Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[sfrench/cifs-2.6.git] / drivers / net / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/tcp.h>
40 #include <linux/ipv6.h>
41 #include <linux/slab.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <linux/mii.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos_params.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
52
53 #include "e1000.h"
54
55 #define DRV_EXTRAVERSION "-k2"
56
57 #define DRV_VERSION "1.2.7" DRV_EXTRAVERSION
58 char e1000e_driver_name[] = "e1000e";
59 const char e1000e_driver_version[] = DRV_VERSION;
60
61 static const struct e1000_info *e1000_info_tbl[] = {
62         [board_82571]           = &e1000_82571_info,
63         [board_82572]           = &e1000_82572_info,
64         [board_82573]           = &e1000_82573_info,
65         [board_82574]           = &e1000_82574_info,
66         [board_82583]           = &e1000_82583_info,
67         [board_80003es2lan]     = &e1000_es2_info,
68         [board_ich8lan]         = &e1000_ich8_info,
69         [board_ich9lan]         = &e1000_ich9_info,
70         [board_ich10lan]        = &e1000_ich10_info,
71         [board_pchlan]          = &e1000_pch_info,
72         [board_pch2lan]         = &e1000_pch2_info,
73 };
74
75 struct e1000_reg_info {
76         u32 ofs;
77         char *name;
78 };
79
80 #define E1000_RDFH      0x02410 /* Rx Data FIFO Head - RW */
81 #define E1000_RDFT      0x02418 /* Rx Data FIFO Tail - RW */
82 #define E1000_RDFHS     0x02420 /* Rx Data FIFO Head Saved - RW */
83 #define E1000_RDFTS     0x02428 /* Rx Data FIFO Tail Saved - RW */
84 #define E1000_RDFPC     0x02430 /* Rx Data FIFO Packet Count - RW */
85
86 #define E1000_TDFH      0x03410 /* Tx Data FIFO Head - RW */
87 #define E1000_TDFT      0x03418 /* Tx Data FIFO Tail - RW */
88 #define E1000_TDFHS     0x03420 /* Tx Data FIFO Head Saved - RW */
89 #define E1000_TDFTS     0x03428 /* Tx Data FIFO Tail Saved - RW */
90 #define E1000_TDFPC     0x03430 /* Tx Data FIFO Packet Count - RW */
91
92 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
93
94         /* General Registers */
95         {E1000_CTRL, "CTRL"},
96         {E1000_STATUS, "STATUS"},
97         {E1000_CTRL_EXT, "CTRL_EXT"},
98
99         /* Interrupt Registers */
100         {E1000_ICR, "ICR"},
101
102         /* RX Registers */
103         {E1000_RCTL, "RCTL"},
104         {E1000_RDLEN, "RDLEN"},
105         {E1000_RDH, "RDH"},
106         {E1000_RDT, "RDT"},
107         {E1000_RDTR, "RDTR"},
108         {E1000_RXDCTL(0), "RXDCTL"},
109         {E1000_ERT, "ERT"},
110         {E1000_RDBAL, "RDBAL"},
111         {E1000_RDBAH, "RDBAH"},
112         {E1000_RDFH, "RDFH"},
113         {E1000_RDFT, "RDFT"},
114         {E1000_RDFHS, "RDFHS"},
115         {E1000_RDFTS, "RDFTS"},
116         {E1000_RDFPC, "RDFPC"},
117
118         /* TX Registers */
119         {E1000_TCTL, "TCTL"},
120         {E1000_TDBAL, "TDBAL"},
121         {E1000_TDBAH, "TDBAH"},
122         {E1000_TDLEN, "TDLEN"},
123         {E1000_TDH, "TDH"},
124         {E1000_TDT, "TDT"},
125         {E1000_TIDV, "TIDV"},
126         {E1000_TXDCTL(0), "TXDCTL"},
127         {E1000_TADV, "TADV"},
128         {E1000_TARC(0), "TARC"},
129         {E1000_TDFH, "TDFH"},
130         {E1000_TDFT, "TDFT"},
131         {E1000_TDFHS, "TDFHS"},
132         {E1000_TDFTS, "TDFTS"},
133         {E1000_TDFPC, "TDFPC"},
134
135         /* List Terminator */
136         {}
137 };
138
139 /*
140  * e1000_regdump - register printout routine
141  */
142 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
143 {
144         int n = 0;
145         char rname[16];
146         u32 regs[8];
147
148         switch (reginfo->ofs) {
149         case E1000_RXDCTL(0):
150                 for (n = 0; n < 2; n++)
151                         regs[n] = __er32(hw, E1000_RXDCTL(n));
152                 break;
153         case E1000_TXDCTL(0):
154                 for (n = 0; n < 2; n++)
155                         regs[n] = __er32(hw, E1000_TXDCTL(n));
156                 break;
157         case E1000_TARC(0):
158                 for (n = 0; n < 2; n++)
159                         regs[n] = __er32(hw, E1000_TARC(n));
160                 break;
161         default:
162                 printk(KERN_INFO "%-15s %08x\n",
163                         reginfo->name, __er32(hw, reginfo->ofs));
164                 return;
165         }
166
167         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
168         printk(KERN_INFO "%-15s ", rname);
169         for (n = 0; n < 2; n++)
170                 printk(KERN_CONT "%08x ", regs[n]);
171         printk(KERN_CONT "\n");
172 }
173
174
175 /*
176  * e1000e_dump - Print registers, tx-ring and rx-ring
177  */
178 static void e1000e_dump(struct e1000_adapter *adapter)
179 {
180         struct net_device *netdev = adapter->netdev;
181         struct e1000_hw *hw = &adapter->hw;
182         struct e1000_reg_info *reginfo;
183         struct e1000_ring *tx_ring = adapter->tx_ring;
184         struct e1000_tx_desc *tx_desc;
185         struct my_u0 { u64 a; u64 b; } *u0;
186         struct e1000_buffer *buffer_info;
187         struct e1000_ring *rx_ring = adapter->rx_ring;
188         union e1000_rx_desc_packet_split *rx_desc_ps;
189         struct e1000_rx_desc *rx_desc;
190         struct my_u1 { u64 a; u64 b; u64 c; u64 d; } *u1;
191         u32 staterr;
192         int i = 0;
193
194         if (!netif_msg_hw(adapter))
195                 return;
196
197         /* Print netdevice Info */
198         if (netdev) {
199                 dev_info(&adapter->pdev->dev, "Net device Info\n");
200                 printk(KERN_INFO "Device Name     state            "
201                         "trans_start      last_rx\n");
202                 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
203                         netdev->name,
204                         netdev->state,
205                         netdev->trans_start,
206                         netdev->last_rx);
207         }
208
209         /* Print Registers */
210         dev_info(&adapter->pdev->dev, "Register Dump\n");
211         printk(KERN_INFO " Register Name   Value\n");
212         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
213              reginfo->name; reginfo++) {
214                 e1000_regdump(hw, reginfo);
215         }
216
217         /* Print TX Ring Summary */
218         if (!netdev || !netif_running(netdev))
219                 goto exit;
220
221         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
222         printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
223                 " leng ntw timestamp\n");
224         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
225         printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
226                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
227                 (unsigned long long)buffer_info->dma,
228                 buffer_info->length,
229                 buffer_info->next_to_watch,
230                 (unsigned long long)buffer_info->time_stamp);
231
232         /* Print TX Rings */
233         if (!netif_msg_tx_done(adapter))
234                 goto rx_ring_summary;
235
236         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
237
238         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
239          *
240          * Legacy Transmit Descriptor
241          *   +--------------------------------------------------------------+
242          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
243          *   +--------------------------------------------------------------+
244          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
245          *   +--------------------------------------------------------------+
246          *   63       48 47        36 35    32 31     24 23    16 15        0
247          *
248          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
249          *   63      48 47    40 39       32 31             16 15    8 7      0
250          *   +----------------------------------------------------------------+
251          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
252          *   +----------------------------------------------------------------+
253          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
254          *   +----------------------------------------------------------------+
255          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
256          *
257          * Extended Data Descriptor (DTYP=0x1)
258          *   +----------------------------------------------------------------+
259          * 0 |                     Buffer Address [63:0]                      |
260          *   +----------------------------------------------------------------+
261          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
262          *   +----------------------------------------------------------------+
263          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
264          */
265         printk(KERN_INFO "Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen]"
266                 " [bi->dma       ] leng  ntw timestamp        bi->skb "
267                 "<-- Legacy format\n");
268         printk(KERN_INFO "Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
269                 " [bi->dma       ] leng  ntw timestamp        bi->skb "
270                 "<-- Ext Context format\n");
271         printk(KERN_INFO "Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen]"
272                 " [bi->dma       ] leng  ntw timestamp        bi->skb "
273                 "<-- Ext Data format\n");
274         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
275                 tx_desc = E1000_TX_DESC(*tx_ring, i);
276                 buffer_info = &tx_ring->buffer_info[i];
277                 u0 = (struct my_u0 *)tx_desc;
278                 printk(KERN_INFO "T%c[0x%03X]    %016llX %016llX %016llX "
279                         "%04X  %3X %016llX %p",
280                        (!(le64_to_cpu(u0->b) & (1<<29)) ? 'l' :
281                         ((le64_to_cpu(u0->b) & (1<<20)) ? 'd' : 'c')), i,
282                        (unsigned long long)le64_to_cpu(u0->a),
283                        (unsigned long long)le64_to_cpu(u0->b),
284                        (unsigned long long)buffer_info->dma,
285                        buffer_info->length, buffer_info->next_to_watch,
286                        (unsigned long long)buffer_info->time_stamp,
287                        buffer_info->skb);
288                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
289                         printk(KERN_CONT " NTC/U\n");
290                 else if (i == tx_ring->next_to_use)
291                         printk(KERN_CONT " NTU\n");
292                 else if (i == tx_ring->next_to_clean)
293                         printk(KERN_CONT " NTC\n");
294                 else
295                         printk(KERN_CONT "\n");
296
297                 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
298                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
299                                         16, 1, phys_to_virt(buffer_info->dma),
300                                         buffer_info->length, true);
301         }
302
303         /* Print RX Rings Summary */
304 rx_ring_summary:
305         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
306         printk(KERN_INFO "Queue [NTU] [NTC]\n");
307         printk(KERN_INFO " %5d %5X %5X\n", 0,
308                 rx_ring->next_to_use, rx_ring->next_to_clean);
309
310         /* Print RX Rings */
311         if (!netif_msg_rx_status(adapter))
312                 goto exit;
313
314         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
315         switch (adapter->rx_ps_pages) {
316         case 1:
317         case 2:
318         case 3:
319                 /* [Extended] Packet Split Receive Descriptor Format
320                  *
321                  *    +-----------------------------------------------------+
322                  *  0 |                Buffer Address 0 [63:0]              |
323                  *    +-----------------------------------------------------+
324                  *  8 |                Buffer Address 1 [63:0]              |
325                  *    +-----------------------------------------------------+
326                  * 16 |                Buffer Address 2 [63:0]              |
327                  *    +-----------------------------------------------------+
328                  * 24 |                Buffer Address 3 [63:0]              |
329                  *    +-----------------------------------------------------+
330                  */
331                 printk(KERN_INFO "R  [desc]      [buffer 0 63:0 ] "
332                         "[buffer 1 63:0 ] "
333                        "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] "
334                        "[bi->skb] <-- Ext Pkt Split format\n");
335                 /* [Extended] Receive Descriptor (Write-Back) Format
336                  *
337                  *   63       48 47    32 31     13 12    8 7    4 3        0
338                  *   +------------------------------------------------------+
339                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
340                  *   | Checksum | Ident  |         | Queue |      |  Type   |
341                  *   +------------------------------------------------------+
342                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
343                  *   +------------------------------------------------------+
344                  *   63       48 47    32 31            20 19               0
345                  */
346                 printk(KERN_INFO "RWB[desc]      [ck ipid mrqhsh] "
347                         "[vl   l0 ee  es] "
348                        "[ l3  l2  l1 hs] [reserved      ] ---------------- "
349                        "[bi->skb] <-- Ext Rx Write-Back format\n");
350                 for (i = 0; i < rx_ring->count; i++) {
351                         buffer_info = &rx_ring->buffer_info[i];
352                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
353                         u1 = (struct my_u1 *)rx_desc_ps;
354                         staterr =
355                                 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
356                         if (staterr & E1000_RXD_STAT_DD) {
