2463                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2464                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2465
2466                 /* Skip hidden vns */
2467                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2468                         vn_min_rate = 0;
2469                 /* If min rate is zero - set it to 1 */
2470                 else if (!vn_min_rate)
2471                         vn_min_rate = DEF_MIN_RATE;
2472                 else
2473                         all_zero = 0;
2474
2475                 input->vnic_min_rate[vn] = vn_min_rate;
2476         }
2477
2478         /* if ETS or all min rates are zeros - disable fairness */
2479         if (BNX2X_IS_ETS_ENABLED(bp)) {
2480                 input->flags.cmng_enables &=
2481                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2482                 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2483         } else if (all_zero) {
2484                 input->flags.cmng_enables &=
2485                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2486                 DP(NETIF_MSG_IFUP,
2487                    "All MIN values are zeroes fairness will be disabled\n");
2488         } else
2489                 input->flags.cmng_enables |=
2490                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2491 }
2492
2493 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2494                                     struct cmng_init_input *input)
2495 {
2496         u16 vn_max_rate;
2497         u32 vn_cfg = bp->mf_config[vn];
2498
2499         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2500                 vn_max_rate = 0;
2501         else {
2502                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2503
2504                 if (IS_MF_PERCENT_BW(bp)) {
2505                         /* maxCfg in percents of linkspeed */
2506                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2507                 } else /* SD modes */
2508                         /* maxCfg is absolute in 100Mb units */
2509                         vn_max_rate = maxCfg * 100;
2510         }
2511
2512         DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2513
2514         input->vnic_max_rate[vn] = vn_max_rate;
2515 }
2516
2517 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2518 {
2519         if (CHIP_REV_IS_SLOW(bp))
2520                 return CMNG_FNS_NONE;
2521         if (IS_MF(bp))
2522                 return CMNG_FNS_MINMAX;
2523
2524         return CMNG_FNS_NONE;
2525 }
2526
2527 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2528 {
2529         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2530
2531         if (BP_NOMCP(bp))
2532                 return; /* what should be the default value in this case */
2533
2534         /* For 2 port configuration the absolute function number formula
2535          * is:
2536          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2537          *
2538          *      and there are 4 functions per port
2539          *
2540          * For 4 port configuration it is
2541          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2542          *
2543          *      and there are 2 functions per port
2544          */
2545         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2546                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2547
2548                 if (func >= E1H_FUNC_MAX)
2549                         break;
2550
2551                 bp->mf_config[vn] =
2552                         MF_CFG_RD(bp, func_mf_config[func].config);
2553         }
2554         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2555                 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2556                 bp->flags |= MF_FUNC_DIS;
2557         } else {
2558                 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2559                 bp->flags &= ~MF_FUNC_DIS;
2560         }
2561 }
2562
2563 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2564 {
2565         struct cmng_init_input input;
2566         memset(&input, 0, sizeof(struct cmng_init_input));
2567
2568         input.port_rate = bp->link_vars.line_speed;
2569
2570         if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2571                 int vn;
2572
2573                 /* read mf conf from shmem */
2574                 if (read_cfg)
2575                         bnx2x_read_mf_cfg(bp);
2576
2577                 /* vn_weight_sum and enable fairness if not 0 */
2578                 bnx2x_calc_vn_min(bp, &input);
2579
2580                 /* calculate and set min-max rate for each vn */
2581                 if (bp->port.pmf)
2582                         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2583                                 bnx2x_calc_vn_max(bp, vn, &input);
2584
2585                 /* always enable rate shaping and fairness */
2586                 input.flags.cmng_enables |=
2587                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2588
2589                 bnx2x_init_cmng(&input, &bp->cmng);
2590                 return;
2591         }
2592
2593         /* rate shaping and fairness are disabled */
2594         DP(NETIF_MSG_IFUP,
2595            "rate shaping and fairness are disabled\n");
2596 }
2597
2598 static void storm_memset_cmng(struct bnx2x *bp,
2599                               struct cmng_init *cmng,
2600                               u8 port)
2601 {
2602         int vn;
2603         size_t size = sizeof(struct cmng_struct_per_port);
2604
2605         u32 addr = BAR_XSTRORM_INTMEM +
2606                         XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2607
2608         __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2609
2610         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2611                 int func = func_by_vn(bp, vn);
2612
2613                 addr = BAR_XSTRORM_INTMEM +
2614                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2615                 size = sizeof(struct rate_shaping_vars_per_vn);
2616                 __storm_memset_struct(bp, addr, size,
2617                                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2618
2619                 addr = BAR_XSTRORM_INTMEM +
2620                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2621                 size = sizeof(struct fairness_vars_per_vn);
2622                 __storm_memset_struct(bp, addr, size,
2623                                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2624         }
2625 }
2626
2627 /* init cmng mode in HW according to local configuration */
2628 void bnx2x_set_local_cmng(struct bnx2x *bp)
2629 {
2630         int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2631
2632         if (cmng_fns != CMNG_FNS_NONE) {
2633                 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2634                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2635         } else {
2636                 /* rate shaping and fairness are disabled */
2637                 DP(NETIF_MSG_IFUP,
2638                    "single function mode without fairness\n");
2639         }
2640 }
2641
2642 /* This function is called upon link interrupt */
2643 static void bnx2x_link_attn(struct bnx2x *bp)
2644 {
2645         /* Make sure that we are synced with the current statistics */
2646         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2647
2648         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2649
2650         bnx2x_init_dropless_fc(bp);
2651
2652         if (bp->link_vars.link_up) {
2653
2654                 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2655                         struct host_port_stats *pstats;
2656
2657                         pstats = bnx2x_sp(bp, port_stats);
2658                         /* reset old mac stats */
2659                         memset(&(pstats->mac_stx[0]), 0,
2660                                sizeof(struct mac_stx));
2661                 }
2662                 if (bp->state == BNX2X_STATE_OPEN)
2663                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2664         }
2665
2666         if (bp->link_vars.link_up && bp->link_vars.line_speed)
2667                 bnx2x_set_local_cmng(bp);
2668
2669         __bnx2x_link_report(bp);
2670
2671         if (IS_MF(bp))
2672                 bnx2x_link_sync_notify(bp);
2673 }
2674
2675 void bnx2x__link_status_update(struct bnx2x *bp)
2676 {
2677         if (bp->state != BNX2X_STATE_OPEN)
2678                 return;
2679
2680         /* read updated dcb configuration */
2681         if (IS_PF(bp)) {
2682                 bnx2x_dcbx_pmf_update(bp);
2683                 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2684                 if (bp->link_vars.link_up)
2685                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2686                 else
2687                         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2688                         /* indicate link status */
2689                 bnx2x_link_report(bp);
2690
2691         } else { /* VF */
2692                 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2693                                           SUPPORTED_10baseT_Full |
2694                                           SUPPORTED_100baseT_Half |
2695                                           SUPPORTED_100baseT_Full |
2696                                           SUPPORTED_1000baseT_Full |
2697                                           SUPPORTED_2500baseX_Full |
2698                                           SUPPORTED_10000baseT_Full |
2699                                           SUPPORTED_TP |
2700                                           SUPPORTED_FIBRE |
2701                                           SUPPORTED_Autoneg |
2702                                           SUPPORTED_Pause |
2703                                           SUPPORTED_Asym_Pause);
2704                 bp->port.advertising[0] = bp->port.supported[0];
2705
2706                 bp->link_params.bp = bp;
2707                 bp->link_params.port = BP_PORT(bp);
2708                 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2709                 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2710                 bp->link_params.req_line_speed[0] = SPEED_10000;
2711                 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2712                 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2713                 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2714                 bp->link_vars.line_speed = SPEED_10000;
2715                 bp->link_vars.link_status =
2716                         (LINK_STATUS_LINK_UP |
2717                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2718                 bp->link_vars.link_up = 1;
2719                 bp->link_vars.duplex = DUPLEX_FULL;
2720                 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2721                 __bnx2x_link_report(bp);
2722
2723                 bnx2x_sample_bulletin(bp);
2724
2725                 /* if bulletin board did not have an update for link status
2726                  * __bnx2x_link_report will report current status
2727                  * but it will NOT duplicate report in case of already reported
2728                  * during sampling bulletin board.
2729                  */
2730                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2731         }
2732 }
2733
2734 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2735                                   u16 vlan_val, u8 allowed_prio)
2736 {
2737         struct bnx2x_func_state_params func_params = {NULL};
2738         struct bnx2x_func_afex_update_params *f_update_params =
2739                 &func_params.params.afex_update;
2740
2741         func_params.f_obj = &bp->func_obj;
2742         func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2743
2744         /* no need to wait for RAMROD completion, so don't
2745          * set RAMROD_COMP_WAIT flag
2746          */
2747
2748         f_update_params->vif_id = vifid;
2749         f_update_params->afex_default_vlan = vlan_val;
2750         f_update_params->allowed_priorities = allowed_prio;
2751
2752         /* if ramrod can not be sent, response to MCP immediately */
2753         if (bnx2x_func_state_change(bp, &func_params) < 0)
2754                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2755
2756         return 0;
2757 }
2758
2759 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2760                                           u16 vif_index, u8 func_bit_map)
2761 {
2762         struct bnx2x_func_state_params func_params = {NULL};
2763         struct bnx2x_func_afex_viflists_params *update_params =
2764                 &func_params.params.afex_viflists;
2765         int rc;
2766         u32 drv_msg_code;
2767
2768         /* validate only LIST_SET and LIST_GET are received from switch */
2769         if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2770                 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2771                           cmd_type);
2772
2773         func_params.f_obj = &bp->func_obj;
2774         func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2775
2776         /* set parameters according to cmd_type */
2777         update_params->afex_vif_list_command = cmd_type;
2778         update_params->vif_list_index = vif_index;
2779         update_params->func_bit_map =
2780                 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2781         update_params->func_to_clear = 0;
2782         drv_msg_code =
2783                 (cmd_type == VIF_LIST_RULE_GET) ?
2784                 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2785                 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2786
2787         /* if ramrod can not be sent, respond to MCP immediately for
2788          * SET and GET requests (other are not triggered from MCP)
2789          */
2790         rc = bnx2x_func_state_change(bp, &func_params);
2791         if (rc < 0)
2792                 bnx2x_fw_command(bp, drv_msg_code, 0);
2793
2794         return 0;
2795 }
2796
2797 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2798 {
2799         struct afex_stats afex_stats;
2800         u32 func = BP_ABS_FUNC(bp);
2801         u32 mf_config;
2802         u16 vlan_val;
2803         u32 vlan_prio;
2804         u16 vif_id;
2805         u8 allowed_prio;
2806         u8 vlan_mode;
2807         u32 addr_to_write, vifid, addrs, stats_type, i;
2808
2809         if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2810                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2811                 DP(BNX2X_MSG_MCP,
2812                    "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2813                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2814         }
2815
2816         if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2817                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2818                 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2819                 DP(BNX2X_MSG_MCP,
2820                    "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2821                    vifid, addrs);
2822                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2823                                                addrs);
2824         }
2825
2826         if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2827                 addr_to_write = SHMEM2_RD(bp,
2828                         afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2829                 stats_type = SHMEM2_RD(bp,
2830                         afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2831
2832                 DP(BNX2X_MSG_MCP,
2833                    "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2834                    addr_to_write);
2835
2836                 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2837
2838                 /* write response to scratchpad, for MCP */
2839                 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2840                         REG_WR(bp, addr_to_write + i*sizeof(u32),
2841                                *(((u32 *)(&afex_stats))+i));
2842
2843                 /* send ack message to MCP */
2844                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2845         }
2846
2847         if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2848                 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2849                 bp->mf_config[BP_VN(bp)] = mf_config;
2850                 DP(BNX2X_MSG_MCP,
2851                    "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2852                    mf_config);
2853
2854                 /* if VIF_SET is "enabled" */
2855                 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2856                         /* set rate limit directly to internal RAM */
2857                         struct cmng_init_input cmng_input;
2858                         struct rate_shaping_vars_per_vn m_rs_vn;
2859                         size_t size = sizeof(struct rate_shaping_vars_per_vn);
2860                         u32 addr = BAR_XSTRORM_INTMEM +
2861                             XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2862
2863                         bp->mf_config[BP_VN(bp)] = mf_config;
2864
2865                         bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2866                         m_rs_vn.vn_counter.rate =
2867                                 cmng_input.vnic_max_rate[BP_VN(bp)];
2868                         m_rs_vn.vn_counter.quota =
2869                                 (m_rs_vn.vn_counter.rate *
2870                                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2871
2872                         __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2873
2874                         /* read relevant values from mf_cfg struct in shmem */
2875                         vif_id =
2876                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2877                                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2878                                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2879                         vlan_val =
2880                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2881                                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2882                                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2883                         vlan_prio = (mf_config &
2884                                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2885                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2886                         vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2887                         vlan_mode =
2888                                 (MF_CFG_RD(bp,
2889                                            func_mf_config[func].afex_config) &
2890                                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2891                                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2892                         allowed_prio =
2893                                 (MF_CFG_RD(bp,
2894                                            func_mf_config[func].afex_config) &
2895                                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2896                                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2897
2898                         /* send ramrod to FW, return in case of failure */
2899                         if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2900                                                    allowed_prio))
2901                                 return;
2902
2903                         bp->afex_def_vlan_tag = vlan_val;
2904                         bp->afex_vlan_mode = vlan_mode;
2905                 } else {
2906                         /* notify link down because BP->flags is disabled */
2907                         bnx2x_link_report(bp);
2908
2909                         /* send INVALID VIF ramrod to FW */
2910                         bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2911
2912                         /* Reset the default afex VLAN */
2913                         bp->afex_def_vlan_tag = -1;
2914                 }
2915         }
2916 }
2917
2918 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2919 {
2920         struct bnx2x_func_switch_update_params *switch_update_params;
2921         struct bnx2x_func_state_params func_params;
2922
2923         memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2924         switch_update_params = &func_params.params.switch_update;
2925         func_params.f_obj = &bp->func_obj;
2926         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2927
2928         if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2929                 int func = BP_ABS_FUNC(bp);
2930                 u32 val;
2931
2932                 /* Re-learn the S-tag from shmem */
2933                 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2934                                 FUNC_MF_CFG_E1HOV_TAG_MASK;
2935                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2936                         bp->mf_ov = val;
2937                 } else {
2938                         BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2939                         goto fail;
2940                 }
2941
2942                 /* Configure new S-tag in LLH */
2943                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2944                        bp->mf_ov);
2945
2946                 /* Send Ramrod to update FW of change */
2947                 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2948                           &switch_update_params->changes);
2949                 switch_update_params->vlan = bp->mf_ov;
2950
2951                 if (bnx2x_func_state_change(bp, &func_params) < 0) {
2952                         BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2953                                   bp->mf_ov);
2954                         goto fail;
2955                 } else {
2956                         DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2957                            bp->mf_ov);
2958                 }
2959         } else {
2960                 goto fail;
2961         }
2962
2963         bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2964         return;
2965 fail:
2966         bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2967 }
2968
2969 static void bnx2x_pmf_update(struct bnx2x *bp)
2970 {
2971         int port = BP_PORT(bp);
2972         u32 val;
2973
2974         bp->port.pmf = 1;
2975         DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2976
2977         /*
2978          * We need the mb() to ensure the ordering between the writing to
2979          * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2980          */
2981         smp_mb();
2982
2983         /* queue a periodic task */
2984         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2985
2986         bnx2x_dcbx_pmf_update(bp);
2987
2988         /* enable nig attention */
2989         val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2990         if (bp->common.int_block == INT_BLOCK_HC) {
2991                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2992                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2993         } else if (!CHIP_IS_E1x(bp)) {
2994                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2995                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2996         }
2997
2998         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2999 }
3000
3001 /* end of Link */
3002
3003 /* slow path */
3004
3005 /*
3006  * General service functions
3007  */
3008
3009 /* send the MCP a request, block until there is a reply */
3010 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3011 {
3012         int mb_idx = BP_FW_MB_IDX(bp);
3013         u32 seq;
3014         u32 rc = 0;
3015         u32 cnt = 1;
3016         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3017
3018         mutex_lock(&bp->fw_mb_mutex);
3019         seq = ++bp->fw_seq;
3020         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3021         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3022
3023         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3024                         (command | seq), param);
3025
3026         do {
3027                 /* let the FW do it's magic ... */
3028                 msleep(delay);
3029
3030                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3031
3032                 /* Give the FW up to 5 second (500*10ms) */
3033         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3034
3035         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3036            cnt*delay, rc, seq);
3037
3038         /* is this a reply to our command? */
3039         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3040                 rc &= FW_MSG_CODE_MASK;
3041         else {
3042                 /* FW BUG! */
3043                 BNX2X_ERR("FW failed to respond!\n");
3044                 bnx2x_fw_dump(bp);
3045                 rc = 0;
3046         }
3047         mutex_unlock(&bp->fw_mb_mutex);
3048
3049         return rc;
3050 }
3051
3052 static void storm_memset_func_cfg(struct bnx2x *bp,
3053                                  struct tstorm_eth_function_common_config *tcfg,
3054                                  u16 abs_fid)
3055 {
3056         size_t size = sizeof(struct tstorm_eth_function_common_config);
3057
3058         u32 addr = BAR_TSTRORM_INTMEM +
3059                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3060
3061         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3062 }
3063
3064 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3065 {
3066         if (CHIP_IS_E1x(bp)) {
3067                 struct tstorm_eth_function_common_config tcfg = {0};
3068
3069                 storm_memset_func_cfg(bp, &tcfg, p->func_id);
3070         }
3071
3072         /* Enable the function in the FW */
3073         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3074         storm_memset_func_en(bp, p->func_id, 1);
3075
3076         /* spq */
3077         if (p->spq_active) {
3078                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3079                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
3080                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3081         }
3082 }
3083
3084 /**
3085  * bnx2x_get_common_flags - Return common flags
3086  *
3087  * @bp          device handle
3088  * @fp          queue handle
3089  * @zero_stats  TRUE if statistics zeroing is needed
3090  *
3091  * Return the flags that are common for the Tx-only and not normal connections.
3092  */
3093 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3094                                             struct bnx2x_fastpath *fp,
3095                                             bool zero_stats)
3096 {
3097         unsigned long flags = 0;
3098
3099         /* PF driver will always initialize the Queue to an ACTIVE state */
3100         __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3101
3102         /* tx only connections collect statistics (on the same index as the
3103          * parent connection). The statistics are zeroed when the parent
3104          * connection is initialized.
3105          */
3106
3107         __set_bit(BNX2X_Q_FLG_STATS, &flags);
3108         if (zero_stats)
3109                 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3110
3111         if (bp->flags & TX_SWITCHING)
3112                 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3113
3114         __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3115         __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3116
3117 #ifdef BNX2X_STOP_ON_ERROR
3118         __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3119 #endif
3120
3121         return flags;
3122 }
3123
3124 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3125                                        struct bnx2x_fastpath *fp,
3126                                        bool leading)
3127 {
3128         unsigned long flags = 0;
3129
3130         /* calculate other queue flags */
3131         if (IS_MF_SD(bp))
3132                 __set_bit(BNX2X_Q_FLG_OV, &flags);
3133
3134         if (IS_FCOE_FP(fp)) {
3135                 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3136                 /* For FCoE - force usage of default priority (for afex) */
3137                 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3138         }
3139
3140         if (fp->mode != TPA_MODE_DISABLED) {
3141                 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3142                 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3143                 if (fp->mode == TPA_MODE_GRO)
3144                         __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3145         }
3146
3147         if (leading) {
3148                 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3149                 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3150         }
3151
3152         /* Always set HW VLAN stripping */
3153         __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3154
3155         /* configure silent vlan removal */
3156         if (IS_MF_AFEX(bp))
3157                 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3158
3159         return flags | bnx2x_get_common_flags(bp, fp, true);
3160 }
3161
3162 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3163         struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3164         u8 cos)
3165 {
3166         gen_init->stat_id = bnx2x_stats_id(fp);
3167         gen_init->spcl_id = fp->cl_id;
3168
3169         /* Always use mini-jumbo MTU for FCoE L2 ring */
3170         if (IS_FCOE_FP(fp))
3171                 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3172         else
3173                 gen_init->mtu = bp->dev->mtu;
3174
3175         gen_init->cos = cos;
3176
3177         gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3178 }
3179
3180 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3181         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3182         struct bnx2x_rxq_setup_params *rxq_init)
3183 {
3184         u8 max_sge = 0;
3185         u16 sge_sz = 0;
3186         u16 tpa_agg_size = 0;
3187
3188         if (fp->mode != TPA_MODE_DISABLED) {
3189                 pause->sge_th_lo = SGE_TH_LO(bp);
3190                 pause->sge_th_hi = SGE_TH_HI(bp);
3191
3192                 /* validate SGE ring has enough to cross high threshold */
3193                 WARN_ON(bp->dropless_fc &&
3194                                 pause->sge_th_hi + FW_PREFETCH_CNT >
3195                                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3196
3197                 tpa_agg_size = TPA_AGG_SIZE;
3198                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3199                         SGE_PAGE_SHIFT;
3200                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3201                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3202                 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3203         }
3204
3205         /* pause - not for e1 */
3206         if (!CHIP_IS_E1(bp)) {
3207                 pause->bd_th_lo = BD_TH_LO(bp);
3208                 pause->bd_th_hi = BD_TH_HI(bp);
3209
3210                 pause->rcq_th_lo = RCQ_TH_LO(bp);
3211                 pause->rcq_th_hi = RCQ_TH_HI(bp);
3212                 /*
3213                  * validate that rings have enough entries to cross
3214                  * high thresholds
3215                  */
3216                 WARN_ON(bp->dropless_fc &&
3217                                 pause->bd_th_hi + FW_PREFETCH_CNT >
3218                                 bp->rx_ring_size);
3219                 WARN_ON(bp->dropless_fc &&
3220                                 pause->rcq_th_hi + FW_PREFETCH_CNT >
3221                                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3222
3223                 pause->pri_map = 1;
3224         }
3225
3226         /* rxq setup */
3227         rxq_init->dscr_map = fp->rx_desc_mapping;
3228         rxq_init->sge_map = fp->rx_sge_mapping;
3229         rxq_init->rcq_map = fp->rx_comp_mapping;
3230         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3231
3232         /* This should be a maximum number of data bytes that may be
3233          * placed on the BD (not including paddings).
3234          */
3235         rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3236                            BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3237
3238         rxq_init->cl_qzone_id = fp->cl_qzone_id;
3239         rxq_init->tpa_agg_sz = tpa_agg_size;
3240         rxq_init->sge_buf_sz = sge_sz;
3241         rxq_init->max_sges_pkt = max_sge;
3242         rxq_init->rss_engine_id = BP_FUNC(bp);
3243         rxq_init->mcast_engine_id = BP_FUNC(bp);
3244
3245         /* Maximum number or simultaneous TPA aggregation for this Queue.
3246          *
3247          * For PF Clients it should be the maximum available number.
3248          * VF driver(s) may want to define it to a smaller value.
3249          */
3250         rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3251
3252         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3253         rxq_init->fw_sb_id = fp->fw_sb_id;
3254
3255         if (IS_FCOE_FP(fp))
3256                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3257         else
3258                 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3259         /* configure silent vlan removal
3260          * if multi function mode is afex, then mask default vlan
3261          */
3262         if (IS_MF_AFEX(bp)) {
3263                 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3264                 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3265         }
3266 }
3267
3268 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3269         struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3270         u8 cos)
3271 {
3272         txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3273         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3274         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3275         txq_init->fw_sb_id = fp->fw_sb_id;
3276
3277         /*
3278          * set the tss leading client id for TX classification ==
3279          * leading RSS client id
3280          */
3281         txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3282
3283         if (IS_FCOE_FP(fp)) {
3284                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3285                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3286         }
3287 }
3288
3289 static void bnx2x_pf_init(struct bnx2x *bp)
3290 {
3291         struct bnx2x_func_init_params func_init = {0};
3292         struct event_ring_data eq_data = { {0} };
3293
3294         if (!CHIP_IS_E1x(bp)) {
3295                 /* reset IGU PF statistics: MSIX + ATTN */
3296                 /* PF */
3297                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3298                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3299                            (CHIP_MODE_IS_4_PORT(bp) ?
3300                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3301                 /* ATTN */
3302                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3303                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3304                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3305                            (CHIP_MODE_IS_4_PORT(bp) ?
3306                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3307         }
3308
3309         func_init.spq_active = true;
3310         func_init.pf_id = BP_FUNC(bp);
3311         func_init.func_id = BP_FUNC(bp);
3312         func_init.spq_map = bp->spq_mapping;
3313         func_init.spq_prod = bp->spq_prod_idx;
3314
3315         bnx2x_func_init(bp, &func_init);
3316
3317         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3318
3319         /*
3320          * Congestion management values depend on the link rate
3321          * There is no active link so initial link rate is set to 10 Gbps.
3322          * When the link comes up The congestion management values are
3323          * re-calculated according to the actual link rate.
3324          */
3325         bp->link_vars.line_speed = SPEED_10000;
3326         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3327
3328         /* Only the PMF sets the HW */
3329         if (bp->port.pmf)
3330                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3331
3332         /* init Event Queue - PCI bus guarantees correct endianity*/
3333         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3334         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3335         eq_data.producer = bp->eq_prod;
3336         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3337         eq_data.sb_id = DEF_SB_ID;
3338         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3339 }
3340
3341 static void bnx2x_e1h_disable(struct bnx2x *bp)
3342 {
3343         int port = BP_PORT(bp);
3344
3345         bnx2x_tx_disable(bp);
3346
3347         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3348 }
3349
3350 static void bnx2x_e1h_enable(struct bnx2x *bp)
3351 {
3352         int port = BP_PORT(bp);
3353
3354         if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3355                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3356
3357         /* Tx queue should be only re-enabled */
3358         netif_tx_wake_all_queues(bp->dev);
3359
3360         /*
3361          * Should not call netif_carrier_on since it will be called if the link
3362          * is up when checking for link state
3363          */
3364 }
3365
3366 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3367
3368 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3369 {
3370         struct eth_stats_info *ether_stat =
3371                 &bp->slowpath->drv_info_to_mcp.ether_stat;
3372         struct bnx2x_vlan_mac_obj *mac_obj =
3373                 &bp->sp_objs->mac_obj;
3374         int i;
3375
3376         strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3377                 ETH_STAT_INFO_VERSION_LEN);
3378
3379         /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3380          * mac_local field in ether_stat struct. The base address is offset by 2
3381          * bytes to account for the field being 8 bytes but a mac address is
3382          * only 6 bytes. Likewise, the stride for the get_n_elements function is
3383          * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3384          * allocated by the ether_stat struct, so the macs will land in their
3385          * proper positions.
3386          */
3387         for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3388                 memset(ether_stat->mac_local + i, 0,
3389                        sizeof(ether_stat->mac_local[0]));
3390         mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3391                                 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3392                                 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3393                                 ETH_ALEN);
3394         ether_stat->mtu_size = bp->dev->mtu;
3395         if (bp->dev->features & NETIF_F_RXCSUM)
3396                 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3397         if (bp->dev->features & NETIF_F_TSO)
3398                 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3399         ether_stat->feature_flags |= bp->common.boot_mode;
3400
3401         ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3402
3403         ether_stat->txq_size = bp->tx_ring_size;
3404         ether_stat->rxq_size = bp->rx_ring_size;
3405
3406 #ifdef CONFIG_BNX2X_SRIOV
3407         ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3408 #endif
3409 }
3410
3411 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3412 {
3413         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3414         struct fcoe_stats_info *fcoe_stat =
3415                 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3416
3417         if (!CNIC_LOADED(bp))
3418                 return;
3419
3420         memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3421
3422         fcoe_stat->qos_priority =
3423                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3424
3425         /* insert FCoE stats from ramrod response */
3426         if (!NO_FCOE(bp)) {
3427                 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3428                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3429                         tstorm_queue_statistics;
3430
3431                 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3432                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3433                         xstorm_queue_statistics;
3434
3435                 struct fcoe_statistics_params *fw_fcoe_stat =
3436                         &bp->fw_stats_data->fcoe;
3437
3438                 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3439                           fcoe_stat->rx_bytes_lo,
3440                           fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3441
3442                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3443                           fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3444                           fcoe_stat->rx_bytes_lo,
3445                           fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3446
3447                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3448                           fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3449                           fcoe_stat->rx_bytes_lo,
3450                           fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3451
3452                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3453                           fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3454                           fcoe_stat->rx_bytes_lo,
3455                           fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3456
3457                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3458                           fcoe_stat->rx_frames_lo,
3459                           fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3460
3461                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3462                           fcoe_stat->rx_frames_lo,
3463                           fcoe_q_tstorm_stats->rcv_ucast_pkts);
3464
3465                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3466                           fcoe_stat->rx_frames_lo,
3467                           fcoe_q_tstorm_stats->rcv_bcast_pkts);
3468
3469                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3470                           fcoe_stat->rx_frames_lo,
3471                           fcoe_q_tstorm_stats->rcv_mcast_pkts);
3472
3473                 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3474                           fcoe_stat->tx_bytes_lo,
3475                           fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3476
3477                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3478                           fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3479                           fcoe_stat->tx_bytes_lo,
3480                           fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3481
3482                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3483                           fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3484                           fcoe_stat->tx_bytes_lo,
3485                           fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3486
3487                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3488                           fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3489                           fcoe_stat->tx_bytes_lo,
3490                           fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3491
3492                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3493                           fcoe_stat->tx_frames_lo,
3494                           fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3495
3496                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3497                           fcoe_stat->tx_frames_lo,
3498                           fcoe_q_xstorm_stats->ucast_pkts_sent);
3499
3500                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3501                           fcoe_stat->tx_frames_lo,
3502                           fcoe_q_xstorm_stats->bcast_pkts_sent);
3503
3504                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3505                           fcoe_stat->tx_frames_lo,
3506                           fcoe_q_xstorm_stats->mcast_pkts_sent);
3507         }
3508
3509         /* ask L5 driver to add data to the struct */
3510         bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3511 }
3512
3513 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3514 {
3515         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3516         struct iscsi_stats_info *iscsi_stat =
3517                 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3518
3519         if (!CNIC_LOADED(bp))
3520                 return;
3521
3522         memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3523                ETH_ALEN);
3524
3525         iscsi_stat->qos_priority =
3526                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3527
3528         /* ask L5 driver to add data to the struct */
3529         bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3530 }
3531
3532 /* called due to MCP event (on pmf):
3533  *      reread new bandwidth configuration
3534  *      configure FW
3535  *      notify others function about the change
3536  */
3537 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3538 {
3539         if (bp->link_vars.link_up) {
3540                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3541                 bnx2x_link_sync_notify(bp);
3542         }
3543         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3544 }
3545
3546 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3547 {
3548         bnx2x_config_mf_bw(bp);
3549         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3550 }
3551
3552 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3553 {
3554         DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3555         bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3556 }
3557
3558 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH        (20)
3559 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT         (25)
3560
3561 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3562 {
3563         enum drv_info_opcode op_code;
3564         u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3565         bool release = false;
3566         int wait;
3567
3568         /* if drv_info version supported by MFW doesn't match - send NACK */
3569         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3570                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3571                 return;
3572         }
3573
3574         op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3575                   DRV_INFO_CONTROL_OP_CODE_SHIFT;
3576
3577         /* Must prevent other flows from accessing drv_info_to_mcp */
3578         mutex_lock(&bp->drv_info_mutex);
3579
3580         memset(&bp->slowpath->drv_info_to_mcp, 0,
3581                sizeof(union drv_info_to_mcp));
3582
3583         switch (op_code) {
3584         case ETH_STATS_OPCODE:
3585                 bnx2x_drv_info_ether_stat(bp);
3586                 break;
3587         case FCOE_STATS_OPCODE:
3588                 bnx2x_drv_info_fcoe_stat(bp);
3589                 break;
3590         case ISCSI_STATS_OPCODE:
3591                 bnx2x_drv_info_iscsi_stat(bp);
3592                 break;
3593         default:
3594                 /* if op code isn't supported - send NACK */
3595                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3596                 goto out;
3597         }
3598
3599         /* if we got drv_info attn from MFW then these fields are defined in
3600          * shmem2 for sure
3601          */
3602         SHMEM2_WR(bp, drv_info_host_addr_lo,
3603                 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3604         SHMEM2_WR(bp, drv_info_host_addr_hi,
3605                 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3606
3607         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3608
3609         /* Since possible management wants both this and get_driver_version
3610          * need to wait until management notifies us it finished utilizing
3611          * the buffer.
3612          */
3613         if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3614                 DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3615         } else if (!bp->drv_info_mng_owner) {
3616                 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3617
3618                 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3619                         u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3620
3621                         /* Management is done; need to clear indication */
3622                         if (indication & bit) {
3623                                 SHMEM2_WR(bp, mfw_drv_indication,
3624                                           indication & ~bit);
3625                                 release = true;
3626                                 break;
3627                         }
3628
3629                         msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3630                 }
3631         }
3632         if (!release) {
3633                 DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3634                 bp->drv_info_mng_owner = true;
3635         }
3636
3637 out:
3638         mutex_unlock(&bp->drv_info_mutex);
3639 }
3640
3641 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3642 {
3643         u8 vals[4];
3644         int i = 0;
3645
3646         if (bnx2x_format) {
3647                 i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3648                            &vals[0], &vals[1], &vals[2], &vals[3]);
3649                 if (i > 0)
3650                         vals[0] -= '0';
3651         } else {
3652                 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3653                            &vals[0], &vals[1], &vals[2], &vals[3]);
3654         }
3655
3656         while (i < 4)
3657                 vals[i++] = 0;
3658
3659         return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3660 }
3661
3662 void bnx2x_update_mng_version(struct bnx2x *bp)
3663 {
3664         u32 iscsiver = DRV_VER_NOT_LOADED;
3665         u32 fcoever = DRV_VER_NOT_LOADED;
3666         u32 ethver = DRV_VER_NOT_LOADED;
3667         int idx = BP_FW_MB_IDX(bp);
3668         u8 *version;
3669
3670         if (!SHMEM2_HAS(bp, func_os_drv_ver))
3671                 return;
3672
3673         mutex_lock(&bp->drv_info_mutex);
3674         /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3675         if (bp->drv_info_mng_owner)
3676                 goto out;
3677
3678         if (bp->state != BNX2X_STATE_OPEN)
3679                 goto out;
3680
3681         /* Parse ethernet driver version */
3682         ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3683         if (!CNIC_LOADED(bp))
3684                 goto out;
3685
3686         /* Try getting storage driver version via cnic */
3687         memset(&bp->slowpath->drv_info_to_mcp, 0,
3688                sizeof(union drv_info_to_mcp));
3689         bnx2x_drv_info_iscsi_stat(bp);
3690         version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3691         iscsiver = bnx2x_update_mng_version_utility(version, false);
3692
3693         memset(&bp->slowpath->drv_info_to_mcp, 0,
3694                sizeof(union drv_info_to_mcp));
3695         bnx2x_drv_info_fcoe_stat(bp);
3696         version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3697         fcoever = bnx2x_update_mng_version_utility(version, false);
3698
3699 out:
3700         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3701         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3702         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3703
3704         mutex_unlock(&bp->drv_info_mutex);
3705
3706         DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3707            ethver, iscsiver, fcoever);
3708 }
3709
3710 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3711 {
3712         u32 drv_ver;
3713         u32 valid_dump;
3714
3715         if (!SHMEM2_HAS(bp, drv_info))
3716                 return;
3717
3718         /* Update Driver load time, possibly broken in y2038 */
3719         SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3720
3721         drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3722         SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3723
3724         SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3725
3726         /* Check & notify On-Chip dump. */
3727         valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3728
3729         if (valid_dump & FIRST_DUMP_VALID)
3730                 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3731
3732         if (valid_dump & SECOND_DUMP_VALID)
3733                 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3734 }
3735
3736 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3737 {
3738         u32 cmd_ok, cmd_fail;
3739
3740         /* sanity */
3741         if (event & DRV_STATUS_DCC_EVENT_MASK &&
3742             event & DRV_STATUS_OEM_EVENT_MASK) {
3743                 BNX2X_ERR("Received simultaneous events %08x\n", event);
3744                 return;
3745         }
3746
3747         if (event & DRV_STATUS_DCC_EVENT_MASK) {
3748                 cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3749                 cmd_ok = DRV_MSG_CODE_DCC_OK;
3750         } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3751                 cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3752                 cmd_ok = DRV_MSG_CODE_OEM_OK;
3753         }
3754
3755         DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3756
3757         if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3758                      DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3759                 /* This is the only place besides the function initialization
3760                  * where the bp->flags can change so it is done without any
3761                  * locks
3762                  */
3763                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3764                         DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3765                         bp->flags |= MF_FUNC_DIS;
3766
3767                         bnx2x_e1h_disable(bp);
3768                 } else {
3769                         DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3770                         bp->flags &= ~MF_FUNC_DIS;
3771
3772                         bnx2x_e1h_enable(bp);
3773                 }
3774                 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3775                            DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3776         }
3777
3778         if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3779                      DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3780                 bnx2x_config_mf_bw(bp);
3781                 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3782                            DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3783         }
3784
3785         /* Report results to MCP */
3786         if (event)
3787                 bnx2x_fw_command(bp, cmd_fail, 0);
3788         else
3789                 bnx2x_fw_command(bp, cmd_ok, 0);
3790 }
3791
3792 /* must be called under the spq lock */
3793 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3794 {
3795         struct eth_spe *next_spe = bp->spq_prod_bd;
3796
3797         if (bp->spq_prod_bd == bp->spq_last_bd) {
3798                 bp->spq_prod_bd = bp->spq;
3799                 bp->spq_prod_idx = 0;
3800                 DP(BNX2X_MSG_SP, "end of spq\n");
3801         } else {
3802                 bp->spq_prod_bd++;
3803                 bp->spq_prod_idx++;
3804         }
3805         return next_spe;
3806 }
3807
3808 /* must be called under the spq lock */
3809 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3810 {
3811         int func = BP_FUNC(bp);
3812
3813         /*
3814          * Make sure that BD data is updated before writing the producer:
3815          * BD data is written to the memory, the producer is read from the
3816          * memory, thus we need a full memory barrier to ensure the ordering.
3817          */
3818         mb();
3819
3820         REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3821                  bp->spq_prod_idx);
3822         mmiowb();
3823 }
3824
3825 /**
3826  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3827  *
3828  * @cmd:        command to check
3829  * @cmd_type:   command type
3830  */
3831 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3832 {
3833         if ((cmd_type == NONE_CONNECTION_TYPE) ||
3834             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3835             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3836             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3837             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3838             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3839             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3840                 return true;
3841         else
3842                 return false;
3843 }
3844
3845 /**
3846  * bnx2x_sp_post - place a single command on an SP ring
3847  *
3848  * @bp:         driver handle
3849  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3850  * @cid:        SW CID the command is related to
3851  * @data_hi:    command private data address (high 32 bits)
3852  * @data_lo:    command private data address (low 32 bits)
3853  * @cmd_type:   command type (e.g. NONE, ETH)
3854  *
3855  * SP data is handled as if it's always an address pair, thus data fields are
3856  * not swapped to little endian in upper functions. Instead this function swaps
3857  * data as if it's two u32 fields.
3858  */
3859 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3860                   u32 data_hi, u32 data_lo, int cmd_type)
3861 {
3862         struct eth_spe *spe;
3863         u16 type;
3864         bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3865
3866 #ifdef BNX2X_STOP_ON_ERROR
3867         if (unlikely(bp->panic)) {
3868                 BNX2X_ERR("Can't post SP when there is panic\n");
3869                 return -EIO;
3870         }
3871 #endif
3872
3873         spin_lock_bh(&bp->spq_lock);
3874
3875         if (common) {
3876                 if (!atomic_read(&bp->eq_spq_left)) {
3877                         BNX2X_ERR("BUG! EQ ring full!\n");
3878                         spin_unlock_bh(&bp->spq_lock);
3879                         bnx2x_panic();
3880                         return -EBUSY;
3881                 }
3882         } else if (!atomic_read(&bp->cq_spq_left)) {
3883                         BNX2X_ERR("BUG! SPQ ring full!\n");
3884                         spin_unlock_bh(&bp->spq_lock);
3885                         bnx2x_panic();
3886                         return -EBUSY;
3887         }
3888
3889         spe = bnx2x_sp_get_next(bp);
3890
3891         /* CID needs port number to be encoded int it */
3892         spe->hdr.conn_and_cmd_data =
3893                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3894                                     HW_CID(bp, cid));
3895
3896         /* In some cases, type may already contain the func-id
3897          * mainly in SRIOV related use cases, so we add it here only
3898          * if it's not already set.
3899          */
3900         if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3901                 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3902                         SPE_HDR_CONN_TYPE;
3903                 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3904                          SPE_HDR_FUNCTION_ID);
3905         } else {
3906                 type = cmd_type;
3907         }
3908
3909         spe->hdr.type = cpu_to_le16(type);
3910
3911         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3912         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3913
3914         /*
3915          * It's ok if the actual decrement is issued towards the memory
3916          * somewhere between the spin_lock and spin_unlock. Thus no
3917          * more explicit memory barrier is needed.
3918          */
3919         if (common)
3920                 atomic_dec(&bp->eq_spq_left);
3921         else
3922                 atomic_dec(&bp->cq_spq_left);
3923
3924         DP(BNX2X_MSG_SP,
3925            "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3926            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3927            (u32)(U64_LO(bp->spq_mapping) +
3928            (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3929            HW_CID(bp, cid), data_hi, data_lo, type,
3930            atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3931
3932         bnx2x_sp_prod_update(bp);
3933         spin_unlock_bh(&bp->spq_lock);
3934         return 0;
3935 }
3936
3937 /* acquire split MCP access lock register */
3938 static int bnx2x_acquire_alr(struct bnx2x *bp)
3939 {
3940         u32 j, val;
3941         int rc = 0;
3942
3943         might_sleep();
3944         for (j = 0; j < 1000; j++) {
3945                 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3946                 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3947                 if (val & MCPR_ACCESS_LOCK_LOCK)
3948                         break;
3949
3950                 usleep_range(5000, 10000);
3951         }
3952         if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3953                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3954                 rc = -EBUSY;
3955         }
3956
3957         return rc;
3958 }
3959
3960 /* release split MCP access lock register */
3961 static void bnx2x_release_alr(struct bnx2x *bp)
3962 {
3963         REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3964 }
3965
3966 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3967 #define BNX2X_DEF_SB_IDX        0x0002
3968
3969 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3970 {
3971         struct host_sp_status_block *def_sb = bp->def_status_blk;
3972         u16 rc = 0;
3973
3974         barrier(); /* status block is written to by the chip */
3975         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3976                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3977                 rc |= BNX2X_DEF_SB_ATT_IDX;
3978         }
3979
3980         if (bp->def_idx != def_sb->sp_sb.running_index) {
3981                 bp->def_idx = def_sb->sp_sb.running_index;
3982                 rc |= BNX2X_DEF_SB_IDX;
3983         }
3984
3985         /* Do not reorder: indices reading should complete before handling */
3986         barrier();
3987         return rc;
3988 }
3989
3990 /*
3991  * slow path service functions
3992  */
3993
3994 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3995 {
3996         int port = BP_PORT(bp);
3997         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3998                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
3999         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4000                                        NIG_REG_MASK_INTERRUPT_PORT0;
4001         u32 aeu_mask;
4002         u32 nig_mask = 0;
4003         u32 reg_addr;
4004
4005         if (bp->attn_state & asserted)
4006                 BNX2X_ERR("IGU ERROR\n");
4007
4008         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4009         aeu_mask = REG_RD(bp, aeu_addr);
4010
4011         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4012            aeu_mask, asserted);
4013         aeu_mask &= ~(asserted & 0x3ff);
4014         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4015
4016         REG_WR(bp, aeu_addr, aeu_mask);
4017         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4018
4019         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4020         bp->attn_state |= asserted;
4021         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4022
4023         if (asserted & ATTN_HARD_WIRED_MASK) {
4024                 if (asserted & ATTN_NIG_FOR_FUNC) {
4025
4026                         bnx2x_acquire_phy_lock(bp);
4027
4028                         /* save nig interrupt mask */
4029                         nig_mask = REG_RD(bp, nig_int_mask_addr);
4030
4031                         /* If nig_mask is not set, no need to call the update
4032                          * function.
4033                          */
4034                         if (nig_mask) {
4035                                 REG_WR(bp, nig_int_mask_addr, 0);
4036
4037                                 bnx2x_link_attn(bp);
4038                         }
4039
4040                         /* handle unicore attn? */
4041                 }
4042                 if (asserted & ATTN_SW_TIMER_4_FUNC)
4043                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4044
4045                 if (asserted & GPIO_2_FUNC)
4046                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4047
4048                 if (asserted & GPIO_3_FUNC)
4049                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4050
4051                 if (asserted & GPIO_4_FUNC)
4052                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4053
4054                 if (port == 0) {
4055                         if (asserted & ATTN_GENERAL_ATTN_1) {
4056                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4057                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4058                         }
4059                         if (asserted & ATTN_GENERAL_ATTN_2) {
4060                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4061                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4062                         }
4063                         if (asserted & ATTN_GENERAL_ATTN_3) {
4064                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4065                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4066                         }
4067                 } else {
4068                         if (asserted & ATTN_GENERAL_ATTN_4) {
4069                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4070                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4071                         }
4072                         if (asserted & ATTN_GENERAL_ATTN_5) {
4073                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4074                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4075                         }
4076                         if (asserted & ATTN_GENERAL_ATTN_6) {
4077                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4078                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4079                         }
4080                 }
4081
4082         } /* if hardwired */
4083
4084         if (bp->common.int_block == INT_BLOCK_HC)
4085                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4086                             COMMAND_REG_ATTN_BITS_SET);
4087         else
4088                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4089
4090         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4091            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4092         REG_WR(bp, reg_addr, asserted);
4093
4094         /* now set back the mask */
4095         if (asserted & ATTN_NIG_FOR_FUNC) {
4096                 /* Verify that IGU ack through BAR was written before restoring
4097                  * NIG mask. This loop should exit after 2-3 iterations max.
4098                  */
4099                 if (bp->common.int_block != INT_BLOCK_HC) {
4100                         u32 cnt = 0, igu_acked;
4101                         do {
4102                                 igu_acked = REG_RD(bp,
4103                                                    IGU_REG_ATTENTION_ACK_BITS);
4104                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4105                                  (++cnt < MAX_IGU_ATTN_ACK_TO));
4106                         if (!igu_acked)
4107                                 DP(NETIF_MSG_HW,
4108                                    "Failed to verify IGU ack on time\n");
4109                         barrier();
4110                 }
4111                 REG_WR(bp, nig_int_mask_addr, nig_mask);
4112                 bnx2x_release_phy_lock(bp);
4113         }
4114 }
4115
4116 static void bnx2x_fan_failure(struct bnx2x *bp)
4117 {
4118         int port = BP_PORT(bp);
4119         u32 ext_phy_config;
4120         /* mark the failure */
4121         ext_phy_config =
4122                 SHMEM_RD(bp,
4123                          dev_info.port_hw_config[port].external_phy_config);
4124
4125         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4126         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4127         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4128                  ext_phy_config);
4129
4130         /* log the failure */
4131         netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4132                             "Please contact OEM Support for assistance\n");
4133
4134         /* Schedule device reset (unload)
4135          * This is due to some boards consuming sufficient power when driver is
4136          * up to overheat if fan fails.
