Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jlbec/ocfs2
[sfrench/cifs-2.6.git] / drivers / net / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <linux/slab.h>
40 #include <net/checksum.h>
41 #include <net/ip6_checksum.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if_vlan.h>
45 #include <linux/cpu.h>
46 #include <linux/smp.h>
47 #include <linux/pm_qos_params.h>
48 #include <linux/aer.h>
49
50 #include "e1000.h"
51
52 #define DRV_VERSION "1.0.2-k2"
53 char e1000e_driver_name[] = "e1000e";
54 const char e1000e_driver_version[] = DRV_VERSION;
55
56 static const struct e1000_info *e1000_info_tbl[] = {
57         [board_82571]           = &e1000_82571_info,
58         [board_82572]           = &e1000_82572_info,
59         [board_82573]           = &e1000_82573_info,
60         [board_82574]           = &e1000_82574_info,
61         [board_82583]           = &e1000_82583_info,
62         [board_80003es2lan]     = &e1000_es2_info,
63         [board_ich8lan]         = &e1000_ich8_info,
64         [board_ich9lan]         = &e1000_ich9_info,
65         [board_ich10lan]        = &e1000_ich10_info,
66         [board_pchlan]          = &e1000_pch_info,
67 };
68
69 /**
70  * e1000_desc_unused - calculate if we have unused descriptors
71  **/
72 static int e1000_desc_unused(struct e1000_ring *ring)
73 {
74         if (ring->next_to_clean > ring->next_to_use)
75                 return ring->next_to_clean - ring->next_to_use - 1;
76
77         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
78 }
79
80 /**
81  * e1000_receive_skb - helper function to handle Rx indications
82  * @adapter: board private structure
83  * @status: descriptor status field as written by hardware
84  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
85  * @skb: pointer to sk_buff to be indicated to stack
86  **/
87 static void e1000_receive_skb(struct e1000_adapter *adapter,
88                               struct net_device *netdev,
89                               struct sk_buff *skb,
90                               u8 status, __le16 vlan)
91 {
92         skb->protocol = eth_type_trans(skb, netdev);
93
94         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
95                 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
96                                  le16_to_cpu(vlan), skb);
97         else
98                 napi_gro_receive(&adapter->napi, skb);
99 }
100
101 /**
102  * e1000_rx_checksum - Receive Checksum Offload for 82543
103  * @adapter:     board private structure
104  * @status_err:  receive descriptor status and error fields
105  * @csum:       receive descriptor csum field
106  * @sk_buff:     socket buffer with received data
107  **/
108 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
109                               u32 csum, struct sk_buff *skb)
110 {
111         u16 status = (u16)status_err;
112         u8 errors = (u8)(status_err >> 24);
113         skb->ip_summed = CHECKSUM_NONE;
114
115         /* Ignore Checksum bit is set */
116         if (status & E1000_RXD_STAT_IXSM)
117                 return;
118         /* TCP/UDP checksum error bit is set */
119         if (errors & E1000_RXD_ERR_TCPE) {
120                 /* let the stack verify checksum errors */
121                 adapter->hw_csum_err++;
122                 return;
123         }
124
125         /* TCP/UDP Checksum has not been calculated */
126         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
127                 return;
128
129         /* It must be a TCP or UDP packet with a valid checksum */
130         if (status & E1000_RXD_STAT_TCPCS) {
131                 /* TCP checksum is good */
132                 skb->ip_summed = CHECKSUM_UNNECESSARY;
133         } else {
134                 /*
135                  * IP fragment with UDP payload
136                  * Hardware complements the payload checksum, so we undo it
137                  * and then put the value in host order for further stack use.
138                  */
139                 __sum16 sum = (__force __sum16)htons(csum);
140                 skb->csum = csum_unfold(~sum);
141                 skb->ip_summed = CHECKSUM_COMPLETE;
142         }
143         adapter->hw_csum_good++;
144 }
145
146 /**
147  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
148  * @adapter: address of board private structure
149  **/
150 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
151                                    int cleaned_count)
152 {
153         struct net_device *netdev = adapter->netdev;
154         struct pci_dev *pdev = adapter->pdev;
155         struct e1000_ring *rx_ring = adapter->rx_ring;
156         struct e1000_rx_desc *rx_desc;
157         struct e1000_buffer *buffer_info;
158         struct sk_buff *skb;
159         unsigned int i;
160         unsigned int bufsz = adapter->rx_buffer_len;
161
162         i = rx_ring->next_to_use;
163         buffer_info = &rx_ring->buffer_info[i];
164
165         while (cleaned_count--) {
166                 skb = buffer_info->skb;
167                 if (skb) {
168                         skb_trim(skb, 0);
169                         goto map_skb;
170                 }
171
172                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
173                 if (!skb) {
174                         /* Better luck next round */
175                         adapter->alloc_rx_buff_failed++;
176                         break;
177                 }
178
179                 buffer_info->skb = skb;
180 map_skb:
181                 buffer_info->dma = pci_map_single(pdev, skb->data,
182                                                   adapter->rx_buffer_len,
183                                                   PCI_DMA_FROMDEVICE);
184                 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
185                         dev_err(&pdev->dev, "RX DMA map failed\n");
186                         adapter->rx_dma_failed++;
187                         break;
188                 }
189
190                 rx_desc = E1000_RX_DESC(*rx_ring, i);
191                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
192
193                 i++;
194                 if (i == rx_ring->count)
195                         i = 0;
196                 buffer_info = &rx_ring->buffer_info[i];
197         }
198
199         if (rx_ring->next_to_use != i) {
200                 rx_ring->next_to_use = i;
201                 if (i-- == 0)
202                         i = (rx_ring->count - 1);
203
204                 /*
205                  * Force memory writes to complete before letting h/w
206                  * know there are new descriptors to fetch.  (Only
207                  * applicable for weak-ordered memory model archs,
208                  * such as IA-64).
209                  */
210                 wmb();
211                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
212         }
213 }
214
215 /**
216  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
217  * @adapter: address of board private structure
218  **/
219 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
220                                       int cleaned_count)
221 {
222         struct net_device *netdev = adapter->netdev;
223         struct pci_dev *pdev = adapter->pdev;
224         union e1000_rx_desc_packet_split *rx_desc;
225         struct e1000_ring *rx_ring = adapter->rx_ring;
226         struct e1000_buffer *buffer_info;
227         struct e1000_ps_page *ps_page;
228         struct sk_buff *skb;
229         unsigned int i, j;
230
231         i = rx_ring->next_to_use;
232         buffer_info = &rx_ring->buffer_info[i];
233
234         while (cleaned_count--) {
235                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
236
237                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
238                         ps_page = &buffer_info->ps_pages[j];
239                         if (j >= adapter->rx_ps_pages) {
240                                 /* all unused desc entries get hw null ptr */
241                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
242                                 continue;
243                         }
244                         if (!ps_page->page) {
245                                 ps_page->page = alloc_page(GFP_ATOMIC);
246                                 if (!ps_page->page) {
247                                         adapter->alloc_rx_buff_failed++;
248                                         goto no_buffers;
249                                 }
250                                 ps_page->dma = pci_map_page(pdev,
251                                                    ps_page->page,
252                                                    0, PAGE_SIZE,
253                                                    PCI_DMA_FROMDEVICE);
254                                 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
255                                         dev_err(&adapter->pdev->dev,
256                                           "RX DMA page map failed\n");
257                                         adapter->rx_dma_failed++;
258                                         goto no_buffers;
259                                 }
260                         }
261                         /*
262                          * Refresh the desc even if buffer_addrs
263                          * didn't change because each write-back
264                          * erases this info.
265                          */
266                         rx_desc->read.buffer_addr[j+1] =
267                              cpu_to_le64(ps_page->dma);
268                 }
269
270                 skb = netdev_alloc_skb_ip_align(netdev,
271                                                 adapter->rx_ps_bsize0);
272
273                 if (!skb) {
274                         adapter->alloc_rx_buff_failed++;
275                         break;
276                 }
277
278                 buffer_info->skb = skb;
279                 buffer_info->dma = pci_map_single(pdev, skb->data,
280                                                   adapter->rx_ps_bsize0,
281                                                   PCI_DMA_FROMDEVICE);
282                 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
283                         dev_err(&pdev->dev, "RX DMA map failed\n");
284                         adapter->rx_dma_failed++;
285                         /* cleanup skb */
286                         dev_kfree_skb_any(skb);
287                         buffer_info->skb = NULL;
288                         break;
289                 }
290
291                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
292
293                 i++;
294                 if (i == rx_ring->count)
295                         i = 0;
296                 buffer_info = &rx_ring->buffer_info[i];
297         }
298
299 no_buffers:
300         if (rx_ring->next_to_use != i) {
301                 rx_ring->next_to_use = i;
302
303                 if (!(i--))
304                         i = (rx_ring->count - 1);
305
306                 /*
307                  * Force memory writes to complete before letting h/w
308                  * know there are new descriptors to fetch.  (Only
309                  * applicable for weak-ordered memory model archs,
310                  * such as IA-64).
311                  */
312                 wmb();
313                 /*
314                  * Hardware increments by 16 bytes, but packet split
315                  * descriptors are 32 bytes...so we increment tail
316                  * twice as much.
317                  */
318                 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
319         }
320 }
321
322 /**
323  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
324  * @adapter: address of board private structure
325  * @cleaned_count: number of buffers to allocate this pass
326  **/
327
328 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
329                                          int cleaned_count)
330 {
331         struct net_device *netdev = adapter->netdev;
332         struct pci_dev *pdev = adapter->pdev;
333         struct e1000_rx_desc *rx_desc;
334         struct e1000_ring *rx_ring = adapter->rx_ring;
335         struct e1000_buffer *buffer_info;
336         struct sk_buff *skb;
337         unsigned int i;
338         unsigned int bufsz = 256 - 16 /* for skb_reserve */;
339
340         i = rx_ring->next_to_use;
341         buffer_info = &rx_ring->buffer_info[i];
342
343         while (cleaned_count--) {
344                 skb = buffer_info->skb;
345                 if (skb) {
346                         skb_trim(skb, 0);
347                         goto check_page;
348                 }
349
350                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
351                 if (unlikely(!skb)) {
352                         /* Better luck next round */
353                         adapter->alloc_rx_buff_failed++;
354                         break;
355                 }
356
357                 buffer_info->skb = skb;
358 check_page:
359                 /* allocate a new page if necessary */
360                 if (!buffer_info->page) {
361                         buffer_info->page = alloc_page(GFP_ATOMIC);
362                         if (unlikely(!buffer_info->page)) {
363                                 adapter->alloc_rx_buff_failed++;
364                                 break;
365                         }
366                 }
367
368                 if (!buffer_info->dma)
369                         buffer_info->dma = pci_map_page(pdev,
370                                                         buffer_info->page, 0,
371                                                         PAGE_SIZE,
372                                                         PCI_DMA_FROMDEVICE);
373
374                 rx_desc = E1000_RX_DESC(*rx_ring, i);
375                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
376
377                 if (unlikely(++i == rx_ring->count))
378                         i = 0;
379                 buffer_info = &rx_ring->buffer_info[i];
380         }
381
382         if (likely(rx_ring->next_to_use != i)) {
383                 rx_ring->next_to_use = i;
384                 if (unlikely(i-- == 0))
385                         i = (rx_ring->count - 1);
386
387                 /* Force memory writes to complete before letting h/w
388                  * know there are new descriptors to fetch.  (Only
389                  * applicable for weak-ordered memory model archs,
390                  * such as IA-64). */
391                 wmb();
392                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
393         }
394 }
395
396 /**
397  * e1000_clean_rx_irq - Send received data up the network stack; legacy
398  * @adapter: board private structure
399  *
400  * the return value indicates whether actual cleaning was done, there
401  * is no guarantee that everything was cleaned
402  **/
403 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
404                                int *work_done, int work_to_do)
405 {
406         struct net_device *netdev = adapter->netdev;
407         struct pci_dev *pdev = adapter->pdev;
408         struct e1000_hw *hw = &adapter->hw;
409         struct e1000_ring *rx_ring = adapter->rx_ring;
410         struct e1000_rx_desc *rx_desc, *next_rxd;
411         struct e1000_buffer *buffer_info, *next_buffer;
412         u32 length;
413         unsigned int i;
414         int cleaned_count = 0;
415         bool cleaned = 0;
416         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
417
418         i = rx_ring->next_to_clean;
419         rx_desc = E1000_RX_DESC(*rx_ring, i);
420         buffer_info = &rx_ring->buffer_info[i];
421
422         while (rx_desc->status & E1000_RXD_STAT_DD) {
423                 struct sk_buff *skb;
424                 u8 status;
425
426                 if (*work_done >= work_to_do)
427                         break;
428                 (*work_done)++;
429
430                 status = rx_desc->status;
431                 skb = buffer_info->skb;
432                 buffer_info->skb = NULL;
433
434                 prefetch(skb->data - NET_IP_ALIGN);
435
436                 i++;
437                 if (i == rx_ring->count)
438                         i = 0;
439                 next_rxd = E1000_RX_DESC(*rx_ring, i);
440                 prefetch(next_rxd);
441
442                 next_buffer = &rx_ring->buffer_info[i];
443
444                 cleaned = 1;
445                 cleaned_count++;
446                 pci_unmap_single(pdev,
447                                  buffer_info->dma,
448                                  adapter->rx_buffer_len,
449                                  PCI_DMA_FROMDEVICE);
450                 buffer_info->dma = 0;
451
452                 length = le16_to_cpu(rx_desc->length);
453
454                 /*
455                  * !EOP means multiple descriptors were used to store a single
456                  * packet, if that's the case we need to toss it.  In fact, we
457                  * need to toss every packet with the EOP bit clear and the
458                  * next frame that _does_ have the EOP bit set, as it is by
459                  * definition only a frame fragment
460                  */
461                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
462                         adapter->flags2 |= FLAG2_IS_DISCARDING;
463
464                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
465                         /* All receives must fit into a single buffer */
466                         e_dbg("Receive packet consumed multiple buffers\n");
467                         /* recycle */
468                         buffer_info->skb = skb;
469                         if (status & E1000_RXD_STAT_EOP)
470                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
471                         goto next_desc;
472                 }
473
474                 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
475                         /* recycle */
476                         buffer_info->skb = skb;
477                         goto next_desc;
478                 }
479
480                 /* adjust length to remove Ethernet CRC */
481                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
482                         length -= 4;
483
484                 total_rx_bytes += length;
485                 total_rx_packets++;
486
487                 /*
488                  * code added for copybreak, this should improve
489                  * performance for small packets with large amounts
490                  * of reassembly being done in the stack
491                  */
492                 if (length < copybreak) {
493                         struct sk_buff *new_skb =
494                             netdev_alloc_skb_ip_align(netdev, length);
495                         if (new_skb) {
496                                 skb_copy_to_linear_data_offset(new_skb,
497                                                                -NET_IP_ALIGN,
498                                                                (skb->data -
499                                                                 NET_IP_ALIGN),
500                                                                (length +
501                                                                 NET_IP_ALIGN));
502                                 /* save the skb in buffer_info as good */
503                                 buffer_info->skb = skb;
504                                 skb = new_skb;
505                         }
506                         /* else just continue with the old one */
507                 }
508                 /* end copybreak code */
509                 skb_put(skb, length);
510
511                 /* Receive Checksum Offload */
512                 e1000_rx_checksum(adapter,
513                                   (u32)(status) |
514                                   ((u32)(rx_desc->errors) << 24),
515                                   le16_to_cpu(rx_desc->csum), skb);
516
517                 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
518
519 next_desc:
520                 rx_desc->status = 0;
521
522                 /* return some buffers to hardware, one at a time is too slow */
523                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
524                         adapter->alloc_rx_buf(adapter, cleaned_count);
525                         cleaned_count = 0;
526                 }
527
528                 /* use prefetched values */
529                 rx_desc = next_rxd;
530                 buffer_info = next_buffer;
531         }
532         rx_ring->next_to_clean = i;
533
534         cleaned_count = e1000_desc_unused(rx_ring);
535         if (cleaned_count)
536                 adapter->alloc_rx_buf(adapter, cleaned_count);
537
538         adapter->total_rx_bytes += total_rx_bytes;
539         adapter->total_rx_packets += total_rx_packets;
540         netdev->stats.rx_bytes += total_rx_bytes;
541         netdev->stats.rx_packets += total_rx_packets;
542         return cleaned;
543 }
544
545 static void e1000_put_txbuf(struct e1000_adapter *adapter,
546                              struct e1000_buffer *buffer_info)
547 {
548         if (buffer_info->dma) {
549                 if (buffer_info->mapped_as_page)
550                         pci_unmap_page(adapter->pdev, buffer_info->dma,
551                                        buffer_info->length, PCI_DMA_TODEVICE);
552                 else
553                         pci_unmap_single(adapter->pdev, buffer_info->dma,
554                                          buffer_info->length,
555                                          PCI_DMA_TODEVICE);
556                 buffer_info->dma = 0;
557         }
558         if (buffer_info->skb) {
559                 dev_kfree_skb_any(buffer_info->skb);
560                 buffer_info->skb = NULL;
561         }
562         buffer_info->time_stamp = 0;
563 }
564
565 static void e1000_print_hw_hang(struct work_struct *work)
566 {
567         struct e1000_adapter *adapter = container_of(work,
568                                                      struct e1000_adapter,
569                                                      print_hang_task);
570         struct e1000_ring *tx_ring = adapter->tx_ring;
571         unsigned int i = tx_ring->next_to_clean;
572         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
573         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
574         struct e1000_hw *hw = &adapter->hw;
575         u16 phy_status, phy_1000t_status, phy_ext_status;
576         u16 pci_status;
577
578         e1e_rphy(hw, PHY_STATUS, &phy_status);
579         e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
580         e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
581
582         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
583
584         /* detected Hardware unit hang */
585         e_err("Detected Hardware Unit Hang:\n"
586               "  TDH                  <%x>\n"
587               "  TDT                  <%x>\n"
588               "  next_to_use          <%x>\n"
589               "  next_to_clean        <%x>\n"
590               "buffer_info[next_to_clean]:\n"
591               "  time_stamp           <%lx>\n"
592               "  next_to_watch        <%x>\n"
593               "  jiffies              <%lx>\n"
594               "  next_to_watch.status <%x>\n"
595               "MAC Status             <%x>\n"
596               "PHY Status             <%x>\n"
597               "PHY 1000BASE-T Status  <%x>\n"
598               "PHY Extended Status    <%x>\n"
599               "PCI Status             <%x>\n",
600               readl(adapter->hw.hw_addr + tx_ring->head),
601               readl(adapter->hw.hw_addr + tx_ring->tail),
602               tx_ring->next_to_use,
603               tx_ring->next_to_clean,
604               tx_ring->buffer_info[eop].time_stamp,
605               eop,
606               jiffies,
607               eop_desc->upper.fields.status,
608               er32(STATUS),
609               phy_status,
610               phy_1000t_status,
611               phy_ext_status,
612               pci_status);
613 }
614
615 /**
616  * e1000_clean_tx_irq - Reclaim resources after transmit completes
617  * @adapter: board private structure
618  *
619  * the return value indicates whether actual cleaning was done, there
620  * is no guarantee that everything was cleaned
621  **/
622 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
623 {
624         struct net_device *netdev = adapter->netdev;
625         struct e1000_hw *hw = &adapter->hw;
626         struct e1000_ring *tx_ring = adapter->tx_ring;
627         struct e1000_tx_desc *tx_desc, *eop_desc;
628         struct e1000_buffer *buffer_info;
629         unsigned int i, eop;
630         unsigned int count = 0;
631         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
632
633         i = tx_ring->next_to_clean;
634         eop = tx_ring->buffer_info[i].next_to_watch;
635         eop_desc = E1000_TX_DESC(*tx_ring, eop);
636
637         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
638                (count < tx_ring->count)) {
639                 bool cleaned = false;
640                 for (; !cleaned; count++) {
641                         tx_desc = E1000_TX_DESC(*tx_ring, i);
642                         buffer_info = &tx_ring->buffer_info[i];
643                         cleaned = (i == eop);
644
645                         if (cleaned) {
646                                 struct sk_buff *skb = buffer_info->skb;
647                                 unsigned int segs, bytecount;
648                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
649                                 /* multiply data chunks by size of headers */
650                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
651                                             skb->len;
652                                 total_tx_packets += segs;
653                                 total_tx_bytes += bytecount;
654                         }
655
656                         e1000_put_txbuf(adapter, buffer_info);
657                         tx_desc->upper.data = 0;
658
659                         i++;
660                         if (i == tx_ring->count)
661                                 i = 0;
662                 }
663
664                 if (i == tx_ring->next_to_use)
665                         break;
666                 eop = tx_ring->buffer_info[i].next_to_watch;
667                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
668         }
669
670         tx_ring->next_to_clean = i;
671
672 #define TX_WAKE_THRESHOLD 32
673         if (count && netif_carrier_ok(netdev) &&
674             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
675                 /* Make sure that anybody stopping the queue after this
676                  * sees the new next_to_clean.
