e1000: remove e1000_clean_tx_irq call from e1000_netpoll
[sfrench/cifs-2.6.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.3.20-k2"DRIVERNAPI
40 const char e1000_driver_version[] = DRV_VERSION;
41 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1000),
52         INTEL_E1000_ETHERNET_DEVICE(0x1001),
53         INTEL_E1000_ETHERNET_DEVICE(0x1004),
54         INTEL_E1000_ETHERNET_DEVICE(0x1008),
55         INTEL_E1000_ETHERNET_DEVICE(0x1009),
56         INTEL_E1000_ETHERNET_DEVICE(0x100C),
57         INTEL_E1000_ETHERNET_DEVICE(0x100D),
58         INTEL_E1000_ETHERNET_DEVICE(0x100E),
59         INTEL_E1000_ETHERNET_DEVICE(0x100F),
60         INTEL_E1000_ETHERNET_DEVICE(0x1010),
61         INTEL_E1000_ETHERNET_DEVICE(0x1011),
62         INTEL_E1000_ETHERNET_DEVICE(0x1012),
63         INTEL_E1000_ETHERNET_DEVICE(0x1013),
64         INTEL_E1000_ETHERNET_DEVICE(0x1014),
65         INTEL_E1000_ETHERNET_DEVICE(0x1015),
66         INTEL_E1000_ETHERNET_DEVICE(0x1016),
67         INTEL_E1000_ETHERNET_DEVICE(0x1017),
68         INTEL_E1000_ETHERNET_DEVICE(0x1018),
69         INTEL_E1000_ETHERNET_DEVICE(0x1019),
70         INTEL_E1000_ETHERNET_DEVICE(0x101A),
71         INTEL_E1000_ETHERNET_DEVICE(0x101D),
72         INTEL_E1000_ETHERNET_DEVICE(0x101E),
73         INTEL_E1000_ETHERNET_DEVICE(0x1026),
74         INTEL_E1000_ETHERNET_DEVICE(0x1027),
75         INTEL_E1000_ETHERNET_DEVICE(0x1028),
76         INTEL_E1000_ETHERNET_DEVICE(0x1075),
77         INTEL_E1000_ETHERNET_DEVICE(0x1076),
78         INTEL_E1000_ETHERNET_DEVICE(0x1077),
79         INTEL_E1000_ETHERNET_DEVICE(0x1078),
80         INTEL_E1000_ETHERNET_DEVICE(0x1079),
81         INTEL_E1000_ETHERNET_DEVICE(0x107A),
82         INTEL_E1000_ETHERNET_DEVICE(0x107B),
83         INTEL_E1000_ETHERNET_DEVICE(0x107C),
84         INTEL_E1000_ETHERNET_DEVICE(0x108A),
85         INTEL_E1000_ETHERNET_DEVICE(0x1099),
86         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
87         /* required last entry */
88         {0,}
89 };
90
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
98 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
99 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
101 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
102 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
103                              struct e1000_tx_ring *txdr);
104 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
105                              struct e1000_rx_ring *rxdr);
106 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
107                              struct e1000_tx_ring *tx_ring);
108 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
109                              struct e1000_rx_ring *rx_ring);
110 void e1000_update_stats(struct e1000_adapter *adapter);
111
112 static int e1000_init_module(void);
113 static void e1000_exit_module(void);
114 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
115 static void __devexit e1000_remove(struct pci_dev *pdev);
116 static int e1000_alloc_queues(struct e1000_adapter *adapter);
117 static int e1000_sw_init(struct e1000_adapter *adapter);
118 static int e1000_open(struct net_device *netdev);
119 static int e1000_close(struct net_device *netdev);
120 static void e1000_configure_tx(struct e1000_adapter *adapter);
121 static void e1000_configure_rx(struct e1000_adapter *adapter);
122 static void e1000_setup_rctl(struct e1000_adapter *adapter);
123 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
125 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
126                                 struct e1000_tx_ring *tx_ring);
127 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
128                                 struct e1000_rx_ring *rx_ring);
129 static void e1000_set_rx_mode(struct net_device *netdev);
130 static void e1000_update_phy_info(unsigned long data);
131 static void e1000_watchdog(unsigned long data);
132 static void e1000_82547_tx_fifo_stall(unsigned long data);
133 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static irqreturn_t e1000_intr_msi(int irq, void *data);
139 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
140                                struct e1000_tx_ring *tx_ring);
141 #ifdef CONFIG_E1000_NAPI
142 static int e1000_clean(struct napi_struct *napi, int budget);
143 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
144                                struct e1000_rx_ring *rx_ring,
145                                int *work_done, int work_to_do);
146 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
147                                   struct e1000_rx_ring *rx_ring,
148                                   int *work_done, int work_to_do);
149 #else
150 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
151                                struct e1000_rx_ring *rx_ring);
152 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
153                                   struct e1000_rx_ring *rx_ring);
154 #endif
155 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
156                                    struct e1000_rx_ring *rx_ring,
157                                    int cleaned_count);
158 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
159                                       struct e1000_rx_ring *rx_ring,
160                                       int cleaned_count);
161 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
162 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
163                            int cmd);
164 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
165 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
166 static void e1000_tx_timeout(struct net_device *dev);
167 static void e1000_reset_task(struct work_struct *work);
168 static void e1000_smartspeed(struct e1000_adapter *adapter);
169 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
170                                        struct sk_buff *skb);
171
172 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
173 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
174 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
175 static void e1000_restore_vlan(struct e1000_adapter *adapter);
176
177 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
178 #ifdef CONFIG_PM
179 static int e1000_resume(struct pci_dev *pdev);
180 #endif
181 static void e1000_shutdown(struct pci_dev *pdev);
182
183 #ifdef CONFIG_NET_POLL_CONTROLLER
184 /* for netdump / net console */
185 static void e1000_netpoll (struct net_device *netdev);
186 #endif
187
188 #define COPYBREAK_DEFAULT 256
189 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
190 module_param(copybreak, uint, 0644);
191 MODULE_PARM_DESC(copybreak,
192         "Maximum size of packet that is copied to a new buffer on receive");
193
194 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
195                      pci_channel_state_t state);
196 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
197 static void e1000_io_resume(struct pci_dev *pdev);
198
199 static struct pci_error_handlers e1000_err_handler = {
200         .error_detected = e1000_io_error_detected,
201         .slot_reset = e1000_io_slot_reset,
202         .resume = e1000_io_resume,
203 };
204
205 static struct pci_driver e1000_driver = {
206         .name     = e1000_driver_name,
207         .id_table = e1000_pci_tbl,
208         .probe    = e1000_probe,
209         .remove   = __devexit_p(e1000_remove),
210 #ifdef CONFIG_PM
211         /* Power Managment Hooks */
212         .suspend  = e1000_suspend,
213         .resume   = e1000_resume,
214 #endif
215         .shutdown = e1000_shutdown,
216         .err_handler = &e1000_err_handler
217 };
218
219 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
220 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
221 MODULE_LICENSE("GPL");
222 MODULE_VERSION(DRV_VERSION);
223
224 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
225 module_param(debug, int, 0);
226 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
227
228 /**
229  * e1000_init_module - Driver Registration Routine
230  *
231  * e1000_init_module is the first routine called when the driver is
232  * loaded. All it does is register with the PCI subsystem.
233  **/
234
235 static int __init
236 e1000_init_module(void)
237 {
238         int ret;
239         printk(KERN_INFO "%s - version %s\n",
240                e1000_driver_string, e1000_driver_version);
241
242         printk(KERN_INFO "%s\n", e1000_copyright);
243
244         ret = pci_register_driver(&e1000_driver);
245         if (copybreak != COPYBREAK_DEFAULT) {
246                 if (copybreak == 0)
247                         printk(KERN_INFO "e1000: copybreak disabled\n");
248                 else
249                         printk(KERN_INFO "e1000: copybreak enabled for "
250                                "packets <= %u bytes\n", copybreak);
251         }
252         return ret;
253 }
254
255 module_init(e1000_init_module);
256
257 /**
258  * e1000_exit_module - Driver Exit Cleanup Routine
259  *
260  * e1000_exit_module is called just before the driver is removed
261  * from memory.
262  **/
263
264 static void __exit
265 e1000_exit_module(void)
266 {
267         pci_unregister_driver(&e1000_driver);
268 }
269
270 module_exit(e1000_exit_module);
271
272 static int e1000_request_irq(struct e1000_adapter *adapter)
273 {
274         struct net_device *netdev = adapter->netdev;
275         irq_handler_t handler = e1000_intr;
276         int irq_flags = IRQF_SHARED;
277         int err;
278
279         if (adapter->hw.mac_type >= e1000_82571) {
280                 adapter->have_msi = !pci_enable_msi(adapter->pdev);
281                 if (adapter->have_msi) {
282                         handler = e1000_intr_msi;
283                         irq_flags = 0;
284                 }
285         }
286
287         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
288                           netdev);
289         if (err) {
290                 if (adapter->have_msi)
291                         pci_disable_msi(adapter->pdev);
292                 DPRINTK(PROBE, ERR,
293                         "Unable to allocate interrupt Error: %d\n", err);
294         }
295
296         return err;
297 }
298
299 static void e1000_free_irq(struct e1000_adapter *adapter)
300 {
301         struct net_device *netdev = adapter->netdev;
302
303         free_irq(adapter->pdev->irq, netdev);
304
305         if (adapter->have_msi)
306                 pci_disable_msi(adapter->pdev);
307 }
308
309 /**
310  * e1000_irq_disable - Mask off interrupt generation on the NIC
311  * @adapter: board private structure
312  **/
313
314 static void
315 e1000_irq_disable(struct e1000_adapter *adapter)
316 {
317         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
318         E1000_WRITE_FLUSH(&adapter->hw);
319         synchronize_irq(adapter->pdev->irq);
320 }
321
322 /**
323  * e1000_irq_enable - Enable default interrupt generation settings
324  * @adapter: board private structure
325  **/
326
327 static void
328 e1000_irq_enable(struct e1000_adapter *adapter)
329 {
330         E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
331         E1000_WRITE_FLUSH(&adapter->hw);
332 }
333
334 static void
335 e1000_update_mng_vlan(struct e1000_adapter *adapter)
336 {
337         struct net_device *netdev = adapter->netdev;
338         u16 vid = adapter->hw.mng_cookie.vlan_id;
339         u16 old_vid = adapter->mng_vlan_id;
340         if (adapter->vlgrp) {
341                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
342                         if (adapter->hw.mng_cookie.status &
343                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
344                                 e1000_vlan_rx_add_vid(netdev, vid);
345                                 adapter->mng_vlan_id = vid;
346                         } else
347                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
348
349                         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
350                                         (vid != old_vid) &&
351                             !vlan_group_get_device(adapter->vlgrp, old_vid))
352                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
353                 } else
354                         adapter->mng_vlan_id = vid;
355         }
356 }
357
358 /**
359  * e1000_release_hw_control - release control of the h/w to f/w
360  * @adapter: address of board private structure
361  *
362  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
363  * For ASF and Pass Through versions of f/w this means that the
364  * driver is no longer loaded. For AMT version (only with 82573) i
365  * of the f/w this means that the network i/f is closed.
366  *
367  **/
368
369 static void
370 e1000_release_hw_control(struct e1000_adapter *adapter)
371 {
372         u32 ctrl_ext;
373         u32 swsm;
374
375         /* Let firmware taken over control of h/w */
376         switch (adapter->hw.mac_type) {
377         case e1000_82573:
378                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
379                 E1000_WRITE_REG(&adapter->hw, SWSM,
380                                 swsm & ~E1000_SWSM_DRV_LOAD);
381                 break;
382         case e1000_82571:
383         case e1000_82572:
384         case e1000_80003es2lan:
385         case e1000_ich8lan:
386                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
387                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
388                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
389                 break;
390         default:
391                 break;
392         }
393 }
394
395 /**
396  * e1000_get_hw_control - get control of the h/w from f/w
397  * @adapter: address of board private structure
398  *
399  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
400  * For ASF and Pass Through versions of f/w this means that
401  * the driver is loaded. For AMT version (only with 82573)
402  * of the f/w this means that the network i/f is open.
403  *
404  **/
405
406 static void
407 e1000_get_hw_control(struct e1000_adapter *adapter)
408 {
409         u32 ctrl_ext;
410         u32 swsm;
411
412         /* Let firmware know the driver has taken over */
413         switch (adapter->hw.mac_type) {
414         case e1000_82573:
415                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
416                 E1000_WRITE_REG(&adapter->hw, SWSM,
417                                 swsm | E1000_SWSM_DRV_LOAD);
418                 break;
419         case e1000_82571:
420         case e1000_82572:
421         case e1000_80003es2lan:
422         case e1000_ich8lan:
423                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
424                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
425                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
426                 break;
427         default:
428                 break;
429         }
430 }
431
432 static void
433 e1000_init_manageability(struct e1000_adapter *adapter)
434 {
435         if (adapter->en_mng_pt) {
436                 u32 manc = E1000_READ_REG(&adapter->hw, MANC);
437
438                 /* disable hardware interception of ARP */
439                 manc &= ~(E1000_MANC_ARP_EN);
440
441                 /* enable receiving management packets to the host */
442                 /* this will probably generate destination unreachable messages
443                  * from the host OS, but the packets will be handled on SMBUS */
444                 if (adapter->hw.has_manc2h) {
445                         u32 manc2h = E1000_READ_REG(&adapter->hw, MANC2H);
446
447                         manc |= E1000_MANC_EN_MNG2HOST;
448 #define E1000_MNG2HOST_PORT_623 (1 << 5)
449 #define E1000_MNG2HOST_PORT_664 (1 << 6)
450                         manc2h |= E1000_MNG2HOST_PORT_623;
451                         manc2h |= E1000_MNG2HOST_PORT_664;
452                         E1000_WRITE_REG(&adapter->hw, MANC2H, manc2h);
453                 }
454
455                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
456         }
457 }
458
459 static void
460 e1000_release_manageability(struct e1000_adapter *adapter)
461 {
462         if (adapter->en_mng_pt) {
463                 u32 manc = E1000_READ_REG(&adapter->hw, MANC);
464
465                 /* re-enable hardware interception of ARP */
466                 manc |= E1000_MANC_ARP_EN;
467
468                 if (adapter->hw.has_manc2h)
469                         manc &= ~E1000_MANC_EN_MNG2HOST;
470
471                 /* don't explicitly have to mess with MANC2H since
472                  * MANC has an enable disable that gates MANC2H */
473
474                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
475         }
476 }
477
478 /**
479  * e1000_configure - configure the hardware for RX and TX
480  * @adapter = private board structure
481  **/
482 static void e1000_configure(struct e1000_adapter *adapter)
483 {
484         struct net_device *netdev = adapter->netdev;
485         int i;
486
487         e1000_set_rx_mode(netdev);
488
489         e1000_restore_vlan(adapter);
490         e1000_init_manageability(adapter);
491
492         e1000_configure_tx(adapter);
493         e1000_setup_rctl(adapter);
494         e1000_configure_rx(adapter);
495         /* call E1000_DESC_UNUSED which always leaves
496          * at least 1 descriptor unused to make sure
497          * next_to_use != next_to_clean */
498         for (i = 0; i < adapter->num_rx_queues; i++) {
499                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
500                 adapter->alloc_rx_buf(adapter, ring,
501                                       E1000_DESC_UNUSED(ring));
502         }
503
504         adapter->tx_queue_len = netdev->tx_queue_len;
505 }
506
507 int e1000_up(struct e1000_adapter *adapter)
508 {
509         /* hardware has been reset, we need to reload some things */
510         e1000_configure(adapter);
511
512         clear_bit(__E1000_DOWN, &adapter->flags);
513
514 #ifdef CONFIG_E1000_NAPI
515         napi_enable(&adapter->napi);
516 #endif
517         e1000_irq_enable(adapter);
518
519         /* fire a link change interrupt to start the watchdog */
520         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
521         return 0;
522 }
523
524 /**
525  * e1000_power_up_phy - restore link in case the phy was powered down
526  * @adapter: address of board private structure
527  *
528  * The phy may be powered down to save power and turn off link when the
529  * driver is unloaded and wake on lan is not enabled (among others)
530  * *** this routine MUST be followed by a call to e1000_reset ***
531  *
532  **/
533
534 void e1000_power_up_phy(struct e1000_adapter *adapter)
535 {
536         u16 mii_reg = 0;
537
538         /* Just clear the power down bit to wake the phy back up */
539         if (adapter->hw.media_type == e1000_media_type_copper) {
540                 /* according to the manual, the phy will retain its
541                  * settings across a power-down/up cycle */
542                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
543                 mii_reg &= ~MII_CR_POWER_DOWN;
544                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
545         }
546 }
547
548 static void e1000_power_down_phy(struct e1000_adapter *adapter)
549 {
550         /* Power down the PHY so no link is implied when interface is down *
551          * The PHY cannot be powered down if any of the following is true *
552          * (a) WoL is enabled
553          * (b) AMT is active
554          * (c) SoL/IDER session is active */
555         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
556            adapter->hw.media_type == e1000_media_type_copper) {
557                 u16 mii_reg = 0;
558
559                 switch (adapter->hw.mac_type) {
560                 case e1000_82540:
561                 case e1000_82545:
562                 case e1000_82545_rev_3:
563                 case e1000_82546:
564                 case e1000_82546_rev_3:
565                 case e1000_82541:
566                 case e1000_82541_rev_2:
567                 case e1000_82547:
568                 case e1000_82547_rev_2:
569                         if (E1000_READ_REG(&adapter->hw, MANC) &
570                             E1000_MANC_SMBUS_EN)
571                                 goto out;
572                         break;
573                 case e1000_82571:
574                 case e1000_82572:
575                 case e1000_82573:
576                 case e1000_80003es2lan:
577                 case e1000_ich8lan:
578                         if (e1000_check_mng_mode(&adapter->hw) ||
579                             e1000_check_phy_reset_block(&adapter->hw))
580                                 goto out;
581                         break;
582                 default:
583                         goto out;
584                 }
585                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
586                 mii_reg |= MII_CR_POWER_DOWN;
587                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
588                 mdelay(1);
589         }
590 out:
591         return;
592 }
593
594 void
595 e1000_down(struct e1000_adapter *adapter)
596 {
597         struct net_device *netdev = adapter->netdev;
598
599         /* signal that we're down so the interrupt handler does not
600          * reschedule our watchdog timer */
601         set_bit(__E1000_DOWN, &adapter->flags);
602
603 #ifdef CONFIG_E1000_NAPI
604         napi_disable(&adapter->napi);
605 #endif
606         e1000_irq_disable(adapter);
607
608         del_timer_sync(&adapter->tx_fifo_stall_timer);
609         del_timer_sync(&adapter->watchdog_timer);
610         del_timer_sync(&adapter->phy_info_timer);
611
612         netdev->tx_queue_len = adapter->tx_queue_len;
613         adapter->link_speed = 0;
614         adapter->link_duplex = 0;
615         netif_carrier_off(netdev);
616         netif_stop_queue(netdev);
617
618         e1000_reset(adapter);
619         e1000_clean_all_tx_rings(adapter);
620         e1000_clean_all_rx_rings(adapter);
621 }
622
623 void
624 e1000_reinit_locked(struct e1000_adapter *adapter)
625 {
626         WARN_ON(in_interrupt());
627         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
628                 msleep(1);
629         e1000_down(adapter);
630         e1000_up(adapter);
631         clear_bit(__E1000_RESETTING, &adapter->flags);
632 }
633
634 void
635 e1000_reset(struct e1000_adapter *adapter)
636 {
637         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
638         u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
639         bool legacy_pba_adjust = false;
640
641         /* Repartition Pba for greater than 9k mtu
642          * To take effect CTRL.RST is required.