4137          */
4138         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4139 }
4140
4141 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4142 {
4143         int port = BP_PORT(bp);
4144         int reg_offset;
4145         u32 val;
4146
4147         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4148                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4149
4150         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4151
4152                 val = REG_RD(bp, reg_offset);
4153                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4154                 REG_WR(bp, reg_offset, val);
4155
4156                 BNX2X_ERR("SPIO5 hw attention\n");
4157
4158                 /* Fan failure attention */
4159                 bnx2x_hw_reset_phy(&bp->link_params);
4160                 bnx2x_fan_failure(bp);
4161         }
4162
4163         if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4164                 bnx2x_acquire_phy_lock(bp);
4165                 bnx2x_handle_module_detect_int(&bp->link_params);
4166                 bnx2x_release_phy_lock(bp);
4167         }
4168
4169         if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4170
4171                 val = REG_RD(bp, reg_offset);
4172                 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4173                 REG_WR(bp, reg_offset, val);
4174
4175                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4176                           (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4177                 bnx2x_panic();
4178         }
4179 }
4180
4181 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4182 {
4183         u32 val;
4184
4185         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4186
4187                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4188                 BNX2X_ERR("DB hw attention 0x%x\n", val);
4189                 /* DORQ discard attention */
4190                 if (val & 0x2)
4191                         BNX2X_ERR("FATAL error from DORQ\n");
4192         }
4193
4194         if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4195
4196                 int port = BP_PORT(bp);
4197                 int reg_offset;
4198
4199                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4200                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4201
4202                 val = REG_RD(bp, reg_offset);
4203                 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4204                 REG_WR(bp, reg_offset, val);
4205
4206                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4207                           (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4208                 bnx2x_panic();
4209         }
4210 }
4211
4212 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4213 {
4214         u32 val;
4215
4216         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4217
4218                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4219                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
4220                 /* CFC error attention */
4221                 if (val & 0x2)
4222                         BNX2X_ERR("FATAL error from CFC\n");
4223         }
4224
4225         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4226                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4227                 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4228                 /* RQ_USDMDP_FIFO_OVERFLOW */
4229                 if (val & 0x18000)
4230                         BNX2X_ERR("FATAL error from PXP\n");
4231
4232                 if (!CHIP_IS_E1x(bp)) {
4233                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4234                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4235                 }
4236         }
4237
4238         if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4239
4240                 int port = BP_PORT(bp);
4241                 int reg_offset;
4242
4243                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4244                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4245
4246                 val = REG_RD(bp, reg_offset);
4247                 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4248                 REG_WR(bp, reg_offset, val);
4249
4250                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4251                           (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4252                 bnx2x_panic();
4253         }
4254 }
4255
4256 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4257 {
4258         u32 val;
4259
4260         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4261
4262                 if (attn & BNX2X_PMF_LINK_ASSERT) {
4263                         int func = BP_FUNC(bp);
4264
4265                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4266                         bnx2x_read_mf_cfg(bp);
4267                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4268                                         func_mf_config[BP_ABS_FUNC(bp)].config);
4269                         val = SHMEM_RD(bp,
4270                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
4271
4272                         if (val & (DRV_STATUS_DCC_EVENT_MASK |
4273                                    DRV_STATUS_OEM_EVENT_MASK))
4274                                 bnx2x_oem_event(bp,
4275                                         (val & (DRV_STATUS_DCC_EVENT_MASK |
4276                                                 DRV_STATUS_OEM_EVENT_MASK)));
4277
4278                         if (val & DRV_STATUS_SET_MF_BW)
4279                                 bnx2x_set_mf_bw(bp);
4280
4281                         if (val & DRV_STATUS_DRV_INFO_REQ)
4282                                 bnx2x_handle_drv_info_req(bp);
4283
4284                         if (val & DRV_STATUS_VF_DISABLED)
4285                                 bnx2x_schedule_iov_task(bp,
4286                                                         BNX2X_IOV_HANDLE_FLR);
4287
4288                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4289                                 bnx2x_pmf_update(bp);
4290
4291                         if (bp->port.pmf &&
4292                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4293                                 bp->dcbx_enabled > 0)
4294                                 /* start dcbx state machine */
4295                                 bnx2x_dcbx_set_params(bp,
4296                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
4297                         if (val & DRV_STATUS_AFEX_EVENT_MASK)
4298                                 bnx2x_handle_afex_cmd(bp,
4299                                         val & DRV_STATUS_AFEX_EVENT_MASK);
4300                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4301                                 bnx2x_handle_eee_event(bp);
4302
4303                         if (val & DRV_STATUS_OEM_UPDATE_SVID)
4304                                 bnx2x_handle_update_svid_cmd(bp);
4305
4306                         if (bp->link_vars.periodic_flags &
4307                             PERIODIC_FLAGS_LINK_EVENT) {
4308                                 /*  sync with link */
4309                                 bnx2x_acquire_phy_lock(bp);
4310                                 bp->link_vars.periodic_flags &=
4311                                         ~PERIODIC_FLAGS_LINK_EVENT;
4312                                 bnx2x_release_phy_lock(bp);
4313                                 if (IS_MF(bp))
4314                                         bnx2x_link_sync_notify(bp);
4315                                 bnx2x_link_report(bp);
4316                         }
4317                         /* Always call it here: bnx2x_link_report() will
4318                          * prevent the link indication duplication.
4319                          */
4320                         bnx2x__link_status_update(bp);
4321                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4322
4323                         BNX2X_ERR("MC assert!\n");
4324                         bnx2x_mc_assert(bp);
4325                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4326                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4327                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4328                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4329                         bnx2x_panic();
4330
4331                 } else if (attn & BNX2X_MCP_ASSERT) {
4332
4333                         BNX2X_ERR("MCP assert!\n");
4334                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4335                         bnx2x_fw_dump(bp);
4336
4337                 } else
4338                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4339         }
4340
4341         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4342                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4343                 if (attn & BNX2X_GRC_TIMEOUT) {
4344                         val = CHIP_IS_E1(bp) ? 0 :
4345                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4346                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
4347                 }
4348                 if (attn & BNX2X_GRC_RSV) {
4349                         val = CHIP_IS_E1(bp) ? 0 :
4350                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4351                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
4352                 }
4353                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4354         }
4355 }
4356
4357 /*
4358  * Bits map:
4359  * 0-7   - Engine0 load counter.
4360  * 8-15  - Engine1 load counter.
4361  * 16    - Engine0 RESET_IN_PROGRESS bit.
4362  * 17    - Engine1 RESET_IN_PROGRESS bit.
4363  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4364  *         on the engine
4365  * 19    - Engine1 ONE_IS_LOADED.
4366  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4367  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4368  *         just the one belonging to its engine).
4369  *
4370  */
4371 #define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4372
4373 #define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4374 #define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4375 #define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4376 #define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4377 #define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4378 #define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4379 #define BNX2X_GLOBAL_RESET_BIT          0x00040000
4380
4381 /*
4382  * Set the GLOBAL_RESET bit.
4383  *
4384  * Should be run under rtnl lock
4385  */
4386 void bnx2x_set_reset_global(struct bnx2x *bp)
4387 {
4388         u32 val;
4389         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4390         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4391         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4392         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4393 }
4394
4395 /*
4396  * Clear the GLOBAL_RESET bit.
4397  *
4398  * Should be run under rtnl lock
4399  */
4400 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4401 {
4402         u32 val;
4403         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4404         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4405         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4406         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4407 }
4408
4409 /*
4410  * Checks the GLOBAL_RESET bit.
4411  *
4412  * should be run under rtnl lock
4413  */
4414 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4415 {
4416         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4417
4418         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4419         return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4420 }
4421
4422 /*
4423  * Clear RESET_IN_PROGRESS bit for the current engine.
4424  *
4425  * Should be run under rtnl lock
4426  */
4427 static void bnx2x_set_reset_done(struct bnx2x *bp)
4428 {
4429         u32 val;
4430         u32 bit = BP_PATH(bp) ?
4431                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4432         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4433         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4434
4435         /* Clear the bit */
4436         val &= ~bit;
4437         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4438
4439         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4440 }
4441
4442 /*
4443  * Set RESET_IN_PROGRESS for the current engine.
4444  *
4445  * should be run under rtnl lock
4446  */
4447 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4448 {
4449         u32 val;
4450         u32 bit = BP_PATH(bp) ?
4451                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4452         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4453         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4454
4455         /* Set the bit */
4456         val |= bit;
4457         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4458         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4459 }
4460
4461 /*
4462  * Checks the RESET_IN_PROGRESS bit for the given engine.
4463  * should be run under rtnl lock
4464  */
4465 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4466 {
4467         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4468         u32 bit = engine ?
4469                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4470
4471         /* return false if bit is set */
4472         return (val & bit) ? false : true;
4473 }
4474
4475 /*
4476  * set pf load for the current pf.
4477  *
4478  * should be run under rtnl lock
4479  */
4480 void bnx2x_set_pf_load(struct bnx2x *bp)
4481 {
4482         u32 val1, val;
4483         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4484                              BNX2X_PATH0_LOAD_CNT_MASK;
4485         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4486                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4487
4488         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4489         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4490
4491         DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4492
4493         /* get the current counter value */
4494         val1 = (val & mask) >> shift;
4495
4496         /* set bit of that PF */
4497         val1 |= (1 << bp->pf_num);
4498
4499         /* clear the old value */
4500         val &= ~mask;
4501
4502         /* set the new one */
4503         val |= ((val1 << shift) & mask);
4504
4505         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4506         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4507 }
4508
4509 /**
4510  * bnx2x_clear_pf_load - clear pf load mark
4511  *
4512  * @bp:         driver handle
4513  *
4514  * Should be run under rtnl lock.
4515  * Decrements the load counter for the current engine. Returns
4516  * whether other functions are still loaded
4517  */
4518 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4519 {
4520         u32 val1, val;
4521         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4522                              BNX2X_PATH0_LOAD_CNT_MASK;
4523         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4524                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4525
4526         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4527         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4528         DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4529
4530         /* get the current counter value */
4531         val1 = (val & mask) >> shift;
4532
4533         /* clear bit of that PF */
4534         val1 &= ~(1 << bp->pf_num);
4535
4536         /* clear the old value */
4537         val &= ~mask;
4538
4539         /* set the new one */
4540         val |= ((val1 << shift) & mask);
4541
4542         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4543         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4544         return val1 != 0;
4545 }
4546
4547 /*
4548  * Read the load status for the current engine.
4549  *
4550  * should be run under rtnl lock
4551  */
4552 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4553 {
4554         u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4555                              BNX2X_PATH0_LOAD_CNT_MASK);
4556         u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4557                              BNX2X_PATH0_LOAD_CNT_SHIFT);
4558         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4559
4560         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4561
4562         val = (val & mask) >> shift;
4563
4564         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4565            engine, val);
4566
4567         return val != 0;
4568 }
4569
4570 static void _print_parity(struct bnx2x *bp, u32 reg)
4571 {
4572         pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4573 }
4574
4575 static void _print_next_block(int idx, const char *blk)
4576 {
4577         pr_cont("%s%s", idx ? ", " : "", blk);
4578 }
4579
4580 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4581                                             int *par_num, bool print)
4582 {
4583         u32 cur_bit;
4584         bool res;
4585         int i;
4586
4587         res = false;
4588
4589         for (i = 0; sig; i++) {
4590                 cur_bit = (0x1UL << i);
4591                 if (sig & cur_bit) {
4592                         res |= true; /* Each bit is real error! */
4593
4594                         if (print) {
4595                                 switch (cur_bit) {
4596                                 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4597                                         _print_next_block((*par_num)++, "BRB");
4598                                         _print_parity(bp,
4599                                                       BRB1_REG_BRB1_PRTY_STS);
4600                                         break;
4601                                 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4602                                         _print_next_block((*par_num)++,
4603                                                           "PARSER");
4604                                         _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4605                                         break;
4606                                 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4607                                         _print_next_block((*par_num)++, "TSDM");
4608                                         _print_parity(bp,
4609                                                       TSDM_REG_TSDM_PRTY_STS);
4610                                         break;
4611                                 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4612                                         _print_next_block((*par_num)++,
4613                                                           "SEARCHER");
4614                                         _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4615                                         break;
4616                                 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4617                                         _print_next_block((*par_num)++, "TCM");
4618                                         _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4619                                         break;
4620                                 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4621                                         _print_next_block((*par_num)++,
4622                                                           "TSEMI");
4623                                         _print_parity(bp,
4624                                                       TSEM_REG_TSEM_PRTY_STS_0);
4625                                         _print_parity(bp,
4626                                                       TSEM_REG_TSEM_PRTY_STS_1);
4627                                         break;
4628                                 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4629                                         _print_next_block((*par_num)++, "XPB");
4630                                         _print_parity(bp, GRCBASE_XPB +
4631                                                           PB_REG_PB_PRTY_STS);
4632                                         break;
4633                                 }
4634                         }
4635
4636                         /* Clear the bit */
4637                         sig &= ~cur_bit;
4638                 }
4639         }
4640
4641         return res;
4642 }
4643
4644 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4645                                             int *par_num, bool *global,
4646                                             bool print)
4647 {
4648         u32 cur_bit;
4649         bool res;
4650         int i;
4651
4652         res = false;
4653
4654         for (i = 0; sig; i++) {
4655                 cur_bit = (0x1UL << i);
4656                 if (sig & cur_bit) {
4657                         res |= true; /* Each bit is real error! */
4658                         switch (cur_bit) {
4659                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4660                                 if (print) {
4661                                         _print_next_block((*par_num)++, "PBF");
4662                                         _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4663                                 }
4664                                 break;
4665                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4666                                 if (print) {
4667                                         _print_next_block((*par_num)++, "QM");
4668                                         _print_parity(bp, QM_REG_QM_PRTY_STS);
4669                                 }
4670                                 break;
4671                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4672                                 if (print) {
4673                                         _print_next_block((*par_num)++, "TM");
4674                                         _print_parity(bp, TM_REG_TM_PRTY_STS);
4675                                 }
4676                                 break;
4677                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4678                                 if (print) {
4679                                         _print_next_block((*par_num)++, "XSDM");
4680                                         _print_parity(bp,
4681                                                       XSDM_REG_XSDM_PRTY_STS);
4682                                 }
4683                                 break;
4684                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4685                                 if (print) {
4686                                         _print_next_block((*par_num)++, "XCM");
4687                                         _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4688                                 }
4689                                 break;
4690                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4691                                 if (print) {
4692                                         _print_next_block((*par_num)++,
4693                                                           "XSEMI");
4694                                         _print_parity(bp,
4695                                                       XSEM_REG_XSEM_PRTY_STS_0);
4696                                         _print_parity(bp,
4697                                                       XSEM_REG_XSEM_PRTY_STS_1);
4698                                 }
4699                                 break;
4700                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4701                                 if (print) {
4702                                         _print_next_block((*par_num)++,
4703                                                           "DOORBELLQ");
4704                                         _print_parity(bp,
4705                                                       DORQ_REG_DORQ_PRTY_STS);
4706                                 }
4707                                 break;
4708                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4709                                 if (print) {
4710                                         _print_next_block((*par_num)++, "NIG");
4711                                         if (CHIP_IS_E1x(bp)) {
4712                                                 _print_parity(bp,
4713                                                         NIG_REG_NIG_PRTY_STS);
4714                                         } else {
4715                                                 _print_parity(bp,
4716                                                         NIG_REG_NIG_PRTY_STS_0);
4717                                                 _print_parity(bp,
4718                                                         NIG_REG_NIG_PRTY_STS_1);
4719                                         }
4720                                 }
4721                                 break;
4722                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4723                                 if (print)
4724                                         _print_next_block((*par_num)++,
4725                                                           "VAUX PCI CORE");
4726                                 *global = true;
4727                                 break;
4728                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4729                                 if (print) {
4730                                         _print_next_block((*par_num)++,
4731                                                           "DEBUG");
4732                                         _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4733                                 }
4734                                 break;
4735                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4736                                 if (print) {
4737                                         _print_next_block((*par_num)++, "USDM");
4738                                         _print_parity(bp,
4739                                                       USDM_REG_USDM_PRTY_STS);
4740                                 }
4741                                 break;
4742                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4743                                 if (print) {
4744                                         _print_next_block((*par_num)++, "UCM");
4745                                         _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4746                                 }
4747                                 break;
4748                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4749                                 if (print) {
4750                                         _print_next_block((*par_num)++,
4751                                                           "USEMI");
4752                                         _print_parity(bp,
4753                                                       USEM_REG_USEM_PRTY_STS_0);
4754                                         _print_parity(bp,
4755                                                       USEM_REG_USEM_PRTY_STS_1);
4756                                 }
4757                                 break;
4758                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4759                                 if (print) {
4760                                         _print_next_block((*par_num)++, "UPB");
4761                                         _print_parity(bp, GRCBASE_UPB +
4762                                                           PB_REG_PB_PRTY_STS);
4763                                 }
4764                                 break;
4765                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4766                                 if (print) {
4767                                         _print_next_block((*par_num)++, "CSDM");
4768                                         _print_parity(bp,
4769                                                       CSDM_REG_CSDM_PRTY_STS);
4770                                 }
4771                                 break;
4772                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4773                                 if (print) {
4774                                         _print_next_block((*par_num)++, "CCM");
4775                                         _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4776                                 }
4777                                 break;
4778                         }
4779
4780                         /* Clear the bit */
4781                         sig &= ~cur_bit;
4782                 }
4783         }
4784
4785         return res;
4786 }
4787
4788 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4789                                             int *par_num, bool print)
4790 {
4791         u32 cur_bit;
4792         bool res;
4793         int i;
4794
4795         res = false;
4796
4797         for (i = 0; sig; i++) {
4798                 cur_bit = (0x1UL << i);
4799                 if (sig & cur_bit) {
4800                         res = true; /* Each bit is real error! */
4801                         if (print) {
4802                                 switch (cur_bit) {
4803                                 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4804                                         _print_next_block((*par_num)++,
4805                                                           "CSEMI");
4806                                         _print_parity(bp,
4807                                                       CSEM_REG_CSEM_PRTY_STS_0);
4808                                         _print_parity(bp,
4809                                                       CSEM_REG_CSEM_PRTY_STS_1);
4810                                         break;
4811                                 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4812                                         _print_next_block((*par_num)++, "PXP");
4813                                         _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4814                                         _print_parity(bp,
4815                                                       PXP2_REG_PXP2_PRTY_STS_0);
4816                                         _print_parity(bp,
4817                                                       PXP2_REG_PXP2_PRTY_STS_1);
4818                                         break;
4819                                 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4820                                         _print_next_block((*par_num)++,
4821                                                           "PXPPCICLOCKCLIENT");
4822                                         break;
4823                                 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4824                                         _print_next_block((*par_num)++, "CFC");
4825                                         _print_parity(bp,
4826                                                       CFC_REG_CFC_PRTY_STS);
4827                                         break;
4828                                 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4829                                         _print_next_block((*par_num)++, "CDU");
4830                                         _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4831                                         break;
4832                                 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4833                                         _print_next_block((*par_num)++, "DMAE");
4834                                         _print_parity(bp,
4835                                                       DMAE_REG_DMAE_PRTY_STS);
4836                                         break;
4837                                 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4838                                         _print_next_block((*par_num)++, "IGU");
4839                                         if (CHIP_IS_E1x(bp))
4840                                                 _print_parity(bp,
4841                                                         HC_REG_HC_PRTY_STS);
4842                                         else
4843                                                 _print_parity(bp,
4844                                                         IGU_REG_IGU_PRTY_STS);
4845                                         break;
4846                                 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4847                                         _print_next_block((*par_num)++, "MISC");
4848                                         _print_parity(bp,
4849                                                       MISC_REG_MISC_PRTY_STS);
4850                                         break;
4851                                 }
4852                         }
4853
4854                         /* Clear the bit */
4855                         sig &= ~cur_bit;
4856                 }
4857         }
4858
4859         return res;
4860 }
4861
4862 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4863                                             int *par_num, bool *global,
4864                                             bool print)
4865 {
4866         bool res = false;
4867         u32 cur_bit;
4868         int i;
4869
4870         for (i = 0; sig; i++) {
4871                 cur_bit = (0x1UL << i);
4872                 if (sig & cur_bit) {
4873                         switch (cur_bit) {
4874                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4875                                 if (print)
4876                                         _print_next_block((*par_num)++,
4877                                                           "MCP ROM");
4878                                 *global = true;
4879                                 res = true;
4880                                 break;
4881                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4882                                 if (print)
4883                                         _print_next_block((*par_num)++,
4884                                                           "MCP UMP RX");
4885                                 *global = true;
4886                                 res = true;
4887                                 break;
4888                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4889                                 if (print)
4890                                         _print_next_block((*par_num)++,
4891                                                           "MCP UMP TX");
4892                                 *global = true;
4893                                 res = true;
4894                                 break;
4895                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4896                                 (*par_num)++;
4897                                 /* clear latched SCPAD PATIRY from MCP */
4898                                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4899                                        1UL << 10);
4900                                 break;
4901                         }
4902
4903                         /* Clear the bit */
4904                         sig &= ~cur_bit;
4905                 }
4906         }
4907
4908         return res;
4909 }
4910
4911 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4912                                             int *par_num, bool print)
4913 {
4914         u32 cur_bit;
4915         bool res;
4916         int i;
4917
4918         res = false;
4919
4920         for (i = 0; sig; i++) {
4921                 cur_bit = (0x1UL << i);
4922                 if (sig & cur_bit) {
4923                         res = true; /* Each bit is real error! */
4924                         if (print) {
4925                                 switch (cur_bit) {
4926                                 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4927                                         _print_next_block((*par_num)++,
4928                                                           "PGLUE_B");
4929                                         _print_parity(bp,
4930                                                       PGLUE_B_REG_PGLUE_B_PRTY_STS);
4931                                         break;
4932                                 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4933                                         _print_next_block((*par_num)++, "ATC");
4934                                         _print_parity(bp,
4935                                                       ATC_REG_ATC_PRTY_STS);
4936                                         break;
4937                                 }
4938                         }
4939                         /* Clear the bit */
4940                         sig &= ~cur_bit;
4941                 }
4942         }
4943
4944         return res;
4945 }
4946
4947 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4948                               u32 *sig)
4949 {
4950         bool res = false;
4951
4952         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4953             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4954             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4955             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4956             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4957                 int par_num = 0;
4958
4959                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4960                                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4961                           sig[0] & HW_PRTY_ASSERT_SET_0,
4962                           sig[1] & HW_PRTY_ASSERT_SET_1,
4963                           sig[2] & HW_PRTY_ASSERT_SET_2,
4964                           sig[3] & HW_PRTY_ASSERT_SET_3,
4965                           sig[4] & HW_PRTY_ASSERT_SET_4);
4966                 if (print) {
4967                         if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4968                              (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4969                              (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4970                              (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4971                              (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4972                                 netdev_err(bp->dev,
4973                                            "Parity errors detected in blocks: ");
4974                         } else {
4975                                 print = false;
4976                         }
4977                 }
4978                 res |= bnx2x_check_blocks_with_parity0(bp,
4979                         sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4980                 res |= bnx2x_check_blocks_with_parity1(bp,
4981                         sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4982                 res |= bnx2x_check_blocks_with_parity2(bp,
4983                         sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4984                 res |= bnx2x_check_blocks_with_parity3(bp,
4985                         sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4986                 res |= bnx2x_check_blocks_with_parity4(bp,
4987                         sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4988
4989                 if (print)
4990                         pr_cont("\n");
4991         }
4992
4993         return res;
4994 }
4995
4996 /**
4997  * bnx2x_chk_parity_attn - checks for parity attentions.
4998  *
4999  * @bp:         driver handle
5000  * @global:     true if there was a global attention
5001  * @print:      show parity attention in syslog
5002  */
5003 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5004 {
5005         struct attn_route attn = { {0} };
5006         int port = BP_PORT(bp);
5007
5008         attn.sig[0] = REG_RD(bp,
5009                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5010                              port*4);
5011         attn.sig[1] = REG_RD(bp,
5012                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5013                              port*4);
5014         attn.sig[2] = REG_RD(bp,
5015                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5016                              port*4);
5017         attn.sig[3] = REG_RD(bp,
5018                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5019                              port*4);
5020         /* Since MCP attentions can't be disabled inside the block, we need to
5021          * read AEU registers to see whether they're currently disabled
5022          */
5023         attn.sig[3] &= ((REG_RD(bp,
5024                                 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5025                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5026                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5027                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5028
5029         if (!CHIP_IS_E1x(bp))
5030                 attn.sig[4] = REG_RD(bp,
5031                         MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5032                                      port*4);
5033
5034         return bnx2x_parity_attn(bp, global, print, attn.sig);
5035 }
5036
5037 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5038 {
5039         u32 val;
5040         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5041
5042                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5043                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5044                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5045                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5046                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5047                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5048                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5049                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5050                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5051                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5052                 if (val &
5053                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5054                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5055                 if (val &
5056                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5057                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5058                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5059                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5060                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5061                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5062                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5063                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5064         }
5065         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5066                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5067                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
5068                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5069                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5070                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5071                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5072                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5073                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5074                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5075                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5076                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5077                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5078                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5079                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5080         }
5081
5082         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5083                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5084                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5085                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5086                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5087         }
5088 }
5089
5090 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5091 {
5092         struct attn_route attn, *group_mask;
5093         int port = BP_PORT(bp);
5094         int index;
5095         u32 reg_addr;
5096         u32 val;
5097         u32 aeu_mask;
5098         bool global = false;
5099
5100         /* need to take HW lock because MCP or other port might also
5101            try to handle this event */
5102         bnx2x_acquire_alr(bp);
5103
5104         if (bnx2x_chk_parity_attn(bp, &global, true)) {
5105 #ifndef BNX2X_STOP_ON_ERROR
5106                 bp->recovery_state = BNX2X_RECOVERY_INIT;
5107                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5108                 /* Disable HW interrupts */
5109                 bnx2x_int_disable(bp);
5110                 /* In case of parity errors don't handle attentions so that
5111                  * other function would "see" parity errors.
5112                  */
5113 #else
5114                 bnx2x_panic();
5115 #endif
5116                 bnx2x_release_alr(bp);
5117                 return;
5118         }
5119
5120         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5121         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5122         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5123         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5124         if (!CHIP_IS_E1x(bp))
5125                 attn.sig[4] =
5126                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5127         else
5128                 attn.sig[4] = 0;
5129
5130         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5131            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5132
5133         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5134                 if (deasserted & (1 << index)) {
5135                         group_mask = &bp->attn_group[index];
5136
5137                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5138                            index,
5139                            group_mask->sig[0], group_mask->sig[1],
5140                            group_mask->sig[2], group_mask->sig[3],
5141                            group_mask->sig[4]);
5142
5143                         bnx2x_attn_int_deasserted4(bp,
5144                                         attn.sig[4] & group_mask->sig[4]);
5145                         bnx2x_attn_int_deasserted3(bp,
5146                                         attn.sig[3] & group_mask->sig[3]);
5147                         bnx2x_attn_int_deasserted1(bp,
5148                                         attn.sig[1] & group_mask->sig[1]);
5149                         bnx2x_attn_int_deasserted2(bp,
5150                                         attn.sig[2] & group_mask->sig[2]);
5151                         bnx2x_attn_int_deasserted0(bp,
5152                                         attn.sig[0] & group_mask->sig[0]);
5153                 }
5154         }
5155
5156         bnx2x_release_alr(bp);
5157
5158         if (bp->common.int_block == INT_BLOCK_HC)
5159                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
5160                             COMMAND_REG_ATTN_BITS_CLR);
5161         else
5162                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5163
5164         val = ~deasserted;
5165         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5166            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5167         REG_WR(bp, reg_addr, val);
5168
5169         if (~bp->attn_state & deasserted)
5170                 BNX2X_ERR("IGU ERROR\n");
5171
5172         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5173                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
5174
5175         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5176         aeu_mask = REG_RD(bp, reg_addr);
5177
5178         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5179            aeu_mask, deasserted);
5180         aeu_mask |= (deasserted & 0x3ff);
5181         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5182
5183         REG_WR(bp, reg_addr, aeu_mask);
5184         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5185
5186         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5187         bp->attn_state &= ~deasserted;
5188         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5189 }
5190
5191 static void bnx2x_attn_int(struct bnx2x *bp)
5192 {
5193         /* read local copy of bits */
5194         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5195                                                                 attn_bits);
5196         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5197                                                                 attn_bits_ack);
5198         u32 attn_state = bp->attn_state;
5199
5200         /* look for changed bits */
5201         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5202         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5203
5204         DP(NETIF_MSG_HW,
5205            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5206            attn_bits, attn_ack, asserted, deasserted);
5207
5208         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5209                 BNX2X_ERR("BAD attention state\n");
5210
5211         /* handle bits that were raised */
5212         if (asserted)
5213                 bnx2x_attn_int_asserted(bp, asserted);
5214
5215         if (deasserted)
5216                 bnx2x_attn_int_deasserted(bp, deasserted);
5217 }
5218
5219 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5220                       u16 index, u8 op, u8 update)
5221 {
5222         u32 igu_addr = bp->igu_base_addr;
5223         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5224         bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5225                              igu_addr);
5226 }
5227
5228 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5229 {
5230         /* No memory barriers */
5231         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5232         mmiowb(); /* keep prod updates ordered */
5233 }
5234
5235 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5236                                       union event_ring_elem *elem)
5237 {
5238         u8 err = elem->message.error;
5239
5240         if (!bp->cnic_eth_dev.starting_cid  ||
5241             (cid < bp->cnic_eth_dev.starting_cid &&
5242             cid != bp->cnic_eth_dev.iscsi_l2_cid))
5243                 return 1;
5244
5245         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5246
5247         if (unlikely(err)) {
5248
5249                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5250                           cid);
5251                 bnx2x_panic_dump(bp, false);
5252         }
5253         bnx2x_cnic_cfc_comp(bp, cid, err);
5254         return 0;
5255 }
5256
5257 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5258 {
5259         struct bnx2x_mcast_ramrod_params rparam;
5260         int rc;
5261
5262         memset(&rparam, 0, sizeof(rparam));
5263
5264         rparam.mcast_obj = &bp->mcast_obj;
5265
5266         netif_addr_lock_bh(bp->dev);
5267
5268         /* Clear pending state for the last command */
5269         bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5270
5271         /* If there are pending mcast commands - send them */
5272         if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5273                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5274                 if (rc < 0)
5275                         BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5276                                   rc);
5277         }
5278
5279         netif_addr_unlock_bh(bp->dev);
5280 }
5281
5282 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5283                                             union event_ring_elem *elem)
5284 {
5285         unsigned long ramrod_flags = 0;
5286         int rc = 0;
5287         u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5288         u32 cid = echo & BNX2X_SWCID_MASK;
5289         struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5290
5291         /* Always push next commands out, don't wait here */
5292         __set_bit(RAMROD_CONT, &ramrod_flags);
5293
5294         switch (echo >> BNX2X_SWCID_SHIFT) {
5295         case BNX2X_FILTER_MAC_PENDING:
5296                 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5297                 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5298                         vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5299                 else
5300                         vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5301
5302                 break;
5303         case BNX2X_FILTER_VLAN_PENDING:
5304                 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5305                 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5306                 break;
5307         case BNX2X_FILTER_MCAST_PENDING:
5308                 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5309                 /* This is only relevant for 57710 where multicast MACs are
5310                  * configured as unicast MACs using the same ramrod.
5311                  */
5312                 bnx2x_handle_mcast_eqe(bp);
5313                 return;
5314         default:
5315                 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5316                 return;
5317         }
5318
5319         rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5320
5321         if (rc < 0)
5322                 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5323         else if (rc > 0)
5324                 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5325 }
5326
5327 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5328
5329 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5330 {
5331         netif_addr_lock_bh(bp->dev);
5332
5333         clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5334
5335         /* Send rx_mode command again if was requested */
5336         if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5337                 bnx2x_set_storm_rx_mode(bp);
5338         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5339                                     &bp->sp_state))
5340                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5341         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5342                                     &bp->sp_state))
5343                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5344
5345         netif_addr_unlock_bh(bp->dev);
5346 }
5347
5348 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5349                                               union event_ring_elem *elem)
5350 {
5351         if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5352                 DP(BNX2X_MSG_SP,
5353                    "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5354                    elem->message.data.vif_list_event.func_bit_map);
5355                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5356                         elem->message.data.vif_list_event.func_bit_map);
5357         } else if (elem->message.data.vif_list_event.echo ==
5358                    VIF_LIST_RULE_SET) {
5359                 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5360                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5361         }
5362 }
5363
5364 /* called with rtnl_lock */
5365 static void bnx2x_after_function_update(struct bnx2x *bp)
5366 {
5367         int q, rc;
5368         struct bnx2x_fastpath *fp;
5369         struct bnx2x_queue_state_params queue_params = {NULL};
5370         struct bnx2x_queue_update_params *q_update_params =
5371                 &queue_params.params.update;
5372
5373         /* Send Q update command with afex vlan removal values for all Qs */
5374         queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5375
5376         /* set silent vlan removal values according to vlan mode */
5377         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5378                   &q_update_params->update_flags);
5379         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5380                   &q_update_params->update_flags);
5381         __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5382
5383         /* in access mode mark mask and value are 0 to strip all vlans */
5384         if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5385                 q_update_params->silent_removal_value = 0;
5386                 q_update_params->silent_removal_mask = 0;
5387         } else {
5388                 q_update_params->silent_removal_value =
5389                         (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5390                 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5391         }
5392
5393         for_each_eth_queue(bp, q) {
5394                 /* Set the appropriate Queue object */
5395                 fp = &bp->fp[q];
5396                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5397
5398                 /* send the ramrod */
5399                 rc = bnx2x_queue_state_change(bp, &queue_params);
5400                 if (rc < 0)
5401                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5402                                   q);
5403         }
5404
5405         if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5406                 fp = &bp->fp[FCOE_IDX(bp)];
5407                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5408
5409                 /* clear pending completion bit */
5410                 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5411
5412                 /* mark latest Q bit */
5413                 smp_mb__before_atomic();
5414                 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5415                 smp_mb__after_atomic();
5416
5417                 /* send Q update ramrod for FCoE Q */
5418                 rc = bnx2x_queue_state_change(bp, &queue_params);
5419                 if (rc < 0)
5420                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5421                                   q);
5422         } else {
5423                 /* If no FCoE ring - ACK MCP now */
5424                 bnx2x_link_report(bp);
5425                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5426         }
5427 }
5428
5429 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5430         struct bnx2x *bp, u32 cid)
5431 {
5432         DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5433
5434         if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5435                 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5436         else
5437                 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5438 }
5439
5440 static void bnx2x_eq_int(struct bnx2x *bp)
5441 {
5442         u16 hw_cons, sw_cons, sw_prod;
5443         union event_ring_elem *elem;
5444         u8 echo;
5445         u32 cid;
5446         u8 opcode;
5447         int rc, spqe_cnt = 0;
5448         struct bnx2x_queue_sp_obj *q_obj;
5449         struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5450         struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5451
5452         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5453
5454         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5455          * when we get the next-page we need to adjust so the loop
5456          * condition below will be met. The next element is the size of a
5457          * regular element and hence incrementing by 1
5458          */
5459         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5460                 hw_cons++;
5461
5462         /* This function may never run in parallel with itself for a
5463          * specific bp, thus there is no need in "paired" read memory
5464          * barrier here.
5465          */
5466         sw_cons = bp->eq_cons;
5467         sw_prod = bp->eq_prod;
5468
5469         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5470                         hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5471
5472         for (; sw_cons != hw_cons;
5473               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5474
5475                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5476
5477                 rc = bnx2x_iov_eq_sp_event(bp, elem);
5478                 if (!rc) {
5479                         DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5480                            rc);
5481                         goto next_spqe;
5482                 }
5483
5484                 opcode = elem->message.opcode;
5485
5486                 /* handle eq element */
5487                 switch (opcode) {
5488                 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5489                         bnx2x_vf_mbx_schedule(bp,
5490                                               &elem->message.data.vf_pf_event);
5491                         continue;
5492
5493                 case EVENT_RING_OPCODE_STAT_QUERY:
5494                         DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5495                                "got statistics comp event %d\n",
5496                                bp->stats_comp++);
5497                         /* nothing to do with stats comp */
5498                         goto next_spqe;
5499
5500                 case EVENT_RING_OPCODE_CFC_DEL:
5501                         /* handle according to cid range */
5502                         /*
5503                          * we may want to verify here that the bp state is
5504                          * HALTING
5505                          */
5506
5507                         /* elem CID originates from FW; actually LE */
5508                         cid = SW_CID(elem->message.data.cfc_del_event.cid);
5509
5510                         DP(BNX2X_MSG_SP,
5511                            "got delete ramrod for MULTI[%d]\n", cid);
5512
5513                         if (CNIC_LOADED(bp) &&
5514                             !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5515                                 goto next_spqe;
5516
5517                         q_obj = bnx2x_cid_to_q_obj(bp, cid);
5518
5519                         if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5520                                 break;
5521
5522                         goto next_spqe;
5523
5524                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5525                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5526                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5527                         if (f_obj->complete_cmd(bp, f_obj,
5528                                                 BNX2X_F_CMD_TX_STOP))
5529                                 break;
5530                         goto next_spqe;
5531
5532                 case EVENT_RING_OPCODE_START_TRAFFIC:
5533                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5534                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5535                         if (f_obj->complete_cmd(bp, f_obj,
5536                                                 BNX2X_F_CMD_TX_START))
5537                                 break;
5538                         goto next_spqe;
5539
5540                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5541                         echo = elem->message.data.function_update_event.echo;
5542                         if (echo == SWITCH_UPDATE) {
5543                                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5544                                    "got FUNC_SWITCH_UPDATE ramrod\n");
5545                                 if (f_obj->complete_cmd(
5546                                         bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5547                                         break;
5548
5549                         } else {
5550                                 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5551
5552                                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5553                                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
5554                                 f_obj->complete_cmd(bp, f_obj,
5555                                                     BNX2X_F_CMD_AFEX_UPDATE);
5556
5557                                 /* We will perform the Queues update from
5558                                  * sp_rtnl task as all Queue SP operations
5559                                  * should run under rtnl_lock.
5560                                  */
5561                                 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5562                         }
5563
5564                         goto next_spqe;
5565
5566                 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5567                         f_obj->complete_cmd(bp, f_obj,
5568                                             BNX2X_F_CMD_AFEX_VIFLISTS);
5569                         bnx2x_after_afex_vif_lists(bp, elem);
5570                         goto next_spqe;
5571                 case EVENT_RING_OPCODE_FUNCTION_START:
5572                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5573                            "got FUNC_START ramrod\n");
5574                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5575                                 break;
5576
5577                         goto next_spqe;
5578
5579                 case EVENT_RING_OPCODE_FUNCTION_STOP:
5580                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5581                            "got FUNC_STOP ramrod\n");
5582                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5583                                 break;
5584
5585                         goto next_spqe;
5586
5587                 case EVENT_RING_OPCODE_SET_TIMESYNC:
5588                         DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5589                            "got set_timesync ramrod completion\n");
5590                         if (f_obj->complete_cmd(bp, f_obj,
5591                                                 BNX2X_F_CMD_SET_TIMESYNC))
5592                                 break;
5593                         goto next_spqe;
5594                 }
5595
5596                 switch (opcode | bp->state) {
5597                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5598                       BNX2X_STATE_OPEN):
5599                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5600                       BNX2X_STATE_OPENING_WAIT4_PORT):
5601                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5602                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5603                         DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5604                            SW_CID(elem->message.data.eth_event.echo));
5605                         rss_raw->clear_pending(rss_raw);
5606                         break;
5607
5608                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5609                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5610                 case (EVENT_RING_OPCODE_SET_MAC |
5611                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5612                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5613                       BNX2X_STATE_OPEN):
5614                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5615                       BNX2X_STATE_DIAG):
5616                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5617                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5618                         DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5619                         bnx2x_handle_classification_eqe(bp, elem);
5620                         break;
5621
5622                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5623                       BNX2X_STATE_OPEN):
5624                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5625                       BNX2X_STATE_DIAG):
5626                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5627                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5628                         DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5629                         bnx2x_handle_mcast_eqe(bp);
5630                         break;
5631
5632                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5633                       BNX2X_STATE_OPEN):
5634                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5635                       BNX2X_STATE_DIAG):
5636                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5637                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5638                         DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5639                         bnx2x_handle_rx_mode_eqe(bp);
5640                         break;
5641                 default:
5642                         /* unknown event log error and continue */
5643                         BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5644                                   elem->message.opcode, bp->state);
5645                 }
5646 next_spqe:
5647                 spqe_cnt++;
5648         } /* for */
5649
5650         smp_mb__before_atomic();
5651         atomic_add(spqe_cnt, &bp->eq_spq_left);
5652
5653         bp->eq_cons = sw_cons;
5654         bp->eq_prod = sw_prod;
5655         /* Make sure that above mem writes were issued towards the memory */
5656         smp_wmb();
5657
5658         /* update producer */
5659         bnx2x_update_eq_prod(bp, bp->eq_prod);
5660 }
5661
5662 static void bnx2x_sp_task(struct work_struct *work)
5663 {
5664         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5665
5666         DP(BNX2X_MSG_SP, "sp task invoked\n");
5667
5668         /* make sure the atomic interrupt_occurred has been written */
5669         smp_rmb();
5670         if (atomic_read(&bp->interrupt_occurred)) {
5671
5672                 /* what work needs to be performed? */
5673                 u16 status = bnx2x_update_dsb_idx(bp);
5674
5675                 DP(BNX2X_MSG_SP, "status %x\n", status);
5676                 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5677                 atomic_set(&bp->interrupt_occurred, 0);
5678
5679                 /* HW attentions */
5680                 if (status & BNX2X_DEF_SB_ATT_IDX) {
5681                         bnx2x_attn_int(bp);
5682                         status &= ~BNX2X_DEF_SB_ATT_IDX;
5683                 }
5684
5685                 /* SP events: STAT_QUERY and others */
5686                 if (status & BNX2X_DEF_SB_IDX) {
5687                         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5688
5689                         if (FCOE_INIT(bp) &&
5690                             (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5691                                 /* Prevent local bottom-halves from running as
5692                                  * we are going to change the local NAPI list.
5693                                  */
5694                                 local_bh_disable();
5695                                 napi_schedule(&bnx2x_fcoe(bp, napi));
5696                                 local_bh_enable();
5697                         }
5698
5699                         /* Handle EQ completions */
5700                         bnx2x_eq_int(bp);
5701                         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5702                                      le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5703
5704                         status &= ~BNX2X_DEF_SB_IDX;
5705                 }
5706
5707                 /* if status is non zero then perhaps something went wrong */
5708                 if (unlikely(status))
5709                         DP(BNX2X_MSG_SP,
5710                            "got an unknown interrupt! (status 0x%x)\n", status);
5711
5712                 /* ack status block only if something was actually handled */
5713                 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5714                              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5715         }
5716
5717         /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5718         if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5719                                &bp->sp_state)) {
5720                 bnx2x_link_report(bp);
5721                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5722         }
5723 }
5724
5725 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5726 {
5727         struct net_device *dev = dev_instance;
5728         struct bnx2x *bp = netdev_priv(dev);
5729
5730         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5731                      IGU_INT_DISABLE, 0);
5732
5733 #ifdef BNX2X_STOP_ON_ERROR
5734         if (unlikely(bp->panic))
5735                 return IRQ_HANDLED;
5736 #endif
5737
5738         if (CNIC_LOADED(bp)) {
5739                 struct cnic_ops *c_ops;
5740
5741                 rcu_read_lock();
5742                 c_ops = rcu_dereference(bp->cnic_ops);
5743                 if (c_ops)
5744                         c_ops->cnic_handler(bp->cnic_data, NULL);
5745                 rcu_read_unlock();
5746         }
5747
5748         /* schedule sp task to perform default status block work, ack
5749          * attentions and enable interrupts.
5750          */
5751         bnx2x_schedule_sp_task(bp);
5752
5753         return IRQ_HANDLED;
5754 }
5755
5756 /* end of slow path */
5757
5758 void bnx2x_drv_pulse(struct bnx2x *bp)
5759 {
5760         SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5761                  bp->fw_drv_pulse_wr_seq);
5762 }
5763
5764 static void bnx2x_timer(unsigned long data)
5765 {
5766         struct bnx2x *bp = (struct bnx2x *) data;
5767
5768         if (!netif_running(bp->dev))
5769                 return;
5770
5771         if (IS_PF(bp) &&
5772             !BP_NOMCP(bp)) {
5773                 int mb_idx = BP_FW_MB_IDX(bp);
5774                 u16 drv_pulse;
5775                 u16 mcp_pulse;
5776
5777                 ++bp->fw_drv_pulse_wr_seq;
5778                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5779                 drv_pulse = bp->fw_drv_pulse_wr_seq;
5780                 bnx2x_drv_pulse(bp);
5781
5782                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5783                              MCP_PULSE_SEQ_MASK);
5784                 /* The delta between driver pulse and mcp response
5785                  * should not get too big. If the MFW is more than 5 pulses
5786                  * behind, we should worry about it enough to generate an error
5787                  * log.