677                  */
678                 smp_mb();
679
680                 if (netif_queue_stopped(netdev) &&
681                     !(test_bit(__E1000_DOWN, &adapter->state))) {
682                         netif_wake_queue(netdev);
683                         ++adapter->restart_queue;
684                 }
685         }
686
687         if (adapter->detect_tx_hung) {
688                 /*
689                  * Detect a transmit hang in hardware, this serializes the
690                  * check with the clearing of time_stamp and movement of i
691                  */
692                 adapter->detect_tx_hung = 0;
693                 if (tx_ring->buffer_info[i].time_stamp &&
694                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
695                                + (adapter->tx_timeout_factor * HZ)) &&
696                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
697                         schedule_work(&adapter->print_hang_task);
698                         netif_stop_queue(netdev);
699                 }
700         }
701         adapter->total_tx_bytes += total_tx_bytes;
702         adapter->total_tx_packets += total_tx_packets;
703         netdev->stats.tx_bytes += total_tx_bytes;
704         netdev->stats.tx_packets += total_tx_packets;
705         return (count < tx_ring->count);
706 }
707
708 /**
709  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
710  * @adapter: board private structure
711  *
712  * the return value indicates whether actual cleaning was done, there
713  * is no guarantee that everything was cleaned
714  **/
715 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
716                                   int *work_done, int work_to_do)
717 {
718         struct e1000_hw *hw = &adapter->hw;
719         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
720         struct net_device *netdev = adapter->netdev;
721         struct pci_dev *pdev = adapter->pdev;
722         struct e1000_ring *rx_ring = adapter->rx_ring;
723         struct e1000_buffer *buffer_info, *next_buffer;
724         struct e1000_ps_page *ps_page;
725         struct sk_buff *skb;
726         unsigned int i, j;
727         u32 length, staterr;
728         int cleaned_count = 0;
729         bool cleaned = 0;
730         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
731
732         i = rx_ring->next_to_clean;
733         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
734         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
735         buffer_info = &rx_ring->buffer_info[i];
736
737         while (staterr & E1000_RXD_STAT_DD) {
738                 if (*work_done >= work_to_do)
739                         break;
740                 (*work_done)++;
741                 skb = buffer_info->skb;
742
743                 /* in the packet split case this is header only */
744                 prefetch(skb->data - NET_IP_ALIGN);
745
746                 i++;
747                 if (i == rx_ring->count)
748                         i = 0;
749                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
750                 prefetch(next_rxd);
751
752                 next_buffer = &rx_ring->buffer_info[i];
753
754                 cleaned = 1;
755                 cleaned_count++;
756                 pci_unmap_single(pdev, buffer_info->dma,
757                                  adapter->rx_ps_bsize0,
758                                  PCI_DMA_FROMDEVICE);
759                 buffer_info->dma = 0;
760
761                 /* see !EOP comment in other rx routine */
762                 if (!(staterr & E1000_RXD_STAT_EOP))
763                         adapter->flags2 |= FLAG2_IS_DISCARDING;
764
765                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
766                         e_dbg("Packet Split buffers didn't pick up the full "
767                               "packet\n");
768                         dev_kfree_skb_irq(skb);
769                         if (staterr & E1000_RXD_STAT_EOP)
770                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
771                         goto next_desc;
772                 }
773
774                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
775                         dev_kfree_skb_irq(skb);
776                         goto next_desc;
777                 }
778
779                 length = le16_to_cpu(rx_desc->wb.middle.length0);
780
781                 if (!length) {
782                         e_dbg("Last part of the packet spanning multiple "
783                               "descriptors\n");
784                         dev_kfree_skb_irq(skb);
785                         goto next_desc;
786                 }
787
788                 /* Good Receive */
789                 skb_put(skb, length);
790
791                 {
792                 /*
793                  * this looks ugly, but it seems compiler issues make it
794                  * more efficient than reusing j
795                  */
796                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
797
798                 /*
799                  * page alloc/put takes too long and effects small packet
800                  * throughput, so unsplit small packets and save the alloc/put
801                  * only valid in softirq (napi) context to call kmap_*
802                  */
803                 if (l1 && (l1 <= copybreak) &&
804                     ((length + l1) <= adapter->rx_ps_bsize0)) {
805                         u8 *vaddr;
806
807                         ps_page = &buffer_info->ps_pages[0];
808
809                         /*
810                          * there is no documentation about how to call
811                          * kmap_atomic, so we can't hold the mapping
812                          * very long
813                          */
814                         pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
815                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
816                         vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
817                         memcpy(skb_tail_pointer(skb), vaddr, l1);
818                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
819                         pci_dma_sync_single_for_device(pdev, ps_page->dma,
820                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
821
822                         /* remove the CRC */
823                         if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
824                                 l1 -= 4;
825
826                         skb_put(skb, l1);
827                         goto copydone;
828                 } /* if */
829                 }
830
831                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
832                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
833                         if (!length)
834                                 break;
835
836                         ps_page = &buffer_info->ps_pages[j];
837                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
838                                        PCI_DMA_FROMDEVICE);
839                         ps_page->dma = 0;
840                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
841                         ps_page->page = NULL;
842                         skb->len += length;
843                         skb->data_len += length;
844                         skb->truesize += length;
845                 }
846
847                 /* strip the ethernet crc, problem is we're using pages now so
848                  * this whole operation can get a little cpu intensive
849                  */
850                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
851                         pskb_trim(skb, skb->len - 4);
852
853 copydone:
854                 total_rx_bytes += skb->len;
855                 total_rx_packets++;
856
857                 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
858                         rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
859
860                 if (rx_desc->wb.upper.header_status &
861                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
862                         adapter->rx_hdr_split++;
863
864                 e1000_receive_skb(adapter, netdev, skb,
865                                   staterr, rx_desc->wb.middle.vlan);
866
867 next_desc:
868                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
869                 buffer_info->skb = NULL;
870
871                 /* return some buffers to hardware, one at a time is too slow */
872                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
873                         adapter->alloc_rx_buf(adapter, cleaned_count);
874                         cleaned_count = 0;
875                 }
876
877                 /* use prefetched values */
878                 rx_desc = next_rxd;
879                 buffer_info = next_buffer;
880
881                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
882         }
883         rx_ring->next_to_clean = i;
884
885         cleaned_count = e1000_desc_unused(rx_ring);
886         if (cleaned_count)
887                 adapter->alloc_rx_buf(adapter, cleaned_count);
888
889         adapter->total_rx_bytes += total_rx_bytes;
890         adapter->total_rx_packets += total_rx_packets;
891         netdev->stats.rx_bytes += total_rx_bytes;
892         netdev->stats.rx_packets += total_rx_packets;
893         return cleaned;
894 }
895
896 /**
897  * e1000_consume_page - helper function
898  **/
899 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
900                                u16 length)
901 {
902         bi->page = NULL;
903         skb->len += length;
904         skb->data_len += length;
905         skb->truesize += length;
906 }
907
908 /**
909  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
910  * @adapter: board private structure
911  *
912  * the return value indicates whether actual cleaning was done, there
913  * is no guarantee that everything was cleaned
914  **/
915
916 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
917                                      int *work_done, int work_to_do)
918 {
919         struct net_device *netdev = adapter->netdev;
920         struct pci_dev *pdev = adapter->pdev;
921         struct e1000_ring *rx_ring = adapter->rx_ring;
922         struct e1000_rx_desc *rx_desc, *next_rxd;
923         struct e1000_buffer *buffer_info, *next_buffer;
924         u32 length;
925         unsigned int i;
926         int cleaned_count = 0;
927         bool cleaned = false;
928         unsigned int total_rx_bytes=0, total_rx_packets=0;
929
930         i = rx_ring->next_to_clean;
931         rx_desc = E1000_RX_DESC(*rx_ring, i);
932         buffer_info = &rx_ring->buffer_info[i];
933
934         while (rx_desc->status & E1000_RXD_STAT_DD) {
935                 struct sk_buff *skb;
936                 u8 status;
937
938                 if (*work_done >= work_to_do)
939                         break;
940                 (*work_done)++;
941
942                 status = rx_desc->status;
943                 skb = buffer_info->skb;
944                 buffer_info->skb = NULL;
945
946                 ++i;
947                 if (i == rx_ring->count)
948                         i = 0;
949                 next_rxd = E1000_RX_DESC(*rx_ring, i);
950                 prefetch(next_rxd);
951
952                 next_buffer = &rx_ring->buffer_info[i];
953
954                 cleaned = true;
955                 cleaned_count++;
956                 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
957                                PCI_DMA_FROMDEVICE);
958                 buffer_info->dma = 0;
959
960                 length = le16_to_cpu(rx_desc->length);
961
962                 /* errors is only valid for DD + EOP descriptors */
963                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
964                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
965                                 /* recycle both page and skb */
966                                 buffer_info->skb = skb;
967                                 /* an error means any chain goes out the window
968                                  * too */
969                                 if (rx_ring->rx_skb_top)
970                                         dev_kfree_skb(rx_ring->rx_skb_top);
971                                 rx_ring->rx_skb_top = NULL;
972                                 goto next_desc;
973                 }
974
975 #define rxtop rx_ring->rx_skb_top
976                 if (!(status & E1000_RXD_STAT_EOP)) {
977                         /* this descriptor is only the beginning (or middle) */
978                         if (!rxtop) {
979                                 /* this is the beginning of a chain */
980                                 rxtop = skb;
981                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
982                                                    0, length);
983                         } else {
984                                 /* this is the middle of a chain */
985                                 skb_fill_page_desc(rxtop,
986                                     skb_shinfo(rxtop)->nr_frags,
987                                     buffer_info->page, 0, length);
988                                 /* re-use the skb, only consumed the page */
989                                 buffer_info->skb = skb;
990                         }
991                         e1000_consume_page(buffer_info, rxtop, length);
992                         goto next_desc;
993                 } else {
994                         if (rxtop) {
995                                 /* end of the chain */
996                                 skb_fill_page_desc(rxtop,
997                                     skb_shinfo(rxtop)->nr_frags,
998                                     buffer_info->page, 0, length);
999                                 /* re-use the current skb, we only consumed the
1000                                  * page */
1001                                 buffer_info->skb = skb;
1002                                 skb = rxtop;
1003                                 rxtop = NULL;
1004                                 e1000_consume_page(buffer_info, skb, length);
1005                         } else {
1006                                 /* no chain, got EOP, this buf is the packet
1007                                  * copybreak to save the put_page/alloc_page */
1008                                 if (length <= copybreak &&
1009                                     skb_tailroom(skb) >= length) {
1010                                         u8 *vaddr;
1011                                         vaddr = kmap_atomic(buffer_info->page,
1012                                                            KM_SKB_DATA_SOFTIRQ);
1013                                         memcpy(skb_tail_pointer(skb), vaddr,
1014                                                length);
1015                                         kunmap_atomic(vaddr,
1016                                                       KM_SKB_DATA_SOFTIRQ);
1017                                         /* re-use the page, so don't erase
1018                                          * buffer_info->page */
1019                                         skb_put(skb, length);
1020                                 } else {
1021                                         skb_fill_page_desc(skb, 0,
1022                                                            buffer_info->page, 0,
1023                                                            length);
1024                                         e1000_consume_page(buffer_info, skb,
1025                                                            length);
1026                                 }
1027                         }
1028                 }
1029
1030                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1031                 e1000_rx_checksum(adapter,
1032                                   (u32)(status) |
1033                                   ((u32)(rx_desc->errors) << 24),
1034                                   le16_to_cpu(rx_desc->csum), skb);
1035
1036                 /* probably a little skewed due to removing CRC */
1037                 total_rx_bytes += skb->len;
1038                 total_rx_packets++;
1039
1040                 /* eth type trans needs skb->data to point to something */
1041                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1042                         e_err("pskb_may_pull failed.\n");
1043                         dev_kfree_skb(skb);
1044                         goto next_desc;
1045                 }
1046
1047                 e1000_receive_skb(adapter, netdev, skb, status,
1048                                   rx_desc->special);
1049
1050 next_desc:
1051                 rx_desc->status = 0;
1052
1053                 /* return some buffers to hardware, one at a time is too slow */
1054                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1055                         adapter->alloc_rx_buf(adapter, cleaned_count);
1056                         cleaned_count = 0;
1057                 }
1058
1059                 /* use prefetched values */
1060                 rx_desc = next_rxd;
1061                 buffer_info = next_buffer;
1062         }
1063         rx_ring->next_to_clean = i;
1064
1065         cleaned_count = e1000_desc_unused(rx_ring);
1066         if (cleaned_count)
1067                 adapter->alloc_rx_buf(adapter, cleaned_count);
1068
1069         adapter->total_rx_bytes += total_rx_bytes;
1070         adapter->total_rx_packets += total_rx_packets;
1071         netdev->stats.rx_bytes += total_rx_bytes;
1072         netdev->stats.rx_packets += total_rx_packets;
1073         return cleaned;
1074 }
1075
1076 /**
1077  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1078  * @adapter: board private structure
1079  **/
1080 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1081 {
1082         struct e1000_ring *rx_ring = adapter->rx_ring;
1083         struct e1000_buffer *buffer_info;
1084         struct e1000_ps_page *ps_page;
1085         struct pci_dev *pdev = adapter->pdev;
1086         unsigned int i, j;
1087
1088         /* Free all the Rx ring sk_buffs */
1089         for (i = 0; i < rx_ring->count; i++) {
1090                 buffer_info = &rx_ring->buffer_info[i];
1091                 if (buffer_info->dma) {
1092                         if (adapter->clean_rx == e1000_clean_rx_irq)
1093                                 pci_unmap_single(pdev, buffer_info->dma,
1094                                                  adapter->rx_buffer_len,
1095                                                  PCI_DMA_FROMDEVICE);
1096                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1097                                 pci_unmap_page(pdev, buffer_info->dma,
1098                                                PAGE_SIZE,
1099                                                PCI_DMA_FROMDEVICE);
1100                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1101                                 pci_unmap_single(pdev, buffer_info->dma,
1102                                                  adapter->rx_ps_bsize0,
1103                                                  PCI_DMA_FROMDEVICE);
1104                         buffer_info->dma = 0;
1105                 }
1106
1107                 if (buffer_info->page) {
1108                         put_page(buffer_info->page);
1109                         buffer_info->page = NULL;
1110                 }
1111
1112                 if (buffer_info->skb) {
1113                         dev_kfree_skb(buffer_info->skb);
1114                         buffer_info->skb = NULL;
1115                 }
1116
1117                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1118                         ps_page = &buffer_info->ps_pages[j];
1119                         if (!ps_page->page)
1120                                 break;
1121                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1122                                        PCI_DMA_FROMDEVICE);
1123                         ps_page->dma = 0;
1124                         put_page(ps_page->page);
1125                         ps_page->page = NULL;
1126                 }
1127         }
1128
1129         /* there also may be some cached data from a chained receive */
1130         if (rx_ring->rx_skb_top) {
1131                 dev_kfree_skb(rx_ring->rx_skb_top);
1132                 rx_ring->rx_skb_top = NULL;
1133         }
1134
1135         /* Zero out the descriptor ring */
1136         memset(rx_ring->desc, 0, rx_ring->size);
1137
1138         rx_ring->next_to_clean = 0;
1139         rx_ring->next_to_use = 0;
1140         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1141
1142         writel(0, adapter->hw.hw_addr + rx_ring->head);
1143         writel(0, adapter->hw.hw_addr + rx_ring->tail);
1144 }
1145
1146 static void e1000e_downshift_workaround(struct work_struct *work)
1147 {
1148         struct e1000_adapter *adapter = container_of(work,
1149                                         struct e1000_adapter, downshift_task);
1150
1151         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1152 }
1153
1154 /**
1155  * e1000_intr_msi - Interrupt Handler
1156  * @irq: interrupt number
1157  * @data: pointer to a network interface device structure
1158  **/
1159 static irqreturn_t e1000_intr_msi(int irq, void *data)
1160 {
1161         struct net_device *netdev = data;
1162         struct e1000_adapter *adapter = netdev_priv(netdev);
1163         struct e1000_hw *hw = &adapter->hw;
1164         u32 icr = er32(ICR);
1165
1166         /*
1167          * read ICR disables interrupts using IAM
1168          */
1169
1170         if (icr & E1000_ICR_LSC) {
1171                 hw->mac.get_link_status = 1;
1172                 /*
1173                  * ICH8 workaround-- Call gig speed drop workaround on cable
1174                  * disconnect (LSC) before accessing any PHY registers
1175                  */
1176                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1177                     (!(er32(STATUS) & E1000_STATUS_LU)))
1178                         schedule_work(&adapter->downshift_task);
1179
1180                 /*
1181                  * 80003ES2LAN workaround-- For packet buffer work-around on
1182                  * link down event; disable receives here in the ISR and reset
1183                  * adapter in watchdog
1184                  */
1185                 if (netif_carrier_ok(netdev) &&
1186                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1187                         /* disable receives */
1188                         u32 rctl = er32(RCTL);
1189                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1190                         adapter->flags |= FLAG_RX_RESTART_NOW;
1191                 }
1192                 /* guard against interrupt when we're going down */
1193                 if (!test_bit(__E1000_DOWN, &adapter->state))
1194                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1195         }
1196
1197         if (napi_schedule_prep(&adapter->napi)) {
1198                 adapter->total_tx_bytes = 0;
1199                 adapter->total_tx_packets = 0;
1200                 adapter->total_rx_bytes = 0;
1201                 adapter->total_rx_packets = 0;
1202                 __napi_schedule(&adapter->napi);
1203         }
1204
1205         return IRQ_HANDLED;
1206 }
1207
1208 /**
1209  * e1000_intr - Interrupt Handler
1210  * @irq: interrupt number
1211  * @data: pointer to a network interface device structure
1212  **/
1213 static irqreturn_t e1000_intr(int irq, void *data)
1214 {
1215         struct net_device *netdev = data;
1216         struct e1000_adapter *adapter = netdev_priv(netdev);
1217         struct e1000_hw *hw = &adapter->hw;
1218         u32 rctl, icr = er32(ICR);
1219
1220         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1221                 return IRQ_NONE;  /* Not our interrupt */
1222
1223         /*
1224          * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1225          * not set, then the adapter didn't send an interrupt
1226          */
1227         if (!(icr & E1000_ICR_INT_ASSERTED))
1228                 return IRQ_NONE;
1229
1230         /*
1231          * Interrupt Auto-Mask...upon reading ICR,
1232          * interrupts are masked.  No need for the
1233          * IMC write
1234          */
1235
1236         if (icr & E1000_ICR_LSC) {
1237                 hw->mac.get_link_status = 1;
1238                 /*
1239                  * ICH8 workaround-- Call gig speed drop workaround on cable
1240                  * disconnect (LSC) before accessing any PHY registers
1241                  */
1242                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1243                     (!(er32(STATUS) & E1000_STATUS_LU)))
1244                         schedule_work(&adapter->downshift_task);
1245
1246                 /*
1247                  * 80003ES2LAN workaround--
1248                  * For packet buffer work-around on link down event;
1249                  * disable receives here in the ISR and
1250                  * reset adapter in watchdog
1251                  */
1252                 if (netif_carrier_ok(netdev) &&
1253                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1254                         /* disable receives */
1255                         rctl = er32(RCTL);
1256                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1257                         adapter->flags |= FLAG_RX_RESTART_NOW;
1258                 }
1259                 /* guard against interrupt when we're going down */
1260                 if (!test_bit(__E1000_DOWN, &adapter->state))
1261                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1262         }
1263
1264         if (napi_schedule_prep(&adapter->napi)) {
1265                 adapter->total_tx_bytes = 0;
1266                 adapter->total_tx_packets = 0;
1267                 adapter->total_rx_bytes = 0;
1268                 adapter->total_rx_packets = 0;
1269                 __napi_schedule(&adapter->napi);
1270         }
1271
1272         return IRQ_HANDLED;
1273 }
1274
1275 static irqreturn_t e1000_msix_other(int irq, void *data)
1276 {
1277         struct net_device *netdev = data;
1278         struct e1000_adapter *adapter = netdev_priv(netdev);
1279         struct e1000_hw *hw = &adapter->hw;
1280         u32 icr = er32(ICR);
1281
1282         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1283                 if (!test_bit(__E1000_DOWN, &adapter->state))
1284                         ew32(IMS, E1000_IMS_OTHER);
1285                 return IRQ_NONE;
1286         }
1287
1288         if (icr & adapter->eiac_mask)
1289                 ew32(ICS, (icr & adapter->eiac_mask));
1290
1291         if (icr & E1000_ICR_OTHER) {
1292                 if (!(icr & E1000_ICR_LSC))
1293                         goto no_link_interrupt;
1294                 hw->mac.get_link_status = 1;
1295                 /* guard against interrupt when we're going down */
1296                 if (!test_bit(__E1000_DOWN, &adapter->state))
1297                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1298         }
1299
1300 no_link_interrupt:
1301         if (!test_bit(__E1000_DOWN, &adapter->state))
1302                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1303
1304         return IRQ_HANDLED;
1305 }
1306
1307
1308 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1309 {
1310         struct net_device *netdev = data;
1311         struct e1000_adapter *adapter = netdev_priv(netdev);
1312         struct e1000_hw *hw = &adapter->hw;
1313         struct e1000_ring *tx_ring = adapter->tx_ring;
1314
1315
1316         adapter->total_tx_bytes = 0;
1317         adapter->total_tx_packets = 0;
1318
1319         if (!e1000_clean_tx_irq(adapter))
1320                 /* Ring was not completely cleaned, so fire another interrupt */
1321                 ew32(ICS, tx_ring->ims_val);
1322
1323         return IRQ_HANDLED;
1324 }
1325
1326 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1327 {
1328         struct net_device *netdev = data;
1329         struct e1000_adapter *adapter = netdev_priv(netdev);
1330
1331         /* Write the ITR value calculated at the end of the
1332          * previous interrupt.
1333          */
1334         if (adapter->rx_ring->set_itr) {
1335                 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1336                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1337                 adapter->rx_ring->set_itr = 0;
1338         }
1339
1340         if (napi_schedule_prep(&adapter->napi)) {
1341                 adapter->total_rx_bytes = 0;
1342                 adapter->total_rx_packets = 0;
1343                 __napi_schedule(&adapter->napi);
1344         }
1345         return IRQ_HANDLED;
1346 }
1347
1348 /**
1349  * e1000_configure_msix - Configure MSI-X hardware
1350  *
1351  * e1000_configure_msix sets up the hardware to properly
1352  * generate MSI-X interrupts.
