Merge branch 'for-5.4/apple' into for-linus
[sfrench/cifs-2.6.git] / drivers / net / ethernet / agere / et131x.c
1 /* Agere Systems Inc.
2  * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
3  *
4  * Copyright © 2005 Agere Systems Inc.
5  * All rights reserved.
6  *   http://www.agere.com
7  *
8  * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
9  *
10  *------------------------------------------------------------------------------
11  *
12  * SOFTWARE LICENSE
13  *
14  * This software is provided subject to the following terms and conditions,
15  * which you should read carefully before using the software.  Using this
16  * software indicates your acceptance of these terms and conditions.  If you do
17  * not agree with these terms and conditions, do not use the software.
18  *
19  * Copyright © 2005 Agere Systems Inc.
20  * All rights reserved.
21  *
22  * Redistribution and use in source or binary forms, with or without
23  * modifications, are permitted provided that the following conditions are met:
24  *
25  * . Redistributions of source code must retain the above copyright notice, this
26  *    list of conditions and the following Disclaimer as comments in the code as
27  *    well as in the documentation and/or other materials provided with the
28  *    distribution.
29  *
30  * . Redistributions in binary form must reproduce the above copyright notice,
31  *    this list of conditions and the following Disclaimer in the documentation
32  *    and/or other materials provided with the distribution.
33  *
34  * . Neither the name of Agere Systems Inc. nor the names of the contributors
35  *    may be used to endorse or promote products derived from this software
36  *    without specific prior written permission.
37  *
38  * Disclaimer
39  *
40  * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
41  * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
42  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
43  * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
44  * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
45  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
46  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
48  * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
50  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
51  * DAMAGE.
52  */
53
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55
56 #include <linux/pci.h>
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60
61 #include <linux/sched.h>
62 #include <linux/ptrace.h>
63 #include <linux/slab.h>
64 #include <linux/ctype.h>
65 #include <linux/string.h>
66 #include <linux/timer.h>
67 #include <linux/interrupt.h>
68 #include <linux/in.h>
69 #include <linux/delay.h>
70 #include <linux/bitops.h>
71 #include <linux/io.h>
72
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_arp.h>
77 #include <linux/ioport.h>
78 #include <linux/crc32.h>
79 #include <linux/random.h>
80 #include <linux/phy.h>
81
82 #include "et131x.h"
83
84 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
85 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
86 MODULE_LICENSE("Dual BSD/GPL");
87 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
88
89 /* EEPROM defines */
90 #define MAX_NUM_REGISTER_POLLS          1000
91 #define MAX_NUM_WRITE_RETRIES           2
92
93 /* MAC defines */
94 #define COUNTER_WRAP_16_BIT 0x10000
95 #define COUNTER_WRAP_12_BIT 0x1000
96
97 /* PCI defines */
98 #define INTERNAL_MEM_SIZE       0x400   /* 1024 of internal memory */
99 #define INTERNAL_MEM_RX_OFFSET  0x1FF   /* 50%   Tx, 50%   Rx */
100
101 /* ISR defines */
102 /* For interrupts, normal running is:
103  *       rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
104  *       watchdog_interrupt & txdma_xfer_done
105  *
106  * In both cases, when flow control is enabled for either Tx or bi-direction,
107  * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
108  * buffer rings are running low.
109  */
110 #define INT_MASK_DISABLE            0xffffffff
111
112 /* NOTE: Masking out MAC_STAT Interrupt for now...
113  * #define INT_MASK_ENABLE             0xfff6bf17
114  * #define INT_MASK_ENABLE_NO_FLOW     0xfff6bfd7
115  */
116 #define INT_MASK_ENABLE             0xfffebf17
117 #define INT_MASK_ENABLE_NO_FLOW     0xfffebfd7
118
119 /* General defines */
120 /* Packet and header sizes */
121 #define NIC_MIN_PACKET_SIZE     60
122
123 /* Multicast list size */
124 #define NIC_MAX_MCAST_LIST      128
125
126 /* Supported Filters */
127 #define ET131X_PACKET_TYPE_DIRECTED             0x0001
128 #define ET131X_PACKET_TYPE_MULTICAST            0x0002
129 #define ET131X_PACKET_TYPE_BROADCAST            0x0004
130 #define ET131X_PACKET_TYPE_PROMISCUOUS          0x0008
131 #define ET131X_PACKET_TYPE_ALL_MULTICAST        0x0010
132
133 /* Tx Timeout */
134 #define ET131X_TX_TIMEOUT       (1 * HZ)
135 #define NIC_SEND_HANG_THRESHOLD 0
136
137 /* MP_ADAPTER flags */
138 #define FMP_ADAPTER_INTERRUPT_IN_USE    0x00000008
139
140 /* MP_SHARED flags */
141 #define FMP_ADAPTER_LOWER_POWER         0x00200000
142
143 #define FMP_ADAPTER_NON_RECOVER_ERROR   0x00800000
144 #define FMP_ADAPTER_HARDWARE_ERROR      0x04000000
145
146 #define FMP_ADAPTER_FAIL_SEND_MASK      0x3ff00000
147
148 /* Some offsets in PCI config space that are actually used. */
149 #define ET1310_PCI_MAC_ADDRESS          0xA4
150 #define ET1310_PCI_EEPROM_STATUS        0xB2
151 #define ET1310_PCI_ACK_NACK             0xC0
152 #define ET1310_PCI_REPLAY               0xC2
153 #define ET1310_PCI_L0L1LATENCY          0xCF
154
155 /* PCI Product IDs */
156 #define ET131X_PCI_DEVICE_ID_GIG        0xED00  /* ET1310 1000 Base-T 8 */
157 #define ET131X_PCI_DEVICE_ID_FAST       0xED01  /* ET1310 100  Base-T */
158
159 /* Define order of magnitude converter */
160 #define NANO_IN_A_MICRO 1000
161
162 #define PARM_RX_NUM_BUFS_DEF    4
163 #define PARM_RX_TIME_INT_DEF    10
164 #define PARM_RX_MEM_END_DEF     0x2bc
165 #define PARM_TX_TIME_INT_DEF    40
166 #define PARM_TX_NUM_BUFS_DEF    4
167 #define PARM_DMA_CACHE_DEF      0
168
169 /* RX defines */
170 #define FBR_CHUNKS              32
171 #define MAX_DESC_PER_RING_RX    1024
172
173 /* number of RFDs - default and min */
174 #define RFD_LOW_WATER_MARK      40
175 #define NIC_DEFAULT_NUM_RFD     1024
176 #define NUM_FBRS                2
177
178 #define MAX_PACKETS_HANDLED     256
179 #define ET131X_MIN_MTU          64
180 #define ET131X_MAX_MTU          9216
181
182 #define ALCATEL_MULTICAST_PKT   0x01000000
183 #define ALCATEL_BROADCAST_PKT   0x02000000
184
185 /* typedefs for Free Buffer Descriptors */
186 struct fbr_desc {
187         u32 addr_lo;
188         u32 addr_hi;
189         u32 word2;              /* Bits 10-31 reserved, 0-9 descriptor */
190 };
191
192 /* Packet Status Ring Descriptors
193  *
194  * Word 0:
195  *
196  * top 16 bits are from the Alcatel Status Word as enumerated in
197  * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
198  *
199  * 0: hp                        hash pass
200  * 1: ipa                       IP checksum assist
201  * 2: ipp                       IP checksum pass
202  * 3: tcpa                      TCP checksum assist
203  * 4: tcpp                      TCP checksum pass
204  * 5: wol                       WOL Event
205  * 6: rxmac_error               RXMAC Error Indicator
206  * 7: drop                      Drop packet
207  * 8: ft                        Frame Truncated
208  * 9: jp                        Jumbo Packet
209  * 10: vp                       VLAN Packet
210  * 11-15: unused
211  * 16: asw_prev_pkt_dropped     e.g. IFG too small on previous
212  * 17: asw_RX_DV_event          short receive event detected
213  * 18: asw_false_carrier_event  bad carrier since last good packet
214  * 19: asw_code_err             one or more nibbles signalled as errors
215  * 20: asw_CRC_err              CRC error
216  * 21: asw_len_chk_err          frame length field incorrect
217  * 22: asw_too_long             frame length > 1518 bytes
218  * 23: asw_OK                   valid CRC + no code error
219  * 24: asw_multicast            has a multicast address
220  * 25: asw_broadcast            has a broadcast address
221  * 26: asw_dribble_nibble       spurious bits after EOP
222  * 27: asw_control_frame        is a control frame
223  * 28: asw_pause_frame          is a pause frame
224  * 29: asw_unsupported_op       unsupported OP code
225  * 30: asw_VLAN_tag             VLAN tag detected
226  * 31: asw_long_evt             Rx long event
227  *
228  * Word 1:
229  * 0-15: length                 length in bytes
230  * 16-25: bi                    Buffer Index
231  * 26-27: ri                    Ring Index
232  * 28-31: reserved
233  */
234 struct pkt_stat_desc {
235         u32 word0;
236         u32 word1;
237 };
238
239 /* Typedefs for the RX DMA status word */
240
241 /* rx status word 0 holds part of the status bits of the Rx DMA engine
242  * that get copied out to memory by the ET-1310.  Word 0 is a 32 bit word
243  * which contains the Free Buffer ring 0 and 1 available offset.
244  *
245  * bit 0-9 FBR1 offset
246  * bit 10 Wrap flag for FBR1
247  * bit 16-25 FBR0 offset
248  * bit 26 Wrap flag for FBR0
249  */
250
251 /* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
252  * that get copied out to memory by the ET-1310.  Word 3 is a 32 bit word
253  * which contains the Packet Status Ring available offset.
254  *
255  * bit 0-15 reserved
256  * bit 16-27 PSRoffset
257  * bit 28 PSRwrap
258  * bit 29-31 unused
259  */
260
261 /* struct rx_status_block is a structure representing the status of the Rx
262  * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
263  */
264 struct rx_status_block {
265         u32 word0;
266         u32 word1;
267 };
268
269 /* Structure for look-up table holding free buffer ring pointers, addresses
270  * and state.
271  */
272 struct fbr_lookup {
273         void            *virt[MAX_DESC_PER_RING_RX];
274         u32              bus_high[MAX_DESC_PER_RING_RX];
275         u32              bus_low[MAX_DESC_PER_RING_RX];
276         void            *ring_virtaddr;
277         dma_addr_t       ring_physaddr;
278         void            *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
279         dma_addr_t       mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
280         u32              local_full;
281         u32              num_entries;
282         dma_addr_t       buffsize;
283 };
284
285 /* struct rx_ring is the structure representing the adaptor's local
286  * reference(s) to the rings
287  */
288 struct rx_ring {
289         struct fbr_lookup *fbr[NUM_FBRS];
290         void *ps_ring_virtaddr;
291         dma_addr_t ps_ring_physaddr;
292         u32 local_psr_full;
293         u32 psr_entries;
294
295         struct rx_status_block *rx_status_block;
296         dma_addr_t rx_status_bus;
297
298         struct list_head recv_list;
299         u32 num_ready_recv;
300
301         u32 num_rfd;
302
303         bool unfinished_receives;
304 };
305
306 /* TX defines */
307 /* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
308  *
309  * 0-15: length of packet
310  * 16-27: VLAN tag
311  * 28: VLAN CFI
312  * 29-31: VLAN priority
313  *
314  * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
315  *
316  * 0: last packet in the sequence
317  * 1: first packet in the sequence
318  * 2: interrupt the processor when this pkt sent
319  * 3: Control word - no packet data
320  * 4: Issue half-duplex backpressure : XON/XOFF
321  * 5: send pause frame
322  * 6: Tx frame has error
323  * 7: append CRC
324  * 8: MAC override
325  * 9: pad packet
326  * 10: Packet is a Huge packet
327  * 11: append VLAN tag
328  * 12: IP checksum assist
329  * 13: TCP checksum assist
330  * 14: UDP checksum assist
331  */
332 #define TXDESC_FLAG_LASTPKT             0x0001
333 #define TXDESC_FLAG_FIRSTPKT            0x0002
334 #define TXDESC_FLAG_INTPROC             0x0004
335
336 /* struct tx_desc represents each descriptor on the ring */
337 struct tx_desc {
338         u32 addr_hi;
339         u32 addr_lo;
340         u32 len_vlan;   /* control words how to xmit the */
341         u32 flags;      /* data (detailed above) */
342 };
343
344 /* The status of the Tx DMA engine it sits in free memory, and is pointed to
345  * by 0x101c / 0x1020. This is a DMA10 type
346  */
347
348 /* TCB (Transmit Control Block: Host Side) */
349 struct tcb {
350         struct tcb *next;       /* Next entry in ring */
351         u32 count;              /* Used to spot stuck/lost packets */
352         u32 stale;              /* Used to spot stuck/lost packets */
353         struct sk_buff *skb;    /* Network skb we are tied to */
354         u32 index;              /* Ring indexes */
355         u32 index_start;
356 };
357
358 /* Structure representing our local reference(s) to the ring */
359 struct tx_ring {
360         /* TCB (Transmit Control Block) memory and lists */
361         struct tcb *tcb_ring;
362
363         /* List of TCBs that are ready to be used */
364         struct tcb *tcb_qhead;
365         struct tcb *tcb_qtail;
366
367         /* list of TCBs that are currently being sent. */
368         struct tcb *send_head;
369         struct tcb *send_tail;
370         int used;
371
372         /* The actual descriptor ring */
373         struct tx_desc *tx_desc_ring;
374         dma_addr_t tx_desc_ring_pa;
375
376         /* send_idx indicates where we last wrote to in the descriptor ring. */
377         u32 send_idx;
378
379         /* The location of the write-back status block */
380         u32 *tx_status;
381         dma_addr_t tx_status_pa;
382
383         /* Packets since the last IRQ: used for interrupt coalescing */
384         int since_irq;
385 };
386
387 /* Do not change these values: if changed, then change also in respective
388  * TXdma and Rxdma engines
389  */
390 #define NUM_DESC_PER_RING_TX         512    /* TX Do not change these values */
391 #define NUM_TCB                      64
392
393 /* These values are all superseded by registry entries to facilitate tuning.
394  * Once the desired performance has been achieved, the optimal registry values
395  * should be re-populated to these #defines:
396  */
397 #define TX_ERROR_PERIOD             1000
398
399 #define LO_MARK_PERCENT_FOR_PSR     15
400 #define LO_MARK_PERCENT_FOR_RX      15
401
402 /* RFD (Receive Frame Descriptor) */
403 struct rfd {
404         struct list_head list_node;
405         struct sk_buff *skb;
406         u32 len;        /* total size of receive frame */
407         u16 bufferindex;
408         u8 ringindex;
409 };
410
411 /* Flow Control */
412 #define FLOW_BOTH       0
413 #define FLOW_TXONLY     1
414 #define FLOW_RXONLY     2
415 #define FLOW_NONE       3
416
417 /* Struct to define some device statistics */
418 struct ce_stats {
419         u32             multicast_pkts_rcvd;
420         u32             rcvd_pkts_dropped;
421
422         u32             tx_underflows;
423         u32             tx_collisions;
424         u32             tx_excessive_collisions;
425         u32             tx_first_collisions;
426         u32             tx_late_collisions;
427         u32             tx_max_pkt_errs;
428         u32             tx_deferred;
429
430         u32             rx_overflows;
431         u32             rx_length_errs;
432         u32             rx_align_errs;
433         u32             rx_crc_errs;
434         u32             rx_code_violations;
435         u32             rx_other_errs;
436
437         u32             interrupt_status;
438 };
439
440 /* The private adapter structure */
441 struct et131x_adapter {
442         struct net_device *netdev;
443         struct pci_dev *pdev;
444         struct mii_bus *mii_bus;
445         struct napi_struct napi;
446
447         /* Flags that indicate current state of the adapter */
448         u32 flags;
449
450         /* local link state, to determine if a state change has occurred */
451         int link;
452
453         /* Configuration  */
454         u8 rom_addr[ETH_ALEN];
455         u8 addr[ETH_ALEN];
456         bool has_eeprom;
457         u8 eeprom_data[2];
458
459         spinlock_t tcb_send_qlock; /* protects the tx_ring send tcb list */
460         spinlock_t tcb_ready_qlock; /* protects the tx_ring ready tcb list */
461         spinlock_t rcv_lock; /* protects the rx_ring receive list */
462
463         /* Packet Filter and look ahead size */
464         u32 packet_filter;
465
466         /* multicast list */
467         u32 multicast_addr_count;
468         u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
469
470         /* Pointer to the device's PCI register space */
471         struct address_map __iomem *regs;
472
473         /* Registry parameters */
474         u8 wanted_flow;         /* Flow we want for 802.3x flow control */
475         u32 registry_jumbo_packet;      /* Max supported ethernet packet size */
476
477         /* Derived from the registry: */
478         u8 flow;                /* flow control validated by the far-end */
479
480         /* Minimize init-time */
481         struct timer_list error_timer;
482
483         /* variable putting the phy into coma mode when boot up with no cable
484          * plugged in after 5 seconds
485          */
486         u8 boot_coma;
487
488         /* Tx Memory Variables */
489         struct tx_ring tx_ring;
490
491         /* Rx Memory Variables */
492         struct rx_ring rx_ring;
493
494         struct ce_stats stats;
495 };
496
497 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
498 {
499         u32 reg;
500         int i;
501
502         /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
503          *    bits 7,1:0 both equal to 1, at least once after reset.