643          */
644
645         switch (adapter->hw.mac_type) {
646         case e1000_82542_rev2_0:
647         case e1000_82542_rev2_1:
648         case e1000_82543:
649         case e1000_82544:
650         case e1000_82540:
651         case e1000_82541:
652         case e1000_82541_rev_2:
653                 legacy_pba_adjust = true;
654                 pba = E1000_PBA_48K;
655                 break;
656         case e1000_82545:
657         case e1000_82545_rev_3:
658         case e1000_82546:
659         case e1000_82546_rev_3:
660                 pba = E1000_PBA_48K;
661                 break;
662         case e1000_82547:
663         case e1000_82547_rev_2:
664                 legacy_pba_adjust = true;
665                 pba = E1000_PBA_30K;
666                 break;
667         case e1000_82571:
668         case e1000_82572:
669         case e1000_80003es2lan:
670                 pba = E1000_PBA_38K;
671                 break;
672         case e1000_82573:
673                 pba = E1000_PBA_20K;
674                 break;
675         case e1000_ich8lan:
676                 pba = E1000_PBA_8K;
677         case e1000_undefined:
678         case e1000_num_macs:
679                 break;
680         }
681
682         if (legacy_pba_adjust) {
683                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
684                         pba -= 8; /* allocate more FIFO for Tx */
685
686                 if (adapter->hw.mac_type == e1000_82547) {
687                         adapter->tx_fifo_head = 0;
688                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
689                         adapter->tx_fifo_size =
690                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
691                         atomic_set(&adapter->tx_fifo_stall, 0);
692                 }
693         } else if (adapter->hw.max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
694                 /* adjust PBA for jumbo frames */
695                 E1000_WRITE_REG(&adapter->hw, PBA, pba);
696
697                 /* To maintain wire speed transmits, the Tx FIFO should be
698                  * large enough to accomodate two full transmit packets,
699                  * rounded up to the next 1KB and expressed in KB.  Likewise,
700                  * the Rx FIFO should be large enough to accomodate at least
701                  * one full receive packet and is similarly rounded up and
702                  * expressed in KB. */
703                 pba = E1000_READ_REG(&adapter->hw, PBA);
704                 /* upper 16 bits has Tx packet buffer allocation size in KB */
705                 tx_space = pba >> 16;
706                 /* lower 16 bits has Rx packet buffer allocation size in KB */
707                 pba &= 0xffff;
708                 /* don't include ethernet FCS because hardware appends/strips */
709                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
710                                VLAN_TAG_SIZE;
711                 min_tx_space = min_rx_space;
712                 min_tx_space *= 2;
713                 min_tx_space = ALIGN(min_tx_space, 1024);
714                 min_tx_space >>= 10;
715                 min_rx_space = ALIGN(min_rx_space, 1024);
716                 min_rx_space >>= 10;
717
718                 /* If current Tx allocation is less than the min Tx FIFO size,
719                  * and the min Tx FIFO size is less than the current Rx FIFO
720                  * allocation, take space away from current Rx allocation */
721                 if (tx_space < min_tx_space &&
722                     ((min_tx_space - tx_space) < pba)) {
723                         pba = pba - (min_tx_space - tx_space);
724
725                         /* PCI/PCIx hardware has PBA alignment constraints */
726                         switch (adapter->hw.mac_type) {
727                         case e1000_82545 ... e1000_82546_rev_3:
728                                 pba &= ~(E1000_PBA_8K - 1);
729                                 break;
730                         default:
731                                 break;
732                         }
733
734                         /* if short on rx space, rx wins and must trump tx
735                          * adjustment or use Early Receive if available */
736                         if (pba < min_rx_space) {
737                                 switch (adapter->hw.mac_type) {
738                                 case e1000_82573:
739                                         /* ERT enabled in e1000_configure_rx */
740                                         break;
741                                 default:
742                                         pba = min_rx_space;
743                                         break;
744                                 }
745                         }
746                 }
747         }
748
749         E1000_WRITE_REG(&adapter->hw, PBA, pba);
750
751         /* flow control settings */
752         /* Set the FC high water mark to 90% of the FIFO size.
753          * Required to clear last 3 LSB */
754         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
755         /* We can't use 90% on small FIFOs because the remainder
756          * would be less than 1 full frame.  In this case, we size
757          * it to allow at least a full frame above the high water
758          *  mark. */
759         if (pba < E1000_PBA_16K)
760                 fc_high_water_mark = (pba * 1024) - 1600;
761
762         adapter->hw.fc_high_water = fc_high_water_mark;
763         adapter->hw.fc_low_water = fc_high_water_mark - 8;
764         if (adapter->hw.mac_type == e1000_80003es2lan)
765                 adapter->hw.fc_pause_time = 0xFFFF;
766         else
767                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
768         adapter->hw.fc_send_xon = 1;
769         adapter->hw.fc = adapter->hw.original_fc;
770
771         /* Allow time for pending master requests to run */
772         e1000_reset_hw(&adapter->hw);
773         if (adapter->hw.mac_type >= e1000_82544)
774                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
775
776         if (e1000_init_hw(&adapter->hw))
777                 DPRINTK(PROBE, ERR, "Hardware Error\n");
778         e1000_update_mng_vlan(adapter);
779
780         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
781         if (adapter->hw.mac_type >= e1000_82544 &&
782             adapter->hw.mac_type <= e1000_82547_rev_2 &&
783             adapter->hw.autoneg == 1 &&
784             adapter->hw.autoneg_advertised == ADVERTISE_1000_FULL) {
785                 u32 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
786                 /* clear phy power management bit if we are in gig only mode,
787                  * which if enabled will attempt negotiation to 100Mb, which
788                  * can cause a loss of link at power off or driver unload */
789                 ctrl &= ~E1000_CTRL_SWDPIN3;
790                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
791         }
792
793         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
794         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
795
796         e1000_reset_adaptive(&adapter->hw);
797         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
798
799         if (!adapter->smart_power_down &&
800             (adapter->hw.mac_type == e1000_82571 ||
801              adapter->hw.mac_type == e1000_82572)) {
802                 u16 phy_data = 0;
803                 /* speed up time to link by disabling smart power down, ignore
804                  * the return value of this function because there is nothing
805                  * different we would do if it failed */
806                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
807                                    &phy_data);
808                 phy_data &= ~IGP02E1000_PM_SPD;
809                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
810                                     phy_data);
811         }
812
813         e1000_release_manageability(adapter);
814 }
815
816 /**
817  *  Dump the eeprom for users having checksum issues
818  **/
819 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
820 {
821         struct net_device *netdev = adapter->netdev;
822         struct ethtool_eeprom eeprom;
823         const struct ethtool_ops *ops = netdev->ethtool_ops;
824         u8 *data;
825         int i;
826         u16 csum_old, csum_new = 0;
827
828         eeprom.len = ops->get_eeprom_len(netdev);
829         eeprom.offset = 0;
830
831         data = kmalloc(eeprom.len, GFP_KERNEL);
832         if (!data) {
833                 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
834                        " data\n");
835                 return;
836         }
837
838         ops->get_eeprom(netdev, &eeprom, data);
839
840         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
841                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
842         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
843                 csum_new += data[i] + (data[i + 1] << 8);
844         csum_new = EEPROM_SUM - csum_new;
845
846         printk(KERN_ERR "/*********************/\n");
847         printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
848         printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
849
850         printk(KERN_ERR "Offset    Values\n");
851         printk(KERN_ERR "========  ======\n");
852         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
853
854         printk(KERN_ERR "Include this output when contacting your support "
855                "provider.\n");
856         printk(KERN_ERR "This is not a software error! Something bad "
857                "happened to your hardware or\n");
858         printk(KERN_ERR "EEPROM image. Ignoring this "
859                "problem could result in further problems,\n");
860         printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
861         printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
862                "which is invalid\n");
863         printk(KERN_ERR "and requires you to set the proper MAC "
864                "address manually before continuing\n");
865         printk(KERN_ERR "to enable this network device.\n");
866         printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
867                "to your hardware vendor\n");
868         printk(KERN_ERR "or Intel Customer Support: linux-nics@intel.com\n");
869         printk(KERN_ERR "/*********************/\n");
870
871         kfree(data);
872 }
873
874 /**
875  * e1000_probe - Device Initialization Routine
876  * @pdev: PCI device information struct
877  * @ent: entry in e1000_pci_tbl
878  *
879  * Returns 0 on success, negative on failure
880  *
881  * e1000_probe initializes an adapter identified by a pci_dev structure.
882  * The OS initialization, configuring of the adapter private structure,
883  * and a hardware reset occur.
884  **/
885
886 static int __devinit
887 e1000_probe(struct pci_dev *pdev,
888             const struct pci_device_id *ent)
889 {
890         struct net_device *netdev;
891         struct e1000_adapter *adapter;
892
893         static int cards_found = 0;
894         static int global_quad_port_a = 0; /* global ksp3 port a indication */
895         int i, err, pci_using_dac;
896         u16 eeprom_data = 0;
897         u16 eeprom_apme_mask = E1000_EEPROM_APME;
898         DECLARE_MAC_BUF(mac);
899
900         if ((err = pci_enable_device(pdev)))
901                 return err;
902
903         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
904             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
905                 pci_using_dac = 1;
906         } else {
907                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
908                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
909                         E1000_ERR("No usable DMA configuration, aborting\n");
910                         goto err_dma;
911                 }
912                 pci_using_dac = 0;
913         }
914
915         if ((err = pci_request_regions(pdev, e1000_driver_name)))
916                 goto err_pci_reg;
917
918         pci_set_master(pdev);
919
920         err = -ENOMEM;
921         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
922         if (!netdev)
923                 goto err_alloc_etherdev;
924
925         SET_NETDEV_DEV(netdev, &pdev->dev);
926
927         pci_set_drvdata(pdev, netdev);
928         adapter = netdev_priv(netdev);
929         adapter->netdev = netdev;
930         adapter->pdev = pdev;
931         adapter->hw.back = adapter;
932         adapter->msg_enable = (1 << debug) - 1;
933
934         err = -EIO;
935         adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, BAR_0),
936                                       pci_resource_len(pdev, BAR_0));
937         if (!adapter->hw.hw_addr)
938                 goto err_ioremap;
939
940         for (i = BAR_1; i <= BAR_5; i++) {
941                 if (pci_resource_len(pdev, i) == 0)
942                         continue;
943                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
944                         adapter->hw.io_base = pci_resource_start(pdev, i);
945                         break;
946                 }
947         }
948
949         netdev->open = &e1000_open;
950         netdev->stop = &e1000_close;
951         netdev->hard_start_xmit = &e1000_xmit_frame;
952         netdev->get_stats = &e1000_get_stats;
953         netdev->set_rx_mode = &e1000_set_rx_mode;
954         netdev->set_mac_address = &e1000_set_mac;
955         netdev->change_mtu = &e1000_change_mtu;
956         netdev->do_ioctl = &e1000_ioctl;
957         e1000_set_ethtool_ops(netdev);
958         netdev->tx_timeout = &e1000_tx_timeout;
959         netdev->watchdog_timeo = 5 * HZ;
960 #ifdef CONFIG_E1000_NAPI
961         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
962 #endif
963         netdev->vlan_rx_register = e1000_vlan_rx_register;
964         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
965         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
966 #ifdef CONFIG_NET_POLL_CONTROLLER
967         netdev->poll_controller = e1000_netpoll;
968 #endif
969         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
970
971         adapter->bd_number = cards_found;
972
973         /* setup the private structure */
974
975         if ((err = e1000_sw_init(adapter)))
976                 goto err_sw_init;
977
978         err = -EIO;
979         /* Flash BAR mapping must happen after e1000_sw_init
980          * because it depends on mac_type */
981         if ((adapter->hw.mac_type == e1000_ich8lan) &&
982            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
983                 adapter->hw.flash_address =
984                         ioremap(pci_resource_start(pdev, 1),
985                                 pci_resource_len(pdev, 1));
986                 if (!adapter->hw.flash_address)
987                         goto err_flashmap;
988         }
989
990         if (e1000_check_phy_reset_block(&adapter->hw))
991                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
992
993         if (adapter->hw.mac_type >= e1000_82543) {
994                 netdev->features = NETIF_F_SG |
995                                    NETIF_F_HW_CSUM |
996                                    NETIF_F_HW_VLAN_TX |
997                                    NETIF_F_HW_VLAN_RX |
998                                    NETIF_F_HW_VLAN_FILTER;
999                 if (adapter->hw.mac_type == e1000_ich8lan)
1000                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1001         }
1002
1003         if ((adapter->hw.mac_type >= e1000_82544) &&
1004            (adapter->hw.mac_type != e1000_82547))
1005                 netdev->features |= NETIF_F_TSO;
1006
1007         if (adapter->hw.mac_type > e1000_82547_rev_2)
1008                 netdev->features |= NETIF_F_TSO6;
1009         if (pci_using_dac)
1010                 netdev->features |= NETIF_F_HIGHDMA;
1011
1012         netdev->features |= NETIF_F_LLTX;
1013
1014         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
1015
1016         /* initialize eeprom parameters */
1017         if (e1000_init_eeprom_params(&adapter->hw)) {
1018                 E1000_ERR("EEPROM initialization failed\n");
1019                 goto err_eeprom;
1020         }
1021
1022         /* before reading the EEPROM, reset the controller to
1023          * put the device in a known good starting state */
1024
1025         e1000_reset_hw(&adapter->hw);
1026
1027         /* make sure the EEPROM is good */
1028         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
1029                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1030                 e1000_dump_eeprom(adapter);
1031                 /*
1032                  * set MAC address to all zeroes to invalidate and temporary
1033                  * disable this device for the user. This blocks regular
1034                  * traffic while still permitting ethtool ioctls from reaching
1035                  * the hardware as well as allowing the user to run the
1036                  * interface after manually setting a hw addr using
1037                  * `ip set address`
1038                  */
1039                 memset(adapter->hw.mac_addr, 0, netdev->addr_len);
1040         } else {
1041                 /* copy the MAC address out of the EEPROM */
1042                 if (e1000_read_mac_addr(&adapter->hw))
1043                         DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1044         }
1045         /* don't block initalization here due to bad MAC address */
1046         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1047         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
1048
1049         if (!is_valid_ether_addr(netdev->perm_addr))
1050                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1051
1052         e1000_get_bus_info(&adapter->hw);
1053
1054         init_timer(&adapter->tx_fifo_stall_timer);
1055         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1056         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
1057
1058         init_timer(&adapter->watchdog_timer);
1059         adapter->watchdog_timer.function = &e1000_watchdog;
1060         adapter->watchdog_timer.data = (unsigned long) adapter;
1061
1062         init_timer(&adapter->phy_info_timer);
1063         adapter->phy_info_timer.function = &e1000_update_phy_info;
1064         adapter->phy_info_timer.data = (unsigned long) adapter;
1065
1066         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1067
1068         e1000_check_options(adapter);
1069
1070         /* Initial Wake on LAN setting
1071          * If APM wake is enabled in the EEPROM,
1072          * enable the ACPI Magic Packet filter
1073          */
1074
1075         switch (adapter->hw.mac_type) {
1076         case e1000_82542_rev2_0:
1077         case e1000_82542_rev2_1:
1078         case e1000_82543:
1079                 break;
1080         case e1000_82544:
1081                 e1000_read_eeprom(&adapter->hw,
1082                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1083                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1084                 break;
1085         case e1000_ich8lan:
1086                 e1000_read_eeprom(&adapter->hw,
1087                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1088                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1089                 break;
1090         case e1000_82546:
1091         case e1000_82546_rev_3:
1092         case e1000_82571:
1093         case e1000_80003es2lan:
1094                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
1095                         e1000_read_eeprom(&adapter->hw,
1096                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1097                         break;
1098                 }
1099                 /* Fall Through */
1100         default:
1101                 e1000_read_eeprom(&adapter->hw,
1102                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1103                 break;
1104         }
1105         if (eeprom_data & eeprom_apme_mask)
1106                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1107
1108         /* now that we have the eeprom settings, apply the special cases
1109          * where the eeprom may be wrong or the board simply won't support
1110          * wake on lan on a particular port */
1111         switch (pdev->device) {
1112         case E1000_DEV_ID_82546GB_PCIE:
1113                 adapter->eeprom_wol = 0;
1114                 break;
1115         case E1000_DEV_ID_82546EB_FIBER:
1116         case E1000_DEV_ID_82546GB_FIBER:
1117         case E1000_DEV_ID_82571EB_FIBER:
1118                 /* Wake events only supported on port A for dual fiber
1119                  * regardless of eeprom setting */
1120                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
1121                         adapter->eeprom_wol = 0;
1122                 break;
1123         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1124         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1125         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1126         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1127         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1128                 /* if quad port adapter, disable WoL on all but port A */
1129                 if (global_quad_port_a != 0)
1130                         adapter->eeprom_wol = 0;
1131                 else
1132                         adapter->quad_port_a = 1;
1133                 /* Reset for multiple quad port adapters */
1134                 if (++global_quad_port_a == 4)
1135                         global_quad_port_a = 0;
1136                 break;
1137         }
1138
1139         /* initialize the wol settings based on the eeprom settings */
1140         adapter->wol = adapter->eeprom_wol;
1141
1142         /* print bus type/speed/width info */
1143         {
1144         struct e1000_hw *hw = &adapter->hw;
1145         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1146                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1147                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1148                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1149                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1150                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1151                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1152                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1153                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1154                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1155                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1156                  "32-bit"));
1157         }
1158
1159         printk("%s\n", print_mac(mac, netdev->dev_addr));
1160
1161         if (adapter->hw.bus_type == e1000_bus_type_pci_express) {
1162                 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
1163                         "longer be supported by this driver in the future.\n",
1164                         pdev->vendor, pdev->device);
1165                 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
1166                         "driver instead.\n");
1167         }
1168
1169         /* reset the hardware with the new settings */
1170         e1000_reset(adapter);
1171
1172         /* If the controller is 82573 and f/w is AMT, do not set
1173          * DRV_LOAD until the interface is up.  For all other cases,
1174          * let the f/w know that the h/w is now under the control
1175          * of the driver. */
1176         if (adapter->hw.mac_type != e1000_82573 ||
1177             !e1000_check_mng_mode(&adapter->hw))
1178                 e1000_get_hw_control(adapter);
1179
1180         /* tell the stack to leave us alone until e1000_open() is called */
1181         netif_carrier_off(netdev);
1182         netif_stop_queue(netdev);
1183
1184         strcpy(netdev->name, "eth%d");
1185         if ((err = register_netdev(netdev)))
1186                 goto err_register;
1187
1188         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1189
1190         cards_found++;
1191         return 0;
1192
1193 err_register:
1194         e1000_release_hw_control(adapter);
1195 err_eeprom:
1196         if (!e1000_check_phy_reset_block(&adapter->hw))
1197                 e1000_phy_hw_reset(&adapter->hw);
1198
1199         if (adapter->hw.flash_address)
1200                 iounmap(adapter->hw.flash_address);
1201 err_flashmap:
1202 #ifdef CONFIG_E1000_NAPI
1203         for (i = 0; i < adapter->num_rx_queues; i++)
1204                 dev_put(&adapter->polling_netdev[i]);
1205 #endif
1206
1207         kfree(adapter->tx_ring);
1208         kfree(adapter->rx_ring);
1209 #ifdef CONFIG_E1000_NAPI
1210         kfree(adapter->polling_netdev);
1211 #endif
1212 err_sw_init:
1213         iounmap(adapter->hw.hw_addr);
1214 err_ioremap:
1215         free_netdev(netdev);
1216 err_alloc_etherdev:
1217         pci_release_regions(pdev);
1218 err_pci_reg:
1219 err_dma:
1220         pci_disable_device(pdev);
1221         return err;
1222 }
1223
1224 /**
1225  * e1000_remove - Device Removal Routine
1226  * @pdev: PCI device information struct
1227  *
1228  * e1000_remove is called by the PCI subsystem to alert the driver
1229  * that it should release a PCI device.  The could be caused by a
1230  * Hot-Plug event, or because the driver is going to be removed from
1231  * memory.