357                                 /* Descriptor Done */
358                                 printk(KERN_INFO "RWB[0x%03X]     %016llX "
359                                         "%016llX %016llX %016llX "
360                                         "---------------- %p", i,
361                                         (unsigned long long)le64_to_cpu(u1->a),
362                                         (unsigned long long)le64_to_cpu(u1->b),
363                                         (unsigned long long)le64_to_cpu(u1->c),
364                                         (unsigned long long)le64_to_cpu(u1->d),
365                                         buffer_info->skb);
366                         } else {
367                                 printk(KERN_INFO "R  [0x%03X]     %016llX "
368                                         "%016llX %016llX %016llX %016llX %p", i,
369                                         (unsigned long long)le64_to_cpu(u1->a),
370                                         (unsigned long long)le64_to_cpu(u1->b),
371                                         (unsigned long long)le64_to_cpu(u1->c),
372                                         (unsigned long long)le64_to_cpu(u1->d),
373                                         (unsigned long long)buffer_info->dma,
374                                         buffer_info->skb);
375
376                                 if (netif_msg_pktdata(adapter))
377                                         print_hex_dump(KERN_INFO, "",
378                                                 DUMP_PREFIX_ADDRESS, 16, 1,
379                                                 phys_to_virt(buffer_info->dma),
380                                                 adapter->rx_ps_bsize0, true);
381                         }
382
383                         if (i == rx_ring->next_to_use)
384                                 printk(KERN_CONT " NTU\n");
385                         else if (i == rx_ring->next_to_clean)
386                                 printk(KERN_CONT " NTC\n");
387                         else
388                                 printk(KERN_CONT "\n");
389                 }
390                 break;
391         default:
392         case 0:
393                 /* Legacy Receive Descriptor Format
394                  *
395                  * +-----------------------------------------------------+
396                  * |                Buffer Address [63:0]                |
397                  * +-----------------------------------------------------+
398                  * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
399                  * +-----------------------------------------------------+
400                  * 63       48 47    40 39      32 31         16 15      0
401                  */
402                 printk(KERN_INFO "Rl[desc]     [address 63:0  ] "
403                         "[vl er S cks ln] [bi->dma       ] [bi->skb] "
404                         "<-- Legacy format\n");
405                 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
406                         rx_desc = E1000_RX_DESC(*rx_ring, i);
407                         buffer_info = &rx_ring->buffer_info[i];
408                         u0 = (struct my_u0 *)rx_desc;
409                         printk(KERN_INFO "Rl[0x%03X]    %016llX %016llX "
410                                 "%016llX %p", i,
411                                 (unsigned long long)le64_to_cpu(u0->a),
412                                 (unsigned long long)le64_to_cpu(u0->b),
413                                 (unsigned long long)buffer_info->dma,
414                                 buffer_info->skb);
415                         if (i == rx_ring->next_to_use)
416                                 printk(KERN_CONT " NTU\n");
417                         else if (i == rx_ring->next_to_clean)
418                                 printk(KERN_CONT " NTC\n");
419                         else
420                                 printk(KERN_CONT "\n");
421
422                         if (netif_msg_pktdata(adapter))
423                                 print_hex_dump(KERN_INFO, "",
424                                         DUMP_PREFIX_ADDRESS,
425                                         16, 1, phys_to_virt(buffer_info->dma),
426                                         adapter->rx_buffer_len, true);
427                 }
428         }
429
430 exit:
431         return;
432 }
433
434 /**
435  * e1000_desc_unused - calculate if we have unused descriptors
436  **/
437 static int e1000_desc_unused(struct e1000_ring *ring)
438 {
439         if (ring->next_to_clean > ring->next_to_use)
440                 return ring->next_to_clean - ring->next_to_use - 1;
441
442         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
443 }
444
445 /**
446  * e1000_receive_skb - helper function to handle Rx indications
447  * @adapter: board private structure
448  * @status: descriptor status field as written by hardware
449  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
450  * @skb: pointer to sk_buff to be indicated to stack
451  **/
452 static void e1000_receive_skb(struct e1000_adapter *adapter,
453                               struct net_device *netdev,
454                               struct sk_buff *skb,
455                               u8 status, __le16 vlan)
456 {
457         skb->protocol = eth_type_trans(skb, netdev);
458
459         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
460                 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
461                                  le16_to_cpu(vlan), skb);
462         else
463                 napi_gro_receive(&adapter->napi, skb);
464 }
465
466 /**
467  * e1000_rx_checksum - Receive Checksum Offload for 82543
468  * @adapter:     board private structure
469  * @status_err:  receive descriptor status and error fields
470  * @csum:       receive descriptor csum field
471  * @sk_buff:     socket buffer with received data
472  **/
473 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
474                               u32 csum, struct sk_buff *skb)
475 {
476         u16 status = (u16)status_err;
477         u8 errors = (u8)(status_err >> 24);
478         skb->ip_summed = CHECKSUM_NONE;
479
480         /* Ignore Checksum bit is set */
481         if (status & E1000_RXD_STAT_IXSM)
482                 return;
483         /* TCP/UDP checksum error bit is set */
484         if (errors & E1000_RXD_ERR_TCPE) {
485                 /* let the stack verify checksum errors */
486                 adapter->hw_csum_err++;
487                 return;
488         }
489
490         /* TCP/UDP Checksum has not been calculated */
491         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
492                 return;
493
494         /* It must be a TCP or UDP packet with a valid checksum */
495         if (status & E1000_RXD_STAT_TCPCS) {
496                 /* TCP checksum is good */
497                 skb->ip_summed = CHECKSUM_UNNECESSARY;
498         } else {
499                 /*
500                  * IP fragment with UDP payload
501                  * Hardware complements the payload checksum, so we undo it
502                  * and then put the value in host order for further stack use.
503                  */
504                 __sum16 sum = (__force __sum16)htons(csum);
505                 skb->csum = csum_unfold(~sum);
506                 skb->ip_summed = CHECKSUM_COMPLETE;
507         }
508         adapter->hw_csum_good++;
509 }
510
511 /**
512  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
513  * @adapter: address of board private structure
514  **/
515 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
516                                    int cleaned_count)
517 {
518         struct net_device *netdev = adapter->netdev;
519         struct pci_dev *pdev = adapter->pdev;
520         struct e1000_ring *rx_ring = adapter->rx_ring;
521         struct e1000_rx_desc *rx_desc;
522         struct e1000_buffer *buffer_info;
523         struct sk_buff *skb;
524         unsigned int i;
525         unsigned int bufsz = adapter->rx_buffer_len;
526
527         i = rx_ring->next_to_use;
528         buffer_info = &rx_ring->buffer_info[i];
529
530         while (cleaned_count--) {
531                 skb = buffer_info->skb;
532                 if (skb) {
533                         skb_trim(skb, 0);
534                         goto map_skb;
535                 }
536
537                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
538                 if (!skb) {
539                         /* Better luck next round */
540                         adapter->alloc_rx_buff_failed++;
541                         break;
542                 }
543
544                 buffer_info->skb = skb;
545 map_skb:
546                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
547                                                   adapter->rx_buffer_len,
548                                                   DMA_FROM_DEVICE);
549                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
550                         dev_err(&pdev->dev, "RX DMA map failed\n");
551                         adapter->rx_dma_failed++;
552                         break;
553                 }
554
555                 rx_desc = E1000_RX_DESC(*rx_ring, i);
556                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
557
558                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
559                         /*
560                          * Force memory writes to complete before letting h/w
561                          * know there are new descriptors to fetch.  (Only
562                          * applicable for weak-ordered memory model archs,
563                          * such as IA-64).
564                          */
565                         wmb();
566                         writel(i, adapter->hw.hw_addr + rx_ring->tail);
567                 }
568                 i++;
569                 if (i == rx_ring->count)
570                         i = 0;
571                 buffer_info = &rx_ring->buffer_info[i];
572         }
573
574         rx_ring->next_to_use = i;
575 }
576
577 /**
578  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
579  * @adapter: address of board private structure
580  **/
581 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
582                                       int cleaned_count)
583 {
584         struct net_device *netdev = adapter->netdev;
585         struct pci_dev *pdev = adapter->pdev;
586         union e1000_rx_desc_packet_split *rx_desc;
587         struct e1000_ring *rx_ring = adapter->rx_ring;
588         struct e1000_buffer *buffer_info;
589         struct e1000_ps_page *ps_page;
590         struct sk_buff *skb;
591         unsigned int i, j;
592
593         i = rx_ring->next_to_use;
594         buffer_info = &rx_ring->buffer_info[i];
595
596         while (cleaned_count--) {
597                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
598
599                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
600                         ps_page = &buffer_info->ps_pages[j];
601                         if (j >= adapter->rx_ps_pages) {
602                                 /* all unused desc entries get hw null ptr */
603                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
604                                 continue;
605                         }
606                         if (!ps_page->page) {
607                                 ps_page->page = alloc_page(GFP_ATOMIC);
608                                 if (!ps_page->page) {
609                                         adapter->alloc_rx_buff_failed++;
610                                         goto no_buffers;
611                                 }
612                                 ps_page->dma = dma_map_page(&pdev->dev,
613                                                             ps_page->page,
614                                                             0, PAGE_SIZE,
615                                                             DMA_FROM_DEVICE);
616                                 if (dma_mapping_error(&pdev->dev,
617                                                       ps_page->dma)) {
618                                         dev_err(&adapter->pdev->dev,
619                                           "RX DMA page map failed\n");
620                                         adapter->rx_dma_failed++;
621                                         goto no_buffers;
622                                 }
623                         }
624                         /*
625                          * Refresh the desc even if buffer_addrs
626                          * didn't change because each write-back
627                          * erases this info.
628                          */
629                         rx_desc->read.buffer_addr[j+1] =
630                              cpu_to_le64(ps_page->dma);
631                 }
632
633                 skb = netdev_alloc_skb_ip_align(netdev,
634                                                 adapter->rx_ps_bsize0);
635
636                 if (!skb) {
637                         adapter->alloc_rx_buff_failed++;
638                         break;
639                 }
640
641                 buffer_info->skb = skb;
642                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
643                                                   adapter->rx_ps_bsize0,
644                                                   DMA_FROM_DEVICE);
645                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
646                         dev_err(&pdev->dev, "RX DMA map failed\n");
647                         adapter->rx_dma_failed++;
648                         /* cleanup skb */
649                         dev_kfree_skb_any(skb);
650                         buffer_info->skb = NULL;
651                         break;
652                 }
653
654                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
655
656                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
657                         /*
658                          * Force memory writes to complete before letting h/w
659                          * know there are new descriptors to fetch.  (Only
660                          * applicable for weak-ordered memory model archs,
661                          * such as IA-64).