5788                  */
5789                 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5790                         BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5791                                   drv_pulse, mcp_pulse);
5792         }
5793
5794         if (bp->state == BNX2X_STATE_OPEN)
5795                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5796
5797         /* sample pf vf bulletin board for new posts from pf */
5798         if (IS_VF(bp))
5799                 bnx2x_timer_sriov(bp);
5800
5801         mod_timer(&bp->timer, jiffies + bp->current_interval);
5802 }
5803
5804 /* end of Statistics */
5805
5806 /* nic init */
5807
5808 /*
5809  * nic init service functions
5810  */
5811
5812 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5813 {
5814         u32 i;
5815         if (!(len%4) && !(addr%4))
5816                 for (i = 0; i < len; i += 4)
5817                         REG_WR(bp, addr + i, fill);
5818         else
5819                 for (i = 0; i < len; i++)
5820                         REG_WR8(bp, addr + i, fill);
5821 }
5822
5823 /* helper: writes FP SP data to FW - data_size in dwords */
5824 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5825                                 int fw_sb_id,
5826                                 u32 *sb_data_p,
5827                                 u32 data_size)
5828 {
5829         int index;
5830         for (index = 0; index < data_size; index++)
5831                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5832                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5833                         sizeof(u32)*index,
5834                         *(sb_data_p + index));
5835 }
5836
5837 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5838 {
5839         u32 *sb_data_p;
5840         u32 data_size = 0;
5841         struct hc_status_block_data_e2 sb_data_e2;
5842         struct hc_status_block_data_e1x sb_data_e1x;
5843
5844         /* disable the function first */
5845         if (!CHIP_IS_E1x(bp)) {
5846                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5847                 sb_data_e2.common.state = SB_DISABLED;
5848                 sb_data_e2.common.p_func.vf_valid = false;
5849                 sb_data_p = (u32 *)&sb_data_e2;
5850                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5851         } else {
5852                 memset(&sb_data_e1x, 0,
5853                        sizeof(struct hc_status_block_data_e1x));
5854                 sb_data_e1x.common.state = SB_DISABLED;
5855                 sb_data_e1x.common.p_func.vf_valid = false;
5856                 sb_data_p = (u32 *)&sb_data_e1x;
5857                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5858         }
5859         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5860
5861         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5862                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5863                         CSTORM_STATUS_BLOCK_SIZE);
5864         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5865                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5866                         CSTORM_SYNC_BLOCK_SIZE);
5867 }
5868
5869 /* helper:  writes SP SB data to FW */
5870 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5871                 struct hc_sp_status_block_data *sp_sb_data)
5872 {
5873         int func = BP_FUNC(bp);
5874         int i;
5875         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5876                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5877                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5878                         i*sizeof(u32),
5879                         *((u32 *)sp_sb_data + i));
5880 }
5881
5882 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5883 {
5884         int func = BP_FUNC(bp);
5885         struct hc_sp_status_block_data sp_sb_data;
5886         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5887
5888         sp_sb_data.state = SB_DISABLED;
5889         sp_sb_data.p_func.vf_valid = false;
5890
5891         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5892
5893         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5894                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5895                         CSTORM_SP_STATUS_BLOCK_SIZE);
5896         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5897                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5898                         CSTORM_SP_SYNC_BLOCK_SIZE);
5899 }
5900
5901 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5902                                            int igu_sb_id, int igu_seg_id)
5903 {
5904         hc_sm->igu_sb_id = igu_sb_id;
5905         hc_sm->igu_seg_id = igu_seg_id;
5906         hc_sm->timer_value = 0xFF;
5907         hc_sm->time_to_expire = 0xFFFFFFFF;
5908 }
5909
5910 /* allocates state machine ids. */
5911 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5912 {
5913         /* zero out state machine indices */
5914         /* rx indices */
5915         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5916
5917         /* tx indices */
5918         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5919         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5920         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5921         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5922
5923         /* map indices */
5924         /* rx indices */
5925         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5926                 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5927
5928         /* tx indices */
5929         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5930                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5931         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5932                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5933         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5934                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5935         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5936                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5937 }
5938
5939 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5940                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
5941 {
5942         int igu_seg_id;
5943
5944         struct hc_status_block_data_e2 sb_data_e2;
5945         struct hc_status_block_data_e1x sb_data_e1x;
5946         struct hc_status_block_sm  *hc_sm_p;
5947         int data_size;
5948         u32 *sb_data_p;
5949
5950         if (CHIP_INT_MODE_IS_BC(bp))
5951                 igu_seg_id = HC_SEG_ACCESS_NORM;
5952         else
5953                 igu_seg_id = IGU_SEG_ACCESS_NORM;
5954
5955         bnx2x_zero_fp_sb(bp, fw_sb_id);
5956
5957         if (!CHIP_IS_E1x(bp)) {
5958                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5959                 sb_data_e2.common.state = SB_ENABLED;
5960                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5961                 sb_data_e2.common.p_func.vf_id = vfid;
5962                 sb_data_e2.common.p_func.vf_valid = vf_valid;
5963                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5964                 sb_data_e2.common.same_igu_sb_1b = true;
5965                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5966                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5967                 hc_sm_p = sb_data_e2.common.state_machine;
5968                 sb_data_p = (u32 *)&sb_data_e2;
5969                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5970                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5971         } else {
5972                 memset(&sb_data_e1x, 0,
5973                        sizeof(struct hc_status_block_data_e1x));
5974                 sb_data_e1x.common.state = SB_ENABLED;
5975                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5976                 sb_data_e1x.common.p_func.vf_id = 0xff;
5977                 sb_data_e1x.common.p_func.vf_valid = false;
5978                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5979                 sb_data_e1x.common.same_igu_sb_1b = true;
5980                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5981                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5982                 hc_sm_p = sb_data_e1x.common.state_machine;
5983                 sb_data_p = (u32 *)&sb_data_e1x;
5984                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5985                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5986         }
5987
5988         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5989                                        igu_sb_id, igu_seg_id);
5990         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5991                                        igu_sb_id, igu_seg_id);
5992
5993         DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5994
5995         /* write indices to HW - PCI guarantees endianity of regpairs */
5996         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5997 }
5998
5999 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6000                                      u16 tx_usec, u16 rx_usec)
6001 {
6002         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6003                                     false, rx_usec);
6004         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6005                                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6006                                        tx_usec);
6007         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6008                                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6009                                        tx_usec);
6010         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6011                                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6012                                        tx_usec);
6013 }
6014
6015 static void bnx2x_init_def_sb(struct bnx2x *bp)
6016 {
6017         struct host_sp_status_block *def_sb = bp->def_status_blk;
6018         dma_addr_t mapping = bp->def_status_blk_mapping;
6019         int igu_sp_sb_index;
6020         int igu_seg_id;
6021         int port = BP_PORT(bp);
6022         int func = BP_FUNC(bp);
6023         int reg_offset, reg_offset_en5;
6024         u64 section;
6025         int index;
6026         struct hc_sp_status_block_data sp_sb_data;
6027         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6028
6029         if (CHIP_INT_MODE_IS_BC(bp)) {
6030                 igu_sp_sb_index = DEF_SB_IGU_ID;
6031                 igu_seg_id = HC_SEG_ACCESS_DEF;
6032         } else {
6033                 igu_sp_sb_index = bp->igu_dsb_id;
6034                 igu_seg_id = IGU_SEG_ACCESS_DEF;
6035         }
6036
6037         /* ATTN */
6038         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6039                                             atten_status_block);
6040         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6041
6042         bp->attn_state = 0;
6043
6044         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6045                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6046         reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6047                                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6048         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6049                 int sindex;
6050                 /* take care of sig[0]..sig[4] */
6051                 for (sindex = 0; sindex < 4; sindex++)
6052                         bp->attn_group[index].sig[sindex] =
6053                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6054
6055                 if (!CHIP_IS_E1x(bp))
6056                         /*
6057                          * enable5 is separate from the rest of the registers,
6058                          * and therefore the address skip is 4
6059                          * and not 16 between the different groups
6060                          */
6061                         bp->attn_group[index].sig[4] = REG_RD(bp,
6062                                         reg_offset_en5 + 0x4*index);
6063                 else
6064                         bp->attn_group[index].sig[4] = 0;
6065         }
6066
6067         if (bp->common.int_block == INT_BLOCK_HC) {
6068                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6069                                      HC_REG_ATTN_MSG0_ADDR_L);
6070
6071                 REG_WR(bp, reg_offset, U64_LO(section));
6072                 REG_WR(bp, reg_offset + 4, U64_HI(section));
6073         } else if (!CHIP_IS_E1x(bp)) {
6074                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6075                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6076         }
6077
6078         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6079                                             sp_sb);
6080
6081         bnx2x_zero_sp_sb(bp);
6082
6083         /* PCI guarantees endianity of regpairs */
6084         sp_sb_data.state                = SB_ENABLED;
6085         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
6086         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
6087         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
6088         sp_sb_data.igu_seg_id           = igu_seg_id;
6089         sp_sb_data.p_func.pf_id         = func;
6090         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
6091         sp_sb_data.p_func.vf_id         = 0xff;
6092
6093         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6094
6095         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6096 }
6097
6098 void bnx2x_update_coalesce(struct bnx2x *bp)
6099 {
6100         int i;
6101
6102         for_each_eth_queue(bp, i)
6103                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6104                                          bp->tx_ticks, bp->rx_ticks);
6105 }
6106
6107 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6108 {
6109         spin_lock_init(&bp->spq_lock);
6110         atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6111
6112         bp->spq_prod_idx = 0;
6113         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6114         bp->spq_prod_bd = bp->spq;
6115         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6116 }
6117
6118 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6119 {
6120         int i;
6121         for (i = 1; i <= NUM_EQ_PAGES; i++) {
6122                 union event_ring_elem *elem =
6123                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6124
6125                 elem->next_page.addr.hi =
6126                         cpu_to_le32(U64_HI(bp->eq_mapping +
6127                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6128                 elem->next_page.addr.lo =
6129                         cpu_to_le32(U64_LO(bp->eq_mapping +
6130                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6131         }
6132         bp->eq_cons = 0;
6133         bp->eq_prod = NUM_EQ_DESC;
6134         bp->eq_cons_sb = BNX2X_EQ_INDEX;
6135         /* we want a warning message before it gets wrought... */
6136         atomic_set(&bp->eq_spq_left,
6137                 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6138 }
6139
6140 /* called with netif_addr_lock_bh() */
6141 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6142                                unsigned long rx_mode_flags,
6143                                unsigned long rx_accept_flags,
6144                                unsigned long tx_accept_flags,
6145                                unsigned long ramrod_flags)
6146 {
6147         struct bnx2x_rx_mode_ramrod_params ramrod_param;
6148         int rc;
6149
6150         memset(&ramrod_param, 0, sizeof(ramrod_param));
6151
6152         /* Prepare ramrod parameters */
6153         ramrod_param.cid = 0;
6154         ramrod_param.cl_id = cl_id;
6155         ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6156         ramrod_param.func_id = BP_FUNC(bp);
6157
6158         ramrod_param.pstate = &bp->sp_state;
6159         ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6160
6161         ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6162         ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6163
6164         set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6165
6166         ramrod_param.ramrod_flags = ramrod_flags;
6167         ramrod_param.rx_mode_flags = rx_mode_flags;
6168
6169         ramrod_param.rx_accept_flags = rx_accept_flags;
6170         ramrod_param.tx_accept_flags = tx_accept_flags;
6171
6172         rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6173         if (rc < 0) {
6174                 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6175                 return rc;
6176         }
6177
6178         return 0;
6179 }
6180
6181 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6182                                    unsigned long *rx_accept_flags,
6183                                    unsigned long *tx_accept_flags)
6184 {
6185         /* Clear the flags first */
6186         *rx_accept_flags = 0;
6187         *tx_accept_flags = 0;
6188
6189         switch (rx_mode) {
6190         case BNX2X_RX_MODE_NONE:
6191                 /*
6192                  * 'drop all' supersedes any accept flags that may have been
6193                  * passed to the function.
6194                  */
6195                 break;
6196         case BNX2X_RX_MODE_NORMAL:
6197                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6198                 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6199                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6200
6201                 /* internal switching mode */
6202                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6203                 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6204                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6205
6206                 if (bp->accept_any_vlan) {
6207                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6208                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6209                 }
6210
6211                 break;
6212         case BNX2X_RX_MODE_ALLMULTI:
6213                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6214                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6215                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6216
6217                 /* internal switching mode */
6218                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6219                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6220                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6221
6222                 if (bp->accept_any_vlan) {
6223                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6224                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6225                 }
6226
6227                 break;
6228         case BNX2X_RX_MODE_PROMISC:
6229                 /* According to definition of SI mode, iface in promisc mode
6230                  * should receive matched and unmatched (in resolution of port)
6231                  * unicast packets.
6232                  */
6233                 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6234                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6235                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6236                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6237
6238                 /* internal switching mode */
6239                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6240                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6241
6242                 if (IS_MF_SI(bp))
6243                         __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6244                 else
6245                         __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6246
6247                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6248                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6249
6250                 break;
6251         default:
6252                 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6253                 return -EINVAL;
6254         }
6255
6256         return 0;
6257 }
6258
6259 /* called with netif_addr_lock_bh() */
6260 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6261 {
6262         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6263         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6264         int rc;
6265
6266         if (!NO_FCOE(bp))
6267                 /* Configure rx_mode of FCoE Queue */
6268                 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6269
6270         rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6271                                      &tx_accept_flags);
6272         if (rc)
6273                 return rc;
6274
6275         __set_bit(RAMROD_RX, &ramrod_flags);
6276         __set_bit(RAMROD_TX, &ramrod_flags);
6277
6278         return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6279                                    rx_accept_flags, tx_accept_flags,
6280                                    ramrod_flags);
6281 }
6282
6283 static void bnx2x_init_internal_common(struct bnx2x *bp)
6284 {
6285         int i;
6286
6287         /* Zero this manually as its initialization is
6288            currently missing in the initTool */
6289         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6290                 REG_WR(bp, BAR_USTRORM_INTMEM +
6291                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
6292         if (!CHIP_IS_E1x(bp)) {
6293                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6294                         CHIP_INT_MODE_IS_BC(bp) ?
6295                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6296         }
6297 }
6298
6299 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6300 {
6301         switch (load_code) {
6302         case FW_MSG_CODE_DRV_LOAD_COMMON:
6303         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6304                 bnx2x_init_internal_common(bp);
6305                 /* no break */
6306
6307         case FW_MSG_CODE_DRV_LOAD_PORT:
6308                 /* nothing to do */
6309                 /* no break */
6310
6311         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6312                 /* internal memory per function is
6313                    initialized inside bnx2x_pf_init */
6314                 break;
6315
6316         default:
6317                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6318                 break;
6319         }
6320 }
6321
6322 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6323 {
6324         return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6325 }
6326
6327 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6328 {
6329         return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6330 }
6331
6332 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6333 {
6334         if (CHIP_IS_E1x(fp->bp))
6335                 return BP_L_ID(fp->bp) + fp->index;
6336         else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6337                 return bnx2x_fp_igu_sb_id(fp);
6338 }
6339
6340 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6341 {
6342         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6343         u8 cos;
6344         unsigned long q_type = 0;
6345         u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6346         fp->rx_queue = fp_idx;
6347         fp->cid = fp_idx;
6348         fp->cl_id = bnx2x_fp_cl_id(fp);
6349         fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6350         fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6351         /* qZone id equals to FW (per path) client id */
6352         fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6353
6354         /* init shortcut */
6355         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6356
6357         /* Setup SB indices */
6358         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6359
6360         /* Configure Queue State object */
6361         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6362         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6363
6364         BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6365
6366         /* init tx data */
6367         for_each_cos_in_tx_queue(fp, cos) {
6368                 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6369                                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6370                                   FP_COS_TO_TXQ(fp, cos, bp),
6371                                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
6372                 cids[cos] = fp->txdata_ptr[cos]->cid;
6373         }
6374
6375         /* nothing more for vf to do here */
6376         if (IS_VF(bp))
6377                 return;
6378
6379         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6380                       fp->fw_sb_id, fp->igu_sb_id);
6381         bnx2x_update_fpsb_idx(fp);
6382         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6383                              fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6384                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6385
6386         /**
6387          * Configure classification DBs: Always enable Tx switching
6388          */
6389         bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6390
6391         DP(NETIF_MSG_IFUP,
6392            "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6393            fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6394            fp->igu_sb_id);
6395 }
6396
6397 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6398 {
6399         int i;
6400
6401         for (i = 1; i <= NUM_TX_RINGS; i++) {
6402                 struct eth_tx_next_bd *tx_next_bd =
6403                         &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6404
6405                 tx_next_bd->addr_hi =
6406                         cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6407                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6408                 tx_next_bd->addr_lo =
6409                         cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6410                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6411         }
6412
6413         *txdata->tx_cons_sb = cpu_to_le16(0);
6414
6415         SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6416         txdata->tx_db.data.zero_fill1 = 0;
6417         txdata->tx_db.data.prod = 0;
6418
6419         txdata->tx_pkt_prod = 0;
6420         txdata->tx_pkt_cons = 0;
6421         txdata->tx_bd_prod = 0;
6422         txdata->tx_bd_cons = 0;
6423         txdata->tx_pkt = 0;
6424 }
6425
6426 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6427 {
6428         int i;
6429
6430         for_each_tx_queue_cnic(bp, i)
6431                 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6432 }
6433
6434 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6435 {
6436         int i;
6437         u8 cos;
6438
6439         for_each_eth_queue(bp, i)
6440                 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6441                         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6442 }
6443
6444 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6445 {
6446         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6447         unsigned long q_type = 0;
6448
6449         bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6450         bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6451                                                      BNX2X_FCOE_ETH_CL_ID_IDX);
6452         bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6453         bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6454         bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6455         bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6456         bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6457                           fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6458                           fp);
6459
6460         DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6461
6462         /* qZone id equals to FW (per path) client id */
6463         bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6464         /* init shortcut */
6465         bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6466                 bnx2x_rx_ustorm_prods_offset(fp);
6467
6468         /* Configure Queue State object */
6469         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6470         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6471
6472         /* No multi-CoS for FCoE L2 client */
6473         BUG_ON(fp->max_cos != 1);
6474
6475         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6476                              &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6477                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6478
6479         DP(NETIF_MSG_IFUP,
6480            "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6481            fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6482            fp->igu_sb_id);
6483 }
6484
6485 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6486 {
6487         if (!NO_FCOE(bp))
6488                 bnx2x_init_fcoe_fp(bp);
6489
6490         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6491                       BNX2X_VF_ID_INVALID, false,
6492                       bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6493
6494         /* ensure status block indices were read */
6495         rmb();
6496         bnx2x_init_rx_rings_cnic(bp);
6497         bnx2x_init_tx_rings_cnic(bp);
6498
6499         /* flush all */
6500         mb();
6501         mmiowb();
6502 }
6503
6504 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6505 {
6506         int i;
6507
6508         /* Setup NIC internals and enable interrupts */
6509         for_each_eth_queue(bp, i)
6510                 bnx2x_init_eth_fp(bp, i);
6511
6512         /* ensure status block indices were read */
6513         rmb();
6514         bnx2x_init_rx_rings(bp);
6515         bnx2x_init_tx_rings(bp);
6516
6517         if (IS_PF(bp)) {
6518                 /* Initialize MOD_ABS interrupts */
6519                 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6520                                        bp->common.shmem_base,
6521                                        bp->common.shmem2_base, BP_PORT(bp));
6522
6523                 /* initialize the default status block and sp ring */
6524                 bnx2x_init_def_sb(bp);
6525                 bnx2x_update_dsb_idx(bp);
6526                 bnx2x_init_sp_ring(bp);
6527         } else {
6528                 bnx2x_memset_stats(bp);
6529         }
6530 }
6531
6532 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6533 {
6534         bnx2x_init_eq_ring(bp);
6535         bnx2x_init_internal(bp, load_code);
6536         bnx2x_pf_init(bp);
6537         bnx2x_stats_init(bp);
6538
6539         /* flush all before enabling interrupts */
6540         mb();
6541         mmiowb();
6542
6543         bnx2x_int_enable(bp);
6544
6545         /* Check for SPIO5 */
6546         bnx2x_attn_int_deasserted0(bp,
6547                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6548                                    AEU_INPUTS_ATTN_BITS_SPIO5);
6549 }
6550
6551 /* gzip service functions */
6552 static int bnx2x_gunzip_init(struct bnx2x *bp)
6553 {
6554         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6555                                             &bp->gunzip_mapping, GFP_KERNEL);
6556         if (bp->gunzip_buf  == NULL)
6557                 goto gunzip_nomem1;
6558
6559         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6560         if (bp->strm  == NULL)
6561                 goto gunzip_nomem2;
6562
6563         bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6564         if (bp->strm->workspace == NULL)
6565                 goto gunzip_nomem3;
6566
6567         return 0;
6568
6569 gunzip_nomem3:
6570         kfree(bp->strm);
6571         bp->strm = NULL;
6572
6573 gunzip_nomem2:
6574         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6575                           bp->gunzip_mapping);
6576         bp->gunzip_buf = NULL;
6577
6578 gunzip_nomem1:
6579         BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6580         return -ENOMEM;
6581 }
6582
6583 static void bnx2x_gunzip_end(struct bnx2x *bp)
6584 {
6585         if (bp->strm) {
6586                 vfree(bp->strm->workspace);
6587                 kfree(bp->strm);
6588                 bp->strm = NULL;
6589         }
6590
6591         if (bp->gunzip_buf) {
6592                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6593                                   bp->gunzip_mapping);
6594                 bp->gunzip_buf = NULL;
6595         }
6596 }
6597
6598 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6599 {
6600         int n, rc;
6601
6602         /* check gzip header */
6603         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6604                 BNX2X_ERR("Bad gzip header\n");
6605                 return -EINVAL;
6606         }
6607
6608         n = 10;
6609
6610 #define FNAME                           0x8
6611
6612         if (zbuf[3] & FNAME)
6613                 while ((zbuf[n++] != 0) && (n < len));
6614
6615         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6616         bp->strm->avail_in = len - n;
6617         bp->strm->next_out = bp->gunzip_buf;
6618         bp->strm->avail_out = FW_BUF_SIZE;
6619
6620         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6621         if (rc != Z_OK)
6622                 return rc;
6623
6624         rc = zlib_inflate(bp->strm, Z_FINISH);
6625         if ((rc != Z_OK) && (rc != Z_STREAM_END))
6626                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6627                            bp->strm->msg);
6628
6629         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6630         if (bp->gunzip_outlen & 0x3)
6631                 netdev_err(bp->dev,
6632                            "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6633                                 bp->gunzip_outlen);
6634         bp->gunzip_outlen >>= 2;
6635
6636         zlib_inflateEnd(bp->strm);
6637
6638         if (rc == Z_STREAM_END)
6639                 return 0;
6640
6641         return rc;
6642 }
6643
6644 /* nic load/unload */
6645
6646 /*
6647  * General service functions
6648  */
6649
6650 /* send a NIG loopback debug packet */
6651 static void bnx2x_lb_pckt(struct bnx2x *bp)
6652 {
6653         u32 wb_write[3];
6654
6655         /* Ethernet source and destination addresses */
6656         wb_write[0] = 0x55555555;
6657         wb_write[1] = 0x55555555;
6658         wb_write[2] = 0x20;             /* SOP */
6659         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6660
6661         /* NON-IP protocol */
6662         wb_write[0] = 0x09000000;
6663         wb_write[1] = 0x55555555;
6664         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6665         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6666 }
6667
6668 /* some of the internal memories
6669  * are not directly readable from the driver
6670  * to test them we send debug packets
6671  */
6672 static int bnx2x_int_mem_test(struct bnx2x *bp)
6673 {
6674         int factor;
6675         int count, i;
6676         u32 val = 0;
6677
6678         if (CHIP_REV_IS_FPGA(bp))
6679                 factor = 120;
6680         else if (CHIP_REV_IS_EMUL(bp))
6681                 factor = 200;
6682         else
6683                 factor = 1;
6684
6685         /* Disable inputs of parser neighbor blocks */
6686         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6687         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6688         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6689         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6690
6691         /*  Write 0 to parser credits for CFC search request */
6692         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6693
6694         /* send Ethernet packet */
6695         bnx2x_lb_pckt(bp);
6696
6697         /* TODO do i reset NIG statistic? */
6698         /* Wait until NIG register shows 1 packet of size 0x10 */
6699         count = 1000 * factor;
6700         while (count) {
6701
6702                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6703                 val = *bnx2x_sp(bp, wb_data[0]);
6704                 if (val == 0x10)
6705                         break;
6706
6707                 usleep_range(10000, 20000);
6708                 count--;
6709         }
6710         if (val != 0x10) {
6711                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6712                 return -1;
6713         }
6714
6715         /* Wait until PRS register shows 1 packet */
6716         count = 1000 * factor;
6717         while (count) {
6718                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6719                 if (val == 1)
6720                         break;
6721
6722                 usleep_range(10000, 20000);
6723                 count--;
6724         }
6725         if (val != 0x1) {
6726                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6727                 return -2;
6728         }
6729
6730         /* Reset and init BRB, PRS */
6731         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6732         msleep(50);
6733         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6734         msleep(50);
6735         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6736         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6737
6738         DP(NETIF_MSG_HW, "part2\n");
6739
6740         /* Disable inputs of parser neighbor blocks */
6741         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6742         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6743         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6744         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6745
6746         /* Write 0 to parser credits for CFC search request */
6747         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6748
6749         /* send 10 Ethernet packets */
6750         for (i = 0; i < 10; i++)
6751                 bnx2x_lb_pckt(bp);
6752
6753         /* Wait until NIG register shows 10 + 1
6754            packets of size 11*0x10 = 0xb0 */
6755         count = 1000 * factor;
6756         while (count) {
6757
6758                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6759                 val = *bnx2x_sp(bp, wb_data[0]);
6760                 if (val == 0xb0)
6761                         break;
6762
6763                 usleep_range(10000, 20000);
6764                 count--;
6765         }
6766         if (val != 0xb0) {
6767                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6768                 return -3;
6769         }
6770
6771         /* Wait until PRS register shows 2 packets */
6772         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6773         if (val != 2)
6774                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6775
6776         /* Write 1 to parser credits for CFC search request */
6777         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6778
6779         /* Wait until PRS register shows 3 packets */
6780         msleep(10 * factor);
6781         /* Wait until NIG register shows 1 packet of size 0x10 */
6782         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6783         if (val != 3)
6784                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6785
6786         /* clear NIG EOP FIFO */
6787         for (i = 0; i < 11; i++)
6788                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6789         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6790         if (val != 1) {
6791                 BNX2X_ERR("clear of NIG failed\n");
6792                 return -4;
6793         }
6794
6795         /* Reset and init BRB, PRS, NIG */
6796         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6797         msleep(50);
6798         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6799         msleep(50);
6800         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6801         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6802         if (!CNIC_SUPPORT(bp))
6803                 /* set NIC mode */
6804                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6805
6806         /* Enable inputs of parser neighbor blocks */
6807         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6808         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6809         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6810         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6811
6812         DP(NETIF_MSG_HW, "done\n");
6813
6814         return 0; /* OK */
6815 }
6816
6817 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6818 {
6819         u32 val;
6820
6821         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6822         if (!CHIP_IS_E1x(bp))
6823                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6824         else
6825                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6826         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6827         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6828         /*
6829          * mask read length error interrupts in brb for parser
6830          * (parsing unit and 'checksum and crc' unit)
6831          * these errors are legal (PU reads fixed length and CAC can cause
6832          * read length error on truncated packets)
6833          */
6834         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6835         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6836         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6837         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6838         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6839         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6840 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6841 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6842         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6843         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6844         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6845 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6846 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6847         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6848         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6849         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6850         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6851 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6852 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6853
6854         val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6855                 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6856                 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6857         if (!CHIP_IS_E1x(bp))
6858                 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6859                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6860         REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6861
6862         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6863         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6864         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6865 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6866
6867         if (!CHIP_IS_E1x(bp))
6868                 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6869                 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6870
6871         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6872         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6873 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6874         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6875 }
6876
6877 static void bnx2x_reset_common(struct bnx2x *bp)
6878 {
6879         u32 val = 0x1400;
6880
6881         /* reset_common */
6882         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6883                0xd3ffff7f);
6884
6885         if (CHIP_IS_E3(bp)) {
6886                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6887                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6888         }
6889
6890         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6891 }
6892
6893 static void bnx2x_setup_dmae(struct bnx2x *bp)
6894 {
6895         bp->dmae_ready = 0;
6896         spin_lock_init(&bp->dmae_lock);
6897 }
6898
6899 static void bnx2x_init_pxp(struct bnx2x *bp)
6900 {
6901         u16 devctl;
6902         int r_order, w_order;
6903
6904         pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6905         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6906         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6907         if (bp->mrrs == -1)
6908                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6909         else {
6910                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6911                 r_order = bp->mrrs;
6912         }
6913
6914         bnx2x_init_pxp_arb(bp, r_order, w_order);
6915 }
6916
6917 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6918 {
6919         int is_required;
6920         u32 val;
6921         int port;
6922
6923         if (BP_NOMCP(bp))
6924                 return;
6925
6926         is_required = 0;
6927         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6928               SHARED_HW_CFG_FAN_FAILURE_MASK;
6929
6930         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6931                 is_required = 1;
6932
6933         /*
6934          * The fan failure mechanism is usually related to the PHY type since
6935          * the power consumption of the board is affected by the PHY. Currently,
6936          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6937          */
6938         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6939                 for (port = PORT_0; port < PORT_MAX; port++) {
6940                         is_required |=
6941                                 bnx2x_fan_failure_det_req(
6942                                         bp,
6943                                         bp->common.shmem_base,
6944                                         bp->common.shmem2_base,
6945                                         port);
6946                 }
6947
6948         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6949
6950         if (is_required == 0)
6951                 return;
6952
6953         /* Fan failure is indicated by SPIO 5 */
6954         bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6955
6956         /* set to active low mode */
6957         val = REG_RD(bp, MISC_REG_SPIO_INT);
6958         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6959         REG_WR(bp, MISC_REG_SPIO_INT, val);
6960
6961         /* enable interrupt to signal the IGU */
6962         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6963         val |= MISC_SPIO_SPIO5;
6964         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6965 }
6966
6967 void bnx2x_pf_disable(struct bnx2x *bp)
6968 {
6969         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6970         val &= ~IGU_PF_CONF_FUNC_EN;
6971
6972         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6973         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6974         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6975 }
6976
6977 static void bnx2x__common_init_phy(struct bnx2x *bp)
6978 {
6979         u32 shmem_base[2], shmem2_base[2];
6980         /* Avoid common init in case MFW supports LFA */
6981         if (SHMEM2_RD(bp, size) >
6982             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6983                 return;
6984         shmem_base[0] =  bp->common.shmem_base;
6985         shmem2_base[0] = bp->common.shmem2_base;
6986         if (!CHIP_IS_E1x(bp)) {
6987                 shmem_base[1] =
6988                         SHMEM2_RD(bp, other_shmem_base_addr);
6989                 shmem2_base[1] =
6990                         SHMEM2_RD(bp, other_shmem2_base_addr);
6991         }
6992         bnx2x_acquire_phy_lock(bp);
6993         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6994                               bp->common.chip_id);
6995         bnx2x_release_phy_lock(bp);
6996 }
6997
6998 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
6999 {
7000         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7001         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7002         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7003         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7004         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7005
7006         /* make sure this value is 0 */
7007         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7008
7009         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7010         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7011         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7012         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7013 }
7014
7015 static void bnx2x_set_endianity(struct bnx2x *bp)
7016 {
7017 #ifdef __BIG_ENDIAN
7018         bnx2x_config_endianity(bp, 1);
7019 #else
7020         bnx2x_config_endianity(bp, 0);
7021 #endif
7022 }
7023
7024 static void bnx2x_reset_endianity(struct bnx2x *bp)
7025 {
7026         bnx2x_config_endianity(bp, 0);
7027 }
7028
7029 /**
7030  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7031  *
7032  * @bp:         driver handle
7033  */
7034 static int bnx2x_init_hw_common(struct bnx2x *bp)
7035 {
7036         u32 val;
7037
7038         DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7039
7040         /*
7041          * take the RESET lock to protect undi_unload flow from accessing
7042          * registers while we're resetting the chip
7043          */
7044         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7045
7046         bnx2x_reset_common(bp);
7047         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7048
7049         val = 0xfffc;
7050         if (CHIP_IS_E3(bp)) {
7051                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7052                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7053         }
7054         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7055
7056         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7057
7058         bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7059
7060         if (!CHIP_IS_E1x(bp)) {
7061                 u8 abs_func_id;
7062
7063                 /**
7064                  * 4-port mode or 2-port mode we need to turn of master-enable
7065                  * for everyone, after that, turn it back on for self.
7066                  * so, we disregard multi-function or not, and always disable
7067                  * for all functions on the given path, this means 0,2,4,6 for
7068                  * path 0 and 1,3,5,7 for path 1
7069                  */
7070                 for (abs_func_id = BP_PATH(bp);
7071                      abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7072                         if (abs_func_id == BP_ABS_FUNC(bp)) {
7073                                 REG_WR(bp,
7074                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7075                                     1);
7076                                 continue;
7077                         }
7078
7079                         bnx2x_pretend_func(bp, abs_func_id);
7080                         /* clear pf enable */
7081                         bnx2x_pf_disable(bp);
7082                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7083                 }
7084         }
7085
7086         bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7087         if (CHIP_IS_E1(bp)) {
7088                 /* enable HW interrupt from PXP on USDM overflow
7089                    bit 16 on INT_MASK_0 */
7090                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7091         }
7092
7093         bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7094         bnx2x_init_pxp(bp);
7095         bnx2x_set_endianity(bp);
7096         bnx2x_ilt_init_page_size(bp, INITOP_SET);
7097
7098         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7099                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7100
7101         /* let the HW do it's magic ... */
7102         msleep(100);
7103         /* finish PXP init */
7104         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7105         if (val != 1) {
7106                 BNX2X_ERR("PXP2 CFG failed\n");
7107                 return -EBUSY;
7108         }
7109         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7110         if (val != 1) {
7111                 BNX2X_ERR("PXP2 RD_INIT failed\n");
7112                 return -EBUSY;
7113         }
7114
7115         /* Timers bug workaround E2 only. We need to set the entire ILT to
7116          * have entries with value "0" and valid bit on.
7117          * This needs to be done by the first PF that is loaded in a path
7118          * (i.e. common phase)
7119          */
7120         if (!CHIP_IS_E1x(bp)) {
7121 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7122  * (i.e. vnic3) to start even if it is marked as "scan-off".
7123  * This occurs when a different function (func2,3) is being marked
7124  * as "scan-off". Real-life scenario for example: if a driver is being
7125  * load-unloaded while func6,7 are down. This will cause the timer to access
7126  * the ilt, translate to a logical address and send a request to read/write.
7127  * Since the ilt for the function that is down is not valid, this will cause
7128  * a translation error which is unrecoverable.
7129  * The Workaround is intended to make sure that when this happens nothing fatal
7130  * will occur. The workaround:
7131  *      1.  First PF driver which loads on a path will:
7132  *              a.  After taking the chip out of reset, by using pretend,
7133  *                  it will write "0" to the following registers of
7134  *                  the other vnics.
7135  *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7136  *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7137  *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7138  *                  And for itself it will write '1' to
7139  *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7140  *                  dmae-operations (writing to pram for example.)
7141  *                  note: can be done for only function 6,7 but cleaner this
7142  *                        way.
7143  *              b.  Write zero+valid to the entire ILT.
7144  *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7145  *                  VNIC3 (of that port). The range allocated will be the
7146  *                  entire ILT. This is needed to prevent  ILT range error.
7147  *      2.  Any PF driver load flow:
7148  *              a.  ILT update with the physical addresses of the allocated
7149  *                  logical pages.
7150  *              b.  Wait 20msec. - note that this timeout is needed to make
7151  *                  sure there are no requests in one of the PXP internal
7152  *                  queues with "old" ILT addresses.
7153  *              c.  PF enable in the PGLC.
7154  *              d.  Clear the was_error of the PF in the PGLC. (could have
7155  *                  occurred while driver was down)
7156  *              e.  PF enable in the CFC (WEAK + STRONG)
7157  *              f.  Timers scan enable
7158  *      3.  PF driver unload flow:
7159  *              a.  Clear the Timers scan_en.
7160  *              b.  Polling for scan_on=0 for that PF.
7161  *              c.  Clear the PF enable bit in the PXP.
7162  *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
7163  *              e.  Write zero+valid to all ILT entries (The valid bit must
7164  *                  stay set)
7165  *              f.  If this is VNIC 3 of a port then also init
7166  *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
7167  *                  to the last entry in the ILT.
7168  *
7169  *      Notes:
7170  *      Currently the PF error in the PGLC is non recoverable.
7171  *      In the future the there will be a recovery routine for this error.
7172  *      Currently attention is masked.
7173  *      Having an MCP lock on the load/unload process does not guarantee that
7174  *      there is no Timer disable during Func6/7 enable. This is because the
7175  *      Timers scan is currently being cleared by the MCP on FLR.
7176  *      Step 2.d can be done only for PF6/7 and the driver can also check if
7177  *      there is error before clearing it. But the flow above is simpler and
7178  *      more general.
7179  *      All ILT entries are written by zero+valid and not just PF6/7
7180  *      ILT entries since in the future the ILT entries allocation for
7181  *      PF-s might be dynamic.
7182  */
7183                 struct ilt_client_info ilt_cli;
7184                 struct bnx2x_ilt ilt;
7185                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7186                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7187
7188                 /* initialize dummy TM client */
7189                 ilt_cli.start = 0;
7190                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7191                 ilt_cli.client_num = ILT_CLIENT_TM;
7192
7193                 /* Step 1: set zeroes to all ilt page entries with valid bit on
7194                  * Step 2: set the timers first/last ilt entry to point
7195                  * to the entire range to prevent ILT range error for 3rd/4th
7196                  * vnic (this code assumes existence of the vnic)
7197                  *
7198                  * both steps performed by call to bnx2x_ilt_client_init_op()
7199                  * with dummy TM client
7200                  *
7201                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7202                  * and his brother are split registers
7203                  */
7204                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7205                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7206                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7207
7208                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7209                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7210                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7211         }
7212
7213         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7214         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7215
7216         if (!CHIP_IS_E1x(bp)) {
7217                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7218                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7219                 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7220
7221                 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7222
7223                 /* let the HW do it's magic ... */
7224                 do {
7225                         msleep(200);
7226                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7227                 } while (factor-- && (val != 1));
7228
7229                 if (val != 1) {
7230                         BNX2X_ERR("ATC_INIT failed\n");
7231                         return -EBUSY;
7232                 }
7233         }
7234
7235         bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7236
7237         bnx2x_iov_init_dmae(bp);
7238
7239         /* clean the DMAE memory */
7240         bp->dmae_ready = 1;
7241         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7242
7243         bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7244
7245         bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7246
7247         bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7248
7249         bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7250
7251         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7252         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7253         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7254         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7255
7256         bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7257
7258         /* QM queues pointers table */
7259         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7260
7261         /* soft reset pulse */
7262         REG_WR(bp, QM_REG_SOFT_RESET, 1);
7263         REG_WR(bp, QM_REG_SOFT_RESET, 0);
7264
7265         if (CNIC_SUPPORT(bp))
7266                 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7267
7268         bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7269
7270         if (!CHIP_REV_IS_SLOW(bp))
7271                 /* enable hw interrupt from doorbell Q */
7272                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7273
7274         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7275
7276         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7277         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7278
7279         if (!CHIP_IS_E1(bp))
7280                 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7281
7282         if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7283                 if (IS_MF_AFEX(bp)) {
7284                         /* configure that VNTag and VLAN headers must be
7285                          * received in afex mode
7286                          */
7287                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7288                         REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7289                         REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7290                         REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7291                         REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7292                 } else {
7293                         /* Bit-map indicating which L2 hdrs may appear
7294                          * after the basic Ethernet header
7295                          */
7296                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7297                                bp->path_has_ovlan ? 7 : 6);
7298                 }
7299         }
7300
7301         bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7302         bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7303         bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7304         bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7305
7306         if (!CHIP_IS_E1x(bp)) {
7307                 /* reset VFC memories */
7308                 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7309                            VFC_MEMORIES_RST_REG_CAM_RST |
7310                            VFC_MEMORIES_RST_REG_RAM_RST);
7311                 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7312                            VFC_MEMORIES_RST_REG_CAM_RST |
7313                            VFC_MEMORIES_RST_REG_RAM_RST);
7314
7315                 msleep(20);
7316         }
7317
7318         bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7319         bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7320         bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7321         bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7322
7323         /* sync semi rtc */
7324         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7325                0x80000000);
7326         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7327                0x80000000);
7328
7329         bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7330         bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7331         bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7332
7333         if (!CHIP_IS_E1x(bp)) {
7334                 if (IS_MF_AFEX(bp)) {
7335                         /* configure that VNTag and VLAN headers must be
7336                          * sent in afex mode
7337                          */
7338                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7339                         REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7340                         REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7341                         REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7342                         REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7343                 } else {
7344                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7345                                bp->path_has_ovlan ? 7 : 6);
7346                 }
7347         }
7348
7349         REG_WR(bp, SRC_REG_SOFT_RST, 1);
7350
7351         bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7352
7353         if (CNIC_SUPPORT(bp)) {
7354                 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7355                 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7356                 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7357                 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7358                 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7359                 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7360                 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7361                 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7362                 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7363                 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7364         }
7365         REG_WR(bp, SRC_REG_SOFT_RST, 0);
7366
7367         if (sizeof(union cdu_context) != 1024)
7368                 /* we currently assume that a context is 1024 bytes */
7369                 dev_alert(&bp->pdev->dev,
7370                           "please adjust the size of cdu_context(%ld)\n",
7371                           (long)sizeof(union cdu_context));
7372
7373         bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7374         val = (4 << 24) + (0 << 12) + 1024;
7375         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7376
7377         bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7378         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7379         /* enable context validation interrupt from CFC */
7380         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7381
7382         /* set the thresholds to prevent CFC/CDU race */
7383         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7384
7385         bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7386
7387         if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7388                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7389
7390         bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7391         bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7392
7393         /* Reset PCIE errors for debug */
7394         REG_WR(bp, 0x2814, 0xffffffff);
7395         REG_WR(bp, 0x3820, 0xffffffff);
7396
7397         if (!CHIP_IS_E1x(bp)) {
7398                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7399                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7400                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7401                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7402                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7403                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7404                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7405                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7406                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7407                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7408                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7409         }
7410
7411         bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7412         if (!CHIP_IS_E1(bp)) {
7413                 /* in E3 this done in per-port section */
7414                 if (!CHIP_IS_E3(bp))
7415                         REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7416         }
7417         if (CHIP_IS_E1H(bp))
7418                 /* not applicable for E2 (and above ...) */
7419                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7420
7421         if (CHIP_REV_IS_SLOW(bp))
7422                 msleep(200);
7423
7424         /* finish CFC init */
7425         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7426         if (val != 1) {
7427                 BNX2X_ERR("CFC LL_INIT failed\n");
7428                 return -EBUSY;
7429         }
7430         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7431         if (val != 1) {
7432                 BNX2X_ERR("CFC AC_INIT failed\n");
7433                 return -EBUSY;
7434         }
7435         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7436         if (val != 1) {
7437                 BNX2X_ERR("CFC CAM_INIT failed\n");
7438                 return -EBUSY;
7439         }
7440         REG_WR(bp, CFC_REG_DEBUG0, 0);
7441
7442         if (CHIP_IS_E1(bp)) {
7443                 /* read NIG statistic
7444                    to see if this is our first up since powerup */
7445                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7446                 val = *bnx2x_sp(bp, wb_data[0]);
7447
7448                 /* do internal memory self test */
7449                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7450                         BNX2X_ERR("internal mem self test failed\n");
7451                         return -EBUSY;
7452                 }
7453         }
7454
7455         bnx2x_setup_fan_failure_detection(bp);
7456
7457         /* clear PXP2 attentions */
7458         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7459
7460         bnx2x_enable_blocks_attention(bp);
7461         bnx2x_enable_blocks_parity(bp);
7462
7463         if (!BP_NOMCP(bp)) {
7464                 if (CHIP_IS_E1x(bp))
7465                         bnx2x__common_init_phy(bp);
7466         } else
7467                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7468
7469         if (SHMEM2_HAS(bp, netproc_fw_ver))
7470                 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7471
7472         return 0;
7473 }
7474
7475 /**
7476  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7477  *
7478  * @bp:         driver handle
7479  */
7480 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7481 {
7482         int rc = bnx2x_init_hw_common(bp);
7483
7484         if (rc)
7485                 return rc;
7486
7487         /* In E2 2-PORT mode, same ext phy is used for the two paths */
7488         if (!BP_NOMCP(bp))
7489                 bnx2x__common_init_phy(bp);
7490
7491         return 0;
7492 }
7493
7494 static int bnx2x_init_hw_port(struct bnx2x *bp)
7495 {
7496         int port = BP_PORT(bp);
7497         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7498         u32 low, high;
7499         u32 val, reg;
7500
7501         DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7502
7503         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7504
7505         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7506         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7507         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7508
7509         /* Timers bug workaround: disables the pf_master bit in pglue at
7510          * common phase, we need to enable it here before any dmae access are
7511          * attempted. Therefore we manually added the enable-master to the
7512          * port phase (it also happens in the function phase)
7513          */
7514         if (!CHIP_IS_E1x(bp))
7515                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7516
7517         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7518         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7519         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7520         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7521
7522         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7523         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7524         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7525         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7526
7527         /* QM cid (connection) count */
7528         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7529
7530         if (CNIC_SUPPORT(bp)) {
7531                 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7532                 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7533                 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7534         }
7535
7536         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7537
7538         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7539
7540         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7541
7542                 if (IS_MF(bp))
7543                         low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7544                 else if (bp->dev->mtu > 4096) {
7545                         if (bp->flags & ONE_PORT_FLAG)
7546                                 low = 160;
7547                         else {
7548                                 val = bp->dev->mtu;
7549                                 /* (24*1024 + val*4)/256 */
7550                                 low = 96 + (val/64) +
7551                                                 ((val % 64) ? 1 : 0);
7552                         }
7553                 } else
7554                         low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7555                 high = low + 56;        /* 14*1024/256 */
7556                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7557                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7558         }
7559
7560         if (CHIP_MODE_IS_4_PORT(bp))
7561                 REG_WR(bp, (BP_PORT(bp) ?
7562                             BRB1_REG_MAC_GUARANTIED_1 :
7563                             BRB1_REG_MAC_GUARANTIED_0), 40);
7564
7565         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7566         if (CHIP_IS_E3B0(bp)) {
7567                 if (IS_MF_AFEX(bp)) {
7568                         /* configure headers for AFEX mode */
7569                         REG_WR(bp, BP_PORT(bp) ?
7570                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7571                                PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7572                         REG_WR(bp, BP_PORT(bp) ?
7573                                PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7574                                PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7575                         REG_WR(bp, BP_PORT(bp) ?