1353  **/
1354 static void e1000_configure_msix(struct e1000_adapter *adapter)
1355 {
1356         struct e1000_hw *hw = &adapter->hw;
1357         struct e1000_ring *rx_ring = adapter->rx_ring;
1358         struct e1000_ring *tx_ring = adapter->tx_ring;
1359         int vector = 0;
1360         u32 ctrl_ext, ivar = 0;
1361
1362         adapter->eiac_mask = 0;
1363
1364         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1365         if (hw->mac.type == e1000_82574) {
1366                 u32 rfctl = er32(RFCTL);
1367                 rfctl |= E1000_RFCTL_ACK_DIS;
1368                 ew32(RFCTL, rfctl);
1369         }
1370
1371 #define E1000_IVAR_INT_ALLOC_VALID      0x8
1372         /* Configure Rx vector */
1373         rx_ring->ims_val = E1000_IMS_RXQ0;
1374         adapter->eiac_mask |= rx_ring->ims_val;
1375         if (rx_ring->itr_val)
1376                 writel(1000000000 / (rx_ring->itr_val * 256),
1377                        hw->hw_addr + rx_ring->itr_register);
1378         else
1379                 writel(1, hw->hw_addr + rx_ring->itr_register);
1380         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1381
1382         /* Configure Tx vector */
1383         tx_ring->ims_val = E1000_IMS_TXQ0;
1384         vector++;
1385         if (tx_ring->itr_val)
1386                 writel(1000000000 / (tx_ring->itr_val * 256),
1387                        hw->hw_addr + tx_ring->itr_register);
1388         else
1389                 writel(1, hw->hw_addr + tx_ring->itr_register);
1390         adapter->eiac_mask |= tx_ring->ims_val;
1391         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1392
1393         /* set vector for Other Causes, e.g. link changes */
1394         vector++;
1395         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1396         if (rx_ring->itr_val)
1397                 writel(1000000000 / (rx_ring->itr_val * 256),
1398                        hw->hw_addr + E1000_EITR_82574(vector));
1399         else
1400                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1401
1402         /* Cause Tx interrupts on every write back */
1403         ivar |= (1 << 31);
1404
1405         ew32(IVAR, ivar);
1406
1407         /* enable MSI-X PBA support */
1408         ctrl_ext = er32(CTRL_EXT);
1409         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1410
1411         /* Auto-Mask Other interrupts upon ICR read */
1412 #define E1000_EIAC_MASK_82574   0x01F00000
1413         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1414         ctrl_ext |= E1000_CTRL_EXT_EIAME;
1415         ew32(CTRL_EXT, ctrl_ext);
1416         e1e_flush();
1417 }
1418
1419 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1420 {
1421         if (adapter->msix_entries) {
1422                 pci_disable_msix(adapter->pdev);
1423                 kfree(adapter->msix_entries);
1424                 adapter->msix_entries = NULL;
1425         } else if (adapter->flags & FLAG_MSI_ENABLED) {
1426                 pci_disable_msi(adapter->pdev);
1427                 adapter->flags &= ~FLAG_MSI_ENABLED;
1428         }
1429
1430         return;
1431 }
1432
1433 /**
1434  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1435  *
1436  * Attempt to configure interrupts using the best available
1437  * capabilities of the hardware and kernel.
1438  **/
1439 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1440 {
1441         int err;
1442         int numvecs, i;
1443
1444
1445         switch (adapter->int_mode) {
1446         case E1000E_INT_MODE_MSIX:
1447                 if (adapter->flags & FLAG_HAS_MSIX) {
1448                         numvecs = 3; /* RxQ0, TxQ0 and other */
1449                         adapter->msix_entries = kcalloc(numvecs,
1450                                                       sizeof(struct msix_entry),
1451                                                       GFP_KERNEL);
1452                         if (adapter->msix_entries) {
1453                                 for (i = 0; i < numvecs; i++)
1454                                         adapter->msix_entries[i].entry = i;
1455
1456                                 err = pci_enable_msix(adapter->pdev,
1457                                                       adapter->msix_entries,
1458                                                       numvecs);
1459                                 if (err == 0)
1460                                         return;
1461                         }
1462                         /* MSI-X failed, so fall through and try MSI */
1463                         e_err("Failed to initialize MSI-X interrupts.  "
1464                               "Falling back to MSI interrupts.\n");
1465                         e1000e_reset_interrupt_capability(adapter);
1466                 }
1467                 adapter->int_mode = E1000E_INT_MODE_MSI;
1468                 /* Fall through */
1469         case E1000E_INT_MODE_MSI:
1470                 if (!pci_enable_msi(adapter->pdev)) {
1471                         adapter->flags |= FLAG_MSI_ENABLED;
1472                 } else {
1473                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
1474                         e_err("Failed to initialize MSI interrupts.  Falling "
1475                               "back to legacy interrupts.\n");
1476                 }
1477                 /* Fall through */
1478         case E1000E_INT_MODE_LEGACY:
1479                 /* Don't do anything; this is the system default */
1480                 break;
1481         }
1482
1483         return;
1484 }
1485
1486 /**
1487  * e1000_request_msix - Initialize MSI-X interrupts
1488  *
1489  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1490  * kernel.
1491  **/
1492 static int e1000_request_msix(struct e1000_adapter *adapter)
1493 {
1494         struct net_device *netdev = adapter->netdev;
1495         int err = 0, vector = 0;
1496
1497         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1498                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1499         else
1500                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1501         err = request_irq(adapter->msix_entries[vector].vector,
1502                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1503                           netdev);
1504         if (err)
1505                 goto out;
1506         adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1507         adapter->rx_ring->itr_val = adapter->itr;
1508         vector++;
1509
1510         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1511                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1512         else
1513                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1514         err = request_irq(adapter->msix_entries[vector].vector,
1515                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1516                           netdev);
1517         if (err)
1518                 goto out;
1519         adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1520         adapter->tx_ring->itr_val = adapter->itr;
1521         vector++;
1522
1523         err = request_irq(adapter->msix_entries[vector].vector,
1524                           e1000_msix_other, 0, netdev->name, netdev);
1525         if (err)
1526                 goto out;
1527
1528         e1000_configure_msix(adapter);
1529         return 0;
1530 out:
1531         return err;
1532 }
1533
1534 /**
1535  * e1000_request_irq - initialize interrupts
1536  *
1537  * Attempts to configure interrupts using the best available
1538  * capabilities of the hardware and kernel.
1539  **/
1540 static int e1000_request_irq(struct e1000_adapter *adapter)
1541 {
1542         struct net_device *netdev = adapter->netdev;
1543         int err;
1544
1545         if (adapter->msix_entries) {
1546                 err = e1000_request_msix(adapter);
1547                 if (!err)
1548                         return err;
1549                 /* fall back to MSI */
1550                 e1000e_reset_interrupt_capability(adapter);
1551                 adapter->int_mode = E1000E_INT_MODE_MSI;
1552                 e1000e_set_interrupt_capability(adapter);
1553         }
1554         if (adapter->flags & FLAG_MSI_ENABLED) {
1555                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1556                                   netdev->name, netdev);
1557                 if (!err)
1558                         return err;
1559
1560                 /* fall back to legacy interrupt */
1561                 e1000e_reset_interrupt_capability(adapter);
1562                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1563         }
1564
1565         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1566                           netdev->name, netdev);
1567         if (err)
1568                 e_err("Unable to allocate interrupt, Error: %d\n", err);
1569
1570         return err;
1571 }
1572
1573 static void e1000_free_irq(struct e1000_adapter *adapter)
1574 {
1575         struct net_device *netdev = adapter->netdev;
1576
1577         if (adapter->msix_entries) {
1578                 int vector = 0;
1579
1580                 free_irq(adapter->msix_entries[vector].vector, netdev);
1581                 vector++;
1582
1583                 free_irq(adapter->msix_entries[vector].vector, netdev);
1584                 vector++;
1585
1586                 /* Other Causes interrupt vector */
1587                 free_irq(adapter->msix_entries[vector].vector, netdev);
1588                 return;
1589         }
1590
1591         free_irq(adapter->pdev->irq, netdev);
1592 }
1593
1594 /**
1595  * e1000_irq_disable - Mask off interrupt generation on the NIC
1596  **/
1597 static void e1000_irq_disable(struct e1000_adapter *adapter)
1598 {
1599         struct e1000_hw *hw = &adapter->hw;
1600
1601         ew32(IMC, ~0);
1602         if (adapter->msix_entries)
1603                 ew32(EIAC_82574, 0);
1604         e1e_flush();
1605         synchronize_irq(adapter->pdev->irq);
1606 }
1607
1608 /**
1609  * e1000_irq_enable - Enable default interrupt generation settings
1610  **/
1611 static void e1000_irq_enable(struct e1000_adapter *adapter)
1612 {
1613         struct e1000_hw *hw = &adapter->hw;
1614
1615         if (adapter->msix_entries) {
1616                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1617                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1618         } else {
1619                 ew32(IMS, IMS_ENABLE_MASK);
1620         }
1621         e1e_flush();
1622 }
1623
1624 /**
1625  * e1000_get_hw_control - get control of the h/w from f/w
1626  * @adapter: address of board private structure
1627  *
1628  * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1629  * For ASF and Pass Through versions of f/w this means that
1630  * the driver is loaded. For AMT version (only with 82573)
1631  * of the f/w this means that the network i/f is open.
1632  **/
1633 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1634 {
1635         struct e1000_hw *hw = &adapter->hw;
1636         u32 ctrl_ext;
1637         u32 swsm;
1638
1639         /* Let firmware know the driver has taken over */
1640         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1641                 swsm = er32(SWSM);
1642                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1643         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1644                 ctrl_ext = er32(CTRL_EXT);
1645                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1646         }
1647 }
1648
1649 /**
1650  * e1000_release_hw_control - release control of the h/w to f/w
1651  * @adapter: address of board private structure
1652  *
1653  * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1654  * For ASF and Pass Through versions of f/w this means that the
1655  * driver is no longer loaded. For AMT version (only with 82573) i
1656  * of the f/w this means that the network i/f is closed.
1657  *
1658  **/
1659 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1660 {
1661         struct e1000_hw *hw = &adapter->hw;
1662         u32 ctrl_ext;
1663         u32 swsm;
1664
1665         /* Let firmware taken over control of h/w */
1666         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1667                 swsm = er32(SWSM);
1668                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1669         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1670                 ctrl_ext = er32(CTRL_EXT);
1671                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1672         }
1673 }
1674
1675 /**
1676  * @e1000_alloc_ring - allocate memory for a ring structure
1677  **/
1678 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1679                                 struct e1000_ring *ring)
1680 {
1681         struct pci_dev *pdev = adapter->pdev;
1682
1683         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1684                                         GFP_KERNEL);
1685         if (!ring->desc)
1686                 return -ENOMEM;
1687
1688         return 0;
1689 }
1690
1691 /**
1692  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1693  * @adapter: board private structure
1694  *
1695  * Return 0 on success, negative on failure
1696  **/
1697 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1698 {
1699         struct e1000_ring *tx_ring = adapter->tx_ring;
1700         int err = -ENOMEM, size;
1701
1702         size = sizeof(struct e1000_buffer) * tx_ring->count;
1703         tx_ring->buffer_info = vmalloc(size);
1704         if (!tx_ring->buffer_info)
1705                 goto err;
1706         memset(tx_ring->buffer_info, 0, size);
1707
1708         /* round up to nearest 4K */
1709         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1710         tx_ring->size = ALIGN(tx_ring->size, 4096);
1711
1712         err = e1000_alloc_ring_dma(adapter, tx_ring);
1713         if (err)
1714                 goto err;
1715
1716         tx_ring->next_to_use = 0;
1717         tx_ring->next_to_clean = 0;
1718
1719         return 0;
1720 err:
1721         vfree(tx_ring->buffer_info);
1722         e_err("Unable to allocate memory for the transmit descriptor ring\n");
1723         return err;
1724 }
1725
1726 /**
1727  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1728  * @adapter: board private structure
1729  *
1730  * Returns 0 on success, negative on failure
1731  **/
1732 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1733 {
1734         struct e1000_ring *rx_ring = adapter->rx_ring;
1735         struct e1000_buffer *buffer_info;
1736         int i, size, desc_len, err = -ENOMEM;
1737
1738         size = sizeof(struct e1000_buffer) * rx_ring->count;
1739         rx_ring->buffer_info = vmalloc(size);
1740         if (!rx_ring->buffer_info)
1741                 goto err;
1742         memset(rx_ring->buffer_info, 0, size);
1743
1744         for (i = 0; i < rx_ring->count; i++) {
1745                 buffer_info = &rx_ring->buffer_info[i];
1746                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1747                                                 sizeof(struct e1000_ps_page),
1748                                                 GFP_KERNEL);
1749                 if (!buffer_info->ps_pages)
1750                         goto err_pages;
1751         }
1752
1753         desc_len = sizeof(union e1000_rx_desc_packet_split);
1754
1755         /* Round up to nearest 4K */
1756         rx_ring->size = rx_ring->count * desc_len;
1757         rx_ring->size = ALIGN(rx_ring->size, 4096);
1758
1759         err = e1000_alloc_ring_dma(adapter, rx_ring);
1760         if (err)
1761                 goto err_pages;
1762
1763         rx_ring->next_to_clean = 0;
1764         rx_ring->next_to_use = 0;
1765         rx_ring->rx_skb_top = NULL;
1766
1767         return 0;
1768
1769 err_pages:
1770         for (i = 0; i < rx_ring->count; i++) {
1771                 buffer_info = &rx_ring->buffer_info[i];
1772                 kfree(buffer_info->ps_pages);
1773         }
1774 err:
1775         vfree(rx_ring->buffer_info);
1776         e_err("Unable to allocate memory for the transmit descriptor ring\n");
1777         return err;
1778 }
1779
1780 /**
1781  * e1000_clean_tx_ring - Free Tx Buffers
1782  * @adapter: board private structure
1783  **/
1784 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1785 {
1786         struct e1000_ring *tx_ring = adapter->tx_ring;
1787         struct e1000_buffer *buffer_info;
1788         unsigned long size;
1789         unsigned int i;
1790
1791         for (i = 0; i < tx_ring->count; i++) {
1792                 buffer_info = &tx_ring->buffer_info[i];
1793                 e1000_put_txbuf(adapter, buffer_info);
1794         }
1795
1796         size = sizeof(struct e1000_buffer) * tx_ring->count;
1797         memset(tx_ring->buffer_info, 0, size);
1798
1799         memset(tx_ring->desc, 0, tx_ring->size);
1800
1801         tx_ring->next_to_use = 0;
1802         tx_ring->next_to_clean = 0;
1803
1804         writel(0, adapter->hw.hw_addr + tx_ring->head);
1805         writel(0, adapter->hw.hw_addr + tx_ring->tail);
1806 }
1807
1808 /**
1809  * e1000e_free_tx_resources - Free Tx Resources per Queue
1810  * @adapter: board private structure
1811  *
1812  * Free all transmit software resources
1813  **/
1814 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1815 {
1816         struct pci_dev *pdev = adapter->pdev;
1817         struct e1000_ring *tx_ring = adapter->tx_ring;
1818
1819         e1000_clean_tx_ring(adapter);
1820
1821         vfree(tx_ring->buffer_info);
1822         tx_ring->buffer_info = NULL;
1823
1824         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1825                           tx_ring->dma);
1826         tx_ring->desc = NULL;
1827 }
1828
1829 /**
1830  * e1000e_free_rx_resources - Free Rx Resources
1831  * @adapter: board private structure
1832  *
1833  * Free all receive software resources
1834  **/
1835
1836 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1837 {
1838         struct pci_dev *pdev = adapter->pdev;
1839         struct e1000_ring *rx_ring = adapter->rx_ring;
1840         int i;
1841
1842         e1000_clean_rx_ring(adapter);
1843
1844         for (i = 0; i < rx_ring->count; i++) {
1845                 kfree(rx_ring->buffer_info[i].ps_pages);
1846         }
1847
1848         vfree(rx_ring->buffer_info);
1849         rx_ring->buffer_info = NULL;
1850
1851         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1852                           rx_ring->dma);
1853         rx_ring->desc = NULL;
1854 }
1855
1856 /**
1857  * e1000_update_itr - update the dynamic ITR value based on statistics
1858  * @adapter: pointer to adapter
1859  * @itr_setting: current adapter->itr
1860  * @packets: the number of packets during this measurement interval
1861  * @bytes: the number of bytes during this measurement interval
1862  *
1863  *      Stores a new ITR value based on packets and byte
1864  *      counts during the last interrupt.  The advantage of per interrupt
1865  *      computation is faster updates and more accurate ITR for the current
1866  *      traffic pattern.  Constants in this function were computed
1867  *      based on theoretical maximum wire speed and thresholds were set based
1868  *      on testing data as well as attempting to minimize response time
1869  *      while increasing bulk throughput.  This functionality is controlled
1870  *      by the InterruptThrottleRate module parameter.
1871  **/
1872 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1873                                      u16 itr_setting, int packets,
1874                                      int bytes)
1875 {
1876         unsigned int retval = itr_setting;
1877
1878         if (packets == 0)
1879                 goto update_itr_done;
1880
1881         switch (itr_setting) {
1882         case lowest_latency:
1883                 /* handle TSO and jumbo frames */
1884                 if (bytes/packets > 8000)
1885                         retval = bulk_latency;
1886                 else if ((packets < 5) && (bytes > 512)) {
1887                         retval = low_latency;
1888                 }
1889                 break;
1890         case low_latency:  /* 50 usec aka 20000 ints/s */
1891                 if (bytes > 10000) {
1892                         /* this if handles the TSO accounting */
1893                         if (bytes/packets > 8000) {
1894                                 retval = bulk_latency;
1895                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1896                                 retval = bulk_latency;
1897                         } else if ((packets > 35)) {
1898                                 retval = lowest_latency;
1899                         }
1900                 } else if (bytes/packets > 2000) {
1901                         retval = bulk_latency;
1902                 } else if (packets <= 2 && bytes < 512) {
1903                         retval = lowest_latency;
1904                 }
1905                 break;
1906         case bulk_latency: /* 250 usec aka 4000 ints/s */
1907                 if (bytes > 25000) {
1908                         if (packets > 35) {
1909                                 retval = low_latency;
1910                         }
1911                 } else if (bytes < 6000) {
1912                         retval = low_latency;
1913                 }
1914                 break;
1915         }
1916
1917 update_itr_done:
1918         return retval;
1919 }
1920
1921 static void e1000_set_itr(struct e1000_adapter *adapter)
1922 {
1923         struct e1000_hw *hw = &adapter->hw;
1924         u16 current_itr;
1925         u32 new_itr = adapter->itr;
1926
1927         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1928         if (adapter->link_speed != SPEED_1000) {
1929                 current_itr = 0;
1930                 new_itr = 4000;
1931                 goto set_itr_now;
1932         }
1933
1934         adapter->tx_itr = e1000_update_itr(adapter,
1935                                     adapter->tx_itr,
1936                                     adapter->total_tx_packets,
1937                                     adapter->total_tx_bytes);
1938         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1939         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1940                 adapter->tx_itr = low_latency;
1941
1942         adapter->rx_itr = e1000_update_itr(adapter,
1943                                     adapter->rx_itr,
1944                                     adapter->total_rx_packets,
1945                                     adapter->total_rx_bytes);
1946         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1947         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1948                 adapter->rx_itr = low_latency;
1949
1950         current_itr = max(adapter->rx_itr, adapter->tx_itr);
1951
1952         switch (current_itr) {
1953         /* counts and packets in update_itr are dependent on these numbers */
1954         case lowest_latency:
1955                 new_itr = 70000;
1956                 break;
1957         case low_latency:
1958                 new_itr = 20000; /* aka hwitr = ~200 */
1959                 break;
1960         case bulk_latency:
1961                 new_itr = 4000;
1962                 break;
1963         default:
1964                 break;
1965         }
1966
1967 set_itr_now:
1968         if (new_itr != adapter->itr) {
1969                 /*
1970                  * this attempts to bias the interrupt rate towards Bulk
1971                  * by adding intermediate steps when interrupt rate is
1972                  * increasing
1973                  */
1974                 new_itr = new_itr > adapter->itr ?