662                          */
663                         wmb();
664                         writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
665                 }
666
667                 i++;
668                 if (i == rx_ring->count)
669                         i = 0;
670                 buffer_info = &rx_ring->buffer_info[i];
671         }
672
673 no_buffers:
674         rx_ring->next_to_use = i;
675 }
676
677 /**
678  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
679  * @adapter: address of board private structure
680  * @cleaned_count: number of buffers to allocate this pass
681  **/
682
683 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
684                                          int cleaned_count)
685 {
686         struct net_device *netdev = adapter->netdev;
687         struct pci_dev *pdev = adapter->pdev;
688         struct e1000_rx_desc *rx_desc;
689         struct e1000_ring *rx_ring = adapter->rx_ring;
690         struct e1000_buffer *buffer_info;
691         struct sk_buff *skb;
692         unsigned int i;
693         unsigned int bufsz = 256 - 16 /* for skb_reserve */;
694
695         i = rx_ring->next_to_use;
696         buffer_info = &rx_ring->buffer_info[i];
697
698         while (cleaned_count--) {
699                 skb = buffer_info->skb;
700                 if (skb) {
701                         skb_trim(skb, 0);
702                         goto check_page;
703                 }
704
705                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
706                 if (unlikely(!skb)) {
707                         /* Better luck next round */
708                         adapter->alloc_rx_buff_failed++;
709                         break;
710                 }
711
712                 buffer_info->skb = skb;
713 check_page:
714                 /* allocate a new page if necessary */
715                 if (!buffer_info->page) {
716                         buffer_info->page = alloc_page(GFP_ATOMIC);
717                         if (unlikely(!buffer_info->page)) {
718                                 adapter->alloc_rx_buff_failed++;
719                                 break;
720                         }
721                 }
722
723                 if (!buffer_info->dma)
724                         buffer_info->dma = dma_map_page(&pdev->dev,
725                                                         buffer_info->page, 0,
726                                                         PAGE_SIZE,
727                                                         DMA_FROM_DEVICE);
728
729                 rx_desc = E1000_RX_DESC(*rx_ring, i);
730                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
731
732                 if (unlikely(++i == rx_ring->count))
733                         i = 0;
734                 buffer_info = &rx_ring->buffer_info[i];
735         }
736
737         if (likely(rx_ring->next_to_use != i)) {
738                 rx_ring->next_to_use = i;
739                 if (unlikely(i-- == 0))
740                         i = (rx_ring->count - 1);
741
742                 /* Force memory writes to complete before letting h/w
743                  * know there are new descriptors to fetch.  (Only
744                  * applicable for weak-ordered memory model archs,
745                  * such as IA-64). */
746                 wmb();
747                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
748         }
749 }
750
751 /**
752  * e1000_clean_rx_irq - Send received data up the network stack; legacy
753  * @adapter: board private structure
754  *
755  * the return value indicates whether actual cleaning was done, there
756  * is no guarantee that everything was cleaned
757  **/
758 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
759                                int *work_done, int work_to_do)
760 {
761         struct net_device *netdev = adapter->netdev;
762         struct pci_dev *pdev = adapter->pdev;
763         struct e1000_hw *hw = &adapter->hw;
764         struct e1000_ring *rx_ring = adapter->rx_ring;
765         struct e1000_rx_desc *rx_desc, *next_rxd;
766         struct e1000_buffer *buffer_info, *next_buffer;
767         u32 length;
768         unsigned int i;
769         int cleaned_count = 0;
770         bool cleaned = 0;
771         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
772
773         i = rx_ring->next_to_clean;
774         rx_desc = E1000_RX_DESC(*rx_ring, i);
775         buffer_info = &rx_ring->buffer_info[i];
776
777         while (rx_desc->status & E1000_RXD_STAT_DD) {
778                 struct sk_buff *skb;
779                 u8 status;
780
781                 if (*work_done >= work_to_do)
782                         break;
783                 (*work_done)++;
784                 rmb();  /* read descriptor and rx_buffer_info after status DD */
785
786                 status = rx_desc->status;
787                 skb = buffer_info->skb;
788                 buffer_info->skb = NULL;
789
790                 prefetch(skb->data - NET_IP_ALIGN);
791
792                 i++;
793                 if (i == rx_ring->count)
794                         i = 0;
795                 next_rxd = E1000_RX_DESC(*rx_ring, i);
796                 prefetch(next_rxd);
797
798                 next_buffer = &rx_ring->buffer_info[i];
799
800                 cleaned = 1;
801                 cleaned_count++;
802                 dma_unmap_single(&pdev->dev,
803                                  buffer_info->dma,
804                                  adapter->rx_buffer_len,
805                                  DMA_FROM_DEVICE);
806                 buffer_info->dma = 0;
807
808                 length = le16_to_cpu(rx_desc->length);
809
810                 /*
811                  * !EOP means multiple descriptors were used to store a single
812                  * packet, if that's the case we need to toss it.  In fact, we
813                  * need to toss every packet with the EOP bit clear and the
814                  * next frame that _does_ have the EOP bit set, as it is by
815                  * definition only a frame fragment
816                  */
817                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
818                         adapter->flags2 |= FLAG2_IS_DISCARDING;
819
820                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
821                         /* All receives must fit into a single buffer */
822                         e_dbg("Receive packet consumed multiple buffers\n");
823                         /* recycle */
824                         buffer_info->skb = skb;
825                         if (status & E1000_RXD_STAT_EOP)
826                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
827                         goto next_desc;
828                 }
829
830                 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
831                         /* recycle */
832                         buffer_info->skb = skb;
833                         goto next_desc;
834                 }
835
836                 /* adjust length to remove Ethernet CRC */
837                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
838                         length -= 4;
839
840                 total_rx_bytes += length;
841                 total_rx_packets++;
842
843                 /*
844                  * code added for copybreak, this should improve
845                  * performance for small packets with large amounts
846                  * of reassembly being done in the stack
847                  */
848                 if (length < copybreak) {
849                         struct sk_buff *new_skb =
850                             netdev_alloc_skb_ip_align(netdev, length);
851                         if (new_skb) {
852                                 skb_copy_to_linear_data_offset(new_skb,
853                                                                -NET_IP_ALIGN,
854                                                                (skb->data -
855                                                                 NET_IP_ALIGN),
856                                                                (length +
857                                                                 NET_IP_ALIGN));
858                                 /* save the skb in buffer_info as good */
859                                 buffer_info->skb = skb;
860                                 skb = new_skb;
861                         }
862                         /* else just continue with the old one */
863                 }
864                 /* end copybreak code */
865                 skb_put(skb, length);
866
867                 /* Receive Checksum Offload */
868                 e1000_rx_checksum(adapter,
869                                   (u32)(status) |
870                                   ((u32)(rx_desc->errors) << 24),
871                                   le16_to_cpu(rx_desc->csum), skb);
872
873                 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
874
875 next_desc:
876                 rx_desc->status = 0;
877
878                 /* return some buffers to hardware, one at a time is too slow */
879                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
880                         adapter->alloc_rx_buf(adapter, cleaned_count);
881                         cleaned_count = 0;
882                 }
883
884                 /* use prefetched values */
885                 rx_desc = next_rxd;
886                 buffer_info = next_buffer;
887         }
888         rx_ring->next_to_clean = i;
889
890         cleaned_count = e1000_desc_unused(rx_ring);
891         if (cleaned_count)
892                 adapter->alloc_rx_buf(adapter, cleaned_count);
893
894         adapter->total_rx_bytes += total_rx_bytes;
895         adapter->total_rx_packets += total_rx_packets;
896         netdev->stats.rx_bytes += total_rx_bytes;
897         netdev->stats.rx_packets += total_rx_packets;
898         return cleaned;
899 }
900
901 static void e1000_put_txbuf(struct e1000_adapter *adapter,
902                              struct e1000_buffer *buffer_info)
903 {
904         if (buffer_info->dma) {
905                 if (buffer_info->mapped_as_page)
906                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
907                                        buffer_info->length, DMA_TO_DEVICE);
908                 else
909                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
910                                          buffer_info->length, DMA_TO_DEVICE);
911                 buffer_info->dma = 0;
912         }
913         if (buffer_info->skb) {
914                 dev_kfree_skb_any(buffer_info->skb);
915                 buffer_info->skb = NULL;
916         }
917         buffer_info->time_stamp = 0;
918 }
919
920 static void e1000_print_hw_hang(struct work_struct *work)
921 {
922         struct e1000_adapter *adapter = container_of(work,
923                                                      struct e1000_adapter,
924                                                      print_hang_task);
925         struct e1000_ring *tx_ring = adapter->tx_ring;
926         unsigned int i = tx_ring->next_to_clean;
927         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
928         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
929         struct e1000_hw *hw = &adapter->hw;
930         u16 phy_status, phy_1000t_status, phy_ext_status;
931         u16 pci_status;
932
933         e1e_rphy(hw, PHY_STATUS, &phy_status);
934         e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
935         e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
936
937         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
938
939         /* detected Hardware unit hang */
940         e_err("Detected Hardware Unit Hang:\n"
941               "  TDH                  <%x>\n"
942               "  TDT                  <%x>\n"
943               "  next_to_use          <%x>\n"
944               "  next_to_clean        <%x>\n"
945               "buffer_info[next_to_clean]:\n"
946               "  time_stamp           <%lx>\n"
947               "  next_to_watch        <%x>\n"
948               "  jiffies              <%lx>\n"
949               "  next_to_watch.status <%x>\n"
950               "MAC Status             <%x>\n"
951               "PHY Status             <%x>\n"
952               "PHY 1000BASE-T Status  <%x>\n"
953               "PHY Extended Status    <%x>\n"
954               "PCI Status             <%x>\n",
955               readl(adapter->hw.hw_addr + tx_ring->head),
956               readl(adapter->hw.hw_addr + tx_ring->tail),
957               tx_ring->next_to_use,
958               tx_ring->next_to_clean,
959               tx_ring->buffer_info[eop].time_stamp,
960               eop,
961               jiffies,
962               eop_desc->upper.fields.status,
963               er32(STATUS),
964               phy_status,
965               phy_1000t_status,
966               phy_ext_status,
967               pci_status);
968 }
969
970 /**
971  * e1000_clean_tx_irq - Reclaim resources after transmit completes
972  * @adapter: board private structure
973  *
974  * the return value indicates whether actual cleaning was done, there
975  * is no guarantee that everything was cleaned
976  **/
977 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
978 {
979         struct net_device *netdev = adapter->netdev;
980         struct e1000_hw *hw = &adapter->hw;
981         struct e1000_ring *tx_ring = adapter->tx_ring;
982         struct e1000_tx_desc *tx_desc, *eop_desc;
983         struct e1000_buffer *buffer_info;
984         unsigned int i, eop;
985         unsigned int count = 0;
986         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
987
988         i = tx_ring->next_to_clean;
989         eop = tx_ring->buffer_info[i].next_to_watch;
990         eop_desc = E1000_TX_DESC(*tx_ring, eop);
991
992         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
993                (count < tx_ring->count)) {
994                 bool cleaned = false;
995                 rmb(); /* read buffer_info after eop_desc */
996                 for (; !cleaned; count++) {
997                         tx_desc = E1000_TX_DESC(*tx_ring, i);
998                         buffer_info = &tx_ring->buffer_info[i];
999                         cleaned = (i == eop);
1000
1001                         if (cleaned) {
1002                                 total_tx_packets += buffer_info->segs;
1003                                 total_tx_bytes += buffer_info->bytecount;
1004                         }
1005
1006                         e1000_put_txbuf(adapter, buffer_info);
1007                         tx_desc->upper.data = 0;
1008
1009                         i++;
1010                         if (i == tx_ring->count)
1011                                 i = 0;
1012                 }
1013
1014                 if (i == tx_ring->next_to_use)
1015                         break;
1016                 eop = tx_ring->buffer_info[i].next_to_watch;
1017                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1018         }
1019
1020         tx_ring->next_to_clean = i;
1021
1022 #define TX_WAKE_THRESHOLD 32
1023         if (count && netif_carrier_ok(netdev) &&
1024             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1025                 /* Make sure that anybody stopping the queue after this
1026                  * sees the new next_to_clean.