504          *    Subsequent operations need only to check that bits 1:0 are equal
505          *    to 1 prior to starting a single byte read/write
506          */
507         for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
508                 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
509                         return -EIO;
510
511                 /* I2C idle and Phy Queue Avail both true */
512                 if ((reg & 0x3000) == 0x3000) {
513                         if (status)
514                                 *status = reg;
515                         return reg & 0xFF;
516                 }
517         }
518         return -ETIMEDOUT;
519 }
520
521 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
522 {
523         struct pci_dev *pdev = adapter->pdev;
524         int index = 0;
525         int retries;
526         int err = 0;
527         int writeok = 0;
528         u32 status;
529         u32 val = 0;
530
531         /* For an EEPROM, an I2C single byte write is defined as a START
532          * condition followed by the device address, EEPROM address, one byte
533          * of data and a STOP condition.  The STOP condition will trigger the
534          * EEPROM's internally timed write cycle to the nonvolatile memory.
535          * All inputs are disabled during this write cycle and the EEPROM will
536          * not respond to any access until the internal write is complete.
537          */
538         err = eeprom_wait_ready(pdev, NULL);
539         if (err < 0)
540                 return err;
541
542          /* 2. Write to the LBCIF Control Register:  bit 7=1, bit 6=1, bit 3=0,
543           *    and bits 1:0 both =0.  Bit 5 should be set according to the
544           *    type of EEPROM being accessed (1=two byte addressing, 0=one
545           *    byte addressing).
546           */
547         if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
548                                   LBCIF_CONTROL_LBCIF_ENABLE |
549                                         LBCIF_CONTROL_I2C_WRITE))
550                 return -EIO;
551
552         /* Prepare EEPROM address for Step 3 */
553         for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
554                 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
555                         break;
556                 /* Write the data to the LBCIF Data Register (the I2C write
557                  * will begin).
558                  */
559                 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
560                         break;
561                 /* Monitor bit 1:0 of the LBCIF Status Register.  When bits
562                  * 1:0 are both equal to 1, the I2C write has completed and the
563                  * internal write cycle of the EEPROM is about to start.
564                  * (bits 1:0 = 01 is a legal state while waiting from both
565                  * equal to 1, but bits 1:0 = 10 is invalid and implies that
566                  * something is broken).
567                  */
568                 err = eeprom_wait_ready(pdev, &status);
569                 if (err < 0)
570                         return 0;
571
572                 /* Check bit 3 of the LBCIF Status Register.  If  equal to 1,
573                  * an error has occurred.Don't break here if we are revision
574                  * 1, this is so we do a blind write for load bug.
575                  */
576                 if ((status & LBCIF_STATUS_GENERAL_ERROR) &&
577                     adapter->pdev->revision == 0)
578                         break;
579
580                 /* Check bit 2 of the LBCIF Status Register.  If equal to 1 an
581                  * ACK error has occurred on the address phase of the write.
582                  * This could be due to an actual hardware failure or the
583                  * EEPROM may still be in its internal write cycle from a
584                  * previous write. This write operation was ignored and must be
585                   *repeated later.
586                  */
587                 if (status & LBCIF_STATUS_ACK_ERROR) {
588                         /* This could be due to an actual hardware failure
589                          * or the EEPROM may still be in its internal write
590                          * cycle from a previous write. This write operation
591                          * was ignored and must be repeated later.
592                          */
593                         udelay(10);
594                         continue;
595                 }
596
597                 writeok = 1;
598                 break;
599         }
600
601         udelay(10);
602
603         while (1) {
604                 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
605                                           LBCIF_CONTROL_LBCIF_ENABLE))
606                         writeok = 0;
607
608                 /* Do read until internal ACK_ERROR goes away meaning write
609                  * completed
610                  */
611                 do {
612                         pci_write_config_dword(pdev,
613                                                LBCIF_ADDRESS_REGISTER,
614                                                addr);
615                         do {
616                                 pci_read_config_dword(pdev,
617                                                       LBCIF_DATA_REGISTER,
618                                                       &val);
619                         } while ((val & 0x00010000) == 0);
620                 } while (val & 0x00040000);
621
622                 if ((val & 0xFF00) != 0xC000 || index == 10000)
623                         break;
624                 index++;
625         }
626         return writeok ? 0 : -EIO;
627 }
628
629 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
630 {
631         struct pci_dev *pdev = adapter->pdev;
632         int err;
633         u32 status;
634
635         /* A single byte read is similar to the single byte write, with the
636          * exception of the data flow:
637          */
638         err = eeprom_wait_ready(pdev, NULL);
639         if (err < 0)
640                 return err;
641         /* Write to the LBCIF Control Register:  bit 7=1, bit 6=0, bit 3=0,
642          * and bits 1:0 both =0.  Bit 5 should be set according to the type
643          * of EEPROM being accessed (1=two byte addressing, 0=one byte
644          * addressing).
645          */
646         if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
647                                   LBCIF_CONTROL_LBCIF_ENABLE))
648                 return -EIO;
649         /* Write the address to the LBCIF Address Register (I2C read will
650          * begin).
651          */
652         if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
653                 return -EIO;
654         /* Monitor bit 0 of the LBCIF Status Register.  When = 1, I2C read
655          * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
656          * has occurred).
657          */
658         err = eeprom_wait_ready(pdev, &status);
659         if (err < 0)
660                 return err;
661         /* Regardless of error status, read data byte from LBCIF Data
662          * Register.
663          */
664         *pdata = err;
665
666         return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
667 }
668
669 static int et131x_init_eeprom(struct et131x_adapter *adapter)
670 {
671         struct pci_dev *pdev = adapter->pdev;
672         u8 eestatus;
673
674         pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
675
676         /* THIS IS A WORKAROUND:
677          * I need to call this function twice to get my card in a
678          * LG M1 Express Dual running. I tried also a msleep before this
679          * function, because I thought there could be some time conditions
680          * but it didn't work. Call the whole function twice also work.
681          */
682         if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
683                 dev_err(&pdev->dev,
684                         "Could not read PCI config space for EEPROM Status\n");
685                 return -EIO;
686         }
687
688         /* Determine if the error(s) we care about are present. If they are
689          * present we need to fail.
690          */
691         if (eestatus & 0x4C) {
692                 int write_failed = 0;
693
694                 if (pdev->revision == 0x01) {
695                         int     i;
696                         static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
697
698                         /* Re-write the first 4 bytes if we have an eeprom
699                          * present and the revision id is 1, this fixes the
700                          * corruption seen with 1310 B Silicon
701                          */
702                         for (i = 0; i < 3; i++)
703                                 if (eeprom_write(adapter, i, eedata[i]) < 0)
704                                         write_failed = 1;
705                 }
706                 if (pdev->revision  != 0x01 || write_failed) {
707                         dev_err(&pdev->dev,
708                                 "Fatal EEPROM Status Error - 0x%04x\n",
709                                 eestatus);
710
711                         /* This error could mean that there was an error
712                          * reading the eeprom or that the eeprom doesn't exist.
713                          * We will treat each case the same and not try to
714                          * gather additional information that normally would
715                          * come from the eeprom, like MAC Address
716                          */
717                         adapter->has_eeprom = 0;
718                         return -EIO;
719                 }
720         }
721         adapter->has_eeprom = 1;
722
723         /* Read the EEPROM for information regarding LED behavior. Refer to
724          * et131x_xcvr_init() for its use.
725          */
726         eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
727         eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
728
729         if (adapter->eeprom_data[0] != 0xcd)
730                 /* Disable all optional features */
731                 adapter->eeprom_data[1] = 0x00;
732
733         return 0;
734 }
735
736 static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
737 {
738         /* Setup the receive dma configuration register for normal operation */
739         u32 csr =  ET_RXDMA_CSR_FBR1_ENABLE;
740         struct rx_ring *rx_ring = &adapter->rx_ring;
741
742         if (rx_ring->fbr[1]->buffsize == 4096)
743                 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
744         else if (rx_ring->fbr[1]->buffsize == 8192)
745                 csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
746         else if (rx_ring->fbr[1]->buffsize == 16384)
747                 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
748
749         csr |= ET_RXDMA_CSR_FBR0_ENABLE;
750         if (rx_ring->fbr[0]->buffsize == 256)
751                 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
752         else if (rx_ring->fbr[0]->buffsize == 512)
753                 csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
754         else if (rx_ring->fbr[0]->buffsize == 1024)
755                 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
756         writel(csr, &adapter->regs->rxdma.csr);
757
758         csr = readl(&adapter->regs->rxdma.csr);
759         if (csr & ET_RXDMA_CSR_HALT_STATUS) {
760                 udelay(5);
761                 csr = readl(&adapter->regs->rxdma.csr);
762                 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
763                         dev_err(&adapter->pdev->dev,
764                                 "RX Dma failed to exit halt state. CSR 0x%08x\n",
765                                 csr);
766                 }
767         }
768 }
769
770 static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
771 {
772         u32 csr;
773         /* Setup the receive dma configuration register */
774         writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
775                &adapter->regs->rxdma.csr);
776         csr = readl(&adapter->regs->rxdma.csr);
777         if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
778                 udelay(5);
779                 csr = readl(&adapter->regs->rxdma.csr);
780                 if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
781                         dev_err(&adapter->pdev->dev,
782                                 "RX Dma failed to enter halt state. CSR 0x%08x\n",
783                                 csr);
784         }
785 }
786
787 static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
788 {
789         /* Setup the transmit dma configuration register for normal
790          * operation
791          */
792         writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
793                &adapter->regs->txdma.csr);
794 }
795
796 static inline void add_10bit(u32 *v, int n)
797 {
798         *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
799 }
800
801 static inline void add_12bit(u32 *v, int n)
802 {
803         *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
804 }
805
806 static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
807 {
808         struct mac_regs __iomem *macregs = &adapter->regs->mac;
809         u32 station1;
810         u32 station2;
811         u32 ipg;
812
813         /* First we need to reset everything.  Write to MAC configuration
814          * register 1 to perform reset.
815          */
816         writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET  |
817                ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
818                ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
819                &macregs->cfg1);
820
821         /* Next lets configure the MAC Inter-packet gap register */
822         ipg = 0x38005860;               /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
823         ipg |= 0x50 << 8;               /* ifg enforce 0x50 */
824         writel(ipg, &macregs->ipg);
825
826         /* Next lets configure the MAC Half Duplex register */
827         /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
828         writel(0x00A1F037, &macregs->hfdp);
829
830         /* Next lets configure the MAC Interface Control register */
831         writel(0, &macregs->if_ctrl);
832
833         writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
834
835         /* Next lets configure the MAC Station Address register.  These
836          * values are read from the EEPROM during initialization and stored
837          * in the adapter structure.  We write what is stored in the adapter
838          * structure to the MAC Station Address registers high and low.  This
839          * station address is used for generating and checking pause control
840          * packets.
841          */
842         station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
843                    (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
844         station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
845                    (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
846                    (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
847                     adapter->addr[2];
848         writel(station1, &macregs->station_addr_1);
849         writel(station2, &macregs->station_addr_2);
850
851         /* Max ethernet packet in bytes that will be passed by the mac without
852          * being truncated.  Allow the MAC to pass 4 more than our max packet
853          * size.  This is 4 for the Ethernet CRC.
854          *
855          * Packets larger than (registry_jumbo_packet) that do not contain a
856          * VLAN ID will be dropped by the Rx function.
857          */
858         writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
859
860         /* clear out MAC config reset */
861         writel(0, &macregs->cfg1);
862 }
863
864 static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
865 {
866         int32_t delay = 0;
867         struct mac_regs __iomem *mac = &adapter->regs->mac;
868         struct phy_device *phydev = adapter->netdev->phydev;
869         u32 cfg1;
870         u32 cfg2;
871         u32 ifctrl;
872         u32 ctl;
873
874         ctl = readl(&adapter->regs->txmac.ctl);
875         cfg1 = readl(&mac->cfg1);
876         cfg2 = readl(&mac->cfg2);
877         ifctrl = readl(&mac->if_ctrl);
878
879         /* Set up the if mode bits */
880         cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
881         if (phydev->speed == SPEED_1000) {
882                 cfg2 |= ET_MAC_CFG2_IFMODE_1000;
883                 ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
884         } else {
885                 cfg2 |= ET_MAC_CFG2_IFMODE_100;
886                 ifctrl |= ET_MAC_IFCTRL_PHYMODE;
887         }
888
889         cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
890                                                         ET_MAC_CFG1_TX_FLOW;
891
892         cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
893         if (adapter->flow == FLOW_RXONLY || adapter->flow == FLOW_BOTH)
894                 cfg1 |= ET_MAC_CFG1_RX_FLOW;
895         writel(cfg1, &mac->cfg1);
896
897         /* Now we need to initialize the MAC Configuration 2 register */
898         /* preamble 7, check length, huge frame off, pad crc, crc enable
899          * full duplex off
900          */
901         cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
902         cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
903         cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
904         cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE;
905         cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
906         cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
907
908         if (phydev->duplex == DUPLEX_FULL)
909                 cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
910
911         ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
912         if (phydev->duplex == DUPLEX_HALF)
913                 ifctrl |= ET_MAC_IFCTRL_GHDMODE;
914
915         writel(ifctrl, &mac->if_ctrl);
916         writel(cfg2, &mac->cfg2);
917
918         do {
919                 udelay(10);
920                 delay++;
921                 cfg1 = readl(&mac->cfg1);
922         } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
923
924         if (delay == 100) {
925                 dev_warn(&adapter->pdev->dev,
926                          "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
927                          cfg1);
928         }
929
930         ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
931         writel(ctl, &adapter->regs->txmac.ctl);
932
933         if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
934                 et131x_rx_dma_enable(adapter);
935                 et131x_tx_dma_enable(adapter);
936         }
937 }
938
939 static int et1310_in_phy_coma(struct et131x_adapter *adapter)
940 {
941         u32 pmcsr = readl(&adapter->regs->global.pm_csr);
942
943         return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
944 }
945
946 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
947 {
948         struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
949         u32 hash1 = 0;
950         u32 hash2 = 0;
951         u32 hash3 = 0;
952         u32 hash4 = 0;
953         u32 pm_csr;
954
955         /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
956          * the multi-cast LIST.  If it is NOT specified, (and "ALL" is not
957          * specified) then we should pass NO multi-cast addresses to the
958          * driver.
959          */
960         if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
961                 int i;
962
963                 /* Loop through our multicast array and set up the device */
964                 for (i = 0; i < adapter->multicast_addr_count; i++) {
965                         u32 result;
966
967                         result = ether_crc(6, adapter->multicast_list[i]);
968
969                         result = (result & 0x3F800000) >> 23;
970
971                         if (result < 32) {
972                                 hash1 |= (1 << result);
973                         } else if ((31 < result) && (result < 64)) {
974                                 result -= 32;
975                                 hash2 |= (1 << result);
976                         } else if ((63 < result) && (result < 96)) {
977                                 result -= 64;
978                                 hash3 |= (1 << result);
979                         } else {
980                                 result -= 96;
981                                 hash4 |= (1 << result);
982                         }
983                 }
984         }
985
986         /* Write out the new hash to the device */
987         pm_csr = readl(&adapter->regs->global.pm_csr);
988         if (!et1310_in_phy_coma(adapter)) {
989                 writel(hash1, &rxmac->multi_hash1);
990                 writel(hash2, &rxmac->multi_hash2);
991                 writel(hash3, &rxmac->multi_hash3);
992                 writel(hash4, &rxmac->multi_hash4);
993         }
994 }
995
996 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
997 {
998         struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
999         u32 uni_pf1;
1000         u32 uni_pf2;
1001         u32 uni_pf3;
1002         u32 pm_csr;
1003
1004         /* Set up unicast packet filter reg 3 to be the first two octets of
1005          * the MAC address for both address
1006          *
1007          * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1008          * MAC address for second address
1009          *
1010          * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1011          * MAC address for first address
1012          */
1013         uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1014                   (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1015                   (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
1016                    adapter->addr[1];
1017
1018         uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1019                   (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1020                   (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
1021                    adapter->addr[5];
1022
1023         uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1024                   (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1025                   (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
1026                    adapter->addr[5];
1027
1028         pm_csr = readl(&adapter->regs->global.pm_csr);
1029         if (!et1310_in_phy_coma(adapter)) {
1030                 writel(uni_pf1, &rxmac->uni_pf_addr1);
1031                 writel(uni_pf2, &rxmac->uni_pf_addr2);
1032                 writel(uni_pf3, &rxmac->uni_pf_addr3);
1033         }
1034 }
1035
1036 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1037 {
1038         struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1039         struct phy_device *phydev = adapter->netdev->phydev;
1040         u32 sa_lo;
1041         u32 sa_hi = 0;
1042         u32 pf_ctrl = 0;
1043         u32 __iomem *wolw;
1044
1045         /* Disable the MAC while it is being configured (also disable WOL) */
1046         writel(0x8, &rxmac->ctrl);
1047
1048         /* Initialize WOL to disabled. */
1049         writel(0, &rxmac->crc0);
1050         writel(0, &rxmac->crc12);
1051         writel(0, &rxmac->crc34);
1052
1053         /* We need to set the WOL mask0 - mask4 next.  We initialize it to
1054          * its default Values of 0x00000000 because there are not WOL masks
1055          * as of this time.
