Merge branch 'linux-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes...
[sfrench/cifs-2.6.git] / drivers / net / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/tcp.h>
40 #include <linux/ipv6.h>
41 #include <linux/slab.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <linux/mii.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos_params.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
52
53 #include "e1000.h"
54
55 #define DRV_EXTRAVERSION "-k2"
56
57 #define DRV_VERSION "1.2.7" DRV_EXTRAVERSION
58 char e1000e_driver_name[] = "e1000e";
59 const char e1000e_driver_version[] = DRV_VERSION;
60
61 static const struct e1000_info *e1000_info_tbl[] = {
62         [board_82571]           = &e1000_82571_info,
63         [board_82572]           = &e1000_82572_info,
64         [board_82573]           = &e1000_82573_info,
65         [board_82574]           = &e1000_82574_info,
66         [board_82583]           = &e1000_82583_info,
67         [board_80003es2lan]     = &e1000_es2_info,
68         [board_ich8lan]         = &e1000_ich8_info,
69         [board_ich9lan]         = &e1000_ich9_info,
70         [board_ich10lan]        = &e1000_ich10_info,
71         [board_pchlan]          = &e1000_pch_info,
72         [board_pch2lan]         = &e1000_pch2_info,
73 };
74
75 struct e1000_reg_info {
76         u32 ofs;
77         char *name;
78 };
79
80 #define E1000_RDFH      0x02410 /* Rx Data FIFO Head - RW */
81 #define E1000_RDFT      0x02418 /* Rx Data FIFO Tail - RW */
82 #define E1000_RDFHS     0x02420 /* Rx Data FIFO Head Saved - RW */
83 #define E1000_RDFTS     0x02428 /* Rx Data FIFO Tail Saved - RW */
84 #define E1000_RDFPC     0x02430 /* Rx Data FIFO Packet Count - RW */
85
86 #define E1000_TDFH      0x03410 /* Tx Data FIFO Head - RW */
87 #define E1000_TDFT      0x03418 /* Tx Data FIFO Tail - RW */
88 #define E1000_TDFHS     0x03420 /* Tx Data FIFO Head Saved - RW */
89 #define E1000_TDFTS     0x03428 /* Tx Data FIFO Tail Saved - RW */
90 #define E1000_TDFPC     0x03430 /* Tx Data FIFO Packet Count - RW */
91
92 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
93
94         /* General Registers */
95         {E1000_CTRL, "CTRL"},
96         {E1000_STATUS, "STATUS"},
97         {E1000_CTRL_EXT, "CTRL_EXT"},
98
99         /* Interrupt Registers */
100         {E1000_ICR, "ICR"},
101
102         /* RX Registers */
103         {E1000_RCTL, "RCTL"},
104         {E1000_RDLEN, "RDLEN"},
105         {E1000_RDH, "RDH"},
106         {E1000_RDT, "RDT"},
107         {E1000_RDTR, "RDTR"},
108         {E1000_RXDCTL(0), "RXDCTL"},
109         {E1000_ERT, "ERT"},
110         {E1000_RDBAL, "RDBAL"},
111         {E1000_RDBAH, "RDBAH"},
112         {E1000_RDFH, "RDFH"},
113         {E1000_RDFT, "RDFT"},
114         {E1000_RDFHS, "RDFHS"},
115         {E1000_RDFTS, "RDFTS"},
116         {E1000_RDFPC, "RDFPC"},
117
118         /* TX Registers */
119         {E1000_TCTL, "TCTL"},
120         {E1000_TDBAL, "TDBAL"},
121         {E1000_TDBAH, "TDBAH"},
122         {E1000_TDLEN, "TDLEN"},
123         {E1000_TDH, "TDH"},
124         {E1000_TDT, "TDT"},
125         {E1000_TIDV, "TIDV"},
126         {E1000_TXDCTL(0), "TXDCTL"},
127         {E1000_TADV, "TADV"},
128         {E1000_TARC(0), "TARC"},
129         {E1000_TDFH, "TDFH"},
130         {E1000_TDFT, "TDFT"},
131         {E1000_TDFHS, "TDFHS"},
132         {E1000_TDFTS, "TDFTS"},
133         {E1000_TDFPC, "TDFPC"},
134
135         /* List Terminator */
136         {}
137 };
138
139 /*
140  * e1000_regdump - register printout routine
141  */
142 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
143 {
144         int n = 0;
145         char rname[16];
146         u32 regs[8];
147
148         switch (reginfo->ofs) {
149         case E1000_RXDCTL(0):
150                 for (n = 0; n < 2; n++)
151                         regs[n] = __er32(hw, E1000_RXDCTL(n));
152                 break;
153         case E1000_TXDCTL(0):
154                 for (n = 0; n < 2; n++)
155                         regs[n] = __er32(hw, E1000_TXDCTL(n));
156                 break;
157         case E1000_TARC(0):
158                 for (n = 0; n < 2; n++)
159                         regs[n] = __er32(hw, E1000_TARC(n));
160                 break;
161         default:
162                 printk(KERN_INFO "%-15s %08x\n",
163                         reginfo->name, __er32(hw, reginfo->ofs));
164                 return;
165         }
166
167         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
168         printk(KERN_INFO "%-15s ", rname);
169         for (n = 0; n < 2; n++)
170                 printk(KERN_CONT "%08x ", regs[n]);
171         printk(KERN_CONT "\n");
172 }
173
174
175 /*
176  * e1000e_dump - Print registers, tx-ring and rx-ring
177  */
178 static void e1000e_dump(struct e1000_adapter *adapter)
179 {
180         struct net_device *netdev = adapter->netdev;
181         struct e1000_hw *hw = &adapter->hw;
182         struct e1000_reg_info *reginfo;
183         struct e1000_ring *tx_ring = adapter->tx_ring;
184         struct e1000_tx_desc *tx_desc;
185         struct my_u0 { u64 a; u64 b; } *u0;
186         struct e1000_buffer *buffer_info;
187         struct e1000_ring *rx_ring = adapter->rx_ring;
188         union e1000_rx_desc_packet_split *rx_desc_ps;
189         struct e1000_rx_desc *rx_desc;
190         struct my_u1 { u64 a; u64 b; u64 c; u64 d; } *u1;
191         u32 staterr;
192         int i = 0;
193
194         if (!netif_msg_hw(adapter))
195                 return;
196
197         /* Print netdevice Info */
198         if (netdev) {
199                 dev_info(&adapter->pdev->dev, "Net device Info\n");
200                 printk(KERN_INFO "Device Name     state            "
201                         "trans_start      last_rx\n");
202                 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
203                         netdev->name,
204                         netdev->state,
205                         netdev->trans_start,
206                         netdev->last_rx);
207         }
208
209         /* Print Registers */
210         dev_info(&adapter->pdev->dev, "Register Dump\n");
211         printk(KERN_INFO " Register Name   Value\n");
212         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
213              reginfo->name; reginfo++) {
214                 e1000_regdump(hw, reginfo);
215         }
216
217         /* Print TX Ring Summary */
218         if (!netdev || !netif_running(netdev))
219                 goto exit;
220
221         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
222         printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
223                 " leng ntw timestamp\n");
224         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
225         printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
226                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
227                 (unsigned long long)buffer_info->dma,
228                 buffer_info->length,
229                 buffer_info->next_to_watch,
230                 (unsigned long long)buffer_info->time_stamp);
231
232         /* Print TX Rings */
233         if (!netif_msg_tx_done(adapter))
234                 goto rx_ring_summary;
235
236         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
237
238         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
239          *
240          * Legacy Transmit Descriptor
241          *   +--------------------------------------------------------------+
242          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
243          *   +--------------------------------------------------------------+
244          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
245          *   +--------------------------------------------------------------+
246          *   63       48 47        36 35    32 31     24 23    16 15        0
247          *
248          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
249          *   63      48 47    40 39       32 31             16 15    8 7      0
250          *   +----------------------------------------------------------------+
251          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
252          *   +----------------------------------------------------------------+
253          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
254          *   +----------------------------------------------------------------+
255          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
256          *
257          * Extended Data Descriptor (DTYP=0x1)
258          *   +----------------------------------------------------------------+
259          * 0 |                     Buffer Address [63:0]                      |
260          *   +----------------------------------------------------------------+
261          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
262          *   +----------------------------------------------------------------+
263          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
264          */
265         printk(KERN_INFO "Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen]"
266                 " [bi->dma       ] leng  ntw timestamp        bi->skb "
267                 "<-- Legacy format\n");
268         printk(KERN_INFO "Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
269                 " [bi->dma       ] leng  ntw timestamp        bi->skb "
270                 "<-- Ext Context format\n");
271         printk(KERN_INFO "Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen]"
272                 " [bi->dma       ] leng  ntw timestamp        bi->skb "
273                 "<-- Ext Data format\n");
274         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
275                 tx_desc = E1000_TX_DESC(*tx_ring, i);
276                 buffer_info = &tx_ring->buffer_info[i];
277                 u0 = (struct my_u0 *)tx_desc;
278                 printk(KERN_INFO "T%c[0x%03X]    %016llX %016llX %016llX "
279                         "%04X  %3X %016llX %p",
280                        (!(le64_to_cpu(u0->b) & (1<<29)) ? 'l' :
281                         ((le64_to_cpu(u0->b) & (1<<20)) ? 'd' : 'c')), i,
282                        (unsigned long long)le64_to_cpu(u0->a),
283                        (unsigned long long)le64_to_cpu(u0->b),
284                        (unsigned long long)buffer_info->dma,
285                        buffer_info->length, buffer_info->next_to_watch,
286                        (unsigned long long)buffer_info->time_stamp,
287                        buffer_info->skb);
288                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
289                         printk(KERN_CONT " NTC/U\n");
290                 else if (i == tx_ring->next_to_use)
291                         printk(KERN_CONT " NTU\n");
292                 else if (i == tx_ring->next_to_clean)
293                         printk(KERN_CONT " NTC\n");
294                 else
295                         printk(KERN_CONT "\n");
296
297                 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
298                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
299                                         16, 1, phys_to_virt(buffer_info->dma),
300                                         buffer_info->length, true);
301         }
302
303         /* Print RX Rings Summary */
304 rx_ring_summary:
305         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
306         printk(KERN_INFO "Queue [NTU] [NTC]\n");
307         printk(KERN_INFO " %5d %5X %5X\n", 0,
308                 rx_ring->next_to_use, rx_ring->next_to_clean);
309
310         /* Print RX Rings */
311         if (!netif_msg_rx_status(adapter))
312                 goto exit;
313
314         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
315         switch (adapter->rx_ps_pages) {
316         case 1:
317         case 2:
318         case 3:
319                 /* [Extended] Packet Split Receive Descriptor Format
320                  *
321                  *    +-----------------------------------------------------+
322                  *  0 |                Buffer Address 0 [63:0]              |
323                  *    +-----------------------------------------------------+
324                  *  8 |                Buffer Address 1 [63:0]              |
325                  *    +-----------------------------------------------------+
326                  * 16 |                Buffer Address 2 [63:0]              |
327                  *    +-----------------------------------------------------+
328                  * 24 |                Buffer Address 3 [63:0]              |
329                  *    +-----------------------------------------------------+
330                  */
331                 printk(KERN_INFO "R  [desc]      [buffer 0 63:0 ] "
332                         "[buffer 1 63:0 ] "
333                        "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] "
334                        "[bi->skb] <-- Ext Pkt Split format\n");
335                 /* [Extended] Receive Descriptor (Write-Back) Format
336                  *
337                  *   63       48 47    32 31     13 12    8 7    4 3        0
338                  *   +------------------------------------------------------+
339                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
340                  *   | Checksum | Ident  |         | Queue |      |  Type   |
341                  *   +------------------------------------------------------+
342                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
343                  *   +------------------------------------------------------+
344                  *   63       48 47    32 31            20 19               0
345                  */
346                 printk(KERN_INFO "RWB[desc]      [ck ipid mrqhsh] "
347                         "[vl   l0 ee  es] "
348                        "[ l3  l2  l1 hs] [reserved      ] ---------------- "
349                        "[bi->skb] <-- Ext Rx Write-Back format\n");
350                 for (i = 0; i < rx_ring->count; i++) {
351                         buffer_info = &rx_ring->buffer_info[i];
352                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
353                         u1 = (struct my_u1 *)rx_desc_ps;
354                         staterr =
355                                 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