1027                  */
1028                 smp_mb();
1029
1030                 if (netif_queue_stopped(netdev) &&
1031                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1032                         netif_wake_queue(netdev);
1033                         ++adapter->restart_queue;
1034                 }
1035         }
1036
1037         if (adapter->detect_tx_hung) {
1038                 /*
1039                  * Detect a transmit hang in hardware, this serializes the
1040                  * check with the clearing of time_stamp and movement of i
1041                  */
1042                 adapter->detect_tx_hung = 0;
1043                 if (tx_ring->buffer_info[i].time_stamp &&
1044                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1045                                + (adapter->tx_timeout_factor * HZ)) &&
1046                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
1047                         schedule_work(&adapter->print_hang_task);
1048                         netif_stop_queue(netdev);
1049                 }
1050         }
1051         adapter->total_tx_bytes += total_tx_bytes;
1052         adapter->total_tx_packets += total_tx_packets;
1053         netdev->stats.tx_bytes += total_tx_bytes;
1054         netdev->stats.tx_packets += total_tx_packets;
1055         return (count < tx_ring->count);
1056 }
1057
1058 /**
1059  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1060  * @adapter: board private structure
1061  *
1062  * the return value indicates whether actual cleaning was done, there
1063  * is no guarantee that everything was cleaned
1064  **/
1065 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
1066                                   int *work_done, int work_to_do)
1067 {
1068         struct e1000_hw *hw = &adapter->hw;
1069         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1070         struct net_device *netdev = adapter->netdev;
1071         struct pci_dev *pdev = adapter->pdev;
1072         struct e1000_ring *rx_ring = adapter->rx_ring;
1073         struct e1000_buffer *buffer_info, *next_buffer;
1074         struct e1000_ps_page *ps_page;
1075         struct sk_buff *skb;
1076         unsigned int i, j;
1077         u32 length, staterr;
1078         int cleaned_count = 0;
1079         bool cleaned = 0;
1080         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1081
1082         i = rx_ring->next_to_clean;
1083         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1084         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1085         buffer_info = &rx_ring->buffer_info[i];
1086
1087         while (staterr & E1000_RXD_STAT_DD) {
1088                 if (*work_done >= work_to_do)
1089                         break;
1090                 (*work_done)++;
1091                 skb = buffer_info->skb;
1092                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1093
1094                 /* in the packet split case this is header only */
1095                 prefetch(skb->data - NET_IP_ALIGN);
1096
1097                 i++;
1098                 if (i == rx_ring->count)
1099                         i = 0;
1100                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1101                 prefetch(next_rxd);
1102
1103                 next_buffer = &rx_ring->buffer_info[i];
1104
1105                 cleaned = 1;
1106                 cleaned_count++;
1107                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1108                                  adapter->rx_ps_bsize0,
1109                                  DMA_FROM_DEVICE);
1110                 buffer_info->dma = 0;
1111
1112                 /* see !EOP comment in other rx routine */
1113                 if (!(staterr & E1000_RXD_STAT_EOP))
1114                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1115
1116                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1117                         e_dbg("Packet Split buffers didn't pick up the full "
1118                               "packet\n");
1119                         dev_kfree_skb_irq(skb);
1120                         if (staterr & E1000_RXD_STAT_EOP)
1121                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1122                         goto next_desc;
1123                 }
1124
1125                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
1126                         dev_kfree_skb_irq(skb);
1127                         goto next_desc;
1128                 }
1129
1130                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1131
1132                 if (!length) {
1133                         e_dbg("Last part of the packet spanning multiple "
1134                               "descriptors\n");
1135                         dev_kfree_skb_irq(skb);
1136                         goto next_desc;
1137                 }
1138
1139                 /* Good Receive */
1140                 skb_put(skb, length);
1141
1142                 {
1143                 /*
1144                  * this looks ugly, but it seems compiler issues make it
1145                  * more efficient than reusing j
1146                  */
1147                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1148
1149                 /*
1150                  * page alloc/put takes too long and effects small packet
1151                  * throughput, so unsplit small packets and save the alloc/put
1152                  * only valid in softirq (napi) context to call kmap_*
1153                  */
1154                 if (l1 && (l1 <= copybreak) &&
1155                     ((length + l1) <= adapter->rx_ps_bsize0)) {
1156                         u8 *vaddr;
1157
1158                         ps_page = &buffer_info->ps_pages[0];
1159
1160                         /*
1161                          * there is no documentation about how to call
1162                          * kmap_atomic, so we can't hold the mapping
1163                          * very long
1164                          */
1165                         dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
1166                                                 PAGE_SIZE, DMA_FROM_DEVICE);
1167                         vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
1168                         memcpy(skb_tail_pointer(skb), vaddr, l1);
1169                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1170                         dma_sync_single_for_device(&pdev->dev, ps_page->dma,
1171                                                    PAGE_SIZE, DMA_FROM_DEVICE);
1172
1173                         /* remove the CRC */
1174                         if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1175                                 l1 -= 4;
1176
1177                         skb_put(skb, l1);
1178                         goto copydone;
1179                 } /* if */
1180                 }
1181
1182                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1183                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1184                         if (!length)
1185                                 break;
1186
1187                         ps_page = &buffer_info->ps_pages[j];
1188                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1189                                        DMA_FROM_DEVICE);
1190                         ps_page->dma = 0;
1191                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1192                         ps_page->page = NULL;
1193                         skb->len += length;
1194                         skb->data_len += length;
1195                         skb->truesize += length;
1196                 }
1197
1198                 /* strip the ethernet crc, problem is we're using pages now so
1199                  * this whole operation can get a little cpu intensive
1200                  */
1201                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1202                         pskb_trim(skb, skb->len - 4);
1203
1204 copydone:
1205                 total_rx_bytes += skb->len;
1206                 total_rx_packets++;
1207
1208                 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
1209                         rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
1210
1211                 if (rx_desc->wb.upper.header_status &
1212                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1213                         adapter->rx_hdr_split++;
1214
1215                 e1000_receive_skb(adapter, netdev, skb,
1216                                   staterr, rx_desc->wb.middle.vlan);
1217
1218 next_desc:
1219                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1220                 buffer_info->skb = NULL;
1221
1222                 /* return some buffers to hardware, one at a time is too slow */
1223                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1224                         adapter->alloc_rx_buf(adapter, cleaned_count);
1225                         cleaned_count = 0;
1226                 }
1227
1228                 /* use prefetched values */
1229                 rx_desc = next_rxd;
1230                 buffer_info = next_buffer;
1231
1232                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1233         }
1234         rx_ring->next_to_clean = i;
1235
1236         cleaned_count = e1000_desc_unused(rx_ring);
1237         if (cleaned_count)
1238                 adapter->alloc_rx_buf(adapter, cleaned_count);
1239
1240         adapter->total_rx_bytes += total_rx_bytes;
1241         adapter->total_rx_packets += total_rx_packets;
1242         netdev->stats.rx_bytes += total_rx_bytes;
1243         netdev->stats.rx_packets += total_rx_packets;
1244         return cleaned;
1245 }
1246
1247 /**
1248  * e1000_consume_page - helper function
1249  **/
1250 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1251                                u16 length)
1252 {
1253         bi->page = NULL;
1254         skb->len += length;
1255         skb->data_len += length;
1256         skb->truesize += length;
1257 }
1258
1259 /**
1260  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1261  * @adapter: board private structure
1262  *
1263  * the return value indicates whether actual cleaning was done, there
1264  * is no guarantee that everything was cleaned
1265  **/
1266
1267 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
1268                                      int *work_done, int work_to_do)
1269 {
1270         struct net_device *netdev = adapter->netdev;
1271         struct pci_dev *pdev = adapter->pdev;
1272         struct e1000_ring *rx_ring = adapter->rx_ring;
1273         struct e1000_rx_desc *rx_desc, *next_rxd;
1274         struct e1000_buffer *buffer_info, *next_buffer;
1275         u32 length;
1276         unsigned int i;
1277         int cleaned_count = 0;
1278         bool cleaned = false;
1279         unsigned int total_rx_bytes=0, total_rx_packets=0;
1280
1281         i = rx_ring->next_to_clean;
1282         rx_desc = E1000_RX_DESC(*rx_ring, i);
1283         buffer_info = &rx_ring->buffer_info[i];
1284
1285         while (rx_desc->status & E1000_RXD_STAT_DD) {
1286                 struct sk_buff *skb;
1287                 u8 status;
1288
1289                 if (*work_done >= work_to_do)
1290                         break;
1291                 (*work_done)++;
1292                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1293
1294                 status = rx_desc->status;
1295                 skb = buffer_info->skb;
1296                 buffer_info->skb = NULL;
1297
1298                 ++i;
1299                 if (i == rx_ring->count)
1300                         i = 0;
1301                 next_rxd = E1000_RX_DESC(*rx_ring, i);
1302                 prefetch(next_rxd);
1303
1304                 next_buffer = &rx_ring->buffer_info[i];
1305
1306                 cleaned = true;
1307                 cleaned_count++;
1308                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1309                                DMA_FROM_DEVICE);
1310                 buffer_info->dma = 0;
1311
1312                 length = le16_to_cpu(rx_desc->length);
1313
1314                 /* errors is only valid for DD + EOP descriptors */
1315                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
1316                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
1317                                 /* recycle both page and skb */
1318                                 buffer_info->skb = skb;
1319                                 /* an error means any chain goes out the window
1320                                  * too */
1321                                 if (rx_ring->rx_skb_top)
1322                                         dev_kfree_skb(rx_ring->rx_skb_top);
1323                                 rx_ring->rx_skb_top = NULL;
1324                                 goto next_desc;
1325                 }
1326
1327 #define rxtop rx_ring->rx_skb_top
1328                 if (!(status & E1000_RXD_STAT_EOP)) {
1329                         /* this descriptor is only the beginning (or middle) */
1330                         if (!rxtop) {
1331                                 /* this is the beginning of a chain */
1332                                 rxtop = skb;
1333                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1334                                                    0, length);
1335                         } else {
1336                                 /* this is the middle of a chain */
1337                                 skb_fill_page_desc(rxtop,
1338                                     skb_shinfo(rxtop)->nr_frags,
1339                                     buffer_info->page, 0, length);
1340                                 /* re-use the skb, only consumed the page */
1341                                 buffer_info->skb = skb;
1342                         }
1343                         e1000_consume_page(buffer_info, rxtop, length);
1344                         goto next_desc;
1345                 } else {
1346                         if (rxtop) {
1347                                 /* end of the chain */
1348                                 skb_fill_page_desc(rxtop,
1349                                     skb_shinfo(rxtop)->nr_frags,
1350                                     buffer_info->page, 0, length);
1351                                 /* re-use the current skb, we only consumed the
1352                                  * page */
1353                                 buffer_info->skb = skb;
1354                                 skb = rxtop;
1355                                 rxtop = NULL;
1356                                 e1000_consume_page(buffer_info, skb, length);
1357                         } else {
1358                                 /* no chain, got EOP, this buf is the packet
1359                                  * copybreak to save the put_page/alloc_page */
1360                                 if (length <= copybreak &&
1361                                     skb_tailroom(skb) >= length) {
1362                                         u8 *vaddr;
1363                                         vaddr = kmap_atomic(buffer_info->page,
1364                                                            KM_SKB_DATA_SOFTIRQ);
1365                                         memcpy(skb_tail_pointer(skb), vaddr,
1366                                                length);
1367                                         kunmap_atomic(vaddr,
1368                                                       KM_SKB_DATA_SOFTIRQ);
1369                                         /* re-use the page, so don't erase
1370                                          * buffer_info->page */
1371                                         skb_put(skb, length);
1372                                 } else {
1373                                         skb_fill_page_desc(skb, 0,
1374                                                            buffer_info->page, 0,
1375                                                            length);
1376                                         e1000_consume_page(buffer_info, skb,
1377                                                            length);
1378                                 }
1379                         }
1380                 }
1381
1382                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1383                 e1000_rx_checksum(adapter,
1384                                   (u32)(status) |
1385                                   ((u32)(rx_desc->errors) << 24),
1386                                   le16_to_cpu(rx_desc->csum), skb);
1387
1388                 /* probably a little skewed due to removing CRC */
1389                 total_rx_bytes += skb->len;
1390                 total_rx_packets++;
1391
1392                 /* eth type trans needs skb->data to point to something */
1393                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1394                         e_err("pskb_may_pull failed.\n");
1395                         dev_kfree_skb(skb);
1396                         goto next_desc;
1397                 }
1398
1399                 e1000_receive_skb(adapter, netdev, skb, status,
1400                                   rx_desc->special);
1401
1402 next_desc:
1403                 rx_desc->status = 0;
1404
1405                 /* return some buffers to hardware, one at a time is too slow */
1406                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1407                         adapter->alloc_rx_buf(adapter, cleaned_count);
1408                         cleaned_count = 0;
1409                 }
1410
1411                 /* use prefetched values */