1056          */
1057         for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++)
1058                 writel(0, wolw);
1059
1060         /* Lets setup the WOL Source Address */
1061         sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1062                 (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1063                 (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
1064                  adapter->addr[5];
1065         writel(sa_lo, &rxmac->sa_lo);
1066
1067         sa_hi = (u32)(adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
1068                        adapter->addr[1];
1069         writel(sa_hi, &rxmac->sa_hi);
1070
1071         /* Disable all Packet Filtering */
1072         writel(0, &rxmac->pf_ctrl);
1073
1074         /* Let's initialize the Unicast Packet filtering address */
1075         if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1076                 et1310_setup_device_for_unicast(adapter);
1077                 pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
1078         } else {
1079                 writel(0, &rxmac->uni_pf_addr1);
1080                 writel(0, &rxmac->uni_pf_addr2);
1081                 writel(0, &rxmac->uni_pf_addr3);
1082         }
1083
1084         /* Let's initialize the Multicast hash */
1085         if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1086                 pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
1087                 et1310_setup_device_for_multicast(adapter);
1088         }
1089
1090         /* Runt packet filtering.  Didn't work in version A silicon. */
1091         pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1092         pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
1093
1094         if (adapter->registry_jumbo_packet > 8192)
1095                 /* In order to transmit jumbo packets greater than 8k, the
1096                  * FIFO between RxMAC and RxDMA needs to be reduced in size
1097                  * to (16k - Jumbo packet size).  In order to implement this,
1098                  * we must use "cut through" mode in the RxMAC, which chops
1099                  * packets down into segments which are (max_size * 16).  In
1100                  * this case we selected 256 bytes, since this is the size of
1101                  * the PCI-Express TLP's that the 1310 uses.
1102                  *
1103                  * seg_en on, fc_en off, size 0x10
1104                  */
1105                 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1106         else
1107                 writel(0, &rxmac->mcif_ctrl_max_seg);
1108
1109         writel(0, &rxmac->mcif_water_mark);
1110         writel(0, &rxmac->mif_ctrl);
1111         writel(0, &rxmac->space_avail);
1112
1113         /* Initialize the the mif_ctrl register
1114          * bit 3:  Receive code error. One or more nibbles were signaled as
1115          *         errors  during the reception of the packet.  Clear this
1116          *         bit in Gigabit, set it in 100Mbit.  This was derived
1117          *         experimentally at UNH.
1118          * bit 4:  Receive CRC error. The packet's CRC did not match the
1119          *         internally generated CRC.
1120          * bit 5:  Receive length check error. Indicates that frame length
1121          *         field value in the packet does not match the actual data
1122          *         byte length and is not a type field.
1123          * bit 16: Receive frame truncated.
1124          * bit 17: Drop packet enable
1125          */
1126         if (phydev && phydev->speed == SPEED_100)
1127                 writel(0x30038, &rxmac->mif_ctrl);
1128         else
1129                 writel(0x30030, &rxmac->mif_ctrl);
1130
1131         /* Finally we initialize RxMac to be enabled & WOL disabled.  Packet
1132          * filter is always enabled since it is where the runt packets are
1133          * supposed to be dropped.  For version A silicon, runt packet
1134          * dropping doesn't work, so it is disabled in the pf_ctrl register,
1135          * but we still leave the packet filter on.
1136          */
1137         writel(pf_ctrl, &rxmac->pf_ctrl);
1138         writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
1139 }
1140
1141 static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1142 {
1143         struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1144
1145         /* We need to update the Control Frame Parameters
1146          * cfpt - control frame pause timer set to 64 (0x40)
1147          * cfep - control frame extended pause timer set to 0x0
1148          */
1149         if (adapter->flow == FLOW_NONE)
1150                 writel(0, &txmac->cf_param);
1151         else
1152                 writel(0x40, &txmac->cf_param);
1153 }
1154
1155 static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1156 {
1157         struct macstat_regs __iomem *macstat = &adapter->regs->macstat;
1158         u32 __iomem *reg;
1159
1160         /* initialize all the macstat registers to zero on the device  */
1161         for (reg = &macstat->txrx_0_64_byte_frames;
1162              reg <= &macstat->carry_reg2; reg++)
1163                 writel(0, reg);
1164
1165         /* Unmask any counters that we want to track the overflow of.
1166          * Initially this will be all counters.  It may become clear later
1167          * that we do not need to track all counters.
1168          */
1169         writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1170         writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1171 }
1172
1173 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1174                                u8 reg, u16 *value)
1175 {
1176         struct mac_regs __iomem *mac = &adapter->regs->mac;
1177         int status = 0;
1178         u32 delay = 0;
1179         u32 mii_addr;
1180         u32 mii_cmd;
1181         u32 mii_indicator;
1182
1183         /* Save a local copy of the registers we are dealing with so we can
1184          * set them back
1185          */
1186         mii_addr = readl(&mac->mii_mgmt_addr);
1187         mii_cmd = readl(&mac->mii_mgmt_cmd);
1188
1189         /* Stop the current operation */
1190         writel(0, &mac->mii_mgmt_cmd);
1191
1192         /* Set up the register we need to read from on the correct PHY */
1193         writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1194
1195         writel(0x1, &mac->mii_mgmt_cmd);
1196
1197         do {
1198                 udelay(50);
1199                 delay++;
1200                 mii_indicator = readl(&mac->mii_mgmt_indicator);
1201         } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
1202
1203         /* If we hit the max delay, we could not read the register */
1204         if (delay == 50) {
1205                 dev_warn(&adapter->pdev->dev,
1206                          "reg 0x%08x could not be read\n", reg);
1207                 dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1208                          mii_indicator);
1209
1210                 status = -EIO;
1211                 goto out;
1212         }
1213
1214         /* If we hit here we were able to read the register and we need to
1215          * return the value to the caller
1216          */
1217         *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
1218
1219 out:
1220         /* Stop the read operation */
1221         writel(0, &mac->mii_mgmt_cmd);
1222
1223         /* set the registers we touched back to the state at which we entered
1224          * this function
1225          */
1226         writel(mii_addr, &mac->mii_mgmt_addr);
1227         writel(mii_cmd, &mac->mii_mgmt_cmd);
1228
1229         return status;
1230 }
1231
1232 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1233 {
1234         struct phy_device *phydev = adapter->netdev->phydev;
1235
1236         if (!phydev)
1237                 return -EIO;
1238
1239         return et131x_phy_mii_read(adapter, phydev->mdio.addr, reg, value);
1240 }
1241
1242 static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg,
1243                             u16 value)
1244 {
1245         struct mac_regs __iomem *mac = &adapter->regs->mac;
1246         int status = 0;
1247         u32 delay = 0;
1248         u32 mii_addr;
1249         u32 mii_cmd;
1250         u32 mii_indicator;
1251
1252         /* Save a local copy of the registers we are dealing with so we can
1253          * set them back
1254          */
1255         mii_addr = readl(&mac->mii_mgmt_addr);
1256         mii_cmd = readl(&mac->mii_mgmt_cmd);
1257
1258         /* Stop the current operation */
1259         writel(0, &mac->mii_mgmt_cmd);
1260
1261         /* Set up the register we need to write to on the correct PHY */
1262         writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1263
1264         /* Add the value to write to the registers to the mac */
1265         writel(value, &mac->mii_mgmt_ctrl);
1266
1267         do {
1268                 udelay(50);
1269                 delay++;
1270                 mii_indicator = readl(&mac->mii_mgmt_indicator);
1271         } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
1272
1273         /* If we hit the max delay, we could not write the register */
1274         if (delay == 100) {
1275                 u16 tmp;
1276
1277                 dev_warn(&adapter->pdev->dev,
1278                          "reg 0x%08x could not be written", reg);
1279                 dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1280                          mii_indicator);
1281                 dev_warn(&adapter->pdev->dev, "command is  0x%08x\n",
1282                          readl(&mac->mii_mgmt_cmd));
1283
1284                 et131x_mii_read(adapter, reg, &tmp);
1285
1286                 status = -EIO;
1287         }
1288         /* Stop the write operation */
1289         writel(0, &mac->mii_mgmt_cmd);
1290
1291         /* set the registers we touched back to the state at which we entered
1292          * this function
1293          */
1294         writel(mii_addr, &mac->mii_mgmt_addr);
1295         writel(mii_cmd, &mac->mii_mgmt_cmd);
1296
1297         return status;
1298 }
1299
1300 static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1301                                     u16 regnum,
1302                                     u16 bitnum,
1303                                     u8 *value)
1304 {
1305         u16 reg;
1306         u16 mask = 1 << bitnum;
1307
1308         et131x_mii_read(adapter, regnum, &reg);
1309
1310         *value = (reg & mask) >> bitnum;
1311 }
1312
1313 static void et1310_config_flow_control(struct et131x_adapter *adapter)
1314 {
1315         struct phy_device *phydev = adapter->netdev->phydev;
1316
1317         if (phydev->duplex == DUPLEX_HALF) {
1318                 adapter->flow = FLOW_NONE;
1319         } else {
1320                 char remote_pause, remote_async_pause;
1321
1322                 et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1323                 et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
1324
1325                 if (remote_pause && remote_async_pause) {
1326                         adapter->flow = adapter->wanted_flow;
1327                 } else if (remote_pause && !remote_async_pause) {
1328                         if (adapter->wanted_flow == FLOW_BOTH)
1329                                 adapter->flow = FLOW_BOTH;
1330                         else
1331                                 adapter->flow = FLOW_NONE;
1332                 } else if (!remote_pause && !remote_async_pause) {
1333                         adapter->flow = FLOW_NONE;
1334                 } else {
1335                         if (adapter->wanted_flow == FLOW_BOTH)
1336                                 adapter->flow = FLOW_RXONLY;
1337                         else
1338                                 adapter->flow = FLOW_NONE;
1339                 }
1340         }
1341 }
1342
1343 /* et1310_update_macstat_host_counters - Update local copy of the statistics */
1344 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1345 {
1346         struct ce_stats *stats = &adapter->stats;
1347         struct macstat_regs __iomem *macstat =
1348                 &adapter->regs->macstat;
1349
1350         stats->tx_collisions           += readl(&macstat->tx_total_collisions);
1351         stats->tx_first_collisions     += readl(&macstat->tx_single_collisions);
1352         stats->tx_deferred             += readl(&macstat->tx_deferred);
1353         stats->tx_excessive_collisions +=
1354                                 readl(&macstat->tx_multiple_collisions);
1355         stats->tx_late_collisions      += readl(&macstat->tx_late_collisions);
1356         stats->tx_underflows           += readl(&macstat->tx_undersize_frames);
1357         stats->tx_max_pkt_errs         += readl(&macstat->tx_oversize_frames);
1358
1359         stats->rx_align_errs        += readl(&macstat->rx_align_errs);
1360         stats->rx_crc_errs          += readl(&macstat->rx_code_errs);
1361         stats->rcvd_pkts_dropped    += readl(&macstat->rx_drops);
1362         stats->rx_overflows         += readl(&macstat->rx_oversize_packets);
1363         stats->rx_code_violations   += readl(&macstat->rx_fcs_errs);
1364         stats->rx_length_errs       += readl(&macstat->rx_frame_len_errs);
1365         stats->rx_other_errs        += readl(&macstat->rx_fragment_packets);
1366 }
1367
1368 /* et1310_handle_macstat_interrupt
1369  *
1370  * One of the MACSTAT counters has wrapped.  Update the local copy of
1371  * the statistics held in the adapter structure, checking the "wrap"
1372  * bit for each counter.
1373  */
1374 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1375 {
1376         u32 carry_reg1;
1377         u32 carry_reg2;
1378
1379         /* Read the interrupt bits from the register(s).  These are Clear On
1380          * Write.
1381          */
1382         carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1383         carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1384
1385         writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1386         writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1387
1388         /* We need to do update the host copy of all the MAC_STAT counters.
1389          * For each counter, check it's overflow bit.  If the overflow bit is
1390          * set, then increment the host version of the count by one complete
1391          * revolution of the counter.  This routine is called when the counter
1392          * block indicates that one of the counters has wrapped.
1393          */
1394         if (carry_reg1 & (1 << 14))
1395                 adapter->stats.rx_code_violations       += COUNTER_WRAP_16_BIT;
1396         if (carry_reg1 & (1 << 8))
1397                 adapter->stats.rx_align_errs    += COUNTER_WRAP_12_BIT;
1398         if (carry_reg1 & (1 << 7))
1399                 adapter->stats.rx_length_errs   += COUNTER_WRAP_16_BIT;
1400         if (carry_reg1 & (1 << 2))
1401                 adapter->stats.rx_other_errs    += COUNTER_WRAP_16_BIT;
1402         if (carry_reg1 & (1 << 6))
1403                 adapter->stats.rx_crc_errs      += COUNTER_WRAP_16_BIT;
1404         if (carry_reg1 & (1 << 3))
1405                 adapter->stats.rx_overflows     += COUNTER_WRAP_16_BIT;
1406         if (carry_reg1 & (1 << 0))
1407                 adapter->stats.rcvd_pkts_dropped        += COUNTER_WRAP_16_BIT;
1408         if (carry_reg2 & (1 << 16))
1409                 adapter->stats.tx_max_pkt_errs  += COUNTER_WRAP_12_BIT;
1410         if (carry_reg2 & (1 << 15))
1411                 adapter->stats.tx_underflows    += COUNTER_WRAP_12_BIT;
1412         if (carry_reg2 & (1 << 6))
1413                 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1414         if (carry_reg2 & (1 << 8))
1415                 adapter->stats.tx_deferred      += COUNTER_WRAP_12_BIT;
1416         if (carry_reg2 & (1 << 5))
1417                 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1418         if (carry_reg2 & (1 << 4))
1419                 adapter->stats.tx_late_collisions       += COUNTER_WRAP_12_BIT;
1420         if (carry_reg2 & (1 << 2))
1421                 adapter->stats.tx_collisions    += COUNTER_WRAP_12_BIT;
1422 }
1423
1424 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1425 {
1426         struct net_device *netdev = bus->priv;
1427         struct et131x_adapter *adapter = netdev_priv(netdev);
1428         u16 value;
1429         int ret;
1430
1431         ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1432
1433         if (ret < 0)
1434                 return ret;
1435
1436         return value;
1437 }
1438
1439 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1440                              int reg, u16 value)
1441 {
1442         struct net_device *netdev = bus->priv;
1443         struct et131x_adapter *adapter = netdev_priv(netdev);
1444
1445         return et131x_mii_write(adapter, phy_addr, reg, value);
1446 }
1447
1448 /*      et1310_phy_power_switch -       PHY power control
1449  *      @adapter: device to control
1450  *      @down: true for off/false for back on
1451  *
1452  *      one hundred, ten, one thousand megs
1453  *      How would you like to have your LAN accessed
1454  *      Can't you see that this code processed
1455  *      Phy power, phy power..
1456  */
1457 static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
1458 {
1459         u16 data;
1460         struct  phy_device *phydev = adapter->netdev->phydev;
1461
1462         et131x_mii_read(adapter, MII_BMCR, &data);
1463         data &= ~BMCR_PDOWN;
1464         if (down)
1465                 data |= BMCR_PDOWN;
1466         et131x_mii_write(adapter, phydev->mdio.addr, MII_BMCR, data);
1467 }
1468
1469 /* et131x_xcvr_init - Init the phy if we are setting it into force mode */
1470 static void et131x_xcvr_init(struct et131x_adapter *adapter)
1471 {
1472         u16 lcr2;
1473         struct  phy_device *phydev = adapter->netdev->phydev;
1474
1475         /* Set the LED behavior such that LED 1 indicates speed (off =
1476          * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1477          * link and activity (on for link, blink off for activity).
1478          *
1479          * NOTE: Some customizations have been added here for specific
1480          * vendors; The LED behavior is now determined by vendor data in the
1481          * EEPROM. However, the above description is the default.
1482          */
1483         if ((adapter->eeprom_data[1] & 0x4) == 0) {
1484                 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1485
1486                 lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1487                 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1488
1489                 if ((adapter->eeprom_data[1] & 0x8) == 0)
1490                         lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1491                 else
1492                         lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1493
1494                 et131x_mii_write(adapter, phydev->mdio.addr, PHY_LED_2, lcr2);
1495         }
1496 }
1497
1498 /* et131x_configure_global_regs - configure JAGCore global regs */
1499 static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1500 {
1501         struct global_regs __iomem *regs = &adapter->regs->global;
1502
1503         writel(0, &regs->rxq_start_addr);
1504         writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1505
1506         if (adapter->registry_jumbo_packet < 2048) {
1507                 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1508                  * block of RAM that the driver can split between Tx
1509                  * and Rx as it desires.  Our default is to split it
1510                  * 50/50:
1511                  */
1512                 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1513                 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1514         } else if (adapter->registry_jumbo_packet < 8192) {
1515                 /* For jumbo packets > 2k but < 8k, split 50-50. */
1516                 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1517                 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1518         } else {
1519                 /* 9216 is the only packet size greater than 8k that
1520                  * is available. The Tx buffer has to be big enough
1521                  * for one whole packet on the Tx side. We'll make
1522                  * the Tx 9408, and give the rest to Rx
1523                  */
1524                 writel(0x01b3, &regs->rxq_end_addr);
1525                 writel(0x01b4, &regs->txq_start_addr);
1526         }
1527
1528         /* Initialize the loopback register. Disable all loopbacks. */
1529         writel(0, &regs->loopback);
1530
1531         writel(0, &regs->msi_config);
1532
1533         /* By default, disable the watchdog timer.  It will be enabled when
1534          * a packet is queued.