1975                              min(adapter->itr + (new_itr >> 2), new_itr) :
1976                              new_itr;
1977                 adapter->itr = new_itr;
1978                 adapter->rx_ring->itr_val = new_itr;
1979                 if (adapter->msix_entries)
1980                         adapter->rx_ring->set_itr = 1;
1981                 else
1982                         ew32(ITR, 1000000000 / (new_itr * 256));
1983         }
1984 }
1985
1986 /**
1987  * e1000_alloc_queues - Allocate memory for all rings
1988  * @adapter: board private structure to initialize
1989  **/
1990 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1991 {
1992         adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1993         if (!adapter->tx_ring)
1994                 goto err;
1995
1996         adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1997         if (!adapter->rx_ring)
1998                 goto err;
1999
2000         return 0;
2001 err:
2002         e_err("Unable to allocate memory for queues\n");
2003         kfree(adapter->rx_ring);
2004         kfree(adapter->tx_ring);
2005         return -ENOMEM;
2006 }
2007
2008 /**
2009  * e1000_clean - NAPI Rx polling callback
2010  * @napi: struct associated with this polling callback
2011  * @budget: amount of packets driver is allowed to process this poll
2012  **/
2013 static int e1000_clean(struct napi_struct *napi, int budget)
2014 {
2015         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2016         struct e1000_hw *hw = &adapter->hw;
2017         struct net_device *poll_dev = adapter->netdev;
2018         int tx_cleaned = 1, work_done = 0;
2019
2020         adapter = netdev_priv(poll_dev);
2021
2022         if (adapter->msix_entries &&
2023             !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2024                 goto clean_rx;
2025
2026         tx_cleaned = e1000_clean_tx_irq(adapter);
2027
2028 clean_rx:
2029         adapter->clean_rx(adapter, &work_done, budget);
2030
2031         if (!tx_cleaned)
2032                 work_done = budget;
2033
2034         /* If budget not fully consumed, exit the polling mode */
2035         if (work_done < budget) {
2036                 if (adapter->itr_setting & 3)
2037                         e1000_set_itr(adapter);
2038                 napi_complete(napi);
2039                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2040                         if (adapter->msix_entries)
2041                                 ew32(IMS, adapter->rx_ring->ims_val);
2042                         else
2043                                 e1000_irq_enable(adapter);
2044                 }
2045         }
2046
2047         return work_done;
2048 }
2049
2050 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2051 {
2052         struct e1000_adapter *adapter = netdev_priv(netdev);
2053         struct e1000_hw *hw = &adapter->hw;
2054         u32 vfta, index;
2055
2056         /* don't update vlan cookie if already programmed */
2057         if ((adapter->hw.mng_cookie.status &
2058              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2059             (vid == adapter->mng_vlan_id))
2060                 return;
2061
2062         /* add VID to filter table */
2063         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2064                 index = (vid >> 5) & 0x7F;
2065                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2066                 vfta |= (1 << (vid & 0x1F));
2067                 hw->mac.ops.write_vfta(hw, index, vfta);
2068         }
2069 }
2070
2071 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2072 {
2073         struct e1000_adapter *adapter = netdev_priv(netdev);
2074         struct e1000_hw *hw = &adapter->hw;
2075         u32 vfta, index;
2076
2077         if (!test_bit(__E1000_DOWN, &adapter->state))
2078                 e1000_irq_disable(adapter);
2079         vlan_group_set_device(adapter->vlgrp, vid, NULL);
2080
2081         if (!test_bit(__E1000_DOWN, &adapter->state))
2082                 e1000_irq_enable(adapter);
2083
2084         if ((adapter->hw.mng_cookie.status &
2085              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2086             (vid == adapter->mng_vlan_id)) {
2087                 /* release control to f/w */
2088                 e1000_release_hw_control(adapter);
2089                 return;
2090         }
2091
2092         /* remove VID from filter table */
2093         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2094                 index = (vid >> 5) & 0x7F;
2095                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2096                 vfta &= ~(1 << (vid & 0x1F));
2097                 hw->mac.ops.write_vfta(hw, index, vfta);
2098         }
2099 }
2100
2101 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2102 {
2103         struct net_device *netdev = adapter->netdev;
2104         u16 vid = adapter->hw.mng_cookie.vlan_id;
2105         u16 old_vid = adapter->mng_vlan_id;
2106
2107         if (!adapter->vlgrp)
2108                 return;
2109
2110         if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2111                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2112                 if (adapter->hw.mng_cookie.status &
2113                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2114                         e1000_vlan_rx_add_vid(netdev, vid);
2115                         adapter->mng_vlan_id = vid;
2116                 }
2117
2118                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2119                                 (vid != old_vid) &&
2120                     !vlan_group_get_device(adapter->vlgrp, old_vid))
2121                         e1000_vlan_rx_kill_vid(netdev, old_vid);
2122         } else {
2123                 adapter->mng_vlan_id = vid;
2124         }
2125 }
2126
2127
2128 static void e1000_vlan_rx_register(struct net_device *netdev,
2129                                    struct vlan_group *grp)
2130 {
2131         struct e1000_adapter *adapter = netdev_priv(netdev);
2132         struct e1000_hw *hw = &adapter->hw;
2133         u32 ctrl, rctl;
2134
2135         if (!test_bit(__E1000_DOWN, &adapter->state))
2136                 e1000_irq_disable(adapter);
2137         adapter->vlgrp = grp;
2138
2139         if (grp) {
2140                 /* enable VLAN tag insert/strip */
2141                 ctrl = er32(CTRL);
2142                 ctrl |= E1000_CTRL_VME;
2143                 ew32(CTRL, ctrl);
2144
2145                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2146                         /* enable VLAN receive filtering */
2147                         rctl = er32(RCTL);
2148                         rctl &= ~E1000_RCTL_CFIEN;
2149                         ew32(RCTL, rctl);
2150                         e1000_update_mng_vlan(adapter);
2151                 }
2152         } else {
2153                 /* disable VLAN tag insert/strip */
2154                 ctrl = er32(CTRL);
2155                 ctrl &= ~E1000_CTRL_VME;
2156                 ew32(CTRL, ctrl);
2157
2158                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2159                         if (adapter->mng_vlan_id !=
2160                             (u16)E1000_MNG_VLAN_NONE) {
2161                                 e1000_vlan_rx_kill_vid(netdev,
2162                                                        adapter->mng_vlan_id);
2163                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2164                         }
2165                 }
2166         }
2167
2168         if (!test_bit(__E1000_DOWN, &adapter->state))
2169                 e1000_irq_enable(adapter);
2170 }
2171
2172 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2173 {
2174         u16 vid;
2175
2176         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2177
2178         if (!adapter->vlgrp)
2179                 return;
2180
2181         for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2182                 if (!vlan_group_get_device(adapter->vlgrp, vid))
2183                         continue;
2184                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2185         }
2186 }
2187
2188 static void e1000_init_manageability(struct e1000_adapter *adapter)
2189 {
2190         struct e1000_hw *hw = &adapter->hw;
2191         u32 manc, manc2h;
2192
2193         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2194                 return;
2195
2196         manc = er32(MANC);
2197
2198         /*
2199          * enable receiving management packets to the host. this will probably
2200          * generate destination unreachable messages from the host OS, but
2201          * the packets will be handled on SMBUS
2202          */
2203         manc |= E1000_MANC_EN_MNG2HOST;
2204         manc2h = er32(MANC2H);
2205 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2206 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2207         manc2h |= E1000_MNG2HOST_PORT_623;
2208         manc2h |= E1000_MNG2HOST_PORT_664;
2209         ew32(MANC2H, manc2h);
2210         ew32(MANC, manc);
2211 }
2212
2213 /**
2214  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2215  * @adapter: board private structure
2216  *
2217  * Configure the Tx unit of the MAC after a reset.
2218  **/
2219 static void e1000_configure_tx(struct e1000_adapter *adapter)
2220 {
2221         struct e1000_hw *hw = &adapter->hw;
2222         struct e1000_ring *tx_ring = adapter->tx_ring;
2223         u64 tdba;
2224         u32 tdlen, tctl, tipg, tarc;
2225         u32 ipgr1, ipgr2;
2226
2227         /* Setup the HW Tx Head and Tail descriptor pointers */
2228         tdba = tx_ring->dma;
2229         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2230         ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2231         ew32(TDBAH, (tdba >> 32));
2232         ew32(TDLEN, tdlen);
2233         ew32(TDH, 0);
2234         ew32(TDT, 0);
2235         tx_ring->head = E1000_TDH;
2236         tx_ring->tail = E1000_TDT;
2237
2238         /* Set the default values for the Tx Inter Packet Gap timer */
2239         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
2240         ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
2241         ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
2242
2243         if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2244                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
2245
2246         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2247         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2248         ew32(TIPG, tipg);
2249
2250         /* Set the Tx Interrupt Delay register */
2251         ew32(TIDV, adapter->tx_int_delay);
2252         /* Tx irq moderation */
2253         ew32(TADV, adapter->tx_abs_int_delay);
2254
2255         /* Program the Transmit Control Register */
2256         tctl = er32(TCTL);
2257         tctl &= ~E1000_TCTL_CT;
2258         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2259                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2260
2261         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2262                 tarc = er32(TARC(0));
2263                 /*
2264                  * set the speed mode bit, we'll clear it if we're not at
2265                  * gigabit link later
2266                  */
2267 #define SPEED_MODE_BIT (1 << 21)
2268                 tarc |= SPEED_MODE_BIT;
2269                 ew32(TARC(0), tarc);
2270         }
2271
2272         /* errata: program both queues to unweighted RR */
2273         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2274                 tarc = er32(TARC(0));
2275                 tarc |= 1;
2276                 ew32(TARC(0), tarc);
2277                 tarc = er32(TARC(1));
2278                 tarc |= 1;
2279                 ew32(TARC(1), tarc);
2280         }
2281
2282         /* Setup Transmit Descriptor Settings for eop descriptor */
2283         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2284
2285         /* only set IDE if we are delaying interrupts using the timers */
2286         if (adapter->tx_int_delay)
2287                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2288
2289         /* enable Report Status bit */
2290         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2291
2292         ew32(TCTL, tctl);
2293
2294         e1000e_config_collision_dist(hw);
2295 }
2296
2297 /**
2298  * e1000_setup_rctl - configure the receive control registers
2299  * @adapter: Board private structure
2300  **/
2301 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2302                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2303 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2304 {
2305         struct e1000_hw *hw = &adapter->hw;
2306         u32 rctl, rfctl;
2307         u32 psrctl = 0;
2308         u32 pages = 0;
2309
2310         /* Program MC offset vector base */
2311         rctl = er32(RCTL);
2312         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2313         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2314                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2315                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2316
2317         /* Do not Store bad packets */
2318         rctl &= ~E1000_RCTL_SBP;
2319
2320         /* Enable Long Packet receive */
2321         if (adapter->netdev->mtu <= ETH_DATA_LEN)
2322                 rctl &= ~E1000_RCTL_LPE;
2323         else
2324                 rctl |= E1000_RCTL_LPE;
2325
2326         /* Some systems expect that the CRC is included in SMBUS traffic. The
2327          * hardware strips the CRC before sending to both SMBUS (BMC) and to
2328          * host memory when this is enabled
2329          */
2330         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2331                 rctl |= E1000_RCTL_SECRC;
2332
2333         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2334         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2335                 u16 phy_data;
2336
2337                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2338                 phy_data &= 0xfff8;
2339                 phy_data |= (1 << 2);
2340                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2341
2342                 e1e_rphy(hw, 22, &phy_data);
2343                 phy_data &= 0x0fff;
2344                 phy_data |= (1 << 14);
2345                 e1e_wphy(hw, 0x10, 0x2823);
2346                 e1e_wphy(hw, 0x11, 0x0003);
2347                 e1e_wphy(hw, 22, phy_data);
2348         }
2349
2350         /* Setup buffer sizes */
2351         rctl &= ~E1000_RCTL_SZ_4096;
2352         rctl |= E1000_RCTL_BSEX;
2353         switch (adapter->rx_buffer_len) {
2354         case 2048:
2355         default:
2356                 rctl |= E1000_RCTL_SZ_2048;
2357                 rctl &= ~E1000_RCTL_BSEX;
2358                 break;
2359         case 4096:
2360                 rctl |= E1000_RCTL_SZ_4096;
2361                 break;
2362         case 8192:
2363                 rctl |= E1000_RCTL_SZ_8192;
2364                 break;
2365         case 16384:
2366                 rctl |= E1000_RCTL_SZ_16384;
2367                 break;
2368         }
2369
2370         /*
2371          * 82571 and greater support packet-split where the protocol
2372          * header is placed in skb->data and the packet data is
2373          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2374          * In the case of a non-split, skb->data is linearly filled,
2375          * followed by the page buffers.  Therefore, skb->data is
2376          * sized to hold the largest protocol header.
2377          *
2378          * allocations using alloc_page take too long for regular MTU
2379          * so only enable packet split for jumbo frames
2380          *
2381          * Using pages when the page size is greater than 16k wastes
2382          * a lot of memory, since we allocate 3 pages at all times
2383          * per packet.
2384          */
2385         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2386         if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2387             (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2388                 adapter->rx_ps_pages = pages;
2389         else
2390                 adapter->rx_ps_pages = 0;
2391
2392         if (adapter->rx_ps_pages) {
2393                 /* Configure extra packet-split registers */
2394                 rfctl = er32(RFCTL);
2395                 rfctl |= E1000_RFCTL_EXTEN;
2396                 /*
2397                  * disable packet split support for IPv6 extension headers,
2398                  * because some malformed IPv6 headers can hang the Rx
2399                  */
2400                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2401                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2402
2403                 ew32(RFCTL, rfctl);
2404
2405                 /* Enable Packet split descriptors */
2406                 rctl |= E1000_RCTL_DTYP_PS;
2407
2408                 psrctl |= adapter->rx_ps_bsize0 >>
2409                         E1000_PSRCTL_BSIZE0_SHIFT;
2410
2411                 switch (adapter->rx_ps_pages) {
2412                 case 3:
2413                         psrctl |= PAGE_SIZE <<
2414                                 E1000_PSRCTL_BSIZE3_SHIFT;
2415                 case 2:
2416                         psrctl |= PAGE_SIZE <<
2417                                 E1000_PSRCTL_BSIZE2_SHIFT;
2418                 case 1:
2419                         psrctl |= PAGE_SIZE >>
2420                                 E1000_PSRCTL_BSIZE1_SHIFT;
2421                         break;
2422                 }
2423
2424                 ew32(PSRCTL, psrctl);
2425         }
2426
2427         ew32(RCTL, rctl);
2428         /* just started the receive unit, no need to restart */
2429         adapter->flags &= ~FLAG_RX_RESTART_NOW;
2430 }
2431
2432 /**
2433  * e1000_configure_rx - Configure Receive Unit after Reset
2434  * @adapter: board private structure
2435  *
2436  * Configure the Rx unit of the MAC after a reset.
2437  **/
2438 static void e1000_configure_rx(struct e1000_adapter *adapter)
2439 {
2440         struct e1000_hw *hw = &adapter->hw;
2441         struct e1000_ring *rx_ring = adapter->rx_ring;
2442         u64 rdba;
2443         u32 rdlen, rctl, rxcsum, ctrl_ext;
2444
2445         if (adapter->rx_ps_pages) {
2446                 /* this is a 32 byte descriptor */
2447                 rdlen = rx_ring->count *
2448                         sizeof(union e1000_rx_desc_packet_split);
2449                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2450                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2451         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2452                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2453                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2454                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2455         } else {
2456                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2457                 adapter->clean_rx = e1000_clean_rx_irq;
2458                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2459         }
2460
2461         /* disable receives while setting up the descriptors */
2462         rctl = er32(RCTL);
2463         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2464         e1e_flush();
2465         msleep(10);
2466
2467         /* set the Receive Delay Timer Register */
2468         ew32(RDTR, adapter->rx_int_delay);
2469
2470         /* irq moderation */
2471         ew32(RADV, adapter->rx_abs_int_delay);
2472         if (adapter->itr_setting != 0)
2473                 ew32(ITR, 1000000000 / (adapter->itr * 256));
2474
2475         ctrl_ext = er32(CTRL_EXT);
2476         /* Auto-Mask interrupts upon ICR access */
2477         ctrl_ext |= E1000_CTRL_EXT_IAME;
2478         ew32(IAM, 0xffffffff);
2479         ew32(CTRL_EXT, ctrl_ext);
2480         e1e_flush();
2481
2482         /*
2483          * Setup the HW Rx Head and Tail Descriptor Pointers and
2484          * the Base and Length of the Rx Descriptor Ring
2485          */
2486         rdba = rx_ring->dma;
2487         ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2488         ew32(RDBAH, (rdba >> 32));
2489         ew32(RDLEN, rdlen);
2490         ew32(RDH, 0);
2491         ew32(RDT, 0);
2492         rx_ring->head = E1000_RDH;
2493         rx_ring->tail = E1000_RDT;
2494
2495         /* Enable Receive Checksum Offload for TCP and UDP */
2496         rxcsum = er32(RXCSUM);
2497         if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2498                 rxcsum |= E1000_RXCSUM_TUOFL;
2499
2500                 /*
2501                  * IPv4 payload checksum for UDP fragments must be
2502                  * used in conjunction with packet-split.
2503                  */
2504                 if (adapter->rx_ps_pages)
2505                         rxcsum |= E1000_RXCSUM_IPPCSE;
2506         } else {
2507                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2508                 /* no need to clear IPPCSE as it defaults to 0 */
2509         }
2510         ew32(RXCSUM, rxcsum);
2511
2512         /*
2513          * Enable early receives on supported devices, only takes effect when
2514          * packet size is equal or larger than the specified value (in 8 byte
2515          * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2516          */
2517         if (adapter->flags & FLAG_HAS_ERT) {
2518                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2519                         u32 rxdctl = er32(RXDCTL(0));
2520                         ew32(RXDCTL(0), rxdctl | 0x3);
2521                         ew32(ERT, E1000_ERT_2048 | (1 << 13));
2522                         /*
2523                          * With jumbo frames and early-receive enabled,
2524                          * excessive C-state transition latencies result in
2525                          * dropped transactions.
2526                          */
2527                         pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2528                                                   adapter->netdev->name, 55);
2529                 } else {
2530                         pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2531                                                   adapter->netdev->name,
2532                                                   PM_QOS_DEFAULT_VALUE);
2533                 }
2534         }
2535
2536         /* Enable Receives */
2537         ew32(RCTL, rctl);
2538 }
2539
2540 /**
2541  *  e1000_update_mc_addr_list - Update Multicast addresses
2542  *  @hw: pointer to the HW structure
2543  *  @mc_addr_list: array of multicast addresses to program
2544  *  @mc_addr_count: number of multicast addresses to program
2545  *
2546  *  Updates the Multicast Table Array.
2547  *  The caller must have a packed mc_addr_list of multicast addresses.
2548  **/
2549 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2550                                       u32 mc_addr_count)
2551 {
2552         hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
2553 }
2554
2555 /**
2556  * e1000_set_multi - Multicast and Promiscuous mode set
2557  * @netdev: network interface device structure
2558  *
2559  * The set_multi entry point is called whenever the multicast address
2560  * list or the network interface flags are updated.  This routine is
2561  * responsible for configuring the hardware for proper multicast,
2562  * promiscuous mode, and all-multi behavior.
2563  **/
2564 static void e1000_set_multi(struct net_device *netdev)
2565 {
2566         struct e1000_adapter *adapter = netdev_priv(netdev);
2567         struct e1000_hw *hw = &adapter->hw;
2568         struct dev_mc_list *mc_ptr;
2569         u8  *mta_list;
2570         u32 rctl;
2571         int i;
2572
2573         /* Check for Promiscuous and All Multicast modes */
2574
2575         rctl = er32(RCTL);
2576
2577         if (netdev->flags & IFF_PROMISC) {
2578                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2579                 rctl &= ~E1000_RCTL_VFE;
2580         } else {
2581                 if (netdev->flags & IFF_ALLMULTI) {
2582                         rctl |= E1000_RCTL_MPE;
2583                         rctl &= ~E1000_RCTL_UPE;
2584                 } else {
2585                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2586                 }
2587                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2588                         rctl |= E1000_RCTL_VFE;
2589         }
2590
2591         ew32(RCTL, rctl);
2592
2593         if (!netdev_mc_empty(netdev)) {
2594                 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
2595                 if (!mta_list)
2596                         return;
2597
2598                 /* prepare a packed array of only addresses. */
2599                 i = 0;
2600                 netdev_for_each_mc_addr(mc_ptr, netdev)
2601                         memcpy(mta_list + (i++ * ETH_ALEN),
2602                                mc_ptr->dmi_addr, ETH_ALEN);
2603
2604                 e1000_update_mc_addr_list(hw, mta_list, i);
2605                 kfree(mta_list);
2606         } else {
2607                 /*
2608                  * if we're called from probe, we might not have
2609                  * anything to do here, so clear out the list
2610                  */
2611                 e1000_update_mc_addr_list(hw, NULL, 0);
2612         }
2613 }
2614
2615 /**
2616  * e1000_configure - configure the hardware for Rx and Tx
2617  * @adapter: private board structure
2618  **/
2619 static void e1000_configure(struct e1000_adapter *adapter)
2620 {
2621         e1000_set_multi(adapter->netdev);
2622
2623         e1000_restore_vlan(adapter);
2624         e1000_init_manageability(adapter);
2625
2626         e1000_configure_tx(adapter);
2627         e1000_setup_rctl(adapter);
2628         e1000_configure_rx(adapter);
2629         adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2630 }
2631
2632 /**
2633  * e1000e_power_up_phy - restore link in case the phy was powered down
2634  * @adapter: address of board private structure
2635  *
2636  * The phy may be powered down to save power and turn off link when the
2637  * driver is unloaded and wake on lan is not enabled (among others)
2638  * *** this routine MUST be followed by a call to e1000e_reset ***
2639  **/
2640 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2641 {
2642         if (adapter->hw.phy.ops.power_up)
2643                 adapter->hw.phy.ops.power_up(&adapter->hw);
2644
2645         adapter->hw.mac.ops.setup_link(&adapter->hw);
2646 }
2647
2648 /**
2649  * e1000_power_down_phy - Power down the PHY
2650  *
2651  * Power down the PHY so no link is implied when interface is down.
2652  * The PHY cannot be powered down if management or WoL is active.
2653  */
2654 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2655 {
2656         /* WoL is enabled */
2657         if (adapter->wol)
2658                 return;
2659
2660         if (adapter->hw.phy.ops.power_down)
2661                 adapter->hw.phy.ops.power_down(&adapter->hw);
2662 }
2663
2664 /**
2665  * e1000e_reset - bring the hardware into a known good state
2666  *
2667  * This function boots the hardware and enables some settings that
2668  * require a configuration cycle of the hardware - those cannot be
2669  * set/changed during runtime. After reset the device needs to be
2670  * properly configured for Rx, Tx etc.
2671  */
2672 void e1000e_reset(struct e1000_adapter *adapter)
2673 {
2674         struct e1000_mac_info *mac = &adapter->hw.mac;
2675         struct e1000_fc_info *fc = &adapter->hw.fc;
2676         struct e1000_hw *hw = &adapter->hw;
2677         u32 tx_space, min_tx_space, min_rx_space;
2678         u32 pba = adapter->pba;
2679         u16 hwm;
2680
2681         /* reset Packet Buffer Allocation to default */
2682         ew32(PBA, pba);
2683
2684         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2685                 /*
2686                  * To maintain wire speed transmits, the Tx FIFO should be
2687                  * large enough to accommodate two full transmit packets,
2688                  * rounded up to the next 1KB and expressed in KB.  Likewise,
2689                  * the Rx FIFO should be large enough to accommodate at least
2690                  * one full receive packet and is similarly rounded up and
2691                  * expressed in KB.
2692                  */
2693                 pba = er32(PBA);
2694                 /* upper 16 bits has Tx packet buffer allocation size in KB */
2695                 tx_space = pba >> 16;
2696                 /* lower 16 bits has Rx packet buffer allocation size in KB */
2697                 pba &= 0xffff;
2698                 /*
2699                  * the Tx fifo also stores 16 bytes of information about the tx
2700                  * but don't include ethernet FCS because hardware appends it
2701                  */
2702                 min_tx_space = (adapter->max_frame_size +
2703                                 sizeof(struct e1000_tx_desc) -
2704                                 ETH_FCS_LEN) * 2;
2705                 min_tx_space = ALIGN(min_tx_space, 1024);
2706                 min_tx_space >>= 10;
2707                 /* software strips receive CRC, so leave room for it */
2708                 min_rx_space = adapter->max_frame_size;
2709                 min_rx_space = ALIGN(min_rx_space, 1024);
2710                 min_rx_space >>= 10;
2711
2712                 /*
2713                  * If current Tx allocation is less than the min Tx FIFO size,
2714                  * and the min Tx FIFO size is less than the current Rx FIFO
2715                  * allocation, take space away from current Rx allocation
2716                  */
2717                 if ((tx_space < min_tx_space) &&
2718                     ((min_tx_space - tx_space) < pba)) {
2719                         pba -= min_tx_space - tx_space;
2720
2721                         /*
2722                          * if short on Rx space, Rx wins and must trump tx
2723                          * adjustment or use Early Receive if available
2724                          */
2725                         if ((pba < min_rx_space) &&
2726                             (!(adapter->flags & FLAG_HAS_ERT)))
2727                                 /* ERT enabled in e1000_configure_rx */
2728                                 pba = min_rx_space;
2729                 }
2730
2731                 ew32(PBA, pba);
2732         }
2733
2734
2735         /*
2736          * flow control settings
2737          *
2738          * The high water mark must be low enough to fit one full frame
2739          * (or the size used for early receive) above it in the Rx FIFO.