1412                 rx_desc = next_rxd;
1413                 buffer_info = next_buffer;
1414         }
1415         rx_ring->next_to_clean = i;
1416
1417         cleaned_count = e1000_desc_unused(rx_ring);
1418         if (cleaned_count)
1419                 adapter->alloc_rx_buf(adapter, cleaned_count);
1420
1421         adapter->total_rx_bytes += total_rx_bytes;
1422         adapter->total_rx_packets += total_rx_packets;
1423         netdev->stats.rx_bytes += total_rx_bytes;
1424         netdev->stats.rx_packets += total_rx_packets;
1425         return cleaned;
1426 }
1427
1428 /**
1429  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1430  * @adapter: board private structure
1431  **/
1432 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1433 {
1434         struct e1000_ring *rx_ring = adapter->rx_ring;
1435         struct e1000_buffer *buffer_info;
1436         struct e1000_ps_page *ps_page;
1437         struct pci_dev *pdev = adapter->pdev;
1438         unsigned int i, j;
1439
1440         /* Free all the Rx ring sk_buffs */
1441         for (i = 0; i < rx_ring->count; i++) {
1442                 buffer_info = &rx_ring->buffer_info[i];
1443                 if (buffer_info->dma) {
1444                         if (adapter->clean_rx == e1000_clean_rx_irq)
1445                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1446                                                  adapter->rx_buffer_len,
1447                                                  DMA_FROM_DEVICE);
1448                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1449                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1450                                                PAGE_SIZE,
1451                                                DMA_FROM_DEVICE);
1452                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1453                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1454                                                  adapter->rx_ps_bsize0,
1455                                                  DMA_FROM_DEVICE);
1456                         buffer_info->dma = 0;
1457                 }
1458
1459                 if (buffer_info->page) {
1460                         put_page(buffer_info->page);
1461                         buffer_info->page = NULL;
1462                 }
1463
1464                 if (buffer_info->skb) {
1465                         dev_kfree_skb(buffer_info->skb);
1466                         buffer_info->skb = NULL;
1467                 }
1468
1469                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1470                         ps_page = &buffer_info->ps_pages[j];
1471                         if (!ps_page->page)
1472                                 break;
1473                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1474                                        DMA_FROM_DEVICE);
1475                         ps_page->dma = 0;
1476                         put_page(ps_page->page);
1477                         ps_page->page = NULL;
1478                 }
1479         }
1480
1481         /* there also may be some cached data from a chained receive */
1482         if (rx_ring->rx_skb_top) {
1483                 dev_kfree_skb(rx_ring->rx_skb_top);
1484                 rx_ring->rx_skb_top = NULL;
1485         }
1486
1487         /* Zero out the descriptor ring */
1488         memset(rx_ring->desc, 0, rx_ring->size);
1489
1490         rx_ring->next_to_clean = 0;
1491         rx_ring->next_to_use = 0;
1492         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1493
1494         writel(0, adapter->hw.hw_addr + rx_ring->head);
1495         writel(0, adapter->hw.hw_addr + rx_ring->tail);
1496 }
1497
1498 static void e1000e_downshift_workaround(struct work_struct *work)
1499 {
1500         struct e1000_adapter *adapter = container_of(work,
1501                                         struct e1000_adapter, downshift_task);
1502
1503         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1504 }
1505
1506 /**
1507  * e1000_intr_msi - Interrupt Handler
1508  * @irq: interrupt number
1509  * @data: pointer to a network interface device structure
1510  **/
1511 static irqreturn_t e1000_intr_msi(int irq, void *data)
1512 {
1513         struct net_device *netdev = data;
1514         struct e1000_adapter *adapter = netdev_priv(netdev);
1515         struct e1000_hw *hw = &adapter->hw;
1516         u32 icr = er32(ICR);
1517
1518         /*
1519          * read ICR disables interrupts using IAM
1520          */
1521
1522         if (icr & E1000_ICR_LSC) {
1523                 hw->mac.get_link_status = 1;
1524                 /*
1525                  * ICH8 workaround-- Call gig speed drop workaround on cable
1526                  * disconnect (LSC) before accessing any PHY registers
1527                  */
1528                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1529                     (!(er32(STATUS) & E1000_STATUS_LU)))
1530                         schedule_work(&adapter->downshift_task);
1531
1532                 /*
1533                  * 80003ES2LAN workaround-- For packet buffer work-around on
1534                  * link down event; disable receives here in the ISR and reset
1535                  * adapter in watchdog
1536                  */
1537                 if (netif_carrier_ok(netdev) &&
1538                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1539                         /* disable receives */
1540                         u32 rctl = er32(RCTL);
1541                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1542                         adapter->flags |= FLAG_RX_RESTART_NOW;
1543                 }
1544                 /* guard against interrupt when we're going down */
1545                 if (!test_bit(__E1000_DOWN, &adapter->state))
1546                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1547         }
1548
1549         if (napi_schedule_prep(&adapter->napi)) {
1550                 adapter->total_tx_bytes = 0;
1551                 adapter->total_tx_packets = 0;
1552                 adapter->total_rx_bytes = 0;
1553                 adapter->total_rx_packets = 0;
1554                 __napi_schedule(&adapter->napi);
1555         }
1556
1557         return IRQ_HANDLED;
1558 }
1559
1560 /**
1561  * e1000_intr - Interrupt Handler
1562  * @irq: interrupt number
1563  * @data: pointer to a network interface device structure
1564  **/
1565 static irqreturn_t e1000_intr(int irq, void *data)
1566 {
1567         struct net_device *netdev = data;
1568         struct e1000_adapter *adapter = netdev_priv(netdev);
1569         struct e1000_hw *hw = &adapter->hw;
1570         u32 rctl, icr = er32(ICR);
1571
1572         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1573                 return IRQ_NONE;  /* Not our interrupt */
1574
1575         /*
1576          * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1577          * not set, then the adapter didn't send an interrupt
1578          */
1579         if (!(icr & E1000_ICR_INT_ASSERTED))
1580                 return IRQ_NONE;
1581
1582         /*
1583          * Interrupt Auto-Mask...upon reading ICR,
1584          * interrupts are masked.  No need for the
1585          * IMC write
1586          */
1587
1588         if (icr & E1000_ICR_LSC) {
1589                 hw->mac.get_link_status = 1;
1590                 /*
1591                  * ICH8 workaround-- Call gig speed drop workaround on cable
1592                  * disconnect (LSC) before accessing any PHY registers
1593                  */
1594                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1595                     (!(er32(STATUS) & E1000_STATUS_LU)))
1596                         schedule_work(&adapter->downshift_task);
1597
1598                 /*
1599                  * 80003ES2LAN workaround--
1600                  * For packet buffer work-around on link down event;
1601                  * disable receives here in the ISR and
1602                  * reset adapter in watchdog
1603                  */
1604                 if (netif_carrier_ok(netdev) &&
1605                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1606                         /* disable receives */
1607                         rctl = er32(RCTL);
1608                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1609                         adapter->flags |= FLAG_RX_RESTART_NOW;
1610                 }
1611                 /* guard against interrupt when we're going down */
1612                 if (!test_bit(__E1000_DOWN, &adapter->state))
1613                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1614         }
1615
1616         if (napi_schedule_prep(&adapter->napi)) {
1617                 adapter->total_tx_bytes = 0;
1618                 adapter->total_tx_packets = 0;
1619                 adapter->total_rx_bytes = 0;
1620                 adapter->total_rx_packets = 0;
1621                 __napi_schedule(&adapter->napi);
1622         }
1623
1624         return IRQ_HANDLED;
1625 }
1626
1627 static irqreturn_t e1000_msix_other(int irq, void *data)
1628 {
1629         struct net_device *netdev = data;
1630         struct e1000_adapter *adapter = netdev_priv(netdev);
1631         struct e1000_hw *hw = &adapter->hw;
1632         u32 icr = er32(ICR);
1633
1634         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1635                 if (!test_bit(__E1000_DOWN, &adapter->state))
1636                         ew32(IMS, E1000_IMS_OTHER);
1637                 return IRQ_NONE;
1638         }
1639
1640         if (icr & adapter->eiac_mask)
1641                 ew32(ICS, (icr & adapter->eiac_mask));
1642
1643         if (icr & E1000_ICR_OTHER) {
1644                 if (!(icr & E1000_ICR_LSC))
1645                         goto no_link_interrupt;
1646                 hw->mac.get_link_status = 1;
1647                 /* guard against interrupt when we're going down */
1648                 if (!test_bit(__E1000_DOWN, &adapter->state))
1649                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1650         }
1651
1652 no_link_interrupt:
1653         if (!test_bit(__E1000_DOWN, &adapter->state))
1654                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1655
1656         return IRQ_HANDLED;
1657 }
1658
1659
1660 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1661 {
1662         struct net_device *netdev = data;
1663         struct e1000_adapter *adapter = netdev_priv(netdev);
1664         struct e1000_hw *hw = &adapter->hw;
1665         struct e1000_ring *tx_ring = adapter->tx_ring;
1666
1667
1668         adapter->total_tx_bytes = 0;
1669         adapter->total_tx_packets = 0;
1670
1671         if (!e1000_clean_tx_irq(adapter))
1672                 /* Ring was not completely cleaned, so fire another interrupt */
1673                 ew32(ICS, tx_ring->ims_val);
1674
1675         return IRQ_HANDLED;
1676 }
1677
1678 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1679 {
1680         struct net_device *netdev = data;
1681         struct e1000_adapter *adapter = netdev_priv(netdev);
1682
1683         /* Write the ITR value calculated at the end of the
1684          * previous interrupt.
1685          */
1686         if (adapter->rx_ring->set_itr) {
1687                 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1688                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1689                 adapter->rx_ring->set_itr = 0;
1690         }
1691
1692         if (napi_schedule_prep(&adapter->napi)) {
1693                 adapter->total_rx_bytes = 0;
1694                 adapter->total_rx_packets = 0;
1695                 __napi_schedule(&adapter->napi);
1696         }
1697         return IRQ_HANDLED;
1698 }
1699
1700 /**
1701  * e1000_configure_msix - Configure MSI-X hardware
1702  *
1703  * e1000_configure_msix sets up the hardware to properly
1704  * generate MSI-X interrupts.
1705  **/
1706 static void e1000_configure_msix(struct e1000_adapter *adapter)
1707 {
1708         struct e1000_hw *hw = &adapter->hw;
1709         struct e1000_ring *rx_ring = adapter->rx_ring;
1710         struct e1000_ring *tx_ring = adapter->tx_ring;
1711         int vector = 0;
1712         u32 ctrl_ext, ivar = 0;
1713
1714         adapter->eiac_mask = 0;
1715
1716         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1717         if (hw->mac.type == e1000_82574) {
1718                 u32 rfctl = er32(RFCTL);
1719                 rfctl |= E1000_RFCTL_ACK_DIS;
1720                 ew32(RFCTL, rfctl);
1721         }
1722
1723 #define E1000_IVAR_INT_ALLOC_VALID      0x8
1724         /* Configure Rx vector */
1725         rx_ring->ims_val = E1000_IMS_RXQ0;
1726         adapter->eiac_mask |= rx_ring->ims_val;
1727         if (rx_ring->itr_val)
1728                 writel(1000000000 / (rx_ring->itr_val * 256),
1729                        hw->hw_addr + rx_ring->itr_register);
1730         else
1731                 writel(1, hw->hw_addr + rx_ring->itr_register);
1732         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1733
1734         /* Configure Tx vector */
1735         tx_ring->ims_val = E1000_IMS_TXQ0;
1736         vector++;
1737         if (tx_ring->itr_val)
1738                 writel(1000000000 / (tx_ring->itr_val * 256),
1739                        hw->hw_addr + tx_ring->itr_register);
1740         else
1741                 writel(1, hw->hw_addr + tx_ring->itr_register);
1742         adapter->eiac_mask |= tx_ring->ims_val;
1743         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1744
1745         /* set vector for Other Causes, e.g. link changes */
1746         vector++;
1747         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1748         if (rx_ring->itr_val)
1749                 writel(1000000000 / (rx_ring->itr_val * 256),
1750                        hw->hw_addr + E1000_EITR_82574(vector));
1751         else
1752                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1753
1754         /* Cause Tx interrupts on every write back */
1755         ivar |= (1 << 31);
1756
1757         ew32(IVAR, ivar);
1758
1759         /* enable MSI-X PBA support */
1760         ctrl_ext = er32(CTRL_EXT);
1761         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1762
1763         /* Auto-Mask Other interrupts upon ICR read */
1764 #define E1000_EIAC_MASK_82574   0x01F00000
1765         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1766         ctrl_ext |= E1000_CTRL_EXT_EIAME;
1767         ew32(CTRL_EXT, ctrl_ext);
1768         e1e_flush();
1769 }
1770
1771 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1772 {
1773         if (adapter->msix_entries) {
1774                 pci_disable_msix(adapter->pdev);
1775                 kfree(adapter->msix_entries);
1776                 adapter->msix_entries = NULL;
1777         } else if (adapter->flags & FLAG_MSI_ENABLED) {
1778                 pci_disable_msi(adapter->pdev);
1779                 adapter->flags &= ~FLAG_MSI_ENABLED;
1780         }
1781 }
1782
1783 /**
1784  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1785  *
1786  * Attempt to configure interrupts using the best available
1787  * capabilities of the hardware and kernel.
1788  **/
1789 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1790 {
1791         int err;
1792         int i;
1793
1794         switch (adapter->int_mode) {
1795         case E1000E_INT_MODE_MSIX:
1796                 if (adapter->flags & FLAG_HAS_MSIX) {
1797                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1798                         adapter->msix_entries = kcalloc(adapter->num_vectors,
1799                                                       sizeof(struct msix_entry),
1800                                                       GFP_KERNEL);
1801                         if (adapter->msix_entries) {
1802                                 for (i = 0; i < adapter->num_vectors; i++)
1803                                         adapter->msix_entries[i].entry = i;
1804
1805                                 err = pci_enable_msix(adapter->pdev,
1806                                                       adapter->msix_entries,
1807                                                       adapter->num_vectors);
1808                                 if (err == 0) {
1809                                         return;
1810                                 }
1811                         }
1812                         /* MSI-X failed, so fall through and try MSI */
1813                         e_err("Failed to initialize MSI-X interrupts.  "
1814                               "Falling back to MSI interrupts.\n");
1815                         e1000e_reset_interrupt_capability(adapter);
1816                 }
1817                 adapter->int_mode = E1000E_INT_MODE_MSI;
1818                 /* Fall through */
1819         case E1000E_INT_MODE_MSI:
1820                 if (!pci_enable_msi(adapter->pdev)) {
1821                         adapter->flags |= FLAG_MSI_ENABLED;
1822                 } else {
1823                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
1824                         e_err("Failed to initialize MSI interrupts.  Falling "
1825                               "back to legacy interrupts.\n");
1826                 }
1827                 /* Fall through */
1828         case E1000E_INT_MODE_LEGACY:
1829                 /* Don't do anything; this is the system default */
1830                 break;
1831         }
1832
1833         /* store the number of vectors being used */
1834         adapter->num_vectors = 1;
1835 }
1836
1837 /**
1838  * e1000_request_msix - Initialize MSI-X interrupts
1839  *
1840  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1841  * kernel.