1535          */
1536         writel(0, &regs->watchdog_timer);
1537 }
1538
1539 /* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
1540 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1541 {
1542         struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1543         struct rx_ring *rx_local = &adapter->rx_ring;
1544         struct fbr_desc *fbr_entry;
1545         u32 entry;
1546         u32 psr_num_des;
1547         unsigned long flags;
1548         u8 id;
1549
1550         et131x_rx_dma_disable(adapter);
1551
1552         /* Load the completion writeback physical address */
1553         writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1554         writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
1555
1556         memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1557
1558         /* Set the address and parameters of the packet status ring */
1559         writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1560         writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
1561         writel(rx_local->psr_entries - 1, &rx_dma->psr_num_des);
1562         writel(0, &rx_dma->psr_full_offset);
1563
1564         psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
1565         writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1566                &rx_dma->psr_min_des);
1567
1568         spin_lock_irqsave(&adapter->rcv_lock, flags);
1569
1570         /* These local variables track the PSR in the adapter structure */
1571         rx_local->local_psr_full = 0;
1572
1573         for (id = 0; id < NUM_FBRS; id++) {
1574                 u32 __iomem *num_des;
1575                 u32 __iomem *full_offset;
1576                 u32 __iomem *min_des;
1577                 u32 __iomem *base_hi;
1578                 u32 __iomem *base_lo;
1579                 struct fbr_lookup *fbr = rx_local->fbr[id];
1580
1581                 if (id == 0) {
1582                         num_des = &rx_dma->fbr0_num_des;
1583                         full_offset = &rx_dma->fbr0_full_offset;
1584                         min_des = &rx_dma->fbr0_min_des;
1585                         base_hi = &rx_dma->fbr0_base_hi;
1586                         base_lo = &rx_dma->fbr0_base_lo;
1587                 } else {
1588                         num_des = &rx_dma->fbr1_num_des;
1589                         full_offset = &rx_dma->fbr1_full_offset;
1590                         min_des = &rx_dma->fbr1_min_des;
1591                         base_hi = &rx_dma->fbr1_base_hi;
1592                         base_lo = &rx_dma->fbr1_base_lo;
1593                 }
1594
1595                 /* Now's the best time to initialize FBR contents */
1596                 fbr_entry = fbr->ring_virtaddr;
1597                 for (entry = 0; entry < fbr->num_entries; entry++) {
1598                         fbr_entry->addr_hi = fbr->bus_high[entry];
1599                         fbr_entry->addr_lo = fbr->bus_low[entry];
1600                         fbr_entry->word2 = entry;
1601                         fbr_entry++;
1602                 }
1603
1604                 /* Set the address and parameters of Free buffer ring 1 and 0 */
1605                 writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1606                 writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1607                 writel(fbr->num_entries - 1, num_des);
1608                 writel(ET_DMA10_WRAP, full_offset);
1609
1610                 /* This variable tracks the free buffer ring 1 full position,
1611                  * so it has to match the above.
1612                  */
1613                 fbr->local_full = ET_DMA10_WRAP;
1614                 writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1615                        min_des);
1616         }
1617
1618         /* Program the number of packets we will receive before generating an
1619          * interrupt.
1620          * For version B silicon, this value gets updated once autoneg is
1621          *complete.
1622          */
1623         writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1624
1625         /* The "time_done" is not working correctly to coalesce interrupts
1626          * after a given time period, but rather is giving us an interrupt
1627          * regardless of whether we have received packets.
1628          * This value gets updated once autoneg is complete.
1629          */
1630         writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1631
1632         spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1633 }
1634
1635 /* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1636  *
1637  * Configure the transmit engine with the ring buffers we have created
1638  * and prepare it for use.
1639  */
1640 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1641 {
1642         struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1643         struct tx_ring *tx_ring = &adapter->tx_ring;
1644
1645         /* Load the hardware with the start of the transmit descriptor ring. */
1646         writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1647         writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
1648
1649         /* Initialise the transmit DMA engine */
1650         writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1651
1652         /* Load the completion writeback physical address */
1653         writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1654         writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
1655
1656         *tx_ring->tx_status = 0;
1657
1658         writel(0, &txdma->service_request);
1659         tx_ring->send_idx = 0;
1660 }
1661
1662 /* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
1663 static void et131x_adapter_setup(struct et131x_adapter *adapter)
1664 {
1665         et131x_configure_global_regs(adapter);
1666         et1310_config_mac_regs1(adapter);
1667
1668         /* Configure the MMC registers */
1669         /* All we need to do is initialize the Memory Control Register */
1670         writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1671
1672         et1310_config_rxmac_regs(adapter);
1673         et1310_config_txmac_regs(adapter);
1674
1675         et131x_config_rx_dma_regs(adapter);
1676         et131x_config_tx_dma_regs(adapter);
1677
1678         et1310_config_macstat_regs(adapter);
1679
1680         et1310_phy_power_switch(adapter, 0);
1681         et131x_xcvr_init(adapter);
1682 }
1683
1684 /* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
1685 static void et131x_soft_reset(struct et131x_adapter *adapter)
1686 {
1687         u32 reg;
1688
1689         /* Disable MAC Core */
1690         reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1691               ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1692               ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1693         writel(reg, &adapter->regs->mac.cfg1);
1694
1695         reg = ET_RESET_ALL;
1696         writel(reg, &adapter->regs->global.sw_reset);
1697
1698         reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1699               ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1700         writel(reg, &adapter->regs->mac.cfg1);
1701         writel(0, &adapter->regs->mac.cfg1);
1702 }
1703
1704 static void et131x_enable_interrupts(struct et131x_adapter *adapter)
1705 {
1706         u32 mask;
1707
1708         if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
1709                 mask = INT_MASK_ENABLE;
1710         else
1711                 mask = INT_MASK_ENABLE_NO_FLOW;
1712
1713         writel(mask, &adapter->regs->global.int_mask);
1714 }
1715
1716 static void et131x_disable_interrupts(struct et131x_adapter *adapter)
1717 {
1718         writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1719 }
1720
1721 static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
1722 {
1723         /* Setup the transmit dma configuration register */
1724         writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
1725                &adapter->regs->txdma.csr);
1726 }
1727
1728 static void et131x_enable_txrx(struct net_device *netdev)
1729 {
1730         struct et131x_adapter *adapter = netdev_priv(netdev);
1731
1732         et131x_rx_dma_enable(adapter);
1733         et131x_tx_dma_enable(adapter);
1734
1735         if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
1736                 et131x_enable_interrupts(adapter);
1737
1738         netif_start_queue(netdev);
1739 }
1740
1741 static void et131x_disable_txrx(struct net_device *netdev)
1742 {
1743         struct et131x_adapter *adapter = netdev_priv(netdev);
1744
1745         netif_stop_queue(netdev);
1746
1747         et131x_rx_dma_disable(adapter);
1748         et131x_tx_dma_disable(adapter);
1749
1750         et131x_disable_interrupts(adapter);
1751 }
1752
1753 static void et131x_init_send(struct et131x_adapter *adapter)
1754 {
1755         int i;
1756         struct tx_ring *tx_ring = &adapter->tx_ring;
1757         struct tcb *tcb = tx_ring->tcb_ring;
1758
1759         tx_ring->tcb_qhead = tcb;
1760
1761         memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1762
1763         for (i = 0; i < NUM_TCB; i++) {
1764                 tcb->next = tcb + 1;
1765                 tcb++;
1766         }
1767
1768         tcb--;
1769         tx_ring->tcb_qtail = tcb;
1770         tcb->next = NULL;
1771         /* Curr send queue should now be empty */
1772         tx_ring->send_head = NULL;
1773         tx_ring->send_tail = NULL;
1774 }
1775
1776 /* et1310_enable_phy_coma
1777  *
1778  * driver receive an phy status change interrupt while in D0 and check that
1779  * phy_status is down.
1780  *
1781  *          -- gate off JAGCore;
1782  *          -- set gigE PHY in Coma mode
1783  *          -- wake on phy_interrupt; Perform software reset JAGCore,
1784  *             re-initialize jagcore and gigE PHY
1785  */
1786 static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
1787 {
1788         u32 pmcsr = readl(&adapter->regs->global.pm_csr);
1789
1790         /* Stop sending packets. */
1791         adapter->flags |= FMP_ADAPTER_LOWER_POWER;
1792
1793         /* Wait for outstanding Receive packets */
1794         et131x_disable_txrx(adapter->netdev);
1795
1796         /* Gate off JAGCore 3 clock domains */
1797         pmcsr &= ~ET_PMCSR_INIT;
1798         writel(pmcsr, &adapter->regs->global.pm_csr);
1799
1800         /* Program gigE PHY in to Coma mode */
1801         pmcsr |= ET_PM_PHY_SW_COMA;
1802         writel(pmcsr, &adapter->regs->global.pm_csr);
1803 }
1804
1805 static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
1806 {
1807         u32 pmcsr;
1808
1809         pmcsr = readl(&adapter->regs->global.pm_csr);
1810
1811         /* Disable phy_sw_coma register and re-enable JAGCore clocks */
1812         pmcsr |= ET_PMCSR_INIT;
1813         pmcsr &= ~ET_PM_PHY_SW_COMA;
1814         writel(pmcsr, &adapter->regs->global.pm_csr);
1815
1816         /* Restore the GbE PHY speed and duplex modes;
1817          * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
1818          */
1819
1820         /* Re-initialize the send structures */
1821         et131x_init_send(adapter);
1822
1823         /* Bring the device back to the state it was during init prior to
1824          * autonegotiation being complete.  This way, when we get the auto-neg
1825          * complete interrupt, we can complete init by calling ConfigMacREGS2.
1826          */
1827         et131x_soft_reset(adapter);
1828
1829         et131x_adapter_setup(adapter);
1830
1831         /* Allow Tx to restart */
1832         adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
1833
1834         et131x_enable_txrx(adapter->netdev);
1835 }
1836
1837 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
1838 {
1839         u32 tmp_free_buff_ring = *free_buff_ring;
1840
1841         tmp_free_buff_ring++;
1842         /* This works for all cases where limit < 1024. The 1023 case
1843          * works because 1023++ is 1024 which means the if condition is not
1844          * taken but the carry of the bit into the wrap bit toggles the wrap
1845          * value correctly
1846          */
1847         if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
1848                 tmp_free_buff_ring &= ~ET_DMA10_MASK;
1849                 tmp_free_buff_ring ^= ET_DMA10_WRAP;
1850         }
1851         /* For the 1023 case */
1852         tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
1853         *free_buff_ring = tmp_free_buff_ring;
1854         return tmp_free_buff_ring;
1855 }
1856
1857 /* et131x_rx_dma_memory_alloc
1858  *
1859  * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
1860  * and the Packet Status Ring.
1861  */
1862 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
1863 {
1864         u8 id;
1865         u32 i, j;
1866         u32 bufsize;
1867         u32 psr_size;
1868         u32 fbr_chunksize;
1869         struct rx_ring *rx_ring = &adapter->rx_ring;
1870         struct fbr_lookup *fbr;
1871
1872         /* Alloc memory for the lookup table */
1873         rx_ring->fbr[0] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1874         if (rx_ring->fbr[0] == NULL)
1875                 return -ENOMEM;
1876         rx_ring->fbr[1] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1877         if (rx_ring->fbr[1] == NULL)
1878                 return -ENOMEM;
1879
1880         /* The first thing we will do is configure the sizes of the buffer
1881          * rings. These will change based on jumbo packet support.  Larger
1882          * jumbo packets increases the size of each entry in FBR0, and the
1883          * number of entries in FBR0, while at the same time decreasing the
1884          * number of entries in FBR1.
1885          *
1886          * FBR1 holds "large" frames, FBR0 holds "small" frames.  If FBR1
1887          * entries are huge in order to accommodate a "jumbo" frame, then it
1888          * will have less entries.  Conversely, FBR1 will now be relied upon
1889          * to carry more "normal" frames, thus it's entry size also increases
1890          * and the number of entries goes up too (since it now carries
1891          * "small" + "regular" packets.
1892          *
1893          * In this scheme, we try to maintain 512 entries between the two
1894          * rings. Also, FBR1 remains a constant size - when it's size doubles
1895          * the number of entries halves.  FBR0 increases in size, however.
1896          */
1897         if (adapter->registry_jumbo_packet < 2048) {
1898                 rx_ring->fbr[0]->buffsize = 256;
1899                 rx_ring->fbr[0]->num_entries = 512;
1900                 rx_ring->fbr[1]->buffsize = 2048;
1901                 rx_ring->fbr[1]->num_entries = 512;
1902         } else if (adapter->registry_jumbo_packet < 4096) {
1903                 rx_ring->fbr[0]->buffsize = 512;
1904                 rx_ring->fbr[0]->num_entries = 1024;
1905                 rx_ring->fbr[1]->buffsize = 4096;
1906                 rx_ring->fbr[1]->num_entries = 512;
1907         } else {
1908                 rx_ring->fbr[0]->buffsize = 1024;
1909                 rx_ring->fbr[0]->num_entries = 768;
1910                 rx_ring->fbr[1]->buffsize = 16384;
1911                 rx_ring->fbr[1]->num_entries = 128;
1912         }
1913
1914         rx_ring->psr_entries = rx_ring->fbr[0]->num_entries +
1915                                rx_ring->fbr[1]->num_entries;
1916
1917         for (id = 0; id < NUM_FBRS; id++) {
1918                 fbr = rx_ring->fbr[id];
1919                 /* Allocate an area of memory for Free Buffer Ring */
1920                 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
1921                 fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1922                                                         bufsize,
1923                                                         &fbr->ring_physaddr,
1924                                                         GFP_KERNEL);
1925                 if (!fbr->ring_virtaddr) {
1926                         dev_err(&adapter->pdev->dev,
1927                                 "Cannot alloc memory for Free Buffer Ring %d\n",
1928                                 id);
1929                         return -ENOMEM;
1930                 }
1931         }
1932
1933         for (id = 0; id < NUM_FBRS; id++) {
1934                 fbr = rx_ring->fbr[id];
1935                 fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
1936
1937                 for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
1938                         dma_addr_t fbr_physaddr;
1939
1940                         fbr->mem_virtaddrs[i] = dma_alloc_coherent(
1941                                         &adapter->pdev->dev, fbr_chunksize,
1942                                         &fbr->mem_physaddrs[i],
1943                                         GFP_KERNEL);
1944
1945                         if (!fbr->mem_virtaddrs[i]) {
1946                                 dev_err(&adapter->pdev->dev,
1947                                         "Could not alloc memory\n");
1948                                 return -ENOMEM;
1949                         }
1950
1951                         /* See NOTE in "Save Physical Address" comment above */
1952                         fbr_physaddr = fbr->mem_physaddrs[i];
1953
1954                         for (j = 0; j < FBR_CHUNKS; j++) {
1955                                 u32 k = (i * FBR_CHUNKS) + j;
1956
1957                                 /* Save the Virtual address of this index for
1958                                  * quick access later
1959                                  */
1960                                 fbr->virt[k] = (u8 *)fbr->mem_virtaddrs[i] +
1961                                                    (j * fbr->buffsize);
1962
1963                                 /* now store the physical address in the
1964                                  * descriptor so the device can access it
1965                                  */
1966                                 fbr->bus_high[k] = upper_32_bits(fbr_physaddr);
1967                                 fbr->bus_low[k] = lower_32_bits(fbr_physaddr);
1968                                 fbr_physaddr += fbr->buffsize;
1969                         }
1970                 }
1971         }
1972
1973         /* Allocate an area of memory for FIFO of Packet Status ring entries */
1974         psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
1975
1976         rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1977                                                   psr_size,
1978                                                   &rx_ring->ps_ring_physaddr,
1979                                                   GFP_KERNEL);
1980
1981         if (!rx_ring->ps_ring_virtaddr) {
1982                 dev_err(&adapter->pdev->dev,
1983                         "Cannot alloc memory for Packet Status Ring\n");
1984                 return -ENOMEM;
1985         }
1986
1987         /* Allocate an area of memory for writeback of status information */
1988         rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
1989                                             sizeof(struct rx_status_block),
1990                                             &rx_ring->rx_status_bus,
1991                                             GFP_KERNEL);
1992         if (!rx_ring->rx_status_block) {
1993                 dev_err(&adapter->pdev->dev,
1994                         "Cannot alloc memory for Status Block\n");
1995                 return -ENOMEM;
1996         }
1997         rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
1998
1999         /* The RFDs are going to be put on lists later on, so initialize the
2000          * lists now.