7576                                PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7577                                PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7578                 } else {
7579                         /* Ovlan exists only if we are in multi-function +
7580                          * switch-dependent mode, in switch-independent there
7581                          * is no ovlan headers
7582                          */
7583                         REG_WR(bp, BP_PORT(bp) ?
7584                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7585                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7586                                (bp->path_has_ovlan ? 7 : 6));
7587                 }
7588         }
7589
7590         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7591         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7592         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7593         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7594
7595         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7596         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7597         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7598         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7599
7600         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7601         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7602
7603         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7604
7605         if (CHIP_IS_E1x(bp)) {
7606                 /* configure PBF to work without PAUSE mtu 9000 */
7607                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7608
7609                 /* update threshold */
7610                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7611                 /* update init credit */
7612                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7613
7614                 /* probe changes */
7615                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7616                 udelay(50);
7617                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7618         }
7619
7620         if (CNIC_SUPPORT(bp))
7621                 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7622
7623         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7624         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7625
7626         if (CHIP_IS_E1(bp)) {
7627                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7628                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7629         }
7630         bnx2x_init_block(bp, BLOCK_HC, init_phase);
7631
7632         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7633
7634         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7635         /* init aeu_mask_attn_func_0/1:
7636          *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7637          *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7638          *             bits 4-7 are used for "per vn group attention" */
7639         val = IS_MF(bp) ? 0xF7 : 0x7;
7640         /* Enable DCBX attention for all but E1 */
7641         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7642         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7643
7644         /* SCPAD_PARITY should NOT trigger close the gates */
7645         reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7646         REG_WR(bp, reg,
7647                REG_RD(bp, reg) &
7648                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7649
7650         reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7651         REG_WR(bp, reg,
7652                REG_RD(bp, reg) &
7653                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7654
7655         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7656
7657         if (!CHIP_IS_E1x(bp)) {
7658                 /* Bit-map indicating which L2 hdrs may appear after the
7659                  * basic Ethernet header
7660                  */
7661                 if (IS_MF_AFEX(bp))
7662                         REG_WR(bp, BP_PORT(bp) ?
7663                                NIG_REG_P1_HDRS_AFTER_BASIC :
7664                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7665                 else
7666                         REG_WR(bp, BP_PORT(bp) ?
7667                                NIG_REG_P1_HDRS_AFTER_BASIC :
7668                                NIG_REG_P0_HDRS_AFTER_BASIC,
7669                                IS_MF_SD(bp) ? 7 : 6);
7670
7671                 if (CHIP_IS_E3(bp))
7672                         REG_WR(bp, BP_PORT(bp) ?
7673                                    NIG_REG_LLH1_MF_MODE :
7674                                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
7675         }
7676         if (!CHIP_IS_E3(bp))
7677                 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7678
7679         if (!CHIP_IS_E1(bp)) {
7680                 /* 0x2 disable mf_ov, 0x1 enable */
7681                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7682                        (IS_MF_SD(bp) ? 0x1 : 0x2));
7683
7684                 if (!CHIP_IS_E1x(bp)) {
7685                         val = 0;
7686                         switch (bp->mf_mode) {
7687                         case MULTI_FUNCTION_SD:
7688                                 val = 1;
7689                                 break;
7690                         case MULTI_FUNCTION_SI:
7691                         case MULTI_FUNCTION_AFEX:
7692                                 val = 2;
7693                                 break;
7694                         }
7695
7696                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7697                                                   NIG_REG_LLH0_CLS_TYPE), val);
7698                 }
7699                 {
7700                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7701                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7702                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7703                 }
7704         }
7705
7706         /* If SPIO5 is set to generate interrupts, enable it for this port */
7707         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7708         if (val & MISC_SPIO_SPIO5) {
7709                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7710                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7711                 val = REG_RD(bp, reg_addr);
7712                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7713                 REG_WR(bp, reg_addr, val);
7714         }
7715
7716         return 0;
7717 }
7718
7719 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7720 {
7721         int reg;
7722         u32 wb_write[2];
7723
7724         if (CHIP_IS_E1(bp))
7725                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7726         else
7727                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7728
7729         wb_write[0] = ONCHIP_ADDR1(addr);
7730         wb_write[1] = ONCHIP_ADDR2(addr);
7731         REG_WR_DMAE(bp, reg, wb_write, 2);
7732 }
7733
7734 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7735 {
7736         u32 data, ctl, cnt = 100;
7737         u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7738         u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7739         u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7740         u32 sb_bit =  1 << (idu_sb_id%32);
7741         u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7742         u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7743
7744         /* Not supported in BC mode */
7745         if (CHIP_INT_MODE_IS_BC(bp))
7746                 return;
7747
7748         data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7749                         << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7750                 IGU_REGULAR_CLEANUP_SET                         |
7751                 IGU_REGULAR_BCLEANUP;
7752
7753         ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7754               func_encode << IGU_CTRL_REG_FID_SHIFT             |
7755               IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7756
7757         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7758                          data, igu_addr_data);
7759         REG_WR(bp, igu_addr_data, data);
7760         mmiowb();
7761         barrier();
7762         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7763                           ctl, igu_addr_ctl);
7764         REG_WR(bp, igu_addr_ctl, ctl);
7765         mmiowb();
7766         barrier();
7767
7768         /* wait for clean up to finish */
7769         while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7770                 msleep(20);
7771
7772         if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7773                 DP(NETIF_MSG_HW,
7774                    "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7775                           idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7776         }
7777 }
7778
7779 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7780 {
7781         bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7782 }
7783
7784 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7785 {
7786         u32 i, base = FUNC_ILT_BASE(func);
7787         for (i = base; i < base + ILT_PER_FUNC; i++)
7788                 bnx2x_ilt_wr(bp, i, 0);
7789 }
7790
7791 static void bnx2x_init_searcher(struct bnx2x *bp)
7792 {
7793         int port = BP_PORT(bp);
7794         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7795         /* T1 hash bits value determines the T1 number of entries */
7796         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7797 }
7798
7799 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7800 {
7801         int rc;
7802         struct bnx2x_func_state_params func_params = {NULL};
7803         struct bnx2x_func_switch_update_params *switch_update_params =
7804                 &func_params.params.switch_update;
7805
7806         /* Prepare parameters for function state transitions */
7807         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7808         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7809
7810         func_params.f_obj = &bp->func_obj;
7811         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7812
7813         /* Function parameters */
7814         __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7815                   &switch_update_params->changes);
7816         if (suspend)
7817                 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7818                           &switch_update_params->changes);
7819
7820         rc = bnx2x_func_state_change(bp, &func_params);
7821
7822         return rc;
7823 }
7824
7825 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7826 {
7827         int rc, i, port = BP_PORT(bp);
7828         int vlan_en = 0, mac_en[NUM_MACS];
7829
7830         /* Close input from network */
7831         if (bp->mf_mode == SINGLE_FUNCTION) {
7832                 bnx2x_set_rx_filter(&bp->link_params, 0);
7833         } else {
7834                 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7835                                    NIG_REG_LLH0_FUNC_EN);
7836                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7837                           NIG_REG_LLH0_FUNC_EN, 0);
7838                 for (i = 0; i < NUM_MACS; i++) {
7839                         mac_en[i] = REG_RD(bp, port ?
7840                                              (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7841                                               4 * i) :
7842                                              (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7843                                               4 * i));
7844                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7845                                               4 * i) :
7846                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7847                 }
7848         }
7849
7850         /* Close BMC to host */
7851         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7852                NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7853
7854         /* Suspend Tx switching to the PF. Completion of this ramrod
7855          * further guarantees that all the packets of that PF / child
7856          * VFs in BRB were processed by the Parser, so it is safe to
7857          * change the NIC_MODE register.
7858          */
7859         rc = bnx2x_func_switch_update(bp, 1);
7860         if (rc) {
7861                 BNX2X_ERR("Can't suspend tx-switching!\n");
7862                 return rc;
7863         }
7864
7865         /* Change NIC_MODE register */
7866         REG_WR(bp, PRS_REG_NIC_MODE, 0);
7867
7868         /* Open input from network */
7869         if (bp->mf_mode == SINGLE_FUNCTION) {
7870                 bnx2x_set_rx_filter(&bp->link_params, 1);
7871         } else {
7872                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7873                           NIG_REG_LLH0_FUNC_EN, vlan_en);
7874                 for (i = 0; i < NUM_MACS; i++) {
7875                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7876                                               4 * i) :
7877                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7878                                   mac_en[i]);
7879                 }
7880         }
7881
7882         /* Enable BMC to host */
7883         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7884                NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7885
7886         /* Resume Tx switching to the PF */
7887         rc = bnx2x_func_switch_update(bp, 0);
7888         if (rc) {
7889                 BNX2X_ERR("Can't resume tx-switching!\n");
7890                 return rc;
7891         }
7892
7893         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7894         return 0;
7895 }
7896
7897 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7898 {
7899         int rc;
7900
7901         bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7902
7903         if (CONFIGURE_NIC_MODE(bp)) {
7904                 /* Configure searcher as part of function hw init */
7905                 bnx2x_init_searcher(bp);
7906
7907                 /* Reset NIC mode */
7908                 rc = bnx2x_reset_nic_mode(bp);
7909                 if (rc)
7910                         BNX2X_ERR("Can't change NIC mode!\n");
7911                 return rc;
7912         }
7913
7914         return 0;
7915 }
7916
7917 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7918  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7919  * the addresses of the transaction, resulting in was-error bit set in the pci
7920  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7921  * to clear the interrupt which detected this from the pglueb and the was done
7922  * bit
7923  */
7924 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7925 {
7926         if (!CHIP_IS_E1x(bp))
7927                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7928                        1 << BP_ABS_FUNC(bp));
7929 }
7930
7931 static int bnx2x_init_hw_func(struct bnx2x *bp)
7932 {
7933         int port = BP_PORT(bp);
7934         int func = BP_FUNC(bp);
7935         int init_phase = PHASE_PF0 + func;
7936         struct bnx2x_ilt *ilt = BP_ILT(bp);
7937         u16 cdu_ilt_start;
7938         u32 addr, val;
7939         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7940         int i, main_mem_width, rc;
7941
7942         DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7943
7944         /* FLR cleanup - hmmm */
7945         if (!CHIP_IS_E1x(bp)) {
7946                 rc = bnx2x_pf_flr_clnup(bp);
7947                 if (rc) {
7948                         bnx2x_fw_dump(bp);
7949                         return rc;
7950                 }
7951         }
7952
7953         /* set MSI reconfigure capability */
7954         if (bp->common.int_block == INT_BLOCK_HC) {
7955                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7956                 val = REG_RD(bp, addr);
7957                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7958                 REG_WR(bp, addr, val);
7959         }
7960
7961         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7962         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7963
7964         ilt = BP_ILT(bp);
7965         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7966
7967         if (IS_SRIOV(bp))
7968                 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7969         cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7970
7971         /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7972          * those of the VFs, so start line should be reset
7973          */
7974         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7975         for (i = 0; i < L2_ILT_LINES(bp); i++) {
7976                 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7977                 ilt->lines[cdu_ilt_start + i].page_mapping =
7978                         bp->context[i].cxt_mapping;
7979                 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7980         }
7981
7982         bnx2x_ilt_init_op(bp, INITOP_SET);
7983
7984         if (!CONFIGURE_NIC_MODE(bp)) {
7985                 bnx2x_init_searcher(bp);
7986                 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7987                 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7988         } else {
7989                 /* Set NIC mode */
7990                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7991                 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7992         }
7993
7994         if (!CHIP_IS_E1x(bp)) {
7995                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7996
7997                 /* Turn on a single ISR mode in IGU if driver is going to use
7998                  * INT#x or MSI
7999                  */
8000                 if (!(bp->flags & USING_MSIX_FLAG))
8001                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8002                 /*
8003                  * Timers workaround bug: function init part.
8004                  * Need to wait 20msec after initializing ILT,
8005                  * needed to make sure there are no requests in
8006                  * one of the PXP internal queues with "old" ILT addresses
8007                  */
8008                 msleep(20);
8009                 /*
8010                  * Master enable - Due to WB DMAE writes performed before this
8011                  * register is re-initialized as part of the regular function
8012                  * init
8013                  */
8014                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8015                 /* Enable the function in IGU */
8016                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8017         }
8018
8019         bp->dmae_ready = 1;
8020
8021         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8022
8023         bnx2x_clean_pglue_errors(bp);
8024
8025         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8026         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8027         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8028         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8029         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8030         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8031         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8032         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8033         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8034         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8035         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8036         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8037         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8038
8039         if (!CHIP_IS_E1x(bp))
8040                 REG_WR(bp, QM_REG_PF_EN, 1);
8041
8042         if (!CHIP_IS_E1x(bp)) {
8043                 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8044                 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8045                 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8046                 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8047         }
8048         bnx2x_init_block(bp, BLOCK_QM, init_phase);
8049
8050         bnx2x_init_block(bp, BLOCK_TM, init_phase);
8051         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8052         REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8053
8054         bnx2x_iov_init_dq(bp);
8055
8056         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8057         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8058         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8059         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8060         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8061         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8062         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8063         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8064         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8065         if (!CHIP_IS_E1x(bp))
8066                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8067
8068         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8069
8070         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8071
8072         if (!CHIP_IS_E1x(bp))
8073                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8074
8075         if (IS_MF(bp)) {
8076                 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8077                         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8078                         REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8079                                bp->mf_ov);
8080                 }
8081         }
8082
8083         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8084
8085         /* HC init per function */
8086         if (bp->common.int_block == INT_BLOCK_HC) {
8087                 if (CHIP_IS_E1H(bp)) {
8088                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8089
8090                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8091                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8092                 }
8093                 bnx2x_init_block(bp, BLOCK_HC, init_phase);
8094
8095         } else {
8096                 int num_segs, sb_idx, prod_offset;
8097
8098                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8099
8100                 if (!CHIP_IS_E1x(bp)) {
8101                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8102                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8103                 }
8104
8105                 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8106
8107                 if (!CHIP_IS_E1x(bp)) {
8108                         int dsb_idx = 0;
8109                         /**
8110                          * Producer memory:
8111                          * E2 mode: address 0-135 match to the mapping memory;
8112                          * 136 - PF0 default prod; 137 - PF1 default prod;
8113                          * 138 - PF2 default prod; 139 - PF3 default prod;
8114                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
8115                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
8116                          * 144-147 reserved.
8117                          *
8118                          * E1.5 mode - In backward compatible mode;
8119                          * for non default SB; each even line in the memory
8120                          * holds the U producer and each odd line hold
8121                          * the C producer. The first 128 producers are for
8122                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8123                          * producers are for the DSB for each PF.
8124                          * Each PF has five segments: (the order inside each
8125                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8126                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8127                          * 144-147 attn prods;
8128                          */
8129                         /* non-default-status-blocks */
8130                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8131                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8132                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8133                                 prod_offset = (bp->igu_base_sb + sb_idx) *
8134                                         num_segs;
8135
8136                                 for (i = 0; i < num_segs; i++) {
8137                                         addr = IGU_REG_PROD_CONS_MEMORY +
8138                                                         (prod_offset + i) * 4;
8139                                         REG_WR(bp, addr, 0);
8140                                 }
8141                                 /* send consumer update with value 0 */
8142                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8143                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8144                                 bnx2x_igu_clear_sb(bp,
8145                                                    bp->igu_base_sb + sb_idx);
8146                         }
8147
8148                         /* default-status-blocks */
8149                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8150                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8151
8152                         if (CHIP_MODE_IS_4_PORT(bp))
8153                                 dsb_idx = BP_FUNC(bp);
8154                         else
8155                                 dsb_idx = BP_VN(bp);
8156
8157                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8158                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
8159                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
8160
8161                         /*
8162                          * igu prods come in chunks of E1HVN_MAX (4) -
8163                          * does not matters what is the current chip mode
8164                          */
8165                         for (i = 0; i < (num_segs * E1HVN_MAX);
8166                              i += E1HVN_MAX) {
8167                                 addr = IGU_REG_PROD_CONS_MEMORY +
8168                                                         (prod_offset + i)*4;
8169                                 REG_WR(bp, addr, 0);
8170                         }
8171                         /* send consumer update with 0 */
8172                         if (CHIP_INT_MODE_IS_BC(bp)) {
8173                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8174                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8175                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8176                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
8177                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8178                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
8179                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8180                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
8181                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8182                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
8183                         } else {
8184                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8185                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8186                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8187                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
8188                         }
8189                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8190
8191                         /* !!! These should become driver const once
8192                            rf-tool supports split-68 const */
8193                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8194                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8195                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8196                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8197                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8198                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8199                 }
8200         }
8201
8202         /* Reset PCIE errors for debug */
8203         REG_WR(bp, 0x2114, 0xffffffff);
8204         REG_WR(bp, 0x2120, 0xffffffff);
8205
8206         if (CHIP_IS_E1x(bp)) {
8207                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8208                 main_mem_base = HC_REG_MAIN_MEMORY +
8209                                 BP_PORT(bp) * (main_mem_size * 4);
8210                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8211                 main_mem_width = 8;
8212
8213                 val = REG_RD(bp, main_mem_prty_clr);
8214                 if (val)
8215                         DP(NETIF_MSG_HW,
8216                            "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8217                            val);
8218
8219                 /* Clear "false" parity errors in MSI-X table */
8220                 for (i = main_mem_base;
8221                      i < main_mem_base + main_mem_size * 4;
8222                      i += main_mem_width) {
8223                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
8224                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8225                                          i, main_mem_width / 4);
8226                 }
8227                 /* Clear HC parity attention */
8228                 REG_RD(bp, main_mem_prty_clr);
8229         }
8230
8231 #ifdef BNX2X_STOP_ON_ERROR
8232         /* Enable STORMs SP logging */
8233         REG_WR8(bp, BAR_USTRORM_INTMEM +
8234                USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8235         REG_WR8(bp, BAR_TSTRORM_INTMEM +
8236                TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8237         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8238                CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8239         REG_WR8(bp, BAR_XSTRORM_INTMEM +
8240                XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8241 #endif
8242
8243         bnx2x_phy_probe(&bp->link_params);
8244
8245         return 0;
8246 }
8247
8248 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8249 {
8250         bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8251
8252         if (!CHIP_IS_E1x(bp))
8253                 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8254                                sizeof(struct host_hc_status_block_e2));
8255         else
8256                 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8257                                sizeof(struct host_hc_status_block_e1x));
8258
8259         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8260 }
8261
8262 void bnx2x_free_mem(struct bnx2x *bp)
8263 {
8264         int i;
8265
8266         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8267                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8268
8269         if (IS_VF(bp))
8270                 return;
8271
8272         BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8273                        sizeof(struct host_sp_status_block));
8274
8275         BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8276                        sizeof(struct bnx2x_slowpath));
8277
8278         for (i = 0; i < L2_ILT_LINES(bp); i++)
8279                 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8280                                bp->context[i].size);
8281         bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8282
8283         BNX2X_FREE(bp->ilt->lines);
8284
8285         BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8286
8287         BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8288                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
8289
8290         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8291
8292         bnx2x_iov_free_mem(bp);
8293 }
8294
8295 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8296 {
8297         if (!CHIP_IS_E1x(bp)) {
8298                 /* size = the status block + ramrod buffers */
8299                 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8300                                                     sizeof(struct host_hc_status_block_e2));
8301                 if (!bp->cnic_sb.e2_sb)
8302                         goto alloc_mem_err;
8303         } else {
8304                 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8305                                                      sizeof(struct host_hc_status_block_e1x));
8306                 if (!bp->cnic_sb.e1x_sb)
8307                         goto alloc_mem_err;
8308         }
8309
8310         if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8311                 /* allocate searcher T2 table, as it wasn't allocated before */
8312                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8313                 if (!bp->t2)
8314                         goto alloc_mem_err;
8315         }
8316
8317         /* write address to which L5 should insert its values */
8318         bp->cnic_eth_dev.addr_drv_info_to_mcp =
8319                 &bp->slowpath->drv_info_to_mcp;
8320
8321         if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8322                 goto alloc_mem_err;
8323
8324         return 0;
8325
8326 alloc_mem_err:
8327         bnx2x_free_mem_cnic(bp);
8328         BNX2X_ERR("Can't allocate memory\n");
8329         return -ENOMEM;
8330 }
8331
8332 int bnx2x_alloc_mem(struct bnx2x *bp)
8333 {
8334         int i, allocated, context_size;
8335
8336         if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8337                 /* allocate searcher T2 table */
8338                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8339                 if (!bp->t2)
8340                         goto alloc_mem_err;
8341         }
8342
8343         bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8344                                              sizeof(struct host_sp_status_block));
8345         if (!bp->def_status_blk)
8346                 goto alloc_mem_err;
8347
8348         bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8349                                        sizeof(struct bnx2x_slowpath));
8350         if (!bp->slowpath)
8351                 goto alloc_mem_err;
8352
8353         /* Allocate memory for CDU context:
8354          * This memory is allocated separately and not in the generic ILT
8355          * functions because CDU differs in few aspects:
8356          * 1. There are multiple entities allocating memory for context -
8357          * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8358          * its own ILT lines.
8359          * 2. Since CDU page-size is not a single 4KB page (which is the case
8360          * for the other ILT clients), to be efficient we want to support
8361          * allocation of sub-page-size in the last entry.
8362          * 3. Context pointers are used by the driver to pass to FW / update
8363          * the context (for the other ILT clients the pointers are used just to
8364          * free the memory during unload).
8365          */
8366         context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8367
8368         for (i = 0, allocated = 0; allocated < context_size; i++) {
8369                 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8370                                           (context_size - allocated));
8371                 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8372                                                       bp->context[i].size);
8373                 if (!bp->context[i].vcxt)
8374                         goto alloc_mem_err;
8375                 allocated += bp->context[i].size;
8376         }
8377         bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8378                                  GFP_KERNEL);
8379         if (!bp->ilt->lines)
8380                 goto alloc_mem_err;
8381
8382         if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8383                 goto alloc_mem_err;
8384
8385         if (bnx2x_iov_alloc_mem(bp))
8386                 goto alloc_mem_err;
8387
8388         /* Slow path ring */
8389         bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8390         if (!bp->spq)
8391                 goto alloc_mem_err;
8392
8393         /* EQ */
8394         bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8395                                       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8396         if (!bp->eq_ring)
8397                 goto alloc_mem_err;
8398
8399         return 0;
8400
8401 alloc_mem_err:
8402         bnx2x_free_mem(bp);
8403         BNX2X_ERR("Can't allocate memory\n");
8404         return -ENOMEM;
8405 }
8406
8407 /*
8408  * Init service functions
8409  */
8410
8411 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8412                       struct bnx2x_vlan_mac_obj *obj, bool set,
8413                       int mac_type, unsigned long *ramrod_flags)
8414 {
8415         int rc;
8416         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8417
8418         memset(&ramrod_param, 0, sizeof(ramrod_param));
8419
8420         /* Fill general parameters */
8421         ramrod_param.vlan_mac_obj = obj;
8422         ramrod_param.ramrod_flags = *ramrod_flags;
8423
8424         /* Fill a user request section if needed */
8425         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8426                 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8427
8428                 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8429
8430                 /* Set the command: ADD or DEL */
8431                 if (set)
8432                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8433                 else
8434                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8435         }
8436
8437         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8438
8439         if (rc == -EEXIST) {
8440                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8441                 /* do not treat adding same MAC as error */
8442                 rc = 0;
8443         } else if (rc < 0)
8444                 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8445
8446         return rc;
8447 }
8448
8449 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8450                        struct bnx2x_vlan_mac_obj *obj, bool set,
8451                        unsigned long *ramrod_flags)
8452 {
8453         int rc;
8454         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8455
8456         memset(&ramrod_param, 0, sizeof(ramrod_param));
8457
8458         /* Fill general parameters */
8459         ramrod_param.vlan_mac_obj = obj;
8460         ramrod_param.ramrod_flags = *ramrod_flags;
8461
8462         /* Fill a user request section if needed */
8463         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8464                 ramrod_param.user_req.u.vlan.vlan = vlan;
8465                 /* Set the command: ADD or DEL */
8466                 if (set)
8467                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8468                 else
8469                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8470         }
8471
8472         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8473
8474         if (rc == -EEXIST) {
8475                 /* Do not treat adding same vlan as error. */
8476                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8477                 rc = 0;
8478         } else if (rc < 0) {
8479                 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8480         }
8481
8482         return rc;
8483 }
8484
8485 int bnx2x_del_all_macs(struct bnx2x *bp,
8486                        struct bnx2x_vlan_mac_obj *mac_obj,
8487                        int mac_type, bool wait_for_comp)
8488 {
8489         int rc;
8490         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8491
8492         /* Wait for completion of requested */
8493         if (wait_for_comp)
8494                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8495
8496         /* Set the mac type of addresses we want to clear */
8497         __set_bit(mac_type, &vlan_mac_flags);
8498
8499         rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8500         if (rc < 0)
8501                 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8502
8503         return rc;
8504 }
8505
8506 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8507 {
8508         if (IS_PF(bp)) {
8509                 unsigned long ramrod_flags = 0;
8510
8511                 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8512                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8513                 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8514                                          &bp->sp_objs->mac_obj, set,
8515                                          BNX2X_ETH_MAC, &ramrod_flags);
8516         } else { /* vf */
8517                 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8518                                              bp->fp->index, set);
8519         }
8520 }
8521
8522 int bnx2x_setup_leading(struct bnx2x *bp)
8523 {
8524         if (IS_PF(bp))
8525                 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8526         else /* VF */
8527                 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8528 }
8529
8530 /**
8531  * bnx2x_set_int_mode - configure interrupt mode
8532  *
8533  * @bp:         driver handle
8534  *
8535  * In case of MSI-X it will also try to enable MSI-X.
8536  */
8537 int bnx2x_set_int_mode(struct bnx2x *bp)
8538 {
8539         int rc = 0;
8540
8541         if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8542                 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8543                 return -EINVAL;
8544         }
8545
8546         switch (int_mode) {
8547         case BNX2X_INT_MODE_MSIX:
8548                 /* attempt to enable msix */
8549                 rc = bnx2x_enable_msix(bp);
8550
8551                 /* msix attained */
8552                 if (!rc)
8553                         return 0;
8554
8555                 /* vfs use only msix */
8556                 if (rc && IS_VF(bp))
8557                         return rc;
8558
8559                 /* failed to enable multiple MSI-X */
8560                 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8561                                bp->num_queues,
8562                                1 + bp->num_cnic_queues);
8563
8564                 /* falling through... */
8565         case BNX2X_INT_MODE_MSI:
8566                 bnx2x_enable_msi(bp);
8567
8568                 /* falling through... */
8569         case BNX2X_INT_MODE_INTX:
8570                 bp->num_ethernet_queues = 1;
8571                 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8572                 BNX2X_DEV_INFO("set number of queues to 1\n");
8573                 break;
8574         default:
8575                 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8576                 return -EINVAL;
8577         }
8578         return 0;
8579 }
8580
8581 /* must be called prior to any HW initializations */
8582 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8583 {
8584         if (IS_SRIOV(bp))
8585                 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8586         return L2_ILT_LINES(bp);
8587 }
8588
8589 void bnx2x_ilt_set_info(struct bnx2x *bp)
8590 {
8591         struct ilt_client_info *ilt_client;
8592         struct bnx2x_ilt *ilt = BP_ILT(bp);
8593         u16 line = 0;
8594
8595         ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8596         DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8597
8598         /* CDU */
8599         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8600         ilt_client->client_num = ILT_CLIENT_CDU;
8601         ilt_client->page_size = CDU_ILT_PAGE_SZ;
8602         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8603         ilt_client->start = line;
8604         line += bnx2x_cid_ilt_lines(bp);
8605
8606         if (CNIC_SUPPORT(bp))
8607                 line += CNIC_ILT_LINES;
8608         ilt_client->end = line - 1;
8609
8610         DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8611            ilt_client->start,
8612            ilt_client->end,
8613            ilt_client->page_size,
8614            ilt_client->flags,
8615            ilog2(ilt_client->page_size >> 12));
8616
8617         /* QM */
8618         if (QM_INIT(bp->qm_cid_count)) {
8619                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8620                 ilt_client->client_num = ILT_CLIENT_QM;
8621                 ilt_client->page_size = QM_ILT_PAGE_SZ;
8622                 ilt_client->flags = 0;
8623                 ilt_client->start = line;
8624
8625                 /* 4 bytes for each cid */
8626                 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8627                                                          QM_ILT_PAGE_SZ);
8628
8629                 ilt_client->end = line - 1;
8630
8631                 DP(NETIF_MSG_IFUP,
8632                    "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8633                    ilt_client->start,
8634                    ilt_client->end,
8635                    ilt_client->page_size,
8636                    ilt_client->flags,
8637                    ilog2(ilt_client->page_size >> 12));
8638         }
8639
8640         if (CNIC_SUPPORT(bp)) {
8641                 /* SRC */
8642                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8643                 ilt_client->client_num = ILT_CLIENT_SRC;
8644                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8645                 ilt_client->flags = 0;
8646                 ilt_client->start = line;
8647                 line += SRC_ILT_LINES;
8648                 ilt_client->end = line - 1;
8649
8650                 DP(NETIF_MSG_IFUP,
8651                    "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8652                    ilt_client->start,
8653                    ilt_client->end,
8654                    ilt_client->page_size,
8655                    ilt_client->flags,
8656                    ilog2(ilt_client->page_size >> 12));
8657
8658                 /* TM */
8659                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8660                 ilt_client->client_num = ILT_CLIENT_TM;
8661                 ilt_client->page_size = TM_ILT_PAGE_SZ;
8662                 ilt_client->flags = 0;
8663                 ilt_client->start = line;
8664                 line += TM_ILT_LINES;
8665                 ilt_client->end = line - 1;
8666
8667                 DP(NETIF_MSG_IFUP,
8668                    "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8669                    ilt_client->start,
8670                    ilt_client->end,
8671                    ilt_client->page_size,
8672                    ilt_client->flags,
8673                    ilog2(ilt_client->page_size >> 12));
8674         }
8675
8676         BUG_ON(line > ILT_MAX_LINES);
8677 }
8678
8679 /**
8680  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8681  *
8682  * @bp:                 driver handle
8683  * @fp:                 pointer to fastpath
8684  * @init_params:        pointer to parameters structure
8685  *
8686  * parameters configured:
8687  *      - HC configuration
8688  *      - Queue's CDU context
8689  */
8690 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8691         struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8692 {
8693         u8 cos;
8694         int cxt_index, cxt_offset;
8695
8696         /* FCoE Queue uses Default SB, thus has no HC capabilities */
8697         if (!IS_FCOE_FP(fp)) {
8698                 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8699                 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8700
8701                 /* If HC is supported, enable host coalescing in the transition
8702                  * to INIT state.
8703                  */
8704                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8705                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8706
8707                 /* HC rate */
8708                 init_params->rx.hc_rate = bp->rx_ticks ?
8709                         (1000000 / bp->rx_ticks) : 0;
8710                 init_params->tx.hc_rate = bp->tx_ticks ?
8711                         (1000000 / bp->tx_ticks) : 0;
8712
8713                 /* FW SB ID */
8714                 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8715                         fp->fw_sb_id;
8716
8717                 /*
8718                  * CQ index among the SB indices: FCoE clients uses the default
8719                  * SB, therefore it's different.
8720                  */
8721                 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8722                 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8723         }
8724
8725         /* set maximum number of COSs supported by this queue */
8726         init_params->max_cos = fp->max_cos;
8727
8728         DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8729             fp->index, init_params->max_cos);
8730
8731         /* set the context pointers queue object */
8732         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8733                 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8734                 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8735                                 ILT_PAGE_CIDS);
8736                 init_params->cxts[cos] =
8737                         &bp->context[cxt_index].vcxt[cxt_offset].eth;
8738         }
8739 }
8740
8741 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8742                         struct bnx2x_queue_state_params *q_params,
8743                         struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8744                         int tx_index, bool leading)
8745 {
8746         memset(tx_only_params, 0, sizeof(*tx_only_params));
8747
8748         /* Set the command */
8749         q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8750
8751         /* Set tx-only QUEUE flags: don't zero statistics */
8752         tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8753
8754         /* choose the index of the cid to send the slow path on */
8755         tx_only_params->cid_index = tx_index;
8756
8757         /* Set general TX_ONLY_SETUP parameters */
8758         bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8759
8760         /* Set Tx TX_ONLY_SETUP parameters */
8761         bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8762
8763         DP(NETIF_MSG_IFUP,
8764            "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8765            tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8766            q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8767            tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8768
8769         /* send the ramrod */
8770         return bnx2x_queue_state_change(bp, q_params);
8771 }
8772
8773 /**
8774  * bnx2x_setup_queue - setup queue
8775  *
8776  * @bp:         driver handle
8777  * @fp:         pointer to fastpath
8778  * @leading:    is leading
8779  *
8780  * This function performs 2 steps in a Queue state machine
8781  *      actually: 1) RESET->INIT 2) INIT->SETUP
8782  */
8783
8784 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8785                        bool leading)
8786 {
8787         struct bnx2x_queue_state_params q_params = {NULL};
8788         struct bnx2x_queue_setup_params *setup_params =
8789                                                 &q_params.params.setup;
8790         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8791                                                 &q_params.params.tx_only;
8792         int rc;
8793         u8 tx_index;
8794
8795         DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8796
8797         /* reset IGU state skip FCoE L2 queue */
8798         if (!IS_FCOE_FP(fp))
8799                 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8800                              IGU_INT_ENABLE, 0);
8801
8802         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8803         /* We want to wait for completion in this context */
8804         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8805
8806         /* Prepare the INIT parameters */
8807         bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8808
8809         /* Set the command */
8810         q_params.cmd = BNX2X_Q_CMD_INIT;
8811
8812         /* Change the state to INIT */
8813         rc = bnx2x_queue_state_change(bp, &q_params);
8814         if (rc) {
8815                 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8816                 return rc;
8817         }
8818
8819         DP(NETIF_MSG_IFUP, "init complete\n");
8820
8821         /* Now move the Queue to the SETUP state... */
8822         memset(setup_params, 0, sizeof(*setup_params));
8823
8824         /* Set QUEUE flags */
8825         setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8826
8827         /* Set general SETUP parameters */
8828         bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8829                                 FIRST_TX_COS_INDEX);
8830
8831         bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8832                             &setup_params->rxq_params);
8833
8834         bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8835                            FIRST_TX_COS_INDEX);
8836
8837         /* Set the command */
8838         q_params.cmd = BNX2X_Q_CMD_SETUP;
8839
8840         if (IS_FCOE_FP(fp))
8841                 bp->fcoe_init = true;
8842
8843         /* Change the state to SETUP */
8844         rc = bnx2x_queue_state_change(bp, &q_params);
8845         if (rc) {
8846                 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8847                 return rc;
8848         }
8849
8850         /* loop through the relevant tx-only indices */
8851         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8852               tx_index < fp->max_cos;
8853               tx_index++) {
8854
8855                 /* prepare and send tx-only ramrod*/
8856                 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8857                                           tx_only_params, tx_index, leading);
8858                 if (rc) {
8859                         BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8860                                   fp->index, tx_index);
8861                         return rc;
8862                 }
8863         }
8864
8865         return rc;
8866 }
8867
8868 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8869 {
8870         struct bnx2x_fastpath *fp = &bp->fp[index];
8871         struct bnx2x_fp_txdata *txdata;
8872         struct bnx2x_queue_state_params q_params = {NULL};
8873         int rc, tx_index;
8874
8875         DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8876
8877         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8878         /* We want to wait for completion in this context */
8879         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8880
8881         /* close tx-only connections */
8882         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8883              tx_index < fp->max_cos;
8884              tx_index++){
8885
8886                 /* ascertain this is a normal queue*/
8887                 txdata = fp->txdata_ptr[tx_index];
8888
8889                 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8890                                                         txdata->txq_index);
8891
8892                 /* send halt terminate on tx-only connection */
8893                 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8894                 memset(&q_params.params.terminate, 0,
8895                        sizeof(q_params.params.terminate));
8896                 q_params.params.terminate.cid_index = tx_index;
8897
8898                 rc = bnx2x_queue_state_change(bp, &q_params);
8899                 if (rc)
8900                         return rc;
8901
8902                 /* send halt terminate on tx-only connection */
8903                 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8904                 memset(&q_params.params.cfc_del, 0,
8905                        sizeof(q_params.params.cfc_del));
8906                 q_params.params.cfc_del.cid_index = tx_index;
8907                 rc = bnx2x_queue_state_change(bp, &q_params);
8908                 if (rc)
8909                         return rc;
8910         }
8911         /* Stop the primary connection: */
8912         /* ...halt the connection */
8913         q_params.cmd = BNX2X_Q_CMD_HALT;
8914         rc = bnx2x_queue_state_change(bp, &q_params);
8915         if (rc)
8916                 return rc;
8917
8918         /* ...terminate the connection */
8919         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8920         memset(&q_params.params.terminate, 0,
8921                sizeof(q_params.params.terminate));
8922         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8923         rc = bnx2x_queue_state_change(bp, &q_params);
8924         if (rc)
8925                 return rc;
8926         /* ...delete cfc entry */
8927         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8928         memset(&q_params.params.cfc_del, 0,
8929                sizeof(q_params.params.cfc_del));
8930         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8931         return bnx2x_queue_state_change(bp, &q_params);
8932 }
8933
8934 static void bnx2x_reset_func(struct bnx2x *bp)
8935 {
8936         int port = BP_PORT(bp);
8937         int func = BP_FUNC(bp);
8938         int i;
8939
8940         /* Disable the function in the FW */
8941         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8942         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8943         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8944         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8945
8946         /* FP SBs */
8947         for_each_eth_queue(bp, i) {
8948                 struct bnx2x_fastpath *fp = &bp->fp[i];
8949                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8950                            CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8951                            SB_DISABLED);
8952         }
8953
8954         if (CNIC_LOADED(bp))
8955                 /* CNIC SB */
8956                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8957                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8958                         (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8959
8960         /* SP SB */
8961         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8962                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8963                 SB_DISABLED);
8964
8965         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8966                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8967                        0);
8968
8969         /* Configure IGU */
8970         if (bp->common.int_block == INT_BLOCK_HC) {
8971                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8972                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8973         } else {
8974                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8975                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8976         }
8977
8978         if (CNIC_LOADED(bp)) {
8979                 /* Disable Timer scan */
8980                 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8981                 /*
8982                  * Wait for at least 10ms and up to 2 second for the timers
8983                  * scan to complete
8984                  */
8985                 for (i = 0; i < 200; i++) {
8986                         usleep_range(10000, 20000);
8987                         if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8988                                 break;
8989                 }
8990         }
8991         /* Clear ILT */
8992         bnx2x_clear_func_ilt(bp, func);
8993
8994         /* Timers workaround bug for E2: if this is vnic-3,
8995          * we need to set the entire ilt range for this timers.
8996          */
8997         if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8998                 struct ilt_client_info ilt_cli;
8999                 /* use dummy TM client */
9000                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9001                 ilt_cli.start = 0;
9002                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9003                 ilt_cli.client_num = ILT_CLIENT_TM;
9004
9005                 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9006         }
9007
9008         /* this assumes that reset_port() called before reset_func()*/
9009         if (!CHIP_IS_E1x(bp))
9010                 bnx2x_pf_disable(bp);
9011
9012         bp->dmae_ready = 0;
9013 }
9014
9015 static void bnx2x_reset_port(struct bnx2x *bp)
9016 {
9017         int port = BP_PORT(bp);
9018         u32 val;
9019
9020         /* Reset physical Link */
9021         bnx2x__link_reset(bp);
9022
9023         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9024
9025         /* Do not rcv packets to BRB */
9026         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9027         /* Do not direct rcv packets that are not for MCP to the BRB */
9028         REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9029                            NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9030
9031         /* Configure AEU */
9032         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9033
9034         msleep(100);
9035         /* Check for BRB port occupancy */
9036         val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9037         if (val)
9038                 DP(NETIF_MSG_IFDOWN,
9039                    "BRB1 is not empty  %d blocks are occupied\n", val);
9040
9041         /* TODO: Close Doorbell port? */
9042 }
9043
9044 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9045 {
9046         struct bnx2x_func_state_params func_params = {NULL};
9047
9048         /* Prepare parameters for function state transitions */
9049         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9050
9051         func_params.f_obj = &bp->func_obj;
9052         func_params.cmd = BNX2X_F_CMD_HW_RESET;
9053
9054         func_params.params.hw_init.load_phase = load_code;
9055
9056         return bnx2x_func_state_change(bp, &func_params);
9057 }
9058
9059 static int bnx2x_func_stop(struct bnx2x *bp)
9060 {
9061         struct bnx2x_func_state_params func_params = {NULL};
9062         int rc;
9063
9064         /* Prepare parameters for function state transitions */
9065         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9066         func_params.f_obj = &bp->func_obj;
9067         func_params.cmd = BNX2X_F_CMD_STOP;
9068
9069         /*
9070          * Try to stop the function the 'good way'. If fails (in case
9071          * of a parity error during bnx2x_chip_cleanup()) and we are
9072          * not in a debug mode, perform a state transaction in order to
9073          * enable further HW_RESET transaction.
9074          */
9075         rc = bnx2x_func_state_change(bp, &func_params);
9076         if (rc) {
9077 #ifdef BNX2X_STOP_ON_ERROR
9078                 return rc;
9079 #else
9080                 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9081                 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9082                 return bnx2x_func_state_change(bp, &func_params);
9083 #endif
9084         }
9085
9086         return 0;
9087 }
9088
9089 /**
9090  * bnx2x_send_unload_req - request unload mode from the MCP.
9091  *
9092  * @bp:                 driver handle
9093  * @unload_mode:        requested function's unload mode
9094  *
9095  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9096  */
9097 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9098 {
9099         u32 reset_code = 0;
9100         int port = BP_PORT(bp);
9101
9102         /* Select the UNLOAD request mode */
9103         if (unload_mode == UNLOAD_NORMAL)
9104                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9105
9106         else if (bp->flags & NO_WOL_FLAG)
9107                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9108
9109         else if (bp->wol) {
9110                 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9111                 u8 *mac_addr = bp->dev->dev_addr;
9112                 struct pci_dev *pdev = bp->pdev;
9113                 u32 val;
9114                 u16 pmc;
9115
9116                 /* The mac address is written to entries 1-4 to
9117                  * preserve entry 0 which is used by the PMF
9118                  */
9119                 u8 entry = (BP_VN(bp) + 1)*8;
9120
9121                 val = (mac_addr[0] << 8) | mac_addr[1];
9122                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9123
9124                 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9125                       (mac_addr[4] << 8) | mac_addr[5];
9126                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9127
9128                 /* Enable the PME and clear the status */
9129                 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9130                 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9131                 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9132
9133                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9134
9135         } else
9136                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9137
9138         /* Send the request to the MCP */
9139         if (!BP_NOMCP(bp))
9140                 reset_code = bnx2x_fw_command(bp, reset_code, 0);
9141         else {
9142                 int path = BP_PATH(bp);
9143
9144                 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9145                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9146                    bnx2x_load_count[path][2]);
9147                 bnx2x_load_count[path][0]--;
9148                 bnx2x_load_count[path][1 + port]--;
9149                 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9150                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9151                    bnx2x_load_count[path][2]);
9152                 if (bnx2x_load_count[path][0] == 0)
9153                         reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9154                 else if (bnx2x_load_count[path][1 + port] == 0)
9155                         reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9156                 else
9157                         reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9158         }
9159
9160         return reset_code;
9161 }
9162
9163 /**
9164  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9165  *
9166  * @bp:         driver handle
9167  * @keep_link:          true iff link should be kept up
9168  */
9169 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9170 {
9171         u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9172
9173         /* Report UNLOAD_DONE to MCP */
9174         if (!BP_NOMCP(bp))
9175                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9176 }
9177
9178 static int bnx2x_func_wait_started(struct bnx2x *bp)
9179 {
9180         int tout = 50;
9181         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9182
9183         if (!bp->port.pmf)
9184                 return 0;
9185
9186         /*
9187          * (assumption: No Attention from MCP at this stage)
9188          * PMF probably in the middle of TX disable/enable transaction
9189          * 1. Sync IRS for default SB
9190          * 2. Sync SP queue - this guarantees us that attention handling started
9191          * 3. Wait, that TX disable/enable transaction completes
9192          *
9193          * 1+2 guarantee that if DCBx attention was scheduled it already changed
9194          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9195          * received completion for the transaction the state is TX_STOPPED.
9196          * State will return to STARTED after completion of TX_STOPPED-->STARTED
9197          * transaction.
9198          */
9199
9200         /* make sure default SB ISR is done */
9201         if (msix)
9202                 synchronize_irq(bp->msix_table[0].vector);
9203         else
9204                 synchronize_irq(bp->pdev->irq);
9205
9206         flush_workqueue(bnx2x_wq);
9207         flush_workqueue(bnx2x_iov_wq);
9208
9209         while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9210                                 BNX2X_F_STATE_STARTED && tout--)
9211                 msleep(20);
9212
9213         if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9214                                                 BNX2X_F_STATE_STARTED) {
9215 #ifdef BNX2X_STOP_ON_ERROR
9216                 BNX2X_ERR("Wrong function state\n");
9217                 return -EBUSY;
9218 #else
9219                 /*
9220                  * Failed to complete the transaction in a "good way"
9221                  * Force both transactions with CLR bit
9222                  */
9223                 struct bnx2x_func_state_params func_params = {NULL};
9224
9225                 DP(NETIF_MSG_IFDOWN,
9226                    "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9227
9228                 func_params.f_obj = &bp->func_obj;
9229                 __set_bit(RAMROD_DRV_CLR_ONLY,
9230                                         &func_params.ramrod_flags);
9231
9232                 /* STARTED-->TX_ST0PPED */
9233                 func_params.cmd = BNX2X_F_CMD_TX_STOP;
9234                 bnx2x_func_state_change(bp, &func_params);
9235
9236                 /* TX_ST0PPED-->STARTED */
9237                 func_params.cmd = BNX2X_F_CMD_TX_START;
9238                 return bnx2x_func_state_change(bp, &func_params);
9239 #endif
9240         }
9241
9242         return 0;
9243 }
9244
9245 static void bnx2x_disable_ptp(struct bnx2x *bp)
9246 {
9247         int port = BP_PORT(bp);
9248
9249         /* Disable sending PTP packets to host */
9250         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9251                NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9252
9253         /* Reset PTP event detection rules */
9254         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9255                NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9256         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9257                NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9258         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9259                NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9260         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9261                NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9262
9263         /* Disable the PTP feature */
9264         REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9265                NIG_REG_P0_PTP_EN, 0x0);
9266 }
9267
9268 /* Called during unload, to stop PTP-related stuff */
9269 static void bnx2x_stop_ptp(struct bnx2x *bp)
9270 {
9271         /* Cancel PTP work queue. Should be done after the Tx queues are
9272          * drained to prevent additional scheduling.
9273          */
9274         cancel_work_sync(&bp->ptp_task);
9275
9276         if (bp->ptp_tx_skb) {
9277                 dev_kfree_skb_any(bp->ptp_tx_skb);
9278                 bp->ptp_tx_skb = NULL;
9279         }
9280
9281         /* Disable PTP in HW */
9282         bnx2x_disable_ptp(bp);
9283
9284         DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9285 }
9286
9287 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9288 {
9289         int port = BP_PORT(bp);
9290         int i, rc = 0;
9291         u8 cos;
9292         struct bnx2x_mcast_ramrod_params rparam = {NULL};
9293         u32 reset_code;
9294
9295         /* Wait until tx fastpath tasks complete */
9296         for_each_tx_queue(bp, i) {
9297                 struct bnx2x_fastpath *fp = &bp->fp[i];
9298
9299                 for_each_cos_in_tx_queue(fp, cos)
9300                         rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9301 #ifdef BNX2X_STOP_ON_ERROR
9302                 if (rc)
9303                         return;
9304 #endif
9305         }
9306
9307         /* Give HW time to discard old tx messages */
9308         usleep_range(1000, 2000);
9309
9310         /* Clean all ETH MACs */
9311         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9312                                 false);
9313         if (rc < 0)
9314                 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9315
9316         /* Clean up UC list  */
9317         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9318                                 true);
9319         if (rc < 0)
9320                 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9321                           rc);
9322
9323         /* Disable LLH */
9324         if (!CHIP_IS_E1(bp))
9325                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9326
9327         /* Set "drop all" (stop Rx).