1232  **/
1233
1234 static void __devexit
1235 e1000_remove(struct pci_dev *pdev)
1236 {
1237         struct net_device *netdev = pci_get_drvdata(pdev);
1238         struct e1000_adapter *adapter = netdev_priv(netdev);
1239 #ifdef CONFIG_E1000_NAPI
1240         int i;
1241 #endif
1242
1243         cancel_work_sync(&adapter->reset_task);
1244
1245         e1000_release_manageability(adapter);
1246
1247         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1248          * would have already happened in close and is redundant. */
1249         e1000_release_hw_control(adapter);
1250
1251 #ifdef CONFIG_E1000_NAPI
1252         for (i = 0; i < adapter->num_rx_queues; i++)
1253                 dev_put(&adapter->polling_netdev[i]);
1254 #endif
1255
1256         unregister_netdev(netdev);
1257
1258         if (!e1000_check_phy_reset_block(&adapter->hw))
1259                 e1000_phy_hw_reset(&adapter->hw);
1260
1261         kfree(adapter->tx_ring);
1262         kfree(adapter->rx_ring);
1263 #ifdef CONFIG_E1000_NAPI
1264         kfree(adapter->polling_netdev);
1265 #endif
1266
1267         iounmap(adapter->hw.hw_addr);
1268         if (adapter->hw.flash_address)
1269                 iounmap(adapter->hw.flash_address);
1270         pci_release_regions(pdev);
1271
1272         free_netdev(netdev);
1273
1274         pci_disable_device(pdev);
1275 }
1276
1277 /**
1278  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1279  * @adapter: board private structure to initialize
1280  *
1281  * e1000_sw_init initializes the Adapter private data structure.
1282  * Fields are initialized based on PCI device information and
1283  * OS network device settings (MTU size).
1284  **/
1285
1286 static int __devinit
1287 e1000_sw_init(struct e1000_adapter *adapter)
1288 {
1289         struct e1000_hw *hw = &adapter->hw;
1290         struct net_device *netdev = adapter->netdev;
1291         struct pci_dev *pdev = adapter->pdev;
1292 #ifdef CONFIG_E1000_NAPI
1293         int i;
1294 #endif
1295
1296         /* PCI config space info */
1297
1298         hw->vendor_id = pdev->vendor;
1299         hw->device_id = pdev->device;
1300         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1301         hw->subsystem_id = pdev->subsystem_device;
1302         hw->revision_id = pdev->revision;
1303
1304         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1305
1306         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1307         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1308         hw->max_frame_size = netdev->mtu +
1309                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1310         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1311
1312         /* identify the MAC */
1313
1314         if (e1000_set_mac_type(hw)) {
1315                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1316                 return -EIO;
1317         }
1318
1319         switch (hw->mac_type) {
1320         default:
1321                 break;
1322         case e1000_82541:
1323         case e1000_82547:
1324         case e1000_82541_rev_2:
1325         case e1000_82547_rev_2:
1326                 hw->phy_init_script = 1;
1327                 break;
1328         }
1329
1330         e1000_set_media_type(hw);
1331
1332         hw->wait_autoneg_complete = false;
1333         hw->tbi_compatibility_en = true;
1334         hw->adaptive_ifs = true;
1335
1336         /* Copper options */
1337
1338         if (hw->media_type == e1000_media_type_copper) {
1339                 hw->mdix = AUTO_ALL_MODES;
1340                 hw->disable_polarity_correction = false;
1341                 hw->master_slave = E1000_MASTER_SLAVE;
1342         }
1343
1344         adapter->num_tx_queues = 1;
1345         adapter->num_rx_queues = 1;
1346
1347         if (e1000_alloc_queues(adapter)) {
1348                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1349                 return -ENOMEM;
1350         }
1351
1352 #ifdef CONFIG_E1000_NAPI
1353         for (i = 0; i < adapter->num_rx_queues; i++) {
1354                 adapter->polling_netdev[i].priv = adapter;
1355                 dev_hold(&adapter->polling_netdev[i]);
1356                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1357         }
1358         spin_lock_init(&adapter->tx_queue_lock);
1359 #endif
1360
1361         /* Explicitly disable IRQ since the NIC can be in any state. */
1362         e1000_irq_disable(adapter);
1363
1364         spin_lock_init(&adapter->stats_lock);
1365
1366         set_bit(__E1000_DOWN, &adapter->flags);
1367
1368         return 0;
1369 }
1370
1371 /**
1372  * e1000_alloc_queues - Allocate memory for all rings
1373  * @adapter: board private structure to initialize
1374  *
1375  * We allocate one ring per queue at run-time since we don't know the
1376  * number of queues at compile-time.  The polling_netdev array is
1377  * intended for Multiqueue, but should work fine with a single queue.
1378  **/
1379
1380 static int __devinit
1381 e1000_alloc_queues(struct e1000_adapter *adapter)
1382 {
1383         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1384                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1385         if (!adapter->tx_ring)
1386                 return -ENOMEM;
1387
1388         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1389                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1390         if (!adapter->rx_ring) {
1391                 kfree(adapter->tx_ring);
1392                 return -ENOMEM;
1393         }
1394
1395 #ifdef CONFIG_E1000_NAPI
1396         adapter->polling_netdev = kcalloc(adapter->num_rx_queues,
1397                                           sizeof(struct net_device),
1398                                           GFP_KERNEL);
1399         if (!adapter->polling_netdev) {
1400                 kfree(adapter->tx_ring);
1401                 kfree(adapter->rx_ring);
1402                 return -ENOMEM;
1403         }
1404 #endif
1405
1406         return E1000_SUCCESS;
1407 }
1408
1409 /**
1410  * e1000_open - Called when a network interface is made active
1411  * @netdev: network interface device structure
1412  *
1413  * Returns 0 on success, negative value on failure
1414  *
1415  * The open entry point is called when a network interface is made
1416  * active by the system (IFF_UP).  At this point all resources needed
1417  * for transmit and receive operations are allocated, the interrupt
1418  * handler is registered with the OS, the watchdog timer is started,
1419  * and the stack is notified that the interface is ready.
1420  **/
1421
1422 static int
1423 e1000_open(struct net_device *netdev)
1424 {
1425         struct e1000_adapter *adapter = netdev_priv(netdev);
1426         int err;
1427
1428         /* disallow open during test */
1429         if (test_bit(__E1000_TESTING, &adapter->flags))
1430                 return -EBUSY;
1431
1432         /* allocate transmit descriptors */
1433         err = e1000_setup_all_tx_resources(adapter);
1434         if (err)
1435                 goto err_setup_tx;
1436
1437         /* allocate receive descriptors */
1438         err = e1000_setup_all_rx_resources(adapter);
1439         if (err)
1440                 goto err_setup_rx;
1441
1442         e1000_power_up_phy(adapter);
1443
1444         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1445         if ((adapter->hw.mng_cookie.status &
1446                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1447                 e1000_update_mng_vlan(adapter);
1448         }
1449
1450         /* If AMT is enabled, let the firmware know that the network
1451          * interface is now open */
1452         if (adapter->hw.mac_type == e1000_82573 &&
1453             e1000_check_mng_mode(&adapter->hw))
1454                 e1000_get_hw_control(adapter);
1455
1456         /* before we allocate an interrupt, we must be ready to handle it.
1457          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1458          * as soon as we call pci_request_irq, so we have to setup our
1459          * clean_rx handler before we do so.  */
1460         e1000_configure(adapter);
1461
1462         err = e1000_request_irq(adapter);
1463         if (err)
1464                 goto err_req_irq;
1465
1466         /* From here on the code is the same as e1000_up() */
1467         clear_bit(__E1000_DOWN, &adapter->flags);
1468
1469 #ifdef CONFIG_E1000_NAPI
1470         napi_enable(&adapter->napi);
1471 #endif
1472
1473         e1000_irq_enable(adapter);
1474
1475         /* fire a link status change interrupt to start the watchdog */
1476         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
1477
1478         return E1000_SUCCESS;
1479
1480 err_req_irq:
1481         e1000_release_hw_control(adapter);
1482         e1000_power_down_phy(adapter);
1483         e1000_free_all_rx_resources(adapter);
1484 err_setup_rx:
1485         e1000_free_all_tx_resources(adapter);
1486 err_setup_tx:
1487         e1000_reset(adapter);
1488
1489         return err;
1490 }
1491
1492 /**
1493  * e1000_close - Disables a network interface
1494  * @netdev: network interface device structure
1495  *
1496  * Returns 0, this is not allowed to fail
1497  *
1498  * The close entry point is called when an interface is de-activated
1499  * by the OS.  The hardware is still under the drivers control, but
1500  * needs to be disabled.  A global MAC reset is issued to stop the
1501  * hardware, and all transmit and receive resources are freed.
1502  **/
1503
1504 static int
1505 e1000_close(struct net_device *netdev)
1506 {
1507         struct e1000_adapter *adapter = netdev_priv(netdev);
1508
1509         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1510         e1000_down(adapter);
1511         e1000_power_down_phy(adapter);
1512         e1000_free_irq(adapter);
1513
1514         e1000_free_all_tx_resources(adapter);
1515         e1000_free_all_rx_resources(adapter);
1516
1517         /* kill manageability vlan ID if supported, but not if a vlan with
1518          * the same ID is registered on the host OS (let 8021q kill it) */
1519         if ((adapter->hw.mng_cookie.status &
1520                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1521              !(adapter->vlgrp &&
1522                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1523                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1524         }
1525
1526         /* If AMT is enabled, let the firmware know that the network
1527          * interface is now closed */
1528         if (adapter->hw.mac_type == e1000_82573 &&
1529             e1000_check_mng_mode(&adapter->hw))
1530                 e1000_release_hw_control(adapter);
1531
1532         return 0;
1533 }
1534
1535 /**
1536  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1537  * @adapter: address of board private structure
1538  * @start: address of beginning of memory
1539  * @len: length of memory
1540  **/
1541 static bool
1542 e1000_check_64k_bound(struct e1000_adapter *adapter,
1543                       void *start, unsigned long len)
1544 {
1545         unsigned long begin = (unsigned long) start;
1546         unsigned long end = begin + len;
1547
1548         /* First rev 82545 and 82546 need to not allow any memory
1549          * write location to cross 64k boundary due to errata 23 */
1550         if (adapter->hw.mac_type == e1000_82545 ||
1551             adapter->hw.mac_type == e1000_82546) {
1552                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1553         }
1554
1555         return true;
1556 }
1557
1558 /**
1559  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1560  * @adapter: board private structure
1561  * @txdr:    tx descriptor ring (for a specific queue) to setup
1562  *
1563  * Return 0 on success, negative on failure
1564  **/
1565
1566 static int
1567 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1568                          struct e1000_tx_ring *txdr)
1569 {
1570         struct pci_dev *pdev = adapter->pdev;
1571         int size;
1572
1573         size = sizeof(struct e1000_buffer) * txdr->count;
1574         txdr->buffer_info = vmalloc(size);
1575         if (!txdr->buffer_info) {
1576                 DPRINTK(PROBE, ERR,
1577                 "Unable to allocate memory for the transmit descriptor ring\n");
1578                 return -ENOMEM;
1579         }
1580         memset(txdr->buffer_info, 0, size);
1581
1582         /* round up to nearest 4K */
1583
1584         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1585         txdr->size = ALIGN(txdr->size, 4096);
1586
1587         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1588         if (!txdr->desc) {
1589 setup_tx_desc_die:
1590                 vfree(txdr->buffer_info);
1591                 DPRINTK(PROBE, ERR,
1592                 "Unable to allocate memory for the transmit descriptor ring\n");
1593                 return -ENOMEM;
1594         }
1595
1596         /* Fix for errata 23, can't cross 64kB boundary */
1597         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1598                 void *olddesc = txdr->desc;
1599                 dma_addr_t olddma = txdr->dma;
1600                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1601                                      "at %p\n", txdr->size, txdr->desc);
1602                 /* Try again, without freeing the previous */
1603                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1604                 /* Failed allocation, critical failure */
1605                 if (!txdr->desc) {
1606                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1607                         goto setup_tx_desc_die;
1608                 }
1609
1610                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1611                         /* give up */
1612                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1613                                             txdr->dma);
1614                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1615                         DPRINTK(PROBE, ERR,
1616                                 "Unable to allocate aligned memory "
1617                                 "for the transmit descriptor ring\n");
1618                         vfree(txdr->buffer_info);
1619                         return -ENOMEM;
1620                 } else {
1621                         /* Free old allocation, new allocation was successful */
1622                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1623                 }
1624         }
1625         memset(txdr->desc, 0, txdr->size);
1626
1627         txdr->next_to_use = 0;
1628         txdr->next_to_clean = 0;
1629         spin_lock_init(&txdr->tx_lock);
1630
1631         return 0;
1632 }
1633
1634 /**
1635  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1636  *                                (Descriptors) for all queues
1637  * @adapter: board private structure
1638  *
1639  * Return 0 on success, negative on failure
1640  **/
1641
1642 int
1643 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1644 {
1645         int i, err = 0;
1646
1647         for (i = 0; i < adapter->num_tx_queues; i++) {
1648                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1649                 if (err) {
1650                         DPRINTK(PROBE, ERR,
1651                                 "Allocation for Tx Queue %u failed\n", i);
1652                         for (i-- ; i >= 0; i--)
1653                                 e1000_free_tx_resources(adapter,
1654                                                         &adapter->tx_ring[i]);
1655                         break;
1656                 }
1657         }
1658
1659         return err;
1660 }
1661
1662 /**
1663  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1664  * @adapter: board private structure
1665  *
1666  * Configure the Tx unit of the MAC after a reset.