1842  **/
1843 static int e1000_request_msix(struct e1000_adapter *adapter)
1844 {
1845         struct net_device *netdev = adapter->netdev;
1846         int err = 0, vector = 0;
1847
1848         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1849                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1850         else
1851                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1852         err = request_irq(adapter->msix_entries[vector].vector,
1853                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1854                           netdev);
1855         if (err)
1856                 goto out;
1857         adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1858         adapter->rx_ring->itr_val = adapter->itr;
1859         vector++;
1860
1861         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1862                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1863         else
1864                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1865         err = request_irq(adapter->msix_entries[vector].vector,
1866                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1867                           netdev);
1868         if (err)
1869                 goto out;
1870         adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1871         adapter->tx_ring->itr_val = adapter->itr;
1872         vector++;
1873
1874         err = request_irq(adapter->msix_entries[vector].vector,
1875                           e1000_msix_other, 0, netdev->name, netdev);
1876         if (err)
1877                 goto out;
1878
1879         e1000_configure_msix(adapter);
1880         return 0;
1881 out:
1882         return err;
1883 }
1884
1885 /**
1886  * e1000_request_irq - initialize interrupts
1887  *
1888  * Attempts to configure interrupts using the best available
1889  * capabilities of the hardware and kernel.
1890  **/
1891 static int e1000_request_irq(struct e1000_adapter *adapter)
1892 {
1893         struct net_device *netdev = adapter->netdev;
1894         int err;
1895
1896         if (adapter->msix_entries) {
1897                 err = e1000_request_msix(adapter);
1898                 if (!err)
1899                         return err;
1900                 /* fall back to MSI */
1901                 e1000e_reset_interrupt_capability(adapter);
1902                 adapter->int_mode = E1000E_INT_MODE_MSI;
1903                 e1000e_set_interrupt_capability(adapter);
1904         }
1905         if (adapter->flags & FLAG_MSI_ENABLED) {
1906                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1907                                   netdev->name, netdev);
1908                 if (!err)
1909                         return err;
1910
1911                 /* fall back to legacy interrupt */
1912                 e1000e_reset_interrupt_capability(adapter);
1913                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1914         }
1915
1916         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1917                           netdev->name, netdev);
1918         if (err)
1919                 e_err("Unable to allocate interrupt, Error: %d\n", err);
1920
1921         return err;
1922 }
1923
1924 static void e1000_free_irq(struct e1000_adapter *adapter)
1925 {
1926         struct net_device *netdev = adapter->netdev;
1927
1928         if (adapter->msix_entries) {
1929                 int vector = 0;
1930
1931                 free_irq(adapter->msix_entries[vector].vector, netdev);
1932                 vector++;
1933
1934                 free_irq(adapter->msix_entries[vector].vector, netdev);
1935                 vector++;
1936
1937                 /* Other Causes interrupt vector */
1938                 free_irq(adapter->msix_entries[vector].vector, netdev);
1939                 return;
1940         }
1941
1942         free_irq(adapter->pdev->irq, netdev);
1943 }
1944
1945 /**
1946  * e1000_irq_disable - Mask off interrupt generation on the NIC
1947  **/
1948 static void e1000_irq_disable(struct e1000_adapter *adapter)
1949 {
1950         struct e1000_hw *hw = &adapter->hw;
1951
1952         ew32(IMC, ~0);
1953         if (adapter->msix_entries)
1954                 ew32(EIAC_82574, 0);
1955         e1e_flush();
1956
1957         if (adapter->msix_entries) {
1958                 int i;
1959                 for (i = 0; i < adapter->num_vectors; i++)
1960                         synchronize_irq(adapter->msix_entries[i].vector);
1961         } else {
1962                 synchronize_irq(adapter->pdev->irq);
1963         }
1964 }
1965
1966 /**
1967  * e1000_irq_enable - Enable default interrupt generation settings
1968  **/
1969 static void e1000_irq_enable(struct e1000_adapter *adapter)
1970 {
1971         struct e1000_hw *hw = &adapter->hw;
1972
1973         if (adapter->msix_entries) {
1974                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1975                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1976         } else {
1977                 ew32(IMS, IMS_ENABLE_MASK);
1978         }
1979         e1e_flush();
1980 }
1981
1982 /**
1983  * e1000_get_hw_control - get control of the h/w from f/w
1984  * @adapter: address of board private structure
1985  *
1986  * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1987  * For ASF and Pass Through versions of f/w this means that
1988  * the driver is loaded. For AMT version (only with 82573)
1989  * of the f/w this means that the network i/f is open.
1990  **/
1991 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1992 {
1993         struct e1000_hw *hw = &adapter->hw;
1994         u32 ctrl_ext;
1995         u32 swsm;
1996
1997         /* Let firmware know the driver has taken over */
1998         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1999                 swsm = er32(SWSM);
2000                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2001         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2002                 ctrl_ext = er32(CTRL_EXT);
2003                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2004         }
2005 }
2006
2007 /**
2008  * e1000_release_hw_control - release control of the h/w to f/w
2009  * @adapter: address of board private structure
2010  *
2011  * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2012  * For ASF and Pass Through versions of f/w this means that the
2013  * driver is no longer loaded. For AMT version (only with 82573) i
2014  * of the f/w this means that the network i/f is closed.
2015  *
2016  **/
2017 static void e1000_release_hw_control(struct e1000_adapter *adapter)
2018 {
2019         struct e1000_hw *hw = &adapter->hw;
2020         u32 ctrl_ext;
2021         u32 swsm;
2022
2023         /* Let firmware taken over control of h/w */
2024         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2025                 swsm = er32(SWSM);
2026                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2027         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2028                 ctrl_ext = er32(CTRL_EXT);
2029                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2030         }
2031 }
2032
2033 /**
2034  * @e1000_alloc_ring - allocate memory for a ring structure
2035  **/
2036 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2037                                 struct e1000_ring *ring)
2038 {
2039         struct pci_dev *pdev = adapter->pdev;
2040
2041         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2042                                         GFP_KERNEL);
2043         if (!ring->desc)
2044                 return -ENOMEM;
2045
2046         return 0;
2047 }
2048
2049 /**
2050  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2051  * @adapter: board private structure
2052  *
2053  * Return 0 on success, negative on failure
2054  **/
2055 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
2056 {
2057         struct e1000_ring *tx_ring = adapter->tx_ring;
2058         int err = -ENOMEM, size;
2059
2060         size = sizeof(struct e1000_buffer) * tx_ring->count;
2061         tx_ring->buffer_info = vmalloc(size);
2062         if (!tx_ring->buffer_info)
2063                 goto err;
2064         memset(tx_ring->buffer_info, 0, size);
2065
2066         /* round up to nearest 4K */
2067         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2068         tx_ring->size = ALIGN(tx_ring->size, 4096);
2069
2070         err = e1000_alloc_ring_dma(adapter, tx_ring);
2071         if (err)
2072                 goto err;
2073
2074         tx_ring->next_to_use = 0;
2075         tx_ring->next_to_clean = 0;
2076
2077         return 0;
2078 err:
2079         vfree(tx_ring->buffer_info);
2080         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2081         return err;
2082 }
2083
2084 /**
2085  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2086  * @adapter: board private structure
2087  *
2088  * Returns 0 on success, negative on failure
2089  **/
2090 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
2091 {
2092         struct e1000_ring *rx_ring = adapter->rx_ring;
2093         struct e1000_buffer *buffer_info;
2094         int i, size, desc_len, err = -ENOMEM;
2095
2096         size = sizeof(struct e1000_buffer) * rx_ring->count;
2097         rx_ring->buffer_info = vmalloc(size);
2098         if (!rx_ring->buffer_info)
2099                 goto err;
2100         memset(rx_ring->buffer_info, 0, size);
2101
2102         for (i = 0; i < rx_ring->count; i++) {
2103                 buffer_info = &rx_ring->buffer_info[i];
2104                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2105                                                 sizeof(struct e1000_ps_page),
2106                                                 GFP_KERNEL);
2107                 if (!buffer_info->ps_pages)
2108                         goto err_pages;
2109         }
2110
2111         desc_len = sizeof(union e1000_rx_desc_packet_split);
2112
2113         /* Round up to nearest 4K */
2114         rx_ring->size = rx_ring->count * desc_len;
2115         rx_ring->size = ALIGN(rx_ring->size, 4096);
2116
2117         err = e1000_alloc_ring_dma(adapter, rx_ring);
2118         if (err)
2119                 goto err_pages;
2120
2121         rx_ring->next_to_clean = 0;
2122         rx_ring->next_to_use = 0;
2123         rx_ring->rx_skb_top = NULL;
2124
2125         return 0;
2126
2127 err_pages:
2128         for (i = 0; i < rx_ring->count; i++) {
2129                 buffer_info = &rx_ring->buffer_info[i];
2130                 kfree(buffer_info->ps_pages);
2131         }
2132 err:
2133         vfree(rx_ring->buffer_info);
2134         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2135         return err;
2136 }
2137
2138 /**
2139  * e1000_clean_tx_ring - Free Tx Buffers
2140  * @adapter: board private structure
2141  **/
2142 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
2143 {
2144         struct e1000_ring *tx_ring = adapter->tx_ring;
2145         struct e1000_buffer *buffer_info;
2146         unsigned long size;
2147         unsigned int i;
2148
2149         for (i = 0; i < tx_ring->count; i++) {
2150                 buffer_info = &tx_ring->buffer_info[i];
2151                 e1000_put_txbuf(adapter, buffer_info);
2152         }
2153
2154         size = sizeof(struct e1000_buffer) * tx_ring->count;
2155         memset(tx_ring->buffer_info, 0, size);
2156
2157         memset(tx_ring->desc, 0, tx_ring->size);
2158
2159         tx_ring->next_to_use = 0;
2160         tx_ring->next_to_clean = 0;
2161
2162         writel(0, adapter->hw.hw_addr + tx_ring->head);
2163         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2164 }
2165
2166 /**
2167  * e1000e_free_tx_resources - Free Tx Resources per Queue
2168  * @adapter: board private structure
2169  *
2170  * Free all transmit software resources
2171  **/
2172 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
2173 {
2174         struct pci_dev *pdev = adapter->pdev;
2175         struct e1000_ring *tx_ring = adapter->tx_ring;
2176
2177         e1000_clean_tx_ring(adapter);
2178
2179         vfree(tx_ring->buffer_info);
2180         tx_ring->buffer_info = NULL;
2181
2182         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2183                           tx_ring->dma);
2184         tx_ring->desc = NULL;
2185 }
2186
2187 /**
2188  * e1000e_free_rx_resources - Free Rx Resources
2189  * @adapter: board private structure
2190  *
2191  * Free all receive software resources
2192  **/
2193
2194 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
2195 {
2196         struct pci_dev *pdev = adapter->pdev;
2197         struct e1000_ring *rx_ring = adapter->rx_ring;
2198         int i;
2199
2200         e1000_clean_rx_ring(adapter);
2201
2202         for (i = 0; i < rx_ring->count; i++) {
2203                 kfree(rx_ring->buffer_info[i].ps_pages);
2204         }
2205
2206         vfree(rx_ring->buffer_info);
2207         rx_ring->buffer_info = NULL;
2208
2209         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2210                           rx_ring->dma);
2211         rx_ring->desc = NULL;
2212 }
2213
2214 /**
2215  * e1000_update_itr - update the dynamic ITR value based on statistics
2216  * @adapter: pointer to adapter
2217  * @itr_setting: current adapter->itr
2218  * @packets: the number of packets during this measurement interval
2219  * @bytes: the number of bytes during this measurement interval
2220  *
2221  *      Stores a new ITR value based on packets and byte
2222  *      counts during the last interrupt.  The advantage of per interrupt
2223  *      computation is faster updates and more accurate ITR for the current
2224  *      traffic pattern.  Constants in this function were computed
2225  *      based on theoretical maximum wire speed and thresholds were set based
2226  *      on testing data as well as attempting to minimize response time
2227  *      while increasing bulk throughput.  This functionality is controlled
2228  *      by the InterruptThrottleRate module parameter.