9328          * We need to take a netif_addr_lock() here in order to prevent
9329          * a race between the completion code and this code.
9330          */
9331         netif_addr_lock_bh(bp->dev);
9332         /* Schedule the rx_mode command */
9333         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9334                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9335         else
9336                 bnx2x_set_storm_rx_mode(bp);
9337
9338         /* Cleanup multicast configuration */
9339         rparam.mcast_obj = &bp->mcast_obj;
9340         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9341         if (rc < 0)
9342                 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9343
9344         netif_addr_unlock_bh(bp->dev);
9345
9346         bnx2x_iov_chip_cleanup(bp);
9347
9348         /*
9349          * Send the UNLOAD_REQUEST to the MCP. This will return if
9350          * this function should perform FUNC, PORT or COMMON HW
9351          * reset.
9352          */
9353         reset_code = bnx2x_send_unload_req(bp, unload_mode);
9354
9355         /*
9356          * (assumption: No Attention from MCP at this stage)
9357          * PMF probably in the middle of TX disable/enable transaction
9358          */
9359         rc = bnx2x_func_wait_started(bp);
9360         if (rc) {
9361                 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9362 #ifdef BNX2X_STOP_ON_ERROR
9363                 return;
9364 #endif
9365         }
9366
9367         /* Close multi and leading connections
9368          * Completions for ramrods are collected in a synchronous way
9369          */
9370         for_each_eth_queue(bp, i)
9371                 if (bnx2x_stop_queue(bp, i))
9372 #ifdef BNX2X_STOP_ON_ERROR
9373                         return;
9374 #else
9375                         goto unload_error;
9376 #endif
9377
9378         if (CNIC_LOADED(bp)) {
9379                 for_each_cnic_queue(bp, i)
9380                         if (bnx2x_stop_queue(bp, i))
9381 #ifdef BNX2X_STOP_ON_ERROR
9382                                 return;
9383 #else
9384                                 goto unload_error;
9385 #endif
9386         }
9387
9388         /* If SP settings didn't get completed so far - something
9389          * very wrong has happen.
9390          */
9391         if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9392                 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9393
9394 #ifndef BNX2X_STOP_ON_ERROR
9395 unload_error:
9396 #endif
9397         rc = bnx2x_func_stop(bp);
9398         if (rc) {
9399                 BNX2X_ERR("Function stop failed!\n");
9400 #ifdef BNX2X_STOP_ON_ERROR
9401                 return;
9402 #endif
9403         }
9404
9405         /* stop_ptp should be after the Tx queues are drained to prevent
9406          * scheduling to the cancelled PTP work queue. It should also be after
9407          * function stop ramrod is sent, since as part of this ramrod FW access
9408          * PTP registers.
9409          */
9410         if (bp->flags & PTP_SUPPORTED)
9411                 bnx2x_stop_ptp(bp);
9412
9413         /* Disable HW interrupts, NAPI */
9414         bnx2x_netif_stop(bp, 1);
9415         /* Delete all NAPI objects */
9416         bnx2x_del_all_napi(bp);
9417         if (CNIC_LOADED(bp))
9418                 bnx2x_del_all_napi_cnic(bp);
9419
9420         /* Release IRQs */
9421         bnx2x_free_irq(bp);
9422
9423         /* Reset the chip, unless PCI function is offline. If we reach this
9424          * point following a PCI error handling, it means device is really
9425          * in a bad state and we're about to remove it, so reset the chip
9426          * is not a good idea.
9427          */
9428         if (!pci_channel_offline(bp->pdev)) {
9429                 rc = bnx2x_reset_hw(bp, reset_code);
9430                 if (rc)
9431                         BNX2X_ERR("HW_RESET failed\n");
9432         }
9433
9434         /* Report UNLOAD_DONE to MCP */
9435         bnx2x_send_unload_done(bp, keep_link);
9436 }
9437
9438 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9439 {
9440         u32 val;
9441
9442         DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9443
9444         if (CHIP_IS_E1(bp)) {
9445                 int port = BP_PORT(bp);
9446                 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9447                         MISC_REG_AEU_MASK_ATTN_FUNC_0;
9448
9449                 val = REG_RD(bp, addr);
9450                 val &= ~(0x300);
9451                 REG_WR(bp, addr, val);
9452         } else {
9453                 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9454                 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9455                          MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9456                 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9457         }
9458 }
9459
9460 /* Close gates #2, #3 and #4: */
9461 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9462 {
9463         u32 val;
9464
9465         /* Gates #2 and #4a are closed/opened for "not E1" only */
9466         if (!CHIP_IS_E1(bp)) {
9467                 /* #4 */
9468                 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9469                 /* #2 */
9470                 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9471         }
9472
9473         /* #3 */
9474         if (CHIP_IS_E1x(bp)) {
9475                 /* Prevent interrupts from HC on both ports */
9476                 val = REG_RD(bp, HC_REG_CONFIG_1);
9477                 REG_WR(bp, HC_REG_CONFIG_1,
9478                        (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9479                        (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9480
9481                 val = REG_RD(bp, HC_REG_CONFIG_0);
9482                 REG_WR(bp, HC_REG_CONFIG_0,
9483                        (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9484                        (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9485         } else {
9486                 /* Prevent incoming interrupts in IGU */
9487                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9488
9489                 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9490                        (!close) ?
9491                        (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9492                        (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9493         }
9494
9495         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9496                 close ? "closing" : "opening");
9497         mmiowb();
9498 }
9499
9500 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9501
9502 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9503 {
9504         /* Do some magic... */
9505         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9506         *magic_val = val & SHARED_MF_CLP_MAGIC;
9507         MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9508 }
9509
9510 /**
9511  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9512  *
9513  * @bp:         driver handle
9514  * @magic_val:  old value of the `magic' bit.
9515  */
9516 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9517 {
9518         /* Restore the `magic' bit value... */
9519         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9520         MF_CFG_WR(bp, shared_mf_config.clp_mb,
9521                 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9522 }
9523
9524 /**
9525  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9526  *
9527  * @bp:         driver handle
9528  * @magic_val:  old value of 'magic' bit.
9529  *
9530  * Takes care of CLP configurations.
9531  */
9532 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9533 {
9534         u32 shmem;
9535         u32 validity_offset;
9536
9537         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9538
9539         /* Set `magic' bit in order to save MF config */
9540         if (!CHIP_IS_E1(bp))
9541                 bnx2x_clp_reset_prep(bp, magic_val);
9542
9543         /* Get shmem offset */
9544         shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9545         validity_offset =
9546                 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9547
9548         /* Clear validity map flags */
9549         if (shmem > 0)
9550                 REG_WR(bp, shmem + validity_offset, 0);
9551 }
9552
9553 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9554 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9555
9556 /**
9557  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9558  *
9559  * @bp: driver handle
9560  */
9561 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9562 {
9563         /* special handling for emulation and FPGA,
9564            wait 10 times longer */
9565         if (CHIP_REV_IS_SLOW(bp))
9566                 msleep(MCP_ONE_TIMEOUT*10);
9567         else
9568                 msleep(MCP_ONE_TIMEOUT);
9569 }
9570
9571 /*
9572  * initializes bp->common.shmem_base and waits for validity signature to appear
9573  */
9574 static int bnx2x_init_shmem(struct bnx2x *bp)
9575 {
9576         int cnt = 0;
9577         u32 val = 0;
9578
9579         do {
9580                 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9581                 if (bp->common.shmem_base) {
9582                         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9583                         if (val & SHR_MEM_VALIDITY_MB)
9584                                 return 0;
9585                 }
9586
9587                 bnx2x_mcp_wait_one(bp);
9588
9589         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9590
9591         BNX2X_ERR("BAD MCP validity signature\n");
9592
9593         return -ENODEV;
9594 }
9595
9596 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9597 {
9598         int rc = bnx2x_init_shmem(bp);
9599
9600         /* Restore the `magic' bit value */
9601         if (!CHIP_IS_E1(bp))
9602                 bnx2x_clp_reset_done(bp, magic_val);
9603
9604         return rc;
9605 }
9606
9607 static void bnx2x_pxp_prep(struct bnx2x *bp)
9608 {
9609         if (!CHIP_IS_E1(bp)) {
9610                 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9611                 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9612                 mmiowb();
9613         }
9614 }
9615
9616 /*
9617  * Reset the whole chip except for:
9618  *      - PCIE core
9619  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9620  *              one reset bit)
9621  *      - IGU
9622  *      - MISC (including AEU)
9623  *      - GRC
9624  *      - RBCN, RBCP
9625  */
9626 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9627 {
9628         u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9629         u32 global_bits2, stay_reset2;
9630
9631         /*
9632          * Bits that have to be set in reset_mask2 if we want to reset 'global'
9633          * (per chip) blocks.
9634          */
9635         global_bits2 =
9636                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9637                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9638
9639         /* Don't reset the following blocks.
9640          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9641          *            reset, as in 4 port device they might still be owned
9642          *            by the MCP (there is only one leader per path).
9643          */
9644         not_reset_mask1 =
9645                 MISC_REGISTERS_RESET_REG_1_RST_HC |
9646                 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9647                 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9648
9649         not_reset_mask2 =
9650                 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9651                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9652                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9653                 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9654                 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9655                 MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9656                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9657                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9658                 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9659                 MISC_REGISTERS_RESET_REG_2_PGLC |
9660                 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9661                 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9662                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9663                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9664                 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9665                 MISC_REGISTERS_RESET_REG_2_UMAC1;
9666
9667         /*
9668          * Keep the following blocks in reset:
9669          *  - all xxMACs are handled by the bnx2x_link code.
9670          */
9671         stay_reset2 =
9672                 MISC_REGISTERS_RESET_REG_2_XMAC |
9673                 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9674
9675         /* Full reset masks according to the chip */
9676         reset_mask1 = 0xffffffff;
9677
9678         if (CHIP_IS_E1(bp))
9679                 reset_mask2 = 0xffff;
9680         else if (CHIP_IS_E1H(bp))
9681                 reset_mask2 = 0x1ffff;
9682         else if (CHIP_IS_E2(bp))
9683                 reset_mask2 = 0xfffff;
9684         else /* CHIP_IS_E3 */
9685                 reset_mask2 = 0x3ffffff;
9686
9687         /* Don't reset global blocks unless we need to */
9688         if (!global)
9689                 reset_mask2 &= ~global_bits2;
9690
9691         /*
9692          * In case of attention in the QM, we need to reset PXP
9693          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9694          * because otherwise QM reset would release 'close the gates' shortly
9695          * before resetting the PXP, then the PSWRQ would send a write
9696          * request to PGLUE. Then when PXP is reset, PGLUE would try to
9697          * read the payload data from PSWWR, but PSWWR would not
9698          * respond. The write queue in PGLUE would stuck, dmae commands
9699          * would not return. Therefore it's important to reset the second
9700          * reset register (containing the
9701          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9702          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9703          * bit).
9704          */
9705         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9706                reset_mask2 & (~not_reset_mask2));
9707
9708         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9709                reset_mask1 & (~not_reset_mask1));
9710
9711         barrier();
9712         mmiowb();
9713
9714         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9715                reset_mask2 & (~stay_reset2));
9716
9717         barrier();
9718         mmiowb();
9719
9720         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9721         mmiowb();
9722 }
9723
9724 /**
9725  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9726  * It should get cleared in no more than 1s.
9727  *
9728  * @bp: driver handle
9729  *
9730  * It should get cleared in no more than 1s. Returns 0 if
9731  * pending writes bit gets cleared.
9732  */
9733 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9734 {
9735         u32 cnt = 1000;
9736         u32 pend_bits = 0;
9737
9738         do {
9739                 pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9740
9741                 if (pend_bits == 0)
9742                         break;
9743
9744                 usleep_range(1000, 2000);
9745         } while (cnt-- > 0);
9746
9747         if (cnt <= 0) {
9748                 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9749                           pend_bits);
9750                 return -EBUSY;
9751         }
9752
9753         return 0;
9754 }
9755
9756 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9757 {
9758         int cnt = 1000;
9759         u32 val = 0;
9760         u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9761         u32 tags_63_32 = 0;
9762
9763         /* Empty the Tetris buffer, wait for 1s */
9764         do {
9765                 sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9766                 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9767                 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9768                 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9769                 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9770                 if (CHIP_IS_E3(bp))
9771                         tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9772
9773                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9774                     ((port_is_idle_0 & 0x1) == 0x1) &&
9775                     ((port_is_idle_1 & 0x1) == 0x1) &&
9776                     (pgl_exp_rom2 == 0xffffffff) &&
9777                     (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9778                         break;
9779                 usleep_range(1000, 2000);
9780         } while (cnt-- > 0);
9781
9782         if (cnt <= 0) {
9783                 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9784                 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9785                           sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9786                           pgl_exp_rom2);
9787                 return -EAGAIN;
9788         }
9789
9790         barrier();
9791
9792         /* Close gates #2, #3 and #4 */
9793         bnx2x_set_234_gates(bp, true);
9794
9795         /* Poll for IGU VQs for 57712 and newer chips */
9796         if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9797                 return -EAGAIN;
9798
9799         /* TBD: Indicate that "process kill" is in progress to MCP */
9800
9801         /* Clear "unprepared" bit */
9802         REG_WR(bp, MISC_REG_UNPREPARED, 0);
9803         barrier();
9804
9805         /* Make sure all is written to the chip before the reset */
9806         mmiowb();
9807
9808         /* Wait for 1ms to empty GLUE and PCI-E core queues,
9809          * PSWHST, GRC and PSWRD Tetris buffer.
9810          */
9811         usleep_range(1000, 2000);
9812
9813         /* Prepare to chip reset: */
9814         /* MCP */
9815         if (global)
9816                 bnx2x_reset_mcp_prep(bp, &val);
9817
9818         /* PXP */
9819         bnx2x_pxp_prep(bp);
9820         barrier();
9821
9822         /* reset the chip */
9823         bnx2x_process_kill_chip_reset(bp, global);
9824         barrier();
9825
9826         /* clear errors in PGB */
9827         if (!CHIP_IS_E1x(bp))
9828                 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9829
9830         /* Recover after reset: */
9831         /* MCP */
9832         if (global && bnx2x_reset_mcp_comp(bp, val))
9833                 return -EAGAIN;
9834
9835         /* TBD: Add resetting the NO_MCP mode DB here */
9836
9837         /* Open the gates #2, #3 and #4 */
9838         bnx2x_set_234_gates(bp, false);
9839
9840         /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9841          * reset state, re-enable attentions. */
9842
9843         return 0;
9844 }
9845
9846 static int bnx2x_leader_reset(struct bnx2x *bp)
9847 {
9848         int rc = 0;
9849         bool global = bnx2x_reset_is_global(bp);
9850         u32 load_code;
9851
9852         /* if not going to reset MCP - load "fake" driver to reset HW while
9853          * driver is owner of the HW
9854          */
9855         if (!global && !BP_NOMCP(bp)) {
9856                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9857                                              DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9858                 if (!load_code) {
9859                         BNX2X_ERR("MCP response failure, aborting\n");
9860                         rc = -EAGAIN;
9861                         goto exit_leader_reset;
9862                 }
9863                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9864                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9865                         BNX2X_ERR("MCP unexpected resp, aborting\n");
9866                         rc = -EAGAIN;
9867                         goto exit_leader_reset2;
9868                 }
9869                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9870                 if (!load_code) {
9871                         BNX2X_ERR("MCP response failure, aborting\n");
9872                         rc = -EAGAIN;
9873                         goto exit_leader_reset2;
9874                 }
9875         }
9876
9877         /* Try to recover after the failure */
9878         if (bnx2x_process_kill(bp, global)) {
9879                 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9880                           BP_PATH(bp));
9881                 rc = -EAGAIN;
9882                 goto exit_leader_reset2;
9883         }
9884
9885         /*
9886          * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9887          * state.
9888          */
9889         bnx2x_set_reset_done(bp);
9890         if (global)
9891                 bnx2x_clear_reset_global(bp);
9892
9893 exit_leader_reset2:
9894         /* unload "fake driver" if it was loaded */
9895         if (!global && !BP_NOMCP(bp)) {
9896                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9897                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9898         }
9899 exit_leader_reset:
9900         bp->is_leader = 0;
9901         bnx2x_release_leader_lock(bp);
9902         smp_mb();
9903         return rc;
9904 }
9905
9906 static void bnx2x_recovery_failed(struct bnx2x *bp)
9907 {
9908         netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9909
9910         /* Disconnect this device */
9911         netif_device_detach(bp->dev);
9912
9913         /*
9914          * Block ifup for all function on this engine until "process kill"
9915          * or power cycle.
9916          */
9917         bnx2x_set_reset_in_progress(bp);
9918
9919         /* Shut down the power */
9920         bnx2x_set_power_state(bp, PCI_D3hot);
9921
9922         bp->recovery_state = BNX2X_RECOVERY_FAILED;
9923
9924         smp_mb();
9925 }
9926
9927 /*
9928  * Assumption: runs under rtnl lock. This together with the fact
9929  * that it's called only from bnx2x_sp_rtnl() ensure that it
9930  * will never be called when netif_running(bp->dev) is false.
9931  */
9932 static void bnx2x_parity_recover(struct bnx2x *bp)
9933 {
9934         bool global = false;
9935         u32 error_recovered, error_unrecovered;
9936         bool is_parity;
9937
9938         DP(NETIF_MSG_HW, "Handling parity\n");
9939         while (1) {
9940                 switch (bp->recovery_state) {
9941                 case BNX2X_RECOVERY_INIT:
9942                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9943                         is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9944                         WARN_ON(!is_parity);
9945
9946                         /* Try to get a LEADER_LOCK HW lock */
9947                         if (bnx2x_trylock_leader_lock(bp)) {
9948                                 bnx2x_set_reset_in_progress(bp);
9949                                 /*
9950                                  * Check if there is a global attention and if
9951                                  * there was a global attention, set the global
9952                                  * reset bit.
9953                                  */
9954
9955                                 if (global)
9956                                         bnx2x_set_reset_global(bp);
9957
9958                                 bp->is_leader = 1;
9959                         }
9960
9961                         /* Stop the driver */
9962                         /* If interface has been removed - break */
9963                         if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9964                                 return;
9965
9966                         bp->recovery_state = BNX2X_RECOVERY_WAIT;
9967
9968                         /* Ensure "is_leader", MCP command sequence and
9969                          * "recovery_state" update values are seen on other
9970                          * CPUs.
9971                          */
9972                         smp_mb();
9973                         break;
9974
9975                 case BNX2X_RECOVERY_WAIT:
9976                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9977                         if (bp->is_leader) {
9978                                 int other_engine = BP_PATH(bp) ? 0 : 1;
9979                                 bool other_load_status =
9980                                         bnx2x_get_load_status(bp, other_engine);
9981                                 bool load_status =
9982                                         bnx2x_get_load_status(bp, BP_PATH(bp));
9983                                 global = bnx2x_reset_is_global(bp);
9984
9985                                 /*
9986                                  * In case of a parity in a global block, let
9987                                  * the first leader that performs a
9988                                  * leader_reset() reset the global blocks in
9989                                  * order to clear global attentions. Otherwise
9990                                  * the gates will remain closed for that
9991                                  * engine.
9992                                  */
9993                                 if (load_status ||
9994                                     (global && other_load_status)) {
9995                                         /* Wait until all other functions get
9996                                          * down.
9997                                          */
9998                                         schedule_delayed_work(&bp->sp_rtnl_task,
9999                                                                 HZ/10);
10000                                         return;
10001                                 } else {
10002                                         /* If all other functions got down -
10003                                          * try to bring the chip back to
10004                                          * normal. In any case it's an exit
10005                                          * point for a leader.
10006                                          */
10007                                         if (bnx2x_leader_reset(bp)) {
10008                                                 bnx2x_recovery_failed(bp);
10009                                                 return;
10010                                         }
10011
10012                                         /* If we are here, means that the
10013                                          * leader has succeeded and doesn't
10014                                          * want to be a leader any more. Try
10015                                          * to continue as a none-leader.
10016                                          */
10017                                         break;
10018                                 }
10019                         } else { /* non-leader */
10020                                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10021                                         /* Try to get a LEADER_LOCK HW lock as
10022                                          * long as a former leader may have
10023                                          * been unloaded by the user or
10024                                          * released a leadership by another
10025                                          * reason.
10026                                          */
10027                                         if (bnx2x_trylock_leader_lock(bp)) {
10028                                                 /* I'm a leader now! Restart a
10029                                                  * switch case.
10030                                                  */
10031                                                 bp->is_leader = 1;
10032                                                 break;
10033                                         }
10034
10035                                         schedule_delayed_work(&bp->sp_rtnl_task,
10036                                                                 HZ/10);
10037                                         return;
10038
10039                                 } else {
10040                                         /*
10041                                          * If there was a global attention, wait
10042                                          * for it to be cleared.
10043                                          */
10044                                         if (bnx2x_reset_is_global(bp)) {
10045                                                 schedule_delayed_work(
10046                                                         &bp->sp_rtnl_task,
10047                                                         HZ/10);
10048                                                 return;
10049                                         }
10050
10051                                         error_recovered =
10052                                           bp->eth_stats.recoverable_error;
10053                                         error_unrecovered =
10054                                           bp->eth_stats.unrecoverable_error;
10055                                         bp->recovery_state =
10056                                                 BNX2X_RECOVERY_NIC_LOADING;
10057                                         if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10058                                                 error_unrecovered++;
10059                                                 netdev_err(bp->dev,
10060                                                            "Recovery failed. Power cycle needed\n");
10061                                                 /* Disconnect this device */
10062                                                 netif_device_detach(bp->dev);
10063                                                 /* Shut down the power */
10064                                                 bnx2x_set_power_state(
10065                                                         bp, PCI_D3hot);
10066                                                 smp_mb();
10067                                         } else {
10068                                                 bp->recovery_state =
10069                                                         BNX2X_RECOVERY_DONE;
10070                                                 error_recovered++;
10071                                                 smp_mb();
10072                                         }
10073                                         bp->eth_stats.recoverable_error =
10074                                                 error_recovered;
10075                                         bp->eth_stats.unrecoverable_error =
10076                                                 error_unrecovered;
10077
10078                                         return;
10079                                 }
10080                         }
10081                 default:
10082                         return;
10083                 }
10084         }
10085 }
10086
10087 static int bnx2x_udp_port_update(struct bnx2x *bp)
10088 {
10089         struct bnx2x_func_switch_update_params *switch_update_params;
10090         struct bnx2x_func_state_params func_params = {NULL};
10091         struct bnx2x_udp_tunnel *udp_tunnel;
10092         u16 vxlan_port = 0, geneve_port = 0;
10093         int rc;
10094
10095         switch_update_params = &func_params.params.switch_update;
10096
10097         /* Prepare parameters for function state transitions */
10098         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10099         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10100
10101         func_params.f_obj = &bp->func_obj;
10102         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10103
10104         /* Function parameters */
10105         __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10106                   &switch_update_params->changes);
10107
10108         if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) {
10109                 udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10110                 geneve_port = udp_tunnel->dst_port;
10111                 switch_update_params->geneve_dst_port = geneve_port;
10112         }
10113
10114         if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count) {
10115                 udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10116                 vxlan_port = udp_tunnel->dst_port;
10117                 switch_update_params->vxlan_dst_port = vxlan_port;
10118         }
10119
10120         /* Re-enable inner-rss for the offloaded UDP tunnels */
10121         __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10122                   &switch_update_params->changes);
10123
10124         rc = bnx2x_func_state_change(bp, &func_params);
10125         if (rc)
10126                 BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10127                           vxlan_port, geneve_port, rc);
10128         else
10129                 DP(BNX2X_MSG_SP,
10130                    "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10131                    vxlan_port, geneve_port);
10132
10133         return rc;
10134 }
10135
10136 static void __bnx2x_add_udp_port(struct bnx2x *bp, u16 port,
10137                                  enum bnx2x_udp_port_type type)
10138 {
10139         struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10140
10141         if (!netif_running(bp->dev) || !IS_PF(bp) || CHIP_IS_E1x(bp))
10142                 return;
10143
10144         if (udp_port->count && udp_port->dst_port == port) {
10145                 udp_port->count++;
10146                 return;
10147         }
10148
10149         if (udp_port->count) {
10150                 DP(BNX2X_MSG_SP,
10151                    "UDP tunnel [%d] -  destination port limit reached\n",
10152                    type);
10153                 return;
10154         }
10155
10156         udp_port->dst_port = port;
10157         udp_port->count = 1;
10158         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10159 }
10160
10161 static void __bnx2x_del_udp_port(struct bnx2x *bp, u16 port,
10162                                  enum bnx2x_udp_port_type type)
10163 {
10164         struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10165
10166         if (!IS_PF(bp) || CHIP_IS_E1x(bp))
10167                 return;
10168
10169         if (!udp_port->count || udp_port->dst_port != port) {
10170                 DP(BNX2X_MSG_SP, "Invalid UDP tunnel [%d] port\n",
10171                    type);
10172                 return;
10173         }
10174
10175         /* Remove reference, and make certain it's no longer in use */
10176         udp_port->count--;
10177         if (udp_port->count)
10178                 return;
10179         udp_port->dst_port = 0;
10180
10181         if (netif_running(bp->dev))
10182                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10183         else
10184                 DP(BNX2X_MSG_SP, "Deleted UDP tunnel [%d] port %d\n",
10185                    type, port);
10186 }
10187
10188 static void bnx2x_udp_tunnel_add(struct net_device *netdev,
10189                                  struct udp_tunnel_info *ti)
10190 {
10191         struct bnx2x *bp = netdev_priv(netdev);
10192         u16 t_port = ntohs(ti->port);
10193
10194         switch (ti->type) {
10195         case UDP_TUNNEL_TYPE_VXLAN:
10196                 __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10197                 break;
10198         case UDP_TUNNEL_TYPE_GENEVE:
10199                 __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10200                 break;
10201         default:
10202                 break;
10203         }
10204 }
10205
10206 static void bnx2x_udp_tunnel_del(struct net_device *netdev,
10207                                  struct udp_tunnel_info *ti)
10208 {
10209         struct bnx2x *bp = netdev_priv(netdev);
10210         u16 t_port = ntohs(ti->port);
10211
10212         switch (ti->type) {
10213         case UDP_TUNNEL_TYPE_VXLAN:
10214                 __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10215                 break;
10216         case UDP_TUNNEL_TYPE_GENEVE:
10217                 __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10218                 break;
10219         default:
10220                 break;
10221         }
10222 }
10223
10224 static int bnx2x_close(struct net_device *dev);
10225
10226 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10227  * scheduled on a general queue in order to prevent a dead lock.
10228  */
10229 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10230 {
10231         struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10232
10233         rtnl_lock();
10234
10235         if (!netif_running(bp->dev)) {
10236                 rtnl_unlock();
10237                 return;
10238         }
10239
10240         if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10241 #ifdef BNX2X_STOP_ON_ERROR
10242                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10243                           "you will need to reboot when done\n");
10244                 goto sp_rtnl_not_reset;
10245 #endif
10246                 /*
10247                  * Clear all pending SP commands as we are going to reset the
10248                  * function anyway.
10249                  */
10250                 bp->sp_rtnl_state = 0;
10251                 smp_mb();
10252
10253                 bnx2x_parity_recover(bp);
10254
10255                 rtnl_unlock();
10256                 return;
10257         }
10258
10259         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10260 #ifdef BNX2X_STOP_ON_ERROR
10261                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10262                           "you will need to reboot when done\n");
10263                 goto sp_rtnl_not_reset;
10264 #endif
10265
10266                 /*
10267                  * Clear all pending SP commands as we are going to reset the
10268                  * function anyway.
10269                  */
10270                 bp->sp_rtnl_state = 0;
10271                 smp_mb();
10272
10273                 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10274                 bnx2x_nic_load(bp, LOAD_NORMAL);
10275
10276                 rtnl_unlock();
10277                 return;
10278         }
10279 #ifdef BNX2X_STOP_ON_ERROR
10280 sp_rtnl_not_reset:
10281 #endif
10282         if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10283                 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10284         if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10285                 bnx2x_after_function_update(bp);
10286         /*
10287          * in case of fan failure we need to reset id if the "stop on error"
10288          * debug flag is set, since we trying to prevent permanent overheating
10289          * damage
10290          */
10291         if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10292                 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10293                 netif_device_detach(bp->dev);
10294                 bnx2x_close(bp->dev);
10295                 rtnl_unlock();
10296                 return;
10297         }
10298
10299         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10300                 DP(BNX2X_MSG_SP,
10301                    "sending set mcast vf pf channel message from rtnl sp-task\n");
10302                 bnx2x_vfpf_set_mcast(bp->dev);
10303         }
10304         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10305                                &bp->sp_rtnl_state)){
10306                 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
10307                         bnx2x_tx_disable(bp);
10308                         BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10309                 }
10310         }
10311
10312         if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10313                 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10314                 bnx2x_set_rx_mode_inner(bp);
10315         }
10316
10317         if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10318                                &bp->sp_rtnl_state))
10319                 bnx2x_pf_set_vfs_vlan(bp);
10320
10321         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10322                 bnx2x_dcbx_stop_hw_tx(bp);
10323                 bnx2x_dcbx_resume_hw_tx(bp);
10324         }
10325
10326         if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10327                                &bp->sp_rtnl_state))
10328                 bnx2x_update_mng_version(bp);
10329
10330         if (test_and_clear_bit(BNX2X_SP_RTNL_CHANGE_UDP_PORT,
10331                                &bp->sp_rtnl_state)) {
10332                 if (bnx2x_udp_port_update(bp)) {
10333                         /* On error, forget configuration */
10334                         memset(bp->udp_tunnel_ports, 0,
10335                                sizeof(struct bnx2x_udp_tunnel) *
10336                                BNX2X_UDP_PORT_MAX);
10337                 } else {
10338                         /* Since we don't store additional port information,
10339                          * if no ports are configured for any feature ask for
10340                          * information about currently configured ports.
10341                          */
10342                         if (!bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count &&
10343                             !bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count)
10344                                 udp_tunnel_get_rx_info(bp->dev);
10345                 }
10346         }
10347
10348         /* work which needs rtnl lock not-taken (as it takes the lock itself and
10349          * can be called from other contexts as well)
10350          */
10351         rtnl_unlock();
10352
10353         /* enable SR-IOV if applicable */
10354         if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10355                                                &bp->sp_rtnl_state)) {
10356                 bnx2x_disable_sriov(bp);
10357                 bnx2x_enable_sriov(bp);
10358         }
10359 }
10360
10361 static void bnx2x_period_task(struct work_struct *work)
10362 {
10363         struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10364
10365         if (!netif_running(bp->dev))
10366                 goto period_task_exit;
10367
10368         if (CHIP_REV_IS_SLOW(bp)) {
10369                 BNX2X_ERR("period task called on emulation, ignoring\n");
10370                 goto period_task_exit;
10371         }
10372
10373         bnx2x_acquire_phy_lock(bp);
10374         /*
10375          * The barrier is needed to ensure the ordering between the writing to
10376          * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10377          * the reading here.
10378          */
10379         smp_mb();
10380         if (bp->port.pmf) {
10381                 bnx2x_period_func(&bp->link_params, &bp->link_vars);
10382
10383                 /* Re-queue task in 1 sec */
10384                 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10385         }
10386
10387         bnx2x_release_phy_lock(bp);
10388 period_task_exit:
10389         return;
10390 }
10391
10392 /*
10393  * Init service functions
10394  */
10395
10396 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10397 {
10398         u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10399         u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10400         return base + (BP_ABS_FUNC(bp)) * stride;
10401 }
10402
10403 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10404                                          u8 port, u32 reset_reg,
10405                                          struct bnx2x_mac_vals *vals)
10406 {
10407         u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10408         u32 base_addr;
10409
10410         if (!(mask & reset_reg))
10411                 return false;
10412
10413         BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10414         base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10415         vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10416         vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10417         REG_WR(bp, vals->umac_addr[port], 0);
10418
10419         return true;
10420 }
10421
10422 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10423                                         struct bnx2x_mac_vals *vals)
10424 {
10425         u32 val, base_addr, offset, mask, reset_reg;
10426         bool mac_stopped = false;
10427         u8 port = BP_PORT(bp);
10428
10429         /* reset addresses as they also mark which values were changed */
10430         memset(vals, 0, sizeof(*vals));
10431
10432         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10433
10434         if (!CHIP_IS_E3(bp)) {
10435                 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10436                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10437                 if ((mask & reset_reg) && val) {
10438                         u32 wb_data[2];
10439                         BNX2X_DEV_INFO("Disable bmac Rx\n");
10440                         base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10441                                                 : NIG_REG_INGRESS_BMAC0_MEM;
10442                         offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10443                                                 : BIGMAC_REGISTER_BMAC_CONTROL;
10444
10445                         /*
10446                          * use rd/wr since we cannot use dmae. This is safe
10447                          * since MCP won't access the bus due to the request
10448                          * to unload, and no function on the path can be
10449                          * loaded at this time.
10450                          */
10451                         wb_data[0] = REG_RD(bp, base_addr + offset);
10452                         wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10453                         vals->bmac_addr = base_addr + offset;
10454                         vals->bmac_val[0] = wb_data[0];
10455                         vals->bmac_val[1] = wb_data[1];
10456                         wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10457                         REG_WR(bp, vals->bmac_addr, wb_data[0]);
10458                         REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10459                 }
10460                 BNX2X_DEV_INFO("Disable emac Rx\n");
10461                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10462                 vals->emac_val = REG_RD(bp, vals->emac_addr);
10463                 REG_WR(bp, vals->emac_addr, 0);
10464                 mac_stopped = true;
10465         } else {
10466                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10467                         BNX2X_DEV_INFO("Disable xmac Rx\n");
10468                         base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10469                         val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10470                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10471                                val & ~(1 << 1));
10472                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10473                                val | (1 << 1));
10474                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10475                         vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10476                         REG_WR(bp, vals->xmac_addr, 0);
10477                         mac_stopped = true;
10478                 }
10479
10480                 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10481                                                             reset_reg, vals);
10482                 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10483                                                             reset_reg, vals);
10484         }
10485
10486         if (mac_stopped)
10487                 msleep(20);
10488 }
10489
10490 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10491 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10492                                         0x1848 + ((f) << 4))
10493 #define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
10494 #define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
10495 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
10496
10497 #define BCM_5710_UNDI_FW_MF_MAJOR       (0x07)
10498 #define BCM_5710_UNDI_FW_MF_MINOR       (0x08)
10499 #define BCM_5710_UNDI_FW_MF_VERS        (0x05)
10500
10501 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10502 {
10503         /* UNDI marks its presence in DORQ -
10504          * it initializes CID offset for normal bell to 0x7
10505          */
10506         if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10507             MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10508                 return false;
10509
10510         if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10511                 BNX2X_DEV_INFO("UNDI previously loaded\n");
10512                 return true;
10513         }
10514
10515         return false;
10516 }
10517
10518 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10519 {
10520         u16 rcq, bd;
10521         u32 addr, tmp_reg;
10522
10523         if (BP_FUNC(bp) < 2)
10524                 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10525         else
10526                 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10527
10528         tmp_reg = REG_RD(bp, addr);
10529         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10530         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10531
10532         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10533         REG_WR(bp, addr, tmp_reg);
10534
10535         BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10536                        BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10537 }
10538
10539 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10540 {
10541         u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10542                                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10543         if (!rc) {
10544                 BNX2X_ERR("MCP response failure, aborting\n");
10545                 return -EBUSY;
10546         }
10547
10548         return 0;
10549 }
10550
10551 static struct bnx2x_prev_path_list *
10552                 bnx2x_prev_path_get_entry(struct bnx2x *bp)
10553 {
10554         struct bnx2x_prev_path_list *tmp_list;
10555
10556         list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10557                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10558                     bp->pdev->bus->number == tmp_list->bus &&
10559                     BP_PATH(bp) == tmp_list->path)
10560                         return tmp_list;
10561
10562         return NULL;
10563 }
10564
10565 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10566 {
10567         struct bnx2x_prev_path_list *tmp_list;
10568         int rc;
10569
10570         rc = down_interruptible(&bnx2x_prev_sem);
10571         if (rc) {
10572                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10573                 return rc;
10574         }
10575
10576         tmp_list = bnx2x_prev_path_get_entry(bp);
10577         if (tmp_list) {
10578                 tmp_list->aer = 1;
10579                 rc = 0;
10580         } else {
10581                 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10582                           BP_PATH(bp));
10583         }
10584
10585         up(&bnx2x_prev_sem);
10586
10587         return rc;
10588 }
10589
10590 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10591 {
10592         struct bnx2x_prev_path_list *tmp_list;
10593         bool rc = false;
10594
10595         if (down_trylock(&bnx2x_prev_sem))
10596                 return false;
10597
10598         tmp_list = bnx2x_prev_path_get_entry(bp);
10599         if (tmp_list) {
10600                 if (tmp_list->aer) {
10601                         DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10602                            BP_PATH(bp));
10603                 } else {
10604                         rc = true;
10605                         BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10606                                        BP_PATH(bp));
10607                 }
10608         }
10609
10610         up(&bnx2x_prev_sem);
10611
10612         return rc;
10613 }
10614
10615 bool bnx2x_port_after_undi(struct bnx2x *bp)
10616 {
10617         struct bnx2x_prev_path_list *entry;
10618         bool val;
10619
10620         down(&bnx2x_prev_sem);
10621
10622         entry = bnx2x_prev_path_get_entry(bp);
10623         val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10624
10625         up(&bnx2x_prev_sem);
10626
10627         return val;
10628 }
10629
10630 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10631 {
10632         struct bnx2x_prev_path_list *tmp_list;
10633         int rc;
10634
10635         rc = down_interruptible(&bnx2x_prev_sem);
10636         if (rc) {
10637                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10638                 return rc;
10639         }
10640
10641         /* Check whether the entry for this path already exists */
10642         tmp_list = bnx2x_prev_path_get_entry(bp);
10643         if (tmp_list) {
10644                 if (!tmp_list->aer) {
10645                         BNX2X_ERR("Re-Marking the path.\n");
10646                 } else {
10647                         DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10648                            BP_PATH(bp));
10649                         tmp_list->aer = 0;
10650                 }
10651                 up(&bnx2x_prev_sem);
10652                 return 0;
10653         }
10654         up(&bnx2x_prev_sem);
10655
10656         /* Create an entry for this path and add it */
10657         tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10658         if (!tmp_list) {
10659                 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10660                 return -ENOMEM;
10661         }
10662
10663         tmp_list->bus = bp->pdev->bus->number;
10664         tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10665         tmp_list->path = BP_PATH(bp);
10666         tmp_list->aer = 0;
10667         tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10668
10669         rc = down_interruptible(&bnx2x_prev_sem);
10670         if (rc) {
10671                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10672                 kfree(tmp_list);
10673         } else {
10674                 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10675                    BP_PATH(bp));
10676                 list_add(&tmp_list->list, &bnx2x_prev_list);
10677                 up(&bnx2x_prev_sem);
10678         }
10679
10680         return rc;
10681 }
10682
10683 static int bnx2x_do_flr(struct bnx2x *bp)
10684 {
10685         struct pci_dev *dev = bp->pdev;
10686
10687         if (CHIP_IS_E1x(bp)) {
10688                 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10689                 return -EINVAL;
10690         }
10691
10692         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10693         if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10694                 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10695                           bp->common.bc_ver);
10696                 return -EINVAL;
10697         }
10698
10699         if (!pci_wait_for_pending_transaction(dev))
10700                 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10701
10702         BNX2X_DEV_INFO("Initiating FLR\n");
10703         bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10704
10705         return 0;
10706 }
10707
10708 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10709 {
10710         int rc;
10711
10712         BNX2X_DEV_INFO("Uncommon unload Flow\n");
10713
10714         /* Test if previous unload process was already finished for this path */
10715         if (bnx2x_prev_is_path_marked(bp))
10716                 return bnx2x_prev_mcp_done(bp);
10717
10718         BNX2X_DEV_INFO("Path is unmarked\n");
10719
10720         /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10721         if (bnx2x_prev_is_after_undi(bp))
10722                 goto out;
10723
10724         /* If function has FLR capabilities, and existing FW version matches
10725          * the one required, then FLR will be sufficient to clean any residue
10726          * left by previous driver
10727          */
10728         rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10729
10730         if (!rc) {
10731                 /* fw version is good */
10732                 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10733                 rc = bnx2x_do_flr(bp);
10734         }
10735
10736         if (!rc) {
10737                 /* FLR was performed */
10738                 BNX2X_DEV_INFO("FLR successful\n");
10739                 return 0;
10740         }
10741
10742         BNX2X_DEV_INFO("Could not FLR\n");
10743
10744 out:
10745         /* Close the MCP request, return failure*/
10746         rc = bnx2x_prev_mcp_done(bp);
10747         if (!rc)
10748                 rc = BNX2X_PREV_WAIT_NEEDED;
10749
10750         return rc;
10751 }
10752
10753 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10754 {
10755         u32 reset_reg, tmp_reg = 0, rc;
10756         bool prev_undi = false;
10757         struct bnx2x_mac_vals mac_vals;
10758
10759         /* It is possible a previous function received 'common' answer,
10760          * but hasn't loaded yet, therefore creating a scenario of
10761          * multiple functions receiving 'common' on the same path.
10762          */
10763         BNX2X_DEV_INFO("Common unload Flow\n");
10764
10765         memset(&mac_vals, 0, sizeof(mac_vals));
10766
10767         if (bnx2x_prev_is_path_marked(bp))
10768                 return bnx2x_prev_mcp_done(bp);
10769
10770         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10771
10772         /* Reset should be performed after BRB is emptied */
10773         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10774                 u32 timer_count = 1000;
10775
10776                 /* Close the MAC Rx to prevent BRB from filling up */
10777                 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10778
10779                 /* close LLH filters for both ports towards the BRB */
10780                 bnx2x_set_rx_filter(&bp->link_params, 0);
10781                 bp->link_params.port ^= 1;
10782                 bnx2x_set_rx_filter(&bp->link_params, 0);
10783                 bp->link_params.port ^= 1;
10784
10785                 /* Check if the UNDI driver was previously loaded */
10786                 if (bnx2x_prev_is_after_undi(bp)) {
10787                         prev_undi = true;
10788                         /* clear the UNDI indication */
10789                         REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10790                         /* clear possible idle check errors */
10791                         REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10792                 }
10793                 if (!CHIP_IS_E1x(bp))
10794                         /* block FW from writing to host */
10795                         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10796
10797                 /* wait until BRB is empty */
10798                 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10799                 while (timer_count) {
10800                         u32 prev_brb = tmp_reg;
10801
10802                         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10803                         if (!tmp_reg)
10804                                 break;
10805
10806                         BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10807
10808                         /* reset timer as long as BRB actually gets emptied */
10809                         if (prev_brb > tmp_reg)
10810                                 timer_count = 1000;
10811                         else
10812                                 timer_count--;
10813
10814                         /* If UNDI resides in memory, manually increment it */
10815                         if (prev_undi)
10816                                 bnx2x_prev_unload_undi_inc(bp, 1);
10817
10818                         udelay(10);
10819                 }
10820
10821                 if (!timer_count)
10822                         BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10823         }
10824
10825         /* No packets are in the pipeline, path is ready for reset */
10826         bnx2x_reset_common(bp);
10827
10828         if (mac_vals.xmac_addr)
10829                 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10830         if (mac_vals.umac_addr[0])
10831                 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10832         if (mac_vals.umac_addr[1])
10833                 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10834         if (mac_vals.emac_addr)
10835                 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10836         if (mac_vals.bmac_addr) {
10837                 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10838                 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10839         }
10840
10841         rc = bnx2x_prev_mark_path(bp, prev_undi);
10842         if (rc) {
10843                 bnx2x_prev_mcp_done(bp);
10844                 return rc;
10845         }
10846
10847         return bnx2x_prev_mcp_done(bp);
10848 }
10849
10850 static int bnx2x_prev_unload(struct bnx2x *bp)
10851 {
10852         int time_counter = 10;
10853         u32 rc, fw, hw_lock_reg, hw_lock_val;
10854         BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10855
10856         /* clear hw from errors which may have resulted from an interrupted
10857          * dmae transaction.