1667  **/
1668
1669 static void
1670 e1000_configure_tx(struct e1000_adapter *adapter)
1671 {
1672         u64 tdba;
1673         struct e1000_hw *hw = &adapter->hw;
1674         u32 tdlen, tctl, tipg, tarc;
1675         u32 ipgr1, ipgr2;
1676
1677         /* Setup the HW Tx Head and Tail descriptor pointers */
1678
1679         switch (adapter->num_tx_queues) {
1680         case 1:
1681         default:
1682                 tdba = adapter->tx_ring[0].dma;
1683                 tdlen = adapter->tx_ring[0].count *
1684                         sizeof(struct e1000_tx_desc);
1685                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1686                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1687                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1688                 E1000_WRITE_REG(hw, TDT, 0);
1689                 E1000_WRITE_REG(hw, TDH, 0);
1690                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1691                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1692                 break;
1693         }
1694
1695         /* Set the default values for the Tx Inter Packet Gap timer */
1696         if (adapter->hw.mac_type <= e1000_82547_rev_2 &&
1697             (hw->media_type == e1000_media_type_fiber ||
1698              hw->media_type == e1000_media_type_internal_serdes))
1699                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1700         else
1701                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1702
1703         switch (hw->mac_type) {
1704         case e1000_82542_rev2_0:
1705         case e1000_82542_rev2_1:
1706                 tipg = DEFAULT_82542_TIPG_IPGT;
1707                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1708                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1709                 break;
1710         case e1000_80003es2lan:
1711                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1712                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1713                 break;
1714         default:
1715                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1716                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1717                 break;
1718         }
1719         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1720         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1721         E1000_WRITE_REG(hw, TIPG, tipg);
1722
1723         /* Set the Tx Interrupt Delay register */
1724
1725         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1726         if (hw->mac_type >= e1000_82540)
1727                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1728
1729         /* Program the Transmit Control Register */
1730
1731         tctl = E1000_READ_REG(hw, TCTL);
1732         tctl &= ~E1000_TCTL_CT;
1733         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1734                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1735
1736         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1737                 tarc = E1000_READ_REG(hw, TARC0);
1738                 /* set the speed mode bit, we'll clear it if we're not at
1739                  * gigabit link later */
1740                 tarc |= (1 << 21);
1741                 E1000_WRITE_REG(hw, TARC0, tarc);
1742         } else if (hw->mac_type == e1000_80003es2lan) {
1743                 tarc = E1000_READ_REG(hw, TARC0);
1744                 tarc |= 1;
1745                 E1000_WRITE_REG(hw, TARC0, tarc);
1746                 tarc = E1000_READ_REG(hw, TARC1);
1747                 tarc |= 1;
1748                 E1000_WRITE_REG(hw, TARC1, tarc);
1749         }
1750
1751         e1000_config_collision_dist(hw);
1752
1753         /* Setup Transmit Descriptor Settings for eop descriptor */
1754         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1755
1756         /* only set IDE if we are delaying interrupts using the timers */
1757         if (adapter->tx_int_delay)
1758                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1759
1760         if (hw->mac_type < e1000_82543)
1761                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1762         else
1763                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1764
1765         /* Cache if we're 82544 running in PCI-X because we'll
1766          * need this to apply a workaround later in the send path. */
1767         if (hw->mac_type == e1000_82544 &&
1768             hw->bus_type == e1000_bus_type_pcix)
1769                 adapter->pcix_82544 = 1;
1770
1771         E1000_WRITE_REG(hw, TCTL, tctl);
1772
1773 }
1774
1775 /**
1776  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1777  * @adapter: board private structure
1778  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1779  *
1780  * Returns 0 on success, negative on failure
1781  **/
1782
1783 static int
1784 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1785                          struct e1000_rx_ring *rxdr)
1786 {
1787         struct pci_dev *pdev = adapter->pdev;
1788         int size, desc_len;
1789
1790         size = sizeof(struct e1000_buffer) * rxdr->count;
1791         rxdr->buffer_info = vmalloc(size);
1792         if (!rxdr->buffer_info) {
1793                 DPRINTK(PROBE, ERR,
1794                 "Unable to allocate memory for the receive descriptor ring\n");
1795                 return -ENOMEM;
1796         }
1797         memset(rxdr->buffer_info, 0, size);
1798
1799         rxdr->ps_page = kcalloc(rxdr->count, sizeof(struct e1000_ps_page),
1800                                 GFP_KERNEL);
1801         if (!rxdr->ps_page) {
1802                 vfree(rxdr->buffer_info);
1803                 DPRINTK(PROBE, ERR,
1804                 "Unable to allocate memory for the receive descriptor ring\n");
1805                 return -ENOMEM;
1806         }
1807
1808         rxdr->ps_page_dma = kcalloc(rxdr->count,
1809                                     sizeof(struct e1000_ps_page_dma),
1810                                     GFP_KERNEL);
1811         if (!rxdr->ps_page_dma) {
1812                 vfree(rxdr->buffer_info);
1813                 kfree(rxdr->ps_page);
1814                 DPRINTK(PROBE, ERR,
1815                 "Unable to allocate memory for the receive descriptor ring\n");
1816                 return -ENOMEM;
1817         }
1818
1819         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1820                 desc_len = sizeof(struct e1000_rx_desc);
1821         else
1822                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1823
1824         /* Round up to nearest 4K */
1825
1826         rxdr->size = rxdr->count * desc_len;
1827         rxdr->size = ALIGN(rxdr->size, 4096);
1828
1829         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1830
1831         if (!rxdr->desc) {
1832                 DPRINTK(PROBE, ERR,
1833                 "Unable to allocate memory for the receive descriptor ring\n");
1834 setup_rx_desc_die:
1835                 vfree(rxdr->buffer_info);
1836                 kfree(rxdr->ps_page);
1837                 kfree(rxdr->ps_page_dma);
1838                 return -ENOMEM;
1839         }
1840
1841         /* Fix for errata 23, can't cross 64kB boundary */
1842         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1843                 void *olddesc = rxdr->desc;
1844                 dma_addr_t olddma = rxdr->dma;
1845                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1846                                      "at %p\n", rxdr->size, rxdr->desc);
1847                 /* Try again, without freeing the previous */
1848                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1849                 /* Failed allocation, critical failure */
1850                 if (!rxdr->desc) {
1851                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1852                         DPRINTK(PROBE, ERR,
1853                                 "Unable to allocate memory "
1854                                 "for the receive descriptor ring\n");
1855                         goto setup_rx_desc_die;
1856                 }
1857
1858                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1859                         /* give up */
1860                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1861                                             rxdr->dma);
1862                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1863                         DPRINTK(PROBE, ERR,
1864                                 "Unable to allocate aligned memory "
1865                                 "for the receive descriptor ring\n");
1866                         goto setup_rx_desc_die;
1867                 } else {
1868                         /* Free old allocation, new allocation was successful */
1869                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1870                 }
1871         }
1872         memset(rxdr->desc, 0, rxdr->size);
1873
1874         rxdr->next_to_clean = 0;
1875         rxdr->next_to_use = 0;
1876
1877         return 0;
1878 }
1879
1880 /**
1881  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1882  *                                (Descriptors) for all queues
1883  * @adapter: board private structure
1884  *
1885  * Return 0 on success, negative on failure
1886  **/
1887
1888 int
1889 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1890 {
1891         int i, err = 0;
1892
1893         for (i = 0; i < adapter->num_rx_queues; i++) {
1894                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1895                 if (err) {
1896                         DPRINTK(PROBE, ERR,
1897                                 "Allocation for Rx Queue %u failed\n", i);
1898                         for (i-- ; i >= 0; i--)
1899                                 e1000_free_rx_resources(adapter,
1900                                                         &adapter->rx_ring[i]);
1901                         break;
1902                 }
1903         }
1904
1905         return err;
1906 }
1907
1908 /**
1909  * e1000_setup_rctl - configure the receive control registers
1910  * @adapter: Board private structure
1911  **/
1912 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1913                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1914 static void
1915 e1000_setup_rctl(struct e1000_adapter *adapter)
1916 {
1917         u32 rctl, rfctl;
1918         u32 psrctl = 0;
1919 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1920         u32 pages = 0;
1921 #endif
1922
1923         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1924
1925         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1926
1927         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1928                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1929                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1930
1931         if (adapter->hw.tbi_compatibility_on == 1)
1932                 rctl |= E1000_RCTL_SBP;
1933         else
1934                 rctl &= ~E1000_RCTL_SBP;
1935
1936         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1937                 rctl &= ~E1000_RCTL_LPE;
1938         else
1939                 rctl |= E1000_RCTL_LPE;
1940
1941         /* Setup buffer sizes */
1942         rctl &= ~E1000_RCTL_SZ_4096;
1943         rctl |= E1000_RCTL_BSEX;
1944         switch (adapter->rx_buffer_len) {
1945                 case E1000_RXBUFFER_256:
1946                         rctl |= E1000_RCTL_SZ_256;
1947                         rctl &= ~E1000_RCTL_BSEX;
1948                         break;
1949                 case E1000_RXBUFFER_512:
1950                         rctl |= E1000_RCTL_SZ_512;
1951                         rctl &= ~E1000_RCTL_BSEX;
1952                         break;
1953                 case E1000_RXBUFFER_1024:
1954                         rctl |= E1000_RCTL_SZ_1024;
1955                         rctl &= ~E1000_RCTL_BSEX;
1956                         break;
1957                 case E1000_RXBUFFER_2048:
1958                 default:
1959                         rctl |= E1000_RCTL_SZ_2048;
1960                         rctl &= ~E1000_RCTL_BSEX;
1961                         break;
1962                 case E1000_RXBUFFER_4096:
1963                         rctl |= E1000_RCTL_SZ_4096;
1964                         break;
1965                 case E1000_RXBUFFER_8192:
1966                         rctl |= E1000_RCTL_SZ_8192;
1967                         break;
1968                 case E1000_RXBUFFER_16384:
1969                         rctl |= E1000_RCTL_SZ_16384;
1970                         break;
1971         }
1972
1973 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1974         /* 82571 and greater support packet-split where the protocol
1975          * header is placed in skb->data and the packet data is
1976          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1977          * In the case of a non-split, skb->data is linearly filled,
1978          * followed by the page buffers.  Therefore, skb->data is
1979          * sized to hold the largest protocol header.
1980          */
1981         /* allocations using alloc_page take too long for regular MTU
1982          * so only enable packet split for jumbo frames */
1983         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1984         if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1985             PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1986                 adapter->rx_ps_pages = pages;
1987         else
1988                 adapter->rx_ps_pages = 0;
1989 #endif
1990         if (adapter->rx_ps_pages) {
1991                 /* Configure extra packet-split registers */
1992                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1993                 rfctl |= E1000_RFCTL_EXTEN;
1994                 /* disable packet split support for IPv6 extension headers,
1995                  * because some malformed IPv6 headers can hang the RX */
1996                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1997                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
1998
1999                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
2000
2001                 rctl |= E1000_RCTL_DTYP_PS;
2002
2003                 psrctl |= adapter->rx_ps_bsize0 >>
2004                         E1000_PSRCTL_BSIZE0_SHIFT;
2005
2006                 switch (adapter->rx_ps_pages) {
2007                 case 3:
2008                         psrctl |= PAGE_SIZE <<
2009                                 E1000_PSRCTL_BSIZE3_SHIFT;
2010                 case 2:
2011                         psrctl |= PAGE_SIZE <<
2012                                 E1000_PSRCTL_BSIZE2_SHIFT;
2013                 case 1:
2014                         psrctl |= PAGE_SIZE >>
2015                                 E1000_PSRCTL_BSIZE1_SHIFT;
2016                         break;
2017                 }
2018
2019                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
2020         }
2021
2022         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2023 }
2024
2025 /**
2026  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
2027  * @adapter: board private structure
2028  *
2029  * Configure the Rx unit of the MAC after a reset.
2030  **/
2031
2032 static void
2033 e1000_configure_rx(struct e1000_adapter *adapter)
2034 {
2035         u64 rdba;
2036         struct e1000_hw *hw = &adapter->hw;
2037         u32 rdlen, rctl, rxcsum, ctrl_ext;
2038
2039         if (adapter->rx_ps_pages) {
2040                 /* this is a 32 byte descriptor */
2041                 rdlen = adapter->rx_ring[0].count *
2042                         sizeof(union e1000_rx_desc_packet_split);
2043                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2044                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2045         } else {
2046                 rdlen = adapter->rx_ring[0].count *
2047                         sizeof(struct e1000_rx_desc);
2048                 adapter->clean_rx = e1000_clean_rx_irq;
2049                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2050         }
2051
2052         /* disable receives while setting up the descriptors */
2053         rctl = E1000_READ_REG(hw, RCTL);
2054         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
2055
2056         /* set the Receive Delay Timer Register */
2057         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2058
2059         if (hw->mac_type >= e1000_82540) {
2060                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2061                 if (adapter->itr_setting != 0)
2062                         E1000_WRITE_REG(hw, ITR,
2063                                 1000000000 / (adapter->itr * 256));
2064         }
2065
2066         if (hw->mac_type >= e1000_82571) {
2067                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2068                 /* Reset delay timers after every interrupt */
2069                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2070 #ifdef CONFIG_E1000_NAPI
2071                 /* Auto-Mask interrupts upon ICR access */
2072                 ctrl_ext |= E1000_CTRL_EXT_IAME;
2073                 E1000_WRITE_REG(hw, IAM, 0xffffffff);
2074 #endif
2075                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2076                 E1000_WRITE_FLUSH(hw);
2077         }
2078
2079         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2080          * the Base and Length of the Rx Descriptor Ring */
2081         switch (adapter->num_rx_queues) {
2082         case 1:
2083         default:
2084                 rdba = adapter->rx_ring[0].dma;
2085                 E1000_WRITE_REG(hw, RDLEN, rdlen);
2086                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
2087                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
2088                 E1000_WRITE_REG(hw, RDT, 0);
2089                 E1000_WRITE_REG(hw, RDH, 0);
2090                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2091                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2092                 break;
2093         }
2094
2095         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2096         if (hw->mac_type >= e1000_82543) {
2097                 rxcsum = E1000_READ_REG(hw, RXCSUM);
2098                 if (adapter->rx_csum) {
2099                         rxcsum |= E1000_RXCSUM_TUOFL;
2100
2101                         /* Enable 82571 IPv4 payload checksum for UDP fragments
2102                          * Must be used in conjunction with packet-split. */
2103                         if ((hw->mac_type >= e1000_82571) &&
2104                             (adapter->rx_ps_pages)) {
2105                                 rxcsum |= E1000_RXCSUM_IPPCSE;
2106                         }
2107                 } else {
2108                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2109                         /* don't need to clear IPPCSE as it defaults to 0 */
2110                 }
2111                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2112         }
2113
2114         /* enable early receives on 82573, only takes effect if using > 2048
2115          * byte total frame size.  for example only for jumbo frames */
2116 #define E1000_ERT_2048 0x100
2117         if (hw->mac_type == e1000_82573)
2118                 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
2119
2120         /* Enable Receives */
2121         E1000_WRITE_REG(hw, RCTL, rctl);
2122 }
2123
2124 /**
2125  * e1000_free_tx_resources - Free Tx Resources per Queue
2126  * @adapter: board private structure
2127  * @tx_ring: Tx descriptor ring for a specific queue
2128  *
2129  * Free all transmit software resources
2130  **/
2131
2132 static void
2133 e1000_free_tx_resources(struct e1000_adapter *adapter,
2134                         struct e1000_tx_ring *tx_ring)
2135 {
2136         struct pci_dev *pdev = adapter->pdev;
2137
2138         e1000_clean_tx_ring(adapter, tx_ring);
2139
2140         vfree(tx_ring->buffer_info);
2141         tx_ring->buffer_info = NULL;
2142
2143         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2144
2145         tx_ring->desc = NULL;
2146 }
2147
2148 /**
2149  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2150  * @adapter: board private structure
2151  *
2152  * Free all transmit software resources
2153  **/
2154
2155 void
2156 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2157 {
2158         int i;
2159
2160         for (i = 0; i < adapter->num_tx_queues; i++)
2161                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2162 }
2163
2164 static void
2165 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2166                         struct e1000_buffer *buffer_info)
2167 {
2168         if (buffer_info->dma) {
2169                 pci_unmap_page(adapter->pdev,
2170                                 buffer_info->dma,
2171                                 buffer_info->length,
2172                                 PCI_DMA_TODEVICE);
2173                 buffer_info->dma = 0;
2174         }
2175         if (buffer_info->skb) {
2176                 dev_kfree_skb_any(buffer_info->skb);
2177                 buffer_info->skb = NULL;
2178         }
2179         /* buffer_info must be completely set up in the transmit path */
2180 }
2181
2182 /**
2183  * e1000_clean_tx_ring - Free Tx Buffers
2184  * @adapter: board private structure
2185  * @tx_ring: ring to be cleaned
2186  **/
2187
2188 static void
2189 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2190                     struct e1000_tx_ring *tx_ring)
2191 {
2192         struct e1000_buffer *buffer_info;
2193         unsigned long size;
2194         unsigned int i;
2195
2196         /* Free all the Tx ring sk_buffs */
2197
2198         for (i = 0; i < tx_ring->count; i++) {
2199                 buffer_info = &tx_ring->buffer_info[i];
2200                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2201         }
2202
2203         size = sizeof(struct e1000_buffer) * tx_ring->count;
2204         memset(tx_ring->buffer_info, 0, size);
2205
2206         /* Zero out the descriptor ring */
2207
2208         memset(tx_ring->desc, 0, tx_ring->size);
2209
2210         tx_ring->next_to_use = 0;
2211         tx_ring->next_to_clean = 0;
2212         tx_ring->last_tx_tso = 0;
2213
2214         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2215         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2216 }
2217
2218 /**
2219  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2220  * @adapter: board private structure
2221  **/
2222
2223 static void
2224 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2225 {
2226         int i;
2227
2228         for (i = 0; i < adapter->num_tx_queues; i++)
2229                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2230 }
2231
2232 /**
2233  * e1000_free_rx_resources - Free Rx Resources
2234  * @adapter: board private structure
2235  * @rx_ring: ring to clean the resources from
2236  *
2237  * Free all receive software resources
2238  **/
2239
2240 static void
2241 e1000_free_rx_resources(struct e1000_adapter *adapter,
2242                         struct e1000_rx_ring *rx_ring)
2243 {
2244         struct pci_dev *pdev = adapter->pdev;
2245
2246         e1000_clean_rx_ring(adapter, rx_ring);
2247
2248         vfree(rx_ring->buffer_info);
2249         rx_ring->buffer_info = NULL;
2250         kfree(rx_ring->ps_page);
2251         rx_ring->ps_page = NULL;
2252         kfree(rx_ring->ps_page_dma);
2253         rx_ring->ps_page_dma = NULL;
2254
2255         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2256
2257         rx_ring->desc = NULL;
2258 }
2259
2260 /**
2261  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2262  * @adapter: board private structure
2263  *
2264  * Free all receive software resources
2265  **/
2266
2267 void
2268 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2269 {
2270         int i;
2271
2272         for (i = 0; i < adapter->num_rx_queues; i++)
2273                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2274 }
2275
2276 /**
2277  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2278  * @adapter: board private structure
2279  * @rx_ring: ring to free buffers from
2280  **/
2281
2282 static void
2283 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2284                     struct e1000_rx_ring *rx_ring)
2285 {
2286         struct e1000_buffer *buffer_info;
2287         struct e1000_ps_page *ps_page;
2288         struct e1000_ps_page_dma *ps_page_dma;
2289         struct pci_dev *pdev = adapter->pdev;
2290         unsigned long size;
2291         unsigned int i, j;
2292
2293         /* Free all the Rx ring sk_buffs */
2294         for (i = 0; i < rx_ring->count; i++) {
2295                 buffer_info = &rx_ring->buffer_info[i];
2296                 if (buffer_info->skb) {
2297                         pci_unmap_single(pdev,
2298                                          buffer_info->dma,
2299                                          buffer_info->length,
2300                                          PCI_DMA_FROMDEVICE);
2301
2302                         dev_kfree_skb(buffer_info->skb);
2303                         buffer_info->skb = NULL;
2304                 }
2305                 ps_page = &rx_ring->ps_page[i];
2306                 ps_page_dma = &rx_ring->ps_page_dma[i];
2307                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2308                         if (!ps_page->ps_page[j]) break;
2309                         pci_unmap_page(pdev,
2310                                        ps_page_dma->ps_page_dma[j],
2311                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2312                         ps_page_dma->ps_page_dma[j] = 0;
2313                         put_page(ps_page->ps_page[j]);
2314                         ps_page->ps_page[j] = NULL;
2315                 }
2316         }
2317
2318         size = sizeof(struct e1000_buffer) * rx_ring->count;
2319         memset(rx_ring->buffer_info, 0, size);
2320         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2321         memset(rx_ring->ps_page, 0, size);
2322         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2323         memset(rx_ring->ps_page_dma, 0, size);
2324
2325         /* Zero out the descriptor ring */
2326
2327         memset(rx_ring->desc, 0, rx_ring->size);
2328
2329         rx_ring->next_to_clean = 0;
2330         rx_ring->next_to_use = 0;
2331
2332         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2333         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2334 }
2335
2336 /**
2337  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2338  * @adapter: board private structure
2339  **/
2340
2341 static void
2342 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2343 {
2344         int i;
2345
2346         for (i = 0; i < adapter->num_rx_queues; i++)
2347                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2348 }
2349
2350 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2351  * and memory write and invalidate disabled for certain operations
2352  */
2353 static void
2354 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2355 {
2356         struct net_device *netdev = adapter->netdev;
2357         u32 rctl;
2358
2359         e1000_pci_clear_mwi(&adapter->hw);
2360
2361         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2362         rctl |= E1000_RCTL_RST;
2363         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2364         E1000_WRITE_FLUSH(&adapter->hw);
2365         mdelay(5);
2366
2367         if (netif_running(netdev))
2368                 e1000_clean_all_rx_rings(adapter);
2369 }
2370
2371 static void
2372 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2373 {
2374         struct net_device *netdev = adapter->netdev;
2375         u32 rctl;
2376
2377         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2378         rctl &= ~E1000_RCTL_RST;
2379         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2380         E1000_WRITE_FLUSH(&adapter->hw);
2381         mdelay(5);
2382
2383         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2384                 e1000_pci_set_mwi(&adapter->hw);
2385
2386         if (netif_running(netdev)) {
2387                 /* No need to loop, because 82542 supports only 1 queue */
2388                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2389                 e1000_configure_rx(adapter);
2390                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2391         }
2392 }
2393
2394 /**
2395  * e1000_set_mac - Change the Ethernet Address of the NIC
2396  * @netdev: network interface device structure
2397  * @p: pointer to an address structure
2398  *
2399  * Returns 0 on success, negative on failure
2400  **/
2401
2402 static int
2403 e1000_set_mac(struct net_device *netdev, void *p)
2404 {
2405         struct e1000_adapter *adapter = netdev_priv(netdev);
2406         struct sockaddr *addr = p;
2407
2408         if (!is_valid_ether_addr(addr->sa_data))
2409                 return -EADDRNOTAVAIL;
2410
2411         /* 82542 2.0 needs to be in reset to write receive address registers */
2412
2413         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2414                 e1000_enter_82542_rst(adapter);
2415
2416         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2417         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2418
2419         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2420
2421         /* With 82571 controllers, LAA may be overwritten (with the default)
2422          * due to controller reset from the other port. */
2423         if (adapter->hw.mac_type == e1000_82571) {
2424                 /* activate the work around */
2425                 adapter->hw.laa_is_present = 1;
2426
2427                 /* Hold a copy of the LAA in RAR[14] This is done so that
2428                  * between the time RAR[0] gets clobbered  and the time it
2429                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2430                  * of the RARs and no incoming packets directed to this port
2431                  * are dropped. Eventaully the LAA will be in RAR[0] and
2432                  * RAR[14] */
2433                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2434                                         E1000_RAR_ENTRIES - 1);
2435         }
2436
2437         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2438                 e1000_leave_82542_rst(adapter);
2439
2440         return 0;
2441 }
2442
2443 /**
2444  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2445  * @netdev: network interface device structure
2446  *
2447  * The set_rx_mode entry point is called whenever the unicast or multicast
2448  * address lists or the network interface flags are updated. This routine is
2449  * responsible for configuring the hardware for proper unicast, multicast,
2450  * promiscuous mode, and all-multi behavior.