2740          * Set it to the lower of:
2741          * - 90% of the Rx FIFO size, and
2742          * - the full Rx FIFO size minus the early receive size (for parts
2743          *   with ERT support assuming ERT set to E1000_ERT_2048), or
2744          * - the full Rx FIFO size minus one full frame
2745          */
2746         if (hw->mac.type == e1000_pchlan) {
2747                 /*
2748                  * Workaround PCH LOM adapter hangs with certain network
2749                  * loads.  If hangs persist, try disabling Tx flow control.
2750                  */
2751                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2752                         fc->high_water = 0x3500;
2753                         fc->low_water  = 0x1500;
2754                 } else {
2755                         fc->high_water = 0x5000;
2756                         fc->low_water  = 0x3000;
2757                 }
2758         } else {
2759                 if ((adapter->flags & FLAG_HAS_ERT) &&
2760                     (adapter->netdev->mtu > ETH_DATA_LEN))
2761                         hwm = min(((pba << 10) * 9 / 10),
2762                                   ((pba << 10) - (E1000_ERT_2048 << 3)));
2763                 else
2764                         hwm = min(((pba << 10) * 9 / 10),
2765                                   ((pba << 10) - adapter->max_frame_size));
2766
2767                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
2768                 fc->low_water = fc->high_water - 8;
2769         }
2770
2771         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2772                 fc->pause_time = 0xFFFF;
2773         else
2774                 fc->pause_time = E1000_FC_PAUSE_TIME;
2775         fc->send_xon = 1;
2776         fc->current_mode = fc->requested_mode;
2777
2778         /* Allow time for pending master requests to run */
2779         mac->ops.reset_hw(hw);
2780
2781         /*
2782          * For parts with AMT enabled, let the firmware know
2783          * that the network interface is in control
2784          */
2785         if (adapter->flags & FLAG_HAS_AMT)
2786                 e1000_get_hw_control(adapter);
2787
2788         ew32(WUC, 0);
2789         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)
2790                 e1e_wphy(&adapter->hw, BM_WUC, 0);
2791
2792         if (mac->ops.init_hw(hw))
2793                 e_err("Hardware Error\n");
2794
2795         /* additional part of the flow-control workaround above */
2796         if (hw->mac.type == e1000_pchlan)
2797                 ew32(FCRTV_PCH, 0x1000);
2798
2799         e1000_update_mng_vlan(adapter);
2800
2801         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2802         ew32(VET, ETH_P_8021Q);
2803
2804         e1000e_reset_adaptive(hw);
2805         e1000_get_phy_info(hw);
2806
2807         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
2808             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2809                 u16 phy_data = 0;
2810                 /*
2811                  * speed up time to link by disabling smart power down, ignore
2812                  * the return value of this function because there is nothing
2813                  * different we would do if it failed
2814                  */
2815                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2816                 phy_data &= ~IGP02E1000_PM_SPD;
2817                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2818         }
2819 }
2820
2821 int e1000e_up(struct e1000_adapter *adapter)
2822 {
2823         struct e1000_hw *hw = &adapter->hw;
2824
2825         /* DMA latency requirement to workaround early-receive/jumbo issue */
2826         if (adapter->flags & FLAG_HAS_ERT)
2827                 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY,
2828                                        adapter->netdev->name,
2829                                        PM_QOS_DEFAULT_VALUE);
2830
2831         /* hardware has been reset, we need to reload some things */
2832         e1000_configure(adapter);
2833
2834         clear_bit(__E1000_DOWN, &adapter->state);
2835
2836         napi_enable(&adapter->napi);
2837         if (adapter->msix_entries)
2838                 e1000_configure_msix(adapter);
2839         e1000_irq_enable(adapter);
2840
2841         netif_wake_queue(adapter->netdev);
2842
2843         /* fire a link change interrupt to start the watchdog */
2844         ew32(ICS, E1000_ICS_LSC);
2845         return 0;
2846 }
2847
2848 void e1000e_down(struct e1000_adapter *adapter)
2849 {
2850         struct net_device *netdev = adapter->netdev;
2851         struct e1000_hw *hw = &adapter->hw;
2852         u32 tctl, rctl;
2853
2854         /*
2855          * signal that we're down so the interrupt handler does not
2856          * reschedule our watchdog timer
2857          */
2858         set_bit(__E1000_DOWN, &adapter->state);
2859
2860         /* disable receives in the hardware */
2861         rctl = er32(RCTL);
2862         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2863         /* flush and sleep below */
2864
2865         netif_stop_queue(netdev);
2866
2867         /* disable transmits in the hardware */
2868         tctl = er32(TCTL);
2869         tctl &= ~E1000_TCTL_EN;
2870         ew32(TCTL, tctl);
2871         /* flush both disables and wait for them to finish */
2872         e1e_flush();
2873         msleep(10);
2874
2875         napi_disable(&adapter->napi);
2876         e1000_irq_disable(adapter);
2877
2878         del_timer_sync(&adapter->watchdog_timer);
2879         del_timer_sync(&adapter->phy_info_timer);
2880
2881         netif_carrier_off(netdev);
2882         adapter->link_speed = 0;
2883         adapter->link_duplex = 0;
2884
2885         if (!pci_channel_offline(adapter->pdev))
2886                 e1000e_reset(adapter);
2887         e1000_clean_tx_ring(adapter);
2888         e1000_clean_rx_ring(adapter);
2889
2890         if (adapter->flags & FLAG_HAS_ERT)
2891                 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY,
2892                                           adapter->netdev->name);
2893
2894         /*
2895          * TODO: for power management, we could drop the link and
2896          * pci_disable_device here.
2897          */
2898 }
2899
2900 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2901 {
2902         might_sleep();
2903         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2904                 msleep(1);
2905         e1000e_down(adapter);
2906         e1000e_up(adapter);
2907         clear_bit(__E1000_RESETTING, &adapter->state);
2908 }
2909
2910 /**
2911  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2912  * @adapter: board private structure to initialize
2913  *
2914  * e1000_sw_init initializes the Adapter private data structure.
2915  * Fields are initialized based on PCI device information and
2916  * OS network device settings (MTU size).
2917  **/
2918 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2919 {
2920         struct net_device *netdev = adapter->netdev;
2921
2922         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2923         adapter->rx_ps_bsize0 = 128;
2924         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2925         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2926
2927         e1000e_set_interrupt_capability(adapter);
2928
2929         if (e1000_alloc_queues(adapter))
2930                 return -ENOMEM;
2931
2932         /* Explicitly disable IRQ since the NIC can be in any state. */
2933         e1000_irq_disable(adapter);
2934
2935         set_bit(__E1000_DOWN, &adapter->state);
2936         return 0;
2937 }
2938
2939 /**
2940  * e1000_intr_msi_test - Interrupt Handler
2941  * @irq: interrupt number
2942  * @data: pointer to a network interface device structure
2943  **/
2944 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2945 {
2946         struct net_device *netdev = data;
2947         struct e1000_adapter *adapter = netdev_priv(netdev);
2948         struct e1000_hw *hw = &adapter->hw;
2949         u32 icr = er32(ICR);
2950
2951         e_dbg("icr is %08X\n", icr);
2952         if (icr & E1000_ICR_RXSEQ) {
2953                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2954                 wmb();
2955         }
2956
2957         return IRQ_HANDLED;
2958 }
2959
2960 /**
2961  * e1000_test_msi_interrupt - Returns 0 for successful test
2962  * @adapter: board private struct
2963  *
2964  * code flow taken from tg3.c
2965  **/
2966 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2967 {
2968         struct net_device *netdev = adapter->netdev;
2969         struct e1000_hw *hw = &adapter->hw;
2970         int err;
2971
2972         /* poll_enable hasn't been called yet, so don't need disable */
2973         /* clear any pending events */
2974         er32(ICR);
2975
2976         /* free the real vector and request a test handler */
2977         e1000_free_irq(adapter);
2978         e1000e_reset_interrupt_capability(adapter);
2979
2980         /* Assume that the test fails, if it succeeds then the test
2981          * MSI irq handler will unset this flag */
2982         adapter->flags |= FLAG_MSI_TEST_FAILED;
2983
2984         err = pci_enable_msi(adapter->pdev);
2985         if (err)
2986                 goto msi_test_failed;
2987
2988         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
2989                           netdev->name, netdev);
2990         if (err) {
2991                 pci_disable_msi(adapter->pdev);
2992                 goto msi_test_failed;
2993         }
2994
2995         wmb();
2996
2997         e1000_irq_enable(adapter);
2998
2999         /* fire an unusual interrupt on the test handler */
3000         ew32(ICS, E1000_ICS_RXSEQ);
3001         e1e_flush();
3002         msleep(50);
3003
3004         e1000_irq_disable(adapter);
3005
3006         rmb();
3007
3008         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3009                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3010                 err = -EIO;
3011                 e_info("MSI interrupt test failed!\n");
3012         }
3013
3014         free_irq(adapter->pdev->irq, netdev);
3015         pci_disable_msi(adapter->pdev);
3016
3017         if (err == -EIO)
3018                 goto msi_test_failed;
3019
3020         /* okay so the test worked, restore settings */
3021         e_dbg("MSI interrupt test succeeded!\n");
3022 msi_test_failed:
3023         e1000e_set_interrupt_capability(adapter);
3024         e1000_request_irq(adapter);
3025         return err;
3026 }
3027
3028 /**
3029  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3030  * @adapter: board private struct
3031  *
3032  * code flow taken from tg3.c, called with e1000 interrupts disabled.
3033  **/
3034 static int e1000_test_msi(struct e1000_adapter *adapter)
3035 {
3036         int err;
3037         u16 pci_cmd;
3038
3039         if (!(adapter->flags & FLAG_MSI_ENABLED))
3040                 return 0;
3041
3042         /* disable SERR in case the MSI write causes a master abort */
3043         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3044         pci_write_config_word(adapter->pdev, PCI_COMMAND,
3045                               pci_cmd & ~PCI_COMMAND_SERR);
3046
3047         err = e1000_test_msi_interrupt(adapter);
3048
3049         /* restore previous setting of command word */
3050         pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3051
3052         /* success ! */
3053         if (!err)
3054                 return 0;
3055
3056         /* EIO means MSI test failed */
3057         if (err != -EIO)
3058                 return err;
3059
3060         /* back to INTx mode */
3061         e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3062
3063         e1000_free_irq(adapter);
3064
3065         err = e1000_request_irq(adapter);
3066
3067         return err;
3068 }
3069
3070 /**
3071  * e1000_open - Called when a network interface is made active
3072  * @netdev: network interface device structure
3073  *
3074  * Returns 0 on success, negative value on failure
3075  *
3076  * The open entry point is called when a network interface is made
3077  * active by the system (IFF_UP).  At this point all resources needed
3078  * for transmit and receive operations are allocated, the interrupt
3079  * handler is registered with the OS, the watchdog timer is started,
3080  * and the stack is notified that the interface is ready.
3081  **/
3082 static int e1000_open(struct net_device *netdev)
3083 {
3084         struct e1000_adapter *adapter = netdev_priv(netdev);
3085         struct e1000_hw *hw = &adapter->hw;
3086         int err;
3087
3088         /* disallow open during test */
3089         if (test_bit(__E1000_TESTING, &adapter->state))
3090                 return -EBUSY;
3091
3092         netif_carrier_off(netdev);
3093
3094         /* allocate transmit descriptors */
3095         err = e1000e_setup_tx_resources(adapter);
3096         if (err)
3097                 goto err_setup_tx;
3098
3099         /* allocate receive descriptors */
3100         err = e1000e_setup_rx_resources(adapter);
3101         if (err)
3102                 goto err_setup_rx;
3103
3104         e1000e_power_up_phy(adapter);
3105
3106         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3107         if ((adapter->hw.mng_cookie.status &
3108              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3109                 e1000_update_mng_vlan(adapter);
3110
3111         /*
3112          * If AMT is enabled, let the firmware know that the network
3113          * interface is now open
3114          */
3115         if (adapter->flags & FLAG_HAS_AMT)
3116                 e1000_get_hw_control(adapter);
3117
3118         /*
3119          * before we allocate an interrupt, we must be ready to handle it.
3120          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3121          * as soon as we call pci_request_irq, so we have to setup our
3122          * clean_rx handler before we do so.
3123          */
3124         e1000_configure(adapter);
3125
3126         err = e1000_request_irq(adapter);
3127         if (err)
3128                 goto err_req_irq;
3129
3130         /*
3131          * Work around PCIe errata with MSI interrupts causing some chipsets to
3132          * ignore e1000e MSI messages, which means we need to test our MSI
3133          * interrupt now
3134          */
3135         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3136                 err = e1000_test_msi(adapter);
3137                 if (err) {
3138                         e_err("Interrupt allocation failed\n");
3139                         goto err_req_irq;
3140                 }
3141         }
3142
3143         /* From here on the code is the same as e1000e_up() */
3144         clear_bit(__E1000_DOWN, &adapter->state);
3145
3146         napi_enable(&adapter->napi);
3147
3148         e1000_irq_enable(adapter);
3149
3150         netif_start_queue(netdev);
3151
3152         /* fire a link status change interrupt to start the watchdog */
3153         ew32(ICS, E1000_ICS_LSC);
3154
3155         return 0;
3156
3157 err_req_irq:
3158         e1000_release_hw_control(adapter);
3159         e1000_power_down_phy(adapter);
3160         e1000e_free_rx_resources(adapter);
3161 err_setup_rx:
3162         e1000e_free_tx_resources(adapter);
3163 err_setup_tx:
3164         e1000e_reset(adapter);
3165
3166         return err;
3167 }
3168
3169 /**
3170  * e1000_close - Disables a network interface
3171  * @netdev: network interface device structure
3172  *
3173  * Returns 0, this is not allowed to fail
3174  *
3175  * The close entry point is called when an interface is de-activated
3176  * by the OS.  The hardware is still under the drivers control, but
3177  * needs to be disabled.  A global MAC reset is issued to stop the
3178  * hardware, and all transmit and receive resources are freed.
3179  **/
3180 static int e1000_close(struct net_device *netdev)
3181 {
3182         struct e1000_adapter *adapter = netdev_priv(netdev);
3183
3184         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3185         e1000e_down(adapter);
3186         e1000_power_down_phy(adapter);
3187         e1000_free_irq(adapter);
3188
3189         e1000e_free_tx_resources(adapter);
3190         e1000e_free_rx_resources(adapter);
3191
3192         /*
3193          * kill manageability vlan ID if supported, but not if a vlan with
3194          * the same ID is registered on the host OS (let 8021q kill it)
3195          */
3196         if ((adapter->hw.mng_cookie.status &
3197                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3198              !(adapter->vlgrp &&
3199                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3200                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3201
3202         /*
3203          * If AMT is enabled, let the firmware know that the network
3204          * interface is now closed
3205          */
3206         if (adapter->flags & FLAG_HAS_AMT)
3207                 e1000_release_hw_control(adapter);
3208
3209         return 0;
3210 }
3211 /**
3212  * e1000_set_mac - Change the Ethernet Address of the NIC
3213  * @netdev: network interface device structure
3214  * @p: pointer to an address structure
3215  *
3216  * Returns 0 on success, negative on failure
3217  **/
3218 static int e1000_set_mac(struct net_device *netdev, void *p)
3219 {
3220         struct e1000_adapter *adapter = netdev_priv(netdev);
3221         struct sockaddr *addr = p;
3222
3223         if (!is_valid_ether_addr(addr->sa_data))
3224                 return -EADDRNOTAVAIL;
3225
3226         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3227         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3228
3229         e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3230
3231         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3232                 /* activate the work around */
3233                 e1000e_set_laa_state_82571(&adapter->hw, 1);
3234
3235                 /*
3236                  * Hold a copy of the LAA in RAR[14] This is done so that
3237                  * between the time RAR[0] gets clobbered  and the time it
3238                  * gets fixed (in e1000_watchdog), the actual LAA is in one
3239                  * of the RARs and no incoming packets directed to this port
3240                  * are dropped. Eventually the LAA will be in RAR[0] and
3241                  * RAR[14]
3242                  */
3243                 e1000e_rar_set(&adapter->hw,
3244                               adapter->hw.mac.addr,
3245                               adapter->hw.mac.rar_entry_count - 1);
3246         }
3247
3248         return 0;
3249 }
3250
3251 /**
3252  * e1000e_update_phy_task - work thread to update phy
3253  * @work: pointer to our work struct
3254  *
3255  * this worker thread exists because we must acquire a
3256  * semaphore to read the phy, which we could msleep while
3257  * waiting for it, and we can't msleep in a timer.
3258  **/
3259 static void e1000e_update_phy_task(struct work_struct *work)
3260 {
3261         struct e1000_adapter *adapter = container_of(work,
3262                                         struct e1000_adapter, update_phy_task);
3263         e1000_get_phy_info(&adapter->hw);
3264 }
3265
3266 /*
3267  * Need to wait a few seconds after link up to get diagnostic information from
3268  * the phy
3269  */
3270 static void e1000_update_phy_info(unsigned long data)
3271 {
3272         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3273         schedule_work(&adapter->update_phy_task);
3274 }
3275
3276 /**
3277  * e1000e_update_stats - Update the board statistics counters
3278  * @adapter: board private structure
3279  **/
3280 void e1000e_update_stats(struct e1000_adapter *adapter)
3281 {
3282         struct net_device *netdev = adapter->netdev;
3283         struct e1000_hw *hw = &adapter->hw;
3284         struct pci_dev *pdev = adapter->pdev;
3285         u16 phy_data;
3286
3287         /*
3288          * Prevent stats update while adapter is being reset, or if the pci
3289          * connection is down.
3290          */
3291         if (adapter->link_speed == 0)
3292                 return;
3293         if (pci_channel_offline(pdev))
3294                 return;
3295
3296         adapter->stats.crcerrs += er32(CRCERRS);
3297         adapter->stats.gprc += er32(GPRC);
3298         adapter->stats.gorc += er32(GORCL);
3299         er32(GORCH); /* Clear gorc */
3300         adapter->stats.bprc += er32(BPRC);
3301         adapter->stats.mprc += er32(MPRC);
3302         adapter->stats.roc += er32(ROC);
3303
3304         adapter->stats.mpc += er32(MPC);
3305         if ((hw->phy.type == e1000_phy_82578) ||
3306             (hw->phy.type == e1000_phy_82577)) {
3307                 e1e_rphy(hw, HV_SCC_UPPER, &phy_data);
3308                 if (!e1e_rphy(hw, HV_SCC_LOWER, &phy_data))
3309                         adapter->stats.scc += phy_data;
3310
3311                 e1e_rphy(hw, HV_ECOL_UPPER, &phy_data);
3312                 if (!e1e_rphy(hw, HV_ECOL_LOWER, &phy_data))
3313                         adapter->stats.ecol += phy_data;
3314
3315                 e1e_rphy(hw, HV_MCC_UPPER, &phy_data);
3316                 if (!e1e_rphy(hw, HV_MCC_LOWER, &phy_data))
3317                         adapter->stats.mcc += phy_data;
3318
3319                 e1e_rphy(hw, HV_LATECOL_UPPER, &phy_data);
3320                 if (!e1e_rphy(hw, HV_LATECOL_LOWER, &phy_data))
3321                         adapter->stats.latecol += phy_data;
3322
3323                 e1e_rphy(hw, HV_DC_UPPER, &phy_data);
3324                 if (!e1e_rphy(hw, HV_DC_LOWER, &phy_data))
3325                         adapter->stats.dc += phy_data;
3326         } else {
3327                 adapter->stats.scc += er32(SCC);
3328                 adapter->stats.ecol += er32(ECOL);
3329                 adapter->stats.mcc += er32(MCC);
3330                 adapter->stats.latecol += er32(LATECOL);
3331                 adapter->stats.dc += er32(DC);
3332         }
3333         adapter->stats.xonrxc += er32(XONRXC);
3334         adapter->stats.xontxc += er32(XONTXC);
3335         adapter->stats.xoffrxc += er32(XOFFRXC);
3336         adapter->stats.xofftxc += er32(XOFFTXC);
3337         adapter->stats.gptc += er32(GPTC);
3338         adapter->stats.gotc += er32(GOTCL);
3339         er32(GOTCH); /* Clear gotc */
3340         adapter->stats.rnbc += er32(RNBC);
3341         adapter->stats.ruc += er32(RUC);
3342
3343         adapter->stats.mptc += er32(MPTC);
3344         adapter->stats.bptc += er32(BPTC);
3345
3346         /* used for adaptive IFS */
3347
3348         hw->mac.tx_packet_delta = er32(TPT);
3349         adapter->stats.tpt += hw->mac.tx_packet_delta;
3350         if ((hw->phy.type == e1000_phy_82578) ||
3351             (hw->phy.type == e1000_phy_82577)) {
3352                 e1e_rphy(hw, HV_COLC_UPPER, &phy_data);
3353                 if (!e1e_rphy(hw, HV_COLC_LOWER, &phy_data))
3354                         hw->mac.collision_delta = phy_data;
3355         } else {
3356                 hw->mac.collision_delta = er32(COLC);
3357         }
3358         adapter->stats.colc += hw->mac.collision_delta;
3359
3360         adapter->stats.algnerrc += er32(ALGNERRC);
3361         adapter->stats.rxerrc += er32(RXERRC);
3362         if ((hw->phy.type == e1000_phy_82578) ||
3363             (hw->phy.type == e1000_phy_82577)) {
3364                 e1e_rphy(hw, HV_TNCRS_UPPER, &phy_data);
3365                 if (!e1e_rphy(hw, HV_TNCRS_LOWER, &phy_data))
3366                         adapter->stats.tncrs += phy_data;
3367         } else {
3368                 if ((hw->mac.type != e1000_82574) &&
3369                     (hw->mac.type != e1000_82583))
3370                         adapter->stats.tncrs += er32(TNCRS);
3371         }
3372         adapter->stats.cexterr += er32(CEXTERR);
3373         adapter->stats.tsctc += er32(TSCTC);
3374         adapter->stats.tsctfc += er32(TSCTFC);
3375
3376         /* Fill out the OS statistics structure */
3377         netdev->stats.multicast = adapter->stats.mprc;
3378         netdev->stats.collisions = adapter->stats.colc;
3379
3380         /* Rx Errors */
3381
3382         /*
3383          * RLEC on some newer hardware can be incorrect so build
3384          * our own version based on RUC and ROC
3385          */
3386         netdev->stats.rx_errors = adapter->stats.rxerrc +
3387                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3388                 adapter->stats.ruc + adapter->stats.roc +
3389                 adapter->stats.cexterr;
3390         netdev->stats.rx_length_errors = adapter->stats.ruc +
3391                                               adapter->stats.roc;
3392         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3393         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3394         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3395
3396         /* Tx Errors */
3397         netdev->stats.tx_errors = adapter->stats.ecol +
3398                                        adapter->stats.latecol;
3399         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3400         netdev->stats.tx_window_errors = adapter->stats.latecol;
3401         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3402
3403         /* Tx Dropped needs to be maintained elsewhere */
3404
3405         /* Management Stats */
3406         adapter->stats.mgptc += er32(MGTPTC);
3407         adapter->stats.mgprc += er32(MGTPRC);
3408         adapter->stats.mgpdc += er32(MGTPDC);
3409 }
3410
3411 /**
3412  * e1000_phy_read_status - Update the PHY register status snapshot
3413  * @adapter: board private structure
3414  **/
3415 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3416 {
3417         struct e1000_hw *hw = &adapter->hw;
3418         struct e1000_phy_regs *phy = &adapter->phy_regs;
3419         int ret_val;
3420
3421         if ((er32(STATUS) & E1000_STATUS_LU) &&
3422             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3423                 ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3424                 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3425                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3426                 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3427                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3428                 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3429                 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3430                 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3431                 if (ret_val)
3432                         e_warn("Error reading PHY register\n");
3433         } else {
3434                 /*
3435                  * Do not read PHY registers if link is not up
3436                  * Set values to typical power-on defaults
3437                  */
3438                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3439                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3440                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3441                              BMSR_ERCAP);
3442                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3443                                   ADVERTISE_ALL | ADVERTISE_CSMA);
3444                 phy->lpa = 0;
3445                 phy->expansion = EXPANSION_ENABLENPAGE;
3446                 phy->ctrl1000 = ADVERTISE_1000FULL;
3447                 phy->stat1000 = 0;
3448                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3449         }
3450 }
3451
3452 static void e1000_print_link_info(struct e1000_adapter *adapter)
3453 {
3454         struct e1000_hw *hw = &adapter->hw;
3455         u32 ctrl = er32(CTRL);
3456
3457         /* Link status message must follow this format for user tools */
3458         printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
3459                "Flow Control: %s\n",
3460                adapter->netdev->name,
3461                adapter->link_speed,
3462                (adapter->link_duplex == FULL_DUPLEX) ?