2229  **/
2230 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2231                                      u16 itr_setting, int packets,
2232                                      int bytes)
2233 {
2234         unsigned int retval = itr_setting;
2235
2236         if (packets == 0)
2237                 goto update_itr_done;
2238
2239         switch (itr_setting) {
2240         case lowest_latency:
2241                 /* handle TSO and jumbo frames */
2242                 if (bytes/packets > 8000)
2243                         retval = bulk_latency;
2244                 else if ((packets < 5) && (bytes > 512)) {
2245                         retval = low_latency;
2246                 }
2247                 break;
2248         case low_latency:  /* 50 usec aka 20000 ints/s */
2249                 if (bytes > 10000) {
2250                         /* this if handles the TSO accounting */
2251                         if (bytes/packets > 8000) {
2252                                 retval = bulk_latency;
2253                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2254                                 retval = bulk_latency;
2255                         } else if ((packets > 35)) {
2256                                 retval = lowest_latency;
2257                         }
2258                 } else if (bytes/packets > 2000) {
2259                         retval = bulk_latency;
2260                 } else if (packets <= 2 && bytes < 512) {
2261                         retval = lowest_latency;
2262                 }
2263                 break;
2264         case bulk_latency: /* 250 usec aka 4000 ints/s */
2265                 if (bytes > 25000) {
2266                         if (packets > 35) {
2267                                 retval = low_latency;
2268                         }
2269                 } else if (bytes < 6000) {
2270                         retval = low_latency;
2271                 }
2272                 break;
2273         }
2274
2275 update_itr_done:
2276         return retval;
2277 }
2278
2279 static void e1000_set_itr(struct e1000_adapter *adapter)
2280 {
2281         struct e1000_hw *hw = &adapter->hw;
2282         u16 current_itr;
2283         u32 new_itr = adapter->itr;
2284
2285         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2286         if (adapter->link_speed != SPEED_1000) {
2287                 current_itr = 0;
2288                 new_itr = 4000;
2289                 goto set_itr_now;
2290         }
2291
2292         adapter->tx_itr = e1000_update_itr(adapter,
2293                                     adapter->tx_itr,
2294                                     adapter->total_tx_packets,
2295                                     adapter->total_tx_bytes);
2296         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2297         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2298                 adapter->tx_itr = low_latency;
2299
2300         adapter->rx_itr = e1000_update_itr(adapter,
2301                                     adapter->rx_itr,
2302                                     adapter->total_rx_packets,
2303                                     adapter->total_rx_bytes);
2304         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2305         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2306                 adapter->rx_itr = low_latency;
2307
2308         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2309
2310         switch (current_itr) {
2311         /* counts and packets in update_itr are dependent on these numbers */
2312         case lowest_latency:
2313                 new_itr = 70000;
2314                 break;
2315         case low_latency:
2316                 new_itr = 20000; /* aka hwitr = ~200 */
2317                 break;
2318         case bulk_latency:
2319                 new_itr = 4000;
2320                 break;
2321         default:
2322                 break;
2323         }
2324
2325 set_itr_now:
2326         if (new_itr != adapter->itr) {
2327                 /*
2328                  * this attempts to bias the interrupt rate towards Bulk
2329                  * by adding intermediate steps when interrupt rate is
2330                  * increasing
2331                  */
2332                 new_itr = new_itr > adapter->itr ?
2333                              min(adapter->itr + (new_itr >> 2), new_itr) :
2334                              new_itr;
2335                 adapter->itr = new_itr;
2336                 adapter->rx_ring->itr_val = new_itr;
2337                 if (adapter->msix_entries)
2338                         adapter->rx_ring->set_itr = 1;
2339                 else
2340                         ew32(ITR, 1000000000 / (new_itr * 256));
2341         }
2342 }
2343
2344 /**
2345  * e1000_alloc_queues - Allocate memory for all rings
2346  * @adapter: board private structure to initialize
2347  **/
2348 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2349 {
2350         adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2351         if (!adapter->tx_ring)
2352                 goto err;
2353
2354         adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2355         if (!adapter->rx_ring)
2356                 goto err;
2357
2358         return 0;
2359 err:
2360         e_err("Unable to allocate memory for queues\n");
2361         kfree(adapter->rx_ring);
2362         kfree(adapter->tx_ring);
2363         return -ENOMEM;
2364 }
2365
2366 /**
2367  * e1000_clean - NAPI Rx polling callback
2368  * @napi: struct associated with this polling callback
2369  * @budget: amount of packets driver is allowed to process this poll
2370  **/
2371 static int e1000_clean(struct napi_struct *napi, int budget)
2372 {
2373         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2374         struct e1000_hw *hw = &adapter->hw;
2375         struct net_device *poll_dev = adapter->netdev;
2376         int tx_cleaned = 1, work_done = 0;
2377
2378         adapter = netdev_priv(poll_dev);
2379
2380         if (adapter->msix_entries &&
2381             !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2382                 goto clean_rx;
2383
2384         tx_cleaned = e1000_clean_tx_irq(adapter);
2385
2386 clean_rx:
2387         adapter->clean_rx(adapter, &work_done, budget);
2388
2389         if (!tx_cleaned)
2390                 work_done = budget;
2391
2392         /* If budget not fully consumed, exit the polling mode */
2393         if (work_done < budget) {
2394                 if (adapter->itr_setting & 3)
2395                         e1000_set_itr(adapter);
2396                 napi_complete(napi);
2397                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2398                         if (adapter->msix_entries)
2399                                 ew32(IMS, adapter->rx_ring->ims_val);
2400                         else
2401                                 e1000_irq_enable(adapter);
2402                 }
2403         }
2404
2405         return work_done;
2406 }
2407
2408 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2409 {
2410         struct e1000_adapter *adapter = netdev_priv(netdev);
2411         struct e1000_hw *hw = &adapter->hw;
2412         u32 vfta, index;
2413
2414         /* don't update vlan cookie if already programmed */
2415         if ((adapter->hw.mng_cookie.status &
2416              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2417             (vid == adapter->mng_vlan_id))
2418                 return;
2419
2420         /* add VID to filter table */
2421         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2422                 index = (vid >> 5) & 0x7F;
2423                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2424                 vfta |= (1 << (vid & 0x1F));
2425                 hw->mac.ops.write_vfta(hw, index, vfta);
2426         }
2427 }
2428
2429 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2430 {
2431         struct e1000_adapter *adapter = netdev_priv(netdev);
2432         struct e1000_hw *hw = &adapter->hw;
2433         u32 vfta, index;
2434
2435         if (!test_bit(__E1000_DOWN, &adapter->state))
2436                 e1000_irq_disable(adapter);
2437         vlan_group_set_device(adapter->vlgrp, vid, NULL);
2438
2439         if (!test_bit(__E1000_DOWN, &adapter->state))
2440                 e1000_irq_enable(adapter);
2441
2442         if ((adapter->hw.mng_cookie.status &
2443              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2444             (vid == adapter->mng_vlan_id)) {
2445                 /* release control to f/w */
2446                 e1000_release_hw_control(adapter);
2447                 return;
2448         }
2449
2450         /* remove VID from filter table */
2451         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2452                 index = (vid >> 5) & 0x7F;
2453                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2454                 vfta &= ~(1 << (vid & 0x1F));
2455                 hw->mac.ops.write_vfta(hw, index, vfta);
2456         }
2457 }
2458
2459 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2460 {
2461         struct net_device *netdev = adapter->netdev;
2462         u16 vid = adapter->hw.mng_cookie.vlan_id;
2463         u16 old_vid = adapter->mng_vlan_id;
2464
2465         if (!adapter->vlgrp)
2466                 return;
2467
2468         if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2469                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2470                 if (adapter->hw.mng_cookie.status &
2471                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2472                         e1000_vlan_rx_add_vid(netdev, vid);
2473                         adapter->mng_vlan_id = vid;
2474                 }
2475
2476                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2477                                 (vid != old_vid) &&
2478                     !vlan_group_get_device(adapter->vlgrp, old_vid))
2479                         e1000_vlan_rx_kill_vid(netdev, old_vid);
2480         } else {
2481                 adapter->mng_vlan_id = vid;
2482         }
2483 }
2484
2485
2486 static void e1000_vlan_rx_register(struct net_device *netdev,
2487                                    struct vlan_group *grp)
2488 {
2489         struct e1000_adapter *adapter = netdev_priv(netdev);
2490         struct e1000_hw *hw = &adapter->hw;
2491         u32 ctrl, rctl;
2492
2493         if (!test_bit(__E1000_DOWN, &adapter->state))
2494                 e1000_irq_disable(adapter);
2495         adapter->vlgrp = grp;
2496
2497         if (grp) {
2498                 /* enable VLAN tag insert/strip */
2499                 ctrl = er32(CTRL);
2500                 ctrl |= E1000_CTRL_VME;
2501                 ew32(CTRL, ctrl);
2502
2503                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2504                         /* enable VLAN receive filtering */
2505                         rctl = er32(RCTL);
2506                         rctl &= ~E1000_RCTL_CFIEN;
2507                         ew32(RCTL, rctl);
2508                         e1000_update_mng_vlan(adapter);
2509                 }
2510         } else {
2511                 /* disable VLAN tag insert/strip */
2512                 ctrl = er32(CTRL);
2513                 ctrl &= ~E1000_CTRL_VME;
2514                 ew32(CTRL, ctrl);
2515
2516                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2517                         if (adapter->mng_vlan_id !=
2518                             (u16)E1000_MNG_VLAN_NONE) {
2519                                 e1000_vlan_rx_kill_vid(netdev,
2520                                                        adapter->mng_vlan_id);
2521                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2522                         }
2523                 }
2524         }
2525
2526         if (!test_bit(__E1000_DOWN, &adapter->state))
2527                 e1000_irq_enable(adapter);
2528 }
2529
2530 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2531 {
2532         u16 vid;
2533
2534         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2535
2536         if (!adapter->vlgrp)
2537                 return;
2538
2539         for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2540                 if (!vlan_group_get_device(adapter->vlgrp, vid))
2541                         continue;
2542                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2543         }
2544 }
2545
2546 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2547 {
2548         struct e1000_hw *hw = &adapter->hw;
2549         u32 manc, manc2h, mdef, i, j;
2550
2551         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2552                 return;
2553
2554         manc = er32(MANC);
2555
2556         /*
2557          * enable receiving management packets to the host. this will probably
2558          * generate destination unreachable messages from the host OS, but
2559          * the packets will be handled on SMBUS
2560          */
2561         manc |= E1000_MANC_EN_MNG2HOST;
2562         manc2h = er32(MANC2H);
2563
2564         switch (hw->mac.type) {
2565         default:
2566                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2567                 break;
2568         case e1000_82574:
2569         case e1000_82583:
2570                 /*
2571                  * Check if IPMI pass-through decision filter already exists;
2572                  * if so, enable it.
2573                  */
2574                 for (i = 0, j = 0; i < 8; i++) {
2575                         mdef = er32(MDEF(i));
2576
2577                         /* Ignore filters with anything other than IPMI ports */
2578                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2579                                 continue;
2580
2581                         /* Enable this decision filter in MANC2H */
2582                         if (mdef)
2583                                 manc2h |= (1 << i);
2584
2585                         j |= mdef;
2586                 }
2587
2588                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2589                         break;
2590
2591                 /* Create new decision filter in an empty filter */
2592                 for (i = 0, j = 0; i < 8; i++)
2593                         if (er32(MDEF(i)) == 0) {
2594                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2595                                                E1000_MDEF_PORT_664));
2596                                 manc2h |= (1 << 1);
2597                                 j++;
2598                                 break;
2599                         }
2600
2601                 if (!j)
2602                         e_warn("Unable to create IPMI pass-through filter\n");
2603                 break;
2604         }
2605
2606         ew32(MANC2H, manc2h);
2607         ew32(MANC, manc);
2608 }
2609
2610 /**
2611  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2612  * @adapter: board private structure
2613  *
2614  * Configure the Tx unit of the MAC after a reset.