2451  **/
2452
2453 static void
2454 e1000_set_rx_mode(struct net_device *netdev)
2455 {
2456         struct e1000_adapter *adapter = netdev_priv(netdev);
2457         struct e1000_hw *hw = &adapter->hw;
2458         struct dev_addr_list *uc_ptr;
2459         struct dev_addr_list *mc_ptr;
2460         u32 rctl;
2461         u32 hash_value;
2462         int i, rar_entries = E1000_RAR_ENTRIES;
2463         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2464                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2465                                 E1000_NUM_MTA_REGISTERS;
2466
2467         if (adapter->hw.mac_type == e1000_ich8lan)
2468                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2469
2470         /* reserve RAR[14] for LAA over-write work-around */
2471         if (adapter->hw.mac_type == e1000_82571)
2472                 rar_entries--;
2473
2474         /* Check for Promiscuous and All Multicast modes */
2475
2476         rctl = E1000_READ_REG(hw, RCTL);
2477
2478         if (netdev->flags & IFF_PROMISC) {
2479                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2480         } else if (netdev->flags & IFF_ALLMULTI) {
2481                 rctl |= E1000_RCTL_MPE;
2482         } else {
2483                 rctl &= ~E1000_RCTL_MPE;
2484         }
2485
2486         uc_ptr = NULL;
2487         if (netdev->uc_count > rar_entries - 1) {
2488                 rctl |= E1000_RCTL_UPE;
2489         } else if (!(netdev->flags & IFF_PROMISC)) {
2490                 rctl &= ~E1000_RCTL_UPE;
2491                 uc_ptr = netdev->uc_list;
2492         }
2493
2494         E1000_WRITE_REG(hw, RCTL, rctl);
2495
2496         /* 82542 2.0 needs to be in reset to write receive address registers */
2497
2498         if (hw->mac_type == e1000_82542_rev2_0)
2499                 e1000_enter_82542_rst(adapter);
2500
2501         /* load the first 14 addresses into the exact filters 1-14. Unicast
2502          * addresses take precedence to avoid disabling unicast filtering
2503          * when possible.
2504          *
2505          * RAR 0 is used for the station MAC adddress
2506          * if there are not 14 addresses, go ahead and clear the filters
2507          * -- with 82571 controllers only 0-13 entries are filled here
2508          */
2509         mc_ptr = netdev->mc_list;
2510
2511         for (i = 1; i < rar_entries; i++) {
2512                 if (uc_ptr) {
2513                         e1000_rar_set(hw, uc_ptr->da_addr, i);
2514                         uc_ptr = uc_ptr->next;
2515                 } else if (mc_ptr) {
2516                         e1000_rar_set(hw, mc_ptr->da_addr, i);
2517                         mc_ptr = mc_ptr->next;
2518                 } else {
2519                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2520                         E1000_WRITE_FLUSH(hw);
2521                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2522                         E1000_WRITE_FLUSH(hw);
2523                 }
2524         }
2525         WARN_ON(uc_ptr != NULL);
2526
2527         /* clear the old settings from the multicast hash table */
2528
2529         for (i = 0; i < mta_reg_count; i++) {
2530                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2531                 E1000_WRITE_FLUSH(hw);
2532         }
2533
2534         /* load any remaining addresses into the hash table */
2535
2536         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2537                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2538                 e1000_mta_set(hw, hash_value);
2539         }
2540
2541         if (hw->mac_type == e1000_82542_rev2_0)
2542                 e1000_leave_82542_rst(adapter);
2543 }
2544
2545 /* Need to wait a few seconds after link up to get diagnostic information from
2546  * the phy */
2547
2548 static void
2549 e1000_update_phy_info(unsigned long data)
2550 {
2551         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2552         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2553 }
2554
2555 /**
2556  * e1000_82547_tx_fifo_stall - Timer Call-back
2557  * @data: pointer to adapter cast into an unsigned long
2558  **/
2559
2560 static void
2561 e1000_82547_tx_fifo_stall(unsigned long data)
2562 {
2563         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2564         struct net_device *netdev = adapter->netdev;
2565         u32 tctl;
2566
2567         if (atomic_read(&adapter->tx_fifo_stall)) {
2568                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2569                     E1000_READ_REG(&adapter->hw, TDH)) &&
2570                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2571                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2572                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2573                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2574                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2575                         E1000_WRITE_REG(&adapter->hw, TCTL,
2576                                         tctl & ~E1000_TCTL_EN);
2577                         E1000_WRITE_REG(&adapter->hw, TDFT,
2578                                         adapter->tx_head_addr);
2579                         E1000_WRITE_REG(&adapter->hw, TDFH,
2580                                         adapter->tx_head_addr);
2581                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2582                                         adapter->tx_head_addr);
2583                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2584                                         adapter->tx_head_addr);
2585                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2586                         E1000_WRITE_FLUSH(&adapter->hw);
2587
2588                         adapter->tx_fifo_head = 0;
2589                         atomic_set(&adapter->tx_fifo_stall, 0);
2590                         netif_wake_queue(netdev);
2591                 } else {
2592                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2593                 }
2594         }
2595 }
2596
2597 /**
2598  * e1000_watchdog - Timer Call-back
2599  * @data: pointer to adapter cast into an unsigned long
2600  **/
2601 static void
2602 e1000_watchdog(unsigned long data)
2603 {
2604         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2605         struct net_device *netdev = adapter->netdev;
2606         struct e1000_tx_ring *txdr = adapter->tx_ring;
2607         u32 link, tctl;
2608         s32 ret_val;
2609
2610         ret_val = e1000_check_for_link(&adapter->hw);
2611         if ((ret_val == E1000_ERR_PHY) &&
2612             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2613             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2614                 /* See e1000_kumeran_lock_loss_workaround() */
2615                 DPRINTK(LINK, INFO,
2616                         "Gigabit has been disabled, downgrading speed\n");
2617         }
2618
2619         if (adapter->hw.mac_type == e1000_82573) {
2620                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2621                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2622                         e1000_update_mng_vlan(adapter);
2623         }
2624
2625         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2626            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2627                 link = !adapter->hw.serdes_link_down;
2628         else
2629                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2630
2631         if (link) {
2632                 if (!netif_carrier_ok(netdev)) {
2633                         u32 ctrl;
2634                         bool txb2b = true;
2635                         e1000_get_speed_and_duplex(&adapter->hw,
2636                                                    &adapter->link_speed,
2637                                                    &adapter->link_duplex);
2638
2639                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2640                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2641                                 "Flow Control: %s\n",
2642                                 adapter->link_speed,
2643                                 adapter->link_duplex == FULL_DUPLEX ?
2644                                 "Full Duplex" : "Half Duplex",
2645                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2646                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2647                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2648                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2649
2650                         /* tweak tx_queue_len according to speed/duplex
2651                          * and adjust the timeout factor */
2652                         netdev->tx_queue_len = adapter->tx_queue_len;
2653                         adapter->tx_timeout_factor = 1;
2654                         switch (adapter->link_speed) {
2655                         case SPEED_10:
2656                                 txb2b = false;
2657                                 netdev->tx_queue_len = 10;
2658                                 adapter->tx_timeout_factor = 8;
2659                                 break;
2660                         case SPEED_100:
2661                                 txb2b = false;
2662                                 netdev->tx_queue_len = 100;
2663                                 /* maybe add some timeout factor ? */
2664                                 break;
2665                         }
2666
2667                         if ((adapter->hw.mac_type == e1000_82571 ||
2668                              adapter->hw.mac_type == e1000_82572) &&
2669                             !txb2b) {
2670                                 u32 tarc0;
2671                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2672                                 tarc0 &= ~(1 << 21);
2673                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2674                         }
2675
2676                         /* disable TSO for pcie and 10/100 speeds, to avoid
2677                          * some hardware issues */
2678                         if (!adapter->tso_force &&
2679                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2680                                 switch (adapter->link_speed) {
2681                                 case SPEED_10:
2682                                 case SPEED_100:
2683                                         DPRINTK(PROBE,INFO,
2684                                         "10/100 speed: disabling TSO\n");
2685                                         netdev->features &= ~NETIF_F_TSO;
2686                                         netdev->features &= ~NETIF_F_TSO6;
2687                                         break;
2688                                 case SPEED_1000:
2689                                         netdev->features |= NETIF_F_TSO;
2690                                         netdev->features |= NETIF_F_TSO6;
2691                                         break;
2692                                 default:
2693                                         /* oops */
2694                                         break;
2695                                 }
2696                         }
2697
2698                         /* enable transmits in the hardware, need to do this
2699                          * after setting TARC0 */
2700                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2701                         tctl |= E1000_TCTL_EN;
2702                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2703
2704                         netif_carrier_on(netdev);
2705                         netif_wake_queue(netdev);
2706                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2707                         adapter->smartspeed = 0;
2708                 } else {
2709                         /* make sure the receive unit is started */
2710                         if (adapter->hw.rx_needs_kicking) {
2711                                 struct e1000_hw *hw = &adapter->hw;
2712                                 u32 rctl = E1000_READ_REG(hw, RCTL);
2713                                 E1000_WRITE_REG(hw, RCTL, rctl | E1000_RCTL_EN);
2714                         }
2715                 }
2716         } else {
2717                 if (netif_carrier_ok(netdev)) {
2718                         adapter->link_speed = 0;
2719                         adapter->link_duplex = 0;
2720                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2721                         netif_carrier_off(netdev);
2722                         netif_stop_queue(netdev);
2723                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2724
2725                         /* 80003ES2LAN workaround--
2726                          * For packet buffer work-around on link down event;
2727                          * disable receives in the ISR and
2728                          * reset device here in the watchdog
2729                          */
2730                         if (adapter->hw.mac_type == e1000_80003es2lan)
2731                                 /* reset device */
2732                                 schedule_work(&adapter->reset_task);
2733                 }
2734
2735                 e1000_smartspeed(adapter);
2736         }
2737
2738         e1000_update_stats(adapter);
2739
2740         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2741         adapter->tpt_old = adapter->stats.tpt;
2742         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2743         adapter->colc_old = adapter->stats.colc;
2744
2745         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2746         adapter->gorcl_old = adapter->stats.gorcl;
2747         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2748         adapter->gotcl_old = adapter->stats.gotcl;
2749
2750         e1000_update_adaptive(&adapter->hw);
2751
2752         if (!netif_carrier_ok(netdev)) {
2753                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2754                         /* We've lost link, so the controller stops DMA,
2755                          * but we've got queued Tx work that's never going
2756                          * to get done, so reset controller to flush Tx.
2757                          * (Do the reset outside of interrupt context). */
2758                         adapter->tx_timeout_count++;
2759                         schedule_work(&adapter->reset_task);
2760                 }
2761         }
2762
2763         /* Cause software interrupt to ensure rx ring is cleaned */
2764         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2765
2766         /* Force detection of hung controller every watchdog period */
2767         adapter->detect_tx_hung = true;
2768
2769         /* With 82571 controllers, LAA may be overwritten due to controller
2770          * reset from the other port. Set the appropriate LAA in RAR[0] */
2771         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2772                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2773
2774         /* Reset the timer */
2775         mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2776 }
2777
2778 enum latency_range {
2779         lowest_latency = 0,
2780         low_latency = 1,
2781         bulk_latency = 2,
2782         latency_invalid = 255
2783 };
2784
2785 /**
2786  * e1000_update_itr - update the dynamic ITR value based on statistics
2787  *      Stores a new ITR value based on packets and byte
2788  *      counts during the last interrupt.  The advantage of per interrupt
2789  *      computation is faster updates and more accurate ITR for the current
2790  *      traffic pattern.  Constants in this function were computed
2791  *      based on theoretical maximum wire speed and thresholds were set based
2792  *      on testing data as well as attempting to minimize response time
2793  *      while increasing bulk throughput.
2794  *      this functionality is controlled by the InterruptThrottleRate module
2795  *      parameter (see e1000_param.c)
2796  * @adapter: pointer to adapter
2797  * @itr_setting: current adapter->itr
2798  * @packets: the number of packets during this measurement interval
2799  * @bytes: the number of bytes during this measurement interval
2800  **/
2801 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2802                                    u16 itr_setting,
2803                                    int packets,
2804                                    int bytes)
2805 {
2806         unsigned int retval = itr_setting;
2807         struct e1000_hw *hw = &adapter->hw;
2808
2809         if (unlikely(hw->mac_type < e1000_82540))
2810                 goto update_itr_done;
2811
2812         if (packets == 0)
2813                 goto update_itr_done;
2814
2815         switch (itr_setting) {
2816         case lowest_latency:
2817                 /* jumbo frames get bulk treatment*/
2818                 if (bytes/packets > 8000)
2819                         retval = bulk_latency;
2820                 else if ((packets < 5) && (bytes > 512))
2821                         retval = low_latency;
2822                 break;
2823         case low_latency:  /* 50 usec aka 20000 ints/s */
2824                 if (bytes > 10000) {
2825                         /* jumbo frames need bulk latency setting */
2826                         if (bytes/packets > 8000)
2827                                 retval = bulk_latency;
2828                         else if ((packets < 10) || ((bytes/packets) > 1200))
2829                                 retval = bulk_latency;
2830                         else if ((packets > 35))
2831                                 retval = lowest_latency;
2832                 } else if (bytes/packets > 2000)
2833                         retval = bulk_latency;
2834                 else if (packets <= 2 && bytes < 512)
2835                         retval = lowest_latency;
2836                 break;
2837         case bulk_latency: /* 250 usec aka 4000 ints/s */
2838                 if (bytes > 25000) {
2839                         if (packets > 35)
2840                                 retval = low_latency;
2841                 } else if (bytes < 6000) {
2842                         retval = low_latency;
2843                 }
2844                 break;
2845         }
2846
2847 update_itr_done:
2848         return retval;
2849 }
2850
2851 static void e1000_set_itr(struct e1000_adapter *adapter)
2852 {
2853         struct e1000_hw *hw = &adapter->hw;
2854         u16 current_itr;
2855         u32 new_itr = adapter->itr;
2856
2857         if (unlikely(hw->mac_type < e1000_82540))
2858                 return;
2859
2860         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2861         if (unlikely(adapter->link_speed != SPEED_1000)) {
2862                 current_itr = 0;
2863                 new_itr = 4000;
2864                 goto set_itr_now;
2865         }
2866
2867         adapter->tx_itr = e1000_update_itr(adapter,
2868                                     adapter->tx_itr,
2869                                     adapter->total_tx_packets,
2870                                     adapter->total_tx_bytes);
2871         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2872         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2873                 adapter->tx_itr = low_latency;
2874
2875         adapter->rx_itr = e1000_update_itr(adapter,
2876                                     adapter->rx_itr,
2877                                     adapter->total_rx_packets,
2878                                     adapter->total_rx_bytes);
2879         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2880         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2881                 adapter->rx_itr = low_latency;
2882
2883         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2884
2885         switch (current_itr) {
2886         /* counts and packets in update_itr are dependent on these numbers */
2887         case lowest_latency:
2888                 new_itr = 70000;
2889                 break;
2890         case low_latency:
2891                 new_itr = 20000; /* aka hwitr = ~200 */
2892                 break;
2893         case bulk_latency:
2894                 new_itr = 4000;
2895                 break;
2896         default:
2897                 break;
2898         }
2899
2900 set_itr_now:
2901         if (new_itr != adapter->itr) {
2902                 /* this attempts to bias the interrupt rate towards Bulk
2903                  * by adding intermediate steps when interrupt rate is
2904                  * increasing */
2905                 new_itr = new_itr > adapter->itr ?
2906                              min(adapter->itr + (new_itr >> 2), new_itr) :
2907                              new_itr;
2908                 adapter->itr = new_itr;
2909                 E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
2910         }
2911
2912         return;
2913 }
2914
2915 #define E1000_TX_FLAGS_CSUM             0x00000001
2916 #define E1000_TX_FLAGS_VLAN             0x00000002
2917 #define E1000_TX_FLAGS_TSO              0x00000004
2918 #define E1000_TX_FLAGS_IPV4             0x00000008
2919 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2920 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2921
2922 static int
2923 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2924           struct sk_buff *skb)
2925 {
2926         struct e1000_context_desc *context_desc;
2927         struct e1000_buffer *buffer_info;
2928         unsigned int i;
2929         u32 cmd_length = 0;
2930         u16 ipcse = 0, tucse, mss;
2931         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2932         int err;
2933
2934         if (skb_is_gso(skb)) {
2935                 if (skb_header_cloned(skb)) {
2936                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2937                         if (err)
2938                                 return err;
2939                 }
2940
2941                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2942                 mss = skb_shinfo(skb)->gso_size;
2943                 if (skb->protocol == htons(ETH_P_IP)) {
2944                         struct iphdr *iph = ip_hdr(skb);
2945                         iph->tot_len = 0;
2946                         iph->check = 0;
2947                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2948                                                                  iph->daddr, 0,
2949                                                                  IPPROTO_TCP,
2950                                                                  0);
2951                         cmd_length = E1000_TXD_CMD_IP;
2952                         ipcse = skb_transport_offset(skb) - 1;
2953                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2954                         ipv6_hdr(skb)->payload_len = 0;
2955                         tcp_hdr(skb)->check =
2956                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2957                                                  &ipv6_hdr(skb)->daddr,
2958                                                  0, IPPROTO_TCP, 0);
2959                         ipcse = 0;
2960                 }
2961                 ipcss = skb_network_offset(skb);
2962                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2963                 tucss = skb_transport_offset(skb);
2964                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2965                 tucse = 0;
2966
2967                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2968                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2969
2970                 i = tx_ring->next_to_use;
2971                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2972                 buffer_info = &tx_ring->buffer_info[i];
2973
2974                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2975                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2976                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2977                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2978                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2979                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2980                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2981                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2982                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2983
2984                 buffer_info->time_stamp = jiffies;
2985                 buffer_info->next_to_watch = i;
2986
2987                 if (++i == tx_ring->count) i = 0;
2988                 tx_ring->next_to_use = i;
2989
2990                 return true;
2991         }
2992         return false;
2993 }
2994
2995 static bool
2996 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2997               struct sk_buff *skb)
2998 {
2999         struct e1000_context_desc *context_desc;
3000         struct e1000_buffer *buffer_info;
3001         unsigned int i;
3002         u8 css;
3003
3004         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
3005                 css = skb_transport_offset(skb);
3006
3007                 i = tx_ring->next_to_use;
3008                 buffer_info = &tx_ring->buffer_info[i];
3009                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3010
3011                 context_desc->lower_setup.ip_config = 0;
3012                 context_desc->upper_setup.tcp_fields.tucss = css;
3013                 context_desc->upper_setup.tcp_fields.tucso =
3014                         css + skb->csum_offset;
3015                 context_desc->upper_setup.tcp_fields.tucse = 0;
3016                 context_desc->tcp_seg_setup.data = 0;
3017                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
3018
3019                 buffer_info->time_stamp = jiffies;
3020                 buffer_info->next_to_watch = i;
3021
3022                 if (unlikely(++i == tx_ring->count)) i = 0;
3023                 tx_ring->next_to_use = i;
3024
3025                 return true;
3026         }
3027
3028         return false;
3029 }
3030
3031 #define E1000_MAX_TXD_PWR       12
3032 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
3033
3034 static int
3035 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3036              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
3037              unsigned int nr_frags, unsigned int mss)
3038 {
3039         struct e1000_buffer *buffer_info;
3040         unsigned int len = skb->len;
3041         unsigned int offset = 0, size, count = 0, i;
3042         unsigned int f;
3043         len -= skb->data_len;
3044
3045         i = tx_ring->next_to_use;
3046
3047         while (len) {
3048                 buffer_info = &tx_ring->buffer_info[i];
3049                 size = min(len, max_per_txd);
3050                 /* Workaround for Controller erratum --
3051                  * descriptor for non-tso packet in a linear SKB that follows a
3052                  * tso gets written back prematurely before the data is fully
3053                  * DMA'd to the controller */
3054                 if (!skb->data_len && tx_ring->last_tx_tso &&
3055                     !skb_is_gso(skb)) {
3056                         tx_ring->last_tx_tso = 0;
3057                         size -= 4;
3058                 }
3059
3060                 /* Workaround for premature desc write-backs
3061                  * in TSO mode.  Append 4-byte sentinel desc */
3062                 if (unlikely(mss && !nr_frags && size == len && size > 8))
3063                         size -= 4;
3064                 /* work-around for errata 10 and it applies
3065                  * to all controllers in PCI-X mode
3066                  * The fix is to make sure that the first descriptor of a
3067                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3068                  */
3069                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3070                                 (size > 2015) && count == 0))
3071                         size = 2015;
3072
3073                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
3074                  * terminating buffers within evenly-aligned dwords. */
3075                 if (unlikely(adapter->pcix_82544 &&
3076                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
3077                    size > 4))
3078                         size -= 4;
3079
3080                 buffer_info->length = size;
3081                 buffer_info->dma =
3082                         pci_map_single(adapter->pdev,
3083                                 skb->data + offset,
3084                                 size,
3085                                 PCI_DMA_TODEVICE);
3086                 buffer_info->time_stamp = jiffies;
3087                 buffer_info->next_to_watch = i;
3088
3089                 len -= size;
3090                 offset += size;
3091                 count++;
3092                 if (unlikely(++i == tx_ring->count)) i = 0;
3093         }
3094
3095         for (f = 0; f < nr_frags; f++) {
3096                 struct skb_frag_struct *frag;
3097
3098                 frag = &skb_shinfo(skb)->frags[f];
3099                 len = frag->size;
3100                 offset = frag->page_offset;
3101
3102                 while (len) {
3103                         buffer_info = &tx_ring->buffer_info[i];
3104                         size = min(len, max_per_txd);
3105                         /* Workaround for premature desc write-backs
3106                          * in TSO mode.  Append 4-byte sentinel desc */
3107                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3108                                 size -= 4;
3109                         /* Workaround for potential 82544 hang in PCI-X.