2001          */
2002         INIT_LIST_HEAD(&rx_ring->recv_list);
2003         return 0;
2004 }
2005
2006 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2007 {
2008         u8 id;
2009         u32 ii;
2010         u32 bufsize;
2011         u32 psr_size;
2012         struct rfd *rfd;
2013         struct rx_ring *rx_ring = &adapter->rx_ring;
2014         struct fbr_lookup *fbr;
2015
2016         /* Free RFDs and associated packet descriptors */
2017         WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2018
2019         while (!list_empty(&rx_ring->recv_list)) {
2020                 rfd = list_entry(rx_ring->recv_list.next,
2021                                  struct rfd, list_node);
2022
2023                 list_del(&rfd->list_node);
2024                 rfd->skb = NULL;
2025                 kfree(rfd);
2026         }
2027
2028         /* Free Free Buffer Rings */
2029         for (id = 0; id < NUM_FBRS; id++) {
2030                 fbr = rx_ring->fbr[id];
2031
2032                 if (!fbr || !fbr->ring_virtaddr)
2033                         continue;
2034
2035                 /* First the packet memory */
2036                 for (ii = 0; ii < fbr->num_entries / FBR_CHUNKS; ii++) {
2037                         if (fbr->mem_virtaddrs[ii]) {
2038                                 bufsize = fbr->buffsize * FBR_CHUNKS;
2039
2040                                 dma_free_coherent(&adapter->pdev->dev,
2041                                                   bufsize,
2042                                                   fbr->mem_virtaddrs[ii],
2043                                                   fbr->mem_physaddrs[ii]);
2044
2045                                 fbr->mem_virtaddrs[ii] = NULL;
2046                         }
2047                 }
2048
2049                 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2050
2051                 dma_free_coherent(&adapter->pdev->dev,
2052                                   bufsize,
2053                                   fbr->ring_virtaddr,
2054                                   fbr->ring_physaddr);
2055
2056                 fbr->ring_virtaddr = NULL;
2057         }
2058
2059         /* Free Packet Status Ring */
2060         if (rx_ring->ps_ring_virtaddr) {
2061                 psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
2062
2063                 dma_free_coherent(&adapter->pdev->dev, psr_size,
2064                                   rx_ring->ps_ring_virtaddr,
2065                                   rx_ring->ps_ring_physaddr);
2066
2067                 rx_ring->ps_ring_virtaddr = NULL;
2068         }
2069
2070         /* Free area of memory for the writeback of status information */
2071         if (rx_ring->rx_status_block) {
2072                 dma_free_coherent(&adapter->pdev->dev,
2073                                   sizeof(struct rx_status_block),
2074                                   rx_ring->rx_status_block,
2075                                   rx_ring->rx_status_bus);
2076                 rx_ring->rx_status_block = NULL;
2077         }
2078
2079         /* Free the FBR Lookup Table */
2080         kfree(rx_ring->fbr[0]);
2081         kfree(rx_ring->fbr[1]);
2082
2083         /* Reset Counters */
2084         rx_ring->num_ready_recv = 0;
2085 }
2086
2087 /* et131x_init_recv - Initialize receive data structures */
2088 static int et131x_init_recv(struct et131x_adapter *adapter)
2089 {
2090         struct rfd *rfd;
2091         u32 rfdct;
2092         struct rx_ring *rx_ring = &adapter->rx_ring;
2093
2094         /* Setup each RFD */
2095         for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2096                 rfd = kzalloc(sizeof(*rfd), GFP_ATOMIC | GFP_DMA);
2097                 if (!rfd)
2098                         return -ENOMEM;
2099
2100                 rfd->skb = NULL;
2101
2102                 /* Add this RFD to the recv_list */
2103                 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2104
2105                 /* Increment the available RFD's */
2106                 rx_ring->num_ready_recv++;
2107         }
2108
2109         return 0;
2110 }
2111
2112 /* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
2113 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2114 {
2115         struct phy_device *phydev = adapter->netdev->phydev;
2116
2117         /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2118          * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2119          */
2120         if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2121                 writel(0, &adapter->regs->rxdma.max_pkt_time);
2122                 writel(1, &adapter->regs->rxdma.num_pkt_done);
2123         }
2124 }
2125
2126 /* nic_return_rfd - Recycle a RFD and put it back onto the receive list */
2127 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2128 {
2129         struct rx_ring *rx_local = &adapter->rx_ring;
2130         struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2131         u16 buff_index = rfd->bufferindex;
2132         u8 ring_index = rfd->ringindex;
2133         unsigned long flags;
2134         struct fbr_lookup *fbr = rx_local->fbr[ring_index];
2135
2136         /* We don't use any of the OOB data besides status. Otherwise, we
2137          * need to clean up OOB data
2138          */
2139         if (buff_index < fbr->num_entries) {
2140                 u32 free_buff_ring;
2141                 u32 __iomem *offset;
2142                 struct fbr_desc *next;
2143
2144                 if (ring_index == 0)
2145                         offset = &rx_dma->fbr0_full_offset;
2146                 else
2147                         offset = &rx_dma->fbr1_full_offset;
2148
2149                 next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2150                        INDEX10(fbr->local_full);
2151
2152                 /* Handle the Free Buffer Ring advancement here. Write
2153                  * the PA / Buffer Index for the returned buffer into
2154                  * the oldest (next to be freed)FBR entry
2155                  */
2156                 next->addr_hi = fbr->bus_high[buff_index];
2157                 next->addr_lo = fbr->bus_low[buff_index];
2158                 next->word2 = buff_index;
2159
2160                 free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2161                                                      fbr->num_entries - 1);
2162                 writel(free_buff_ring, offset);
2163         } else {
2164                 dev_err(&adapter->pdev->dev,
2165                         "%s illegal Buffer Index returned\n", __func__);
2166         }
2167
2168         /* The processing on this RFD is done, so put it back on the tail of
2169          * our list
2170          */
2171         spin_lock_irqsave(&adapter->rcv_lock, flags);
2172         list_add_tail(&rfd->list_node, &rx_local->recv_list);
2173         rx_local->num_ready_recv++;
2174         spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2175
2176         WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2177 }
2178
2179 /* nic_rx_pkts - Checks the hardware for available packets
2180  *
2181  * Checks the hardware for available packets, using completion ring
2182  * If packets are available, it gets an RFD from the recv_list, attaches
2183  * the packet to it, puts the RFD in the RecvPendList, and also returns
2184  * the pointer to the RFD.
2185  */
2186 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2187 {
2188         struct rx_ring *rx_local = &adapter->rx_ring;
2189         struct rx_status_block *status;
2190         struct pkt_stat_desc *psr;
2191         struct rfd *rfd;
2192         unsigned long flags;
2193         struct list_head *element;
2194         u8 ring_index;
2195         u16 buff_index;
2196         u32 len;
2197         u32 word0;
2198         u32 word1;
2199         struct sk_buff *skb;
2200         struct fbr_lookup *fbr;
2201
2202         /* RX Status block is written by the DMA engine prior to every
2203          * interrupt. It contains the next to be used entry in the Packet
2204          * Status Ring, and also the two Free Buffer rings.
2205          */
2206         status = rx_local->rx_status_block;
2207         word1 = status->word1 >> 16;
2208
2209         /* Check the PSR and wrap bits do not match */
2210         if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2211                 return NULL; /* Looks like this ring is not updated yet */
2212
2213         /* The packet status ring indicates that data is available. */
2214         psr = (struct pkt_stat_desc *)(rx_local->ps_ring_virtaddr) +
2215                         (rx_local->local_psr_full & 0xFFF);
2216
2217         /* Grab any information that is required once the PSR is advanced,
2218          * since we can no longer rely on the memory being accurate
2219          */
2220         len = psr->word1 & 0xFFFF;
2221         ring_index = (psr->word1 >> 26) & 0x03;
2222         fbr = rx_local->fbr[ring_index];
2223         buff_index = (psr->word1 >> 16) & 0x3FF;
2224         word0 = psr->word0;
2225
2226         /* Indicate that we have used this PSR entry. */
2227         /* FIXME wrap 12 */
2228         add_12bit(&rx_local->local_psr_full, 1);
2229         if ((rx_local->local_psr_full & 0xFFF) > rx_local->psr_entries - 1) {
2230                 /* Clear psr full and toggle the wrap bit */
2231                 rx_local->local_psr_full &=  ~0xFFF;
2232                 rx_local->local_psr_full ^= 0x1000;
2233         }
2234
2235         writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
2236
2237         if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
2238                 /* Illegal buffer or ring index cannot be used by S/W*/
2239                 dev_err(&adapter->pdev->dev,
2240                         "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2241                         rx_local->local_psr_full & 0xFFF, len, buff_index);
2242                 return NULL;
2243         }
2244
2245         /* Get and fill the RFD. */
2246         spin_lock_irqsave(&adapter->rcv_lock, flags);
2247
2248         element = rx_local->recv_list.next;
2249         rfd = list_entry(element, struct rfd, list_node);
2250
2251         if (!rfd) {
2252                 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2253                 return NULL;
2254         }
2255
2256         list_del(&rfd->list_node);
2257         rx_local->num_ready_recv--;
2258
2259         spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2260
2261         rfd->bufferindex = buff_index;
2262         rfd->ringindex = ring_index;
2263
2264         /* In V1 silicon, there is a bug which screws up filtering of runt
2265          * packets. Therefore runt packet filtering is disabled in the MAC and
2266          * the packets are dropped here. They are also counted here.
2267          */
2268         if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2269                 adapter->stats.rx_other_errs++;
2270                 rfd->len = 0;
2271                 goto out;
2272         }
2273
2274         if ((word0 & ALCATEL_MULTICAST_PKT) && !(word0 & ALCATEL_BROADCAST_PKT))
2275                 adapter->stats.multicast_pkts_rcvd++;
2276
2277         rfd->len = len;
2278
2279         skb = dev_alloc_skb(rfd->len + 2);
2280         if (!skb)
2281                 return NULL;
2282
2283         adapter->netdev->stats.rx_bytes += rfd->len;
2284
2285         skb_put_data(skb, fbr->virt[buff_index], rfd->len);
2286
2287         skb->protocol = eth_type_trans(skb, adapter->netdev);
2288         skb->ip_summed = CHECKSUM_NONE;
2289         netif_receive_skb(skb);
2290
2291 out:
2292         nic_return_rfd(adapter, rfd);
2293         return rfd;
2294 }
2295
2296 static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget)
2297 {
2298         struct rfd *rfd = NULL;
2299         int count = 0;
2300         int limit = budget;
2301         bool done = true;
2302         struct rx_ring *rx_ring = &adapter->rx_ring;
2303
2304         if (budget > MAX_PACKETS_HANDLED)
2305                 limit = MAX_PACKETS_HANDLED;
2306
2307         /* Process up to available RFD's */
2308         while (count < limit) {
2309                 if (list_empty(&rx_ring->recv_list)) {
2310                         WARN_ON(rx_ring->num_ready_recv != 0);
2311                         done = false;
2312                         break;
2313                 }
2314
2315                 rfd = nic_rx_pkts(adapter);
2316
2317                 if (rfd == NULL)
2318                         break;
2319
2320                 /* Do not receive any packets until a filter has been set.
2321                  * Do not receive any packets until we have link.
2322                  * If length is zero, return the RFD in order to advance the
2323                  * Free buffer ring.
2324                  */
2325                 if (!adapter->packet_filter ||
2326                     !netif_carrier_ok(adapter->netdev) ||
2327                     rfd->len == 0)
2328                         continue;
2329
2330                 adapter->netdev->stats.rx_packets++;
2331
2332                 if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
2333                         dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2334
2335                 count++;
2336         }
2337
2338         if (count == limit || !done) {
2339                 rx_ring->unfinished_receives = true;
2340                 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2341                        &adapter->regs->global.watchdog_timer);
2342         } else {
2343                 /* Watchdog timer will disable itself if appropriate. */
2344                 rx_ring->unfinished_receives = false;
2345         }
2346
2347         return count;
2348 }
2349
2350 /* et131x_tx_dma_memory_alloc
2351  *
2352  * Allocates memory that will be visible both to the device and to the CPU.
2353  * The OS will pass us packets, pointers to which we will insert in the Tx
2354  * Descriptor queue. The device will read this queue to find the packets in
2355  * memory. The device will update the "status" in memory each time it xmits a
2356  * packet.
2357  */
2358 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
2359 {
2360         int desc_size = 0;
2361         struct tx_ring *tx_ring = &adapter->tx_ring;
2362
2363         /* Allocate memory for the TCB's (Transmit Control Block) */
2364         tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2365                                     GFP_KERNEL | GFP_DMA);
2366         if (!tx_ring->tcb_ring)
2367                 return -ENOMEM;
2368
2369         desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2370         tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2371                                                    desc_size,
2372                                                    &tx_ring->tx_desc_ring_pa,
2373                                                    GFP_KERNEL);
2374         if (!tx_ring->tx_desc_ring) {
2375                 dev_err(&adapter->pdev->dev,
2376                         "Cannot alloc memory for Tx Ring\n");
2377                 return -ENOMEM;
2378         }
2379
2380         tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
2381                                                     sizeof(u32),
2382                                                     &tx_ring->tx_status_pa,
2383                                                     GFP_KERNEL);
2384         if (!tx_ring->tx_status) {
2385                 dev_err(&adapter->pdev->dev,
2386                         "Cannot alloc memory for Tx status block\n");
2387                 return -ENOMEM;
2388         }
2389         return 0;
2390 }
2391
2392 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
2393 {
2394         int desc_size = 0;
2395         struct tx_ring *tx_ring = &adapter->tx_ring;
2396
2397         if (tx_ring->tx_desc_ring) {
2398                 /* Free memory relating to Tx rings here */
2399                 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2400                 dma_free_coherent(&adapter->pdev->dev,
2401                                   desc_size,
2402                                   tx_ring->tx_desc_ring,
2403                                   tx_ring->tx_desc_ring_pa);
2404                 tx_ring->tx_desc_ring = NULL;
2405         }
2406
2407         /* Free memory for the Tx status block */
2408         if (tx_ring->tx_status) {
2409                 dma_free_coherent(&adapter->pdev->dev,
2410                                   sizeof(u32),
2411                                   tx_ring->tx_status,
2412                                   tx_ring->tx_status_pa);
2413
2414                 tx_ring->tx_status = NULL;
2415         }
2416         /* Free the memory for the tcb structures */
2417         kfree(tx_ring->tcb_ring);
2418 }
2419
2420 /* nic_send_packet - NIC specific send handler for version B silicon. */
2421 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2422 {
2423         u32 i;
2424         struct tx_desc desc[24];
2425         u32 frag = 0;
2426         u32 thiscopy, remainder;
2427         struct sk_buff *skb = tcb->skb;
2428         u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2429         struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
2430         struct phy_device *phydev = adapter->netdev->phydev;
2431         dma_addr_t dma_addr;
2432         struct tx_ring *tx_ring = &adapter->tx_ring;
2433
2434         /* Part of the optimizations of this send routine restrict us to
2435          * sending 24 fragments at a pass.  In practice we should never see
2436          * more than 5 fragments.
2437          */
2438
2439         /* nr_frags should be no more than 18. */
2440         BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23);
2441
2442         memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2443
2444         for (i = 0; i < nr_frags; i++) {
2445                 /* If there is something in this element, lets get a
2446                  * descriptor from the ring and get the necessary data
2447                  */
2448                 if (i == 0) {
2449                         /* If the fragments are smaller than a standard MTU,
2450                          * then map them to a single descriptor in the Tx
2451                          * Desc ring. However, if they're larger, as is
2452                          * possible with support for jumbo packets, then
2453                          * split them each across 2 descriptors.
2454                          *
2455                          * This will work until we determine why the hardware
2456                          * doesn't seem to like large fragments.
2457                          */
2458                         if (skb_headlen(skb) <= 1514) {
2459                                 /* Low 16bits are length, high is vlan and
2460                                  * unused currently so zero
2461                                  */
2462                                 desc[frag].len_vlan = skb_headlen(skb);
2463                                 dma_addr = dma_map_single(&adapter->pdev->dev,
2464                                                           skb->data,
2465                                                           skb_headlen(skb),
2466                                                           DMA_TO_DEVICE);
2467                                 desc[frag].addr_lo = lower_32_bits(dma_addr);
2468                                 desc[frag].addr_hi = upper_32_bits(dma_addr);
2469                                 frag++;
2470                         } else {
2471                                 desc[frag].len_vlan = skb_headlen(skb) / 2;
2472                                 dma_addr = dma_map_single(&adapter->pdev->dev,
2473                                                           skb->data,
2474                                                           skb_headlen(skb) / 2,
2475                                                           DMA_TO_DEVICE);
2476                                 desc[frag].addr_lo = lower_32_bits(dma_addr);
2477                                 desc[frag].addr_hi = upper_32_bits(dma_addr);
2478                                 frag++;
2479
2480                                 desc[frag].len_vlan = skb_headlen(skb) / 2;
2481                                 dma_addr = dma_map_single(&adapter->pdev->dev,
2482                                                           skb->data +
2483                                                           skb_headlen(skb) / 2,
2484                                                           skb_headlen(skb) / 2,
2485                                                           DMA_TO_DEVICE);
2486                                 desc[frag].addr_lo = lower_32_bits(dma_addr);
2487                                 desc[frag].addr_hi = upper_32_bits(dma_addr);
2488                                 frag++;
2489                         }
2490                 } else {
2491                         desc[frag].len_vlan = frags[i - 1].size;
2492                         dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2493                                                     &frags[i - 1],
2494                                                     0,
2495                                                     frags[i - 1].size,
2496                                                     DMA_TO_DEVICE);
2497                         desc[frag].addr_lo = lower_32_bits(dma_addr);
2498                         desc[frag].addr_hi = upper_32_bits(dma_addr);
2499                         frag++;
2500                 }
2501         }
2502
2503         if (phydev && phydev->speed == SPEED_1000) {
2504                 if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
2505                         /* Last element & Interrupt flag */
2506                         desc[frag - 1].flags =
2507                                     TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2508                         tx_ring->since_irq = 0;
2509                 } else { /* Last element */
2510                         desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
2511                 }
2512         } else {
2513                 desc[frag - 1].flags =
2514                                     TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2515         }
2516
2517         desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
2518
2519         tcb->index_start = tx_ring->send_idx;
2520         tcb->stale = 0;
2521
2522         thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
2523
2524         if (thiscopy >= frag) {
2525                 remainder = 0;
2526                 thiscopy = frag;
2527         } else {
2528                 remainder = frag - thiscopy;
2529         }
2530
2531         memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2532                desc,
2533                sizeof(struct tx_desc) * thiscopy);
2534
2535         add_10bit(&tx_ring->send_idx, thiscopy);
2536
2537         if (INDEX10(tx_ring->send_idx) == 0 ||
2538             INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2539                 tx_ring->send_idx &= ~ET_DMA10_MASK;
2540                 tx_ring->send_idx ^= ET_DMA10_WRAP;
2541         }
2542
2543         if (remainder) {
2544                 memcpy(tx_ring->tx_desc_ring,
2545                        desc + thiscopy,
2546                        sizeof(struct tx_desc) * remainder);
2547
2548                 add_10bit(&tx_ring->send_idx, remainder);
2549         }
2550
2551         if (INDEX10(tx_ring->send_idx) == 0) {
2552                 if (tx_ring->send_idx)
2553                         tcb->index = NUM_DESC_PER_RING_TX - 1;
2554                 else
2555                         tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2556         } else {
2557                 tcb->index = tx_ring->send_idx - 1;
2558         }
2559
2560         spin_lock(&adapter->tcb_send_qlock);
2561
2562         if (tx_ring->send_tail)
2563                 tx_ring->send_tail->next = tcb;
2564         else
2565                 tx_ring->send_head = tcb;
2566
2567         tx_ring->send_tail = tcb;
2568
2569         WARN_ON(tcb->next != NULL);
2570
2571         tx_ring->used++;
2572
2573         spin_unlock(&adapter->tcb_send_qlock);
2574
2575         /* Write the new write pointer back to the device. */
2576         writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
2577
2578         /* For Gig only, we use Tx Interrupt coalescing.  Enable the software
2579          * timer to wake us up if this packet isn't followed by N more.