2615  **/
2616 static void e1000_configure_tx(struct e1000_adapter *adapter)
2617 {
2618         struct e1000_hw *hw = &adapter->hw;
2619         struct e1000_ring *tx_ring = adapter->tx_ring;
2620         u64 tdba;
2621         u32 tdlen, tctl, tipg, tarc;
2622         u32 ipgr1, ipgr2;
2623
2624         /* Setup the HW Tx Head and Tail descriptor pointers */
2625         tdba = tx_ring->dma;
2626         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2627         ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2628         ew32(TDBAH, (tdba >> 32));
2629         ew32(TDLEN, tdlen);
2630         ew32(TDH, 0);
2631         ew32(TDT, 0);
2632         tx_ring->head = E1000_TDH;
2633         tx_ring->tail = E1000_TDT;
2634
2635         /* Set the default values for the Tx Inter Packet Gap timer */
2636         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
2637         ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
2638         ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
2639
2640         if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2641                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
2642
2643         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2644         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2645         ew32(TIPG, tipg);
2646
2647         /* Set the Tx Interrupt Delay register */
2648         ew32(TIDV, adapter->tx_int_delay);
2649         /* Tx irq moderation */
2650         ew32(TADV, adapter->tx_abs_int_delay);
2651
2652         /* Program the Transmit Control Register */
2653         tctl = er32(TCTL);
2654         tctl &= ~E1000_TCTL_CT;
2655         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2656                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2657
2658         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2659                 tarc = er32(TARC(0));
2660                 /*
2661                  * set the speed mode bit, we'll clear it if we're not at
2662                  * gigabit link later
2663                  */
2664 #define SPEED_MODE_BIT (1 << 21)
2665                 tarc |= SPEED_MODE_BIT;
2666                 ew32(TARC(0), tarc);
2667         }
2668
2669         /* errata: program both queues to unweighted RR */
2670         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2671                 tarc = er32(TARC(0));
2672                 tarc |= 1;
2673                 ew32(TARC(0), tarc);
2674                 tarc = er32(TARC(1));
2675                 tarc |= 1;
2676                 ew32(TARC(1), tarc);
2677         }
2678
2679         /* Setup Transmit Descriptor Settings for eop descriptor */
2680         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2681
2682         /* only set IDE if we are delaying interrupts using the timers */
2683         if (adapter->tx_int_delay)
2684                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2685
2686         /* enable Report Status bit */
2687         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2688
2689         ew32(TCTL, tctl);
2690
2691         e1000e_config_collision_dist(hw);
2692 }
2693
2694 /**
2695  * e1000_setup_rctl - configure the receive control registers
2696  * @adapter: Board private structure
2697  **/
2698 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2699                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2700 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2701 {
2702         struct e1000_hw *hw = &adapter->hw;
2703         u32 rctl, rfctl;
2704         u32 psrctl = 0;
2705         u32 pages = 0;
2706
2707         /* Program MC offset vector base */
2708         rctl = er32(RCTL);
2709         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2710         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2711                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2712                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2713
2714         /* Do not Store bad packets */
2715         rctl &= ~E1000_RCTL_SBP;
2716
2717         /* Enable Long Packet receive */
2718         if (adapter->netdev->mtu <= ETH_DATA_LEN)
2719                 rctl &= ~E1000_RCTL_LPE;
2720         else
2721                 rctl |= E1000_RCTL_LPE;
2722
2723         /* Some systems expect that the CRC is included in SMBUS traffic. The
2724          * hardware strips the CRC before sending to both SMBUS (BMC) and to
2725          * host memory when this is enabled
2726          */
2727         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2728                 rctl |= E1000_RCTL_SECRC;
2729
2730         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2731         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2732                 u16 phy_data;
2733
2734                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2735                 phy_data &= 0xfff8;
2736                 phy_data |= (1 << 2);
2737                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2738
2739                 e1e_rphy(hw, 22, &phy_data);
2740                 phy_data &= 0x0fff;
2741                 phy_data |= (1 << 14);
2742                 e1e_wphy(hw, 0x10, 0x2823);
2743                 e1e_wphy(hw, 0x11, 0x0003);
2744                 e1e_wphy(hw, 22, phy_data);
2745         }
2746
2747         /* Workaround Si errata on 82579 - configure jumbo frame flow */
2748         if (hw->mac.type == e1000_pch2lan) {
2749                 s32 ret_val;
2750
2751                 if (rctl & E1000_RCTL_LPE)
2752                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2753                 else
2754                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2755         }
2756
2757         /* Setup buffer sizes */
2758         rctl &= ~E1000_RCTL_SZ_4096;
2759         rctl |= E1000_RCTL_BSEX;
2760         switch (adapter->rx_buffer_len) {
2761         case 2048:
2762         default:
2763                 rctl |= E1000_RCTL_SZ_2048;
2764                 rctl &= ~E1000_RCTL_BSEX;
2765                 break;
2766         case 4096:
2767                 rctl |= E1000_RCTL_SZ_4096;
2768                 break;
2769         case 8192:
2770                 rctl |= E1000_RCTL_SZ_8192;
2771                 break;
2772         case 16384:
2773                 rctl |= E1000_RCTL_SZ_16384;
2774                 break;
2775         }
2776
2777         /*
2778          * 82571 and greater support packet-split where the protocol
2779          * header is placed in skb->data and the packet data is
2780          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2781          * In the case of a non-split, skb->data is linearly filled,
2782          * followed by the page buffers.  Therefore, skb->data is
2783          * sized to hold the largest protocol header.
2784          *
2785          * allocations using alloc_page take too long for regular MTU
2786          * so only enable packet split for jumbo frames
2787          *
2788          * Using pages when the page size is greater than 16k wastes
2789          * a lot of memory, since we allocate 3 pages at all times
2790          * per packet.
2791          */
2792         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2793         if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
2794             (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2795                 adapter->rx_ps_pages = pages;
2796         else
2797                 adapter->rx_ps_pages = 0;
2798
2799         if (adapter->rx_ps_pages) {
2800                 /* Configure extra packet-split registers */
2801                 rfctl = er32(RFCTL);
2802                 rfctl |= E1000_RFCTL_EXTEN;
2803                 /*
2804                  * disable packet split support for IPv6 extension headers,
2805                  * because some malformed IPv6 headers can hang the Rx
2806                  */
2807                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2808                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2809
2810                 ew32(RFCTL, rfctl);
2811
2812                 /* Enable Packet split descriptors */
2813                 rctl |= E1000_RCTL_DTYP_PS;
2814
2815                 psrctl |= adapter->rx_ps_bsize0 >>
2816                         E1000_PSRCTL_BSIZE0_SHIFT;
2817
2818                 switch (adapter->rx_ps_pages) {
2819                 case 3:
2820                         psrctl |= PAGE_SIZE <<
2821                                 E1000_PSRCTL_BSIZE3_SHIFT;
2822                 case 2:
2823                         psrctl |= PAGE_SIZE <<
2824                                 E1000_PSRCTL_BSIZE2_SHIFT;
2825                 case 1:
2826                         psrctl |= PAGE_SIZE >>
2827                                 E1000_PSRCTL_BSIZE1_SHIFT;
2828                         break;
2829                 }
2830
2831                 ew32(PSRCTL, psrctl);
2832         }
2833
2834         ew32(RCTL, rctl);
2835         /* just started the receive unit, no need to restart */
2836         adapter->flags &= ~FLAG_RX_RESTART_NOW;
2837 }
2838
2839 /**
2840  * e1000_configure_rx - Configure Receive Unit after Reset
2841  * @adapter: board private structure
2842  *
2843  * Configure the Rx unit of the MAC after a reset.
2844  **/
2845 static void e1000_configure_rx(struct e1000_adapter *adapter)
2846 {
2847         struct e1000_hw *hw = &adapter->hw;
2848         struct e1000_ring *rx_ring = adapter->rx_ring;
2849         u64 rdba;
2850         u32 rdlen, rctl, rxcsum, ctrl_ext;
2851
2852         if (adapter->rx_ps_pages) {
2853                 /* this is a 32 byte descriptor */
2854                 rdlen = rx_ring->count *
2855                         sizeof(union e1000_rx_desc_packet_split);
2856                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2857                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2858         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2859                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2860                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2861                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2862         } else {
2863                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2864                 adapter->clean_rx = e1000_clean_rx_irq;
2865                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2866         }
2867
2868         /* disable receives while setting up the descriptors */
2869         rctl = er32(RCTL);
2870         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2871         e1e_flush();
2872         msleep(10);
2873
2874         /* set the Receive Delay Timer Register */
2875         ew32(RDTR, adapter->rx_int_delay);
2876
2877         /* irq moderation */
2878         ew32(RADV, adapter->rx_abs_int_delay);
2879         if (adapter->itr_setting != 0)
2880                 ew32(ITR, 1000000000 / (adapter->itr * 256));
2881
2882         ctrl_ext = er32(CTRL_EXT);
2883         /* Auto-Mask interrupts upon ICR access */
2884         ctrl_ext |= E1000_CTRL_EXT_IAME;
2885         ew32(IAM, 0xffffffff);
2886         ew32(CTRL_EXT, ctrl_ext);
2887         e1e_flush();
2888
2889         /*
2890          * Setup the HW Rx Head and Tail Descriptor Pointers and
2891          * the Base and Length of the Rx Descriptor Ring
2892          */
2893         rdba = rx_ring->dma;
2894         ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2895         ew32(RDBAH, (rdba >> 32));
2896         ew32(RDLEN, rdlen);
2897         ew32(RDH, 0);
2898         ew32(RDT, 0);
2899         rx_ring->head = E1000_RDH;
2900         rx_ring->tail = E1000_RDT;
2901
2902         /* Enable Receive Checksum Offload for TCP and UDP */
2903         rxcsum = er32(RXCSUM);
2904         if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2905                 rxcsum |= E1000_RXCSUM_TUOFL;
2906
2907                 /*
2908                  * IPv4 payload checksum for UDP fragments must be
2909                  * used in conjunction with packet-split.
2910                  */
2911                 if (adapter->rx_ps_pages)
2912                         rxcsum |= E1000_RXCSUM_IPPCSE;
2913         } else {
2914                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2915                 /* no need to clear IPPCSE as it defaults to 0 */
2916         }
2917         ew32(RXCSUM, rxcsum);
2918
2919         /*
2920          * Enable early receives on supported devices, only takes effect when
2921          * packet size is equal or larger than the specified value (in 8 byte
2922          * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2923          */
2924         if (adapter->flags & FLAG_HAS_ERT) {
2925                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2926                         u32 rxdctl = er32(RXDCTL(0));
2927                         ew32(RXDCTL(0), rxdctl | 0x3);
2928                         ew32(ERT, E1000_ERT_2048 | (1 << 13));
2929                         /*
2930                          * With jumbo frames and early-receive enabled,
2931                          * excessive C-state transition latencies result in
2932                          * dropped transactions.
2933                          */
2934                         pm_qos_update_request(
2935                                 &adapter->netdev->pm_qos_req, 55);
2936                 } else {
2937                         pm_qos_update_request(
2938                                 &adapter->netdev->pm_qos_req,
2939                                 PM_QOS_DEFAULT_VALUE);
2940                 }
2941         }
2942
2943         /* Enable Receives */
2944         ew32(RCTL, rctl);
2945 }
2946
2947 /**
2948  *  e1000_update_mc_addr_list - Update Multicast addresses
2949  *  @hw: pointer to the HW structure
2950  *  @mc_addr_list: array of multicast addresses to program
2951  *  @mc_addr_count: number of multicast addresses to program
2952  *
2953  *  Updates the Multicast Table Array.
2954  *  The caller must have a packed mc_addr_list of multicast addresses.
2955  **/
2956 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2957                                       u32 mc_addr_count)
2958 {
2959         hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
2960 }
2961
2962 /**
2963  * e1000_set_multi - Multicast and Promiscuous mode set
2964  * @netdev: network interface device structure
2965  *
2966  * The set_multi entry point is called whenever the multicast address
2967  * list or the network interface flags are updated.  This routine is
2968  * responsible for configuring the hardware for proper multicast,
2969  * promiscuous mode, and all-multi behavior.
2970  **/
2971 static void e1000_set_multi(struct net_device *netdev)
2972 {
2973         struct e1000_adapter *adapter = netdev_priv(netdev);
2974         struct e1000_hw *hw = &adapter->hw;
2975         struct netdev_hw_addr *ha;
2976         u8  *mta_list;
2977         u32 rctl;
2978         int i;
2979
2980         /* Check for Promiscuous and All Multicast modes */
2981
2982         rctl = er32(RCTL);
2983
2984         if (netdev->flags & IFF_PROMISC) {
2985                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2986                 rctl &= ~E1000_RCTL_VFE;
2987         } else {
2988                 if (netdev->flags & IFF_ALLMULTI) {
2989                         rctl |= E1000_RCTL_MPE;
2990                         rctl &= ~E1000_RCTL_UPE;
2991                 } else {
2992                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2993                 }
2994                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2995                         rctl |= E1000_RCTL_VFE;
2996         }
2997
2998         ew32(RCTL, rctl);
2999
3000         if (!netdev_mc_empty(netdev)) {
3001                 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3002                 if (!mta_list)
3003                         return;
3004
3005                 /* prepare a packed array of only addresses. */
3006                 i = 0;
3007                 netdev_for_each_mc_addr(ha, netdev)
3008                         memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3009
3010                 e1000_update_mc_addr_list(hw, mta_list, i);
3011                 kfree(mta_list);
3012         } else {
3013                 /*
3014                  * if we're called from probe, we might not have
3015                  * anything to do here, so clear out the list
3016                  */
3017                 e1000_update_mc_addr_list(hw, NULL, 0);
3018         }
3019 }
3020
3021 /**
3022  * e1000_configure - configure the hardware for Rx and Tx
3023  * @adapter: private board structure
3024  **/
3025 static void e1000_configure(struct e1000_adapter *adapter)
3026 {
3027         e1000_set_multi(adapter->netdev);
3028
3029<