3110                          * Avoid terminating buffers within evenly-aligned
3111                          * dwords. */
3112                         if (unlikely(adapter->pcix_82544 &&
3113                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
3114                            size > 4))
3115                                 size -= 4;
3116
3117                         buffer_info->length = size;
3118                         buffer_info->dma =
3119                                 pci_map_page(adapter->pdev,
3120                                         frag->page,
3121                                         offset,
3122                                         size,
3123                                         PCI_DMA_TODEVICE);
3124                         buffer_info->time_stamp = jiffies;
3125                         buffer_info->next_to_watch = i;
3126
3127                         len -= size;
3128                         offset += size;
3129                         count++;
3130                         if (unlikely(++i == tx_ring->count)) i = 0;
3131                 }
3132         }
3133
3134         i = (i == 0) ? tx_ring->count - 1 : i - 1;
3135         tx_ring->buffer_info[i].skb = skb;
3136         tx_ring->buffer_info[first].next_to_watch = i;
3137
3138         return count;
3139 }
3140
3141 static void
3142 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3143                int tx_flags, int count)
3144 {
3145         struct e1000_tx_desc *tx_desc = NULL;
3146         struct e1000_buffer *buffer_info;
3147         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3148         unsigned int i;
3149
3150         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3151                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3152                              E1000_TXD_CMD_TSE;
3153                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3154
3155                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3156                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3157         }
3158
3159         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3160                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3161                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3162         }
3163
3164         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3165                 txd_lower |= E1000_TXD_CMD_VLE;
3166                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3167         }
3168
3169         i = tx_ring->next_to_use;
3170
3171         while (count--) {
3172                 buffer_info = &tx_ring->buffer_info[i];
3173                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3174                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3175                 tx_desc->lower.data =
3176                         cpu_to_le32(txd_lower | buffer_info->length);
3177                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3178                 if (unlikely(++i == tx_ring->count)) i = 0;
3179         }
3180
3181         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3182
3183         /* Force memory writes to complete before letting h/w
3184          * know there are new descriptors to fetch.  (Only
3185          * applicable for weak-ordered memory model archs,
3186          * such as IA-64). */
3187         wmb();
3188
3189         tx_ring->next_to_use = i;
3190         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
3191         /* we need this if more than one processor can write to our tail
3192          * at a time, it syncronizes IO on IA64/Altix systems */
3193         mmiowb();
3194 }
3195
3196 /**
3197  * 82547 workaround to avoid controller hang in half-duplex environment.
3198  * The workaround is to avoid queuing a large packet that would span
3199  * the internal Tx FIFO ring boundary by notifying the stack to resend
3200  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3201  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3202  * to the beginning of the Tx FIFO.
3203  **/
3204
3205 #define E1000_FIFO_HDR                  0x10
3206 #define E1000_82547_PAD_LEN             0x3E0
3207
3208 static int
3209 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
3210 {
3211         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3212         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3213
3214         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3215
3216         if (adapter->link_duplex != HALF_DUPLEX)
3217                 goto no_fifo_stall_required;
3218
3219         if (atomic_read(&adapter->tx_fifo_stall))
3220                 return 1;
3221
3222         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3223                 atomic_set(&adapter->tx_fifo_stall, 1);
3224                 return 1;
3225         }
3226
3227 no_fifo_stall_required:
3228         adapter->tx_fifo_head += skb_fifo_len;
3229         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3230                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3231         return 0;
3232 }
3233
3234 #define MINIMUM_DHCP_PACKET_SIZE 282
3235 static int
3236 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
3237 {
3238         struct e1000_hw *hw =  &adapter->hw;
3239         u16 length, offset;
3240         if (vlan_tx_tag_present(skb)) {
3241                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
3242                         ( adapter->hw.mng_cookie.status &
3243                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3244                         return 0;
3245         }
3246         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3247                 struct ethhdr *eth = (struct ethhdr *) skb->data;
3248                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3249                         const struct iphdr *ip =
3250                                 (struct iphdr *)((u8 *)skb->data+14);
3251                         if (IPPROTO_UDP == ip->protocol) {
3252                                 struct udphdr *udp =
3253                                         (struct udphdr *)((u8 *)ip +
3254                                                 (ip->ihl << 2));
3255                                 if (ntohs(udp->dest) == 67) {
3256                                         offset = (u8 *)udp + 8 - skb->data;
3257                                         length = skb->len - offset;
3258
3259                                         return e1000_mng_write_dhcp_info(hw,
3260                                                         (u8 *)udp + 8,
3261                                                         length);
3262                                 }
3263                         }
3264                 }
3265         }
3266         return 0;
3267 }
3268
3269 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3270 {
3271         struct e1000_adapter *adapter = netdev_priv(netdev);
3272         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3273
3274         netif_stop_queue(netdev);
3275         /* Herbert's original patch had:
3276          *  smp_mb__after_netif_stop_queue();
3277          * but since that doesn't exist yet, just open code it. */
3278         smp_mb();
3279
3280         /* We need to check again in a case another CPU has just
3281          * made room available. */
3282         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3283                 return -EBUSY;
3284
3285         /* A reprieve! */
3286         netif_start_queue(netdev);
3287         ++adapter->restart_queue;
3288         return 0;
3289 }
3290
3291 static int e1000_maybe_stop_tx(struct net_device *netdev,
3292                                struct e1000_tx_ring *tx_ring, int size)
3293 {
3294         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3295                 return 0;
3296         return __e1000_maybe_stop_tx(netdev, size);
3297 }
3298
3299 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3300 static int
3301 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3302 {
3303         struct e1000_adapter *adapter = netdev_priv(netdev);
3304         struct e1000_tx_ring *tx_ring;
3305         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3306         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3307         unsigned int tx_flags = 0;
3308         unsigned int len = skb->len - skb->data_len;
3309         unsigned long flags;
3310         unsigned int nr_frags;
3311         unsigned int mss;
3312         int count = 0;
3313         int tso;
3314         unsigned int f;
3315
3316         /* This goes back to the question of how to logically map a tx queue
3317          * to a flow.  Right now, performance is impacted slightly negatively
3318          * if using multiple tx queues.  If the stack breaks away from a
3319          * single qdisc implementation, we can look at this again. */
3320         tx_ring = adapter->tx_ring;
3321
3322         if (unlikely(skb->len <= 0)) {
3323                 dev_kfree_skb_any(skb);
3324                 return NETDEV_TX_OK;
3325         }
3326
3327         /* 82571 and newer doesn't need the workaround that limited descriptor
3328          * length to 4kB */
3329         if (adapter->hw.mac_type >= e1000_82571)
3330                 max_per_txd = 8192;
3331
3332         mss = skb_shinfo(skb)->gso_size;
3333         /* The controller does a simple calculation to
3334          * make sure there is enough room in the FIFO before
3335          * initiating the DMA for each buffer.  The calc is:
3336          * 4 = ceil(buffer len/mss).  To make sure we don't
3337          * overrun the FIFO, adjust the max buffer len if mss
3338          * drops. */
3339         if (mss) {
3340                 u8 hdr_len;
3341                 max_per_txd = min(mss << 2, max_per_txd);
3342                 max_txd_pwr = fls(max_per_txd) - 1;
3343
3344                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3345                 * points to just header, pull a few bytes of payload from
3346                 * frags into skb->data */
3347                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3348                 if (skb->data_len && hdr_len == len) {
3349                         switch (adapter->hw.mac_type) {
3350                                 unsigned int pull_size;
3351                         case e1000_82544:
3352                                 /* Make sure we have room to chop off 4 bytes,
3353                                  * and that the end alignment will work out to
3354                                  * this hardware's requirements
3355                                  * NOTE: this is a TSO only workaround
3356                                  * if end byte alignment not correct move us
3357                                  * into the next dword */
3358                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3359                                         break;
3360                                 /* fall through */
3361                         case e1000_82571:
3362                         case e1000_82572:
3363                         case e1000_82573:
3364                         case e1000_ich8lan:
3365                                 pull_size = min((unsigned int)4, skb->data_len);
3366                                 if (!__pskb_pull_tail(skb, pull_size)) {
3367                                         DPRINTK(DRV, ERR,
3368                                                 "__pskb_pull_tail failed.\n");
3369                                         dev_kfree_skb_any(skb);
3370                                         return NETDEV_TX_OK;
3371                                 }
3372                                 len = skb->len - skb->data_len;
3373                                 break;
3374                         default:
3375                                 /* do nothing */
3376                                 break;
3377                         }
3378                 }
3379         }
3380
3381         /* reserve a descriptor for the offload context */
3382         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3383                 count++;
3384         count++;
3385
3386         /* Controller Erratum workaround */
3387         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3388                 count++;
3389
3390         count += TXD_USE_COUNT(len, max_txd_pwr);
3391
3392         if (adapter->pcix_82544)
3393                 count++;
3394
3395         /* work-around for errata 10 and it applies to all controllers
3396          * in PCI-X mode, so add one more descriptor to the count
3397          */
3398         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3399                         (len > 2015)))
3400                 count++;
3401
3402         nr_frags = skb_shinfo(skb)->nr_frags;
3403         for (f = 0; f < nr_frags; f++)
3404                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3405                                        max_txd_pwr);
3406         if (adapter->pcix_82544)
3407                 count += nr_frags;
3408
3409
3410         if (adapter->hw.tx_pkt_filtering &&
3411             (adapter->hw.mac_type == e1000_82573))
3412                 e1000_transfer_dhcp_info(adapter, skb);
3413
3414         if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
3415                 /* Collision - tell upper layer to requeue */
3416                 return NETDEV_TX_LOCKED;
3417
3418         /* need: count + 2 desc gap to keep tail from touching
3419          * head, otherwise try next time */
3420         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3421                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3422                 return NETDEV_TX_BUSY;
3423         }
3424
3425         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3426                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3427                         netif_stop_queue(netdev);
3428                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3429                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3430                         return NETDEV_TX_BUSY;
3431                 }
3432         }
3433
3434         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3435                 tx_flags |= E1000_TX_FLAGS_VLAN;
3436                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3437         }
3438
3439         first = tx_ring->next_to_use;
3440
3441         tso = e1000_tso(adapter, tx_ring, skb);
3442         if (tso < 0) {
3443                 dev_kfree_skb_any(skb);
3444                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3445                 return NETDEV_TX_OK;
3446         }
3447
3448         if (likely(tso)) {
3449                 tx_ring->last_tx_tso = 1;
3450                 tx_flags |= E1000_TX_FLAGS_TSO;
3451         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3452                 tx_flags |= E1000_TX_FLAGS_CSUM;
3453
3454         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3455          * 82571 hardware supports TSO capabilities for IPv6 as well...
3456          * no longer assume, we must. */
3457         if (likely(skb->protocol == htons(ETH_P_IP)))
3458                 tx_flags |= E1000_TX_FLAGS_IPV4;
3459
3460         e1000_tx_queue(adapter, tx_ring, tx_flags,
3461                        e1000_tx_map(adapter, tx_ring, skb, first,
3462                                     max_per_txd, nr_frags, mss));
3463
3464         netdev->trans_start = jiffies;
3465
3466         /* Make sure there is space in the ring for the next send. */
3467         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3468
3469         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3470         return NETDEV_TX_OK;
3471 }
3472
3473 /**
3474  * e1000_tx_timeout - Respond to a Tx Hang
3475  * @netdev: network interface device structure
3476  **/
3477
3478 static void
3479 e1000_tx_timeout(struct net_device *netdev)
3480 {
3481         struct e1000_adapter *adapter = netdev_priv(netdev);
3482
3483         /* Do the reset outside of interrupt context */
3484         adapter->tx_timeout_count++;
3485         schedule_work(&adapter->reset_task);
3486 }
3487
3488 static void
3489 e1000_reset_task(struct work_struct *work)
3490 {
3491         struct e1000_adapter *adapter =
3492                 container_of(work, struct e1000_adapter, reset_task);
3493
3494         e1000_reinit_locked(adapter);
3495 }
3496
3497 /**
3498  * e1000_get_stats - Get System Network Statistics
3499  * @netdev: network interface device structure
3500  *
3501  * Returns the address of the device statistics structure.
3502  * The statistics are actually updated from the timer callback.
3503  **/
3504
3505 static struct net_device_stats *
3506 e1000_get_stats(struct net_device *netdev)
3507 {
3508         struct e1000_adapter *adapter = netdev_priv(netdev);
3509
3510         /* only return the current stats */
3511         return &adapter->net_stats;
3512 }
3513
3514 /**
3515  * e1000_change_mtu - Change the Maximum Transfer Unit
3516  * @netdev: network interface device structure
3517  * @new_mtu: new value for maximum frame size
3518  *
3519  * Returns 0 on success, negative on failure
3520  **/
3521
3522 static int
3523 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3524 {
3525         struct e1000_adapter *adapter = netdev_priv(netdev);
3526         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3527         u16 eeprom_data = 0;
3528
3529         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3530             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3531                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3532                 return -EINVAL;
3533         }
3534
3535         /* Adapter-specific max frame size limits. */
3536         switch (adapter->hw.mac_type) {
3537         case e1000_undefined ... e1000_82542_rev2_1:
3538         case e1000_ich8lan:
3539                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3540                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3541                         return -EINVAL;
3542                 }
3543                 break;
3544         case e1000_82573:
3545                 /* Jumbo Frames not supported if:
3546                  * - this is not an 82573L device
3547                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3548                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3549                                   &eeprom_data);
3550                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3551                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3552                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3553                                 DPRINTK(PROBE, ERR,
3554                                         "Jumbo Frames not supported.\n");
3555                                 return -EINVAL;
3556                         }
3557                         break;
3558                 }
3559                 /* ERT will be enabled later to enable wire speed receives */
3560
3561                 /* fall through to get support */
3562         case e1000_82571:
3563         case e1000_82572:
3564         case e1000_80003es2lan:
3565 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3566                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3567                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3568                         return -EINVAL;
3569                 }
3570                 break;
3571         default:
3572                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3573                 break;
3574         }
3575
3576         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3577          * means we reserve 2 more, this pushes us to allocate from the next
3578          * larger slab size
3579          * i.e. RXBUFFER_2048 --> size-4096 slab */
3580
3581         if (max_frame <= E1000_RXBUFFER_256)
3582                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3583         else if (max_frame <= E1000_RXBUFFER_512)
3584                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3585         else if (max_frame <= E1000_RXBUFFER_1024)
3586                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3587         else if (max_frame <= E1000_RXBUFFER_2048)
3588                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3589         else if (max_frame <= E1000_RXBUFFER_4096)
3590                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3591         else if (max_frame <= E1000_RXBUFFER_8192)
3592                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3593         else if (max_frame <= E1000_RXBUFFER_16384)
3594                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3595
3596         /* adjust allocation if LPE protects us, and we aren't using SBP */
3597         if (!adapter->hw.tbi_compatibility_on &&
3598             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3599              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3600                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3601
3602         netdev->mtu = new_mtu;
3603         adapter->hw.max_frame_size = max_frame;
3604
3605         if (netif_running(netdev))
3606                 e1000_reinit_locked(adapter);
3607
3608         return 0;
3609 }
3610
3611 /**
3612  * e1000_update_stats - Update the board statistics counters
3613  * @adapter: board private structure
3614  **/
3615
3616 void
3617 e1000_update_stats(struct e1000_adapter *adapter)
3618 {
3619         struct e1000_hw *hw = &adapter->hw;
3620         struct pci_dev *pdev = adapter->pdev;
3621         unsigned long flags;
3622         u16 phy_tmp;
3623
3624 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3625
3626         /*
3627          * Prevent stats update while adapter is being reset, or if the pci
3628          * connection is down.