356                         if (staterr & E1000_RXD_STAT_DD) {
357                                 /* Descriptor Done */
358                                 printk(KERN_INFO "RWB[0x%03X]     %016llX "
359                                         "%016llX %016llX %016llX "
360                                         "---------------- %p", i,
361                                         (unsigned long long)le64_to_cpu(u1->a),
362                                         (unsigned long long)le64_to_cpu(u1->b),
363                                         (unsigned long long)le64_to_cpu(u1->c),
364                                         (unsigned long long)le64_to_cpu(u1->d),
365                                         buffer_info->skb);
366                         } else {
367                                 printk(KERN_INFO "R  [0x%03X]     %016llX "
368                                         "%016llX %016llX %016llX %016llX %p", i,
369                                         (unsigned long long)le64_to_cpu(u1->a),
370                                         (unsigned long long)le64_to_cpu(u1->b),
371                                         (unsigned long long)le64_to_cpu(u1->c),
372                                         (unsigned long long)le64_to_cpu(u1->d),
373                                         (unsigned long long)buffer_info->dma,
374                                         buffer_info->skb);
375
376                                 if (netif_msg_pktdata(adapter))
377                                         print_hex_dump(KERN_INFO, "",
378                                                 DUMP_PREFIX_ADDRESS, 16, 1,
379                                                 phys_to_virt(buffer_info->dma),
380                                                 adapter->rx_ps_bsize0, true);
381                         }
382
383                         if (i == rx_ring->next_to_use)
384                                 printk(KERN_CONT " NTU\n");
385                         else if (i == rx_ring->next_to_clean)
386                                 printk(KERN_CONT " NTC\n");
387                         else
388                                 printk(KERN_CONT "\n");
389                 }
390                 break;
391         default:
392         case 0:
393                 /* Legacy Receive Descriptor Format
394                  *
395                  * +-----------------------------------------------------+
396                  * |                Buffer Address [63:0]                |
397                  * +-----------------------------------------------------+
398                  * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
399                  * +-----------------------------------------------------+
400                  * 63       48 47    40 39      32 31         16 15      0
401                  */
402                 printk(KERN_INFO "Rl[desc]     [address 63:0  ] "
403                         "[vl er S cks ln] [bi->dma       ] [bi->skb] "
404                         "<-- Legacy format\n");
405                 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
406                         rx_desc = E1000_RX_DESC(*rx_ring, i);
407                         buffer_info = &rx_ring->buffer_info[i];
408                         u0 = (struct my_u0 *)rx_desc;
409                         printk(KERN_INFO "Rl[0x%03X]    %016llX %016llX "
410                                 "%016llX %p", i,
411                                 (unsigned long long)le64_to_cpu(u0->a),
412                                 (unsigned long long)le64_to_cpu(u0->b),
413                                 (unsigned long long)buffer_info->dma,
414                                 buffer_info->skb);
415                         if (i == rx_ring->next_to_use)
416                                 printk(KERN_CONT " NTU\n");
417                         else if (i == rx_ring->next_to_clean)
418                                 printk(KERN_CONT " NTC\n");
419                         else
420                                 printk(KERN_CONT "\n");
421
422                         if (netif_msg_pktdata(adapter))
423                                 print_hex_dump(KERN_INFO, "",
424                                         DUMP_PREFIX_ADDRESS,
425                                         16, 1, phys_to_virt(buffer_info->dma),
426                                         adapter->rx_buffer_len, true);
427                 }
428         }
429
430 exit:
431         return;
432 }
433
434 /**
435  * e1000_desc_unused - calculate if we have unused descriptors
436  **/
437 static int e1000_desc_unused(struct e1000_ring *ring)
438 {
439         if (ring->next_to_clean > ring->next_to_use)
440                 return ring->next_to_clean - ring->next_to_use - 1;
441
442         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
443 }
444
445 /**
446  * e1000_receive_skb - helper function to handle Rx indications
447  * @adapter: board private structure
448  * @status: descriptor status field as written by hardware
449  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
450  * @skb: pointer to sk_buff to be indicated to stack
451  **/
452 static void e1000_receive_skb(struct e1000_adapter *adapter,
453                               struct net_device *netdev,
454                               struct sk_buff *skb,
455                               u8 status, __le16 vlan)
456 {
457         skb->protocol = eth_type_trans(skb, netdev);
458
459         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
460                 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
461                                  le16_to_cpu(vlan), skb);
462         else
463                 napi_gro_receive(&adapter->napi, skb);
464 }
465
466 /**
467  * e1000_rx_checksum - Receive Checksum Offload for 82543
468  * @adapter:     board private structure
469  * @status_err:  receive descriptor status and error fields
470  * @csum:       receive descriptor csum field
471  * @sk_buff:     socket buffer with received data
472  **/
473 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
474                               u32 csum, struct sk_buff *skb)
475 {
476         u16 status = (u16)status_err;
477         u8 errors = (u8)(status_err >> 24);
478         skb->ip_summed = CHECKSUM_NONE;
479
480         /* Ignore Checksum bit is set */
481         if (status & E1000_RXD_STAT_IXSM)
482                 return;
483         /* TCP/UDP checksum error bit is set */
484         if (errors & E1000_RXD_ERR_TCPE) {
485                 /* let the stack verify checksum errors */
486                 adapter->hw_csum_err++;
487                 return;
488         }
489
490         /* TCP/UDP Checksum has not been calculated */
491         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
492                 return;
493
494         /* It must be a TCP or UDP packet with a valid checksum */
495         if (status & E1000_RXD_STAT_TCPCS) {
496                 /* TCP checksum is good */
497                 skb->ip_summed = CHECKSUM_UNNECESSARY;
498         } else {
499                 /*
500                  * IP fragment with UDP payload
501                  * Hardware complements the payload checksum, so we undo it
502                  * and then put the value in host order for further stack use.
503                  */
504                 __sum16 sum = (__force __sum16)htons(csum);
505                 skb->csum = csum_unfold(~sum);
506                 skb->ip_summed = CHECKSUM_COMPLETE;
507         }
508         adapter->hw_csum_good++;
509 }
510
511 /**
512  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
513  * @adapter: address of board private structure
514  **/
515 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
516                                    int cleaned_count)
517 {
518         struct net_device *netdev = adapter->netdev;
519         struct pci_dev *pdev = adapter->pdev;
520         struct e1000_ring *rx_ring = adapter->rx_ring;
521         struct e1000_rx_desc *rx_desc;
522         struct e1000_buffer *buffer_info;
523         struct sk_buff *skb;
524         unsigned int i;
525         unsigned int bufsz = adapter->rx_buffer_len;
526
527         i = rx_ring->next_to_use;
528         buffer_info = &rx_ring->buffer_info[i];
529
530         while (cleaned_count--) {
531                 skb = buffer_info->skb;
532                 if (skb) {
533                         skb_trim(skb, 0);
534                         goto map_skb;
535                 }
536
537                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
538                 if (!skb) {
539                         /* Better luck next round */
540                         adapter->alloc_rx_buff_failed++;
541                         break;
542                 }
543
544                 buffer_info->skb = skb;
545 map_skb:
546                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
547                                                   adapter->rx_buffer_len,
548                                                   DMA_FROM_DEVICE);
549                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
550                         dev_err(&pdev->dev, "RX DMA map failed\n");
551                         adapter->rx_dma_failed++;
552                         break;
553                 }
554
555                 rx_desc = E1000_RX_DESC(*rx_ring, i);
556                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
557
558                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
559                         /*
560                          * Force memory writes to complete before letting h/w
561                          * know there are new descriptors to fetch.  (Only
562                          * applicable for weak-ordered memory model archs,
563                          * such as IA-64).
564                          */
565                         wmb();
566                         writel(i, adapter->hw.hw_addr + rx_ring->tail);
567                 }
568                 i++;
569                 if (i == rx_ring->count)
570                         i = 0;
571                 buffer_info = &rx_ring->buffer_info[i];
572         }
573
574         rx_ring->next_to_use = i;
575 }
576
577 /**
578  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
579  * @adapter: address of board private structure
580  **/
581 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
582                                       int cleaned_count)
583 {
584         struct net_device *netdev = adapter->netdev;
585         struct pci_dev *pdev = adapter->pdev;
586         union e1000_rx_desc_packet_split *rx_desc;
587         struct e1000_ring *rx_ring = adapter->rx_ring;
588         struct e1000_buffer *buffer_info;
589         struct e1000_ps_page *ps_page;
590         struct sk_buff *skb;
591         unsigned int i, j;
592
593         i = rx_ring->next_to_use;
594         buffer_info = &rx_ring->buffer_info[i];
595
596         while (cleaned_count--) {
597                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
598
599                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
600                         ps_page = &buffer_info->ps_pages[j];
601                         if (j >= adapter->rx_ps_pages) {
602                                 /* all unused desc entries get hw null ptr */
603                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
604                                 continue;
605                         }
606                         if (!ps_page->page) {
607                                 ps_page->page = alloc_page(GFP_ATOMIC);
608                                 if (!ps_page->page) {
609                                         adapter->alloc_rx_buff_failed++;
610                                         goto no_buffers;
611                                 }
612                                 ps_page->dma = dma_map_page(&pdev->dev,
613                                                             ps_page->page,
614                                                             0, PAGE_SIZE,
615                                                             DMA_FROM_DEVICE);
616                                 if (dma_mapping_error(&pdev->dev,
617                                                       ps_page->dma)) {
618                                         dev_err(&adapter->pdev->dev,
619                                           "RX DMA page map failed\n");
620                                         adapter->rx_dma_failed++;
621                                         goto no_buffers;
622                                 }
623                         }
624                         /*
625                          * Refresh the desc even if buffer_addrs
626                          * didn't change because each write-back
627                          * erases this info.
628                          */
629                         rx_desc->read.buffer_addr[j+1] =
630                              cpu_to_le64(ps_page->dma);
631                 }
632
633                 skb = netdev_alloc_skb_ip_align(netdev,
634                                                 adapter->rx_ps_bsize0);
635
636                 if (!skb) {
637                         adapter->alloc_rx_buff_failed++;
638                         break;
639                 }
640
641                 buffer_info->skb = skb;
642                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
643                                                   adapter->rx_ps_bsize0,
644                                                   DMA_FROM_DEVICE);
645                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
646                         dev_err(&pdev->dev, "RX DMA map failed\n");
647                         adapter->rx_dma_failed++;
648                         /* cleanup skb */
649                         dev_kfree_skb_any(skb);
650                         buffer_info->skb = NULL;
651                         break;
652                 }
653
654                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
655
656                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
657                         /*
658                          * Force memory writes to complete before letting h/w
659                          * know there are new descriptors to fetch.  (Only
660                          * applicable for weak-ordered memory model archs,
661                          * such as IA-64).