3463                                 "Full Duplex" : "Half Duplex",
3464                ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3465                                 "RX/TX" :
3466                ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3467                ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3468 }
3469
3470 bool e1000e_has_link(struct e1000_adapter *adapter)
3471 {
3472         struct e1000_hw *hw = &adapter->hw;
3473         bool link_active = 0;
3474         s32 ret_val = 0;
3475
3476         /*
3477          * get_link_status is set on LSC (link status) interrupt or
3478          * Rx sequence error interrupt.  get_link_status will stay
3479          * false until the check_for_link establishes link
3480          * for copper adapters ONLY
3481          */
3482         switch (hw->phy.media_type) {
3483         case e1000_media_type_copper:
3484                 if (hw->mac.get_link_status) {
3485                         ret_val = hw->mac.ops.check_for_link(hw);
3486                         link_active = !hw->mac.get_link_status;
3487                 } else {
3488                         link_active = 1;
3489                 }
3490                 break;
3491         case e1000_media_type_fiber:
3492                 ret_val = hw->mac.ops.check_for_link(hw);
3493                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3494                 break;
3495         case e1000_media_type_internal_serdes:
3496                 ret_val = hw->mac.ops.check_for_link(hw);
3497                 link_active = adapter->hw.mac.serdes_has_link;
3498                 break;
3499         default:
3500         case e1000_media_type_unknown:
3501                 break;
3502         }
3503
3504         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3505             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3506                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3507                 e_info("Gigabit has been disabled, downgrading speed\n");
3508         }
3509
3510         return link_active;
3511 }
3512
3513 static void e1000e_enable_receives(struct e1000_adapter *adapter)
3514 {
3515         /* make sure the receive unit is started */
3516         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3517             (adapter->flags & FLAG_RX_RESTART_NOW)) {
3518                 struct e1000_hw *hw = &adapter->hw;
3519                 u32 rctl = er32(RCTL);
3520                 ew32(RCTL, rctl | E1000_RCTL_EN);
3521                 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3522         }
3523 }
3524
3525 /**
3526  * e1000_watchdog - Timer Call-back
3527  * @data: pointer to adapter cast into an unsigned long
3528  **/
3529 static void e1000_watchdog(unsigned long data)
3530 {
3531         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3532
3533         /* Do the rest outside of interrupt context */
3534         schedule_work(&adapter->watchdog_task);
3535
3536         /* TODO: make this use queue_delayed_work() */
3537 }
3538
3539 static void e1000_watchdog_task(struct work_struct *work)
3540 {
3541         struct e1000_adapter *adapter = container_of(work,
3542                                         struct e1000_adapter, watchdog_task);
3543         struct net_device *netdev = adapter->netdev;
3544         struct e1000_mac_info *mac = &adapter->hw.mac;
3545         struct e1000_phy_info *phy = &adapter->hw.phy;
3546         struct e1000_ring *tx_ring = adapter->tx_ring;
3547         struct e1000_hw *hw = &adapter->hw;
3548         u32 link, tctl;
3549         int tx_pending = 0;
3550
3551         link = e1000e_has_link(adapter);
3552         if ((netif_carrier_ok(netdev)) && link) {
3553                 e1000e_enable_receives(adapter);
3554                 goto link_up;
3555         }
3556
3557         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3558             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3559                 e1000_update_mng_vlan(adapter);
3560
3561         if (link) {
3562                 if (!netif_carrier_ok(netdev)) {
3563                         bool txb2b = 1;
3564                         /* update snapshot of PHY registers on LSC */
3565                         e1000_phy_read_status(adapter);
3566                         mac->ops.get_link_up_info(&adapter->hw,
3567                                                    &adapter->link_speed,
3568                                                    &adapter->link_duplex);
3569                         e1000_print_link_info(adapter);
3570                         /*
3571                          * On supported PHYs, check for duplex mismatch only
3572                          * if link has autonegotiated at 10/100 half
3573                          */
3574                         if ((hw->phy.type == e1000_phy_igp_3 ||
3575                              hw->phy.type == e1000_phy_bm) &&
3576                             (hw->mac.autoneg == true) &&
3577                             (adapter->link_speed == SPEED_10 ||
3578                              adapter->link_speed == SPEED_100) &&
3579                             (adapter->link_duplex == HALF_DUPLEX)) {
3580                                 u16 autoneg_exp;
3581
3582                                 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
3583
3584                                 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
3585                                         e_info("Autonegotiated half duplex but"
3586                                                " link partner cannot autoneg. "
3587                                                " Try forcing full duplex if "
3588                                                "link gets many collisions.\n");
3589                         }
3590
3591                         /* adjust timeout factor according to speed/duplex */
3592                         adapter->tx_timeout_factor = 1;
3593                         switch (adapter->link_speed) {
3594                         case SPEED_10:
3595                                 txb2b = 0;
3596                                 adapter->tx_timeout_factor = 16;
3597                                 break;
3598                         case SPEED_100:
3599                                 txb2b = 0;
3600                                 adapter->tx_timeout_factor = 10;
3601                                 break;
3602                         }
3603
3604                         /*
3605                          * workaround: re-program speed mode bit after
3606                          * link-up event
3607                          */
3608                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3609                             !txb2b) {
3610                                 u32 tarc0;
3611                                 tarc0 = er32(TARC(0));
3612                                 tarc0 &= ~SPEED_MODE_BIT;
3613                                 ew32(TARC(0), tarc0);
3614                         }
3615
3616                         /*
3617                          * disable TSO for pcie and 10/100 speeds, to avoid
3618                          * some hardware issues
3619                          */
3620                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
3621                                 switch (adapter->link_speed) {
3622                                 case SPEED_10:
3623                                 case SPEED_100:
3624                                         e_info("10/100 speed: disabling TSO\n");
3625                                         netdev->features &= ~NETIF_F_TSO;
3626                                         netdev->features &= ~NETIF_F_TSO6;
3627                                         break;
3628                                 case SPEED_1000:
3629                                         netdev->features |= NETIF_F_TSO;
3630                                         netdev->features |= NETIF_F_TSO6;
3631                                         break;
3632                                 default:
3633                                         /* oops */
3634                                         break;
3635                                 }
3636                         }
3637
3638                         /*
3639                          * enable transmits in the hardware, need to do this
3640                          * after setting TARC(0)
3641                          */
3642                         tctl = er32(TCTL);
3643                         tctl |= E1000_TCTL_EN;
3644                         ew32(TCTL, tctl);
3645
3646                         /*
3647                          * Perform any post-link-up configuration before
3648                          * reporting link up.
3649                          */
3650                         if (phy->ops.cfg_on_link_up)
3651                                 phy->ops.cfg_on_link_up(hw);
3652
3653                         netif_carrier_on(netdev);
3654
3655                         if (!test_bit(__E1000_DOWN, &adapter->state))
3656                                 mod_timer(&adapter->phy_info_timer,
3657                                           round_jiffies(jiffies + 2 * HZ));
3658                 }
3659         } else {
3660                 if (netif_carrier_ok(netdev)) {
3661                         adapter->link_speed = 0;
3662                         adapter->link_duplex = 0;
3663                         /* Link status message must follow this format */
3664                         printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
3665                                adapter->netdev->name);
3666                         netif_carrier_off(netdev);
3667                         if (!test_bit(__E1000_DOWN, &adapter->state))
3668                                 mod_timer(&adapter->phy_info_timer,
3669                                           round_jiffies(jiffies + 2 * HZ));
3670
3671                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3672                                 schedule_work(&adapter->reset_task);
3673                 }
3674         }
3675
3676 link_up:
3677         e1000e_update_stats(adapter);
3678
3679         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3680         adapter->tpt_old = adapter->stats.tpt;
3681         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3682         adapter->colc_old = adapter->stats.colc;
3683
3684         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3685         adapter->gorc_old = adapter->stats.gorc;
3686         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3687         adapter->gotc_old = adapter->stats.gotc;
3688
3689         e1000e_update_adaptive(&adapter->hw);
3690
3691         if (!netif_carrier_ok(netdev)) {
3692                 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3693                                tx_ring->count);
3694                 if (tx_pending) {
3695                         /*
3696                          * We've lost link, so the controller stops DMA,
3697                          * but we've got queued Tx work that's never going
3698                          * to get done, so reset controller to flush Tx.
3699                          * (Do the reset outside of interrupt context).
3700                          */
3701                         adapter->tx_timeout_count++;
3702                         schedule_work(&adapter->reset_task);
3703                         /* return immediately since reset is imminent */
3704                         return;
3705                 }
3706         }
3707
3708         /* Cause software interrupt to ensure Rx ring is cleaned */
3709         if (adapter->msix_entries)
3710                 ew32(ICS, adapter->rx_ring->ims_val);
3711         else
3712                 ew32(ICS, E1000_ICS_RXDMT0);
3713
3714         /* Force detection of hung controller every watchdog period */
3715         adapter->detect_tx_hung = 1;
3716
3717         /*
3718          * With 82571 controllers, LAA may be overwritten due to controller
3719          * reset from the other port. Set the appropriate LAA in RAR[0]
3720          */
3721         if (e1000e_get_laa_state_82571(hw))
3722                 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3723
3724         /* Reset the timer */
3725         if (!test_bit(__E1000_DOWN, &adapter->state))
3726                 mod_timer(&adapter->watchdog_timer,
3727                           round_jiffies(jiffies + 2 * HZ));
3728 }
3729
3730 #define E1000_TX_FLAGS_CSUM             0x00000001
3731 #define E1000_TX_FLAGS_VLAN             0x00000002
3732 #define E1000_TX_FLAGS_TSO              0x00000004
3733 #define E1000_TX_FLAGS_IPV4             0x00000008
3734 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
3735 #define E1000_TX_FLAGS_VLAN_SHIFT       16
3736
3737 static int e1000_tso(struct e1000_adapter *adapter,
3738                      struct sk_buff *skb)
3739 {
3740         struct e1000_ring *tx_ring = adapter->tx_ring;
3741         struct e1000_context_desc *context_desc;
3742         struct e1000_buffer *buffer_info;
3743         unsigned int i;
3744         u32 cmd_length = 0;
3745         u16 ipcse = 0, tucse, mss;
3746         u8 ipcss, ipcso, tucss, tucso, hdr_len;
3747         int err;
3748
3749         if (!skb_is_gso(skb))
3750                 return 0;
3751
3752         if (skb_header_cloned(skb)) {
3753                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3754                 if (err)
3755                         return err;
3756         }
3757
3758         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3759         mss = skb_shinfo(skb)->gso_size;
3760         if (skb->protocol == htons(ETH_P_IP)) {
3761                 struct iphdr *iph = ip_hdr(skb);
3762                 iph->tot_len = 0;
3763                 iph->check = 0;
3764                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
3765                                                          0, IPPROTO_TCP, 0);
3766                 cmd_length = E1000_TXD_CMD_IP;
3767                 ipcse = skb_transport_offset(skb) - 1;
3768         } else if (skb_is_gso_v6(skb)) {
3769                 ipv6_hdr(skb)->payload_len = 0;
3770                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3771                                                        &ipv6_hdr(skb)->daddr,
3772                                                        0, IPPROTO_TCP, 0);
3773                 ipcse = 0;
3774         }
3775         ipcss = skb_network_offset(skb);
3776         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3777         tucss = skb_transport_offset(skb);
3778         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3779         tucse = 0;
3780
3781         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3782                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3783
3784         i = tx_ring->next_to_use;
3785         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3786         buffer_info = &tx_ring->buffer_info[i];
3787
3788         context_desc->lower_setup.ip_fields.ipcss  = ipcss;
3789         context_desc->lower_setup.ip_fields.ipcso  = ipcso;
3790         context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
3791         context_desc->upper_setup.tcp_fields.tucss = tucss;
3792         context_desc->upper_setup.tcp_fields.tucso = tucso;
3793         context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3794         context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
3795         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3796         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3797
3798         buffer_info->time_stamp = jiffies;
3799         buffer_info->next_to_watch = i;
3800
3801         i++;
3802         if (i == tx_ring->count)
3803                 i = 0;
3804         tx_ring->next_to_use = i;
3805
3806         return 1;
3807 }
3808
3809 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3810 {
3811         struct e1000_ring *tx_ring = adapter->tx_ring;
3812         struct e1000_context_desc *context_desc;
3813         struct e1000_buffer *buffer_info;
3814         unsigned int i;
3815         u8 css;
3816         u32 cmd_len = E1000_TXD_CMD_DEXT;
3817         __be16 protocol;
3818
3819         if (skb->ip_summed != CHECKSUM_PARTIAL)
3820                 return 0;
3821
3822         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
3823                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
3824         else
3825                 protocol = skb->protocol;
3826
3827         switch (protocol) {
3828         case cpu_to_be16(ETH_P_IP):
3829                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3830                         cmd_len |= E1000_TXD_CMD_TCP;
3831                 break;
3832         case cpu_to_be16(ETH_P_IPV6):
3833                 /* XXX not handling all IPV6 headers */
3834                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3835                         cmd_len |= E1000_TXD_CMD_TCP;
3836                 break;
3837         default:
3838                 if (unlikely(net_ratelimit()))
3839                         e_warn("checksum_partial proto=%x!\n",
3840                                be16_to_cpu(protocol));
3841                 break;
3842         }
3843
3844         css = skb_transport_offset(skb);
3845
3846         i = tx_ring->next_to_use;
3847         buffer_info = &tx_ring->buffer_info[i];
3848         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3849
3850         context_desc->lower_setup.ip_config = 0;
3851         context_desc->upper_setup.tcp_fields.tucss = css;
3852         context_desc->upper_setup.tcp_fields.tucso =
3853                                 css + skb->csum_offset;
3854         context_desc->upper_setup.tcp_fields.tucse = 0;
3855         context_desc->tcp_seg_setup.data = 0;
3856         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
3857
3858         buffer_info->time_stamp = jiffies;
3859         buffer_info->next_to_watch = i;
3860
3861         i++;
3862         if (i == tx_ring->count)
3863                 i = 0;
3864         tx_ring->next_to_use = i;
3865
3866         return 1;
3867 }
3868
3869 #define E1000_MAX_PER_TXD       8192
3870 #define E1000_MAX_TXD_PWR       12
3871
3872 static int e1000_tx_map(struct e1000_adapter *adapter,
3873                         struct sk_buff *skb, unsigned int first,
3874                         unsigned int max_per_txd, unsigned int nr_frags,
3875                         unsigned int mss)
3876 {
3877         struct e1000_ring *tx_ring = adapter->tx_ring;
3878         struct pci_dev *pdev = adapter->pdev;
3879         struct e1000_buffer *buffer_info;
3880         unsigned int len = skb_headlen(skb);
3881         unsigned int offset = 0, size, count = 0, i;
3882         unsigned int f;
3883
3884         i = tx_ring->next_to_use;
3885
3886         while (len) {
3887                 buffer_info = &tx_ring->buffer_info[i];
3888                 size = min(len, max_per_txd);
3889
3890                 buffer_info->length = size;
3891                 buffer_info->time_stamp = jiffies;
3892                 buffer_info->next_to_watch = i;
3893                 buffer_info->dma = pci_map_single(pdev, skb->data + offset,
3894                                                   size, PCI_DMA_TODEVICE);
3895                 buffer_info->mapped_as_page = false;
3896                 if (pci_dma_mapping_error(pdev, buffer_info->dma))
3897                         goto dma_error;
3898
3899                 len -= size;
3900                 offset += size;
3901                 count++;
3902
3903                 if (len) {
3904                         i++;
3905                         if (i == tx_ring->count)
3906                                 i = 0;
3907                 }
3908         }
3909
3910         for (f = 0; f < nr_frags; f++) {
3911                 struct skb_frag_struct *frag;
3912
3913                 frag = &skb_shinfo(skb)->frags[f];
3914                 len = frag->size;
3915                 offset = frag->page_offset;
3916
3917                 while (len) {
3918                         i++;
3919                         if (i == tx_ring->count)
3920                                 i = 0;
3921
3922                         buffer_info = &tx_ring->buffer_info[i];
3923                         size = min(len, max_per_txd);
3924
3925                         buffer_info->length = size;
3926                         buffer_info->time_stamp = jiffies;
3927                         buffer_info->next_to_watch = i;
3928                         buffer_info->dma = pci_map_page(pdev, frag->page,
3929                                                         offset, size,
3930                                                         PCI_DMA_TODEVICE);
3931                         buffer_info->mapped_as_page = true;
3932                         if (pci_dma_mapping_error(pdev, buffer_info->dma))
3933                                 goto dma_error;
3934
3935                         len -= size;
3936                         offset += size;
3937                         count++;
3938                 }
3939         }
3940
3941         tx_ring->buffer_info[i].skb = skb;
3942         tx_ring->buffer_info[first].next_to_watch = i;
3943
3944         return count;
3945
3946 dma_error:
3947         dev_err(&pdev->dev, "TX DMA map failed\n");
3948         buffer_info->dma = 0;
3949         if (count)
3950                 count--;
3951
3952         while (count--) {
3953                 if (i==0)
3954                         i += tx_ring->count;
3955                 i--;
3956                 buffer_info = &tx_ring->buffer_info[i];
3957                 e1000_put_txbuf(adapter, buffer_info);;
3958         }
3959
3960         return 0;
3961 }
3962
3963 static void e1000_tx_queue(struct e1000_adapter *adapter,
3964                            int tx_flags, int count)
3965 {
3966         struct e1000_ring *tx_ring = adapter->tx_ring;
3967         struct e1000_tx_desc *tx_desc = NULL;
3968         struct e1000_buffer *buffer_info;
3969         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3970         unsigned int i;
3971
3972         if (tx_flags & E1000_TX_FLAGS_TSO) {
3973                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3974                              E1000_TXD_CMD_TSE;
3975                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3976
3977                 if (tx_flags & E1000_TX_FLAGS_IPV4)
3978                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3979         }
3980
3981         if (tx_flags & E1000_TX_FLAGS_CSUM) {
3982                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3983                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3984         }
3985
3986         if (tx_flags & E1000_TX_FLAGS_VLAN) {
3987                 txd_lower |= E1000_TXD_CMD_VLE;
3988                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3989         }
3990
3991         i = tx_ring->next_to_use;
3992
3993         while (count--) {
3994                 buffer_info = &tx_ring->buffer_info[i];
3995                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3996                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3997                 tx_desc->lower.data =
3998                         cpu_to_le32(txd_lower | buffer_info->length);
3999                 tx_desc->upper.data = cpu_to_le32(txd_upper);
4000
4001                 i++;
4002                 if (i == tx_ring->count)
4003                         i = 0;
4004         }
4005
4006         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4007
4008         /*
4009          * Force memory writes to complete before letting h/w
4010          * know there are new descriptors to fetch.  (Only
4011          * applicable for weak-ordered memory model archs,
4012          * such as IA-64).
4013          */
4014         wmb();
4015
4016         tx_ring->next_to_use = i;
4017         writel(i, adapter->hw.hw_addr + tx_ring->tail);
4018         /*
4019          * we need this if more than one processor can write to our tail
4020          * at a time, it synchronizes IO on IA64/Altix systems
4021          */
4022         mmiowb();
4023 }
4024
4025 #define MINIMUM_DHCP_PACKET_SIZE 282
4026 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4027                                     struct sk_buff *skb)
4028 {
4029         struct e1000_hw *hw =  &adapter->hw;
4030         u16 length, offset;
4031
4032         if (vlan_tx_tag_present(skb)) {
4033                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4034                     (adapter->hw.mng_cookie.status &
4035                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4036                         return 0;
4037         }
4038
4039         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4040                 return 0;
4041
4042         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4043                 return 0;
4044
4045         {
4046                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4047                 struct udphdr *udp;
4048
4049                 if (ip->protocol != IPPROTO_UDP)
4050                         return 0;
4051
4052                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4053                 if (ntohs(udp->dest) != 67)
4054                         return 0;
4055
4056                 offset = (u8 *)udp + 8 - skb->data;
4057                 length = skb->len - offset;
4058                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4059         }
4060
4061         return 0;
4062 }
4063
4064 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4065 {
4066         struct e1000_adapter *adapter = netdev_priv(netdev);
4067
4068         netif_stop_queue(netdev);
4069         /*
4070          * Herbert's original patch had:
4071          *  smp_mb__after_netif_stop_queue();
4072          * but since that doesn't exist yet, just open code it.