10858          */
10859         bnx2x_clean_pglue_errors(bp);
10860
10861         /* Release previously held locks */
10862         hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10863                       (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10864                       (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10865
10866         hw_lock_val = REG_RD(bp, hw_lock_reg);
10867         if (hw_lock_val) {
10868                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10869                         BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10870                         REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10871                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10872                 }
10873
10874                 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10875                 REG_WR(bp, hw_lock_reg, 0xffffffff);
10876         } else
10877                 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10878
10879         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10880                 BNX2X_DEV_INFO("Release previously held alr\n");
10881                 bnx2x_release_alr(bp);
10882         }
10883
10884         do {
10885                 int aer = 0;
10886                 /* Lock MCP using an unload request */
10887                 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10888                 if (!fw) {
10889                         BNX2X_ERR("MCP response failure, aborting\n");
10890                         rc = -EBUSY;
10891                         break;
10892                 }
10893
10894                 rc = down_interruptible(&bnx2x_prev_sem);
10895                 if (rc) {
10896                         BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10897                                   rc);
10898                 } else {
10899                         /* If Path is marked by EEH, ignore unload status */
10900                         aer = !!(bnx2x_prev_path_get_entry(bp) &&
10901                                  bnx2x_prev_path_get_entry(bp)->aer);
10902                         up(&bnx2x_prev_sem);
10903                 }
10904
10905                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10906                         rc = bnx2x_prev_unload_common(bp);
10907                         break;
10908                 }
10909
10910                 /* non-common reply from MCP might require looping */
10911                 rc = bnx2x_prev_unload_uncommon(bp);
10912                 if (rc != BNX2X_PREV_WAIT_NEEDED)
10913                         break;
10914
10915                 msleep(20);
10916         } while (--time_counter);
10917
10918         if (!time_counter || rc) {
10919                 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10920                 rc = -EPROBE_DEFER;
10921         }
10922
10923         /* Mark function if its port was used to boot from SAN */
10924         if (bnx2x_port_after_undi(bp))
10925                 bp->link_params.feature_config_flags |=
10926                         FEATURE_CONFIG_BOOT_FROM_SAN;
10927
10928         BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10929
10930         return rc;
10931 }
10932
10933 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10934 {
10935         u32 val, val2, val3, val4, id, boot_mode;
10936         u16 pmc;
10937
10938         /* Get the chip revision id and number. */
10939         /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10940         val = REG_RD(bp, MISC_REG_CHIP_NUM);
10941         id = ((val & 0xffff) << 16);
10942         val = REG_RD(bp, MISC_REG_CHIP_REV);
10943         id |= ((val & 0xf) << 12);
10944
10945         /* Metal is read from PCI regs, but we can't access >=0x400 from
10946          * the configuration space (so we need to reg_rd)
10947          */
10948         val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10949         id |= (((val >> 24) & 0xf) << 4);
10950         val = REG_RD(bp, MISC_REG_BOND_ID);
10951         id |= (val & 0xf);
10952         bp->common.chip_id = id;
10953
10954         /* force 57811 according to MISC register */
10955         if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10956                 if (CHIP_IS_57810(bp))
10957                         bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10958                                 (bp->common.chip_id & 0x0000FFFF);
10959                 else if (CHIP_IS_57810_MF(bp))
10960                         bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10961                                 (bp->common.chip_id & 0x0000FFFF);
10962                 bp->common.chip_id |= 0x1;
10963         }
10964
10965         /* Set doorbell size */
10966         bp->db_size = (1 << BNX2X_DB_SHIFT);
10967
10968         if (!CHIP_IS_E1x(bp)) {
10969                 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10970                 if ((val & 1) == 0)
10971                         val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10972                 else
10973                         val = (val >> 1) & 1;
10974                 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10975                                                        "2_PORT_MODE");
10976                 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10977                                                  CHIP_2_PORT_MODE;
10978
10979                 if (CHIP_MODE_IS_4_PORT(bp))
10980                         bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10981                 else
10982                         bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10983         } else {
10984                 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10985                 bp->pfid = bp->pf_num;                  /* 0..7 */
10986         }
10987
10988         BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10989
10990         bp->link_params.chip_id = bp->common.chip_id;
10991         BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10992
10993         val = (REG_RD(bp, 0x2874) & 0x55);
10994         if ((bp->common.chip_id & 0x1) ||
10995             (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10996                 bp->flags |= ONE_PORT_FLAG;
10997                 BNX2X_DEV_INFO("single port device\n");
10998         }
10999
11000         val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11001         bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11002                                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
11003         BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11004                        bp->common.flash_size, bp->common.flash_size);
11005
11006         bnx2x_init_shmem(bp);
11007
11008         bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11009                                         MISC_REG_GENERIC_CR_1 :
11010                                         MISC_REG_GENERIC_CR_0));
11011
11012         bp->link_params.shmem_base = bp->common.shmem_base;
11013         bp->link_params.shmem2_base = bp->common.shmem2_base;
11014         if (SHMEM2_RD(bp, size) >
11015             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11016                 bp->link_params.lfa_base =
11017                 REG_RD(bp, bp->common.shmem2_base +
11018                        (u32)offsetof(struct shmem2_region,
11019                                      lfa_host_addr[BP_PORT(bp)]));
11020         else
11021                 bp->link_params.lfa_base = 0;
11022         BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11023                        bp->common.shmem_base, bp->common.shmem2_base);
11024
11025         if (!bp->common.shmem_base) {
11026                 BNX2X_DEV_INFO("MCP not active\n");
11027                 bp->flags |= NO_MCP_FLAG;
11028                 return;
11029         }
11030
11031         bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11032         BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11033
11034         bp->link_params.hw_led_mode = ((bp->common.hw_config &
11035                                         SHARED_HW_CFG_LED_MODE_MASK) >>
11036                                        SHARED_HW_CFG_LED_MODE_SHIFT);
11037
11038         bp->link_params.feature_config_flags = 0;
11039         val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11040         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11041                 bp->link_params.feature_config_flags |=
11042                                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11043         else
11044                 bp->link_params.feature_config_flags &=
11045                                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11046
11047         val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11048         bp->common.bc_ver = val;
11049         BNX2X_DEV_INFO("bc_ver %X\n", val);
11050         if (val < BNX2X_BC_VER) {
11051                 /* for now only warn
11052                  * later we might need to enforce this */
11053                 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11054                           BNX2X_BC_VER, val);
11055         }
11056         bp->link_params.feature_config_flags |=
11057                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11058                                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11059
11060         bp->link_params.feature_config_flags |=
11061                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11062                 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11063         bp->link_params.feature_config_flags |=
11064                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11065                 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11066         bp->link_params.feature_config_flags |=
11067                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11068                 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11069
11070         bp->link_params.feature_config_flags |=
11071                 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11072                 FEATURE_CONFIG_MT_SUPPORT : 0;
11073
11074         bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11075                         BC_SUPPORTS_PFC_STATS : 0;
11076
11077         bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11078                         BC_SUPPORTS_FCOE_FEATURES : 0;
11079
11080         bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11081                         BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11082
11083         bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11084                         BC_SUPPORTS_RMMOD_CMD : 0;
11085
11086         boot_mode = SHMEM_RD(bp,
11087                         dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11088                         PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11089         switch (boot_mode) {
11090         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11091                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11092                 break;
11093         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11094                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11095                 break;
11096         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11097                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11098                 break;
11099         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11100                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11101                 break;
11102         }
11103
11104         pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11105         bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11106
11107         BNX2X_DEV_INFO("%sWoL capable\n",
11108                        (bp->flags & NO_WOL_FLAG) ? "not " : "");
11109
11110         val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11111         val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11112         val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11113         val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11114
11115         dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11116                  val, val2, val3, val4);
11117 }
11118
11119 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11120 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11121
11122 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11123 {
11124         int pfid = BP_FUNC(bp);
11125         int igu_sb_id;
11126         u32 val;
11127         u8 fid, igu_sb_cnt = 0;
11128
11129         bp->igu_base_sb = 0xff;
11130         if (CHIP_INT_MODE_IS_BC(bp)) {
11131                 int vn = BP_VN(bp);
11132                 igu_sb_cnt = bp->igu_sb_cnt;
11133                 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11134                         FP_SB_MAX_E1x;
11135
11136                 bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11137                         (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11138
11139                 return 0;
11140         }
11141
11142         /* IGU in normal mode - read CAM */
11143         for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11144              igu_sb_id++) {
11145                 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11146                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11147                         continue;
11148                 fid = IGU_FID(val);
11149                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
11150                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11151                                 continue;
11152                         if (IGU_VEC(val) == 0)
11153                                 /* default status block */
11154                                 bp->igu_dsb_id = igu_sb_id;
11155                         else {
11156                                 if (bp->igu_base_sb == 0xff)
11157                                         bp->igu_base_sb = igu_sb_id;
11158                                 igu_sb_cnt++;
11159                         }
11160                 }
11161         }
11162
11163 #ifdef CONFIG_PCI_MSI
11164         /* Due to new PF resource allocation by MFW T7.4 and above, it's
11165          * optional that number of CAM entries will not be equal to the value
11166          * advertised in PCI.
11167          * Driver should use the minimal value of both as the actual status
11168          * block count
11169          */
11170         bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11171 #endif
11172
11173         if (igu_sb_cnt == 0) {
11174                 BNX2X_ERR("CAM configuration error\n");
11175                 return -EINVAL;
11176         }
11177
11178         return 0;
11179 }
11180
11181 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11182 {
11183         int cfg_size = 0, idx, port = BP_PORT(bp);
11184
11185         /* Aggregation of supported attributes of all external phys */
11186         bp->port.supported[0] = 0;
11187         bp->port.supported[1] = 0;
11188         switch (bp->link_params.num_phys) {
11189         case 1:
11190                 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11191                 cfg_size = 1;
11192                 break;
11193         case 2:
11194                 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11195                 cfg_size = 1;
11196                 break;
11197         case 3:
11198                 if (bp->link_params.multi_phy_config &
11199                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11200                         bp->port.supported[1] =
11201                                 bp->link_params.phy[EXT_PHY1].supported;
11202                         bp->port.supported[0] =
11203                                 bp->link_params.phy[EXT_PHY2].supported;
11204                 } else {
11205                         bp->port.supported[0] =
11206                                 bp->link_params.phy[EXT_PHY1].supported;
11207                         bp->port.supported[1] =
11208                                 bp->link_params.phy[EXT_PHY2].supported;
11209                 }
11210                 cfg_size = 2;
11211                 break;
11212         }
11213
11214         if (!(bp->port.supported[0] || bp->port.supported[1])) {
11215                 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11216                            SHMEM_RD(bp,
11217                            dev_info.port_hw_config[port].external_phy_config),
11218                            SHMEM_RD(bp,
11219                            dev_info.port_hw_config[port].external_phy_config2));
11220                         return;
11221         }
11222
11223         if (CHIP_IS_E3(bp))
11224                 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11225         else {
11226                 switch (switch_cfg) {
11227                 case SWITCH_CFG_1G:
11228                         bp->port.phy_addr = REG_RD(
11229                                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11230                         break;
11231                 case SWITCH_CFG_10G:
11232                         bp->port.phy_addr = REG_RD(
11233                                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11234                         break;
11235                 default:
11236                         BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11237                                   bp->port.link_config[0]);
11238                         return;
11239                 }
11240         }
11241         BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11242         /* mask what we support according to speed_cap_mask per configuration */
11243         for (idx = 0; idx < cfg_size; idx++) {
11244                 if (!(bp->link_params.speed_cap_mask[idx] &
11245                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11246                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11247
11248                 if (!(bp->link_params.speed_cap_mask[idx] &
11249                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11250                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11251
11252                 if (!(bp->link_params.speed_cap_mask[idx] &
11253                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11254                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11255
11256                 if (!(bp->link_params.speed_cap_mask[idx] &
11257                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11258                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11259
11260                 if (!(bp->link_params.speed_cap_mask[idx] &
11261                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11262                         bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11263                                                      SUPPORTED_1000baseT_Full);
11264
11265                 if (!(bp->link_params.speed_cap_mask[idx] &
11266                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11267                         bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11268
11269                 if (!(bp->link_params.speed_cap_mask[idx] &
11270                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11271                         bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11272
11273                 if (!(bp->link_params.speed_cap_mask[idx] &
11274                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11275                         bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11276         }
11277
11278         BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11279                        bp->port.supported[1]);
11280 }
11281
11282 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11283 {
11284         u32 link_config, idx, cfg_size = 0;
11285         bp->port.advertising[0] = 0;
11286         bp->port.advertising[1] = 0;
11287         switch (bp->link_params.num_phys) {
11288         case 1:
11289         case 2:
11290                 cfg_size = 1;
11291                 break;
11292         case 3:
11293                 cfg_size = 2;
11294                 break;
11295         }
11296         for (idx = 0; idx < cfg_size; idx++) {
11297                 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11298                 link_config = bp->port.link_config[idx];
11299                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11300                 case PORT_FEATURE_LINK_SPEED_AUTO:
11301                         if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11302                                 bp->link_params.req_line_speed[idx] =
11303                                         SPEED_AUTO_NEG;
11304                                 bp->port.advertising[idx] |=
11305                                         bp->port.supported[idx];
11306                                 if (bp->link_params.phy[EXT_PHY1].type ==
11307                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11308                                         bp->port.advertising[idx] |=
11309                                         (SUPPORTED_100baseT_Half |
11310                                          SUPPORTED_100baseT_Full);
11311                         } else {
11312                                 /* force 10G, no AN */
11313                                 bp->link_params.req_line_speed[idx] =
11314                                         SPEED_10000;
11315                                 bp->port.advertising[idx] |=
11316                                         (ADVERTISED_10000baseT_Full |
11317                                          ADVERTISED_FIBRE);
11318                                 continue;
11319                         }
11320                         break;
11321
11322                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
11323                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11324                                 bp->link_params.req_line_speed[idx] =
11325                                         SPEED_10;
11326                                 bp->port.advertising[idx] |=
11327                                         (ADVERTISED_10baseT_Full |
11328                                          ADVERTISED_TP);
11329                         } else {
11330                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11331                                             link_config,
11332                                     bp->link_params.speed_cap_mask[idx]);
11333                                 return;
11334                         }
11335                         break;
11336
11337                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
11338                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11339                                 bp->link_params.req_line_speed[idx] =
11340                                         SPEED_10;
11341                                 bp->link_params.req_duplex[idx] =
11342                                         DUPLEX_HALF;
11343                                 bp->port.advertising[idx] |=
11344                                         (ADVERTISED_10baseT_Half |
11345                                          ADVERTISED_TP);
11346                         } else {
11347                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11348                                             link_config,
11349                                           bp->link_params.speed_cap_mask[idx]);
11350                                 return;
11351                         }
11352                         break;
11353
11354                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
11355                         if (bp->port.supported[idx] &
11356                             SUPPORTED_100baseT_Full) {
11357                                 bp->link_params.req_line_speed[idx] =
11358                                         SPEED_100;
11359                                 bp->port.advertising[idx] |=
11360                                         (ADVERTISED_100baseT_Full |
11361                                          ADVERTISED_TP);
11362                         } else {
11363                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11364                                             link_config,
11365                                           bp->link_params.speed_cap_mask[idx]);
11366                                 return;
11367                         }
11368                         break;
11369
11370                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
11371                         if (bp->port.supported[idx] &
11372                             SUPPORTED_100baseT_Half) {
11373                                 bp->link_params.req_line_speed[idx] =
11374                                                                 SPEED_100;
11375                                 bp->link_params.req_duplex[idx] =
11376                                                                 DUPLEX_HALF;
11377                                 bp->port.advertising[idx] |=
11378                                         (ADVERTISED_100baseT_Half |
11379                                          ADVERTISED_TP);
11380                         } else {
11381                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11382                                     link_config,
11383                                     bp->link_params.speed_cap_mask[idx]);
11384                                 return;
11385                         }
11386                         break;
11387
11388                 case PORT_FEATURE_LINK_SPEED_1G:
11389                         if (bp->port.supported[idx] &
11390                             SUPPORTED_1000baseT_Full) {
11391                                 bp->link_params.req_line_speed[idx] =
11392                                         SPEED_1000;
11393                                 bp->port.advertising[idx] |=
11394                                         (ADVERTISED_1000baseT_Full |
11395                                          ADVERTISED_TP);
11396                         } else if (bp->port.supported[idx] &
11397                                    SUPPORTED_1000baseKX_Full) {
11398                                 bp->link_params.req_line_speed[idx] =
11399                                         SPEED_1000;
11400                                 bp->port.advertising[idx] |=
11401                                         ADVERTISED_1000baseKX_Full;
11402                         } else {
11403                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11404                                     link_config,
11405                                     bp->link_params.speed_cap_mask[idx]);
11406                                 return;
11407                         }
11408                         break;
11409
11410                 case PORT_FEATURE_LINK_SPEED_2_5G:
11411                         if (bp->port.supported[idx] &
11412                             SUPPORTED_2500baseX_Full) {
11413                                 bp->link_params.req_line_speed[idx] =
11414                                         SPEED_2500;
11415                                 bp->port.advertising[idx] |=
11416                                         (ADVERTISED_2500baseX_Full |
11417                                                 ADVERTISED_TP);
11418                         } else {
11419                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11420                                     link_config,
11421                                     bp->link_params.speed_cap_mask[idx]);
11422                                 return;
11423                         }
11424                         break;
11425
11426                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
11427                         if (bp->port.supported[idx] &
11428                             SUPPORTED_10000baseT_Full) {
11429                                 bp->link_params.req_line_speed[idx] =
11430                                         SPEED_10000;
11431                                 bp->port.advertising[idx] |=
11432                                         (ADVERTISED_10000baseT_Full |
11433                                                 ADVERTISED_FIBRE);
11434                         } else if (bp->port.supported[idx] &
11435                                    SUPPORTED_10000baseKR_Full) {
11436                                 bp->link_params.req_line_speed[idx] =
11437                                         SPEED_10000;
11438                                 bp->port.advertising[idx] |=
11439                                         (ADVERTISED_10000baseKR_Full |
11440                                                 ADVERTISED_FIBRE);
11441                         } else {
11442                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11443                                     link_config,
11444                                     bp->link_params.speed_cap_mask[idx]);
11445                                 return;
11446                         }
11447                         break;
11448                 case PORT_FEATURE_LINK_SPEED_20G:
11449                         bp->link_params.req_line_speed[idx] = SPEED_20000;
11450
11451                         break;
11452                 default:
11453                         BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11454                                   link_config);
11455                                 bp->link_params.req_line_speed[idx] =
11456                                                         SPEED_AUTO_NEG;
11457                                 bp->port.advertising[idx] =
11458                                                 bp->port.supported[idx];
11459                         break;
11460                 }
11461
11462                 bp->link_params.req_flow_ctrl[idx] = (link_config &
11463                                          PORT_FEATURE_FLOW_CONTROL_MASK);
11464                 if (bp->link_params.req_flow_ctrl[idx] ==
11465                     BNX2X_FLOW_CTRL_AUTO) {
11466                         if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11467                                 bp->link_params.req_flow_ctrl[idx] =
11468                                                         BNX2X_FLOW_CTRL_NONE;
11469                         else
11470                                 bnx2x_set_requested_fc(bp);
11471                 }
11472
11473                 BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11474                                bp->link_params.req_line_speed[idx],
11475                                bp->link_params.req_duplex[idx],
11476                                bp->link_params.req_flow_ctrl[idx],
11477                                bp->port.advertising[idx]);
11478         }
11479 }
11480
11481 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11482 {
11483         __be16 mac_hi_be = cpu_to_be16(mac_hi);
11484         __be32 mac_lo_be = cpu_to_be32(mac_lo);
11485         memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11486         memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11487 }
11488
11489 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11490 {
11491         int port = BP_PORT(bp);
11492         u32 config;
11493         u32 ext_phy_type, ext_phy_config, eee_mode;
11494
11495         bp->link_params.bp = bp;
11496         bp->link_params.port = port;
11497
11498         bp->link_params.lane_config =
11499                 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11500
11501         bp->link_params.speed_cap_mask[0] =
11502                 SHMEM_RD(bp,
11503                          dev_info.port_hw_config[port].speed_capability_mask) &
11504                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11505         bp->link_params.speed_cap_mask[1] =
11506                 SHMEM_RD(bp,
11507                          dev_info.port_hw_config[port].speed_capability_mask2) &
11508                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11509         bp->port.link_config[0] =
11510                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11511
11512         bp->port.link_config[1] =
11513                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11514
11515         bp->link_params.multi_phy_config =
11516                 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11517         /* If the device is capable of WoL, set the default state according
11518          * to the HW
11519          */
11520         config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11521         bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11522                    (config & PORT_FEATURE_WOL_ENABLED));
11523
11524         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11525             PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11526                 bp->flags |= NO_ISCSI_FLAG;
11527         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11528             PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11529                 bp->flags |= NO_FCOE_FLAG;
11530
11531         BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11532                        bp->link_params.lane_config,
11533                        bp->link_params.speed_cap_mask[0],
11534                        bp->port.link_config[0]);
11535
11536         bp->link_params.switch_cfg = (bp->port.link_config[0] &
11537                                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
11538         bnx2x_phy_probe(&bp->link_params);
11539         bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11540
11541         bnx2x_link_settings_requested(bp);
11542
11543         /*
11544          * If connected directly, work with the internal PHY, otherwise, work
11545          * with the external PHY
11546          */
11547         ext_phy_config =
11548                 SHMEM_RD(bp,
11549                          dev_info.port_hw_config[port].external_phy_config);
11550         ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11551         if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11552                 bp->mdio.prtad = bp->port.phy_addr;
11553
11554         else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11555                  (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11556                 bp->mdio.prtad =
11557                         XGXS_EXT_PHY_ADDR(ext_phy_config);
11558
11559         /* Configure link feature according to nvram value */
11560         eee_mode = (((SHMEM_RD(bp, dev_info.
11561                       port_feature_config[port].eee_power_mode)) &
11562                      PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11563                     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11564         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11565                 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11566                                            EEE_MODE_ENABLE_LPI |
11567                                            EEE_MODE_OUTPUT_TIME;
11568         } else {
11569                 bp->link_params.eee_mode = 0;
11570         }
11571 }
11572
11573 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11574 {
11575         u32 no_flags = NO_ISCSI_FLAG;
11576         int port = BP_PORT(bp);
11577         u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11578                                 drv_lic_key[port].max_iscsi_conn);
11579
11580         if (!CNIC_SUPPORT(bp)) {
11581                 bp->flags |= no_flags;
11582                 return;
11583         }
11584
11585         /* Get the number of maximum allowed iSCSI connections */
11586         bp->cnic_eth_dev.max_iscsi_conn =
11587                 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11588                 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11589
11590         BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11591                        bp->cnic_eth_dev.max_iscsi_conn);
11592
11593         /*
11594          * If maximum allowed number of connections is zero -
11595          * disable the feature.
11596          */
11597         if (!bp->cnic_eth_dev.max_iscsi_conn)
11598                 bp->flags |= no_flags;
11599 }
11600
11601 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11602 {
11603         /* Port info */
11604         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11605                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11606         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11607                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11608
11609         /* Node info */
11610         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11611                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11612         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11613                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11614 }
11615
11616 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11617 {
11618         u8 count = 0;
11619
11620         if (IS_MF(bp)) {
11621                 u8 fid;
11622
11623                 /* iterate over absolute function ids for this path: */
11624                 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11625                         if (IS_MF_SD(bp)) {
11626                                 u32 cfg = MF_CFG_RD(bp,
11627                                                     func_mf_config[fid].config);
11628
11629                                 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11630                                     ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11631                                             FUNC_MF_CFG_PROTOCOL_FCOE))
11632                                         count++;
11633                         } else {
11634                                 u32 cfg = MF_CFG_RD(bp,
11635                                                     func_ext_config[fid].
11636                                                                       func_cfg);
11637
11638                                 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11639                                     (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11640                                         count++;
11641                         }
11642                 }
11643         } else { /* SF */
11644                 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11645
11646                 for (port = 0; port < port_cnt; port++) {
11647                         u32 lic = SHMEM_RD(bp,
11648                                            drv_lic_key[port].max_fcoe_conn) ^
11649                                   FW_ENCODE_32BIT_PATTERN;
11650                         if (lic)
11651                                 count++;
11652                 }
11653         }
11654
11655         return count;
11656 }
11657
11658 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11659 {
11660         int port = BP_PORT(bp);
11661         int func = BP_ABS_FUNC(bp);
11662         u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11663                                 drv_lic_key[port].max_fcoe_conn);
11664         u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11665
11666         if (!CNIC_SUPPORT(bp)) {
11667                 bp->flags |= NO_FCOE_FLAG;
11668                 return;
11669         }
11670
11671         /* Get the number of maximum allowed FCoE connections */
11672         bp->cnic_eth_dev.max_fcoe_conn =
11673                 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11674                 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11675
11676         /* Calculate the number of maximum allowed FCoE tasks */
11677         bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11678
11679         /* check if FCoE resources must be shared between different functions */
11680         if (num_fcoe_func)
11681                 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11682
11683         /* Read the WWN: */
11684         if (!IS_MF(bp)) {
11685                 /* Port info */
11686                 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11687                         SHMEM_RD(bp,
11688                                  dev_info.port_hw_config[port].
11689                                  fcoe_wwn_port_name_upper);
11690                 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11691                         SHMEM_RD(bp,
11692                                  dev_info.port_hw_config[port].
11693                                  fcoe_wwn_port_name_lower);
11694
11695                 /* Node info */
11696                 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11697                         SHMEM_RD(bp,
11698                                  dev_info.port_hw_config[port].
11699                                  fcoe_wwn_node_name_upper);
11700                 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11701                         SHMEM_RD(bp,
11702                                  dev_info.port_hw_config[port].
11703                                  fcoe_wwn_node_name_lower);
11704         } else if (!IS_MF_SD(bp)) {
11705                 /* Read the WWN info only if the FCoE feature is enabled for
11706                  * this function.
11707                  */
11708                 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11709                         bnx2x_get_ext_wwn_info(bp, func);
11710         } else {
11711                 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11712                         bnx2x_get_ext_wwn_info(bp, func);
11713         }
11714
11715         BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11716
11717         /*
11718          * If maximum allowed number of connections is zero -
11719          * disable the feature.
11720          */
11721         if (!bp->cnic_eth_dev.max_fcoe_conn)
11722                 bp->flags |= NO_FCOE_FLAG;
11723 }
11724
11725 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11726 {
11727         /*
11728          * iSCSI may be dynamically disabled but reading
11729          * info here we will decrease memory usage by driver
11730          * if the feature is disabled for good
11731          */
11732         bnx2x_get_iscsi_info(bp);
11733         bnx2x_get_fcoe_info(bp);
11734 }
11735
11736 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11737 {
11738         u32 val, val2;
11739         int func = BP_ABS_FUNC(bp);
11740         int port = BP_PORT(bp);
11741         u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11742         u8 *fip_mac = bp->fip_mac;
11743
11744         if (IS_MF(bp)) {
11745                 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11746                  * FCoE MAC then the appropriate feature should be disabled.
11747                  * In non SD mode features configuration comes from struct
11748                  * func_ext_config.
11749                  */
11750                 if (!IS_MF_SD(bp)) {
11751                         u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11752                         if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11753                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11754                                                  iscsi_mac_addr_upper);
11755                                 val = MF_CFG_RD(bp, func_ext_config[func].
11756                                                 iscsi_mac_addr_lower);
11757                                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11758                                 BNX2X_DEV_INFO
11759                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11760                         } else {
11761                                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11762                         }
11763
11764                         if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11765                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11766                                                  fcoe_mac_addr_upper);
11767                                 val = MF_CFG_RD(bp, func_ext_config[func].
11768                                                 fcoe_mac_addr_lower);
11769                                 bnx2x_set_mac_buf(fip_mac, val, val2);
11770                                 BNX2X_DEV_INFO
11771                                         ("Read FCoE L2 MAC: %pM\n", fip_mac);
11772                         } else {
11773                                 bp->flags |= NO_FCOE_FLAG;
11774                         }
11775
11776                         bp->mf_ext_config = cfg;
11777
11778                 } else { /* SD MODE */
11779                         if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11780                                 /* use primary mac as iscsi mac */
11781                                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11782
11783                                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11784                                 BNX2X_DEV_INFO
11785                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11786                         } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11787                                 /* use primary mac as fip mac */
11788                                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11789                                 BNX2X_DEV_INFO("SD FCoE MODE\n");
11790                                 BNX2X_DEV_INFO
11791                                         ("Read FIP MAC: %pM\n", fip_mac);
11792                         }
11793                 }
11794
11795                 /* If this is a storage-only interface, use SAN mac as
11796                  * primary MAC. Notice that for SD this is already the case,
11797                  * as the SAN mac was copied from the primary MAC.
11798                  */
11799                 if (IS_MF_FCOE_AFEX(bp))
11800                         memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11801         } else {
11802                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11803                                 iscsi_mac_upper);
11804                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11805                                iscsi_mac_lower);
11806                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11807
11808                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11809                                 fcoe_fip_mac_upper);
11810                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11811                                fcoe_fip_mac_lower);
11812                 bnx2x_set_mac_buf(fip_mac, val, val2);
11813         }
11814
11815         /* Disable iSCSI OOO if MAC configuration is invalid. */
11816         if (!is_valid_ether_addr(iscsi_mac)) {
11817                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11818                 eth_zero_addr(iscsi_mac);
11819         }
11820
11821         /* Disable FCoE if MAC configuration is invalid. */
11822         if (!is_valid_ether_addr(fip_mac)) {
11823                 bp->flags |= NO_FCOE_FLAG;
11824                 eth_zero_addr(bp->fip_mac);
11825         }
11826 }
11827
11828 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11829 {
11830         u32 val, val2;
11831         int func = BP_ABS_FUNC(bp);
11832         int port = BP_PORT(bp);
11833
11834         /* Zero primary MAC configuration */
11835         eth_zero_addr(bp->dev->dev_addr);
11836
11837         if (BP_NOMCP(bp)) {
11838                 BNX2X_ERROR("warning: random MAC workaround active\n");
11839                 eth_hw_addr_random(bp->dev);
11840         } else if (IS_MF(bp)) {
11841                 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11842                 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11843                 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11844                     (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11845                         bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11846
11847                 if (CNIC_SUPPORT(bp))
11848                         bnx2x_get_cnic_mac_hwinfo(bp);
11849         } else {
11850                 /* in SF read MACs from port configuration */
11851                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11852                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11853                 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11854
11855                 if (CNIC_SUPPORT(bp))
11856                         bnx2x_get_cnic_mac_hwinfo(bp);
11857         }
11858
11859         if (!BP_NOMCP(bp)) {
11860                 /* Read physical port identifier from shmem */
11861                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11862                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11863                 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11864                 bp->flags |= HAS_PHYS_PORT_ID;
11865         }
11866
11867         memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11868
11869         if (!is_valid_ether_addr(bp->dev->dev_addr))
11870                 dev_err(&bp->pdev->dev,
11871                         "bad Ethernet MAC address configuration: %pM\n"
11872                         "change it manually before bringing up the appropriate network interface\n",
11873                         bp->dev->dev_addr);
11874 }
11875
11876 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11877 {
11878         int tmp;
11879         u32 cfg;
11880
11881         if (IS_VF(bp))
11882                 return false;
11883
11884         if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11885                 /* Take function: tmp = func */
11886                 tmp = BP_ABS_FUNC(bp);
11887                 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11888                 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11889         } else {
11890                 /* Take port: tmp = port */
11891                 tmp = BP_PORT(bp);
11892                 cfg = SHMEM_RD(bp,
11893                                dev_info.port_hw_config[tmp].generic_features);
11894                 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11895         }
11896         return cfg;
11897 }
11898
11899 static void validate_set_si_mode(struct bnx2x *bp)
11900 {
11901         u8 func = BP_ABS_FUNC(bp);
11902         u32 val;
11903
11904         val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11905
11906         /* check for legal mac (upper bytes) */
11907         if (val != 0xffff) {
11908                 bp->mf_mode = MULTI_FUNCTION_SI;
11909                 bp->mf_config[BP_VN(bp)] =
11910                         MF_CFG_RD(bp, func_mf_config[func].config);
11911         } else
11912                 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11913 }
11914
11915 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11916 {
11917         int /*abs*/func = BP_ABS_FUNC(bp);
11918         int vn, mfw_vn;
11919         u32 val = 0, val2 = 0;
11920         int rc = 0;
11921
11922         /* Validate that chip access is feasible */
11923         if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11924                 dev_err(&bp->pdev->dev,
11925                         "Chip read returns all Fs. Preventing probe from continuing\n");
11926                 return -EINVAL;
11927         }
11928
11929         bnx2x_get_common_hwinfo(bp);
11930
11931         /*
11932          * initialize IGU parameters
11933          */
11934         if (CHIP_IS_E1x(bp)) {
11935                 bp->common.int_block = INT_BLOCK_HC;
11936
11937                 bp->igu_dsb_id = DEF_SB_IGU_ID;
11938                 bp->igu_base_sb = 0;
11939         } else {
11940                 bp->common.int_block = INT_BLOCK_IGU;
11941
11942                 /* do not allow device reset during IGU info processing */
11943                 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11944
11945                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11946
11947                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11948                         int tout = 5000;
11949
11950                         BNX2X_DEV_INFO("FORCING Normal Mode\n");
11951
11952                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11953                         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11954                         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11955
11956                         while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11957                                 tout--;
11958                                 usleep_range(1000, 2000);
11959                         }
11960
11961                         if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11962                                 dev_err(&bp->pdev->dev,
11963                                         "FORCING Normal Mode failed!!!\n");
11964                                 bnx2x_release_hw_lock(bp,
11965                                                       HW_LOCK_RESOURCE_RESET);
11966                                 return -EPERM;
11967                         }
11968                 }
11969
11970                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11971                         BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11972                         bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11973                 } else
11974                         BNX2X_DEV_INFO("IGU Normal Mode\n");
11975
11976                 rc = bnx2x_get_igu_cam_info(bp);
11977                 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11978                 if (rc)
11979                         return rc;
11980         }
11981
11982         /*
11983          * set base FW non-default (fast path) status block id, this value is
11984          * used to initialize the fw_sb_id saved on the fp/queue structure to
11985          * determine the id used by the FW.
11986          */
11987         if (CHIP_IS_E1x(bp))
11988                 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11989         else /*
11990               * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11991               * the same queue are indicated on the same IGU SB). So we prefer
11992               * FW and IGU SBs to be the same value.
11993               */
11994                 bp->base_fw_ndsb = bp->igu_base_sb;
11995
11996         BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11997                        "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11998                        bp->igu_sb_cnt, bp->base_fw_ndsb);
11999
12000         /*
12001          * Initialize MF configuration
12002          */
12003
12004         bp->mf_ov = 0;
12005         bp->mf_mode = 0;
12006         bp->mf_sub_mode = 0;
12007         vn = BP_VN(bp);
12008         mfw_vn = BP_FW_MB_IDX(bp);
12009
12010         if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12011                 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12012                                bp->common.shmem2_base, SHMEM2_RD(bp, size),
12013                               (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12014
12015                 if (SHMEM2_HAS(bp, mf_cfg_addr))
12016                         bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12017                 else
12018                         bp->common.mf_cfg_base = bp->common.shmem_base +
12019                                 offsetof(struct shmem_region, func_mb) +
12020                                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12021                 /*
12022                  * get mf configuration:
12023                  * 1. Existence of MF configuration
12024                  * 2. MAC address must be legal (check only upper bytes)
12025                  *    for  Switch-Independent mode;
12026                  *    OVLAN must be legal for Switch-Dependent mode
12027                  * 3. SF_MODE configures specific MF mode
12028                  */
12029                 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12030                         /* get mf configuration */
12031                         val = SHMEM_RD(bp,
12032                                        dev_info.shared_feature_config.config);
12033                         val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12034
12035                         switch (val) {
12036                         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12037                                 validate_set_si_mode(bp);
12038                                 break;
12039                         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12040                                 if ((!CHIP_IS_E1x(bp)) &&
12041                                     (MF_CFG_RD(bp, func_mf_config[func].
12042                                                mac_upper) != 0xffff) &&
12043                                     (SHMEM2_HAS(bp,
12044                                                 afex_driver_support))) {
12045                                         bp->mf_mode = MULTI_FUNCTION_AFEX;
12046                                         bp->mf_config[vn] = MF_CFG_RD(bp,
12047                                                 func_mf_config[func].config);
12048                                 } else {
12049                                         BNX2X_DEV_INFO("can not configure afex mode\n");
12050                                 }
12051                                 break;
12052                         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12053                                 /* get OV configuration */
12054                                 val = MF_CFG_RD(bp,
12055                                         func_mf_config[FUNC_0].e1hov_tag);
12056                                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12057
12058                                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12059                                         bp->mf_mode = MULTI_FUNCTION_SD;
12060                                         bp->mf_config[vn] = MF_CFG_RD(bp,
12061                                                 func_mf_config[func].config);
12062                                 } else
12063                                         BNX2X_DEV_INFO("illegal OV for SD\n");
12064                                 break;
12065                         case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12066                                 bp->mf_mode = MULTI_FUNCTION_SD;
12067                                 bp->mf_sub_mode = SUB_MF_MODE_BD;
12068                                 bp->mf_config[vn] =
12069                                         MF_CFG_RD(bp,
12070                                                   func_mf_config[func].config);
12071
12072                                 if (SHMEM2_HAS(bp, mtu_size)) {
12073                                         int mtu_idx = BP_FW_MB_IDX(bp);
12074                                         u16 mtu_size;
12075                                         u32 mtu;
12076
12077                                         mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12078                                         mtu_size = (u16)mtu;
12079                                         DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12080                                            mtu_size, mtu);
12081
12082                                         /* if valid: update device mtu */
12083                                         if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12084                                             (mtu_size <=
12085                                              ETH_MAX_JUMBO_PACKET_SIZE))
12086                                                 bp->dev->mtu = mtu_size;
12087                                 }
12088                                 break;
12089                         case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12090                                 bp->mf_mode = MULTI_FUNCTION_SD;
12091                                 bp->mf_sub_mode = SUB_MF_MODE_UFP;
12092                                 bp->mf_config[vn] =
12093                                         MF_CFG_RD(bp,
12094                                                   func_mf_config[func].config);
12095                                 break;
12096                         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12097                                 bp->mf_config[vn] = 0;
12098                                 break;
12099                         case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12100                                 val2 = SHMEM_RD(bp,
12101                                         dev_info.shared_hw_config.config_3);
12102                                 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12103                                 switch (val2) {
12104                                 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12105                                         validate_set_si_mode(bp);
12106                                         bp->mf_sub_mode =
12107                                                         SUB_MF_MODE_NPAR1_DOT_5;
12108                                         break;
12109                                 default:
12110                                         /* Unknown configuration */
12111                                         bp->mf_config[vn] = 0;
12112                                         BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12113                                                        val);
12114                                 }
12115                                 break;
12116                         default:
12117                                 /* Unknown configuration: reset mf_config */
12118                                 bp->mf_config[vn] = 0;
12119                                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12120                         }
12121                 }
12122
12123                 BNX2X_DEV_INFO("%s function mode\n",
12124                                IS_MF(bp) ? "multi" : "single");
12125
12126                 switch (bp->mf_mode) {
12127                 case MULTI_FUNCTION_SD:
12128                         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12129                               FUNC_MF_CFG_E1HOV_TAG_MASK;
12130                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12131                                 bp->mf_ov = val;
12132                                 bp->path_has_ovlan = true;
12133
12134                                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12135                                                func, bp->mf_ov, bp->mf_ov);
12136                         } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12137                                    (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12138                                 dev_err(&bp->pdev->dev,
12139                                         "Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12140                                         func);
12141                                 bp->path_has_ovlan = true;
12142                         } else {
12143                                 dev_err(&bp->pdev->dev,
12144                                         "No valid MF OV for func %d, aborting\n",
12145                                         func);
12146                                 return -EPERM;
12147                         }
12148                         break;
12149                 case MULTI_FUNCTION_AFEX:
12150                         BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12151                         break;
12152                 case MULTI_FUNCTION_SI:
12153                         BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12154                                        func);
12155                         break;
12156                 default:
12157                         if (vn) {
12158                                 dev_err(&bp->pdev->dev,
12159                                         "VN %d is in a single function mode, aborting\n",
12160                                         vn);
12161                                 return -EPERM;
12162                         }
12163                         break;
12164                 }
12165
12166                 /* check if other port on the path needs ovlan:
12167                  * Since MF configuration is shared between ports
12168                  * Possible mixed modes are only
12169                  * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12170                  */
12171                 if (CHIP_MODE_IS_4_PORT(bp) &&
12172                     !bp->path_has_ovlan &&
12173                     !IS_MF(bp) &&
12174                     bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12175                         u8 other_port = !BP_PORT(bp);
12176                         u8 other_func = BP_PATH(bp) + 2*other_port;
12177                         val = MF_CFG_RD(bp,
12178                                         func_mf_config[other_func].e1hov_tag);
12179                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12180                                 bp->path_has_ovlan = true;
12181                 }
12182         }
12183
12184         /* adjust igu_sb_cnt to MF for E1H */
12185         if (CHIP_IS_E1H(bp) && IS_MF(bp))
12186                 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12187
12188         /* port info */
12189         bnx2x_get_port_hwinfo(bp);
12190
12191         /* Get MAC addresses */
12192         bnx2x_get_mac_hwinfo(bp);
12193
12194         bnx2x_get_cnic_info(bp);
12195
12196         return rc;
12197 }
12198
12199 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12200 {
12201         int cnt, i, block_end, rodi;
12202         char vpd_start[BNX2X_VPD_LEN+1];
12203         char str_id_reg[VENDOR_ID_LEN+1];
12204         char str_id_cap[VENDOR_ID_LEN+1];
12205         char *vpd_data;
12206         char *vpd_extended_data = NULL;
12207         u8 len;
12208
12209         cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12210         memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12211
12212         if (cnt < BNX2X_VPD_LEN)
12213                 goto out_not_found;
12214
12215         /* VPD RO tag should be first tag after identifier string, hence
12216          * we should be able to find it in first BNX2X_VPD_LEN chars
12217          */
12218         i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12219                              PCI_VPD_LRDT_RO_DATA);
12220         if (i < 0)
12221                 goto out_not_found;
12222
12223         block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12224                     pci_vpd_lrdt_size(&vpd_start[i]);
12225
12226         i += PCI_VPD_LRDT_TAG_SIZE;
12227
12228         if (block_end > BNX2X_VPD_LEN) {
12229                 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12230                 if (vpd_extended_data  == NULL)
12231                         goto out_not_found;
12232
12233                 /* read rest of vpd image into vpd_extended_data */
12234                 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12235                 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12236                                    block_end - BNX2X_VPD_LEN,
12237                                    vpd_extended_data + BNX2X_VPD_LEN);
12238                 if (cnt < (block_end - BNX2X_VPD_LEN))
12239                         goto out_not_found;
12240                 vpd_data = vpd_extended_data;
12241         } else
12242                 vpd_data = vpd_start;
12243
12244         /* now vpd_data holds full vpd content in both cases */
12245
12246         rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12247                                    PCI_VPD_RO_KEYWORD_MFR_ID);
12248         if (rodi < 0)
12249                 goto out_not_found;
12250
12251         len = pci_vpd_info_field_size(&vpd_data[rodi]);
12252
12253         if (len != VENDOR_ID_LEN)
12254                 goto out_not_found;
12255
12256         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12257
12258         /* vendor specific info */
12259         snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12260         snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12261         if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12262             !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12263
12264                 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12265                                                 PCI_VPD_RO_KEYWORD_VENDOR0);
12266                 if (rodi >= 0) {
12267                         len = pci_vpd_info_field_size(&vpd_data[rodi]);
12268
12269                         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12270
12271                         if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12272                                 memcpy(bp->fw_ver, &vpd_data[rodi], len);
12273                                 bp->fw_ver[len] = ' ';
12274                         }
12275                 }
12276                 kfree(vpd_extended_data);
12277                 return;
12278         }
12279 out_not_found:
12280         kfree(vpd_extended_data);
12281         return;
12282 }
12283
12284 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12285 {
12286         u32 flags = 0;
12287
12288         if (CHIP_REV_IS_FPGA(bp))
12289                 SET_FLAGS(flags, MODE_FPGA);
12290         else if (CHIP_REV_IS_EMUL(bp))
12291                 SET_FLAGS(flags, MODE_EMUL);
12292         else
12293                 SET_FLAGS(flags, MODE_ASIC);
12294
12295         if (CHIP_MODE_IS_4_PORT(bp))
12296                 SET_FLAGS(flags, MODE_PORT4);
12297         else
12298                 SET_FLAGS(flags, MODE_PORT2);
12299
12300         if (CHIP_IS_E2(bp))
12301                 SET_FLAGS(flags, MODE_E2);
12302         else if (CHIP_IS_E3(bp)) {
12303                 SET_FLAGS(flags, MODE_E3);
12304                 if (CHIP_REV(bp) == CHIP_REV_Ax)
12305                         SET_FLAGS(flags, MODE_E3_A0);
12306                 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12307                         SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12308         }
12309
12310         if (IS_MF(bp)) {
12311                 SET_FLAGS(flags, MODE_MF);
12312                 switch (bp->mf_mode) {
12313                 case MULTI_FUNCTION_SD:
12314                         SET_FLAGS(flags, MODE_MF_SD);
12315                         break;
12316                 case MULTI_FUNCTION_SI:
12317                         SET_FLAGS(flags, MODE_MF_SI);
12318                         break;
12319                 case MULTI_FUNCTION_AFEX:
12320                         SET_FLAGS(flags, MODE_MF_AFEX);
12321                         break;
12322                 }
12323         } else
12324                 SET_FLAGS(flags, MODE_SF);
12325
12326 #if defined(__LITTLE_ENDIAN)
12327         SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12328 #else /*(__BIG_ENDIAN)*/
12329         SET_FLAGS(flags, MODE_BIG_ENDIAN);
12330 #endif
12331         INIT_MODE_FLAGS(bp) = flags;
12332 }
12333
12334 static int bnx2x_init_bp(struct bnx2x *bp)
12335 {
12336         int func;
12337         int rc;
12338
12339         mutex_init(&bp->port.phy_mutex);
12340         mutex_init(&bp->fw_mb_mutex);
12341         mutex_init(&bp->drv_info_mutex);
12342         sema_init(&bp->stats_lock, 1);
12343         bp->drv_info_mng_owner = false;
12344         INIT_LIST_HEAD(&bp->vlan_reg);
12345
12346         INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12347         INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12348         INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12349         INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12350         if (IS_PF(bp)) {
12351                 rc = bnx2x_get_hwinfo(bp);
12352                 if (rc)
12353                         return rc;
12354         } else {
12355                 eth_zero_addr(bp->dev->dev_addr);
12356         }
12357
12358         bnx2x_set_modes_bitmap(bp);
12359
12360         rc = bnx2x_alloc_mem_bp(bp);
12361         if (rc)
12362                 return rc;
12363
12364         bnx2x_read_fwinfo(bp);
12365
12366         func = BP_FUNC(bp);
12367
12368         /* need to reset chip if undi was active */
12369         if (IS_PF(bp) && !BP_NOMCP(bp)) {
12370                 /* init fw_seq */
12371                 bp->fw_seq =
12372                         SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12373                                                         DRV_MSG_SEQ_NUMBER_MASK;
12374                 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12375
12376                 rc = bnx2x_prev_unload(bp);
12377                 if (rc) {
12378                         bnx2x_free_mem_bp(bp);
12379                         return rc;
12380                 }
12381         }
12382
12383         if (CHIP_REV_IS_FPGA(bp))
12384                 dev_err(&bp->pdev->dev, "FPGA detected\n");
12385
12386         if (BP_NOMCP(bp) && (func == 0))
12387                 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12388
12389         bp->disable_tpa = disable_tpa;
12390         bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12391         /* Reduce memory usage in kdump environment by disabling TPA */
12392         bp->disable_tpa |= is_kdump_kernel();
12393
12394         /* Set TPA flags */
12395         if (bp->disable_tpa) {
12396                 bp->dev->hw_features &= ~NETIF_F_LRO;
12397                 bp->dev->features &= ~NETIF_F_LRO;
12398         }
12399
12400         if (CHIP_IS_E1(bp))
12401                 bp->dropless_fc = 0;
12402         else
12403                 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12404
12405         bp->mrrs = mrrs;
12406
12407         bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12408         if (IS_VF(bp))
12409                 bp->rx_ring_size = MAX_RX_AVAIL;
12410
12411         /* make sure that the numbers are in the right granularity */
12412         bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12413         bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12414
12415         bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12416
12417         init_timer(&bp->timer);
12418         bp->timer.expires = jiffies + bp->current_interval;
12419         bp->timer.data = (unsigned long) bp;
12420         bp->timer.function = bnx2x_timer;
12421
12422         if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12423             SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12424             SHMEM2_HAS(bp, dcbx_en) &&
12425             SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12426             SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12427             SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12428                 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12429                 bnx2x_dcbx_init_params(bp);
12430         } else {
12431                 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12432         }
12433
12434         if (CHIP_IS_E1x(bp))
12435                 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12436         else
12437                 bp->cnic_base_cl_id = FP_SB_MAX_E2;
12438
12439         /* multiple tx priority */
12440         if (IS_VF(bp))
12441                 bp->max_cos = 1;
12442         else if (CHIP_IS_E1x(bp))
12443                 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12444         else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12445                 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12446         else if (CHIP_IS_E3B0(bp))
12447                 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12448         else
12449                 BNX2X_ERR("unknown chip %x revision %x\n",
12450                           CHIP_NUM(bp), CHIP_REV(bp));
12451         BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12452
12453         /* We need at least one default status block for slow-path events,
12454          * second status block for the L2 queue, and a third status block for
12455          * CNIC if supported.