662                          */
663                         wmb();
664                         writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
665                 }
666
667                 i++;
668                 if (i == rx_ring->count)
669                         i = 0;
670                 buffer_info = &rx_ring->buffer_info[i];
671         }
672
673 no_buffers:
674         rx_ring->next_to_use = i;
675 }
676
677 /**
678  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
679  * @adapter: address of board private structure
680  * @cleaned_count: number of buffers to allocate this pass
681  **/
682
683 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
684                                          int cleaned_count)
685 {
686         struct net_device *netdev = adapter->netdev;
687         struct pci_dev *pdev = adapter->pdev;
688         struct e1000_rx_desc *rx_desc;
689         struct e1000_ring *rx_ring = adapter->rx_ring;
690         struct e1000_buffer *buffer_info;
691         struct sk_buff *skb;
692         unsigned int i;
693         unsigned int bufsz = 256 - 16 /* for skb_reserve */;
694
695         i = rx_ring->next_to_use;
696         buffer_info = &rx_ring->buffer_info[i];
697
698         while (cleaned_count--) {
699                 skb = buffer_info->skb;
700                 if (skb) {
701                         skb_trim(skb, 0);
702                         goto check_page;
703                 }
704
705                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
706                 if (unlikely(!skb)) {
707                         /* Better luck next round */
708                         adapter->alloc_rx_buff_failed++;
709                         break;
710                 }
711
712                 buffer_info->skb = skb;
713 check_page:
714                 /* allocate a new page if necessary */
715                 if (!buffer_info->page) {
716                         buffer_info->page = alloc_page(GFP_ATOMIC);
717                         if (unlikely(!buffer_info->page)) {
718                                 adapter->alloc_rx_buff_failed++;
719                                 break;
720                         }
721                 }
722
723                 if (!buffer_info->dma)
724                         buffer_info->dma = dma_map_page(&pdev->dev,
725                                                         buffer_info->page, 0,
726                                                         PAGE_SIZE,
727                                                         DMA_FROM_DEVICE);
728
729                 rx_desc = E1000_RX_DESC(*rx_ring, i);
730                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
731
732                 if (unlikely(++i == rx_ring->count))
733                         i = 0;
734                 buffer_info = &rx_ring->buffer_info[i];
735         }
736
737         if (likely(rx_ring->next_to_use != i)) {
738                 rx_ring->next_to_use = i;
739                 if (unlikely(i-- == 0))
740                         i = (rx_ring->count - 1);
741
742                 /* Force memory writes to complete before letting h/w
743                  * know there are new descriptors to fetch.  (Only
744                  * applicable for weak-ordered memory model archs,
745                  * such as IA-64). */
746                 wmb();
747                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
748         }
749 }
750
751 /**
752  * e1000_clean_rx_irq - Send received data up the network stack; legacy
753  * @adapter: board private structure
754  *
755  * the return value indicates whether actual cleaning was done, there
756  * is no guarantee that everything was cleaned
757  **/
758 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
759                                int *work_done, int work_to_do)
760 {
761         struct net_device *netdev = adapter->netdev;
762         struct pci_dev *pdev = adapter->pdev;
763         struct e1000_hw *hw = &adapter->hw;
764         struct e1000_ring *rx_ring = adapter->rx_ring;
765         struct e1000_rx_desc *rx_desc, *next_rxd;
766         struct e1000_buffer *buffer_info, *next_buffer;
767         u32 length;
768         unsigned int i;
769         int cleaned_count = 0;
770         bool cleaned = 0;
771         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
772
773         i = rx_ring->next_to_clean;
774         rx_desc = E1000_RX_DESC(*rx_ring, i);
775         buffer_info = &rx_ring->buffer_info[i];
776
777         while (rx_desc->status & E1000_RXD_STAT_DD) {
778                 struct sk_buff *skb;
779                 u8 status;
780
781                 if (*work_done >= work_to_do)
782                         break;
783                 (*work_done)++;
784
785                 status = rx_desc->status;
786                 skb = buffer_info->skb;
787                 buffer_info->skb = NULL;
788
789                 prefetch(skb->data - NET_IP_ALIGN);
790
791                 i++;
792                 if (i == rx_ring->count)
793                         i = 0;
794                 next_rxd = E1000_RX_DESC(*rx_ring, i);
795                 prefetch(next_rxd);
796
797                 next_buffer = &rx_ring->buffer_info[i];
798
799                 cleaned = 1;
800                 cleaned_count++;
801                 dma_unmap_single(&pdev->dev,
802                                  buffer_info->dma,
803                                  adapter->rx_buffer_len,
804                                  DMA_FROM_DEVICE);
805                 buffer_info->dma = 0;
806
807                 length = le16_to_cpu(rx_desc->length);
808
809                 /*
810                  * !EOP means multiple descriptors were used to store a single
811                  * packet, if that's the case we need to toss it.  In fact, we
812                  * need to toss every packet with the EOP bit clear and the
813                  * next frame that _does_ have the EOP bit set, as it is by
814                  * definition only a frame fragment
815                  */
816                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
817                         adapter->flags2 |= FLAG2_IS_DISCARDING;
818
819                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
820                         /* All receives must fit into a single buffer */
821                         e_dbg("Receive packet consumed multiple buffers\n");
822                         /* recycle */
823                         buffer_info->skb = skb;
824                         if (status & E1000_RXD_STAT_EOP)
825                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
826                         goto next_desc;
827                 }
828
829                 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
830                         /* recycle */
831                         buffer_info->skb = skb;
832                         goto next_desc;
833                 }
834
835                 /* adjust length to remove Ethernet CRC */
836                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
837                         length -= 4;
838
839                 total_rx_bytes += length;
840                 total_rx_packets++;
841
842                 /*
843                  * code added for copybreak, this should improve
844                  * performance for small packets with large amounts
845                  * of reassembly being done in the stack
846                  */
847                 if (length < copybreak) {
848                         struct sk_buff *new_skb =
849                             netdev_alloc_skb_ip_align(netdev, length);
850                         if (new_skb) {
851                                 skb_copy_to_linear_data_offset(new_skb,
852                                                                -NET_IP_ALIGN,
853                                                                (skb->data -
854                                                                 NET_IP_ALIGN),
855                                                                (length +
856                                                                 NET_IP_ALIGN));
857                                 /* save the skb in buffer_info as good */
858                                 buffer_info->skb = skb;
859                                 skb = new_skb;
860                         }
861                         /* else just continue with the old one */
862                 }
863                 /* end copybreak code */
864                 skb_put(skb, length);
865
866                 /* Receive Checksum Offload */
867                 e1000_rx_checksum(adapter,
868                                   (u32)(status) |
869                                   ((u32)(rx_desc->errors) << 24),
870                                   le16_to_cpu(rx_desc->csum), skb);
871
872                 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
873
874 next_desc:
875                 rx_desc->status = 0;
876
877                 /* return some buffers to hardware, one at a time is too slow */
878                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
879                         adapter->alloc_rx_buf(adapter, cleaned_count);
880                         cleaned_count = 0;
881                 }
882
883                 /* use prefetched values */
884                 rx_desc = next_rxd;
885                 buffer_info = next_buffer;
886         }
887         rx_ring->next_to_clean = i;
888
889         cleaned_count = e1000_desc_unused(rx_ring);
890         if (cleaned_count)
891                 adapter->alloc_rx_buf(adapter, cleaned_count);
892
893         adapter->total_rx_bytes += total_rx_bytes;
894         adapter->total_rx_packets += total_rx_packets;
895         netdev->stats.rx_bytes += total_rx_bytes;
896         netdev->stats.rx_packets += total_rx_packets;
897         return cleaned;
898 }
899
900 static void e1000_put_txbuf(struct e1000_adapter *adapter,
901                              struct e1000_buffer *buffer_info)
902 {
903         if (buffer_info->dma) {
904                 if (buffer_info->mapped_as_page)
905                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
906                                        buffer_info->length, DMA_TO_DEVICE);
907                 else
908                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
909                                          buffer_info->length, DMA_TO_DEVICE);
910                 buffer_info->dma = 0;
911         }
912         if (buffer_info->skb) {
913                 dev_kfree_skb_any(buffer_info->skb);
914                 buffer_info->skb = NULL;
915         }
916         buffer_info->time_stamp = 0;
917 }
918
919 static void e1000_print_hw_hang(struct work_struct *work)
920 {
921         struct e1000_adapter *adapter = container_of(work,
922                                                      struct e1000_adapter,
923                                                      print_hang_task);
924         struct e1000_ring *tx_ring = adapter->tx_ring;
925         unsigned int i = tx_ring->next_to_clean;
926         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
927         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
928         struct e1000_hw *hw = &adapter->hw;
929         u16 phy_status, phy_1000t_status, phy_ext_status;
930         u16 pci_status;
931
932         e1e_rphy(hw, PHY_STATUS, &phy_status);
933         e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
934         e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
935
936         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
937
938         /* detected Hardware unit hang */
939         e_err("Detected Hardware Unit Hang:\n"
940               "  TDH                  <%x>\n"
941               "  TDT                  <%x>\n"
942               "  next_to_use          <%x>\n"
943               "  next_to_clean        <%x>\n"
944               "buffer_info[next_to_clean]:\n"
945               "  time_stamp           <%lx>\n"
946               "  next_to_watch        <%x>\n"
947               "  jiffies              <%lx>\n"
948               "  next_to_watch.status <%x>\n"
949               "MAC Status             <%x>\n"
950               "PHY Status             <%x>\n"
951               "PHY 1000BASE-T Status  <%x>\n"
952               "PHY Extended Status    <%x>\n"
953               "PCI Status             <%x>\n",
954               readl(adapter->hw.hw_addr + tx_ring->head),
955               readl(adapter->hw.hw_addr + tx_ring->tail),
956               tx_ring->next_to_use,
957               tx_ring->next_to_clean,
958               tx_ring->buffer_info[eop].time_stamp,
959               eop,
960               jiffies,
961               eop_desc->upper.fields.status,
962               er32(STATUS),
963               phy_status,
964               phy_1000t_status,
965               phy_ext_status,
966               pci_status);
967 }
968
969 /**
970  * e1000_clean_tx_irq - Reclaim resources after transmit completes
971  * @adapter: board private structure
972  *
973  * the return value indicates whether actual cleaning was done, there
974  * is no guarantee that everything was cleaned
975  **/
976 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
977 {
978         struct net_device *netdev = adapter->netdev;
979         struct e1000_hw *hw = &adapter->hw;
980         struct e1000_ring *tx_ring = adapter->tx_ring;
981         struct e1000_tx_desc *tx_desc, *eop_desc;
982         struct e1000_buffer *buffer_info;
983         unsigned int i, eop;
984         unsigned int count = 0;
985         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
986
987         i = tx_ring->next_to_clean;
988         eop = tx_ring->buffer_info[i].next_to_watch;
989         eop_desc = E1000_TX_DESC(*tx_ring, eop);
990
991         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
992                (count < tx_ring->count)) {
993                 bool cleaned = false;
994                 for (; !cleaned; count++) {
995                         tx_desc = E1000_TX_DESC(*tx_ring, i);
996                         buffer_info = &tx_ring->buffer_info[i];
997                         cleaned = (i == eop);
998
999                         if (cleaned) {
1000                                 total_tx_packets += buffer_info->segs;
1001                                 total_tx_bytes += buffer_info->bytecount;
1002                         }
1003
1004                         e1000_put_txbuf(adapter, buffer_info);
1005                         tx_desc->upper.data = 0;
1006
1007                         i++;
1008                         if (i == tx_ring->count)
1009                                 i = 0;
1010                 }
1011
1012                 if (i == tx_ring->next_to_use)
1013                         break;
1014                 eop = tx_ring->buffer_info[i].next_to_watch;
1015                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1016         }
1017
1018         tx_ring->next_to_clean = i;
1019
1020 #define TX_WAKE_THRESHOLD 32
1021         if (count && netif_carrier_ok(netdev) &&
1022             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1023                 /* Make sure that anybody stopping the queue after this
1024                  * sees the new next_to_clean.