2580          */
2581         if (phydev && phydev->speed == SPEED_1000) {
2582                 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2583                        &adapter->regs->global.watchdog_timer);
2584         }
2585         return 0;
2586 }
2587
2588 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2589 {
2590         int status;
2591         struct tcb *tcb;
2592         unsigned long flags;
2593         struct tx_ring *tx_ring = &adapter->tx_ring;
2594
2595         /* All packets must have at least a MAC address and a protocol type */
2596         if (skb->len < ETH_HLEN)
2597                 return -EIO;
2598
2599         spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2600
2601         tcb = tx_ring->tcb_qhead;
2602
2603         if (tcb == NULL) {
2604                 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2605                 return -ENOMEM;
2606         }
2607
2608         tx_ring->tcb_qhead = tcb->next;
2609
2610         if (tx_ring->tcb_qhead == NULL)
2611                 tx_ring->tcb_qtail = NULL;
2612
2613         spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2614
2615         tcb->skb = skb;
2616         tcb->next = NULL;
2617
2618         status = nic_send_packet(adapter, tcb);
2619
2620         if (status != 0) {
2621                 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2622
2623                 if (tx_ring->tcb_qtail)
2624                         tx_ring->tcb_qtail->next = tcb;
2625                 else
2626                         /* Apparently ready Q is empty. */
2627                         tx_ring->tcb_qhead = tcb;
2628
2629                 tx_ring->tcb_qtail = tcb;
2630                 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2631                 return status;
2632         }
2633         WARN_ON(tx_ring->used > NUM_TCB);
2634         return 0;
2635 }
2636
2637 /* free_send_packet - Recycle a struct tcb */
2638 static inline void free_send_packet(struct et131x_adapter *adapter,
2639                                     struct tcb *tcb)
2640 {
2641         unsigned long flags;
2642         struct tx_desc *desc = NULL;
2643         struct net_device_stats *stats = &adapter->netdev->stats;
2644         struct tx_ring *tx_ring = &adapter->tx_ring;
2645         u64  dma_addr;
2646
2647         if (tcb->skb) {
2648                 stats->tx_bytes += tcb->skb->len;
2649
2650                 /* Iterate through the TX descriptors on the ring
2651                  * corresponding to this packet and umap the fragments
2652                  * they point to
2653                  */
2654                 do {
2655                         desc = tx_ring->tx_desc_ring +
2656                                INDEX10(tcb->index_start);
2657
2658                         dma_addr = desc->addr_lo;
2659                         dma_addr |= (u64)desc->addr_hi << 32;
2660
2661                         dma_unmap_single(&adapter->pdev->dev,
2662                                          dma_addr,
2663                                          desc->len_vlan, DMA_TO_DEVICE);
2664
2665                         add_10bit(&tcb->index_start, 1);
2666                         if (INDEX10(tcb->index_start) >=
2667                                                         NUM_DESC_PER_RING_TX) {
2668                                 tcb->index_start &= ~ET_DMA10_MASK;
2669                                 tcb->index_start ^= ET_DMA10_WRAP;
2670                         }
2671                 } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
2672
2673                 dev_kfree_skb_any(tcb->skb);
2674         }
2675
2676         memset(tcb, 0, sizeof(struct tcb));
2677
2678         /* Add the TCB to the Ready Q */
2679         spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2680
2681         stats->tx_packets++;
2682
2683         if (tx_ring->tcb_qtail)
2684                 tx_ring->tcb_qtail->next = tcb;
2685         else /* Apparently ready Q is empty. */
2686                 tx_ring->tcb_qhead = tcb;
2687
2688         tx_ring->tcb_qtail = tcb;
2689
2690         spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2691         WARN_ON(tx_ring->used < 0);
2692 }
2693
2694 /* et131x_free_busy_send_packets - Free and complete the stopped active sends */
2695 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
2696 {
2697         struct tcb *tcb;
2698         unsigned long flags;
2699         u32 freed = 0;
2700         struct tx_ring *tx_ring = &adapter->tx_ring;
2701
2702         /* Any packets being sent? Check the first TCB on the send list */
2703         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2704
2705         tcb = tx_ring->send_head;
2706
2707         while (tcb != NULL && freed < NUM_TCB) {
2708                 struct tcb *next = tcb->next;
2709
2710                 tx_ring->send_head = next;
2711
2712                 if (next == NULL)
2713                         tx_ring->send_tail = NULL;
2714
2715                 tx_ring->used--;
2716
2717                 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2718
2719                 freed++;
2720                 free_send_packet(adapter, tcb);
2721
2722                 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2723
2724                 tcb = tx_ring->send_head;
2725         }
2726
2727         WARN_ON(freed == NUM_TCB);
2728
2729         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2730
2731         tx_ring->used = 0;
2732 }
2733
2734 /* et131x_handle_send_pkts
2735  *
2736  * Re-claim the send resources, complete sends and get more to send from
2737  * the send wait queue.
2738  */
2739 static void et131x_handle_send_pkts(struct et131x_adapter *adapter)
2740 {
2741         unsigned long flags;
2742         u32 serviced;
2743         struct tcb *tcb;
2744         u32 index;
2745         struct tx_ring *tx_ring = &adapter->tx_ring;
2746
2747         serviced = readl(&adapter->regs->txdma.new_service_complete);
2748         index = INDEX10(serviced);
2749
2750         /* Has the ring wrapped?  Process any descriptors that do not have
2751          * the same "wrap" indicator as the current completion indicator
2752          */
2753         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2754
2755         tcb = tx_ring->send_head;
2756
2757         while (tcb &&
2758                ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2759                index < INDEX10(tcb->index)) {
2760                 tx_ring->used--;
2761                 tx_ring->send_head = tcb->next;
2762                 if (tcb->next == NULL)
2763                         tx_ring->send_tail = NULL;
2764
2765                 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2766                 free_send_packet(adapter, tcb);
2767                 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2768
2769                 /* Goto the next packet */
2770                 tcb = tx_ring->send_head;
2771         }
2772         while (tcb &&
2773                !((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2774                index > (tcb->index & ET_DMA10_MASK)) {
2775                 tx_ring->used--;
2776                 tx_ring->send_head = tcb->next;
2777                 if (tcb->next == NULL)
2778                         tx_ring->send_tail = NULL;
2779
2780                 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2781                 free_send_packet(adapter, tcb);
2782                 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2783
2784                 /* Goto the next packet */
2785                 tcb = tx_ring->send_head;
2786         }
2787
2788         /* Wake up the queue when we hit a low-water mark */
2789         if (tx_ring->used <= NUM_TCB / 3)
2790                 netif_wake_queue(adapter->netdev);
2791
2792         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2793 }
2794
2795 static int et131x_get_regs_len(struct net_device *netdev)
2796 {
2797 #define ET131X_REGS_LEN 256
2798         return ET131X_REGS_LEN * sizeof(u32);
2799 }
2800
2801 static void et131x_get_regs(struct net_device *netdev,
2802                             struct ethtool_regs *regs, void *regs_data)
2803 {
2804         struct et131x_adapter *adapter = netdev_priv(netdev);
2805         struct address_map __iomem *aregs = adapter->regs;
2806         u32 *regs_buff = regs_data;
2807         u32 num = 0;
2808         u16 tmp;
2809
2810         memset(regs_data, 0, et131x_get_regs_len(netdev));
2811
2812         regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
2813                         adapter->pdev->device;
2814
2815         /* PHY regs */
2816         et131x_mii_read(adapter, MII_BMCR, &tmp);
2817         regs_buff[num++] = tmp;
2818         et131x_mii_read(adapter, MII_BMSR, &tmp);
2819         regs_buff[num++] = tmp;
2820         et131x_mii_read(adapter, MII_PHYSID1, &tmp);
2821         regs_buff[num++] = tmp;
2822         et131x_mii_read(adapter, MII_PHYSID2, &tmp);
2823         regs_buff[num++] = tmp;
2824         et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
2825         regs_buff[num++] = tmp;
2826         et131x_mii_read(adapter, MII_LPA, &tmp);
2827         regs_buff[num++] = tmp;
2828         et131x_mii_read(adapter, MII_EXPANSION, &tmp);
2829         regs_buff[num++] = tmp;
2830         /* Autoneg next page transmit reg */
2831         et131x_mii_read(adapter, 0x07, &tmp);
2832         regs_buff[num++] = tmp;
2833         /* Link partner next page reg */
2834         et131x_mii_read(adapter, 0x08, &tmp);
2835         regs_buff[num++] = tmp;
2836         et131x_mii_read(adapter, MII_CTRL1000, &tmp);
2837         regs_buff[num++] = tmp;
2838         et131x_mii_read(adapter, MII_STAT1000, &tmp);
2839         regs_buff[num++] = tmp;
2840         et131x_mii_read(adapter, 0x0b, &tmp);
2841         regs_buff[num++] = tmp;
2842         et131x_mii_read(adapter, 0x0c, &tmp);
2843         regs_buff[num++] = tmp;
2844         et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
2845         regs_buff[num++] = tmp;
2846         et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
2847         regs_buff[num++] = tmp;
2848         et131x_mii_read(adapter, MII_ESTATUS, &tmp);
2849         regs_buff[num++] = tmp;
2850
2851         et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
2852         regs_buff[num++] = tmp;
2853         et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
2854         regs_buff[num++] = tmp;
2855         et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
2856         regs_buff[num++] = tmp;
2857         et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
2858         regs_buff[num++] = tmp;
2859         et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
2860         regs_buff[num++] = tmp;
2861
2862         et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
2863         regs_buff[num++] = tmp;
2864         et131x_mii_read(adapter, PHY_CONFIG, &tmp);
2865         regs_buff[num++] = tmp;
2866         et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
2867         regs_buff[num++] = tmp;
2868         et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
2869         regs_buff[num++] = tmp;
2870         et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
2871         regs_buff[num++] = tmp;
2872         et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
2873         regs_buff[num++] = tmp;
2874         et131x_mii_read(adapter, PHY_LED_1, &tmp);
2875         regs_buff[num++] = tmp;
2876         et131x_mii_read(adapter, PHY_LED_2, &tmp);
2877         regs_buff[num++] = tmp;
2878
2879         /* Global regs */
2880         regs_buff[num++] = readl(&aregs->global.txq_start_addr);
2881         regs_buff[num++] = readl(&aregs->global.txq_end_addr);
2882         regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
2883         regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
2884         regs_buff[num++] = readl(&aregs->global.pm_csr);
2885         regs_buff[num++] = adapter->stats.interrupt_status;
2886         regs_buff[num++] = readl(&aregs->global.int_mask);
2887         regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
2888         regs_buff[num++] = readl(&aregs->global.int_status_alias);
2889         regs_buff[num++] = readl(&aregs->global.sw_reset);
2890         regs_buff[num++] = readl(&aregs->global.slv_timer);
2891         regs_buff[num++] = readl(&aregs->global.msi_config);
2892         regs_buff[num++] = readl(&aregs->global.loopback);
2893         regs_buff[num++] = readl(&aregs->global.watchdog_timer);
2894
2895         /* TXDMA regs */
2896         regs_buff[num++] = readl(&aregs->txdma.csr);
2897         regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
2898         regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
2899         regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
2900         regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
2901         regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
2902         regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
2903         regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
2904         regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
2905         regs_buff[num++] = readl(&aregs->txdma.service_request);
2906         regs_buff[num++] = readl(&aregs->txdma.service_complete);
2907         regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
2908         regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
2909         regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
2910         regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
2911         regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
2912         regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
2913         regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
2914         regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
2915         regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
2916         regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
2917         regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
2918         regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
2919         regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
2920         regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
2921         regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
2922
2923         /* RXDMA regs */
2924         regs_buff[num++] = readl(&aregs->rxdma.csr);
2925         regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
2926         regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
2927         regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
2928         regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
2929         regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
2930         regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
2931         regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
2932         regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
2933         regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
2934         regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
2935         regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
2936         regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
2937         regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
2938         regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
2939         regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
2940         regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
2941         regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
2942         regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
2943         regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
2944         regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
2945         regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
2946         regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
2947         regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
2948         regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
2949         regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
2950         regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
2951         regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
2952         regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
2953 }
2954
2955 static void et131x_get_drvinfo(struct net_device *netdev,
2956                                struct ethtool_drvinfo *info)
2957 {
2958         struct et131x_adapter *adapter = netdev_priv(netdev);
2959
2960         strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
2961         strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
2962         strlcpy(info->bus_info, pci_name(adapter->pdev),
2963                 sizeof(info->bus_info));
2964 }
2965
2966 static const struct ethtool_ops et131x_ethtool_ops = {
2967         .get_drvinfo    = et131x_get_drvinfo,
2968         .get_regs_len   = et131x_get_regs_len,
2969         .get_regs       = et131x_get_regs,
2970         .get_link       = ethtool_op_get_link,
2971         .get_link_ksettings = phy_ethtool_get_link_ksettings,
2972         .set_link_ksettings = phy_ethtool_set_link_ksettings,
2973 };
2974
2975 /* et131x_hwaddr_init - set up the MAC Address */
2976 static void et131x_hwaddr_init(struct et131x_adapter *adapter)
2977 {
2978         /* If have our default mac from init and no mac address from
2979          * EEPROM then we need to generate the last octet and set it on the
2980          * device
2981          */
2982         if (is_zero_ether_addr(adapter->rom_addr)) {
2983                 /* We need to randomly generate the last octet so we
2984                  * decrease our chances of setting the mac address to
2985                  * same as another one of our cards in the system
2986                  */
2987                 get_random_bytes(&adapter->addr[5], 1);
2988                 /* We have the default value in the register we are
2989                  * working with so we need to copy the current
2990                  * address into the permanent address
2991                  */
2992                 ether_addr_copy(adapter->rom_addr, adapter->addr);
2993         } else {
2994                 /* We do not have an override address, so set the
2995                  * current address to the permanent address and add
2996                  * it to the device
2997                  */
2998                 ether_addr_copy(adapter->addr, adapter->rom_addr);
2999         }
3000 }
3001
3002 static int et131x_pci_init(struct et131x_adapter *adapter,
3003                            struct pci_dev *pdev)
3004 {
3005         u16 max_payload;
3006         int i, rc;
3007
3008         rc = et131x_init_eeprom(adapter);
3009         if (rc < 0)
3010                 goto out;
3011
3012         if (!pci_is_pcie(pdev)) {
3013                 dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3014                 goto err_out;
3015         }
3016
3017         /* Program the Ack/Nak latency and replay timers */
3018         max_payload = pdev->pcie_mpss;
3019
3020         if (max_payload < 2) {
3021                 static const u16 acknak[2] = { 0x76, 0xD0 };
3022                 static const u16 replay[2] = { 0x1E0, 0x2ED };
3023
3024                 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3025                                           acknak[max_payload])) {
3026                         dev_err(&pdev->dev,
3027                                 "Could not write PCI config space for ACK/NAK\n");
3028                         goto err_out;
3029                 }
3030                 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3031                                           replay[max_payload])) {
3032                         dev_err(&pdev->dev,
3033                                 "Could not write PCI config space for Replay Timer\n");
3034                         goto err_out;
3035                 }
3036         }
3037
3038         /* l0s and l1 latency timers.  We are using default values.
3039          * Representing 001 for L0s and 010 for L1
3040          */
3041         if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3042                 dev_err(&pdev->dev,
3043                         "Could not write PCI config space for Latency Timers\n");
3044                 goto err_out;
3045         }
3046
3047         /* Change the max read size to 2k */
3048         if (pcie_set_readrq(pdev, 2048)) {
3049                 dev_err(&pdev->dev,
3050                         "Couldn't change PCI config space for Max read size\n");
3051                 goto err_out;
3052         }
3053
3054         /* Get MAC address from config space if an eeprom exists, otherwise
3055          * the MAC address there will not be valid
3056          */
3057         if (!adapter->has_eeprom) {
3058                 et131x_hwaddr_init(adapter);
3059                 return 0;
3060         }
3061
3062         for (i = 0; i < ETH_ALEN; i++) {
3063                 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3064                                          adapter->rom_addr + i)) {
3065                         dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3066                         goto err_out;
3067                 }
3068         }
3069         ether_addr_copy(adapter->addr, adapter->rom_addr);
3070 out:
3071         return rc;
3072 err_out:
3073         rc = -EIO;
3074         goto out;
3075 }
3076
3077 /* et131x_error_timer_handler
3078  * @data: timer-specific variable; here a pointer to our adapter structure
3079  *
3080  * The routine called when the error timer expires, to track the number of
3081  * recurring errors.