12456          */
12457         if (IS_VF(bp))
12458                 bp->min_msix_vec_cnt = 1;
12459         else if (CNIC_SUPPORT(bp))
12460                 bp->min_msix_vec_cnt = 3;
12461         else /* PF w/o cnic */
12462                 bp->min_msix_vec_cnt = 2;
12463         BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12464
12465         bp->dump_preset_idx = 1;
12466
12467         if (CHIP_IS_E3B0(bp))
12468                 bp->flags |= PTP_SUPPORTED;
12469
12470         return rc;
12471 }
12472
12473 /****************************************************************************
12474 * General service functions
12475 ****************************************************************************/
12476
12477 /*
12478  * net_device service functions
12479  */
12480
12481 /* called with rtnl_lock */
12482 static int bnx2x_open(struct net_device *dev)
12483 {
12484         struct bnx2x *bp = netdev_priv(dev);
12485         int rc;
12486
12487         bp->stats_init = true;
12488
12489         netif_carrier_off(dev);
12490
12491         bnx2x_set_power_state(bp, PCI_D0);
12492
12493         /* If parity had happen during the unload, then attentions
12494          * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12495          * want the first function loaded on the current engine to
12496          * complete the recovery.
12497          * Parity recovery is only relevant for PF driver.
12498          */
12499         if (IS_PF(bp)) {
12500                 int other_engine = BP_PATH(bp) ? 0 : 1;
12501                 bool other_load_status, load_status;
12502                 bool global = false;
12503
12504                 other_load_status = bnx2x_get_load_status(bp, other_engine);
12505                 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12506                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12507                     bnx2x_chk_parity_attn(bp, &global, true)) {
12508                         do {
12509                                 /* If there are attentions and they are in a
12510                                  * global blocks, set the GLOBAL_RESET bit
12511                                  * regardless whether it will be this function
12512                                  * that will complete the recovery or not.
12513                                  */
12514                                 if (global)
12515                                         bnx2x_set_reset_global(bp);
12516
12517                                 /* Only the first function on the current
12518                                  * engine should try to recover in open. In case
12519                                  * of attentions in global blocks only the first
12520                                  * in the chip should try to recover.
12521                                  */
12522                                 if ((!load_status &&
12523                                      (!global || !other_load_status)) &&
12524                                       bnx2x_trylock_leader_lock(bp) &&
12525                                       !bnx2x_leader_reset(bp)) {
12526                                         netdev_info(bp->dev,
12527                                                     "Recovered in open\n");
12528                                         break;
12529                                 }
12530
12531                                 /* recovery has failed... */
12532                                 bnx2x_set_power_state(bp, PCI_D3hot);
12533                                 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12534
12535                                 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12536                                           "If you still see this message after a few retries then power cycle is required.\n");
12537
12538                                 return -EAGAIN;
12539                         } while (0);
12540                 }
12541         }
12542
12543         bp->recovery_state = BNX2X_RECOVERY_DONE;
12544         rc = bnx2x_nic_load(bp, LOAD_OPEN);
12545         if (rc)
12546                 return rc;
12547
12548         if (IS_PF(bp))
12549                 udp_tunnel_get_rx_info(dev);
12550
12551         return 0;
12552 }
12553
12554 /* called with rtnl_lock */
12555 static int bnx2x_close(struct net_device *dev)
12556 {
12557         struct bnx2x *bp = netdev_priv(dev);
12558
12559         /* Unload the driver, release IRQs */
12560         bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12561
12562         return 0;
12563 }
12564
12565 struct bnx2x_mcast_list_elem_group
12566 {
12567         struct list_head mcast_group_link;
12568         struct bnx2x_mcast_list_elem mcast_elems[];
12569 };
12570
12571 #define MCAST_ELEMS_PER_PG \
12572         ((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12573         sizeof(struct bnx2x_mcast_list_elem))
12574
12575 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12576 {
12577         struct bnx2x_mcast_list_elem_group *current_mcast_group;
12578
12579         while (!list_empty(mcast_group_list)) {
12580                 current_mcast_group = list_first_entry(mcast_group_list,
12581                                       struct bnx2x_mcast_list_elem_group,
12582                                       mcast_group_link);
12583                 list_del(&current_mcast_group->mcast_group_link);
12584                 free_page((unsigned long)current_mcast_group);
12585         }
12586 }
12587
12588 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12589                                       struct bnx2x_mcast_ramrod_params *p,
12590                                       struct list_head *mcast_group_list)
12591 {
12592         struct bnx2x_mcast_list_elem *mc_mac;
12593         struct netdev_hw_addr *ha;
12594         struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12595         int mc_count = netdev_mc_count(bp->dev);
12596         int offset = 0;
12597
12598         INIT_LIST_HEAD(&p->mcast_list);
12599         netdev_for_each_mc_addr(ha, bp->dev) {
12600                 if (!offset) {
12601                         current_mcast_group =
12602                                 (struct bnx2x_mcast_list_elem_group *)
12603                                 __get_free_page(GFP_ATOMIC);
12604                         if (!current_mcast_group) {
12605                                 bnx2x_free_mcast_macs_list(mcast_group_list);
12606                                 BNX2X_ERR("Failed to allocate mc MAC list\n");
12607                                 return -ENOMEM;
12608                         }
12609                         list_add(&current_mcast_group->mcast_group_link,
12610                                  mcast_group_list);
12611                 }
12612                 mc_mac = &current_mcast_group->mcast_elems[offset];
12613                 mc_mac->mac = bnx2x_mc_addr(ha);
12614                 list_add_tail(&mc_mac->link, &p->mcast_list);
12615                 offset++;
12616                 if (offset == MCAST_ELEMS_PER_PG)
12617                         offset = 0;
12618         }
12619         p->mcast_list_len = mc_count;
12620         return 0;
12621 }
12622
12623 /**
12624  * bnx2x_set_uc_list - configure a new unicast MACs list.
12625  *
12626  * @bp: driver handle
12627  *
12628  * We will use zero (0) as a MAC type for these MACs.
12629  */
12630 static int bnx2x_set_uc_list(struct bnx2x *bp)
12631 {
12632         int rc;
12633         struct net_device *dev = bp->dev;
12634         struct netdev_hw_addr *ha;
12635         struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12636         unsigned long ramrod_flags = 0;
12637
12638         /* First schedule a cleanup up of old configuration */
12639         rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12640         if (rc < 0) {
12641                 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12642                 return rc;
12643         }
12644
12645         netdev_for_each_uc_addr(ha, dev) {
12646                 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12647                                        BNX2X_UC_LIST_MAC, &ramrod_flags);
12648                 if (rc == -EEXIST) {
12649                         DP(BNX2X_MSG_SP,
12650                            "Failed to schedule ADD operations: %d\n", rc);
12651                         /* do not treat adding same MAC as error */
12652                         rc = 0;
12653
12654                 } else if (rc < 0) {
12655
12656                         BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12657                                   rc);
12658                         return rc;
12659                 }
12660         }
12661
12662         /* Execute the pending commands */
12663         __set_bit(RAMROD_CONT, &ramrod_flags);
12664         return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12665                                  BNX2X_UC_LIST_MAC, &ramrod_flags);
12666 }
12667
12668 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12669 {
12670         LIST_HEAD(mcast_group_list);
12671         struct net_device *dev = bp->dev;
12672         struct bnx2x_mcast_ramrod_params rparam = {NULL};
12673         int rc = 0;
12674
12675         rparam.mcast_obj = &bp->mcast_obj;
12676
12677         /* first, clear all configured multicast MACs */
12678         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12679         if (rc < 0) {
12680                 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12681                 return rc;
12682         }
12683
12684         /* then, configure a new MACs list */
12685         if (netdev_mc_count(dev)) {
12686                 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12687                 if (rc)
12688                         return rc;
12689
12690                 /* Now add the new MACs */
12691                 rc = bnx2x_config_mcast(bp, &rparam,
12692                                         BNX2X_MCAST_CMD_ADD);
12693                 if (rc < 0)
12694                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12695                                   rc);
12696
12697                 bnx2x_free_mcast_macs_list(&mcast_group_list);
12698         }
12699
12700         return rc;
12701 }
12702
12703 static int bnx2x_set_mc_list(struct bnx2x *bp)
12704 {
12705         LIST_HEAD(mcast_group_list);
12706         struct bnx2x_mcast_ramrod_params rparam = {NULL};
12707         struct net_device *dev = bp->dev;
12708         int rc = 0;
12709
12710         /* On older adapters, we need to flush and re-add filters */
12711         if (CHIP_IS_E1x(bp))
12712                 return bnx2x_set_mc_list_e1x(bp);
12713
12714         rparam.mcast_obj = &bp->mcast_obj;
12715
12716         if (netdev_mc_count(dev)) {
12717                 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12718                 if (rc)
12719                         return rc;
12720
12721                 /* Override the curently configured set of mc filters */
12722                 rc = bnx2x_config_mcast(bp, &rparam,
12723                                         BNX2X_MCAST_CMD_SET);
12724                 if (rc < 0)
12725                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12726                                   rc);
12727
12728                 bnx2x_free_mcast_macs_list(&mcast_group_list);
12729         } else {
12730                 /* If no mc addresses are required, flush the configuration */
12731                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12732                 if (rc)
12733                         BNX2X_ERR("Failed to clear multicast configuration %d\n",
12734                                   rc);
12735         }
12736
12737         return rc;
12738 }
12739
12740 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12741 static void bnx2x_set_rx_mode(struct net_device *dev)
12742 {
12743         struct bnx2x *bp = netdev_priv(dev);
12744
12745         if (bp->state != BNX2X_STATE_OPEN) {
12746                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12747                 return;
12748         } else {
12749                 /* Schedule an SP task to handle rest of change */
12750                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12751                                        NETIF_MSG_IFUP);
12752         }
12753 }
12754
12755 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12756 {
12757         u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12758
12759         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12760
12761         netif_addr_lock_bh(bp->dev);
12762
12763         if (bp->dev->flags & IFF_PROMISC) {
12764                 rx_mode = BNX2X_RX_MODE_PROMISC;
12765         } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12766                    ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12767                     CHIP_IS_E1(bp))) {
12768                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12769         } else {
12770                 if (IS_PF(bp)) {
12771                         /* some multicasts */
12772                         if (bnx2x_set_mc_list(bp) < 0)
12773                                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12774
12775                         /* release bh lock, as bnx2x_set_uc_list might sleep */
12776                         netif_addr_unlock_bh(bp->dev);
12777                         if (bnx2x_set_uc_list(bp) < 0)
12778                                 rx_mode = BNX2X_RX_MODE_PROMISC;
12779                         netif_addr_lock_bh(bp->dev);
12780                 } else {
12781                         /* configuring mcast to a vf involves sleeping (when we
12782                          * wait for the pf's response).
12783                          */
12784                         bnx2x_schedule_sp_rtnl(bp,
12785                                                BNX2X_SP_RTNL_VFPF_MCAST, 0);
12786                 }
12787         }
12788
12789         bp->rx_mode = rx_mode;
12790         /* handle ISCSI SD mode */
12791         if (IS_MF_ISCSI_ONLY(bp))
12792                 bp->rx_mode = BNX2X_RX_MODE_NONE;
12793
12794         /* Schedule the rx_mode command */
12795         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12796                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12797                 netif_addr_unlock_bh(bp->dev);
12798                 return;
12799         }
12800
12801         if (IS_PF(bp)) {
12802                 bnx2x_set_storm_rx_mode(bp);
12803                 netif_addr_unlock_bh(bp->dev);
12804         } else {
12805                 /* VF will need to request the PF to make this change, and so
12806                  * the VF needs to release the bottom-half lock prior to the
12807                  * request (as it will likely require sleep on the VF side)
12808                  */
12809                 netif_addr_unlock_bh(bp->dev);
12810                 bnx2x_vfpf_storm_rx_mode(bp);
12811         }
12812 }
12813
12814 /* called with rtnl_lock */
12815 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12816                            int devad, u16 addr)
12817 {
12818         struct bnx2x *bp = netdev_priv(netdev);
12819         u16 value;
12820         int rc;
12821
12822         DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12823            prtad, devad, addr);
12824
12825         /* The HW expects different devad if CL22 is used */
12826         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12827
12828         bnx2x_acquire_phy_lock(bp);
12829         rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12830         bnx2x_release_phy_lock(bp);
12831         DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12832
12833         if (!rc)
12834                 rc = value;
12835         return rc;
12836 }
12837
12838 /* called with rtnl_lock */
12839 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12840                             u16 addr, u16 value)
12841 {
12842         struct bnx2x *bp = netdev_priv(netdev);
12843         int rc;
12844
12845         DP(NETIF_MSG_LINK,
12846            "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12847            prtad, devad, addr, value);
12848
12849         /* The HW expects different devad if CL22 is used */
12850         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12851
12852         bnx2x_acquire_phy_lock(bp);
12853         rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12854         bnx2x_release_phy_lock(bp);
12855         return rc;
12856 }
12857
12858 /* called with rtnl_lock */
12859 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12860 {
12861         struct bnx2x *bp = netdev_priv(dev);
12862         struct mii_ioctl_data *mdio = if_mii(ifr);
12863
12864         if (!netif_running(dev))
12865                 return -EAGAIN;
12866
12867         switch (cmd) {
12868         case SIOCSHWTSTAMP:
12869                 return bnx2x_hwtstamp_ioctl(bp, ifr);
12870         default:
12871                 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12872                    mdio->phy_id, mdio->reg_num, mdio->val_in);
12873                 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12874         }
12875 }
12876
12877 #ifdef CONFIG_NET_POLL_CONTROLLER
12878 static void poll_bnx2x(struct net_device *dev)
12879 {
12880         struct bnx2x *bp = netdev_priv(dev);
12881         int i;
12882
12883         for_each_eth_queue(bp, i) {
12884                 struct bnx2x_fastpath *fp = &bp->fp[i];
12885                 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12886         }
12887 }
12888 #endif
12889
12890 static int bnx2x_validate_addr(struct net_device *dev)
12891 {
12892         struct bnx2x *bp = netdev_priv(dev);
12893
12894         /* query the bulletin board for mac address configured by the PF */
12895         if (IS_VF(bp))
12896                 bnx2x_sample_bulletin(bp);
12897
12898         if (!is_valid_ether_addr(dev->dev_addr)) {
12899                 BNX2X_ERR("Non-valid Ethernet address\n");
12900                 return -EADDRNOTAVAIL;
12901         }
12902         return 0;
12903 }
12904
12905 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12906                                   struct netdev_phys_item_id *ppid)
12907 {
12908         struct bnx2x *bp = netdev_priv(netdev);
12909
12910         if (!(bp->flags & HAS_PHYS_PORT_ID))
12911                 return -EOPNOTSUPP;
12912
12913         ppid->id_len = sizeof(bp->phys_port_id);
12914         memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12915
12916         return 0;
12917 }
12918
12919 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12920                                               struct net_device *dev,
12921                                               netdev_features_t features)
12922 {
12923         features = vlan_features_check(skb, features);
12924         return vxlan_features_check(skb, features);
12925 }
12926
12927 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12928 {
12929         int rc;
12930
12931         if (IS_PF(bp)) {
12932                 unsigned long ramrod_flags = 0;
12933
12934                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12935                 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12936                                         add, &ramrod_flags);
12937         } else {
12938                 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12939         }
12940
12941         return rc;
12942 }
12943
12944 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12945 {
12946         struct bnx2x_vlan_entry *vlan;
12947         int rc = 0;
12948
12949         /* Configure all non-configured entries */
12950         list_for_each_entry(vlan, &bp->vlan_reg, link) {
12951                 if (vlan->hw)
12952                         continue;
12953
12954                 if (bp->vlan_cnt >= bp->vlan_credit)
12955                         return -ENOBUFS;
12956
12957                 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12958                 if (rc) {
12959                         BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12960                         return rc;
12961                 }
12962
12963                 DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12964                 vlan->hw = true;
12965                 bp->vlan_cnt++;
12966         }
12967
12968         return 0;
12969 }
12970
12971 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12972 {
12973         bool need_accept_any_vlan;
12974
12975         need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12976
12977         if (bp->accept_any_vlan != need_accept_any_vlan) {
12978                 bp->accept_any_vlan = need_accept_any_vlan;
12979                 DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12980                    bp->accept_any_vlan ? "raised" : "cleared");
12981                 if (set_rx_mode) {
12982                         if (IS_PF(bp))
12983                                 bnx2x_set_rx_mode_inner(bp);
12984                         else
12985                                 bnx2x_vfpf_storm_rx_mode(bp);
12986                 }
12987         }
12988 }
12989
12990 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12991 {
12992         struct bnx2x_vlan_entry *vlan;
12993
12994         /* The hw forgot all entries after reload */
12995         list_for_each_entry(vlan, &bp->vlan_reg, link)
12996                 vlan->hw = false;
12997         bp->vlan_cnt = 0;
12998
12999         /* Don't set rx mode here. Our caller will do it. */
13000         bnx2x_vlan_configure(bp, false);
13001
13002         return 0;
13003 }
13004
13005 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
13006 {
13007         struct bnx2x *bp = netdev_priv(dev);
13008         struct bnx2x_vlan_entry *vlan;
13009
13010         DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
13011
13012         vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
13013         if (!vlan)
13014                 return -ENOMEM;
13015
13016         vlan->vid = vid;
13017         vlan->hw = false;
13018         list_add_tail(&vlan->link, &bp->vlan_reg);
13019
13020         if (netif_running(dev))
13021                 bnx2x_vlan_configure(bp, true);
13022
13023         return 0;
13024 }
13025
13026 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
13027 {
13028         struct bnx2x *bp = netdev_priv(dev);
13029         struct bnx2x_vlan_entry *vlan;
13030         bool found = false;
13031         int rc = 0;
13032
13033         DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
13034
13035         list_for_each_entry(vlan, &bp->vlan_reg, link)
13036                 if (vlan->vid == vid) {
13037                         found = true;
13038                         break;
13039                 }
13040
13041         if (!found) {
13042                 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
13043                 return -EINVAL;
13044         }
13045
13046         if (netif_running(dev) && vlan->hw) {
13047                 rc = __bnx2x_vlan_configure_vid(bp, vid, false);
13048                 DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
13049                 bp->vlan_cnt--;
13050         }
13051
13052         list_del(&vlan->link);
13053         kfree(vlan);
13054
13055         if (netif_running(dev))
13056                 bnx2x_vlan_configure(bp, true);
13057
13058         DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13059
13060         return rc;
13061 }
13062
13063 static const struct net_device_ops bnx2x_netdev_ops = {
13064         .ndo_open               = bnx2x_open,
13065         .ndo_stop               = bnx2x_close,
13066         .ndo_start_xmit         = bnx2x_start_xmit,
13067         .ndo_select_queue       = bnx2x_select_queue,
13068         .ndo_set_rx_mode        = bnx2x_set_rx_mode,
13069         .ndo_set_mac_address    = bnx2x_change_mac_addr,
13070         .ndo_validate_addr      = bnx2x_validate_addr,
13071         .ndo_do_ioctl           = bnx2x_ioctl,
13072         .ndo_change_mtu         = bnx2x_change_mtu,
13073         .ndo_fix_features       = bnx2x_fix_features,
13074         .ndo_set_features       = bnx2x_set_features,
13075         .ndo_tx_timeout         = bnx2x_tx_timeout,
13076         .ndo_vlan_rx_add_vid    = bnx2x_vlan_rx_add_vid,
13077         .ndo_vlan_rx_kill_vid   = bnx2x_vlan_rx_kill_vid,
13078 #ifdef CONFIG_NET_POLL_CONTROLLER
13079         .ndo_poll_controller    = poll_bnx2x,
13080 #endif
13081         .ndo_setup_tc           = __bnx2x_setup_tc,
13082 #ifdef CONFIG_BNX2X_SRIOV
13083         .ndo_set_vf_mac         = bnx2x_set_vf_mac,
13084         .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
13085         .ndo_get_vf_config      = bnx2x_get_vf_config,
13086 #endif
13087 #ifdef NETDEV_FCOE_WWNN
13088         .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
13089 #endif
13090
13091         .ndo_get_phys_port_id   = bnx2x_get_phys_port_id,
13092         .ndo_set_vf_link_state  = bnx2x_set_vf_link_state,
13093         .ndo_features_check     = bnx2x_features_check,
13094         .ndo_udp_tunnel_add     = bnx2x_udp_tunnel_add,
13095         .ndo_udp_tunnel_del     = bnx2x_udp_tunnel_del,
13096 };
13097
13098 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13099 {
13100         struct device *dev = &bp->pdev->dev;
13101
13102         if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13103             dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13104                 dev_err(dev, "System does not support DMA, aborting\n");
13105                 return -EIO;
13106         }
13107
13108         return 0;
13109 }
13110
13111 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13112 {
13113         if (bp->flags & AER_ENABLED) {
13114                 pci_disable_pcie_error_reporting(bp->pdev);
13115                 bp->flags &= ~AER_ENABLED;
13116         }
13117 }
13118
13119 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13120                           struct net_device *dev, unsigned long board_type)
13121 {
13122         int rc;
13123         u32 pci_cfg_dword;
13124         bool chip_is_e1x = (board_type == BCM57710 ||
13125                             board_type == BCM57711 ||
13126                             board_type == BCM57711E);
13127
13128         SET_NETDEV_DEV(dev, &pdev->dev);
13129
13130         bp->dev = dev;
13131         bp->pdev = pdev;
13132
13133         rc = pci_enable_device(pdev);
13134         if (rc) {
13135                 dev_err(&bp->pdev->dev,
13136                         "Cannot enable PCI device, aborting\n");
13137                 goto err_out;
13138         }
13139
13140         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13141                 dev_err(&bp->pdev->dev,
13142                         "Cannot find PCI device base address, aborting\n");
13143                 rc = -ENODEV;
13144                 goto err_out_disable;
13145         }
13146
13147         if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13148                 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13149                 rc = -ENODEV;
13150                 goto err_out_disable;
13151         }
13152
13153         pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13154         if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13155             PCICFG_REVESION_ID_ERROR_VAL) {
13156                 pr_err("PCI device error, probably due to fan failure, aborting\n");
13157                 rc = -ENODEV;
13158                 goto err_out_disable;
13159         }
13160
13161         if (atomic_read(&pdev->enable_cnt) == 1) {
13162                 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13163                 if (rc) {
13164                         dev_err(&bp->pdev->dev,
13165                                 "Cannot obtain PCI resources, aborting\n");
13166                         goto err_out_disable;
13167                 }
13168
13169                 pci_set_master(pdev);
13170                 pci_save_state(pdev);
13171         }
13172
13173         if (IS_PF(bp)) {
13174                 if (!pdev->pm_cap) {
13175                         dev_err(&bp->pdev->dev,
13176                                 "Cannot find power management capability, aborting\n");
13177                         rc = -EIO;
13178                         goto err_out_release;
13179                 }
13180         }
13181
13182         if (!pci_is_pcie(pdev)) {
13183                 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13184                 rc = -EIO;
13185                 goto err_out_release;
13186         }
13187
13188         rc = bnx2x_set_coherency_mask(bp);
13189         if (rc)
13190                 goto err_out_release;
13191
13192         dev->mem_start = pci_resource_start(pdev, 0);
13193         dev->base_addr = dev->mem_start;
13194         dev->mem_end = pci_resource_end(pdev, 0);
13195
13196         dev->irq = pdev->irq;
13197
13198         bp->regview = pci_ioremap_bar(pdev, 0);
13199         if (!bp->regview) {
13200                 dev_err(&bp->pdev->dev,
13201                         "Cannot map register space, aborting\n");
13202                 rc = -ENOMEM;
13203                 goto err_out_release;
13204         }
13205
13206         /* In E1/E1H use pci device function given by kernel.
13207          * In E2/E3 read physical function from ME register since these chips
13208          * support Physical Device Assignment where kernel BDF maybe arbitrary
13209          * (depending on hypervisor).
13210          */
13211         if (chip_is_e1x) {
13212                 bp->pf_num = PCI_FUNC(pdev->devfn);
13213         } else {
13214                 /* chip is E2/3*/
13215                 pci_read_config_dword(bp->pdev,
13216                                       PCICFG_ME_REGISTER, &pci_cfg_dword);
13217                 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13218                                   ME_REG_ABS_PF_NUM_SHIFT);
13219         }
13220         BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13221
13222         /* clean indirect addresses */
13223         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13224                                PCICFG_VENDOR_ID_OFFSET);
13225
13226         /* Set PCIe reset type to fundamental for EEH recovery */
13227         pdev->needs_freset = 1;
13228
13229         /* AER (Advanced Error reporting) configuration */
13230         rc = pci_enable_pcie_error_reporting(pdev);
13231         if (!rc)
13232                 bp->flags |= AER_ENABLED;
13233         else
13234                 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13235
13236         /*
13237          * Clean the following indirect addresses for all functions since it
13238          * is not used by the driver.
13239          */
13240         if (IS_PF(bp)) {
13241                 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13242                 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13243                 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13244                 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13245
13246                 if (chip_is_e1x) {
13247                         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13248                         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13249                         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13250                         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13251                 }
13252
13253                 /* Enable internal target-read (in case we are probed after PF
13254                  * FLR). Must be done prior to any BAR read access. Only for
13255                  * 57712 and up
13256                  */
13257                 if (!chip_is_e1x)
13258                         REG_WR(bp,
13259                                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13260         }
13261
13262         dev->watchdog_timeo = TX_TIMEOUT;
13263
13264         dev->netdev_ops = &bnx2x_netdev_ops;
13265         bnx2x_set_ethtool_ops(bp, dev);
13266
13267         dev->priv_flags |= IFF_UNICAST_FLT;
13268
13269         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13270                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13271                 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
13272                 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13273         if (!chip_is_e1x) {
13274                 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13275                                     NETIF_F_GSO_IPXIP4 |
13276                                     NETIF_F_GSO_UDP_TUNNEL |
13277                                     NETIF_F_GSO_UDP_TUNNEL_CSUM |
13278                                     NETIF_F_GSO_PARTIAL;
13279
13280                 dev->hw_enc_features =
13281                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13282                         NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13283                         NETIF_F_GSO_IPXIP4 |
13284                         NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13285                         NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13286                         NETIF_F_GSO_PARTIAL;
13287
13288                 dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13289                                             NETIF_F_GSO_UDP_TUNNEL_CSUM;
13290         }
13291
13292         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13293                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13294
13295         if (IS_PF(bp)) {
13296                 if (chip_is_e1x)
13297                         bp->accept_any_vlan = true;
13298                 else
13299                         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13300         }
13301         /* For VF we'll know whether to enable VLAN filtering after
13302          * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13303          */
13304
13305         dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13306         dev->features |= NETIF_F_HIGHDMA;
13307
13308         /* Add Loopback capability to the device */
13309         dev->hw_features |= NETIF_F_LOOPBACK;
13310
13311 #ifdef BCM_DCBNL
13312         dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13313 #endif
13314
13315         /* MTU range, 46 - 9600 */
13316         dev->min_mtu = ETH_MIN_PACKET_SIZE;
13317         dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13318
13319         /* get_port_hwinfo() will set prtad and mmds properly */
13320         bp->mdio.prtad = MDIO_PRTAD_NONE;
13321         bp->mdio.mmds = 0;
13322         bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13323         bp->mdio.dev = dev;
13324         bp->mdio.mdio_read = bnx2x_mdio_read;
13325         bp->mdio.mdio_write = bnx2x_mdio_write;
13326
13327         return 0;
13328
13329 err_out_release:
13330         if (atomic_read(&pdev->enable_cnt) == 1)
13331                 pci_release_regions(pdev);
13332
13333 err_out_disable:
13334         pci_disable_device(pdev);
13335
13336 err_out:
13337         return rc;
13338 }
13339
13340 static int bnx2x_check_firmware(struct bnx2x *bp)
13341 {
13342         const struct firmware *firmware = bp->firmware;
13343         struct bnx2x_fw_file_hdr *fw_hdr;
13344         struct bnx2x_fw_file_section *sections;
13345         u32 offset, len, num_ops;
13346         __be16 *ops_offsets;
13347         int i;
13348         const u8 *fw_ver;
13349
13350         if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13351                 BNX2X_ERR("Wrong FW size\n");
13352                 return -EINVAL;
13353         }
13354
13355         fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13356         sections = (struct bnx2x_fw_file_section *)fw_hdr;
13357
13358         /* Make sure none of the offsets and sizes make us read beyond
13359          * the end of the firmware data */
13360         for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13361                 offset = be32_to_cpu(sections[i].offset);
13362                 len = be32_to_cpu(sections[i].len);
13363                 if (offset + len > firmware->size) {
13364                         BNX2X_ERR("Section %d length is out of bounds\n", i);
13365                         return -EINVAL;
13366                 }
13367         }
13368
13369         /* Likewise for the init_ops offsets */
13370         offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13371         ops_offsets = (__force __be16 *)(firmware->data + offset);
13372         num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13373
13374         for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13375                 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13376                         BNX2X_ERR("Section offset %d is out of bounds\n", i);
13377                         return -EINVAL;
13378                 }
13379         }
13380
13381         /* Check FW version */
13382         offset = be32_to_cpu(fw_hdr->fw_version.offset);
13383         fw_ver = firmware->data + offset;
13384         if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
13385             (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
13386             (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
13387             (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
13388                 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13389                        fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13390                        BCM_5710_FW_MAJOR_VERSION,
13391                        BCM_5710_FW_MINOR_VERSION,
13392                        BCM_5710_FW_REVISION_VERSION,
13393                        BCM_5710_FW_ENGINEERING_VERSION);
13394                 return -EINVAL;
13395         }
13396
13397         return 0;
13398 }
13399
13400 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13401 {
13402         const __be32 *source = (const __be32 *)_source;
13403         u32 *target = (u32 *)_target;
13404         u32 i;
13405
13406         for (i = 0; i < n/4; i++)
13407                 target[i] = be32_to_cpu(source[i]);
13408 }
13409
13410 /*
13411    Ops array is stored in the following format:
13412    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13413  */
13414 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13415 {
13416         const __be32 *source = (const __be32 *)_source;
13417         struct raw_op *target = (struct raw_op *)_target;
13418         u32 i, j, tmp;
13419
13420         for (i = 0, j = 0; i < n/8; i++, j += 2) {
13421                 tmp = be32_to_cpu(source[j]);
13422                 target[i].op = (tmp >> 24) & 0xff;
13423                 target[i].offset = tmp & 0xffffff;
13424                 target[i].raw_data = be32_to_cpu(source[j + 1]);
13425         }
13426 }
13427
13428 /* IRO array is stored in the following format:
13429  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13430  */
13431 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13432 {
13433         const __be32 *source = (const __be32 *)_source;
13434         struct iro *target = (struct iro *)_target;
13435         u32 i, j, tmp;
13436
13437         for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13438                 target[i].base = be32_to_cpu(source[j]);
13439                 j++;
13440                 tmp = be32_to_cpu(source[j]);
13441                 target[i].m1 = (tmp >> 16) & 0xffff;
13442                 target[i].m2 = tmp & 0xffff;
13443                 j++;
13444                 tmp = be32_to_cpu(source[j]);
13445                 target[i].m3 = (tmp >> 16) & 0xffff;
13446                 target[i].size = tmp & 0xffff;
13447                 j++;
13448         }
13449 }
13450
13451 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13452 {
13453         const __be16 *source = (const __be16 *)_source;
13454         u16 *target = (u16 *)_target;
13455         u32 i;
13456
13457         for (i = 0; i < n/2; i++)
13458                 target[i] = be16_to_cpu(source[i]);
13459 }
13460
13461 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
13462 do {                                                                    \
13463         u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
13464         bp->arr = kmalloc(len, GFP_KERNEL);                             \
13465         if (!bp->arr)                                                   \
13466                 goto lbl;                                               \
13467         func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
13468              (u8 *)bp->arr, len);                                       \
13469 } while (0)
13470
13471 static int bnx2x_init_firmware(struct bnx2x *bp)
13472 {
13473         const char *fw_file_name;
13474         struct bnx2x_fw_file_hdr *fw_hdr;
13475         int rc;
13476
13477         if (bp->firmware)
13478                 return 0;
13479
13480         if (CHIP_IS_E1(bp))
13481                 fw_file_name = FW_FILE_NAME_E1;
13482         else if (CHIP_IS_E1H(bp))
13483                 fw_file_name = FW_FILE_NAME_E1H;
13484         else if (!CHIP_IS_E1x(bp))
13485                 fw_file_name = FW_FILE_NAME_E2;
13486         else {
13487                 BNX2X_ERR("Unsupported chip revision\n");
13488                 return -EINVAL;
13489         }
13490         BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13491
13492         rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13493         if (rc) {
13494                 BNX2X_ERR("Can't load firmware file %s\n",
13495                           fw_file_name);
13496                 goto request_firmware_exit;
13497         }
13498
13499         rc = bnx2x_check_firmware(bp);
13500         if (rc) {
13501                 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13502                 goto request_firmware_exit;
13503         }
13504
13505         fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13506
13507         /* Initialize the pointers to the init arrays */
13508         /* Blob */
13509         rc = -ENOMEM;
13510         BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13511
13512         /* Opcodes */
13513         BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13514
13515         /* Offsets */
13516         BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13517                             be16_to_cpu_n);
13518
13519         /* STORMs firmware */
13520         INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13521                         be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13522         INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13523                         be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13524         INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13525                         be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13526         INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13527                         be32_to_cpu(fw_hdr->usem_pram_data.offset);
13528         INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13529                         be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13530         INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13531                         be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13532         INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13533                         be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13534         INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13535                         be32_to_cpu(fw_hdr->csem_pram_data.offset);
13536         /* IRO */
13537         BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13538
13539         return 0;
13540
13541 iro_alloc_err:
13542         kfree(bp->init_ops_offsets);
13543 init_offsets_alloc_err:
13544         kfree(bp->init_ops);
13545 init_ops_alloc_err:
13546         kfree(bp->init_data);
13547 request_firmware_exit:
13548         release_firmware(bp->firmware);
13549         bp->firmware = NULL;
13550
13551         return rc;
13552 }
13553
13554 static void bnx2x_release_firmware(struct bnx2x *bp)
13555 {
13556         kfree(bp->init_ops_offsets);
13557         kfree(bp->init_ops);
13558         kfree(bp->init_data);
13559         release_firmware(bp->firmware);
13560         bp->firmware = NULL;
13561 }
13562
13563 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13564         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13565         .init_hw_cmn      = bnx2x_init_hw_common,
13566         .init_hw_port     = bnx2x_init_hw_port,
13567         .init_hw_func     = bnx2x_init_hw_func,
13568
13569         .reset_hw_cmn     = bnx2x_reset_common,
13570         .reset_hw_port    = bnx2x_reset_port,
13571         .reset_hw_func    = bnx2x_reset_func,
13572
13573         .gunzip_init      = bnx2x_gunzip_init,
13574         .gunzip_end       = bnx2x_gunzip_end,
13575
13576         .init_fw          = bnx2x_init_firmware,
13577         .release_fw       = bnx2x_release_firmware,
13578 };
13579
13580 void bnx2x__init_func_obj(struct bnx2x *bp)
13581 {
13582         /* Prepare DMAE related driver resources */
13583         bnx2x_setup_dmae(bp);
13584
13585         bnx2x_init_func_obj(bp, &bp->func_obj,
13586                             bnx2x_sp(bp, func_rdata),
13587                             bnx2x_sp_mapping(bp, func_rdata),
13588                             bnx2x_sp(bp, func_afex_rdata),
13589                             bnx2x_sp_mapping(bp, func_afex_rdata),
13590                             &bnx2x_func_sp_drv);
13591 }
13592
13593 /* must be called after sriov-enable */
13594 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13595 {
13596         int cid_count = BNX2X_L2_MAX_CID(bp);
13597
13598         if (IS_SRIOV(bp))
13599                 cid_count += BNX2X_VF_CIDS;
13600
13601         if (CNIC_SUPPORT(bp))
13602                 cid_count += CNIC_CID_MAX;
13603
13604         return roundup(cid_count, QM_CID_ROUND);
13605 }
13606
13607 /**
13608  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13609  *
13610  * @dev:        pci device
13611  *
13612  */
13613 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13614 {
13615         int index;
13616         u16 control = 0;
13617
13618         /*
13619          * If MSI-X is not supported - return number of SBs needed to support
13620          * one fast path queue: one FP queue + SB for CNIC
13621          */
13622         if (!pdev->msix_cap) {
13623                 dev_info(&pdev->dev, "no msix capability found\n");
13624                 return 1 + cnic_cnt;
13625         }
13626         dev_info(&pdev->dev, "msix capability found\n");
13627
13628         /*
13629          * The value in the PCI configuration space is the index of the last
13630          * entry, namely one less than the actual size of the table, which is
13631          * exactly what we want to return from this function: number of all SBs
13632          * without the default SB.
13633          * For VFs there is no default SB, then we return (index+1).
13634          */
13635         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13636
13637         index = control & PCI_MSIX_FLAGS_QSIZE;
13638
13639         return index;
13640 }
13641
13642 static int set_max_cos_est(int chip_id)
13643 {
13644         switch (chip_id) {
13645         case BCM57710:
13646         case BCM57711:
13647         case BCM57711E:
13648                 return BNX2X_MULTI_TX_COS_E1X;
13649         case BCM57712:
13650         case BCM57712_MF:
13651                 return BNX2X_MULTI_TX_COS_E2_E3A0;
13652         case BCM57800:
13653         case BCM57800_MF:
13654         case BCM57810:
13655         case BCM57810_MF:
13656         case BCM57840_4_10:
13657         case BCM57840_2_20:
13658         case BCM57840_O:
13659         case BCM57840_MFO:
13660         case BCM57840_MF:
13661         case BCM57811:
13662         case BCM57811_MF:
13663                 return BNX2X_MULTI_TX_COS_E3B0;
13664         case BCM57712_VF:
13665         case BCM57800_VF:
13666         case BCM57810_VF:
13667         case BCM57840_VF:
13668         case BCM57811_VF:
13669                 return 1;
13670         default:
13671                 pr_err("Unknown board_type (%d), aborting\n", chip_id);
13672                 return -ENODEV;
13673         }
13674 }
13675
13676 static int set_is_vf(int chip_id)
13677 {
13678         switch (chip_id) {
13679         case BCM57712_VF:
13680         case BCM57800_VF:
13681         case BCM57810_VF:
13682         case BCM57840_VF:
13683         case BCM57811_VF:
13684                 return true;
13685         default:
13686                 return false;
13687         }
13688 }
13689
13690 /* nig_tsgen registers relative address */
13691 #define tsgen_ctrl 0x0
13692 #define tsgen_freecount 0x10
13693 #define tsgen_synctime_t0 0x20
13694 #define tsgen_offset_t0 0x28
13695 #define tsgen_drift_t0 0x30
13696 #define tsgen_synctime_t1 0x58
13697 #define tsgen_offset_t1 0x60
13698 #define tsgen_drift_t1 0x68
13699
13700 /* FW workaround for setting drift */
13701 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13702                                           int best_val, int best_period)
13703 {
13704         struct bnx2x_func_state_params func_params = {NULL};
13705         struct bnx2x_func_set_timesync_params *set_timesync_params =
13706                 &func_params.params.set_timesync;
13707
13708         /* Prepare parameters for function state transitions */
13709         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13710         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13711
13712         func_params.f_obj = &bp->func_obj;
13713         func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13714
13715         /* Function parameters */
13716         set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13717         set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13718         set_timesync_params->add_sub_drift_adjust_value =
13719                 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13720         set_timesync_params->drift_adjust_value = best_val;
13721         set_timesync_params->drift_adjust_period = best_period;
13722
13723         return bnx2x_func_state_change(bp, &func_params);
13724 }
13725
13726 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13727 {
13728         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13729         int rc;
13730         int drift_dir = 1;
13731         int val, period, period1, period2, dif, dif1, dif2;
13732         int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13733
13734         DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13735
13736         if (!netif_running(bp->dev)) {
13737                 DP(BNX2X_MSG_PTP,
13738                    "PTP adjfreq called while the interface is down\n");
13739                 return -ENETDOWN;
13740         }
13741
13742         if (ppb < 0) {
13743                 ppb = -ppb;
13744                 drift_dir = 0;
13745         }
13746
13747         if (ppb == 0) {
13748                 best_val = 1;
13749                 best_period = 0x1FFFFFF;
13750         } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13751                 best_val = 31;
13752                 best_period = 1;
13753         } else {
13754                 /* Changed not to allow val = 8, 16, 24 as these values
13755                  * are not supported in workaround.
13756                  */
13757                 for (val = 0; val <= 31; val++) {
13758                         if ((val & 0x7) == 0)
13759                                 continue;
13760                         period1 = val * 1000000 / ppb;
13761                         period2 = period1 + 1;
13762                         if (period1 != 0)
13763                                 dif1 = ppb - (val * 1000000 / period1);
13764                         else
13765                                 dif1 = BNX2X_MAX_PHC_DRIFT;
13766                         if (dif1 < 0)
13767                                 dif1 = -dif1;
13768                         dif2 = ppb - (val * 1000000 / period2);
13769                         if (dif2 < 0)
13770                                 dif2 = -dif2;
13771                         dif = (dif1 < dif2) ? dif1 : dif2;
13772                         period = (dif1 < dif2) ? period1 : period2;
13773                         if (dif < best_dif) {
13774                                 best_dif = dif;
13775                                 best_val = val;
13776                                 best_period = period;
13777                         }
13778                 }
13779         }
13780
13781         rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13782                                             best_period);
13783         if (rc) {
13784                 BNX2X_ERR("Failed to set drift\n");
13785                 return -EFAULT;
13786         }
13787
13788         DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13789            best_period);
13790
13791         return 0;
13792 }
13793
13794 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13795 {
13796         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13797
13798         if (!netif_running(bp->dev)) {
13799                 DP(BNX2X_MSG_PTP,
13800                    "PTP adjtime called while the interface is down\n");
13801                 return -ENETDOWN;
13802         }
13803
13804         DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13805
13806         timecounter_adjtime(&bp->timecounter, delta);
13807
13808         return 0;
13809 }
13810
13811 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13812 {
13813         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13814         u64 ns;
13815
13816         if (!netif_running(bp->dev)) {
13817                 DP(BNX2X_MSG_PTP,
13818                    "PTP gettime called while the interface is down\n");
13819                 return -ENETDOWN;
13820         }
13821
13822         ns = timecounter_read(&bp->timecounter);
13823
13824         DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13825
13826         *ts = ns_to_timespec64(ns);
13827
13828         return 0;
13829 }
13830
13831 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13832                              const struct timespec64 *ts)
13833 {
13834         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13835         u64 ns;
13836
13837         if (!netif_running(bp->dev)) {
13838                 DP(BNX2X_MSG_PTP,
13839                    "PTP settime called while the interface is down\n");
13840                 return -ENETDOWN;
13841         }
13842
13843         ns = timespec64_to_ns(ts);
13844
13845         DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13846
13847         /* Re-init the timecounter */
13848         timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13849
13850         return 0;
13851 }
13852
13853 /* Enable (or disable) ancillary features of the phc subsystem */
13854 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13855                             struct ptp_clock_request *rq, int on)
13856 {
13857         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13858
13859         BNX2X_ERR("PHC ancillary features are not supported\n");
13860         return -ENOTSUPP;
13861 }
13862
13863 static void bnx2x_register_phc(struct bnx2x *bp)
13864 {
13865         /* Fill the ptp_clock_info struct and register PTP clock*/
13866         bp->ptp_clock_info.owner = THIS_MODULE;
13867         snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13868         bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13869         bp->ptp_clock_info.n_alarm = 0;
13870         bp->ptp_clock_info.n_ext_ts = 0;
13871         bp->ptp_clock_info.n_per_out = 0;
13872         bp->ptp_clock_info.pps = 0;
13873         bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13874         bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13875         bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13876         bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13877         bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13878
13879         bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13880         if (IS_ERR(bp->ptp_clock)) {
13881                 bp->ptp_clock = NULL;
13882                 BNX2X_ERR("PTP clock registeration failed\n");
13883         }
13884 }
13885
13886 static int bnx2x_init_one(struct pci_dev *pdev,
13887                                     const struct pci_device_id *ent)
13888 {
13889         struct net_device *dev = NULL;
13890         struct bnx2x *bp;
13891         enum pcie_link_width pcie_width;
13892         enum pci_bus_speed pcie_speed;
13893         int rc, max_non_def_sbs;
13894         int rx_count, tx_count, rss_count, doorbell_size;
13895         int max_cos_est;
13896         bool is_vf;
13897         int cnic_cnt;
13898
13899         /* Management FW 'remembers' living interfaces. Allow it some time
13900          * to forget previously living interfaces, allowing a proper re-load.
13901          */
13902         if (is_kdump_kernel()) {
13903                 ktime_t now = ktime_get_boottime();
13904                 ktime_t fw_ready_time = ktime_set(5, 0);
13905
13906                 if (ktime_before(now, fw_ready_time))
13907                         msleep(ktime_ms_delta(fw_ready_time, now));
13908         }
13909
13910         /* An estimated maximum supported CoS number according to the chip
13911          * version.
13912          * We will try to roughly estimate the maximum number of CoSes this chip
13913          * may support in order to minimize the memory allocated for Tx
13914          * netdev_queue's. This number will be accurately calculated during the
13915          * initialization of bp->max_cos based on the chip versions AND chip
13916          * revision in the bnx2x_init_bp().