1025                  */
1026                 smp_mb();
1027
1028                 if (netif_queue_stopped(netdev) &&
1029                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1030                         netif_wake_queue(netdev);
1031                         ++adapter->restart_queue;
1032                 }
1033         }
1034
1035         if (adapter->detect_tx_hung) {
1036                 /*
1037                  * Detect a transmit hang in hardware, this serializes the
1038                  * check with the clearing of time_stamp and movement of i
1039                  */
1040                 adapter->detect_tx_hung = 0;
1041                 if (tx_ring->buffer_info[i].time_stamp &&
1042                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1043                                + (adapter->tx_timeout_factor * HZ)) &&
1044                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
1045                         schedule_work(&adapter->print_hang_task);
1046                         netif_stop_queue(netdev);
1047                 }
1048         }
1049         adapter->total_tx_bytes += total_tx_bytes;
1050         adapter->total_tx_packets += total_tx_packets;
1051         netdev->stats.tx_bytes += total_tx_bytes;
1052         netdev->stats.tx_packets += total_tx_packets;
1053         return (count < tx_ring->count);
1054 }
1055
1056 /**
1057  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1058  * @adapter: board private structure
1059  *
1060  * the return value indicates whether actual cleaning was done, there
1061  * is no guarantee that everything was cleaned
1062  **/
1063 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
1064                                   int *work_done, int work_to_do)
1065 {
1066         struct e1000_hw *hw = &adapter->hw;
1067         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1068         struct net_device *netdev = adapter->netdev;
1069         struct pci_dev *pdev = adapter->pdev;
1070         struct e1000_ring *rx_ring = adapter->rx_ring;
1071         struct e1000_buffer *buffer_info, *next_buffer;
1072         struct e1000_ps_page *ps_page;
1073         struct sk_buff *skb;
1074         unsigned int i, j;
1075         u32 length, staterr;
1076         int cleaned_count = 0;
1077         bool cleaned = 0;
1078         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1079
1080         i = rx_ring->next_to_clean;
1081         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1082         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1083         buffer_info = &rx_ring->buffer_info[i];
1084
1085         while (staterr & E1000_RXD_STAT_DD) {
1086                 if (*work_done >= work_to_do)
1087                         break;
1088                 (*work_done)++;
1089                 skb = buffer_info->skb;
1090
1091                 /* in the packet split case this is header only */
1092                 prefetch(skb->data - NET_IP_ALIGN);
1093
1094                 i++;
1095                 if (i == rx_ring->count)
1096                         i = 0;
1097                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1098                 prefetch(next_rxd);
1099
1100                 next_buffer = &rx_ring->buffer_info[i];
1101
1102                 cleaned = 1;
1103                 cleaned_count++;
1104                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1105                                  adapter->rx_ps_bsize0,
1106                                  DMA_FROM_DEVICE);
1107                 buffer_info->dma = 0;
1108
1109                 /* see !EOP comment in other rx routine */
1110                 if (!(staterr & E1000_RXD_STAT_EOP))
1111                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1112
1113                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1114                         e_dbg("Packet Split buffers didn't pick up the full "
1115                               "packet\n");
1116                         dev_kfree_skb_irq(skb);
1117                         if (staterr & E1000_RXD_STAT_EOP)
1118                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1119                         goto next_desc;
1120                 }
1121
1122                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
1123                         dev_kfree_skb_irq(skb);
1124                         goto next_desc;
1125                 }
1126
1127                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1128
1129                 if (!length) {
1130                         e_dbg("Last part of the packet spanning multiple "
1131                               "descriptors\n");
1132                         dev_kfree_skb_irq(skb);
1133                         goto next_desc;
1134                 }
1135
1136                 /* Good Receive */
1137                 skb_put(skb, length);
1138
1139                 {
1140                 /*
1141                  * this looks ugly, but it seems compiler issues make it
1142                  * more efficient than reusing j
1143                  */
1144                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1145
1146                 /*
1147                  * page alloc/put takes too long and effects small packet
1148                  * throughput, so unsplit small packets and save the alloc/put
1149                  * only valid in softirq (napi) context to call kmap_*
1150                  */
1151                 if (l1 && (l1 <= copybreak) &&
1152                     ((length + l1) <= adapter->rx_ps_bsize0)) {
1153                         u8 *vaddr;
1154
1155                         ps_page = &buffer_info->ps_pages[0];
1156
1157                         /*
1158                          * there is no documentation about how to call
1159                          * kmap_atomic, so we can't hold the mapping
1160                          * very long
1161                          */
1162                         dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
1163                                                 PAGE_SIZE, DMA_FROM_DEVICE);
1164                         vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
1165                         memcpy(skb_tail_pointer(skb), vaddr, l1);
1166                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1167                         dma_sync_single_for_device(&pdev->dev, ps_page->dma,
1168                                                    PAGE_SIZE, DMA_FROM_DEVICE);
1169
1170                         /* remove the CRC */
1171                         if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1172                                 l1 -= 4;
1173
1174                         skb_put(skb, l1);
1175                         goto copydone;
1176                 } /* if */
1177                 }
1178
1179                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1180                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1181                         if (!length)
1182                                 break;
1183
1184                         ps_page = &buffer_info->ps_pages[j];
1185                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1186                                        DMA_FROM_DEVICE);
1187                         ps_page->dma = 0;
1188                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1189                         ps_page->page = NULL;
1190                         skb->len += length;
1191                         skb->data_len += length;
1192                         skb->truesize += length;
1193                 }
1194
1195                 /* strip the ethernet crc, problem is we're using pages now so
1196                  * this whole operation can get a little cpu intensive
1197                  */
1198                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1199                         pskb_trim(skb, skb->len - 4);
1200
1201 copydone:
1202                 total_rx_bytes += skb->len;
1203                 total_rx_packets++;
1204
1205                 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
1206                         rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
1207
1208                 if (rx_desc->wb.upper.header_status &
1209                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1210                         adapter->rx_hdr_split++;
1211
1212                 e1000_receive_skb(adapter, netdev, skb,
1213                                   staterr, rx_desc->wb.middle.vlan);
1214
1215 next_desc:
1216                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1217                 buffer_info->skb = NULL;
1218
1219                 /* return some buffers to hardware, one at a time is too slow */
1220                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1221                         adapter->alloc_rx_buf(adapter, cleaned_count);
1222                         cleaned_count = 0;
1223                 }
1224
1225                 /* use prefetched values */
1226                 rx_desc = next_rxd;
1227                 buffer_info = next_buffer;
1228
1229                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1230         }
1231         rx_ring->next_to_clean = i;
1232
1233         cleaned_count = e1000_desc_unused(rx_ring);
1234         if (cleaned_count)
1235                 adapter->alloc_rx_buf(adapter, cleaned_count);
1236
1237         adapter->total_rx_bytes += total_rx_bytes;
1238         adapter->total_rx_packets += total_rx_packets;
1239         netdev->stats.rx_bytes += total_rx_bytes;
1240         netdev->stats.rx_packets += total_rx_packets;
1241         return cleaned;
1242 }
1243
1244 /**
1245  * e1000_consume_page - helper function
1246  **/
1247 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1248                                u16 length)
1249 {
1250         bi->page = NULL;
1251         skb->len += length;
1252         skb->data_len += length;
1253         skb->truesize += length;
1254 }
1255
1256 /**
1257  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1258  * @adapter: board private structure
1259  *
1260  * the return value indicates whether actual cleaning was done, there
1261  * is no guarantee that everything was cleaned
1262  **/
1263
1264 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
1265                                      int *work_done, int work_to_do)
1266 {
1267         struct net_device *netdev = adapter->netdev;
1268         struct pci_dev *pdev = adapter->pdev;
1269         struct e1000_ring *rx_ring = adapter->rx_ring;
1270         struct e1000_rx_desc *rx_desc, *next_rxd;
1271         struct e1000_buffer *buffer_info, *next_buffer;
1272         u32 length;
1273         unsigned int i;
1274         int cleaned_count = 0;
1275         bool cleaned = false;
1276         unsigned int total_rx_bytes=0, total_rx_packets=0;
1277
1278         i = rx_ring->next_to_clean;
1279         rx_desc = E1000_RX_DESC(*rx_ring, i);
1280         buffer_info = &rx_ring->buffer_info[i];
1281
1282         while (rx_desc->status & E1000_RXD_STAT_DD) {
1283                 struct sk_buff *skb;
1284                 u8 status;
1285
1286                 if (*work_done >= work_to_do)
1287                         break;
1288                 (*work_done)++;
1289
1290                 status = rx_desc->status;
1291                 skb = buffer_info->skb;
1292                 buffer_info->skb = NULL;
1293
1294                 ++i;
1295                 if (i == rx_ring->count)
1296                         i = 0;
1297                 next_rxd = E1000_RX_DESC(*rx_ring, i);
1298                 prefetch(next_rxd);
1299
1300                 next_buffer = &rx_ring->buffer_info[i];
1301
1302                 cleaned = true;
1303                 cleaned_count++;
1304                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1305                                DMA_FROM_DEVICE);
1306                 buffer_info->dma = 0;
1307
1308                 length = le16_to_cpu(rx_desc->length);
1309
1310                 /* errors is only valid for DD + EOP descriptors */
1311                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
1312                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
1313                                 /* recycle both page and skb */
1314                                 buffer_info->skb = skb;
1315                                 /* an error means any chain goes out the window
1316                                  * too */
1317                                 if (rx_ring->rx_skb_top)
1318                                         dev_kfree_skb(rx_ring->rx_skb_top);
1319                                 rx_ring->rx_skb_top = NULL;
1320                                 goto next_desc;
1321                 }
1322
1323 #define rxtop rx_ring->rx_skb_top
1324                 if (!(status & E1000_RXD_STAT_EOP)) {
1325                         /* this descriptor is only the beginning (or middle) */
1326                         if (!rxtop) {
1327                                 /* this is the beginning of a chain */
1328                                 rxtop = skb;
1329                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1330                                                    0, length);
1331                         } else {
1332                                 /* this is the middle of a chain */
1333                                 skb_fill_page_desc(rxtop,
1334                                     skb_shinfo(rxtop)->nr_frags,
1335                                     buffer_info->page, 0, length);
1336                                 /* re-use the skb, only consumed the page */
1337                                 buffer_info->skb = skb;
1338                         }
1339                         e1000_consume_page(buffer_info, rxtop, length);
1340                         goto next_desc;
1341                 } else {
1342                         if (rxtop) {
1343                                 /* end of the chain */
1344                                 skb_fill_page_desc(rxtop,
1345                                     skb_shinfo(rxtop)->nr_frags,
1346                                     buffer_info->page, 0, length);
1347                                 /* re-use the current skb, we only consumed the
1348                                  * page */
1349                                 buffer_info->skb = skb;
1350                                 skb = rxtop;
1351                                 rxtop = NULL;
1352                                 e1000_consume_page(buffer_info, skb, length);
1353                         } else {
1354                                 /* no chain, got EOP, this buf is the packet
1355                                  * copybreak to save the put_page/alloc_page */
1356                                 if (length <= copybreak &&
1357                                     skb_tailroom(skb) >= length) {
1358                                         u8 *vaddr;
1359                                         vaddr = kmap_atomic(buffer_info->page,
1360                                                            KM_SKB_DATA_SOFTIRQ);
1361                                         memcpy(skb_tail_pointer(skb), vaddr,
1362                                                length);
1363                                         kunmap_atomic(vaddr,
1364                                                       KM_SKB_DATA_SOFTIRQ);
1365                                         /* re-use the page, so don't erase
1366                                          * buffer_info->page */
1367                                         skb_put(skb, length);
1368                                 } else {
1369                                         skb_fill_page_desc(skb, 0,
1370                                                            buffer_info->page, 0,
1371                                                            length);
1372                                         e1000_consume_page(buffer_info, skb,
1373                                                            length);
1374                                 }
1375                         }
1376                 }
1377
1378                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1379                 e1000_rx_checksum(adapter,
1380                                   (u32)(status) |
1381                                   ((u32)(rx_desc->errors) << 24),
1382                                   le16_to_cpu(rx_desc->csum), skb);
1383
1384                 /* probably a little skewed due to removing CRC */
1385                 total_rx_bytes += skb->len;
1386                 total_rx_packets++;
1387
1388                 /* eth type trans needs skb->data to point to something */
1389                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1390                         e_err("pskb_may_pull failed.\n");
1391                         dev_kfree_skb(skb);
1392                         goto next_desc;
1393                 }
1394
1395                 e1000_receive_skb(adapter, netdev, skb, status,
1396                                   rx_desc->special);
1397
1398 next_desc:
1399                 rx_desc->status = 0;
1400
1401                 /* return some buffers to hardware, one at a time is too slow */
1402                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1403                         adapter->alloc_rx_buf(adapter, cleaned_count);
1404                         cleaned_count = 0;
1405                 }
1406
1407                 /* use prefetched values */
1408                 rx_desc = next_rxd;
1409                 buffer_info = next_buffer;