4073          */
4074         smp_mb();
4075
4076         /*
4077          * We need to check again in a case another CPU has just
4078          * made room available.
4079          */
4080         if (e1000_desc_unused(adapter->tx_ring) < size)
4081                 return -EBUSY;
4082
4083         /* A reprieve! */
4084         netif_start_queue(netdev);
4085         ++adapter->restart_queue;
4086         return 0;
4087 }
4088
4089 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4090 {
4091         struct e1000_adapter *adapter = netdev_priv(netdev);
4092
4093         if (e1000_desc_unused(adapter->tx_ring) >= size)
4094                 return 0;
4095         return __e1000_maybe_stop_tx(netdev, size);
4096 }
4097
4098 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4099 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4100                                     struct net_device *netdev)
4101 {
4102         struct e1000_adapter *adapter = netdev_priv(netdev);
4103         struct e1000_ring *tx_ring = adapter->tx_ring;
4104         unsigned int first;
4105         unsigned int max_per_txd = E1000_MAX_PER_TXD;
4106         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4107         unsigned int tx_flags = 0;
4108         unsigned int len = skb->len - skb->data_len;
4109         unsigned int nr_frags;
4110         unsigned int mss;
4111         int count = 0;
4112         int tso;
4113         unsigned int f;
4114
4115         if (test_bit(__E1000_DOWN, &adapter->state)) {
4116                 dev_kfree_skb_any(skb);
4117                 return NETDEV_TX_OK;
4118         }
4119
4120         if (skb->len <= 0) {
4121                 dev_kfree_skb_any(skb);
4122                 return NETDEV_TX_OK;
4123         }
4124
4125         mss = skb_shinfo(skb)->gso_size;
4126         /*
4127          * The controller does a simple calculation to
4128          * make sure there is enough room in the FIFO before
4129          * initiating the DMA for each buffer.  The calc is:
4130          * 4 = ceil(buffer len/mss).  To make sure we don't
4131          * overrun the FIFO, adjust the max buffer len if mss
4132          * drops.
4133          */
4134         if (mss) {
4135                 u8 hdr_len;
4136                 max_per_txd = min(mss << 2, max_per_txd);
4137                 max_txd_pwr = fls(max_per_txd) - 1;
4138
4139                 /*
4140                  * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4141                  * points to just header, pull a few bytes of payload from
4142                  * frags into skb->data
4143                  */
4144                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4145                 /*
4146                  * we do this workaround for ES2LAN, but it is un-necessary,
4147                  * avoiding it could save a lot of cycles
4148                  */
4149                 if (skb->data_len && (hdr_len == len)) {
4150                         unsigned int pull_size;
4151
4152                         pull_size = min((unsigned int)4, skb->data_len);
4153                         if (!__pskb_pull_tail(skb, pull_size)) {
4154                                 e_err("__pskb_pull_tail failed.\n");
4155                                 dev_kfree_skb_any(skb);
4156                                 return NETDEV_TX_OK;
4157                         }
4158                         len = skb->len - skb->data_len;
4159                 }
4160         }
4161
4162         /* reserve a descriptor for the offload context */
4163         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4164                 count++;
4165         count++;
4166
4167         count += TXD_USE_COUNT(len, max_txd_pwr);
4168
4169         nr_frags = skb_shinfo(skb)->nr_frags;
4170         for (f = 0; f < nr_frags; f++)
4171                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4172                                        max_txd_pwr);
4173
4174         if (adapter->hw.mac.tx_pkt_filtering)
4175                 e1000_transfer_dhcp_info(adapter, skb);
4176
4177         /*
4178          * need: count + 2 desc gap to keep tail from touching
4179          * head, otherwise try next time
4180          */
4181         if (e1000_maybe_stop_tx(netdev, count + 2))
4182                 return NETDEV_TX_BUSY;
4183
4184         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4185                 tx_flags |= E1000_TX_FLAGS_VLAN;
4186                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4187         }
4188
4189         first = tx_ring->next_to_use;
4190
4191         tso = e1000_tso(adapter, skb);
4192         if (tso < 0) {
4193                 dev_kfree_skb_any(skb);
4194                 return NETDEV_TX_OK;
4195         }
4196
4197         if (tso)
4198                 tx_flags |= E1000_TX_FLAGS_TSO;
4199         else if (e1000_tx_csum(adapter, skb))
4200                 tx_flags |= E1000_TX_FLAGS_CSUM;
4201
4202         /*
4203          * Old method was to assume IPv4 packet by default if TSO was enabled.
4204          * 82571 hardware supports TSO capabilities for IPv6 as well...
4205          * no longer assume, we must.
4206          */
4207         if (skb->protocol == htons(ETH_P_IP))
4208                 tx_flags |= E1000_TX_FLAGS_IPV4;
4209
4210         /* if count is 0 then mapping error has occured */
4211         count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4212         if (count) {
4213                 e1000_tx_queue(adapter, tx_flags, count);
4214                 /* Make sure there is space in the ring for the next send. */
4215                 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4216
4217         } else {
4218                 dev_kfree_skb_any(skb);
4219                 tx_ring->buffer_info[first].time_stamp = 0;
4220                 tx_ring->next_to_use = first;
4221         }
4222
4223         return NETDEV_TX_OK;
4224 }
4225
4226 /**
4227  * e1000_tx_timeout - Respond to a Tx Hang
4228  * @netdev: network interface device structure
4229  **/
4230 static void e1000_tx_timeout(struct net_device *netdev)
4231 {
4232         struct e1000_adapter *adapter = netdev_priv(netdev);
4233
4234         /* Do the reset outside of interrupt context */
4235         adapter->tx_timeout_count++;
4236         schedule_work(&adapter->reset_task);
4237 }
4238
4239 static void e1000_reset_task(struct work_struct *work)
4240 {
4241         struct e1000_adapter *adapter;
4242         adapter = container_of(work, struct e1000_adapter, reset_task);
4243
4244         e1000e_reinit_locked(adapter);
4245 }
4246
4247 /**
4248  * e1000_get_stats - Get System Network Statistics
4249  * @netdev: network interface device structure
4250  *
4251  * Returns the address of the device statistics structure.
4252  * The statistics are actually updated from the timer callback.
4253  **/
4254 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4255 {
4256         /* only return the current stats */
4257         return &netdev->stats;
4258 }
4259
4260 /**
4261  * e1000_change_mtu - Change the Maximum Transfer Unit
4262  * @netdev: network interface device structure
4263  * @new_mtu: new value for maximum frame size
4264  *
4265  * Returns 0 on success, negative on failure
4266  **/
4267 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4268 {
4269         struct e1000_adapter *adapter = netdev_priv(netdev);
4270         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4271
4272         /* Jumbo frame support */
4273         if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
4274             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4275                 e_err("Jumbo Frames not supported.\n");
4276                 return -EINVAL;
4277         }
4278
4279         /* Supported frame sizes */
4280         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4281             (max_frame > adapter->max_hw_frame_size)) {
4282                 e_err("Unsupported MTU setting\n");
4283                 return -EINVAL;
4284         }
4285
4286         /* 82573 Errata 17 */
4287         if (((adapter->hw.mac.type == e1000_82573) ||
4288              (adapter->hw.mac.type == e1000_82574)) &&
4289             (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
4290                 adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
4291                 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
4292         }
4293
4294         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4295                 msleep(1);
4296         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
4297         adapter->max_frame_size = max_frame;
4298         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4299         netdev->mtu = new_mtu;
4300         if (netif_running(netdev))
4301                 e1000e_down(adapter);
4302
4303         /*
4304          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4305          * means we reserve 2 more, this pushes us to allocate from the next
4306          * larger slab size.
4307          * i.e. RXBUFFER_2048 --> size-4096 slab
4308          * However with the new *_jumbo_rx* routines, jumbo receives will use
4309          * fragmented skbs
4310          */
4311
4312         if (max_frame <= 2048)
4313                 adapter->rx_buffer_len = 2048;
4314         else
4315                 adapter->rx_buffer_len = 4096;
4316
4317         /* adjust allocation if LPE protects us, and we aren't using SBP */
4318         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4319              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4320                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4321                                          + ETH_FCS_LEN;
4322
4323         if (netif_running(netdev))
4324                 e1000e_up(adapter);
4325         else
4326                 e1000e_reset(adapter);
4327
4328         clear_bit(__E1000_RESETTING, &adapter->state);
4329
4330         return 0;
4331 }
4332
4333 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4334                            int cmd)
4335 {
4336         struct e1000_adapter *adapter = netdev_priv(netdev);
4337         struct mii_ioctl_data *data = if_mii(ifr);
4338
4339         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4340                 return -EOPNOTSUPP;
4341
4342         switch (cmd) {
4343         case SIOCGMIIPHY:
4344                 data->phy_id = adapter->hw.phy.addr;
4345                 break;
4346         case SIOCGMIIREG:
4347                 e1000_phy_read_status(adapter);
4348
4349                 switch (data->reg_num & 0x1F) {
4350                 case MII_BMCR:
4351                         data->val_out = adapter->phy_regs.bmcr;
4352                         break;
4353                 case MII_BMSR:
4354                         data->val_out = adapter->phy_regs.bmsr;
4355                         break;
4356                 case MII_PHYSID1:
4357                         data->val_out = (adapter->hw.phy.id >> 16);
4358                         break;
4359                 case MII_PHYSID2:
4360                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
4361                         break;
4362                 case MII_ADVERTISE:
4363                         data->val_out = adapter->phy_regs.advertise;
4364                         break;
4365                 case MII_LPA:
4366                         data->val_out = adapter->phy_regs.lpa;
4367                         break;
4368                 case MII_EXPANSION:
4369                         data->val_out = adapter->phy_regs.expansion;
4370                         break;
4371                 case MII_CTRL1000:
4372                         data->val_out = adapter->phy_regs.ctrl1000;
4373                         break;
4374                 case MII_STAT1000:
4375                         data->val_out = adapter->phy_regs.stat1000;
4376                         break;
4377                 case MII_ESTATUS:
4378                         data->val_out = adapter->phy_regs.estatus;
4379                         break;
4380                 default:
4381                         return -EIO;
4382                 }
4383                 break;
4384         case SIOCSMIIREG:
4385         default:
4386                 return -EOPNOTSUPP;
4387         }
4388         return 0;
4389 }
4390
4391 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4392 {
4393         switch (cmd) {
4394         case SIOCGMIIPHY:
4395         case SIOCGMIIREG:
4396         case SIOCSMIIREG:
4397                 return e1000_mii_ioctl(netdev, ifr, cmd);
4398         default:
4399                 return -EOPNOTSUPP;
4400         }
4401 }
4402
4403 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
4404 {
4405         struct e1000_hw *hw = &adapter->hw;
4406         u32 i, mac_reg;
4407         u16 phy_reg;
4408         int retval = 0;
4409
4410         /* copy MAC RARs to PHY RARs */
4411         for (i = 0; i < adapter->hw.mac.rar_entry_count; i++) {
4412                 mac_reg = er32(RAL(i));
4413                 e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
4414                 e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
4415                 mac_reg = er32(RAH(i));
4416                 e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
4417                 e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0xFFFF));
4418         }
4419
4420         /* copy MAC MTA to PHY MTA */
4421         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
4422                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
4423                 e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
4424                 e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
4425         }
4426
4427         /* configure PHY Rx Control register */
4428         e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
4429         mac_reg = er32(RCTL);
4430         if (mac_reg & E1000_RCTL_UPE)
4431                 phy_reg |= BM_RCTL_UPE;
4432         if (mac_reg & E1000_RCTL_MPE)
4433                 phy_reg |= BM_RCTL_MPE;
4434         phy_reg &= ~(BM_RCTL_MO_MASK);
4435         if (mac_reg & E1000_RCTL_MO_3)
4436                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
4437                                 << BM_RCTL_MO_SHIFT);
4438         if (mac_reg & E1000_RCTL_BAM)
4439                 phy_reg |= BM_RCTL_BAM;
4440         if (mac_reg & E1000_RCTL_PMCF)
4441                 phy_reg |= BM_RCTL_PMCF;
4442         mac_reg = er32(CTRL);
4443         if (mac_reg & E1000_CTRL_RFCE)
4444                 phy_reg |= BM_RCTL_RFCE;
4445         e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);
4446
4447         /* enable PHY wakeup in MAC register */
4448         ew32(WUFC, wufc);
4449         ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
4450
4451         /* configure and enable PHY wakeup in PHY registers */
4452         e1e_wphy(&adapter->hw, BM_WUFC, wufc);
4453         e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
4454
4455         /* activate PHY wakeup */
4456         retval = hw->phy.ops.acquire(hw);
4457         if (retval) {
4458                 e_err("Could not acquire PHY\n");
4459                 return retval;
4460         }
4461         e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4462                                  (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
4463         retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
4464         if (retval) {
4465                 e_err("Could not read PHY page 769\n");
4466                 goto out;
4467         }
4468         phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
4469         retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
4470         if (retval)
4471                 e_err("Could not set PHY Host Wakeup bit\n");
4472 out:
4473         hw->phy.ops.release(hw);
4474
4475         return retval;
4476 }
4477
4478 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4479 {
4480         struct net_device *netdev = pci_get_drvdata(pdev);
4481         struct e1000_adapter *adapter = netdev_priv(netdev);
4482         struct e1000_hw *hw = &adapter->hw;
4483         u32 ctrl, ctrl_ext, rctl, status;
4484         u32 wufc = adapter->wol;
4485         int retval = 0;
4486
4487         netif_device_detach(netdev);
4488
4489         if (netif_running(netdev)) {
4490                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4491                 e1000e_down(adapter);
4492                 e1000_free_irq(adapter);
4493         }
4494         e1000e_reset_interrupt_capability(adapter);
4495
4496         retval = pci_save_state(pdev);
4497         if (retval)
4498                 return retval;
4499
4500         status = er32(STATUS);
4501         if (status & E1000_STATUS_LU)
4502                 wufc &= ~E1000_WUFC_LNKC;
4503
4504         if (wufc) {
4505                 e1000_setup_rctl(adapter);
4506                 e1000_set_multi(netdev);
4507
4508                 /* turn on all-multi mode if wake on multicast is enabled */
4509                 if (wufc & E1000_WUFC_MC) {
4510                         rctl = er32(RCTL);
4511                         rctl |= E1000_RCTL_MPE;
4512                         ew32(RCTL, rctl);
4513                 }
4514
4515                 ctrl = er32(CTRL);
4516                 /* advertise wake from D3Cold */
4517                 #define E1000_CTRL_ADVD3WUC 0x00100000
4518                 /* phy power management enable */
4519                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4520                 ctrl |= E1000_CTRL_ADVD3WUC;
4521                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
4522                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
4523                 ew32(CTRL, ctrl);
4524
4525                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4526                     adapter->hw.phy.media_type ==
4527                     e1000_media_type_internal_serdes) {
4528                         /* keep the laser running in D3 */
4529                         ctrl_ext = er32(CTRL_EXT);
4530                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
4531                         ew32(CTRL_EXT, ctrl_ext);
4532                 }
4533
4534                 if (adapter->flags & FLAG_IS_ICH)
4535                         e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4536
4537                 /* Allow time for pending master requests to run */
4538                 e1000e_disable_pcie_master(&adapter->hw);
4539
4540                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
4541                         /* enable wakeup by the PHY */
4542                         retval = e1000_init_phy_wakeup(adapter, wufc);
4543                         if (retval)
4544                                 return retval;
4545                 } else {
4546                         /* enable wakeup by the MAC */
4547                         ew32(WUFC, wufc);
4548                         ew32(WUC, E1000_WUC_PME_EN);
4549                 }
4550         } else {
4551                 ew32(WUC, 0);
4552                 ew32(WUFC, 0);
4553         }
4554
4555         *enable_wake = !!wufc;
4556
4557         /* make sure adapter isn't asleep if manageability is enabled */
4558         if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
4559             (hw->mac.ops.check_mng_mode(hw)))
4560                 *enable_wake = true;
4561
4562         if (adapter->hw.phy.type == e1000_phy_igp_3)
4563                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
4564
4565         /*
4566          * Release control of h/w to f/w.  If f/w is AMT enabled, this
4567          * would have already happened in close and is redundant.
4568          */
4569         e1000_release_hw_control(adapter);
4570
4571         pci_disable_device(pdev);
4572
4573         return 0;
4574 }
4575
4576 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
4577 {
4578         if (sleep && wake) {
4579                 pci_prepare_to_sleep(pdev);
4580                 return;
4581         }
4582
4583         pci_wake_from_d3(pdev, wake);
4584         pci_set_power_state(pdev, PCI_D3hot);
4585 }
4586
4587 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
4588                                     bool wake)
4589 {
4590         struct net_device *netdev = pci_get_drvdata(pdev);
4591         struct e1000_adapter *adapter = netdev_priv(netdev);
4592
4593         /*
4594          * The pci-e switch on some quad port adapters will report a
4595          * correctable error when the MAC transitions from D0 to D3.  To
4596          * prevent this we need to mask off the correctable errors on the
4597          * downstream port of the pci-e switch.
4598          */
4599         if (adapter->flags & FLAG_IS_QUAD_PORT) {
4600                 struct pci_dev *us_dev = pdev->bus->self;
4601                 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
4602                 u16 devctl;
4603
4604                 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
4605                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
4606                                       (devctl & ~PCI_EXP_DEVCTL_CERE));
4607
4608                 e1000_power_off(pdev, sleep, wake);
4609
4610                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
4611         } else {
4612                 e1000_power_off(pdev, sleep, wake);
4613         }
4614 }
4615
4616 #ifdef CONFIG_PCIEASPM
4617 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
4618 {
4619         pci_disable_link_state(pdev, state);
4620 }
4621 #else
4622 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
4623 {
4624         int pos;
4625         u16 reg16;
4626
4627         /*
4628          * Both device and parent should have the same ASPM setting.
4629          * Disable ASPM in downstream component first and then upstream.
4630          */
4631         pos = pci_pcie_cap(pdev);
4632         pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
4633         reg16 &= ~state;
4634         pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
4635
4636         pos = pci_pcie_cap(pdev->bus->self);
4637         pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
4638         reg16 &= ~state;
4639         pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
4640 }
4641 #endif
4642 void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
4643 {
4644         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
4645                  (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
4646                  (state & PCIE_LINK_STATE_L1) ? "L1" : "");
4647
4648         __e1000e_disable_aspm(pdev, state);
4649 }
4650
4651 #ifdef CONFIG_PM
4652 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4653 {
4654         int retval;
4655         bool wake;
4656
4657         retval = __e1000_shutdown(pdev, &wake);
4658         if (!retval)
4659                 e1000_complete_shutdown(pdev, true, wake);
4660
4661         return retval;
4662 }
4663
4664 static int e1000_resume(struct pci_dev *pdev)
4665 {
4666         struct net_device *netdev = pci_get_drvdata(pdev);
4667         struct e1000_adapter *adapter = netdev_priv(netdev);
4668         struct e1000_hw *hw = &adapter->hw;
4669         u32 err;
4670
4671         pci_set_power_state(pdev, PCI_D0);
4672         pci_restore_state(pdev);
4673         pci_save_state(pdev);
4674         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
4675                 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
4676
4677         err = pci_enable_device_mem(pdev);
4678         if (err) {
4679                 dev_err(&pdev->dev,
4680                         "Cannot enable PCI device from suspend\n");
4681                 return err;
4682         }
4683
4684         pci_set_master(pdev);
4685
4686         pci_enable_wake(pdev, PCI_D3hot, 0);
4687         pci_enable_wake(pdev, PCI_D3cold, 0);
4688
4689         e1000e_set_interrupt_capability(adapter);
4690         if (netif_running(netdev)) {
4691                 err = e1000_request_irq(adapter);
4692                 if (err)
4693                         return err;
4694         }
4695
4696         e1000e_power_up_phy(adapter);
4697
4698         /* report the system wakeup cause from S3/S4 */
4699         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
4700                 u16 phy_data;
4701
4702                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
4703                 if (phy_data) {
4704                         e_info("PHY Wakeup cause - %s\n",
4705                                 phy_data & E1000_WUS_EX ? "Unicast Packet" :
4706                                 phy_data & E1000_WUS_MC ? "Multicast Packet" :
4707                                 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
4708                                 phy_data & E1000_WUS_MAG ? "Magic Packet" :
4709                                 phy_data & E1000_WUS_LNKC ? "Link Status "
4710                                 " Change" : "other");
4711                 }
4712                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
4713         } else {
4714                 u32 wus = er32(WUS);
4715                 if (wus) {
4716                         e_info("MAC Wakeup cause - %s\n",
4717                                 wus & E1000_WUS_EX ? "Unicast Packet" :
4718                                 wus & E1000_WUS_MC ? "Multicast Packet" :
4719                                 wus & E1000_WUS_BC ? "Broadcast Packet" :
4720                                 wus & E1000_WUS_MAG ? "Magic Packet" :
4721                                 wus & E1000_WUS_LNKC ? "Link Status Change" :
4722                                 "other");
4723                 }
4724                 ew32(WUS, ~0);
4725         }
4726
4727         e1000e_reset(adapter);
4728
4729         e1000_init_manageability(adapter);
4730
4731         if (netif_running(netdev))
4732                 e1000e_up(adapter);
4733
4734         netif_device_attach(netdev);
4735
4736         /*
4737          * If the controller has AMT, do not set DRV_LOAD until the interface
4738          * is up.  For all other cases, let the f/w know that the h/w is now
4739          * under the control of the driver.