3082  */
3083 static void et131x_error_timer_handler(struct timer_list *t)
3084 {
3085         struct et131x_adapter *adapter = from_timer(adapter, t, error_timer);
3086         struct phy_device *phydev = adapter->netdev->phydev;
3087
3088         if (et1310_in_phy_coma(adapter)) {
3089                 /* Bring the device immediately out of coma, to
3090                  * prevent it from sleeping indefinitely, this
3091                  * mechanism could be improved!
3092                  */
3093                 et1310_disable_phy_coma(adapter);
3094                 adapter->boot_coma = 20;
3095         } else {
3096                 et1310_update_macstat_host_counters(adapter);
3097         }
3098
3099         if (!phydev->link && adapter->boot_coma < 11)
3100                 adapter->boot_coma++;
3101
3102         if (adapter->boot_coma == 10) {
3103                 if (!phydev->link) {
3104                         if (!et1310_in_phy_coma(adapter)) {
3105                                 /* NOTE - This was originally a 'sync with
3106                                  *  interrupt'. How to do that under Linux?
3107                                  */
3108                                 et131x_enable_interrupts(adapter);
3109                                 et1310_enable_phy_coma(adapter);
3110                         }
3111                 }
3112         }
3113
3114         /* This is a periodic timer, so reschedule */
3115         mod_timer(&adapter->error_timer, jiffies +
3116                   msecs_to_jiffies(TX_ERROR_PERIOD));
3117 }
3118
3119 static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3120 {
3121         et131x_tx_dma_memory_free(adapter);
3122         et131x_rx_dma_memory_free(adapter);
3123 }
3124
3125 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
3126 {
3127         int status;
3128
3129         status = et131x_tx_dma_memory_alloc(adapter);
3130         if (status) {
3131                 dev_err(&adapter->pdev->dev,
3132                         "et131x_tx_dma_memory_alloc FAILED\n");
3133                 et131x_tx_dma_memory_free(adapter);
3134                 return status;
3135         }
3136
3137         status = et131x_rx_dma_memory_alloc(adapter);
3138         if (status) {
3139                 dev_err(&adapter->pdev->dev,
3140                         "et131x_rx_dma_memory_alloc FAILED\n");
3141                 et131x_adapter_memory_free(adapter);
3142                 return status;
3143         }
3144
3145         status = et131x_init_recv(adapter);
3146         if (status) {
3147                 dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
3148                 et131x_adapter_memory_free(adapter);
3149         }
3150         return status;
3151 }
3152
3153 static void et131x_adjust_link(struct net_device *netdev)
3154 {
3155         struct et131x_adapter *adapter = netdev_priv(netdev);
3156         struct  phy_device *phydev = netdev->phydev;
3157
3158         if (!phydev)
3159                 return;
3160         if (phydev->link == adapter->link)
3161                 return;
3162
3163         /* Check to see if we are in coma mode and if
3164          * so, disable it because we will not be able
3165          * to read PHY values until we are out.
3166          */
3167         if (et1310_in_phy_coma(adapter))
3168                 et1310_disable_phy_coma(adapter);
3169
3170         adapter->link = phydev->link;
3171         phy_print_status(phydev);
3172
3173         if (phydev->link) {
3174                 adapter->boot_coma = 20;
3175                 if (phydev->speed == SPEED_10) {
3176                         u16 register18;
3177
3178                         et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3179                                         &register18);
3180                         et131x_mii_write(adapter, phydev->mdio.addr,
3181                                          PHY_MPHY_CONTROL_REG,
3182                                          register18 | 0x4);
3183                         et131x_mii_write(adapter, phydev->mdio.addr,
3184                                          PHY_INDEX_REG, register18 | 0x8402);
3185                         et131x_mii_write(adapter, phydev->mdio.addr,
3186                                          PHY_DATA_REG, register18 | 511);
3187                         et131x_mii_write(adapter, phydev->mdio.addr,
3188                                          PHY_MPHY_CONTROL_REG, register18);
3189                 }
3190
3191                 et1310_config_flow_control(adapter);
3192
3193                 if (phydev->speed == SPEED_1000 &&
3194                     adapter->registry_jumbo_packet > 2048) {
3195                         u16 reg;
3196
3197                         et131x_mii_read(adapter, PHY_CONFIG, &reg);
3198                         reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3199                         reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3200                         et131x_mii_write(adapter, phydev->mdio.addr,
3201                                          PHY_CONFIG, reg);
3202                 }
3203
3204                 et131x_set_rx_dma_timer(adapter);
3205                 et1310_config_mac_regs2(adapter);
3206         } else {
3207                 adapter->boot_coma = 0;
3208
3209                 if (phydev->speed == SPEED_10) {
3210                         u16 register18;
3211
3212                         et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3213                                         &register18);
3214                         et131x_mii_write(adapter, phydev->mdio.addr,
3215                                          PHY_MPHY_CONTROL_REG,
3216                                          register18 | 0x4);
3217                         et131x_mii_write(adapter, phydev->mdio.addr,
3218                                          PHY_INDEX_REG, register18 | 0x8402);
3219                         et131x_mii_write(adapter, phydev->mdio.addr,
3220                                          PHY_DATA_REG, register18 | 511);
3221                         et131x_mii_write(adapter, phydev->mdio.addr,
3222                                          PHY_MPHY_CONTROL_REG, register18);
3223                 }
3224
3225                 et131x_free_busy_send_packets(adapter);
3226                 et131x_init_send(adapter);
3227
3228                 /* Bring the device back to the state it was during
3229                  * init prior to autonegotiation being complete. This
3230                  * way, when we get the auto-neg complete interrupt,
3231                  * we can complete init by calling config_mac_regs2.
3232                  */
3233                 et131x_soft_reset(adapter);
3234
3235                 et131x_adapter_setup(adapter);
3236
3237                 et131x_disable_txrx(netdev);
3238                 et131x_enable_txrx(netdev);
3239         }
3240 }
3241
3242 static int et131x_mii_probe(struct net_device *netdev)
3243 {
3244         struct et131x_adapter *adapter = netdev_priv(netdev);
3245         struct  phy_device *phydev = NULL;
3246
3247         phydev = phy_find_first(adapter->mii_bus);
3248         if (!phydev) {
3249                 dev_err(&adapter->pdev->dev, "no PHY found\n");
3250                 return -ENODEV;
3251         }
3252
3253         phydev = phy_connect(netdev, phydev_name(phydev),
3254                              &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
3255
3256         if (IS_ERR(phydev)) {
3257                 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3258                 return PTR_ERR(phydev);
3259         }
3260
3261         phy_set_max_speed(phydev, SPEED_100);
3262
3263         if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3264                 phy_set_max_speed(phydev, SPEED_1000);
3265
3266         phydev->autoneg = AUTONEG_ENABLE;
3267
3268         phy_attached_info(phydev);
3269
3270         return 0;
3271 }
3272
3273 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
3274                                                   struct pci_dev *pdev)
3275 {
3276         static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3277
3278         struct et131x_adapter *adapter;
3279
3280         adapter = netdev_priv(netdev);
3281         adapter->pdev = pci_dev_get(pdev);
3282         adapter->netdev = netdev;
3283
3284         spin_lock_init(&adapter->tcb_send_qlock);
3285         spin_lock_init(&adapter->tcb_ready_qlock);
3286         spin_lock_init(&adapter->rcv_lock);
3287
3288         adapter->registry_jumbo_packet = 1514;  /* 1514-9216 */
3289
3290         ether_addr_copy(adapter->addr, default_mac);
3291
3292         return adapter;
3293 }
3294
3295 static void et131x_pci_remove(struct pci_dev *pdev)
3296 {
3297         struct net_device *netdev = pci_get_drvdata(pdev);
3298         struct et131x_adapter *adapter = netdev_priv(netdev);
3299
3300         unregister_netdev(netdev);
3301         netif_napi_del(&adapter->napi);
3302         phy_disconnect(netdev->phydev);
3303         mdiobus_unregister(adapter->mii_bus);
3304         mdiobus_free(adapter->mii_bus);
3305
3306         et131x_adapter_memory_free(adapter);
3307         iounmap(adapter->regs);
3308         pci_dev_put(pdev);
3309
3310         free_netdev(netdev);
3311         pci_release_regions(pdev);
3312         pci_disable_device(pdev);
3313 }
3314
3315 static void et131x_up(struct net_device *netdev)
3316 {
3317         et131x_enable_txrx(netdev);
3318         phy_start(netdev->phydev);
3319 }
3320
3321 static void et131x_down(struct net_device *netdev)
3322 {
3323         /* Save the timestamp for the TX watchdog, prevent a timeout */
3324         netif_trans_update(netdev);
3325
3326         phy_stop(netdev->phydev);
3327         et131x_disable_txrx(netdev);
3328 }
3329
3330 #ifdef CONFIG_PM_SLEEP
3331 static int et131x_suspend(struct device *dev)
3332 {
3333         struct pci_dev *pdev = to_pci_dev(dev);
3334         struct net_device *netdev = pci_get_drvdata(pdev);
3335
3336         if (netif_running(netdev)) {
3337                 netif_device_detach(netdev);
3338                 et131x_down(netdev);
3339                 pci_save_state(pdev);
3340         }
3341
3342         return 0;
3343 }
3344
3345 static int et131x_resume(struct device *dev)
3346 {
3347         struct pci_dev *pdev = to_pci_dev(dev);
3348         struct net_device *netdev = pci_get_drvdata(pdev);
3349
3350         if (netif_running(netdev)) {
3351                 pci_restore_state(pdev);
3352                 et131x_up(netdev);
3353                 netif_device_attach(netdev);
3354         }
3355
3356         return 0;
3357 }
3358 #endif
3359
3360 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3361
3362 static irqreturn_t et131x_isr(int irq, void *dev_id)
3363 {
3364         bool handled = true;
3365         bool enable_interrupts = true;
3366         struct net_device *netdev = dev_id;
3367         struct et131x_adapter *adapter = netdev_priv(netdev);
3368         struct address_map __iomem *iomem = adapter->regs;
3369         struct rx_ring *rx_ring = &adapter->rx_ring;
3370         struct tx_ring *tx_ring = &adapter->tx_ring;
3371         u32 status;
3372
3373         if (!netif_device_present(netdev)) {
3374                 handled = false;
3375                 enable_interrupts = false;
3376                 goto out;
3377         }
3378
3379         et131x_disable_interrupts(adapter);
3380
3381         status = readl(&adapter->regs->global.int_status);
3382
3383         if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
3384                 status &= ~INT_MASK_ENABLE;
3385         else
3386                 status &= ~INT_MASK_ENABLE_NO_FLOW;
3387
3388         /* Make sure this is our interrupt */
3389         if (!status) {
3390                 handled = false;
3391                 et131x_enable_interrupts(adapter);
3392                 goto out;
3393         }
3394
3395         /* This is our interrupt, so process accordingly */
3396         if (status & ET_INTR_WATCHDOG) {
3397                 struct tcb *tcb = tx_ring->send_head;
3398
3399                 if (tcb)
3400                         if (++tcb->stale > 1)
3401                                 status |= ET_INTR_TXDMA_ISR;
3402
3403                 if (rx_ring->unfinished_receives)
3404                         status |= ET_INTR_RXDMA_XFR_DONE;
3405                 else if (tcb == NULL)
3406                         writel(0, &adapter->regs->global.watchdog_timer);
3407
3408                 status &= ~ET_INTR_WATCHDOG;
3409         }
3410
3411         if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) {
3412                 enable_interrupts = false;
3413                 napi_schedule(&adapter->napi);
3414         }
3415
3416         status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE);
3417
3418         if (!status)
3419                 goto out;
3420
3421         if (status & ET_INTR_TXDMA_ERR) {
3422                 /* Following read also clears the register (COR) */
3423                 u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
3424
3425                 dev_warn(&adapter->pdev->dev,
3426                          "TXDMA_ERR interrupt, error = %d\n",
3427                          txdma_err);
3428         }
3429
3430         if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
3431                 /* This indicates the number of unused buffers in RXDMA free
3432                  * buffer ring 0 is <= the limit you programmed. Free buffer
3433                  * resources need to be returned.  Free buffers are consumed as
3434                  * packets are passed from the network to the host. The host
3435                  * becomes aware of the packets from the contents of the packet
3436                  * status ring. This ring is queried when the packet done
3437                  * interrupt occurs. Packets are then passed to the OS. When
3438                  * the OS is done with the packets the resources can be
3439                  * returned to the ET1310 for re-use. This interrupt is one
3440                  * method of returning resources.
3441                  */
3442
3443                 /*  If the user has flow control on, then we will
3444                  * send a pause packet, otherwise just exit
3445                  */
3446                 if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) {
3447                         u32 pm_csr;
3448
3449                         /* Tell the device to send a pause packet via the back
3450                          * pressure register (bp req and bp xon/xoff)
3451                          */
3452                         pm_csr = readl(&iomem->global.pm_csr);
3453                         if (!et1310_in_phy_coma(adapter))
3454                                 writel(3, &iomem->txmac.bp_ctrl);
3455                 }
3456         }
3457
3458         /* Handle Packet Status Ring Low Interrupt */
3459         if (status & ET_INTR_RXDMA_STAT_LOW) {
3460                 /* Same idea as with the two Free Buffer Rings. Packets going
3461                  * from the network to the host each consume a free buffer
3462                  * resource and a packet status resource. These resources are
3463                  * passed to the OS. When the OS is done with the resources,
3464                  * they need to be returned to the ET1310. This is one method
3465                  * of returning the resources.
3466                  */
3467         }
3468
3469         if (status & ET_INTR_RXDMA_ERR) {
3470                 /* The rxdma_error interrupt is sent when a time-out on a
3471                  * request issued by the JAGCore has occurred or a completion is
3472                  * returned with an un-successful status. In both cases the
3473                  * request is considered complete. The JAGCore will
3474                  * automatically re-try the request in question. Normally
3475                  * information on events like these are sent to the host using
3476                  * the "Advanced Error Reporting" capability. This interrupt is
3477                  * another way of getting similar information. The only thing
3478                  * required is to clear the interrupt by reading the ISR in the
3479                  * global resources. The JAGCore will do a re-try on the
3480                  * request. Normally you should never see this interrupt. If
3481                  * you start to see this interrupt occurring frequently then
3482                  * something bad has occurred. A reset might be the thing to do.
3483                  */
3484                 /* TRAP();*/
3485
3486                 dev_warn(&adapter->pdev->dev, "RxDMA_ERR interrupt, error %x\n",
3487                          readl(&iomem->txmac.tx_test));
3488         }
3489
3490         /* Handle the Wake on LAN Event */
3491         if (status & ET_INTR_WOL) {
3492                 /* This is a secondary interrupt for wake on LAN. The driver
3493                  * should never see this, if it does, something serious is
3494                  * wrong.
3495                  */
3496                 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
3497         }
3498
3499         if (status & ET_INTR_TXMAC) {
3500                 u32 err = readl(&iomem->txmac.err);
3501
3502                 /* When any of the errors occur and TXMAC generates an
3503                  * interrupt to report these errors, it usually means that
3504                  * TXMAC has detected an error in the data stream retrieved
3505                  * from the on-chip Tx Q. All of these errors are catastrophic
3506                  * and TXMAC won't be able to recover data when these errors
3507                  * occur. In a nutshell, the whole Tx path will have to be reset
3508                  * and re-configured afterwards.
3509                  */
3510                 dev_warn(&adapter->pdev->dev, "TXMAC interrupt, error 0x%08x\n",
3511                          err);
3512
3513                 /* If we are debugging, we want to see this error, otherwise we
3514                  * just want the device to be reset and continue
3515                  */
3516         }
3517
3518         if (status & ET_INTR_RXMAC) {
3519                 /* These interrupts are catastrophic to the device, what we need
3520                  * to do is disable the interrupts and set the flag to cause us
3521                  * to reset so we can solve this issue.
3522                  */
3523                 dev_warn(&adapter->pdev->dev,
3524                          "RXMAC interrupt, error 0x%08x.  Requesting reset\n",
3525                          readl(&iomem->rxmac.err_reg));
3526
3527                 dev_warn(&adapter->pdev->dev,
3528                          "Enable 0x%08x, Diag 0x%08x\n",
3529                          readl(&iomem->rxmac.ctrl),
3530                          readl(&iomem->rxmac.rxq_diag));
3531
3532                 /* If we are debugging, we want to see this error, otherwise we
3533                  * just want the device to be reset and continue
3534                  */
3535         }
3536
3537         if (status & ET_INTR_MAC_STAT) {
3538                 /* This means at least one of the un-masked counters in the
3539                  * MAC_STAT block has rolled over. Use this to maintain the top,
3540                  * software managed bits of the counter(s).
3541                  */
3542                 et1310_handle_macstat_interrupt(adapter);
3543         }
3544
3545         if (status & ET_INTR_SLV_TIMEOUT) {
3546                 /* This means a timeout has occurred on a read or write request
3547                  * to one of the JAGCore registers. The Global Resources block
3548                  * has terminated the request and on a read request, returned a
3549                  * "fake" value. The most likely reasons are: Bad Address or the
3550                  * addressed module is in a power-down state and can't respond.