1410         }
1411         rx_ring->next_to_clean = i;
1412
1413         cleaned_count = e1000_desc_unused(rx_ring);
1414         if (cleaned_count)
1415                 adapter->alloc_rx_buf(adapter, cleaned_count);
1416
1417         adapter->total_rx_bytes += total_rx_bytes;
1418         adapter->total_rx_packets += total_rx_packets;
1419         netdev->stats.rx_bytes += total_rx_bytes;
1420         netdev->stats.rx_packets += total_rx_packets;
1421         return cleaned;
1422 }
1423
1424 /**
1425  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1426  * @adapter: board private structure
1427  **/
1428 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1429 {
1430         struct e1000_ring *rx_ring = adapter->rx_ring;
1431         struct e1000_buffer *buffer_info;
1432         struct e1000_ps_page *ps_page;
1433         struct pci_dev *pdev = adapter->pdev;
1434         unsigned int i, j;
1435
1436         /* Free all the Rx ring sk_buffs */
1437         for (i = 0; i < rx_ring->count; i++) {
1438                 buffer_info = &rx_ring->buffer_info[i];
1439                 if (buffer_info->dma) {
1440                         if (adapter->clean_rx == e1000_clean_rx_irq)
1441                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1442                                                  adapter->rx_buffer_len,
1443                                                  DMA_FROM_DEVICE);
1444                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1445                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1446                                                PAGE_SIZE,
1447                                                DMA_FROM_DEVICE);
1448                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1449                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1450                                                  adapter->rx_ps_bsize0,
1451                                                  DMA_FROM_DEVICE);
1452                         buffer_info->dma = 0;
1453                 }
1454
1455                 if (buffer_info->page) {
1456                         put_page(buffer_info->page);
1457                         buffer_info->page = NULL;
1458                 }
1459
1460                 if (buffer_info->skb) {
1461                         dev_kfree_skb(buffer_info->skb);
1462                         buffer_info->skb = NULL;
1463                 }
1464
1465                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1466                         ps_page = &buffer_info->ps_pages[j];
1467                         if (!ps_page->page)
1468                                 break;
1469                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1470                                        DMA_FROM_DEVICE);
1471                         ps_page->dma = 0;
1472                         put_page(ps_page->page);
1473                         ps_page->page = NULL;
1474                 }
1475         }
1476
1477         /* there also may be some cached data from a chained receive */
1478         if (rx_ring->rx_skb_top) {
1479                 dev_kfree_skb(rx_ring->rx_skb_top);
1480                 rx_ring->rx_skb_top = NULL;
1481         }
1482
1483         /* Zero out the descriptor ring */
1484         memset(rx_ring->desc, 0, rx_ring->size);
1485
1486         rx_ring->next_to_clean = 0;
1487         rx_ring->next_to_use = 0;
1488         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1489
1490         writel(0, adapter->hw.hw_addr + rx_ring->head);
1491         writel(0, adapter->hw.hw_addr + rx_ring->tail);
1492 }
1493
1494 static void e1000e_downshift_workaround(struct work_struct *work)
1495 {
1496         struct e1000_adapter *adapter = container_of(work,
1497                                         struct e1000_adapter, downshift_task);
1498
1499         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1500 }
1501
1502 /**
1503  * e1000_intr_msi - Interrupt Handler
1504  * @irq: interrupt number
1505  * @data: pointer to a network interface device structure
1506  **/
1507 static irqreturn_t e1000_intr_msi(int irq, void *data)
1508 {
1509         struct net_device *netdev = data;
1510         struct e1000_adapter *adapter = netdev_priv(netdev);
1511         struct e1000_hw *hw = &adapter->hw;
1512         u32 icr = er32(ICR);
1513
1514         /*
1515          * read ICR disables interrupts using IAM
1516          */
1517
1518         if (icr & E1000_ICR_LSC) {
1519                 hw->mac.get_link_status = 1;
1520                 /*
1521                  * ICH8 workaround-- Call gig speed drop workaround on cable
1522                  * disconnect (LSC) before accessing any PHY registers
1523                  */
1524                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1525                     (!(er32(STATUS) & E1000_STATUS_LU)))
1526                         schedule_work(&adapter->downshift_task);
1527
1528                 /*
1529                  * 80003ES2LAN workaround-- For packet buffer work-around on
1530                  * link down event; disable receives here in the ISR and reset
1531                  * adapter in watchdog
1532                  */
1533                 if (netif_carrier_ok(netdev) &&
1534                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1535                         /* disable receives */
1536                         u32 rctl = er32(RCTL);
1537                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1538                         adapter->flags |= FLAG_RX_RESTART_NOW;
1539                 }
1540                 /* guard against interrupt when we're going down */
1541                 if (!test_bit(__E1000_DOWN, &adapter->state))
1542                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1543         }
1544
1545         if (napi_schedule_prep(&adapter->napi)) {
1546                 adapter->total_tx_bytes = 0;
1547                 adapter->total_tx_packets = 0;
1548                 adapter->total_rx_bytes = 0;
1549                 adapter->total_rx_packets = 0;
1550                 __napi_schedule(&adapter->napi);
1551         }
1552
1553         return IRQ_HANDLED;
1554 }
1555
1556 /**
1557  * e1000_intr - Interrupt Handler
1558  * @irq: interrupt number
1559  * @data: pointer to a network interface device structure
1560  **/
1561 static irqreturn_t e1000_intr(int irq, void *data)
1562 {
1563         struct net_device *netdev = data;
1564         struct e1000_adapter *adapter = netdev_priv(netdev);
1565         struct e1000_hw *hw = &adapter->hw;
1566         u32 rctl, icr = er32(ICR);
1567
1568         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1569                 return IRQ_NONE;  /* Not our interrupt */
1570
1571         /*
1572          * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1573          * not set, then the adapter didn't send an interrupt
1574          */
1575         if (!(icr & E1000_ICR_INT_ASSERTED))
1576                 return IRQ_NONE;
1577
1578         /*
1579          * Interrupt Auto-Mask...upon reading ICR,
1580          * interrupts are masked.  No need for the
1581          * IMC write
1582          */
1583
1584         if (icr & E1000_ICR_LSC) {
1585                 hw->mac.get_link_status = 1;
1586                 /*
1587                  * ICH8 workaround-- Call gig speed drop workaround on cable
1588                  * disconnect (LSC) before accessing any PHY registers
1589                  */
1590                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1591                     (!(er32(STATUS) & E1000_STATUS_LU)))
1592                         schedule_work(&adapter->downshift_task);
1593
1594                 /*
1595                  * 80003ES2LAN workaround--
1596                  * For packet buffer work-around on link down event;
1597                  * disable receives here in the ISR and
1598                  * reset adapter in watchdog
1599                  */
1600                 if (netif_carrier_ok(netdev) &&
1601                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1602                         /* disable receives */
1603                         rctl = er32(RCTL);
1604                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1605                         adapter->flags |= FLAG_RX_RESTART_NOW;
1606                 }
1607                 /* guard against interrupt when we're going down */
1608                 if (!test_bit(__E1000_DOWN, &adapter->state))
1609                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1610         }
1611
1612         if (napi_schedule_prep(&adapter->napi)) {
1613                 adapter->total_tx_bytes = 0;
1614                 adapter->total_tx_packets = 0;
1615                 adapter->total_rx_bytes = 0;
1616                 adapter->total_rx_packets = 0;
1617                 __napi_schedule(&adapter->napi);
1618         }
1619
1620         return IRQ_HANDLED;
1621 }
1622
1623 static irqreturn_t e1000_msix_other(int irq, void *data)
1624 {
1625         struct net_device *netdev = data;
1626         struct e1000_adapter *adapter = netdev_priv(netdev);
1627         struct e1000_hw *hw = &adapter->hw;
1628         u32 icr = er32(ICR);
1629
1630         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1631                 if (!test_bit(__E1000_DOWN, &adapter->state))
1632                         ew32(IMS, E1000_IMS_OTHER);
1633                 return IRQ_NONE;
1634         }
1635
1636         if (icr & adapter->eiac_mask)
1637                 ew32(ICS, (icr & adapter->eiac_mask));
1638
1639         if (icr & E1000_ICR_OTHER) {
1640                 if (!(icr & E1000_ICR_LSC))
1641                         goto no_link_interrupt;
1642                 hw->mac.get_link_status = 1;
1643                 /* guard against interrupt when we're going down */
1644                 if (!test_bit(__E1000_DOWN, &adapter->state))
1645                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1646         }
1647
1648 no_link_interrupt:
1649         if (!test_bit(__E1000_DOWN, &adapter->state))
1650                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1651
1652         return IRQ_HANDLED;
1653 }
1654
1655
1656 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1657 {
1658         struct net_device *netdev = data;
1659         struct e1000_adapter *adapter = netdev_priv(netdev);
1660         struct e1000_hw *hw = &adapter->hw;
1661         struct e1000_ring *tx_ring = adapter->tx_ring;
1662
1663
1664         adapter->total_tx_bytes = 0;
1665         adapter->total_tx_packets = 0;
1666
1667         if (!e1000_clean_tx_irq(adapter))
1668                 /* Ring was not completely cleaned, so fire another interrupt */
1669                 ew32(ICS, tx_ring->ims_val);
1670
1671         return IRQ_HANDLED;
1672 }
1673
1674 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1675 {
1676         struct net_device *netdev = data;
1677         struct e1000_adapter *adapter = netdev_priv(netdev);
1678
1679         /* Write the ITR value calculated at the end of the
1680          * previous interrupt.
1681          */
1682         if (adapter->rx_ring->set_itr) {
1683                 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1684                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1685                 adapter->rx_ring->set_itr = 0;
1686         }
1687
1688         if (napi_schedule_prep(&adapter->napi)) {
1689                 adapter->total_rx_bytes = 0;
1690                 adapter->total_rx_packets = 0;
1691                 __napi_schedule(&adapter->napi);
1692         }
1693         return IRQ_HANDLED;
1694 }
1695
1696 /**
1697  * e1000_configure_msix - Configure MSI-X hardware
1698  *
1699  * e1000_configure_msix sets up the hardware to properly
1700  * generate MSI-X interrupts.
1701  **/
1702 static void e1000_configure_msix(struct e1000_adapter *adapter)
1703 {
1704         struct e1000_hw *hw = &adapter->hw;
1705         struct e1000_ring *rx_ring = adapter->rx_ring;
1706         struct e1000_ring *tx_ring = adapter->tx_ring;
1707         int vector = 0;
1708         u32 ctrl_ext, ivar = 0;
1709
1710         adapter->eiac_mask = 0;
1711
1712         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1713         if (hw->mac.type == e1000_82574) {
1714                 u32 rfctl = er32(RFCTL);
1715                 rfctl |= E1000_RFCTL_ACK_DIS;
1716                 ew32(RFCTL, rfctl);
1717         }
1718
1719 #define E1000_IVAR_INT_ALLOC_VALID      0x8
1720         /* Configure Rx vector */
1721         rx_ring->ims_val = E1000_IMS_RXQ0;
1722         adapter->eiac_mask |= rx_ring->ims_val;
1723         if (rx_ring->itr_val)
1724                 writel(1000000000 / (rx_ring->itr_val * 256),
1725                        hw->hw_addr + rx_ring->itr_register);
1726         else
1727                 writel(1, hw->hw_addr + rx_ring->itr_register);
1728         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1729
1730         /* Configure Tx vector */
1731         tx_ring->ims_val = E1000_IMS_TXQ0;
1732         vector++;
1733         if (tx_ring->itr_val)
1734                 writel(1000000000 / (tx_ring->itr_val * 256),
1735                        hw->hw_addr + tx_ring->itr_register);
1736         else
1737                 writel(1, hw->hw_addr + tx_ring->itr_register);
1738         adapter->eiac_mask |= tx_ring->ims_val;
1739         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1740
1741         /* set vector for Other Causes, e.g. link changes */
1742         vector++;
1743         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1744         if (rx_ring->itr_val)
1745                 writel(1000000000 / (rx_ring->itr_val * 256),
1746                        hw->hw_addr + E1000_EITR_82574(vector));
1747         else
1748                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1749
1750         /* Cause Tx interrupts on every write back */
1751         ivar |= (1 << 31);
1752
1753         ew32(IVAR, ivar);
1754
1755         /* enable MSI-X PBA support */
1756         ctrl_ext = er32(CTRL_EXT);
1757         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1758
1759         /* Auto-Mask Other interrupts upon ICR read */
1760 #define E1000_EIAC_MASK_82574   0x01F00000
1761         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1762         ctrl_ext |= E1000_CTRL_EXT_EIAME;
1763         ew32(CTRL_EXT, ctrl_ext);
1764         e1e_flush();
1765 }
1766
1767 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1768 {
1769         if (adapter->msix_entries) {
1770                 pci_disable_msix(adapter->pdev);
1771                 kfree(adapter->msix_entries);
1772                 adapter->msix_entries = NULL;
1773         } else if (adapter->flags & FLAG_MSI_ENABLED) {
1774                 pci_disable_msi(adapter->pdev);
1775                 adapter->flags &= ~FLAG_MSI_ENABLED;
1776         }
1777 }
1778
1779 /**
1780  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1781  *
1782  * Attempt to configure interrupts using the best available
1783  * capabilities of the hardware and kernel.
1784  **/
1785 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1786 {
1787         int err;
1788         int i;
1789
1790         switch (adapter->int_mode) {
1791         case E1000E_INT_MODE_MSIX:
1792                 if (adapter->flags & FLAG_HAS_MSIX) {
1793                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1794                         adapter->msix_entries = kcalloc(adapter->num_vectors,
1795                                                       sizeof(struct msix_entry),
1796                                                       GFP_KERNEL);
1797                         if (adapter->msix_entries) {
1798                                 for (i = 0; i < adapter->num_vectors; i++)
1799                                         adapter->msix_entries[i].entry = i;
1800
1801                                 err = pci_enable_msix(adapter->pdev,
1802                                                       adapter->msix_entries,
1803                                                       adapter->num_vectors);
1804                                 if (err == 0) {
1805                                         return;
1806                                 }
1807                         }
1808                         /* MSI-X failed, so fall through and try MSI */
1809                         e_err("Failed to initialize MSI-X interrupts.  "
1810                               "Falling back to MSI interrupts.\n");
1811                         e1000e_reset_interrupt_capability(adapter);
1812                 }
1813                 adapter->int_mode = E1000E_INT_MODE_MSI;
1814                 /* Fall through */
1815         case E1000E_INT_MODE_MSI:
1816                 if (!pci_enable_msi(adapter->pdev)) {
1817                         adapter->flags |= FLAG_MSI_ENABLED;
1818                 } else {
1819                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
1820                         e_err("Failed to initialize MSI interrupts.  Falling "
1821                               "back to legacy interrupts.\n");
1822                 }
1823                 /* Fall through */
1824         case E1000E_INT_MODE_LEGACY:
1825                 /* Don't do anything; this is the system default */
1826                 break;
1827         }
1828
1829         /* store the number of vectors being used */
1830         adapter->num_vectors = 1;
1831 }
1832
1833 /**
1834  * e1000_request_msix - Initialize MSI-X interrupts
1835  *
1836  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1837  * kernel.