3629          */
3630         if (adapter->link_speed == 0)
3631                 return;
3632         if (pci_channel_offline(pdev))
3633                 return;
3634
3635         spin_lock_irqsave(&adapter->stats_lock, flags);
3636
3637         /* these counters are modified from e1000_tbi_adjust_stats,
3638          * called from the interrupt context, so they must only
3639          * be written while holding adapter->stats_lock
3640          */
3641
3642         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3643         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3644         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3645         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3646         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3647         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3648         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3649
3650         if (adapter->hw.mac_type != e1000_ich8lan) {
3651                 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3652                 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3653                 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3654                 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3655                 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3656                 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3657         }
3658
3659         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3660         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3661         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3662         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3663         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3664         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3665         adapter->stats.dc += E1000_READ_REG(hw, DC);
3666         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3667         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3668         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3669         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3670         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3671         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3672         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3673         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3674         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3675         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3676         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3677         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3678         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3679         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3680         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3681         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3682         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3683         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3684         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3685
3686         if (adapter->hw.mac_type != e1000_ich8lan) {
3687                 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3688                 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3689                 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3690                 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3691                 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3692                 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3693         }
3694
3695         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3696         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3697
3698         /* used for adaptive IFS */
3699
3700         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3701         adapter->stats.tpt += hw->tx_packet_delta;
3702         hw->collision_delta = E1000_READ_REG(hw, COLC);
3703         adapter->stats.colc += hw->collision_delta;
3704
3705         if (hw->mac_type >= e1000_82543) {
3706                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3707                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3708                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3709                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3710                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3711                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3712         }
3713         if (hw->mac_type > e1000_82547_rev_2) {
3714                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3715                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3716
3717                 if (adapter->hw.mac_type != e1000_ich8lan) {
3718                         adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3719                         adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3720                         adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3721                         adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3722                         adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3723                         adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3724                         adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3725                 }
3726         }
3727
3728         /* Fill out the OS statistics structure */
3729         adapter->net_stats.multicast = adapter->stats.mprc;
3730         adapter->net_stats.collisions = adapter->stats.colc;
3731
3732         /* Rx Errors */
3733
3734         /* RLEC on some newer hardware can be incorrect so build
3735         * our own version based on RUC and ROC */
3736         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3737                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3738                 adapter->stats.ruc + adapter->stats.roc +
3739                 adapter->stats.cexterr;
3740         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3741         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3742         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3743         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3744         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3745
3746         /* Tx Errors */
3747         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3748         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3749         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3750         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3751         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3752         if (adapter->hw.bad_tx_carr_stats_fd &&
3753             adapter->link_duplex == FULL_DUPLEX) {
3754                 adapter->net_stats.tx_carrier_errors = 0;
3755                 adapter->stats.tncrs = 0;
3756         }
3757
3758         /* Tx Dropped needs to be maintained elsewhere */
3759
3760         /* Phy Stats */
3761         if (hw->media_type == e1000_media_type_copper) {
3762                 if ((adapter->link_speed == SPEED_1000) &&
3763                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3764                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3765                         adapter->phy_stats.idle_errors += phy_tmp;
3766                 }
3767
3768                 if ((hw->mac_type <= e1000_82546) &&
3769                    (hw->phy_type == e1000_phy_m88) &&
3770                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3771                         adapter->phy_stats.receive_errors += phy_tmp;
3772         }
3773
3774         /* Management Stats */
3775         if (adapter->hw.has_smbus) {
3776                 adapter->stats.mgptc += E1000_READ_REG(hw, MGTPTC);
3777                 adapter->stats.mgprc += E1000_READ_REG(hw, MGTPRC);
3778                 adapter->stats.mgpdc += E1000_READ_REG(hw, MGTPDC);
3779         }
3780
3781         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3782 }
3783
3784 /**
3785  * e1000_intr_msi - Interrupt Handler
3786  * @irq: interrupt number
3787  * @data: pointer to a network interface device structure
3788  **/
3789
3790 static irqreturn_t
3791 e1000_intr_msi(int irq, void *data)
3792 {
3793         struct net_device *netdev = data;
3794         struct e1000_adapter *adapter = netdev_priv(netdev);
3795         struct e1000_hw *hw = &adapter->hw;
3796 #ifndef CONFIG_E1000_NAPI
3797         int i;
3798 #endif
3799         u32 icr = E1000_READ_REG(hw, ICR);
3800
3801         /* in NAPI mode read ICR disables interrupts using IAM */
3802
3803         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3804                 hw->get_link_status = 1;
3805                 /* 80003ES2LAN workaround-- For packet buffer work-around on
3806                  * link down event; disable receives here in the ISR and reset
3807                  * adapter in watchdog */
3808                 if (netif_carrier_ok(netdev) &&
3809                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3810                         /* disable receives */
3811                         u32 rctl = E1000_READ_REG(hw, RCTL);
3812                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3813                 }
3814                 /* guard against interrupt when we're going down */
3815                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3816                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3817         }
3818
3819 #ifdef CONFIG_E1000_NAPI
3820         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3821                 adapter->total_tx_bytes = 0;
3822                 adapter->total_tx_packets = 0;
3823                 adapter->total_rx_bytes = 0;
3824                 adapter->total_rx_packets = 0;
3825                 __netif_rx_schedule(netdev, &adapter->napi);
3826         } else
3827                 e1000_irq_enable(adapter);
3828 #else
3829         adapter->total_tx_bytes = 0;
3830         adapter->total_rx_bytes = 0;
3831         adapter->total_tx_packets = 0;
3832         adapter->total_rx_packets = 0;
3833
3834         for (i = 0; i < E1000_MAX_INTR; i++)
3835                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3836                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3837                         break;
3838
3839         if (likely(adapter->itr_setting & 3))
3840                 e1000_set_itr(adapter);
3841 #endif
3842
3843         return IRQ_HANDLED;
3844 }
3845
3846 /**
3847  * e1000_intr - Interrupt Handler
3848  * @irq: interrupt number
3849  * @data: pointer to a network interface device structure
3850  **/
3851
3852 static irqreturn_t
3853 e1000_intr(int irq, void *data)
3854 {
3855         struct net_device *netdev = data;
3856         struct e1000_adapter *adapter = netdev_priv(netdev);
3857         struct e1000_hw *hw = &adapter->hw;
3858         u32 rctl, icr = E1000_READ_REG(hw, ICR);
3859 #ifndef CONFIG_E1000_NAPI
3860         int i;
3861 #endif
3862         if (unlikely(!icr))
3863                 return IRQ_NONE;  /* Not our interrupt */
3864
3865 #ifdef CONFIG_E1000_NAPI
3866         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3867          * not set, then the adapter didn't send an interrupt */
3868         if (unlikely(hw->mac_type >= e1000_82571 &&
3869                      !(icr & E1000_ICR_INT_ASSERTED)))
3870                 return IRQ_NONE;
3871
3872         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3873          * need for the IMC write */
3874 #endif
3875
3876         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3877                 hw->get_link_status = 1;
3878                 /* 80003ES2LAN workaround--
3879                  * For packet buffer work-around on link down event;
3880                  * disable receives here in the ISR and
3881                  * reset adapter in watchdog
3882                  */
3883                 if (netif_carrier_ok(netdev) &&
3884                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3885                         /* disable receives */
3886                         rctl = E1000_READ_REG(hw, RCTL);
3887                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3888                 }
3889                 /* guard against interrupt when we're going down */
3890                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3891                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3892         }
3893
3894 #ifdef CONFIG_E1000_NAPI
3895         if (unlikely(hw->mac_type < e1000_82571)) {
3896                 /* disable interrupts, without the synchronize_irq bit */
3897                 E1000_WRITE_REG(hw, IMC, ~0);
3898                 E1000_WRITE_FLUSH(hw);
3899         }
3900         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3901                 adapter->total_tx_bytes = 0;
3902                 adapter->total_tx_packets = 0;
3903                 adapter->total_rx_bytes = 0;
3904                 adapter->total_rx_packets = 0;
3905                 __netif_rx_schedule(netdev, &adapter->napi);
3906         } else
3907                 /* this really should not happen! if it does it is basically a
3908                  * bug, but not a hard error, so enable ints and continue */
3909                 e1000_irq_enable(adapter);
3910 #else
3911         /* Writing IMC and IMS is needed for 82547.
3912          * Due to Hub Link bus being occupied, an interrupt
3913          * de-assertion message is not able to be sent.
3914          * When an interrupt assertion message is generated later,
3915          * two messages are re-ordered and sent out.
3916          * That causes APIC to think 82547 is in de-assertion
3917          * state, while 82547 is in assertion state, resulting
3918          * in dead lock. Writing IMC forces 82547 into
3919          * de-assertion state.
3920          */
3921         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3922                 E1000_WRITE_REG(hw, IMC, ~0);
3923
3924         adapter->total_tx_bytes = 0;
3925         adapter->total_rx_bytes = 0;
3926         adapter->total_tx_packets = 0;
3927         adapter->total_rx_packets = 0;
3928
3929         for (i = 0; i < E1000_MAX_INTR; i++)
3930                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3931                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3932                         break;
3933
3934         if (likely(adapter->itr_setting & 3))
3935                 e1000_set_itr(adapter);
3936
3937         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3938                 e1000_irq_enable(adapter);
3939
3940 #endif
3941         return IRQ_HANDLED;
3942 }
3943
3944 #ifdef CONFIG_E1000_NAPI
3945 /**
3946  * e1000_clean - NAPI Rx polling callback
3947  * @adapter: board private structure
3948  **/
3949
3950 static int
3951 e1000_clean(struct napi_struct *napi, int budget)
3952 {
3953         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3954         struct net_device *poll_dev = adapter->netdev;
3955         int tx_cleaned = 0, work_done = 0;
3956
3957         /* Must NOT use netdev_priv macro here. */
3958         adapter = poll_dev->priv;
3959
3960         /* e1000_clean is called per-cpu.  This lock protects
3961          * tx_ring[0] from being cleaned by multiple cpus
3962          * simultaneously.  A failure obtaining the lock means
3963          * tx_ring[0] is currently being cleaned anyway. */
3964         if (spin_trylock(&adapter->tx_queue_lock)) {
3965                 tx_cleaned = e1000_clean_tx_irq(adapter,
3966                                                 &adapter->tx_ring[0]);
3967                 spin_unlock(&adapter->tx_queue_lock);
3968         }
3969
3970         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3971                           &work_done, budget);
3972
3973         if (tx_cleaned)
3974                 work_done = budget;
3975
3976         /* If budget not fully consumed, exit the polling mode */
3977         if (work_done < budget) {
3978                 if (likely(adapter->itr_setting & 3))
3979                         e1000_set_itr(adapter);
3980                 netif_rx_complete(poll_dev, napi);
3981                 e1000_irq_enable(adapter);
3982         }
3983
3984         return work_done;
3985 }
3986
3987 #endif
3988 /**
3989  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3990  * @adapter: board private structure
3991  **/
3992
3993 static bool
3994 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3995                    struct e1000_tx_ring *tx_ring)
3996 {
3997         struct net_device *netdev = adapter->netdev;
3998         struct e1000_tx_desc *tx_desc, *eop_desc;
3999         struct e1000_buffer *buffer_info;
4000         unsigned int i, eop;
4001 #ifdef CONFIG_E1000_NAPI
4002         unsigned int count = 0;
4003 #endif
4004         bool cleaned = false;
4005         unsigned int total_tx_bytes=0, total_tx_packets=0;
4006
4007         i = tx_ring->next_to_clean;
4008         eop = tx_ring->buffer_info[i].next_to_watch;
4009         eop_desc = E1000_TX_DESC(*tx_ring, eop);
4010
4011         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
4012                 for (cleaned = false; !cleaned; ) {
4013                         tx_desc = E1000_TX_DESC(*tx_ring, i);
4014                         buffer_info = &tx_ring->buffer_info[i];
4015                         cleaned = (i == eop);
4016
4017                         if (cleaned) {
4018                                 struct sk_buff *skb = buffer_info->skb;
4019                                 unsigned int segs, bytecount;
4020                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
4021                                 /* multiply data chunks by size of headers */
4022                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
4023                                             skb->len;
4024                                 total_tx_packets += segs;
4025                                 total_tx_bytes += bytecount;
4026                         }
4027                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
4028                         tx_desc->upper.data = 0;
4029
4030                         if (unlikely(++i == tx_ring->count)) i = 0;
4031                 }
4032
4033                 eop = tx_ring->buffer_info[i].next_to_watch;
4034                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
4035 #ifdef CONFIG_E1000_NAPI
4036 #define E1000_TX_WEIGHT 64
4037                 /* weight of a sort for tx, to avoid endless transmit cleanup */
4038                 if (count++ == E1000_TX_WEIGHT) break;
4039 #endif
4040         }
4041
4042         tx_ring->next_to_clean = i;
4043
4044 #define TX_WAKE_THRESHOLD 32
4045         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
4046                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
4047                 /* Make sure that anybody stopping the queue after this
4048                  * sees the new next_to_clean.
4049                  */
4050                 smp_mb();
4051                 if (netif_queue_stopped(netdev)) {
4052                         netif_wake_queue(netdev);
4053                         ++adapter->restart_queue;
4054                 }
4055         }
4056
4057         if (adapter->detect_tx_hung) {
4058                 /* Detect a transmit hang in hardware, this serializes the
4059                  * check with the clearing of time_stamp and movement of i */
4060                 adapter->detect_tx_hung = false;
4061                 if (tx_ring->buffer_info[eop].dma &&
4062                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
4063                                (adapter->tx_timeout_factor * HZ))
4064                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
4065                          E1000_STATUS_TXOFF)) {
4066
4067                         /* detected Tx unit hang */
4068                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
4069                                         "  Tx Queue             <%lu>\n"
4070                                         "  TDH                  <%x>\n"
4071                                         "  TDT                  <%x>\n"
4072                                         "  next_to_use          <%x>\n"
4073                                         "  next_to_clean        <%x>\n"
4074                                         "buffer_info[next_to_clean]\n"
4075                                         "  time_stamp           <%lx>\n"
4076                                         "  next_to_watch        <%x>\n"
4077                                         "  jiffies              <%lx>\n"
4078                                         "  next_to_watch.status <%x>\n",
4079                                 (unsigned long)((tx_ring - adapter->tx_ring) /
4080                                         sizeof(struct e1000_tx_ring)),
4081                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
4082                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
4083                                 tx_ring->next_to_use,
4084                                 tx_ring->next_to_clean,
4085                                 tx_ring->buffer_info[eop].time_stamp,
4086                                 eop,
4087                                 jiffies,
4088                                 eop_desc->upper.fields.status);
4089                         netif_stop_queue(netdev);
4090                 }
4091         }
4092         adapter->total_tx_bytes += total_tx_bytes;
4093         adapter->total_tx_packets += total_tx_packets;
4094         adapter->net_stats.tx_bytes += total_tx_bytes;
4095         adapter->net_stats.tx_packets += total_tx_packets;
4096         return cleaned;
4097 }
4098
4099 /**
4100  * e1000_rx_checksum - Receive Checksum Offload for 82543
4101  * @adapter:     board private structure
4102  * @status_err:  receive descriptor status and error fields
4103  * @csum:        receive descriptor csum field
4104  * @sk_buff:     socket buffer with received data
4105  **/
4106
4107 static void
4108 e1000_rx_checksum(struct e1000_adapter *adapter,
4109                   u32 status_err, u32 csum,
4110                   struct sk_buff *skb)
4111 {
4112         u16 status = (u16)status_err;
4113         u8 errors = (u8)(status_err >> 24);
4114         skb->ip_summed = CHECKSUM_NONE;
4115
4116         /* 82543 or newer only */
4117         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
4118         /* Ignore Checksum bit is set */
4119         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
4120         /* TCP/UDP checksum error bit is set */
4121         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
4122                 /* let the stack verify checksum errors */
4123                 adapter->hw_csum_err++;
4124                 return;
4125         }
4126         /* TCP/UDP Checksum has not been calculated */
4127         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
4128                 if (!(status & E1000_RXD_STAT_TCPCS))
4129                         return;
4130         } else {
4131                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
4132                         return;
4133         }
4134         /* It must be a TCP or UDP packet with a valid checksum */
4135         if (likely(status & E1000_RXD_STAT_TCPCS)) {
4136                 /* TCP checksum is good */
4137                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4138         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
4139                 /* IP fragment with UDP payload */
4140                 /* Hardware complements the payload checksum, so we undo it
4141                  * and then put the value in host order for further stack use.