4740          */
4741         if (!(adapter->flags & FLAG_HAS_AMT))
4742                 e1000_get_hw_control(adapter);
4743
4744         return 0;
4745 }
4746 #endif
4747
4748 static void e1000_shutdown(struct pci_dev *pdev)
4749 {
4750         bool wake = false;
4751
4752         __e1000_shutdown(pdev, &wake);
4753
4754         if (system_state == SYSTEM_POWER_OFF)
4755                 e1000_complete_shutdown(pdev, false, wake);
4756 }
4757
4758 #ifdef CONFIG_NET_POLL_CONTROLLER
4759 /*
4760  * Polling 'interrupt' - used by things like netconsole to send skbs
4761  * without having to re-enable interrupts. It's not called while
4762  * the interrupt routine is executing.
4763  */
4764 static void e1000_netpoll(struct net_device *netdev)
4765 {
4766         struct e1000_adapter *adapter = netdev_priv(netdev);
4767
4768         disable_irq(adapter->pdev->irq);
4769         e1000_intr(adapter->pdev->irq, netdev);
4770
4771         enable_irq(adapter->pdev->irq);
4772 }
4773 #endif
4774
4775 /**
4776  * e1000_io_error_detected - called when PCI error is detected
4777  * @pdev: Pointer to PCI device
4778  * @state: The current pci connection state
4779  *
4780  * This function is called after a PCI bus error affecting
4781  * this device has been detected.
4782  */
4783 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4784                                                 pci_channel_state_t state)
4785 {
4786         struct net_device *netdev = pci_get_drvdata(pdev);
4787         struct e1000_adapter *adapter = netdev_priv(netdev);
4788
4789         netif_device_detach(netdev);
4790
4791         if (state == pci_channel_io_perm_failure)
4792                 return PCI_ERS_RESULT_DISCONNECT;
4793
4794         if (netif_running(netdev))
4795                 e1000e_down(adapter);
4796         pci_disable_device(pdev);
4797
4798         /* Request a slot slot reset. */
4799         return PCI_ERS_RESULT_NEED_RESET;
4800 }
4801
4802 /**
4803  * e1000_io_slot_reset - called after the pci bus has been reset.
4804  * @pdev: Pointer to PCI device
4805  *
4806  * Restart the card from scratch, as if from a cold-boot. Implementation
4807  * resembles the first-half of the e1000_resume routine.
4808  */
4809 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4810 {
4811         struct net_device *netdev = pci_get_drvdata(pdev);
4812         struct e1000_adapter *adapter = netdev_priv(netdev);
4813         struct e1000_hw *hw = &adapter->hw;
4814         int err;
4815         pci_ers_result_t result;
4816
4817         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
4818                 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
4819         err = pci_enable_device_mem(pdev);
4820         if (err) {
4821                 dev_err(&pdev->dev,
4822                         "Cannot re-enable PCI device after reset.\n");
4823                 result = PCI_ERS_RESULT_DISCONNECT;
4824         } else {
4825                 pci_set_master(pdev);
4826                 pci_restore_state(pdev);
4827                 pci_save_state(pdev);
4828
4829                 pci_enable_wake(pdev, PCI_D3hot, 0);
4830                 pci_enable_wake(pdev, PCI_D3cold, 0);
4831
4832                 e1000e_reset(adapter);
4833                 ew32(WUS, ~0);
4834                 result = PCI_ERS_RESULT_RECOVERED;
4835         }
4836
4837         pci_cleanup_aer_uncorrect_error_status(pdev);
4838
4839         return result;
4840 }
4841
4842 /**
4843  * e1000_io_resume - called when traffic can start flowing again.
4844  * @pdev: Pointer to PCI device
4845  *
4846  * This callback is called when the error recovery driver tells us that
4847  * its OK to resume normal operation. Implementation resembles the
4848  * second-half of the e1000_resume routine.
4849  */
4850 static void e1000_io_resume(struct pci_dev *pdev)
4851 {
4852         struct net_device *netdev = pci_get_drvdata(pdev);
4853         struct e1000_adapter *adapter = netdev_priv(netdev);
4854
4855         e1000_init_manageability(adapter);
4856
4857         if (netif_running(netdev)) {
4858                 if (e1000e_up(adapter)) {
4859                         dev_err(&pdev->dev,
4860                                 "can't bring device back up after reset\n");
4861                         return;
4862                 }
4863         }
4864
4865         netif_device_attach(netdev);
4866
4867         /*
4868          * If the controller has AMT, do not set DRV_LOAD until the interface
4869          * is up.  For all other cases, let the f/w know that the h/w is now
4870          * under the control of the driver.
4871          */
4872         if (!(adapter->flags & FLAG_HAS_AMT))
4873                 e1000_get_hw_control(adapter);
4874
4875 }
4876
4877 static void e1000_print_device_info(struct e1000_adapter *adapter)
4878 {
4879         struct e1000_hw *hw = &adapter->hw;
4880         struct net_device *netdev = adapter->netdev;
4881         u32 pba_num;
4882
4883         /* print bus type/speed/width info */
4884         e_info("(PCI Express:2.5GB/s:%s) %pM\n",
4885                /* bus width */
4886                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4887                 "Width x1"),
4888                /* MAC address */
4889                netdev->dev_addr);
4890         e_info("Intel(R) PRO/%s Network Connection\n",
4891                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
4892         e1000e_read_pba_num(hw, &pba_num);
4893         e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4894                hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
4895 }
4896
4897 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4898 {
4899         struct e1000_hw *hw = &adapter->hw;
4900         int ret_val;
4901         u16 buf = 0;
4902
4903         if (hw->mac.type != e1000_82573)
4904                 return;
4905
4906         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
4907         if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
4908                 /* Deep Smart Power Down (DSPD) */
4909                 dev_warn(&adapter->pdev->dev,
4910                          "Warning: detected DSPD enabled in EEPROM\n");
4911         }
4912 }
4913
4914 static const struct net_device_ops e1000e_netdev_ops = {
4915         .ndo_open               = e1000_open,
4916         .ndo_stop               = e1000_close,
4917         .ndo_start_xmit         = e1000_xmit_frame,
4918         .ndo_get_stats          = e1000_get_stats,
4919         .ndo_set_multicast_list = e1000_set_multi,
4920         .ndo_set_mac_address    = e1000_set_mac,
4921         .ndo_change_mtu         = e1000_change_mtu,
4922         .ndo_do_ioctl           = e1000_ioctl,
4923         .ndo_tx_timeout         = e1000_tx_timeout,
4924         .ndo_validate_addr      = eth_validate_addr,
4925
4926         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
4927         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
4928         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
4929 #ifdef CONFIG_NET_POLL_CONTROLLER
4930         .ndo_poll_controller    = e1000_netpoll,
4931 #endif
4932 };
4933
4934 /**
4935  * e1000_probe - Device Initialization Routine
4936  * @pdev: PCI device information struct
4937  * @ent: entry in e1000_pci_tbl
4938  *
4939  * Returns 0 on success, negative on failure
4940  *
4941  * e1000_probe initializes an adapter identified by a pci_dev structure.
4942  * The OS initialization, configuring of the adapter private structure,
4943  * and a hardware reset occur.
4944  **/
4945 static int __devinit e1000_probe(struct pci_dev *pdev,
4946                                  const struct pci_device_id *ent)
4947 {
4948         struct net_device *netdev;
4949         struct e1000_adapter *adapter;
4950         struct e1000_hw *hw;
4951         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
4952         resource_size_t mmio_start, mmio_len;
4953         resource_size_t flash_start, flash_len;
4954
4955         static int cards_found;
4956         int i, err, pci_using_dac;
4957         u16 eeprom_data = 0;
4958         u16 eeprom_apme_mask = E1000_EEPROM_APME;
4959
4960         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
4961                 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
4962
4963         err = pci_enable_device_mem(pdev);
4964         if (err)
4965                 return err;
4966
4967         pci_using_dac = 0;
4968         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4969         if (!err) {
4970                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4971                 if (!err)
4972                         pci_using_dac = 1;
4973         } else {
4974                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4975                 if (err) {
4976                         err = pci_set_consistent_dma_mask(pdev,
4977                                                           DMA_BIT_MASK(32));
4978                         if (err) {
4979                                 dev_err(&pdev->dev, "No usable DMA "
4980                                         "configuration, aborting\n");
4981                                 goto err_dma;
4982                         }
4983                 }
4984         }
4985
4986         err = pci_request_selected_regions_exclusive(pdev,
4987                                           pci_select_bars(pdev, IORESOURCE_MEM),
4988                                           e1000e_driver_name);
4989         if (err)
4990                 goto err_pci_reg;
4991
4992         /* AER (Advanced Error Reporting) hooks */
4993         pci_enable_pcie_error_reporting(pdev);
4994
4995         pci_set_master(pdev);
4996         /* PCI config space info */
4997         err = pci_save_state(pdev);
4998         if (err)
4999                 goto err_alloc_etherdev;
5000
5001         err = -ENOMEM;
5002         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
5003         if (!netdev)
5004                 goto err_alloc_etherdev;
5005
5006         SET_NETDEV_DEV(netdev, &pdev->dev);
5007
5008         pci_set_drvdata(pdev, netdev);
5009         adapter = netdev_priv(netdev);
5010         hw = &adapter->hw;
5011         adapter->netdev = netdev;
5012         adapter->pdev = pdev;
5013         adapter->ei = ei;
5014         adapter->pba = ei->pba;
5015         adapter->flags = ei->flags;
5016         adapter->flags2 = ei->flags2;
5017         adapter->hw.adapter = adapter;
5018         adapter->hw.mac.type = ei->mac;
5019         adapter->max_hw_frame_size = ei->max_hw_frame_size;
5020         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
5021
5022         mmio_start = pci_resource_start(pdev, 0);
5023         mmio_len = pci_resource_len(pdev, 0);
5024
5025         err = -EIO;
5026         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
5027         if (!adapter->hw.hw_addr)
5028                 goto err_ioremap;
5029
5030         if ((adapter->flags & FLAG_HAS_FLASH) &&
5031             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
5032                 flash_start = pci_resource_start(pdev, 1);
5033                 flash_len = pci_resource_len(pdev, 1);
5034                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
5035                 if (!adapter->hw.flash_address)
5036                         goto err_flashmap;
5037         }
5038
5039         /* construct the net_device struct */
5040         netdev->netdev_ops              = &e1000e_netdev_ops;
5041         e1000e_set_ethtool_ops(netdev);
5042         netdev->watchdog_timeo          = 5 * HZ;
5043         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
5044         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
5045
5046         netdev->mem_start = mmio_start;
5047         netdev->mem_end = mmio_start + mmio_len;
5048
5049         adapter->bd_number = cards_found++;
5050
5051         e1000e_check_options(adapter);
5052
5053         /* setup adapter struct */
5054         err = e1000_sw_init(adapter);
5055         if (err)
5056                 goto err_sw_init;
5057
5058         err = -EIO;
5059
5060         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5061         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
5062         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5063
5064         err = ei->get_variants(adapter);
5065         if (err)
5066                 goto err_hw_init;
5067
5068         if ((adapter->flags & FLAG_IS_ICH) &&
5069             (adapter->flags & FLAG_READ_ONLY_NVM))
5070                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
5071
5072         hw->mac.ops.get_bus_info(&adapter->hw);
5073
5074         adapter->hw.phy.autoneg_wait_to_complete = 0;
5075
5076         /* Copper options */
5077         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5078                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
5079                 adapter->hw.phy.disable_polarity_correction = 0;
5080                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
5081         }
5082
5083         if (e1000_check_reset_block(&adapter->hw))
5084                 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5085
5086         netdev->features = NETIF_F_SG |
5087                            NETIF_F_HW_CSUM |
5088                            NETIF_F_HW_VLAN_TX |
5089                            NETIF_F_HW_VLAN_RX;
5090
5091         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
5092                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
5093
5094         netdev->features |= NETIF_F_TSO;
5095         netdev->features |= NETIF_F_TSO6;
5096
5097         netdev->vlan_features |= NETIF_F_TSO;
5098         netdev->vlan_features |= NETIF_F_TSO6;
5099         netdev->vlan_features |= NETIF_F_HW_CSUM;
5100         netdev->vlan_features |= NETIF_F_SG;
5101
5102         if (pci_using_dac)
5103                 netdev->features |= NETIF_F_HIGHDMA;
5104
5105         if (e1000e_enable_mng_pass_thru(&adapter->hw))
5106                 adapter->flags |= FLAG_MNG_PT_ENABLED;
5107
5108         /*
5109          * before reading the NVM, reset the controller to
5110          * put the device in a known good starting state
5111          */
5112         adapter->hw.mac.ops.reset_hw(&adapter->hw);
5113
5114         /*
5115          * systems with ASPM and others may see the checksum fail on the first
5116          * attempt. Let's give it a few tries
5117          */
5118         for (i = 0;; i++) {
5119                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
5120                         break;
5121                 if (i == 2) {
5122                         e_err("The NVM Checksum Is Not Valid\n");
5123                         err = -EIO;
5124                         goto err_eeprom;
5125                 }
5126         }
5127
5128         e1000_eeprom_checks(adapter);
5129
5130         /* copy the MAC address */
5131         if (e1000e_read_mac_addr(&adapter->hw))
5132                 e_err("NVM Read Error while reading MAC address\n");
5133
5134         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
5135         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
5136
5137         if (!is_valid_ether_addr(netdev->perm_addr)) {
5138                 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
5139                 err = -EIO;
5140                 goto err_eeprom;
5141         }
5142
5143         init_timer(&adapter->watchdog_timer);
5144         adapter->watchdog_timer.function = &e1000_watchdog;
5145         adapter->watchdog_timer.data = (unsigned long) adapter;
5146
5147         init_timer(&adapter->phy_info_timer);
5148         adapter->phy_info_timer.function = &e1000_update_phy_info;
5149         adapter->phy_info_timer.data = (unsigned long) adapter;
5150
5151         INIT_WORK(&adapter->reset_task, e1000_reset_task);
5152         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
5153         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
5154         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
5155         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
5156
5157         /* Initialize link parameters. User can change them with ethtool */
5158         adapter->hw.mac.autoneg = 1;
5159         adapter->fc_autoneg = 1;
5160         adapter->hw.fc.requested_mode = e1000_fc_default;
5161         adapter->hw.fc.current_mode = e1000_fc_default;
5162         adapter->hw.phy.autoneg_advertised = 0x2f;
5163
5164         /* ring size defaults */
5165         adapter->rx_ring->count = 256;
5166         adapter->tx_ring->count = 256;
5167
5168         /*
5169          * Initial Wake on LAN setting - If APM wake is enabled in
5170          * the EEPROM, enable the ACPI Magic Packet filter
5171          */
5172         if (adapter->flags & FLAG_APME_IN_WUC) {
5173                 /* APME bit in EEPROM is mapped to WUC.APME */
5174                 eeprom_data = er32(WUC);
5175                 eeprom_apme_mask = E1000_WUC_APME;
5176                 if (eeprom_data & E1000_WUC_PHY_WAKE)
5177                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
5178         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
5179                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
5180                     (adapter->hw.bus.func == 1))
5181                         e1000_read_nvm(&adapter->hw,
5182                                 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
5183                 else
5184                         e1000_read_nvm(&adapter->hw,
5185                                 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
5186         }
5187
5188         /* fetch WoL from EEPROM */
5189         if (eeprom_data & eeprom_apme_mask)
5190                 adapter->eeprom_wol |= E1000_WUFC_MAG;
5191
5192         /*
5193          * now that we have the eeprom settings, apply the special cases
5194          * where the eeprom may be wrong or the board simply won't support
5195          * wake on lan on a particular port
5196          */
5197         if (!(adapter->flags & FLAG_HAS_WOL))
5198                 adapter->eeprom_wol = 0;
5199
5200         /* initialize the wol settings based on the eeprom settings */
5201         adapter->wol = adapter->eeprom_wol;
5202         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
5203
5204         /* save off EEPROM version number */
5205         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
5206
5207         /* reset the hardware with the new settings */
5208         e1000e_reset(adapter);
5209
5210         /*
5211          * If the controller has AMT, do not set DRV_LOAD until the interface
5212          * is up.  For all other cases, let the f/w know that the h/w is now
5213          * under the control of the driver.
5214          */
5215         if (!(adapter->flags & FLAG_HAS_AMT))
5216                 e1000_get_hw_control(adapter);
5217
5218         strcpy(netdev->name, "eth%d");
5219         err = register_netdev(netdev);
5220         if (err)
5221                 goto err_register;
5222
5223         /* carrier off reporting is important to ethtool even BEFORE open */
5224         netif_carrier_off(netdev);
5225
5226         e1000_print_device_info(adapter);
5227
5228         return 0;
5229
5230 err_register:
5231         if (!(adapter->flags & FLAG_HAS_AMT))
5232                 e1000_release_hw_control(adapter);
5233 err_eeprom:
5234         if (!e1000_check_reset_block(&adapter->hw))
5235                 e1000_phy_hw_reset(&adapter->hw);
5236 err_hw_init:
5237
5238         kfree(adapter->tx_ring);
5239         kfree(adapter->rx_ring);
5240 err_sw_init:
5241         if (adapter->hw.flash_address)
5242                 iounmap(adapter->hw.flash_address);
5243         e1000e_reset_interrupt_capability(adapter);
5244 err_flashmap:
5245         iounmap(adapter->hw.hw_addr);
5246 err_ioremap:
5247         free_netdev(netdev);
5248 err_alloc_etherdev:
5249         pci_release_selected_regions(pdev,
5250                                      pci_select_bars(pdev, IORESOURCE_MEM));
5251 err_pci_reg:
5252 err_dma:
5253         pci_disable_device(pdev);
5254         return err;
5255 }
5256
5257 /**
5258  * e1000_remove - Device Removal Routine
5259  * @pdev: PCI device information struct
5260  *
5261  * e1000_remove is called by the PCI subsystem to alert the driver
5262  * that it should release a PCI device.  The could be caused by a
5263  * Hot-Plug event, or because the driver is going to be removed from
5264  * memory.
5265  **/
5266 static void __devexit e1000_remove(struct pci_dev *pdev)
5267 {
5268         struct net_device *netdev = pci_get_drvdata(pdev);
5269         struct e1000_adapter *adapter = netdev_priv(netdev);
5270
5271         /*
5272          * flush_scheduled work may reschedule our watchdog task, so
5273          * explicitly disable watchdog tasks from being rescheduled
5274          */
5275         set_bit(__E1000_DOWN, &adapter->state);
5276         del_timer_sync(&adapter->watchdog_timer);
5277         del_timer_sync(&adapter->phy_info_timer);
5278
5279         cancel_work_sync(&adapter->reset_task);
5280         cancel_work_sync(&adapter->watchdog_task);
5281         cancel_work_sync(&adapter->downshift_task);
5282         cancel_work_sync(&adapter->update_phy_task);
5283         cancel_work_sync(&adapter->print_hang_task);
5284         flush_scheduled_work();
5285
5286         if (!(netdev->flags & IFF_UP))
5287                 e1000_power_down_phy(adapter);
5288
5289         unregister_netdev(netdev);
5290
5291         /*
5292          * Release control of h/w to f/w.  If f/w is AMT enabled, this
5293          * would have already happened in close and is redundant.
5294          */
5295         e1000_release_hw_control(adapter);
5296
5297         e1000e_reset_interrupt_capability(adapter);
5298         kfree(adapter->tx_ring);
5299         kfree(adapter->rx_ring);
5300
5301         iounmap(adapter->hw.hw_addr);
5302         if (adapter->hw.flash_address)
5303                 iounmap(adapter->hw.flash_address);
5304         pci_release_selected_regions(pdev,
5305                                      pci_select_bars(pdev, IORESOURCE_MEM));
5306
5307         free_netdev(netdev);
5308
5309         /* AER disable */
5310         pci_disable_pcie_error_reporting(pdev);
5311
5312         pci_disable_device(pdev);
5313 }
5314
5315 /* PCI Error Recovery (ERS) */
5316 static struct pci_error_handlers e1000_err_handler = {
5317         .error_detected = e1000_io_error_detected,
5318         .slot_reset = e1000_io_slot_reset,
5319         .resume = e1000_io_resume,
5320 };
5321
5322 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
5323         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5324         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5325         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5326         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5327         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5328         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
5329         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5330         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5331         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
5332
5333         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5334         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5335         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5336         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
5337
5338         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5339         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5340         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
5341
5342         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5343         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
5344         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
5345
5346         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5347           board_80003es2lan },
5348         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5349           board_80003es2lan },
5350         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5351           board_80003es2lan },
5352         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5353           board_80003es2lan },
5354
5355         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5356         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5357         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5358         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5359         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5360         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5361         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
5362         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
5363
5364         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5365         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5366         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5367         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5368         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
5369         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
5370         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5371         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5372         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5373
5374         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5375         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5376         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
5377
5378         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
5379         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5380
5381         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
5382         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
5383         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
5384         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
5385
5386         { }     /* terminate list */
5387 };
5388 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
5389
5390 /* PCI Device API Driver */
5391 static struct pci_driver e1000_driver = {
5392         .name     = e1000e_driver_name,
5393         .id_table = e1000_pci_tbl,
5394         .probe    = e1000_probe,
5395         .remove   = __devexit_p(e1000_remove),
5396 #ifdef CONFIG_PM
5397         /* Power Management Hooks */
5398         .suspend  = e1000_suspend,
5399         .resume   = e1000_resume,
5400 #endif
5401         .shutdown = e1000_shutdown,
5402         .err_handler = &e1000_err_handler
5403 };
5404
5405 /**
5406  * e1000_init_module - Driver Registration Routine
5407  *
5408  * e1000_init_module is the first routine called when the driver is
5409  * loaded. All it does is register with the PCI subsystem.
5410  **/
5411 static int __init e1000_init_module(void)
5412 {
5413         int ret;
5414         printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
5415                e1000e_driver_name, e1000e_driver_version);
5416         printk(KERN_INFO "%s: Copyright (c) 1999 - 2009 Intel Corporation.\n",
5417                e1000e_driver_name);
5418         ret = pci_register_driver(&e1000_driver);
5419
5420         return ret;
5421 }
5422 module_init(e1000_init_module);
5423
5424 /**
5425  * e1000_exit_module - Driver Exit Cleanup Routine
5426  *
5427  * e1000_exit_module is called just before the driver is removed
5428  * from memory.
5429  **/
5430 static void __exit e1000_exit_module(void)
5431 {
5432         pci_unregister_driver(&e1000_driver);
5433 }
5434 module_exit(e1000_exit_module);
5435
5436
5437 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5438 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5439 MODULE_LICENSE("GPL");
5440 MODULE_VERSION(DRV_VERSION);
5441
5442 /* e1000_main.c */