1838  **/
1839 static int e1000_request_msix(struct e1000_adapter *adapter)
1840 {
1841         struct net_device *netdev = adapter->netdev;
1842         int err = 0, vector = 0;
1843
1844         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1845                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1846         else
1847                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1848         err = request_irq(adapter->msix_entries[vector].vector,
1849                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1850                           netdev);
1851         if (err)
1852                 goto out;
1853         adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1854         adapter->rx_ring->itr_val = adapter->itr;
1855         vector++;
1856
1857         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1858                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1859         else
1860                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1861         err = request_irq(adapter->msix_entries[vector].vector,
1862                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1863                           netdev);
1864         if (err)
1865                 goto out;
1866         adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1867         adapter->tx_ring->itr_val = adapter->itr;
1868         vector++;
1869
1870         err = request_irq(adapter->msix_entries[vector].vector,
1871                           e1000_msix_other, 0, netdev->name, netdev);
1872         if (err)
1873                 goto out;
1874
1875         e1000_configure_msix(adapter);
1876         return 0;
1877 out:
1878         return err;
1879 }
1880
1881 /**
1882  * e1000_request_irq - initialize interrupts
1883  *
1884  * Attempts to configure interrupts using the best available
1885  * capabilities of the hardware and kernel.
1886  **/
1887 static int e1000_request_irq(struct e1000_adapter *adapter)
1888 {
1889         struct net_device *netdev = adapter->netdev;
1890         int err;
1891
1892         if (adapter->msix_entries) {
1893                 err = e1000_request_msix(adapter);
1894                 if (!err)
1895                         return err;
1896                 /* fall back to MSI */
1897                 e1000e_reset_interrupt_capability(adapter);
1898                 adapter->int_mode = E1000E_INT_MODE_MSI;
1899                 e1000e_set_interrupt_capability(adapter);
1900         }
1901         if (adapter->flags & FLAG_MSI_ENABLED) {
1902                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1903                                   netdev->name, netdev);
1904                 if (!err)
1905                         return err;
1906
1907                 /* fall back to legacy interrupt */
1908                 e1000e_reset_interrupt_capability(adapter);
1909                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1910         }
1911
1912         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1913                           netdev->name, netdev);
1914         if (err)
1915                 e_err("Unable to allocate interrupt, Error: %d\n", err);
1916
1917         return err;
1918 }
1919
1920 static void e1000_free_irq(struct e1000_adapter *adapter)
1921 {
1922         struct net_device *netdev = adapter->netdev;
1923
1924         if (adapter->msix_entries) {
1925                 int vector = 0;
1926
1927                 free_irq(adapter->msix_entries[vector].vector, netdev);
1928                 vector++;
1929
1930                 free_irq(adapter->msix_entries[vector].vector, netdev);
1931                 vector++;
1932
1933                 /* Other Causes interrupt vector */
1934                 free_irq(adapter->msix_entries[vector].vector, netdev);
1935                 return;
1936         }
1937
1938         free_irq(adapter->pdev->irq, netdev);
1939 }
1940
1941 /**
1942  * e1000_irq_disable - Mask off interrupt generation on the NIC
1943  **/
1944 static void e1000_irq_disable(struct e1000_adapter *adapter)
1945 {
1946         struct e1000_hw *hw = &adapter->hw;
1947
1948         ew32(IMC, ~0);
1949         if (adapter->msix_entries)
1950                 ew32(EIAC_82574, 0);
1951         e1e_flush();
1952
1953         if (adapter->msix_entries) {
1954                 int i;
1955                 for (i = 0; i < adapter->num_vectors; i++)
1956                         synchronize_irq(adapter->msix_entries[i].vector);
1957         } else {
1958                 synchronize_irq(adapter->pdev->irq);
1959         }
1960 }
1961
1962 /**
1963  * e1000_irq_enable - Enable default interrupt generation settings
1964  **/
1965 static void e1000_irq_enable(struct e1000_adapter *adapter)
1966 {
1967         struct e1000_hw *hw = &adapter->hw;
1968
1969         if (adapter->msix_entries) {
1970                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1971                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1972         } else {
1973                 ew32(IMS, IMS_ENABLE_MASK);
1974         }
1975         e1e_flush();
1976 }
1977
1978 /**
1979  * e1000_get_hw_control - get control of the h/w from f/w
1980  * @adapter: address of board private structure
1981  *
1982  * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1983  * For ASF and Pass Through versions of f/w this means that
1984  * the driver is loaded. For AMT version (only with 82573)
1985  * of the f/w this means that the network i/f is open.
1986  **/
1987 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1988 {
1989         struct e1000_hw *hw = &adapter->hw;
1990         u32 ctrl_ext;
1991         u32 swsm;
1992
1993         /* Let firmware know the driver has taken over */
1994         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1995                 swsm = er32(SWSM);
1996                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1997         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1998                 ctrl_ext = er32(CTRL_EXT);
1999                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2000         }
2001 }
2002
2003 /**
2004  * e1000_release_hw_control - release control of the h/w to f/w
2005  * @adapter: address of board private structure
2006  *
2007  * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2008  * For ASF and Pass Through versions of f/w this means that the
2009  * driver is no longer loaded. For AMT version (only with 82573) i
2010  * of the f/w this means that the network i/f is closed.
2011  *
2012  **/
2013 static void e1000_release_hw_control(struct e1000_adapter *adapter)
2014 {
2015         struct e1000_hw *hw = &adapter->hw;
2016         u32 ctrl_ext;
2017         u32 swsm;
2018
2019         /* Let firmware taken over control of h/w */
2020         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2021                 swsm = er32(SWSM);
2022                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2023         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2024                 ctrl_ext = er32(CTRL_EXT);
2025                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2026         }
2027 }
2028
2029 /**
2030  * @e1000_alloc_ring - allocate memory for a ring structure
2031  **/
2032 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2033                                 struct e1000_ring *ring)
2034 {
2035         struct pci_dev *pdev = adapter->pdev;
2036
2037         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2038                                         GFP_KERNEL);
2039         if (!ring->desc)
2040                 return -ENOMEM;
2041
2042         return 0;
2043 }
2044
2045 /**
2046  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2047  * @adapter: board private structure
2048  *
2049  * Return 0 on success, negative on failure
2050  **/
2051 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
2052 {
2053         struct e1000_ring *tx_ring = adapter->tx_ring;
2054         int err = -ENOMEM, size;
2055
2056         size = sizeof(struct e1000_buffer) * tx_ring->count;
2057         tx_ring->buffer_info = vmalloc(size);
2058         if (!tx_ring->buffer_info)
2059                 goto err;
2060         memset(tx_ring->buffer_info, 0, size);
2061
2062         /* round up to nearest 4K */
2063         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2064         tx_ring->size = ALIGN(tx_ring->size, 4096);
2065
2066         err = e1000_alloc_ring_dma(adapter, tx_ring);
2067         if (err)
2068                 goto err;
2069
2070         tx_ring->next_to_use = 0;
2071         tx_ring->next_to_clean = 0;
2072
2073         return 0;
2074 err:
2075         vfree(tx_ring->buffer_info);
2076         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2077         return err;
2078 }
2079
2080 /**
2081  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2082  * @adapter: board private structure
2083  *
2084  * Returns 0 on success, negative on failure
2085  **/
2086 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
2087 {
2088         struct e1000_ring *rx_ring = adapter->rx_ring;
2089         struct e1000_buffer *buffer_info;
2090         int i, size, desc_len, err = -ENOMEM;
2091
2092         size = sizeof(struct e1000_buffer) * rx_ring->count;
2093         rx_ring->buffer_info = vmalloc(size);
2094         if (!rx_ring->buffer_info)
2095                 goto err;
2096         memset(rx_ring->buffer_info, 0, size);
2097
2098         for (i = 0; i < rx_ring->count; i++) {
2099                 buffer_info = &rx_ring->buffer_info[i];
2100                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2101                                                 sizeof(struct e1000_ps_page),
2102                                                 GFP_KERNEL);
2103                 if (!buffer_info->ps_pages)
2104                         goto err_pages;
2105         }
2106
2107         desc_len = sizeof(union e1000_rx_desc_packet_split);
2108
2109         /* Round up to nearest 4K */
2110         rx_ring->size = rx_ring->count * desc_len;
2111         rx_ring->size = ALIGN(rx_ring->size, 4096);
2112
2113         err = e1000_alloc_ring_dma(adapter, rx_ring);
2114         if (err)
2115                 goto err_pages;
2116
2117         rx_ring->next_to_clean = 0;
2118         rx_ring->next_to_use = 0;
2119         rx_ring->rx_skb_top = NULL;
2120
2121         return 0;
2122
2123 err_pages:
2124         for (i = 0; i < rx_ring->count; i++) {
2125                 buffer_info = &rx_ring->buffer_info[i];
2126                 kfree(buffer_info->ps_pages);
2127         }
2128 err:
2129         vfree(rx_ring->buffer_info);
2130         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2131         return err;
2132 }
2133
2134 /**
2135  * e1000_clean_tx_ring - Free Tx Buffers
2136  * @adapter: board private structure
2137  **/
2138 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
2139 {
2140         struct e1000_ring *tx_ring = adapter->tx_ring;
2141         struct e1000_buffer *buffer_info;
2142         unsigned long size;
2143         unsigned int i;
2144
2145         for (i = 0; i < tx_ring->count; i++) {
2146                 buffer_info = &tx_ring->buffer_info[i];
2147                 e1000_put_txbuf(adapter, buffer_info);
2148         }
2149
2150         size = sizeof(struct e1000_buffer) * tx_ring->count;
2151         memset(tx_ring->buffer_info, 0, size);
2152
2153         memset(tx_ring->desc, 0, tx_ring->size);
2154
2155         tx_ring->next_to_use = 0;
2156         tx_ring->next_to_clean = 0;
2157
2158         writel(0, adapter->hw.hw_addr + tx_ring->head);
2159         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2160 }
2161
2162 /**
2163  * e1000e_free_tx_resources - Free Tx Resources per Queue
2164  * @adapter: board private structure
2165  *
2166  * Free all transmit software resources
2167  **/
2168 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
2169 {
2170         struct pci_dev *pdev = adapter->pdev;
2171         struct e1000_ring *tx_ring = adapter->tx_ring;
2172
2173         e1000_clean_tx_ring(adapter);
2174
2175         vfree(tx_ring->buffer_info);
2176         tx_ring->buffer_info = NULL;
2177
2178         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2179                           tx_ring->dma);
2180         tx_ring->desc = NULL;
2181 }
2182
2183 /**
2184  * e1000e_free_rx_resources - Free Rx Resources
2185  * @adapter: board private structure
2186  *
2187  * Free all receive software resources
2188  **/
2189
2190 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
2191 {
2192         struct pci_dev *pdev = adapter->pdev;
2193         struct e1000_ring *rx_ring = adapter->rx_ring;
2194         int i;
2195
2196         e1000_clean_rx_ring(adapter);
2197
2198         for (i = 0; i < rx_ring->count; i++) {
2199                 kfree(rx_ring->buffer_info[i].ps_pages);
2200         }
2201
2202         vfree(rx_ring->buffer_info);
2203         rx_ring->buffer_info = NULL;
2204
2205         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2206                           rx_ring->dma);
2207         rx_ring->desc = NULL;
2208 }
2209
2210 /**
2211  * e1000_update_itr - update the dynamic ITR value based on statistics
2212  * @adapter: pointer to adapter
2213  * @itr_setting: current adapter->itr
2214  * @packets: the number of packets during this measurement interval
2215  * @bytes: the number of bytes during this measurement interval
2216  *
2217  *      Stores a new ITR value based on packets and byte
2218  *      counts during the last interrupt.  The advantage of per interrupt
2219  *      computation is faster updates and more accurate ITR for the current
2220  *      traffic pattern.  Constants in this function were computed
2221  *      based on theoretical maximum wire speed and thresholds were set based
2222  *      on testing data as well as attempting to minimize response time
2223  *      while increasing bulk throughput.  This functionality is controlled
2224  *      by the InterruptThrottleRate module parameter.