3551                  */
3552         }
3553
3554 out:
3555         if (enable_interrupts)
3556                 et131x_enable_interrupts(adapter);
3557
3558         return IRQ_RETVAL(handled);
3559 }
3560
3561 static int et131x_poll(struct napi_struct *napi, int budget)
3562 {
3563         struct et131x_adapter *adapter =
3564                 container_of(napi, struct et131x_adapter, napi);
3565         int work_done = et131x_handle_recv_pkts(adapter, budget);
3566
3567         et131x_handle_send_pkts(adapter);
3568
3569         if (work_done < budget) {
3570                 napi_complete_done(&adapter->napi, work_done);
3571                 et131x_enable_interrupts(adapter);
3572         }
3573
3574         return work_done;
3575 }
3576
3577 /* et131x_stats - Return the current device statistics  */
3578 static struct net_device_stats *et131x_stats(struct net_device *netdev)
3579 {
3580         struct et131x_adapter *adapter = netdev_priv(netdev);
3581         struct net_device_stats *stats = &adapter->netdev->stats;
3582         struct ce_stats *devstat = &adapter->stats;
3583
3584         stats->rx_errors = devstat->rx_length_errs +
3585                            devstat->rx_align_errs +
3586                            devstat->rx_crc_errs +
3587                            devstat->rx_code_violations +
3588                            devstat->rx_other_errs;
3589         stats->tx_errors = devstat->tx_max_pkt_errs;
3590         stats->multicast = devstat->multicast_pkts_rcvd;
3591         stats->collisions = devstat->tx_collisions;
3592
3593         stats->rx_length_errors = devstat->rx_length_errs;
3594         stats->rx_over_errors = devstat->rx_overflows;
3595         stats->rx_crc_errors = devstat->rx_crc_errs;
3596         stats->rx_dropped = devstat->rcvd_pkts_dropped;
3597
3598         /* NOTE: Not used, can't find analogous statistics */
3599         /* stats->rx_frame_errors     = devstat->; */
3600         /* stats->rx_fifo_errors      = devstat->; */
3601         /* stats->rx_missed_errors    = devstat->; */
3602
3603         /* stats->tx_aborted_errors   = devstat->; */
3604         /* stats->tx_carrier_errors   = devstat->; */
3605         /* stats->tx_fifo_errors      = devstat->; */
3606         /* stats->tx_heartbeat_errors = devstat->; */
3607         /* stats->tx_window_errors    = devstat->; */
3608         return stats;
3609 }
3610
3611 static int et131x_open(struct net_device *netdev)
3612 {
3613         struct et131x_adapter *adapter = netdev_priv(netdev);
3614         struct pci_dev *pdev = adapter->pdev;
3615         unsigned int irq = pdev->irq;
3616         int result;
3617
3618         /* Start the timer to track NIC errors */
3619         timer_setup(&adapter->error_timer, et131x_error_timer_handler, 0);
3620         adapter->error_timer.expires = jiffies +
3621                 msecs_to_jiffies(TX_ERROR_PERIOD);
3622         add_timer(&adapter->error_timer);
3623
3624         result = request_irq(irq, et131x_isr,
3625                              IRQF_SHARED, netdev->name, netdev);
3626         if (result) {
3627                 dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
3628                 return result;
3629         }
3630
3631         adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
3632
3633         napi_enable(&adapter->napi);
3634
3635         et131x_up(netdev);
3636
3637         return result;
3638 }
3639
3640 static int et131x_close(struct net_device *netdev)
3641 {
3642         struct et131x_adapter *adapter = netdev_priv(netdev);
3643
3644         et131x_down(netdev);
3645         napi_disable(&adapter->napi);
3646
3647         adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
3648         free_irq(adapter->pdev->irq, netdev);
3649
3650         /* Stop the error timer */
3651         return del_timer_sync(&adapter->error_timer);
3652 }
3653
3654 static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
3655                         int cmd)
3656 {
3657         if (!netdev->phydev)
3658                 return -EINVAL;
3659
3660         return phy_mii_ioctl(netdev->phydev, reqbuf, cmd);
3661 }
3662
3663 /* et131x_set_packet_filter - Configures the Rx Packet filtering */
3664 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
3665 {
3666         int filter = adapter->packet_filter;
3667         u32 ctrl;
3668         u32 pf_ctrl;
3669
3670         ctrl = readl(&adapter->regs->rxmac.ctrl);
3671         pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
3672
3673         /* Default to disabled packet filtering */
3674         ctrl |= 0x04;
3675
3676         /* Set us to be in promiscuous mode so we receive everything, this
3677          * is also true when we get a packet filter of 0
3678          */
3679         if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
3680                 pf_ctrl &= ~7;  /* Clear filter bits */
3681         else {
3682                 /* Set us up with Multicast packet filtering.  Three cases are
3683                  * possible - (1) we have a multi-cast list, (2) we receive ALL
3684                  * multicast entries or (3) we receive none.
3685                  */
3686                 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
3687                         pf_ctrl &= ~2;  /* Multicast filter bit */
3688                 else {
3689                         et1310_setup_device_for_multicast(adapter);
3690                         pf_ctrl |= 2;
3691                         ctrl &= ~0x04;
3692                 }
3693
3694                 /* Set us up with Unicast packet filtering */
3695                 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
3696                         et1310_setup_device_for_unicast(adapter);
3697                         pf_ctrl |= 4;
3698                         ctrl &= ~0x04;
3699                 }
3700
3701                 /* Set us up with Broadcast packet filtering */
3702                 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
3703                         pf_ctrl |= 1;   /* Broadcast filter bit */
3704                         ctrl &= ~0x04;
3705                 } else {
3706                         pf_ctrl &= ~1;
3707                 }
3708
3709                 /* Setup the receive mac configuration registers - Packet
3710                  * Filter control + the enable / disable for packet filter
3711                  * in the control reg.
3712                  */
3713                 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
3714                 writel(ctrl, &adapter->regs->rxmac.ctrl);
3715         }
3716         return 0;
3717 }
3718
3719 static void et131x_multicast(struct net_device *netdev)
3720 {
3721         struct et131x_adapter *adapter = netdev_priv(netdev);
3722         int packet_filter;
3723         struct netdev_hw_addr *ha;
3724         int i;
3725
3726         /* Before we modify the platform-independent filter flags, store them
3727          * locally. This allows us to determine if anything's changed and if
3728          * we even need to bother the hardware
3729          */
3730         packet_filter = adapter->packet_filter;
3731
3732         /* Clear the 'multicast' flag locally; because we only have a single
3733          * flag to check multicast, and multiple multicast addresses can be
3734          * set, this is the easiest way to determine if more than one
3735          * multicast address is being set.
3736          */
3737         packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3738
3739         /* Check the net_device flags and set the device independent flags
3740          * accordingly
3741          */
3742         if (netdev->flags & IFF_PROMISC)
3743                 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
3744         else
3745                 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
3746
3747         if ((netdev->flags & IFF_ALLMULTI) ||
3748             (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST))
3749                 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
3750
3751         if (netdev_mc_count(netdev) < 1) {
3752                 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
3753                 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3754         } else {
3755                 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
3756         }
3757
3758         /* Set values in the private adapter struct */
3759         i = 0;
3760         netdev_for_each_mc_addr(ha, netdev) {
3761                 if (i == NIC_MAX_MCAST_LIST)
3762                         break;
3763                 ether_addr_copy(adapter->multicast_list[i++], ha->addr);
3764         }
3765         adapter->multicast_addr_count = i;
3766
3767         /* Are the new flags different from the previous ones? If not, then no
3768          * action is required
3769          *
3770          * NOTE - This block will always update the multicast_list with the
3771          *        hardware, even if the addresses aren't the same.
3772          */
3773         if (packet_filter != adapter->packet_filter)
3774                 et131x_set_packet_filter(adapter);
3775 }
3776
3777 static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev)
3778 {
3779         struct et131x_adapter *adapter = netdev_priv(netdev);
3780         struct tx_ring *tx_ring = &adapter->tx_ring;
3781
3782         /* stop the queue if it's getting full */
3783         if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
3784                 netif_stop_queue(netdev);
3785
3786         /* Save the timestamp for the TX timeout watchdog */
3787         netif_trans_update(netdev);
3788
3789         /* TCB is not available */
3790         if (tx_ring->used >= NUM_TCB)
3791                 goto drop_err;
3792
3793         if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
3794             !netif_carrier_ok(netdev))
3795                 goto drop_err;
3796
3797         if (send_packet(skb, adapter))
3798                 goto drop_err;
3799
3800         return NETDEV_TX_OK;
3801
3802 drop_err:
3803         dev_kfree_skb_any(skb);
3804         adapter->netdev->stats.tx_dropped++;
3805         return NETDEV_TX_OK;
3806 }
3807
3808 /* et131x_tx_timeout - Timeout handler
3809  *
3810  * The handler called when a Tx request times out. The timeout period is
3811  * specified by the 'tx_timeo" element in the net_device structure (see
3812  * et131x_alloc_device() to see how this value is set).
3813  */
3814 static void et131x_tx_timeout(struct net_device *netdev)
3815 {
3816         struct et131x_adapter *adapter = netdev_priv(netdev);
3817         struct tx_ring *tx_ring = &adapter->tx_ring;
3818         struct tcb *tcb;
3819         unsigned long flags;
3820
3821         /* If the device is closed, ignore the timeout */
3822         if (!(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
3823                 return;
3824
3825         /* Any nonrecoverable hardware error?
3826          * Checks adapter->flags for any failure in phy reading
3827          */
3828         if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
3829                 return;
3830
3831         /* Hardware failure? */
3832         if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
3833                 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
3834                 return;
3835         }
3836
3837         /* Is send stuck? */
3838         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3839         tcb = tx_ring->send_head;
3840         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3841
3842         if (tcb) {
3843                 tcb->count++;
3844
3845                 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
3846                         dev_warn(&adapter->pdev->dev,
3847                                  "Send stuck - reset. tcb->WrIndex %x\n",
3848                                  tcb->index);
3849
3850                         adapter->netdev->stats.tx_errors++;
3851
3852                         /* perform reset of tx/rx */
3853                         et131x_disable_txrx(netdev);
3854                         et131x_enable_txrx(netdev);
3855                 }
3856         }
3857 }
3858
3859 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
3860 {
3861         int result = 0;
3862         struct et131x_adapter *adapter = netdev_priv(netdev);
3863
3864         et131x_disable_txrx(netdev);
3865
3866         netdev->mtu = new_mtu;
3867
3868         et131x_adapter_memory_free(adapter);
3869
3870         /* Set the config parameter for Jumbo Packet support */
3871         adapter->registry_jumbo_packet = new_mtu + 14;
3872         et131x_soft_reset(adapter);
3873
3874         result = et131x_adapter_memory_alloc(adapter);
3875         if (result != 0) {
3876                 dev_warn(&adapter->pdev->dev,
3877                          "Change MTU failed; couldn't re-alloc DMA memory\n");
3878                 return result;
3879         }
3880
3881         et131x_init_send(adapter);
3882         et131x_hwaddr_init(adapter);
3883         ether_addr_copy(netdev->dev_addr, adapter->addr);
3884
3885         /* Init the device with the new settings */
3886         et131x_adapter_setup(adapter);
3887         et131x_enable_txrx(netdev);
3888
3889         return result;
3890 }
3891
3892 static const struct net_device_ops et131x_netdev_ops = {
3893         .ndo_open               = et131x_open,
3894         .ndo_stop               = et131x_close,
3895         .ndo_start_xmit         = et131x_tx,
3896         .ndo_set_rx_mode        = et131x_multicast,
3897         .ndo_tx_timeout         = et131x_tx_timeout,
3898         .ndo_change_mtu         = et131x_change_mtu,
3899         .ndo_set_mac_address    = eth_mac_addr,
3900         .ndo_validate_addr      = eth_validate_addr,
3901         .ndo_get_stats          = et131x_stats,
3902         .ndo_do_ioctl           = et131x_ioctl,
3903 };
3904
3905 static int et131x_pci_setup(struct pci_dev *pdev,
3906                             const struct pci_device_id *ent)
3907 {
3908         struct net_device *netdev;
3909         struct et131x_adapter *adapter;
3910         int rc;
3911
3912         rc = pci_enable_device(pdev);
3913         if (rc < 0) {
3914                 dev_err(&pdev->dev, "pci_enable_device() failed\n");
3915                 goto out;
3916         }
3917
3918         /* Perform some basic PCI checks */
3919         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
3920                 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
3921                 rc = -ENODEV;
3922                 goto err_disable;
3923         }
3924
3925         rc = pci_request_regions(pdev, DRIVER_NAME);
3926         if (rc < 0) {
3927                 dev_err(&pdev->dev, "Can't get PCI resources\n");
3928                 goto err_disable;
3929         }
3930
3931         pci_set_master(pdev);
3932
3933         /* Check the DMA addressing support of this device */
3934         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
3935             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
3936                 dev_err(&pdev->dev, "No usable DMA addressing method\n");
3937                 rc = -EIO;
3938                 goto err_release_res;
3939         }
3940
3941         netdev = alloc_etherdev(sizeof(struct et131x_adapter));
3942         if (!netdev) {
3943                 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
3944                 rc = -ENOMEM;
3945                 goto err_release_res;
3946         }
3947
3948         netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
3949         netdev->netdev_ops     = &et131x_netdev_ops;
3950         netdev->min_mtu        = ET131X_MIN_MTU;
3951         netdev->max_mtu        = ET131X_MAX_MTU;
3952
3953         SET_NETDEV_DEV(netdev, &pdev->dev);
3954         netdev->ethtool_ops = &et131x_ethtool_ops;
3955
3956         adapter = et131x_adapter_init(netdev, pdev);
3957
3958         rc = et131x_pci_init(adapter, pdev);
3959         if (rc < 0)
3960                 goto err_free_dev;
3961
3962         /* Map the bus-relative registers to system virtual memory */
3963         adapter->regs = pci_ioremap_bar(pdev, 0);
3964         if (!adapter->regs) {
3965                 dev_err(&pdev->dev, "Cannot map device registers\n");
3966                 rc = -ENOMEM;
3967                 goto err_free_dev;
3968         }
3969
3970         /* If Phy COMA mode was enabled when we went down, disable it here. */
3971         writel(ET_PMCSR_INIT,  &adapter->regs->global.pm_csr);
3972
3973         et131x_soft_reset(adapter);
3974         et131x_disable_interrupts(adapter);
3975
3976         rc = et131x_adapter_memory_alloc(adapter);
3977         if (rc < 0) {
3978                 dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n");
3979                 goto err_iounmap;
3980         }
3981
3982         et131x_init_send(adapter);
3983
3984         netif_napi_add(netdev, &adapter->napi, et131x_poll, 64);
3985
3986         ether_addr_copy(netdev->dev_addr, adapter->addr);
3987
3988         rc = -ENOMEM;
3989
3990         adapter->mii_bus = mdiobus_alloc();
3991         if (!adapter->mii_bus) {
3992                 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
3993                 goto err_mem_free;
3994         }
3995
3996         adapter->mii_bus->name = "et131x_eth_mii";
3997         snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
3998                  (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
3999         adapter->mii_bus->priv = netdev;
4000         adapter->mii_bus->read = et131x_mdio_read;
4001         adapter->mii_bus->write = et131x_mdio_write;
4002
4003         rc = mdiobus_register(adapter->mii_bus);
4004         if (rc < 0) {
4005                 dev_err(&pdev->dev, "failed to register MII bus\n");
4006                 goto err_mdio_free;
4007         }
4008
4009         rc = et131x_mii_probe(netdev);
4010         if (rc < 0) {
4011                 dev_err(&pdev->dev, "failed to probe MII bus\n");
4012                 goto err_mdio_unregister;
4013         }
4014
4015         et131x_adapter_setup(adapter);
4016
4017         /* Init variable for counting how long we do not have link status */
4018         adapter->boot_coma = 0;
4019         et1310_disable_phy_coma(adapter);
4020
4021         /* We can enable interrupts now
4022          *
4023          *  NOTE - Because registration of interrupt handler is done in the
4024          *         device's open(), defer enabling device interrupts to that
4025          *         point
4026          */
4027
4028         rc = register_netdev(netdev);
4029         if (rc < 0) {
4030                 dev_err(&pdev->dev, "register_netdev() failed\n");
4031                 goto err_phy_disconnect;
4032         }
4033
4034         /* Register the net_device struct with the PCI subsystem. Save a copy
4035          * of the PCI config space for this device now that the device has
4036          * been initialized, just in case it needs to be quickly restored.
4037          */
4038         pci_set_drvdata(pdev, netdev);
4039 out:
4040         return rc;
4041
4042 err_phy_disconnect:
4043         phy_disconnect(netdev->phydev);
4044 err_mdio_unregister:
4045         mdiobus_unregister(adapter->mii_bus);
4046 err_mdio_free:
4047         mdiobus_free(adapter->mii_bus);
4048 err_mem_free:
4049         et131x_adapter_memory_free(adapter);
4050 err_iounmap:
4051         iounmap(adapter->regs);
4052 err_free_dev:
4053         pci_dev_put(pdev);
4054         free_netdev(netdev);
4055 err_release_res:
4056         pci_release_regions(pdev);
4057 err_disable:
4058         pci_disable_device(pdev);
4059         goto out;
4060 }
4061
4062 static const struct pci_device_id et131x_pci_table[] = {
4063         { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4064         { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4065         { 0,}
4066 };
4067 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4068
4069 static struct pci_driver et131x_driver = {
4070         .name           = DRIVER_NAME,
4071         .id_table       = et131x_pci_table,
4072         .probe          = et131x_pci_setup,
4073         .remove         = et131x_pci_remove,
4074         .driver.pm      = &et131x_pm_ops,
4075 };
4076
4077 module_pci_driver(et131x_driver);