13917          */
13918         max_cos_est = set_max_cos_est(ent->driver_data);
13919         if (max_cos_est < 0)
13920                 return max_cos_est;
13921         is_vf = set_is_vf(ent->driver_data);
13922         cnic_cnt = is_vf ? 0 : 1;
13923
13924         max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13925
13926         /* add another SB for VF as it has no default SB */
13927         max_non_def_sbs += is_vf ? 1 : 0;
13928
13929         /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13930         rss_count = max_non_def_sbs - cnic_cnt;
13931
13932         if (rss_count < 1)
13933                 return -EINVAL;
13934
13935         /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13936         rx_count = rss_count + cnic_cnt;
13937
13938         /* Maximum number of netdev Tx queues:
13939          * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13940          */
13941         tx_count = rss_count * max_cos_est + cnic_cnt;
13942
13943         /* dev zeroed in init_etherdev */
13944         dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13945         if (!dev)
13946                 return -ENOMEM;
13947
13948         bp = netdev_priv(dev);
13949
13950         bp->flags = 0;
13951         if (is_vf)
13952                 bp->flags |= IS_VF_FLAG;
13953
13954         bp->igu_sb_cnt = max_non_def_sbs;
13955         bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13956         bp->msg_enable = debug;
13957         bp->cnic_support = cnic_cnt;
13958         bp->cnic_probe = bnx2x_cnic_probe;
13959
13960         pci_set_drvdata(pdev, dev);
13961
13962         rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13963         if (rc < 0) {
13964                 free_netdev(dev);
13965                 return rc;
13966         }
13967
13968         BNX2X_DEV_INFO("This is a %s function\n",
13969                        IS_PF(bp) ? "physical" : "virtual");
13970         BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13971         BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13972         BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13973                        tx_count, rx_count);
13974
13975         rc = bnx2x_init_bp(bp);
13976         if (rc)
13977                 goto init_one_exit;
13978
13979         /* Map doorbells here as we need the real value of bp->max_cos which
13980          * is initialized in bnx2x_init_bp() to determine the number of
13981          * l2 connections.
13982          */
13983         if (IS_VF(bp)) {
13984                 bp->doorbells = bnx2x_vf_doorbells(bp);
13985                 rc = bnx2x_vf_pci_alloc(bp);
13986                 if (rc)
13987                         goto init_one_freemem;
13988         } else {
13989                 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13990                 if (doorbell_size > pci_resource_len(pdev, 2)) {
13991                         dev_err(&bp->pdev->dev,
13992                                 "Cannot map doorbells, bar size too small, aborting\n");
13993                         rc = -ENOMEM;
13994                         goto init_one_freemem;
13995                 }
13996                 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13997                                                 doorbell_size);
13998         }
13999         if (!bp->doorbells) {
14000                 dev_err(&bp->pdev->dev,
14001                         "Cannot map doorbell space, aborting\n");
14002                 rc = -ENOMEM;
14003                 goto init_one_freemem;
14004         }
14005
14006         if (IS_VF(bp)) {
14007                 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
14008                 if (rc)
14009                         goto init_one_freemem;
14010
14011 #ifdef CONFIG_BNX2X_SRIOV
14012                 /* VF with OLD Hypervisor or old PF do not support filtering */
14013                 if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
14014                         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14015                         dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14016                 }
14017 #endif
14018         }
14019
14020         /* Enable SRIOV if capability found in configuration space */
14021         rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
14022         if (rc)
14023                 goto init_one_freemem;
14024
14025         /* calc qm_cid_count */
14026         bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
14027         BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
14028
14029         /* disable FCOE L2 queue for E1x*/
14030         if (CHIP_IS_E1x(bp))
14031                 bp->flags |= NO_FCOE_FLAG;
14032
14033         /* Set bp->num_queues for MSI-X mode*/
14034         bnx2x_set_num_queues(bp);
14035
14036         /* Configure interrupt mode: try to enable MSI-X/MSI if
14037          * needed.
14038          */
14039         rc = bnx2x_set_int_mode(bp);
14040         if (rc) {
14041                 dev_err(&pdev->dev, "Cannot set interrupts\n");
14042                 goto init_one_freemem;
14043         }
14044         BNX2X_DEV_INFO("set interrupts successfully\n");
14045
14046         /* register the net device */
14047         rc = register_netdev(dev);
14048         if (rc) {
14049                 dev_err(&pdev->dev, "Cannot register net device\n");
14050                 goto init_one_freemem;
14051         }
14052         BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
14053
14054         if (!NO_FCOE(bp)) {
14055                 /* Add storage MAC address */
14056                 rtnl_lock();
14057                 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14058                 rtnl_unlock();
14059         }
14060         if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
14061             pcie_speed == PCI_SPEED_UNKNOWN ||
14062             pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
14063                 BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
14064         else
14065                 BNX2X_DEV_INFO(
14066                        "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
14067                        board_info[ent->driver_data].name,
14068                        (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
14069                        pcie_width,
14070                        pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
14071                        pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
14072                        pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
14073                        "Unknown",
14074                        dev->base_addr, bp->pdev->irq, dev->dev_addr);
14075
14076         bnx2x_register_phc(bp);
14077
14078         if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14079                 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14080
14081         return 0;
14082
14083 init_one_freemem:
14084         bnx2x_free_mem_bp(bp);
14085
14086 init_one_exit:
14087         bnx2x_disable_pcie_error_reporting(bp);
14088
14089         if (bp->regview)
14090                 iounmap(bp->regview);
14091
14092         if (IS_PF(bp) && bp->doorbells)
14093                 iounmap(bp->doorbells);
14094
14095         free_netdev(dev);
14096
14097         if (atomic_read(&pdev->enable_cnt) == 1)
14098                 pci_release_regions(pdev);
14099
14100         pci_disable_device(pdev);
14101
14102         return rc;
14103 }
14104
14105 static void __bnx2x_remove(struct pci_dev *pdev,
14106                            struct net_device *dev,
14107                            struct bnx2x *bp,
14108                            bool remove_netdev)
14109 {
14110         if (bp->ptp_clock) {
14111                 ptp_clock_unregister(bp->ptp_clock);
14112                 bp->ptp_clock = NULL;
14113         }
14114
14115         /* Delete storage MAC address */
14116         if (!NO_FCOE(bp)) {
14117                 rtnl_lock();
14118                 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14119                 rtnl_unlock();
14120         }
14121
14122 #ifdef BCM_DCBNL
14123         /* Delete app tlvs from dcbnl */
14124         bnx2x_dcbnl_update_applist(bp, true);
14125 #endif
14126
14127         if (IS_PF(bp) &&
14128             !BP_NOMCP(bp) &&
14129             (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14130                 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14131
14132         /* Close the interface - either directly or implicitly */
14133         if (remove_netdev) {
14134                 unregister_netdev(dev);
14135         } else {
14136                 rtnl_lock();
14137                 dev_close(dev);
14138                 rtnl_unlock();
14139         }
14140
14141         bnx2x_iov_remove_one(bp);
14142
14143         /* Power on: we can't let PCI layer write to us while we are in D3 */
14144         if (IS_PF(bp)) {
14145                 bnx2x_set_power_state(bp, PCI_D0);
14146                 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14147
14148                 /* Set endianity registers to reset values in case next driver
14149                  * boots in different endianty environment.
14150                  */
14151                 bnx2x_reset_endianity(bp);
14152         }
14153
14154         /* Disable MSI/MSI-X */
14155         bnx2x_disable_msi(bp);
14156
14157         /* Power off */
14158         if (IS_PF(bp))
14159                 bnx2x_set_power_state(bp, PCI_D3hot);
14160
14161         /* Make sure RESET task is not scheduled before continuing */
14162         cancel_delayed_work_sync(&bp->sp_rtnl_task);
14163
14164         /* send message via vfpf channel to release the resources of this vf */
14165         if (IS_VF(bp))
14166                 bnx2x_vfpf_release(bp);
14167
14168         /* Assumes no further PCIe PM changes will occur */
14169         if (system_state == SYSTEM_POWER_OFF) {
14170                 pci_wake_from_d3(pdev, bp->wol);
14171                 pci_set_power_state(pdev, PCI_D3hot);
14172         }
14173
14174         bnx2x_disable_pcie_error_reporting(bp);
14175         if (remove_netdev) {
14176                 if (bp->regview)
14177                         iounmap(bp->regview);
14178
14179                 /* For vfs, doorbells are part of the regview and were unmapped
14180                  * along with it. FW is only loaded by PF.
14181                  */
14182                 if (IS_PF(bp)) {
14183                         if (bp->doorbells)
14184                                 iounmap(bp->doorbells);
14185
14186                         bnx2x_release_firmware(bp);
14187                 } else {
14188                         bnx2x_vf_pci_dealloc(bp);
14189                 }
14190                 bnx2x_free_mem_bp(bp);
14191
14192                 free_netdev(dev);
14193
14194                 if (atomic_read(&pdev->enable_cnt) == 1)
14195                         pci_release_regions(pdev);
14196
14197                 pci_disable_device(pdev);
14198         }
14199 }
14200
14201 static void bnx2x_remove_one(struct pci_dev *pdev)
14202 {
14203         struct net_device *dev = pci_get_drvdata(pdev);
14204         struct bnx2x *bp;
14205
14206         if (!dev) {
14207                 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14208                 return;
14209         }
14210         bp = netdev_priv(dev);
14211
14212         __bnx2x_remove(pdev, dev, bp, true);
14213 }
14214
14215 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14216 {
14217         bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14218
14219         bp->rx_mode = BNX2X_RX_MODE_NONE;
14220
14221         if (CNIC_LOADED(bp))
14222                 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14223
14224         /* Stop Tx */
14225         bnx2x_tx_disable(bp);
14226         /* Delete all NAPI objects */
14227         bnx2x_del_all_napi(bp);
14228         if (CNIC_LOADED(bp))
14229                 bnx2x_del_all_napi_cnic(bp);
14230         netdev_reset_tc(bp->dev);
14231
14232         del_timer_sync(&bp->timer);
14233         cancel_delayed_work_sync(&bp->sp_task);
14234         cancel_delayed_work_sync(&bp->period_task);
14235
14236         if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14237                 bp->stats_state = STATS_STATE_DISABLED;
14238                 up(&bp->stats_lock);
14239         }
14240
14241         bnx2x_save_statistics(bp);
14242
14243         netif_carrier_off(bp->dev);
14244
14245         return 0;
14246 }
14247
14248 /**
14249  * bnx2x_io_error_detected - called when PCI error is detected
14250  * @pdev: Pointer to PCI device
14251  * @state: The current pci connection state
14252  *
14253  * This function is called after a PCI bus error affecting
14254  * this device has been detected.
14255  */
14256 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14257                                                 pci_channel_state_t state)
14258 {
14259         struct net_device *dev = pci_get_drvdata(pdev);
14260         struct bnx2x *bp = netdev_priv(dev);
14261
14262         rtnl_lock();
14263
14264         BNX2X_ERR("IO error detected\n");
14265
14266         netif_device_detach(dev);
14267
14268         if (state == pci_channel_io_perm_failure) {
14269                 rtnl_unlock();
14270                 return PCI_ERS_RESULT_DISCONNECT;
14271         }
14272
14273         if (netif_running(dev))
14274                 bnx2x_eeh_nic_unload(bp);
14275
14276         bnx2x_prev_path_mark_eeh(bp);
14277
14278         pci_disable_device(pdev);
14279
14280         rtnl_unlock();
14281
14282         /* Request a slot reset */
14283         return PCI_ERS_RESULT_NEED_RESET;
14284 }
14285
14286 /**
14287  * bnx2x_io_slot_reset - called after the PCI bus has been reset
14288  * @pdev: Pointer to PCI device
14289  *
14290  * Restart the card from scratch, as if from a cold-boot.
14291  */
14292 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14293 {
14294         struct net_device *dev = pci_get_drvdata(pdev);
14295         struct bnx2x *bp = netdev_priv(dev);
14296         int i;
14297
14298         rtnl_lock();
14299         BNX2X_ERR("IO slot reset initializing...\n");
14300         if (pci_enable_device(pdev)) {
14301                 dev_err(&pdev->dev,
14302                         "Cannot re-enable PCI device after reset\n");
14303                 rtnl_unlock();
14304                 return PCI_ERS_RESULT_DISCONNECT;
14305         }
14306
14307         pci_set_master(pdev);
14308         pci_restore_state(pdev);
14309         pci_save_state(pdev);
14310
14311         if (netif_running(dev))
14312                 bnx2x_set_power_state(bp, PCI_D0);
14313
14314         if (netif_running(dev)) {
14315                 BNX2X_ERR("IO slot reset --> driver unload\n");
14316
14317                 /* MCP should have been reset; Need to wait for validity */
14318                 bnx2x_init_shmem(bp);
14319
14320                 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14321                         u32 v;
14322
14323                         v = SHMEM2_RD(bp,
14324                                       drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14325                         SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14326                                   v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14327                 }
14328                 bnx2x_drain_tx_queues(bp);
14329                 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14330                 bnx2x_netif_stop(bp, 1);
14331                 bnx2x_free_irq(bp);
14332
14333                 /* Report UNLOAD_DONE to MCP */
14334                 bnx2x_send_unload_done(bp, true);
14335
14336                 bp->sp_state = 0;
14337                 bp->port.pmf = 0;
14338
14339                 bnx2x_prev_unload(bp);
14340
14341                 /* We should have reseted the engine, so It's fair to
14342                  * assume the FW will no longer write to the bnx2x driver.
14343                  */
14344                 bnx2x_squeeze_objects(bp);
14345                 bnx2x_free_skbs(bp);
14346                 for_each_rx_queue(bp, i)
14347                         bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14348                 bnx2x_free_fp_mem(bp);
14349                 bnx2x_free_mem(bp);
14350
14351                 bp->state = BNX2X_STATE_CLOSED;
14352         }
14353
14354         rtnl_unlock();
14355
14356         /* If AER, perform cleanup of the PCIe registers */
14357         if (bp->flags & AER_ENABLED) {
14358                 if (pci_cleanup_aer_uncorrect_error_status(pdev))
14359                         BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
14360                 else
14361                         DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
14362         }
14363
14364         return PCI_ERS_RESULT_RECOVERED;
14365 }
14366
14367 /**
14368  * bnx2x_io_resume - called when traffic can start flowing again
14369  * @pdev: Pointer to PCI device
14370  *
14371  * This callback is called when the error recovery driver tells us that
14372  * its OK to resume normal operation.
14373  */
14374 static void bnx2x_io_resume(struct pci_dev *pdev)
14375 {
14376         struct net_device *dev = pci_get_drvdata(pdev);
14377         struct bnx2x *bp = netdev_priv(dev);
14378
14379         if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14380                 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14381                 return;
14382         }
14383
14384         rtnl_lock();
14385
14386         bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14387                                                         DRV_MSG_SEQ_NUMBER_MASK;
14388
14389         if (netif_running(dev))
14390                 bnx2x_nic_load(bp, LOAD_NORMAL);
14391
14392         netif_device_attach(dev);
14393
14394         rtnl_unlock();
14395 }
14396
14397 static const struct pci_error_handlers bnx2x_err_handler = {
14398         .error_detected = bnx2x_io_error_detected,
14399         .slot_reset     = bnx2x_io_slot_reset,
14400         .resume         = bnx2x_io_resume,
14401 };
14402
14403 static void bnx2x_shutdown(struct pci_dev *pdev)
14404 {
14405         struct net_device *dev = pci_get_drvdata(pdev);
14406         struct bnx2x *bp;
14407
14408         if (!dev)
14409                 return;
14410
14411         bp = netdev_priv(dev);
14412         if (!bp)
14413                 return;
14414
14415         rtnl_lock();
14416         netif_device_detach(dev);
14417         rtnl_unlock();
14418
14419         /* Don't remove the netdevice, as there are scenarios which will cause
14420          * the kernel to hang, e.g., when trying to remove bnx2i while the
14421          * rootfs is mounted from SAN.
14422          */
14423         __bnx2x_remove(pdev, dev, bp, false);
14424 }
14425
14426 static struct pci_driver bnx2x_pci_driver = {
14427         .name        = DRV_MODULE_NAME,
14428         .id_table    = bnx2x_pci_tbl,
14429         .probe       = bnx2x_init_one,
14430         .remove      = bnx2x_remove_one,
14431         .suspend     = bnx2x_suspend,
14432         .resume      = bnx2x_resume,
14433         .err_handler = &bnx2x_err_handler,
14434 #ifdef CONFIG_BNX2X_SRIOV
14435         .sriov_configure = bnx2x_sriov_configure,
14436 #endif
14437         .shutdown    = bnx2x_shutdown,
14438 };
14439
14440 static int __init bnx2x_init(void)
14441 {
14442         int ret;
14443
14444         pr_info("%s", version);
14445
14446         bnx2x_wq = create_singlethread_workqueue("bnx2x");
14447         if (bnx2x_wq == NULL) {
14448                 pr_err("Cannot create workqueue\n");
14449                 return -ENOMEM;
14450         }
14451         bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14452         if (!bnx2x_iov_wq) {
14453                 pr_err("Cannot create iov workqueue\n");
14454                 destroy_workqueue(bnx2x_wq);
14455                 return -ENOMEM;
14456         }
14457
14458         ret = pci_register_driver(&bnx2x_pci_driver);
14459         if (ret) {
14460                 pr_err("Cannot register driver\n");
14461                 destroy_workqueue(bnx2x_wq);
14462                 destroy_workqueue(bnx2x_iov_wq);
14463         }
14464         return ret;
14465 }
14466
14467 static void __exit bnx2x_cleanup(void)
14468 {
14469         struct list_head *pos, *q;
14470
14471         pci_unregister_driver(&bnx2x_pci_driver);
14472
14473         destroy_workqueue(bnx2x_wq);
14474         destroy_workqueue(bnx2x_iov_wq);
14475
14476         /* Free globally allocated resources */
14477         list_for_each_safe(pos, q, &bnx2x_prev_list) {
14478                 struct bnx2x_prev_path_list *tmp =
14479                         list_entry(pos, struct bnx2x_prev_path_list, list);
14480                 list_del(pos);
14481                 kfree(tmp);
14482         }
14483 }
14484
14485 void bnx2x_notify_link_changed(struct bnx2x *bp)
14486 {
14487         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14488 }
14489
14490 module_init(bnx2x_init);
14491 module_exit(bnx2x_cleanup);
14492
14493 /**
14494  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14495  *
14496  * @bp:         driver handle
14497  * @set:        set or clear the CAM entry
14498  *
14499  * This function will wait until the ramrod completion returns.
14500  * Return 0 if success, -ENODEV if ramrod doesn't return.
14501  */
14502 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14503 {
14504         unsigned long ramrod_flags = 0;
14505
14506         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14507         return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14508                                  &bp->iscsi_l2_mac_obj, true,
14509                                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14510 }
14511
14512 /* count denotes the number of new completions we have seen */
14513 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14514 {
14515         struct eth_spe *spe;
14516         int cxt_index, cxt_offset;
14517
14518 #ifdef BNX2X_STOP_ON_ERROR
14519         if (unlikely(bp->panic))
14520                 return;
14521 #endif
14522
14523         spin_lock_bh(&bp->spq_lock);
14524         BUG_ON(bp->cnic_spq_pending < count);
14525         bp->cnic_spq_pending -= count;
14526
14527         for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14528                 u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14529                                 & SPE_HDR_CONN_TYPE) >>
14530                                 SPE_HDR_CONN_TYPE_SHIFT;
14531                 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14532                                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14533
14534                 /* Set validation for iSCSI L2 client before sending SETUP
14535                  *  ramrod
14536                  */
14537                 if (type == ETH_CONNECTION_TYPE) {
14538                         if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14539                                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14540                                         ILT_PAGE_CIDS;
14541                                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14542                                         (cxt_index * ILT_PAGE_CIDS);
14543                                 bnx2x_set_ctx_validation(bp,
14544                                         &bp->context[cxt_index].
14545                                                          vcxt[cxt_offset].eth,
14546                                         BNX2X_ISCSI_ETH_CID(bp));
14547                         }
14548                 }
14549
14550                 /*
14551                  * There may be not more than 8 L2, not more than 8 L5 SPEs
14552                  * and in the air. We also check that number of outstanding
14553                  * COMMON ramrods is not more than the EQ and SPQ can
14554                  * accommodate.
14555                  */
14556                 if (type == ETH_CONNECTION_TYPE) {
14557                         if (!atomic_read(&bp->cq_spq_left))
14558                                 break;
14559                         else
14560                                 atomic_dec(&bp->cq_spq_left);
14561                 } else if (type == NONE_CONNECTION_TYPE) {
14562                         if (!atomic_read(&bp->eq_spq_left))
14563                                 break;
14564                         else
14565                                 atomic_dec(&bp->eq_spq_left);
14566                 } else if ((type == ISCSI_CONNECTION_TYPE) ||
14567                            (type == FCOE_CONNECTION_TYPE)) {
14568                         if (bp->cnic_spq_pending >=
14569                             bp->cnic_eth_dev.max_kwqe_pending)
14570                                 break;
14571                         else
14572                                 bp->cnic_spq_pending++;
14573                 } else {
14574                         BNX2X_ERR("Unknown SPE type: %d\n", type);
14575                         bnx2x_panic();
14576                         break;
14577                 }
14578
14579                 spe = bnx2x_sp_get_next(bp);
14580                 *spe = *bp->cnic_kwq_cons;
14581
14582                 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14583                    bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14584
14585                 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14586                         bp->cnic_kwq_cons = bp->cnic_kwq;
14587                 else
14588                         bp->cnic_kwq_cons++;
14589         }
14590         bnx2x_sp_prod_update(bp);
14591         spin_unlock_bh(&bp->spq_lock);
14592 }
14593
14594 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14595                                struct kwqe_16 *kwqes[], u32 count)
14596 {
14597         struct bnx2x *bp = netdev_priv(dev);
14598         int i;
14599
14600 #ifdef BNX2X_STOP_ON_ERROR
14601         if (unlikely(bp->panic)) {
14602                 BNX2X_ERR("Can't post to SP queue while panic\n");
14603                 return -EIO;
14604         }
14605 #endif
14606
14607         if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14608             (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14609                 BNX2X_ERR("Handling parity error recovery. Try again later\n");
14610                 return -EAGAIN;
14611         }
14612
14613         spin_lock_bh(&bp->spq_lock);
14614
14615         for (i = 0; i < count; i++) {
14616                 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14617
14618                 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14619                         break;
14620
14621                 *bp->cnic_kwq_prod = *spe;
14622
14623                 bp->cnic_kwq_pending++;
14624
14625                 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14626                    spe->hdr.conn_and_cmd_data, spe->hdr.type,
14627                    spe->data.update_data_addr.hi,
14628                    spe->data.update_data_addr.lo,
14629                    bp->cnic_kwq_pending);
14630
14631                 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14632                         bp->cnic_kwq_prod = bp->cnic_kwq;
14633                 else
14634                         bp->cnic_kwq_prod++;
14635         }
14636
14637         spin_unlock_bh(&bp->spq_lock);
14638
14639         if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14640                 bnx2x_cnic_sp_post(bp, 0);
14641
14642         return i;
14643 }
14644
14645 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14646 {
14647         struct cnic_ops *c_ops;
14648         int rc = 0;
14649
14650         mutex_lock(&bp->cnic_mutex);
14651         c_ops = rcu_dereference_protected(bp->cnic_ops,
14652                                           lockdep_is_held(&bp->cnic_mutex));
14653         if (c_ops)
14654                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14655         mutex_unlock(&bp->cnic_mutex);
14656
14657         return rc;
14658 }
14659
14660 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14661 {
14662         struct cnic_ops *c_ops;
14663         int rc = 0;
14664
14665         rcu_read_lock();
14666         c_ops = rcu_dereference(bp->cnic_ops);
14667         if (c_ops)
14668                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14669         rcu_read_unlock();
14670
14671         return rc;
14672 }
14673
14674 /*
14675  * for commands that have no data
14676  */
14677 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14678 {
14679         struct cnic_ctl_info ctl = {0};
14680
14681         ctl.cmd = cmd;
14682
14683         return bnx2x_cnic_ctl_send(bp, &ctl);
14684 }
14685
14686 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14687 {
14688         struct cnic_ctl_info ctl = {0};
14689
14690         /* first we tell CNIC and only then we count this as a completion */
14691         ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14692         ctl.data.comp.cid = cid;
14693         ctl.data.comp.error = err;
14694
14695         bnx2x_cnic_ctl_send_bh(bp, &ctl);
14696         bnx2x_cnic_sp_post(bp, 0);
14697 }
14698
14699 /* Called with netif_addr_lock_bh() taken.
14700  * Sets an rx_mode config for an iSCSI ETH client.
14701  * Doesn't block.
14702  * Completion should be checked outside.
14703  */
14704 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14705 {
14706         unsigned long accept_flags = 0, ramrod_flags = 0;
14707         u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14708         int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14709
14710         if (start) {
14711                 /* Start accepting on iSCSI L2 ring. Accept all multicasts
14712                  * because it's the only way for UIO Queue to accept
14713                  * multicasts (in non-promiscuous mode only one Queue per
14714                  * function will receive multicast packets (leading in our
14715                  * case).
14716                  */
14717                 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14718                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14719                 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14720                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14721
14722                 /* Clear STOP_PENDING bit if START is requested */
14723                 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14724
14725                 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14726         } else
14727                 /* Clear START_PENDING bit if STOP is requested */
14728                 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14729
14730         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14731                 set_bit(sched_state, &bp->sp_state);
14732         else {
14733                 __set_bit(RAMROD_RX, &ramrod_flags);
14734                 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14735                                     ramrod_flags);
14736         }
14737 }
14738
14739 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14740 {
14741         struct bnx2x *bp = netdev_priv(dev);
14742         int rc = 0;
14743
14744         switch (ctl->cmd) {
14745         case DRV_CTL_CTXTBL_WR_CMD: {
14746                 u32 index = ctl->data.io.offset;
14747                 dma_addr_t addr = ctl->data.io.dma_addr;
14748
14749                 bnx2x_ilt_wr(bp, index, addr);
14750                 break;
14751         }
14752
14753         case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14754                 int count = ctl->data.credit.credit_count;
14755
14756                 bnx2x_cnic_sp_post(bp, count);
14757                 break;
14758         }
14759
14760         /* rtnl_lock is held.  */
14761         case DRV_CTL_START_L2_CMD: {
14762                 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14763                 unsigned long sp_bits = 0;
14764
14765                 /* Configure the iSCSI classification object */
14766                 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14767                                    cp->iscsi_l2_client_id,
14768                                    cp->iscsi_l2_cid, BP_FUNC(bp),
14769                                    bnx2x_sp(bp, mac_rdata),
14770                                    bnx2x_sp_mapping(bp, mac_rdata),
14771                                    BNX2X_FILTER_MAC_PENDING,
14772                                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14773                                    &bp->macs_pool);
14774
14775                 /* Set iSCSI MAC address */
14776                 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14777                 if (rc)
14778                         break;
14779
14780                 mmiowb();
14781                 barrier();
14782
14783                 /* Start accepting on iSCSI L2 ring */
14784
14785                 netif_addr_lock_bh(dev);
14786                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
14787                 netif_addr_unlock_bh(dev);
14788
14789                 /* bits to wait on */
14790                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14791                 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14792
14793                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14794                         BNX2X_ERR("rx_mode completion timed out!\n");
14795
14796                 break;
14797         }
14798
14799         /* rtnl_lock is held.  */
14800         case DRV_CTL_STOP_L2_CMD: {
14801                 unsigned long sp_bits = 0;
14802
14803                 /* Stop accepting on iSCSI L2 ring */
14804                 netif_addr_lock_bh(dev);
14805                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
14806                 netif_addr_unlock_bh(dev);
14807
14808                 /* bits to wait on */
14809                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14810                 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14811
14812                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14813                         BNX2X_ERR("rx_mode completion timed out!\n");
14814
14815                 mmiowb();
14816                 barrier();
14817
14818                 /* Unset iSCSI L2 MAC */
14819                 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14820                                         BNX2X_ISCSI_ETH_MAC, true);
14821                 break;
14822         }
14823         case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14824                 int count = ctl->data.credit.credit_count;
14825
14826                 smp_mb__before_atomic();
14827                 atomic_add(count, &bp->cq_spq_left);
14828                 smp_mb__after_atomic();
14829                 break;
14830         }
14831         case DRV_CTL_ULP_REGISTER_CMD: {
14832                 int ulp_type = ctl->data.register_data.ulp_type;
14833
14834                 if (CHIP_IS_E3(bp)) {
14835                         int idx = BP_FW_MB_IDX(bp);
14836                         u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14837                         int path = BP_PATH(bp);
14838                         int port = BP_PORT(bp);
14839                         int i;
14840                         u32 scratch_offset;
14841                         u32 *host_addr;
14842
14843                         /* first write capability to shmem2 */
14844                         if (ulp_type == CNIC_ULP_ISCSI)
14845                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14846                         else if (ulp_type == CNIC_ULP_FCOE)
14847                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14848                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14849
14850                         if ((ulp_type != CNIC_ULP_FCOE) ||
14851                             (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14852                             (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14853                                 break;
14854
14855                         /* if reached here - should write fcoe capabilities */
14856                         scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14857                         if (!scratch_offset)
14858                                 break;
14859                         scratch_offset += offsetof(struct glob_ncsi_oem_data,
14860                                                    fcoe_features[path][port]);
14861                         host_addr = (u32 *) &(ctl->data.register_data.
14862                                               fcoe_features);
14863                         for (i = 0; i < sizeof(struct fcoe_capabilities);
14864                              i += 4)
14865                                 REG_WR(bp, scratch_offset + i,
14866                                        *(host_addr + i/4));
14867                 }
14868                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14869                 break;
14870         }
14871
14872         case DRV_CTL_ULP_UNREGISTER_CMD: {
14873                 int ulp_type = ctl->data.ulp_type;
14874
14875                 if (CHIP_IS_E3(bp)) {
14876                         int idx = BP_FW_MB_IDX(bp);
14877                         u32 cap;
14878
14879                         cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14880                         if (ulp_type == CNIC_ULP_ISCSI)
14881                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14882                         else if (ulp_type == CNIC_ULP_FCOE)
14883                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14884                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14885                 }
14886                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14887                 break;
14888         }
14889
14890         default:
14891                 BNX2X_ERR("unknown command %x\n", ctl->cmd);
14892                 rc = -EINVAL;
14893         }
14894
14895         /* For storage-only interfaces, change driver state */
14896         if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14897                 switch (ctl->drv_state) {
14898                 case DRV_NOP:
14899                         break;
14900                 case DRV_ACTIVE:
14901                         bnx2x_set_os_driver_state(bp,
14902                                                   OS_DRIVER_STATE_ACTIVE);
14903                         break;
14904                 case DRV_INACTIVE:
14905                         bnx2x_set_os_driver_state(bp,
14906                                                   OS_DRIVER_STATE_DISABLED);
14907                         break;
14908                 case DRV_UNLOADED:
14909                         bnx2x_set_os_driver_state(bp,
14910                                                   OS_DRIVER_STATE_NOT_LOADED);
14911                         break;
14912                 default:
14913                 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14914                 }
14915         }
14916
14917         return rc;
14918 }
14919
14920 static int bnx2x_get_fc_npiv(struct net_device *dev,
14921                              struct cnic_fc_npiv_tbl *cnic_tbl)
14922 {
14923         struct bnx2x *bp = netdev_priv(dev);
14924         struct bdn_fc_npiv_tbl *tbl = NULL;
14925         u32 offset, entries;
14926         int rc = -EINVAL;
14927         int i;
14928
14929         if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14930                 goto out;
14931
14932         DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14933
14934         tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14935         if (!tbl) {
14936                 BNX2X_ERR("Failed to allocate fc_npiv table\n");
14937                 goto out;
14938         }
14939
14940         offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14941         if (!offset) {
14942                 DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14943                 goto out;
14944         }
14945         DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14946
14947         /* Read the table contents from nvram */
14948         if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14949                 BNX2X_ERR("Failed to read FC-NPIV table\n");
14950                 goto out;
14951         }
14952
14953         /* Since bnx2x_nvram_read() returns data in be32, we need to convert
14954          * the number of entries back to cpu endianness.
14955          */
14956         entries = tbl->fc_npiv_cfg.num_of_npiv;
14957         entries = (__force u32)be32_to_cpu((__force __be32)entries);
14958         tbl->fc_npiv_cfg.num_of_npiv = entries;
14959
14960         if (!tbl->fc_npiv_cfg.num_of_npiv) {
14961                 DP(BNX2X_MSG_MCP,
14962                    "No FC-NPIV table [valid, simply not present]\n");
14963                 goto out;
14964         } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14965                 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14966                           tbl->fc_npiv_cfg.num_of_npiv);
14967                 goto out;
14968         } else {
14969                 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14970                    tbl->fc_npiv_cfg.num_of_npiv);
14971         }
14972
14973         /* Copy the data into cnic-provided struct */
14974         cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14975         for (i = 0; i < cnic_tbl->count; i++) {
14976                 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14977                 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14978         }
14979
14980         rc = 0;
14981 out:
14982         kfree(tbl);
14983         return rc;
14984 }
14985
14986 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14987 {
14988         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14989
14990         if (bp->flags & USING_MSIX_FLAG) {
14991                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14992                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14993                 cp->irq_arr[0].vector = bp->msix_table[1].vector;
14994         } else {
14995                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14996                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14997         }
14998         if (!CHIP_IS_E1x(bp))
14999                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
15000         else
15001                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
15002
15003         cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
15004         cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
15005         cp->irq_arr[1].status_blk = bp->def_status_blk;
15006         cp->irq_arr[1].status_blk_num = DEF_SB_ID;
15007         cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
15008
15009         cp->num_irq = 2;
15010 }
15011
15012 void bnx2x_setup_cnic_info(struct bnx2x *bp)
15013 {
15014         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15015
15016         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15017                              bnx2x_cid_ilt_lines(bp);
15018         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15019         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15020         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15021
15022         DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
15023            BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
15024            cp->iscsi_l2_cid);
15025
15026         if (NO_ISCSI_OOO(bp))
15027                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15028 }
15029
15030 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
15031                                void *data)
15032 {
15033         struct bnx2x *bp = netdev_priv(dev);
15034         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15035         int rc;
15036
15037         DP(NETIF_MSG_IFUP, "Register_cnic called\n");
15038
15039         if (ops == NULL) {
15040                 BNX2X_ERR("NULL ops received\n");
15041                 return -EINVAL;
15042         }
15043
15044         if (!CNIC_SUPPORT(bp)) {
15045                 BNX2X_ERR("Can't register CNIC when not supported\n");
15046                 return -EOPNOTSUPP;
15047         }
15048
15049         if (!CNIC_LOADED(bp)) {
15050                 rc = bnx2x_load_cnic(bp);
15051                 if (rc) {
15052                         BNX2X_ERR("CNIC-related load failed\n");
15053                         return rc;
15054                 }
15055         }
15056
15057         bp->cnic_enabled = true;
15058
15059         bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
15060         if (!bp->cnic_kwq)
15061                 return -ENOMEM;
15062
15063         bp->cnic_kwq_cons = bp->cnic_kwq;
15064         bp->cnic_kwq_prod = bp->cnic_kwq;
15065         bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
15066
15067         bp->cnic_spq_pending = 0;
15068         bp->cnic_kwq_pending = 0;
15069
15070         bp->cnic_data = data;
15071
15072         cp->num_irq = 0;
15073         cp->drv_state |= CNIC_DRV_STATE_REGD;
15074         cp->iro_arr = bp->iro_arr;
15075
15076         bnx2x_setup_cnic_irq_info(bp);
15077
15078         rcu_assign_pointer(bp->cnic_ops, ops);
15079
15080         /* Schedule driver to read CNIC driver versions */
15081         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15082
15083         return 0;
15084 }
15085
15086 static int bnx2x_unregister_cnic(struct net_device *dev)
15087 {
15088         struct bnx2x *bp = netdev_priv(dev);
15089         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15090
15091         mutex_lock(&bp->cnic_mutex);
15092         cp->drv_state = 0;
15093         RCU_INIT_POINTER(bp->cnic_ops, NULL);
15094         mutex_unlock(&bp->cnic_mutex);
15095         synchronize_rcu();
15096         bp->cnic_enabled = false;
15097         kfree(bp->cnic_kwq);
15098         bp->cnic_kwq = NULL;
15099
15100         return 0;
15101 }
15102
15103 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15104 {
15105         struct bnx2x *bp = netdev_priv(dev);
15106         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15107
15108         /* If both iSCSI and FCoE are disabled - return NULL in
15109          * order to indicate CNIC that it should not try to work
15110          * with this device.
15111          */
15112         if (NO_ISCSI(bp) && NO_FCOE(bp))
15113                 return NULL;
15114
15115         cp->drv_owner = THIS_MODULE;
15116         cp->chip_id = CHIP_ID(bp);
15117         cp->pdev = bp->pdev;
15118         cp->io_base = bp->regview;
15119         cp->io_base2 = bp->doorbells;
15120         cp->max_kwqe_pending = 8;
15121         cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15122         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15123                              bnx2x_cid_ilt_lines(bp);
15124         cp->ctx_tbl_len = CNIC_ILT_LINES;
15125         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15126         cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15127         cp->drv_ctl = bnx2x_drv_ctl;
15128         cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15129         cp->drv_register_cnic = bnx2x_register_cnic;
15130         cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15131         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15132         cp->iscsi_l2_client_id =
15133                 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15134         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15135
15136         if (NO_ISCSI_OOO(bp))
15137                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15138
15139         if (NO_ISCSI(bp))
15140                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15141
15142         if (NO_FCOE(bp))
15143                 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15144
15145         BNX2X_DEV_INFO(
15146                 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15147            cp->ctx_blk_size,
15148            cp->ctx_tbl_offset,
15149            cp->ctx_tbl_len,
15150            cp->starting_cid);
15151         return cp;
15152 }
15153
15154 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15155 {
15156         struct bnx2x *bp = fp->bp;
15157         u32 offset = BAR_USTRORM_INTMEM;
15158
15159         if (IS_VF(bp))
15160                 return bnx2x_vf_ustorm_prods_offset(bp, fp);
15161         else if (!CHIP_IS_E1x(bp))
15162                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15163         else
15164                 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15165
15166         return offset;
15167 }
15168
15169 /* called only on E1H or E2.
15170  * When pretending to be PF, the pretend value is the function number 0...7
15171  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15172  * combination
15173  */
15174 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15175 {
15176         u32 pretend_reg;
15177
15178         if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15179                 return -1;
15180
15181         /* get my own pretend register */
15182         pretend_reg = bnx2x_get_pretend_reg(bp);
15183         REG_WR(bp, pretend_reg, pretend_func_val);
15184         REG_RD(bp, pretend_reg);
15185         return 0;
15186 }
15187
15188 static void bnx2x_ptp_task(struct work_struct *work)
15189 {
15190         struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15191         int port = BP_PORT(bp);
15192         u32 val_seq;
15193         u64 timestamp, ns;
15194         struct skb_shared_hwtstamps shhwtstamps;
15195
15196         /* Read Tx timestamp registers */
15197         val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15198                          NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15199         if (val_seq & 0x10000) {
15200                 /* There is a valid timestamp value */
15201                 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15202                                    NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15203                 timestamp <<= 32;
15204                 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15205                                     NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15206                 /* Reset timestamp register to allow new timestamp */
15207                 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15208                        NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15209                 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15210
15211                 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15212                 shhwtstamps.hwtstamp = ns_to_ktime(ns);
15213                 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15214                 dev_kfree_skb_any(bp->ptp_tx_skb);
15215                 bp->ptp_tx_skb = NULL;
15216
15217                 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15218                    timestamp, ns);
15219         } else {
15220                 DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
15221                 /* Reschedule to keep checking for a valid timestamp value */
15222                 schedule_work(&bp->ptp_task);
15223         }
15224 }
15225
15226 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15227 {
15228         int port = BP_PORT(bp);
15229         u64 timestamp, ns;
15230
15231         timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15232                             NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15233         timestamp <<= 32;
15234         timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15235                             NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15236
15237         /* Reset timestamp register to allow new timestamp */
15238         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15239                NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15240
15241         ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15242
15243         skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15244
15245         DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15246            timestamp, ns);
15247 }
15248
15249 /* Read the PHC */
15250 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15251 {
15252         struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15253         int port = BP_PORT(bp);
15254         u32 wb_data[2];
15255         u64 phc_cycles;
15256
15257         REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15258                     NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15259         phc_cycles = wb_data[1];
15260         phc_cycles = (phc_cycles << 32) + wb_data[0];
15261
15262         DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15263
15264         return phc_cycles;
15265 }
15266
15267 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15268 {
15269         memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15270         bp->cyclecounter.read = bnx2x_cyclecounter_read;
15271         bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15272         bp->cyclecounter.shift = 0;
15273         bp->cyclecounter.mult = 1;
15274 }
15275
15276 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15277 {
15278         struct bnx2x_func_state_params func_params = {NULL};
15279         struct bnx2x_func_set_timesync_params *set_timesync_params =
15280                 &func_params.params.set_timesync;
15281
15282         /* Prepare parameters for function state transitions */
15283         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15284         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15285
15286         func_params.f_obj = &bp->func_obj;
15287         func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15288
15289         /* Function parameters */
15290         set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15291         set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15292
15293         return bnx2x_func_state_change(bp, &func_params);
15294 }
15295
15296 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15297 {
15298         struct bnx2x_queue_state_params q_params;
15299         int rc, i;
15300
15301         /* send queue update ramrod to enable PTP packets */
15302         memset(&q_params, 0, sizeof(q_params));
15303         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15304         q_params.cmd = BNX2X_Q_CMD_UPDATE;
15305         __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15306                   &q_params.params.update.update_flags);
15307         __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15308                   &q_params.params.update.update_flags);
15309
15310         /* send the ramrod on all the queues of the PF */
15311         for_each_eth_queue(bp, i) {
15312                 struct bnx2x_fastpath *fp = &bp->fp[i];
15313
15314                 /* Set the appropriate Queue object */
15315                 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15316
15317                 /* Update the Queue state */
15318                 rc = bnx2x_queue_state_change(bp, &q_params);
15319                 if (rc) {
15320                         BNX2X_ERR("Failed to enable PTP packets\n");
15321                         return rc;
15322                 }
15323         }
15324
15325         return 0;
15326 }
15327
15328 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15329 {
15330         int port = BP_PORT(bp);
15331         int rc;
15332
15333         if (!bp->hwtstamp_ioctl_called)
15334                 return 0;
15335
15336         switch (bp->tx_type) {
15337         case HWTSTAMP_TX_ON:
15338                 bp->flags |= TX_TIMESTAMPING_EN;
15339                 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15340                        NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
15341                 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15342                        NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
15343                 break;
15344         case HWTSTAMP_TX_ONESTEP_SYNC:
15345                 BNX2X_ERR("One-step timestamping is not supported\n");
15346                 return -ERANGE;
15347         }
15348
15349         switch (bp->rx_filter) {
15350         case HWTSTAMP_FILTER_NONE:
15351                 break;
15352         case HWTSTAMP_FILTER_ALL:
15353         case HWTSTAMP_FILTER_SOME:
15354                 bp->rx_filter = HWTSTAMP_FILTER_NONE;
15355                 break;
15356         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15357         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15358         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15359                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15360                 /* Initialize PTP detection for UDP/IPv4 events */
15361                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15362                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
15363                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15364                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
15365                 break;
15366         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15367         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15368         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15369                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15370                 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15371                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15372                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
15373                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15374                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
15375                 break;
15376         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15377         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15378         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15379                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15380                 /* Initialize PTP detection L2 events */
15381                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15382                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
15383                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15384                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
15385
15386                 break;
15387         case HWTSTAMP_FILTER_PTP_V2_EVENT:
15388         case HWTSTAMP_FILTER_PTP_V2_SYNC:
15389         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15390                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15391                 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15392                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15393                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
15394                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15395                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
15396                 break;
15397         }
15398
15399         /* Indicate to FW that this PF expects recorded PTP packets */
15400         rc = bnx2x_enable_ptp_packets(bp);
15401         if (rc)
15402                 return rc;
15403
15404         /* Enable sending PTP packets to host */
15405         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15406                NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15407
15408         return 0;
15409 }
15410
15411 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15412 {
15413         struct hwtstamp_config config;
15414         int rc;
15415
15416         DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15417
15418         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15419                 return -EFAULT;
15420
15421         DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15422            config.tx_type, config.rx_filter);
15423
15424         if (config.flags) {
15425                 BNX2X_ERR("config.flags is reserved for future use\n");
15426                 return -EINVAL;
15427         }
15428
15429         bp->hwtstamp_ioctl_called = 1;
15430         bp->tx_type = config.tx_type;
15431         bp->rx_filter = config.rx_filter;
15432
15433         rc = bnx2x_configure_ptp_filters(bp);
15434         if (rc)
15435                 return rc;
15436
15437         config.rx_filter = bp->rx_filter;
15438
15439         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15440                 -EFAULT : 0;
15441 }
15442
15443 /* Configures HW for PTP */
15444 static int bnx2x_configure_ptp(struct bnx2x *bp)
15445 {
15446         int rc, port = BP_PORT(bp);
15447         u32 wb_data[2];
15448
15449         /* Reset PTP event detection rules - will be configured in the IOCTL */
15450         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15451                NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15452         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15453                NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15454         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15455                NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15456         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15457                NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15458
15459         /* Disable PTP packets to host - will be configured in the IOCTL*/
15460         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15461                NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15462
15463         /* Enable the PTP feature */
15464         REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15465                NIG_REG_P0_PTP_EN, 0x3F);
15466
15467         /* Enable the free-running counter */
15468         wb_data[0] = 0;
15469         wb_data[1] = 0;
15470         REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15471
15472         /* Reset drift register (offset register is not reset) */
15473         rc = bnx2x_send_reset_timesync_ramrod(bp);
15474         if (rc) {
15475                 BNX2X_ERR("Failed to reset PHC drift register\n");
15476                 return -EFAULT;
15477         }
15478
15479         /* Reset possibly old timestamps */
15480         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15481                NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15482         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15483                NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15484
15485         return 0;
15486 }
15487
15488 /* Called during load, to initialize PTP-related stuff */
15489 void bnx2x_init_ptp(struct bnx2x *bp)
15490 {
15491         int rc;
15492
15493         /* Configure PTP in HW */
15494         rc = bnx2x_configure_ptp(bp);
15495         if (rc) {
15496                 BNX2X_ERR("Stopping PTP initialization\n");
15497                 return;
15498         }
15499
15500         /* Init work queue for Tx timestamping */
15501         INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15502
15503         /* Init cyclecounter and timecounter. This is done only in the first
15504          * load. If done in every load, PTP application will fail when doing
15505          * unload / load (e.g. MTU change) while it is running.
15506          */
15507         if (!bp->timecounter_init_done) {
15508                 bnx2x_init_cyclecounter(bp);
15509                 timecounter_init(&bp->timecounter, &bp->cyclecounter,
15510                                  ktime_to_ns(ktime_get_real()));
15511                 bp->timecounter_init_done = 1;
15512         }
15513
15514         DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15515 }