2225  **/
2226 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2227                                      u16 itr_setting, int packets,
2228                                      int bytes)
2229 {
2230         unsigned int retval = itr_setting;
2231
2232         if (packets == 0)
2233                 goto update_itr_done;
2234
2235         switch (itr_setting) {
2236         case lowest_latency:
2237                 /* handle TSO and jumbo frames */
2238                 if (bytes/packets > 8000)
2239                         retval = bulk_latency;
2240                 else if ((packets < 5) && (bytes > 512)) {
2241                         retval = low_latency;
2242                 }
2243                 break;
2244         case low_latency:  /* 50 usec aka 20000 ints/s */
2245                 if (bytes > 10000) {
2246                         /* this if handles the TSO accounting */
2247                         if (bytes/packets > 8000) {
2248                                 retval = bulk_latency;
2249                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2250                                 retval = bulk_latency;
2251                         } else if ((packets > 35)) {
2252                                 retval = lowest_latency;
2253                         }
2254                 } else if (bytes/packets > 2000) {
2255                         retval = bulk_latency;
2256                 } else if (packets <= 2 && bytes < 512) {
2257                         retval = lowest_latency;
2258                 }
2259                 break;
2260         case bulk_latency: /* 250 usec aka 4000 ints/s */
2261                 if (bytes > 25000) {
2262                         if (packets > 35) {
2263                                 retval = low_latency;
2264                         }
2265                 } else if (bytes < 6000) {
2266                         retval = low_latency;
2267                 }
2268                 break;
2269         }
2270
2271 update_itr_done:
2272         return retval;
2273 }
2274
2275 static void e1000_set_itr(struct e1000_adapter *adapter)
2276 {
2277         struct e1000_hw *hw = &adapter->hw;
2278         u16 current_itr;
2279         u32 new_itr = adapter->itr;
2280
2281         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2282         if (adapter->link_speed != SPEED_1000) {
2283                 current_itr = 0;
2284                 new_itr = 4000;
2285                 goto set_itr_now;
2286         }
2287
2288         adapter->tx_itr = e1000_update_itr(adapter,
2289                                     adapter->tx_itr,
2290                                     adapter->total_tx_packets,
2291                                     adapter->total_tx_bytes);
2292         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2293         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2294                 adapter->tx_itr = low_latency;
2295
2296         adapter->rx_itr = e1000_update_itr(adapter,
2297                                     adapter->rx_itr,
2298                                     adapter->total_rx_packets,
2299                                     adapter->total_rx_bytes);
2300         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2301         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2302                 adapter->rx_itr = low_latency;
2303
2304         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2305
2306         switch (current_itr) {
2307         /* counts and packets in update_itr are dependent on these numbers */
2308         case lowest_latency:
2309                 new_itr = 70000;
2310                 break;
2311         case low_latency:
2312                 new_itr = 20000; /* aka hwitr = ~200 */
2313                 break;
2314         case bulk_latency:
2315                 new_itr = 4000;
2316                 break;
2317         default:
2318                 break;
2319         }
2320
2321 set_itr_now:
2322         if (new_itr != adapter->itr) {
2323                 /*
2324                  * this attempts to bias the interrupt rate towards Bulk
2325                  * by adding intermediate steps when interrupt rate is
2326                  * increasing
2327                  */
2328                 new_itr = new_itr > adapter->itr ?
2329                              min(adapter->itr + (new_itr >> 2), new_itr) :
2330                              new_itr;
2331                 adapter->itr = new_itr;
2332                 adapter->rx_ring->itr_val = new_itr;
2333                 if (adapter->msix_entries)
2334                         adapter->rx_ring->set_itr = 1;
2335                 else
2336                         ew32(ITR, 1000000000 / (new_itr * 256));
2337         }
2338 }
2339
2340 /**
2341  * e1000_alloc_queues - Allocate memory for all rings
2342  * @adapter: board private structure to initialize
2343  **/
2344 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2345 {
2346         adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2347         if (!adapter->tx_ring)
2348                 goto err;
2349
2350         adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2351         if (!adapter->rx_ring)
2352                 goto err;
2353
2354         return 0;
2355 err:
2356         e_err("Unable to allocate memory for queues\n");
2357         kfree(adapter->rx_ring);
2358         kfree(adapter->tx_ring);
2359         return -ENOMEM;
2360 }
2361
2362 /**
2363  * e1000_clean - NAPI Rx polling callback
2364  * @napi: struct associated with this polling callback
2365  * @budget: amount of packets driver is allowed to process this poll
2366  **/
2367 static int e1000_clean(struct napi_struct *napi, int budget)
2368 {
2369         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2370         struct e1000_hw *hw = &adapter->hw;
2371         struct net_device *poll_dev = adapter->netdev;
2372         int tx_cleaned = 1, work_done = 0;
2373
2374         adapter = netdev_priv(poll_dev);
2375
2376         if (adapter->msix_entries &&
2377             !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2378                 goto clean_rx;
2379
2380         tx_cleaned = e1000_clean_tx_irq(adapter);
2381
2382 clean_rx:
2383         adapter->clean_rx(adapter, &work_done, budget);
2384
2385         if (!tx_cleaned)
2386                 work_done = budget;
2387
2388         /* If budget not fully consumed, exit the polling mode */
2389         if (work_done < budget) {
2390                 if (adapter->itr_setting & 3)
2391                         e1000_set_itr(adapter);
2392                 napi_complete(napi);
2393                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2394                         if (adapter->msix_entries)
2395                                 ew32(IMS, adapter->rx_ring->ims_val);
2396                         else
2397                                 e1000_irq_enable(adapter);
2398                 }
2399         }
2400
2401         return work_done;
2402 }
2403
2404 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2405 {
2406         struct e1000_adapter *adapter = netdev_priv(netdev);
2407         struct e1000_hw *hw = &adapter->hw;
2408         u32 vfta, index;
2409
2410         /* don't update vlan cookie if already programmed */
2411         if ((adapter->hw.mng_cookie.status &
2412              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2413             (vid == adapter->mng_vlan_id))
2414                 return;
2415
2416         /* add VID to filter table */
2417         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2418                 index = (vid >> 5) & 0x7F;
2419                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2420                 vfta |= (1 << (vid & 0x1F));
2421                 hw->mac.ops.write_vfta(hw, index, vfta);
2422         }
2423 }
2424
2425 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2426 {
2427         struct e1000_adapter *adapter = netdev_priv(netdev);
2428         struct e1000_hw *hw = &adapter->hw;
2429         u32 vfta, index;
2430
2431         if (!test_bit(__E1000_DOWN, &adapter->state))
2432                 e1000_irq_disable(adapter);
2433         vlan_group_set_device(adapter->vlgrp, vid, NULL);
2434
2435         if (!test_bit(__E1000_DOWN, &adapter->state))
2436                 e1000_irq_enable(adapter);
2437
2438         if ((adapter->hw.mng_cookie.status &
2439              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2440             (vid == adapter->mng_vlan_id)) {
2441                 /* release control to f/w */
2442                 e1000_release_hw_control(adapter);
2443                 return;
2444         }
2445
2446         /* remove VID from filter table */
2447         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2448                 index = (vid >> 5) & 0x7F;
2449                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2450                 vfta &= ~(1 << (vid & 0x1F));
2451                 hw->mac.ops.write_vfta(hw, index, vfta);
2452         }
2453 }
2454
2455 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2456 {
2457         struct net_device *netdev = adapter->netdev;
2458         u16 vid = adapter->hw.mng_cookie.vlan_id;
2459         u16 old_vid = adapter->mng_vlan_id;
2460
2461         if (!adapter->vlgrp)
2462                 return;
2463
2464         if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2465                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2466                 if (adapter->hw.mng_cookie.status &
2467                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2468                         e1000_vlan_rx_add_vid(netdev, vid);
2469                         adapter->mng_vlan_id = vid;
2470                 }
2471
2472                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2473                                 (vid != old_vid) &&
2474                     !vlan_group_get_device(adapter->vlgrp, old_vid))
2475                         e1000_vlan_rx_kill_vid(netdev, old_vid);
2476         } else {
2477                 adapter->mng_vlan_id = vid;
2478         }
2479 }
2480
2481
2482 static void e1000_vlan_rx_register(struct net_device *netdev,
2483                                    struct vlan_group *grp)
2484 {
2485         struct e1000_adapter *adapter = netdev_priv(netdev);
2486         struct e1000_hw *hw = &adapter->hw;
2487         u32 ctrl, rctl;
2488
2489         if (!test_bit(__E1000_DOWN, &adapter->state))
2490                 e1000_irq_disable(adapter);
2491         adapter->vlgrp = grp;
2492
2493         if (grp) {
2494                 /* enable VLAN tag insert/strip */
2495                 ctrl = er32(CTRL);
2496                 ctrl |= E1000_CTRL_VME;
2497                 ew32(CTRL, ctrl);
2498
2499                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2500                         /* enable VLAN receive filtering */
2501                         rctl = er32(RCTL);
2502                         rctl &= ~E1000_RCTL_CFIEN;
2503                         ew32(RCTL, rctl);
2504                         e1000_update_mng_vlan(adapter);
2505                 }
2506         } else {
2507                 /* disable VLAN tag insert/strip */
2508                 ctrl = er32(CTRL);
2509                 ctrl &= ~E1000_CTRL_VME;
2510                 ew32(CTRL, ctrl);
2511
2512                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2513                         if (adapter->mng_vlan_id !=
2514                             (u16)E1000_MNG_VLAN_NONE) {
2515                                 e1000_vlan_rx_kill_vid(netdev,
2516                                                        adapter->mng_vlan_id);
2517                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2518                         }
2519                 }
2520         }
2521
2522         if (!test_bit(__E1000_DOWN, &adapter->state))
2523                 e1000_irq_enable(adapter);
2524 }
2525
2526 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2527 {
2528         u16 vid;
2529
2530         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2531
2532         if (!adapter->vlgrp)
2533                 return;
2534
2535         for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2536                 if (!vlan_group_get_device(adapter->vlgrp, vid))
2537                         continue;
2538                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2539         }
2540 }
2541
2542 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2543 {
2544         struct e1000_hw *hw = &adapter->hw;
2545         u32 manc, manc2h, mdef, i, j;
2546
2547         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2548                 return;
2549
2550         manc = er32(MANC);
2551
2552         /*
2553          * enable receiving management packets to the host. this will probably
2554          * generate destination unreachable messages from the host OS, but
2555          * the packets will be handled on SMBUS
2556          */
2557         manc |= E1000_MANC_EN_MNG2HOST;
2558         manc2h = er32(MANC2H);
2559
2560         switch (hw->mac.type) {
2561         default:
2562                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2563                 break;
2564         case e1000_82574:
2565         case e1000_82583:
2566                 /*
2567                  * Check if IPMI pass-through decision filter already exists;
2568                  * if so, enable it.
2569                  */
2570                 for (i = 0, j = 0; i < 8; i++) {
2571                         mdef = er32(MDEF(i));
2572
2573                         /* Ignore filters with anything other than IPMI ports */
2574                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2575                                 continue;
2576
2577                         /* Enable this decision filter in MANC2H */
2578                         if (mdef)
2579                                 manc2h |= (1 << i);
2580
2581                         j |= mdef;
2582                 }
2583
2584                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2585                         break;
2586
2587                 /* Create new decision filter in an empty filter */
2588                 for (i = 0, j = 0; i < 8; i++)
2589                         if (er32(MDEF(i)) == 0) {
2590                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2591                                                E1000_MDEF_PORT_664));
2592                                 manc2h |= (1 << 1);
2593                                 j++;
2594                                 break;
2595                         }
2596
2597                 if (!j)
2598                         e_warn("Unable to create IPMI pass-through filter\n");
2599                 break;
2600         }
2601
2602         ew32(MANC2H, manc2h);
2603         ew32(MANC, manc);
2604 }
2605
2606 /**
2607  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2608  * @adapter: board private structure
2609  *
2610  * Configure the Tx unit of the MAC after a reset.
2611  **/
2612 static void e1000_configure_tx(struct e1000_adapter *adapter)
2613 {
2614         struct e1000_hw *hw = &adapter->hw;
2615         struct e1000_ring *tx_ring = adapter->tx_ring;
2616         u64 tdba;
2617         u32 tdlen, tctl, tipg, tarc;
2618         u32 ipgr1, ipgr2;
2619
2620         /* Setup the HW Tx Head and Tail descriptor pointers */
2621         tdba = tx_ring->dma;
2622         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2623         ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2624         ew32(TDBAH, (tdba >> 32));
2625         ew32(TDLEN, tdlen);
2626         ew32(TDH, 0);
2627         ew32(TDT, 0);
2628         tx_ring->head = E1000_TDH;
2629         tx_ring->tail = E1000_TDT;
2630
2631         /* Set the default values for the Tx Inter Packet Gap timer */
2632         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
2633         ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
2634         ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
2635
2636         if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2637                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
2638
2639         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2640         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2641         ew32(TIPG, tipg);
2642
2643         /* Set the Tx Interrupt Delay register */
2644         ew32(TIDV, adapter->tx_int_delay);
2645         /* Tx irq moderation */
2646         ew32(TADV, adapter->tx_abs_int_delay);
2647
2648         /* Program the Transmit Control Register */
2649         tctl = er32(TCTL);
2650         tctl &= ~E1000_TCTL_CT;
2651         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2652                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2653
2654         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2655                 tarc = er32(TARC(0));
2656                 /*
2657                  * set the speed mode bit, we'll clear it if we're not at
2658                  * gigabit link later
2659                  */
2660 #define SPEED_MODE_BIT (1 << 21)
2661                 tarc |= SPEED_MODE_BIT;
2662                 ew32(TARC(0), tarc);
2663         }
2664
2665         /* errata: program both queues to unweighted RR */
2666         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2667                 tarc = er32(TARC(0));
2668                 tarc |= 1;
2669                 ew32(TARC(0), tarc);
2670                 tarc = er32(TARC(1));
2671                 tarc |= 1;
2672                 ew32(TARC(1), tarc);
2673         }
2674
2675         /* Setup Transmit Descriptor Settings for eop descriptor */
2676         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2677
2678         /* only set IDE if we are delaying interrupts using the timers */
2679         if (adapter->tx_int_delay)
2680                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2681
2682         /* enable Report Status bit */
2683         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2684
2685         ew32(TCTL, tctl);
2686
2687         e1000e_config_collision_dist(hw);
2688 }
2689
2690 /**
2691  * e1000_setup_rctl - configure the receive control registers
2692  * @adapter: Board private structure
2693  **/
2694 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2695                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2696 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2697 {
2698         struct e1000_hw *hw = &adapter->hw;
2699         u32 rctl, rfctl;
2700         u32 psrctl = 0;
2701         u32 pages = 0;
2702
2703         /* Program MC offset vector base */
2704         rctl = er32(RCTL);
2705         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2706         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2707                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2708                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2709
2710         /* Do not Store bad packets */
2711         rctl &= ~E1000_RCTL_SBP;
2712
2713         /* Enable Long Packet receive */
2714         if (adapter->netdev->mtu <= ETH_DATA_LEN)
2715                 rctl &= ~E1000_RCTL_LPE;
2716         else
2717                 rctl |= E1000_RCTL_LPE;
2718
2719         /* Some systems expect that the CRC is included in SMBUS traffic. The
2720          * hardware strips the CRC before sending to both SMBUS (BMC) and to
2721          * host memory when this is enabled
2722          */
2723         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2724                 rctl |= E1000_RCTL_SECRC;
2725
2726         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2727         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2728                 u16 phy_data;
2729
2730                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2731                 phy_data &= 0xfff8;
2732                 phy_data |= (1 << 2);
2733                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2734
2735                 e1e_rphy(hw, 22, &phy_data);
2736                 phy_data &= 0x0fff;
2737                 phy_data |= (1 << 14);
2738                 e1e_wphy(hw, 0x10, 0x2823);
2739                 e1e_wphy(hw, 0x11, 0x0003);
2740                 e1e_wphy(hw, 22, phy_data);
2741         }
2742
2743         /* Workaround Si errata on 82579 - configure jumbo frame flow */
2744         if (hw->mac.type == e1000_pch2lan) {
2745                 s32 ret_val;
2746
2747                 if (rctl & E1000_RCTL_LPE)
2748                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2749                 else
2750                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2751         }
2752
2753         /* Setup buffer sizes */
2754         rctl &= ~E1000_RCTL_SZ_4096;
2755         rctl |= E1000_RCTL_BSEX;
2756         switch (adapter->rx_buffer_len) {
2757         case 2048:
2758         default:
2759                 rctl |= E1000_RCTL_SZ_2048;
2760                 rctl &= ~E1000_RCTL_BSEX;
2761                 break;
2762         case 4096:
2763                 rctl |= E1000_RCTL_SZ_4096;
2764                 break;
2765         case 8192:
2766                 rctl |= E1000_RCTL_SZ_8192;
2767                 break;
2768         case 16384:
2769                 rctl |= E1000_RCTL_SZ_16384;
2770                 break;
2771         }
2772
2773         /*
2774          * 82571 and greater support packet-split where the protocol
2775          * header is placed in skb->data and the packet data is
2776          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2777          * In the case of a non-split, skb->data is linearly filled,
2778          * followed by the page buffers.  Therefore, skb->data is
2779          * sized to hold the largest protocol header.
2780          *
2781          * allocations using alloc_page take too long for regular MTU
2782          * so only enable packet split for jumbo frames
2783          *
2784          * Using pages when the page size is greater than 16k wastes
2785          * a lot of memory, since we allocate 3 pages at all times
2786          * per packet.
2787          */
2788         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2789         if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
2790             (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2791                 adapter->rx_ps_pages = pages;
2792         else
2793                 adapter->rx_ps_pages = 0;
2794
2795         if (adapter->rx_ps_pages) {
2796                 /* Configure extra packet-split registers */
2797                 rfctl = er32(RFCTL);
2798                 rfctl |= E1000_RFCTL_EXTEN;
2799                 /*
2800                  * disable packet split support for IPv6 extension headers,
2801                  * because some malformed IPv6 headers can hang the Rx
2802                  */
2803                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2804                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2805
2806                 ew32(RFCTL, rfctl);
2807
2808                 /* Enable Packet split descriptors */
2809                 rctl |= E1000_RCTL_DTYP_PS;
2810
2811                 psrctl |= adapter->rx_ps_bsize0 >>
2812                         E1000_PSRCTL_BSIZE0_SHIFT;
2813
2814                 switch (adapter->rx_ps_pages) {
2815                 case 3:
2816                         psrctl |= PAGE_SIZE <<
2817                                 E1000_PSRCTL_BSIZE3_SHIFT;
2818                 case 2:
2819                         psrctl |= PAGE_SIZE <<
2820                                 E1000_PSRCTL_BSIZE2_SHIFT;
2821                 case 1:
2822                         psrctl |= PAGE_SIZE >>
2823                                 E1000_PSRCTL_BSIZE1_SHIFT;
2824                         break;
2825                 }
2826
2827                 ew32(PSRCTL, psrctl);
2828         }
2829
2830         ew32(RCTL, rctl);
2831         /* just started the receive unit, no need to restart */
2832         adapter->flags &= ~FLAG_RX_RESTART_NOW;
2833 }
2834
2835 /**
2836  * e1000_configure_rx - Configure Receive Unit after Reset
2837  * @adapter: board private structure
2838  *
2839  * Configure the Rx unit of the MAC after a reset.
2840  **/
2841 static void e1000_configure_rx(struct e1000_adapter *adapter)
2842 {
2843         struct e1000_hw *hw = &adapter->hw;
2844         struct e1000_ring *rx_ring = adapter->rx_ring;
2845         u64 rdba;
2846         u32 rdlen, rctl, rxcsum, ctrl_ext;
2847
2848         if (adapter->rx_ps_pages) {
2849                 /* this is a 32 byte descriptor */
2850                 rdlen = rx_ring->count *
2851                         sizeof(union e1000_rx_desc_packet_split);
2852                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2853                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2854         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2855                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2856                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2857                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2858         } else {
2859                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2860                 adapter->clean_rx = e1000_clean_rx_irq;
2861                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2862         }
2863
2864         /* disable receives while setting up the descriptors */
2865         rctl = er32(RCTL);
2866         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2867         e1e_flush();
2868         msleep(10);
2869
2870         /* set the Receive Delay Timer Register */
2871         ew32(RDTR, adapter->rx_int_delay);
2872
2873         /* irq moderation */
2874         ew32(RADV, adapter->rx_abs_int_delay);
2875         if (adapter->itr_setting != 0)
2876                 ew32(ITR, 1000000000 / (adapter->itr * 256));
2877
2878         ctrl_ext = er32(CTRL_EXT);
2879         /* Auto-Mask interrupts upon ICR access */
2880         ctrl_ext |= E1000_CTRL_EXT_IAME;
2881         ew32(IAM, 0xffffffff);
2882         ew32(CTRL_EXT, ctrl_ext);
2883         e1e_flush();
2884
2885         /*
2886          * Setup the HW Rx Head and Tail Descriptor Pointers and
2887          * the Base and Length of the Rx Descriptor Ring
2888          */
2889         rdba = rx_ring->dma;
2890         ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2891         ew32(RDBAH, (rdba >> 32));
2892         ew32(RDLEN, rdlen);
2893         ew32(RDH, 0);
2894         ew32(RDT, 0);
2895         rx_ring->head = E1000_RDH;
2896         rx_ring->tail = E1000_RDT;
2897
2898         /* Enable Receive Checksum Offload for TCP and UDP */
2899         rxcsum = er32(RXCSUM);
2900         if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2901                 rxcsum |= E1000_RXCSUM_TUOFL;
2902
2903                 /*
2904                  * IPv4 payload checksum for UDP fragments must be
2905                  * used in conjunction with packet-split.
2906                  */
2907                 if (adapter->rx_ps_pages)
2908                         rxcsum |= E1000_RXCSUM_IPPCSE;
2909         } else {
2910                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2911                 /* no need to clear IPPCSE as it defaults to 0 */
2912         }
2913         ew32(RXCSUM, rxcsum);
2914
2915         /*
2916          * Enable early receives on supported devices, only takes effect when
2917          * packet size is equal or larger than the specified value (in 8 byte
2918          * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2919          */
2920         if (adapter->flags & FLAG_HAS_ERT) {
2921                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2922                         u32 rxdctl = er32(RXDCTL(0));
2923                         ew32(RXDCTL(0), rxdctl | 0x3);
2924                         ew32(ERT, E1000_ERT_2048 | (1 << 13));
2925                         /*
2926                          * With jumbo frames and early-receive enabled,
2927                          * excessive C-state transition latencies result in
2928                          * dropped transactions.
2929                          */
2930                         pm_qos_update_request(
2931                                 &adapter->netdev->pm_qos_req, 55);
2932                 } else {
2933                         pm_qos_update_request(
2934                                 &adapter->netdev->pm_qos_req,
2935                                 PM_QOS_DEFAULT_VALUE);
2936                 }
2937         }
2938
2939         /* Enable Receives */
2940         ew32(RCTL, rctl);
2941 }
2942
2943 /**
2944  *  e1000_update_mc_addr_list - Update Multicast addresses
2945  *  @hw: pointer to the HW structure
2946  *  @mc_addr_list: array of multicast addresses to program
2947  *  @mc_addr_count: number of multicast addresses to program
2948  *
2949  *  Updates the Multicast Table Array.
2950  *  The caller must have a packed mc_addr_list of multicast addresses.
2951  **/
2952 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2953                                       u32 mc_addr_count)
2954 {
2955         hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
2956 }
2957
2958 /**
2959  * e1000_set_multi - Multicast and Promiscuous mode set
2960  * @netdev: network interface device structure
2961  *
2962  * The set_multi entry point is called whenever the multicast address
2963  * list or the network interface flags are updated.  This routine is
2964  * responsible for configuring the hardware for proper multicast,
2965  * promiscuous mode, and all-multi behavior.
2966  **/
2967 static void e1000_set_multi(struct net_device *netdev)
2968 {
2969         struct e1000_adapter *adapter = netdev_priv(netdev);
2970         struct e1000_hw *hw = &adapter->hw;
2971         struct netdev_hw_addr *ha;
2972         u8  *mta_list;
2973         u32 rctl;
2974         int i;
2975
2976         /* Check for Promiscuous and All Multicast modes */
2977
2978         rctl = er32(RCTL);
2979
2980         if (netdev->flags & IFF_PROMISC) {
2981                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2982                 rctl &= ~E1000_RCTL_VFE;
2983         } else {
2984                 if (netdev->flags & IFF_ALLMULTI) {
2985                         rctl |= E1000_RCTL_MPE;
2986                         rctl &= ~E1000_RCTL_UPE;
2987                 } else {
2988                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2989                 }
2990                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2991                         rctl |= E1000_RCTL_VFE;
2992         }
2993
2994         ew32(RCTL, rctl);
2995
2996         if (!netdev_mc_empty(netdev)) {
2997                 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
2998                 if (!mta_list)
2999                         return;
3000
3001                 /* prepare a packed array of only addresses. */
3002                 i = 0;
3003                 netdev_for_each_mc_addr(ha, netdev)
3004                         memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3005
3006                 e1000_update_mc_addr_list(hw, mta_list, i);
3007                 kfree(mta_list);
3008         } else {
3009                 /*
3010                  * if we're called from probe, we might not have
3011                  * anything to do here, so clear out the list
3012                  */
3013                 e1000_update_mc_addr_list(hw, NULL, 0);
3014         }
3015 }
3016
3017 /**
3018  * e1000_configure - configure the hardware for Rx and Tx
3019  * @adapter: private board structure
3020  **/
3021 static void e1000_configure(struct e1000_adapter *adapter)
3022 {
3023         e1000_set_multi(adapter->netdev);
3024
3025         e1000_restore_vlan(adapter);
3026         e1000_init_manageability_pt(adapter);
3027
3028         e1000_configure_tx(adapter);
3029         e1000_setup_rctl(adapter);
3030         e1000_configure_rx(adapter);