4142                  */
4143                 __sum16 sum = (__force __sum16)htons(csum);
4144                 skb->csum = csum_unfold(~sum);
4145                 skb->ip_summed = CHECKSUM_COMPLETE;
4146         }
4147         adapter->hw_csum_good++;
4148 }
4149
4150 /**
4151  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4152  * @adapter: board private structure
4153  **/
4154
4155 static bool
4156 #ifdef CONFIG_E1000_NAPI
4157 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4158                    struct e1000_rx_ring *rx_ring,
4159                    int *work_done, int work_to_do)
4160 #else
4161 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4162                    struct e1000_rx_ring *rx_ring)
4163 #endif
4164 {
4165         struct net_device *netdev = adapter->netdev;
4166         struct pci_dev *pdev = adapter->pdev;
4167         struct e1000_rx_desc *rx_desc, *next_rxd;
4168         struct e1000_buffer *buffer_info, *next_buffer;
4169         unsigned long flags;
4170         u32 length;
4171         u8 last_byte;
4172         unsigned int i;
4173         int cleaned_count = 0;
4174         bool cleaned = false;
4175         unsigned int total_rx_bytes=0, total_rx_packets=0;
4176
4177         i = rx_ring->next_to_clean;
4178         rx_desc = E1000_RX_DESC(*rx_ring, i);
4179         buffer_info = &rx_ring->buffer_info[i];
4180
4181         while (rx_desc->status & E1000_RXD_STAT_DD) {
4182                 struct sk_buff *skb;
4183                 u8 status;
4184
4185 #ifdef CONFIG_E1000_NAPI
4186                 if (*work_done >= work_to_do)
4187                         break;
4188                 (*work_done)++;
4189 #endif
4190                 status = rx_desc->status;
4191                 skb = buffer_info->skb;
4192                 buffer_info->skb = NULL;
4193
4194                 prefetch(skb->data - NET_IP_ALIGN);
4195
4196                 if (++i == rx_ring->count) i = 0;
4197                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4198                 prefetch(next_rxd);
4199
4200                 next_buffer = &rx_ring->buffer_info[i];
4201
4202                 cleaned = true;
4203                 cleaned_count++;
4204                 pci_unmap_single(pdev,
4205                                  buffer_info->dma,
4206                                  buffer_info->length,
4207                                  PCI_DMA_FROMDEVICE);
4208
4209                 length = le16_to_cpu(rx_desc->length);
4210
4211                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4212                         /* All receives must fit into a single buffer */
4213                         E1000_DBG("%s: Receive packet consumed multiple"
4214                                   " buffers\n", netdev->name);
4215                         /* recycle */
4216                         buffer_info->skb = skb;
4217                         goto next_desc;
4218                 }
4219
4220                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4221                         last_byte = *(skb->data + length - 1);
4222                         if (TBI_ACCEPT(&adapter->hw, status,
4223                                       rx_desc->errors, length, last_byte)) {
4224                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4225                                 e1000_tbi_adjust_stats(&adapter->hw,
4226                                                        &adapter->stats,
4227                                                        length, skb->data);
4228                                 spin_unlock_irqrestore(&adapter->stats_lock,
4229                                                        flags);
4230                                 length--;
4231                         } else {
4232                                 /* recycle */
4233                                 buffer_info->skb = skb;
4234                                 goto next_desc;
4235                         }
4236                 }
4237
4238                 /* adjust length to remove Ethernet CRC, this must be
4239                  * done after the TBI_ACCEPT workaround above */
4240                 length -= 4;
4241
4242                 /* probably a little skewed due to removing CRC */
4243                 total_rx_bytes += length;
4244                 total_rx_packets++;
4245
4246                 /* code added for copybreak, this should improve
4247                  * performance for small packets with large amounts
4248                  * of reassembly being done in the stack */
4249                 if (length < copybreak) {
4250                         struct sk_buff *new_skb =
4251                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4252                         if (new_skb) {
4253                                 skb_reserve(new_skb, NET_IP_ALIGN);
4254                                 skb_copy_to_linear_data_offset(new_skb,
4255                                                                -NET_IP_ALIGN,
4256                                                                (skb->data -
4257                                                                 NET_IP_ALIGN),
4258                                                                (length +
4259                                                                 NET_IP_ALIGN));
4260                                 /* save the skb in buffer_info as good */
4261                                 buffer_info->skb = skb;
4262                                 skb = new_skb;
4263                         }
4264                         /* else just continue with the old one */
4265                 }
4266                 /* end copybreak code */
4267                 skb_put(skb, length);
4268
4269                 /* Receive Checksum Offload */
4270                 e1000_rx_checksum(adapter,
4271                                   (u32)(status) |
4272                                   ((u32)(rx_desc->errors) << 24),
4273                                   le16_to_cpu(rx_desc->csum), skb);
4274
4275                 skb->protocol = eth_type_trans(skb, netdev);
4276 #ifdef CONFIG_E1000_NAPI
4277                 if (unlikely(adapter->vlgrp &&
4278                             (status & E1000_RXD_STAT_VP))) {
4279                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4280                                                  le16_to_cpu(rx_desc->special) &
4281                                                  E1000_RXD_SPC_VLAN_MASK);
4282                 } else {
4283                         netif_receive_skb(skb);
4284                 }
4285 #else /* CONFIG_E1000_NAPI */
4286                 if (unlikely(adapter->vlgrp &&
4287                             (status & E1000_RXD_STAT_VP))) {
4288                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4289                                         le16_to_cpu(rx_desc->special) &
4290                                         E1000_RXD_SPC_VLAN_MASK);
4291                 } else {
4292                         netif_rx(skb);
4293                 }
4294 #endif /* CONFIG_E1000_NAPI */
4295                 netdev->last_rx = jiffies;
4296
4297 next_desc:
4298                 rx_desc->status = 0;
4299
4300                 /* return some buffers to hardware, one at a time is too slow */
4301                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4302                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4303                         cleaned_count = 0;
4304                 }
4305
4306                 /* use prefetched values */
4307                 rx_desc = next_rxd;
4308                 buffer_info = next_buffer;
4309         }
4310         rx_ring->next_to_clean = i;
4311
4312         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4313         if (cleaned_count)
4314                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4315
4316         adapter->total_rx_packets += total_rx_packets;
4317         adapter->total_rx_bytes += total_rx_bytes;
4318         adapter->net_stats.rx_bytes += total_rx_bytes;
4319         adapter->net_stats.rx_packets += total_rx_packets;
4320         return cleaned;
4321 }
4322
4323 /**
4324  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4325  * @adapter: board private structure
4326  **/
4327
4328 static bool
4329 #ifdef CONFIG_E1000_NAPI
4330 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4331                       struct e1000_rx_ring *rx_ring,
4332                       int *work_done, int work_to_do)
4333 #else
4334 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4335                       struct e1000_rx_ring *rx_ring)
4336 #endif
4337 {
4338         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4339         struct net_device *netdev = adapter->netdev;
4340         struct pci_dev *pdev = adapter->pdev;
4341         struct e1000_buffer *buffer_info, *next_buffer;
4342         struct e1000_ps_page *ps_page;
4343         struct e1000_ps_page_dma *ps_page_dma;
4344         struct sk_buff *skb;
4345         unsigned int i, j;
4346         u32 length, staterr;
4347         int cleaned_count = 0;
4348         bool cleaned = false;
4349         unsigned int total_rx_bytes=0, total_rx_packets=0;
4350
4351         i = rx_ring->next_to_clean;
4352         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4353         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4354         buffer_info = &rx_ring->buffer_info[i];
4355
4356         while (staterr & E1000_RXD_STAT_DD) {
4357                 ps_page = &rx_ring->ps_page[i];
4358                 ps_page_dma = &rx_ring->ps_page_dma[i];
4359 #ifdef CONFIG_E1000_NAPI
4360                 if (unlikely(*work_done >= work_to_do))
4361                         break;
4362                 (*work_done)++;
4363 #endif
4364                 skb = buffer_info->skb;
4365
4366                 /* in the packet split case this is header only */
4367                 prefetch(skb->data - NET_IP_ALIGN);
4368
4369                 if (++i == rx_ring->count) i = 0;
4370                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4371                 prefetch(next_rxd);
4372
4373                 next_buffer = &rx_ring->buffer_info[i];
4374
4375                 cleaned = true;
4376                 cleaned_count++;
4377                 pci_unmap_single(pdev, buffer_info->dma,
4378                                  buffer_info->length,
4379                                  PCI_DMA_FROMDEVICE);
4380
4381                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4382                         E1000_DBG("%s: Packet Split buffers didn't pick up"
4383                                   " the full packet\n", netdev->name);
4384                         dev_kfree_skb_irq(skb);
4385                         goto next_desc;
4386                 }
4387
4388                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4389                         dev_kfree_skb_irq(skb);
4390                         goto next_desc;
4391                 }
4392
4393                 length = le16_to_cpu(rx_desc->wb.middle.length0);
4394
4395                 if (unlikely(!length)) {
4396                         E1000_DBG("%s: Last part of the packet spanning"
4397                                   " multiple descriptors\n", netdev->name);
4398                         dev_kfree_skb_irq(skb);
4399                         goto next_desc;
4400                 }
4401
4402                 /* Good Receive */
4403                 skb_put(skb, length);
4404
4405                 {
4406                 /* this looks ugly, but it seems compiler issues make it
4407                    more efficient than reusing j */
4408                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4409
4410                 /* page alloc/put takes too long and effects small packet
4411                  * throughput, so unsplit small packets and save the alloc/put*/
4412                 if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) {
4413                         u8 *vaddr;
4414                         /* there is no documentation about how to call
4415                          * kmap_atomic, so we can't hold the mapping
4416                          * very long */
4417                         pci_dma_sync_single_for_cpu(pdev,
4418                                 ps_page_dma->ps_page_dma[0],
4419                                 PAGE_SIZE,
4420                                 PCI_DMA_FROMDEVICE);
4421                         vaddr = kmap_atomic(ps_page->ps_page[0],
4422                                             KM_SKB_DATA_SOFTIRQ);
4423                         memcpy(skb_tail_pointer(skb), vaddr, l1);
4424                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4425                         pci_dma_sync_single_for_device(pdev,
4426                                 ps_page_dma->ps_page_dma[0],
4427                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4428                         /* remove the CRC */
4429                         l1 -= 4;
4430                         skb_put(skb, l1);
4431                         goto copydone;
4432                 } /* if */
4433                 }
4434
4435                 for (j = 0; j < adapter->rx_ps_pages; j++) {
4436                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4437                                 break;
4438                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4439                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
4440                         ps_page_dma->ps_page_dma[j] = 0;
4441                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4442                                            length);
4443                         ps_page->ps_page[j] = NULL;
4444                         skb->len += length;
4445                         skb->data_len += length;
4446                         skb->truesize += length;
4447                 }
4448
4449                 /* strip the ethernet crc, problem is we're using pages now so
4450                  * this whole operation can get a little cpu intensive */
4451                 pskb_trim(skb, skb->len - 4);
4452
4453 copydone:
4454                 total_rx_bytes += skb->len;
4455                 total_rx_packets++;
4456
4457                 e1000_rx_checksum(adapter, staterr,
4458                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4459                 skb->protocol = eth_type_trans(skb, netdev);
4460
4461                 if (likely(rx_desc->wb.upper.header_status &
4462                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4463                         adapter->rx_hdr_split++;
4464 #ifdef CONFIG_E1000_NAPI
4465                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4466                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4467                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4468                                 E1000_RXD_SPC_VLAN_MASK);
4469                 } else {
4470                         netif_receive_skb(skb);
4471                 }
4472 #else /* CONFIG_E1000_NAPI */
4473                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4474                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4475                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4476                                 E1000_RXD_SPC_VLAN_MASK);
4477                 } else {
4478                         netif_rx(skb);
4479                 }
4480 #endif /* CONFIG_E1000_NAPI */
4481                 netdev->last_rx = jiffies;
4482
4483 next_desc:
4484                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4485                 buffer_info->skb = NULL;
4486
4487                 /* return some buffers to hardware, one at a time is too slow */
4488                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4489                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4490                         cleaned_count = 0;
4491                 }
4492
4493                 /* use prefetched values */
4494                 rx_desc = next_rxd;
4495                 buffer_info = next_buffer;
4496
4497                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4498         }
4499         rx_ring->next_to_clean = i;
4500
4501         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4502         if (cleaned_count)
4503                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4504
4505         adapter->total_rx_packets += total_rx_packets;
4506         adapter->total_rx_bytes += total_rx_bytes;
4507         adapter->net_stats.rx_bytes += total_rx_bytes;
4508         adapter->net_stats.rx_packets += total_rx_packets;
4509         return cleaned;
4510 }
4511
4512 /**
4513  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4514  * @adapter: address of board private structure
4515  **/
4516
4517 static void
4518 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4519                        struct e1000_rx_ring *rx_ring,
4520                        int cleaned_count)
4521 {
4522         struct net_device *netdev = adapter->netdev;
4523         struct pci_dev *pdev = adapter->pdev;
4524         struct e1000_rx_desc *rx_desc;
4525         struct e1000_buffer *buffer_info;
4526         struct sk_buff *skb;
4527         unsigned int i;
4528         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4529
4530         i = rx_ring->next_to_use;
4531         buffer_info = &rx_ring->buffer_info[i];
4532
4533         while (cleaned_count--) {
4534                 skb = buffer_info->skb;
4535                 if (skb) {
4536                         skb_trim(skb, 0);
4537                         goto map_skb;
4538                 }
4539
4540                 skb = netdev_alloc_skb(netdev, bufsz);
4541                 if (unlikely(!skb)) {
4542                         /* Better luck next round */
4543                         adapter->alloc_rx_buff_failed++;
4544                         break;
4545                 }
4546
4547                 /* Fix for errata 23, can't cross 64kB boundary */
4548                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4549                         struct sk_buff *oldskb = skb;
4550                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4551                                              "at %p\n", bufsz, skb->data);
4552                         /* Try again, without freeing the previous */
4553                         skb = netdev_alloc_skb(netdev, bufsz);
4554                         /* Failed allocation, critical failure */
4555                         if (!skb) {
4556                                 dev_kfree_skb(oldskb);
4557                                 break;
4558                         }
4559
4560                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4561                                 /* give up */
4562                                 dev_kfree_skb(skb);
4563                                 dev_kfree_skb(oldskb);
4564                                 break; /* while !buffer_info->skb */
4565                         }
4566
4567                         /* Use new allocation */
4568                         dev_kfree_skb(oldskb);
4569                 }
4570                 /* Make buffer alignment 2 beyond a 16 byte boundary
4571                  * this will result in a 16 byte aligned IP header after
4572                  * the 14 byte MAC header is removed
4573                  */
4574                 skb_reserve(skb, NET_IP_ALIGN);
4575
4576                 buffer_info->skb = skb;
4577                 buffer_info->length = adapter->rx_buffer_len;
4578 map_skb:
4579                 buffer_info->dma = pci_map_single(pdev,
4580                                                   skb->data,
4581                                                   adapter->rx_buffer_len,
4582                                                   PCI_DMA_FROMDEVICE);
4583
4584                 /* Fix for errata 23, can't cross 64kB boundary */
4585                 if (!e1000_check_64k_bound(adapter,
4586                                         (void *)(unsigned long)buffer_info->dma,
4587                                         adapter->rx_buffer_len)) {
4588                         DPRINTK(RX_ERR, ERR,
4589                                 "dma align check failed: %u bytes at %p\n",
4590                                 adapter->rx_buffer_len,
4591                                 (void *)(unsigned long)buffer_info->dma);
4592                         dev_kfree_skb(skb);
4593                         buffer_info->skb = NULL;
4594
4595                         pci_unmap_single(pdev, buffer_info->dma,
4596                                          adapter->rx_buffer_len,
4597                                          PCI_DMA_FROMDEVICE);
4598
4599                         break; /* while !buffer_info->skb */
4600                 }
4601                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4602                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4603
4604                 if (unlikely(++i == rx_ring->count))
4605                         i = 0;
4606                 buffer_info = &rx_ring->buffer_info[i];
4607         }
4608
4609         if (likely(rx_ring->next_to_use != i)) {
4610                 rx_ring->next_to_use = i;
4611                 if (unlikely(i-- == 0))
4612                         i = (rx_ring->count - 1);
4613
4614                 /* Force memory writes to complete before letting h/w
4615                  * know there are new descriptors to fetch.  (Only
4616                  * applicable for weak-ordered memory model archs,
4617                  * such as IA-64). */
4618                 wmb();
4619                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4620         }
4621 }
4622
4623 /**
4624  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4625  * @adapter: address of board private structure
4626  **/
4627
4628 static void
4629 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4630                           struct e1000_rx_ring *rx_ring,
4631                           int cleaned_count)
4632 {
4633         struct net_device *netdev = adapter->netdev;
4634         struct pci_dev *pdev = adapter->pdev;
4635         union e1000_rx_desc_packet_split *rx_desc;
4636         struct e1000_buffer *buffer_info;
4637         struct e1000_ps_page *ps_page;
4638         struct e1000_ps_page_dma *ps_page_dma;
4639         struct sk_buff *skb;
4640         unsigned int i, j;
4641
4642         i = rx_ring->next_to_use;
4643         buffer_info = &rx_ring->buffer_info[i];
4644         ps_page = &rx_ring->ps_page[i];
4645         ps_page_dma = &rx_ring->ps_page_dma[i];
4646
4647         while (cleaned_count--) {
4648                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4649
4650                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4651                         if (j < adapter->rx_ps_pages) {
4652                                 if (likely(!ps_page->ps_page[j])) {
4653                                         ps_page->ps_page[j] =
4654                                                 alloc_page(GFP_ATOMIC);
4655                                         if (unlikely(!ps_page->ps_page[j])) {
4656                                                 adapter->alloc_rx_buff_failed++;
4657                                                 goto no_buffers;
4658                                         }
4659                                         ps_page_dma->ps_page_dma[j] =
4660                                                 pci_map_page(pdev,
4661                                                             ps_page->ps_page[j],
4662                                                             0, PAGE_SIZE,
4663                                                             PCI_DMA_FROMDEVICE);
4664                                 }
4665                                 /* Refresh the desc even if buffer_addrs didn't
4666                                  * change because each write-back erases
4667                                  * this info.
4668                                  */
4669                                 rx_desc->read.buffer_addr[j+1] =
4670                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4671                         } else
4672                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
4673                 }
4674
4675                 skb = netdev_alloc_skb(netdev,
4676                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4677
4678                 if (unlikely(!skb)) {
4679                         adapter->alloc_rx_buff_failed++;
4680                         break;
4681                 }
4682
4683                 /* Make buffer alignment 2 beyond a 16 byte boundary
4684                  * this will result in a 16 byte aligned IP header after
4685                  * the 14 byte MAC header is removed
4686                  */
4687                 skb_reserve(skb, NET_IP_ALIGN);
4688
4689                 buffer_info->skb = skb;
4690                 buffer_info->length = adapter->rx_ps_bsize0;
4691                 buffer_info->dma = pci_map_single(pdev, skb->data,
4692                                                   adapter->rx_ps_bsize0,
4693                                                   PCI_DMA_FROMDEVICE);
4694
4695                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4696
4697                 if (unlikely(++i == rx_ring->count)) i = 0;
4698                 buffer_info = &rx_ring->buffer_info[i];
4699                 ps_page = &rx_ring->ps_page[i];
4700                 ps_page_dma = &rx_ring->ps_page_dma[i];
4701         }
4702
4703 no_buffers:
4704         if (likely(rx_ring->next_to_use != i)) {
4705                 rx_ring->next_to_use = i;
4706                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4707
4708                 /* Force memory writes to complete before letting h/w
4709                  * know there are new descriptors to fetch.  (Only
4710                  * applicable for weak-ordered memory model archs,
4711                  * such as IA-64). */
4712                 wmb();
4713                 /* Hardware increments by 16 bytes, but packet split
4714                  * descriptors are 32 bytes...so we increment tail
4715                  * twice as much.
4716                  */
4717                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4718         }
4719 }
4720
4721 /**
4722  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4723  * @adapter:
4724  **/
4725
4726 static void
4727 e1000_smartspeed(struct e1000_adapter *adapter)
4728 {
4729         u16 phy_status;
4730         u16 phy_ctrl;
4731
4732         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4733            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4734                 return;
4735
4736         if (adapter->smartspeed == 0) {
4737                 /* If Master/Slave config fault is asserted twice,
4738                  * we assume back-to-back */
4739                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4740                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4741                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4742                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4743                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4744                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4745                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4746                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4747                                             phy_ctrl);
4748                         adapter->smartspeed++;
4749                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4750                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4751                                                &phy_ctrl)) {
4752                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4753                                              MII_CR_RESTART_AUTO_NEG);
4754                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4755                                                     phy_ctrl);
4756                         }
4757                 }
4758                 return;
4759         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4760                 /* If still no link, perhaps using 2/3 pair cable */
4761                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4762                 phy_ctrl |= CR_1000T_MS_ENABLE;
4763                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4764                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4765                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4766                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4767                                      MII_CR_RESTART_AUTO_NEG);
4768                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4769                 }
4770         }
4771         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4772         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4773                 adapter->smartspeed = 0;
4774 }
4775
4776 /**
4777  * e1000_ioctl -
4778  * @netdev:
4779  * @ifreq:
4780  * @cmd:
4781  **/
4782
4783 static int
4784 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4785 {
4786         switch (cmd) {
4787         case SIOCGMIIPHY:
4788         case SIOCGMIIREG:
4789         case SIOCSMIIREG:
4790                 return e1000_mii_ioctl(netdev, ifr, cmd);
4791         default:
4792                 return -EOPNOTSUPP;
4793         }
4794 }
4795
4796 /**
4797  * e1000_mii_ioctl -
4798  * @netdev:
4799  * @ifreq:
4800  * @cmd:
4801  **/
4802
4803 static int
4804 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4805 {
4806         struct e1000_adapter *adapter = netdev_priv(netdev);
4807         struct mii_ioctl_data *data = if_mii(ifr);
4808         int retval;
4809         u16 mii_reg;
4810         u16 spddplx;
4811         unsigned long flags;
4812
4813         if (adapter->hw.media_type != e1000_media_type_copper)
4814                 return -EOPNOTSUPP;
4815
4816         switch (cmd) {
4817         case SIOCGMIIPHY:
4818                 data->phy_id = adapter->hw.phy_addr;
4819                 break;
4820         case SIOCGMIIREG:
4821                 if (!capable(CAP_NET_ADMIN))
4822                         return -EPERM;
4823                 spin_lock_irqsave(&adapter->stats_lock, flags);
4824                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4825                                    &data->val_out)) {
4826                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4827                         return -EIO;
4828                 }
4829                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4830                 break;
4831         case SIOCSMIIREG:
4832                 if (!capable(CAP_NET_ADMIN))
4833                         return -EPERM;
4834                 if (data->reg_num & ~(0x1F))
4835                         return -EFAULT;
4836                 mii_reg = data->val_in;
4837                 spin_lock_irqsave(&adapter->stats_lock, flags);
4838                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4839                                         mii_reg)) {
4840                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4841                         return -EIO;
4842                 }
4843                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4844                 if (adapter->hw.media_type == e1000_media_type_copper) {
4845                         switch (data->reg_num) {
4846                         case PHY_CTRL:
4847                                 if (mii_reg & MII_CR_POWER_DOWN)
4848                                         break;
4849                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4850                                         adapter->hw.autoneg = 1;
4851                                         adapter->hw.autoneg_advertised = 0x2F;
4852                                 } else {
4853                                         if (mii_reg & 0x40)
4854                                                 spddplx = SPEED_1000;
4855                                         else if (mii_reg & 0x2000)
4856                                                 spddplx = SPEED_100;
4857                                         else
4858                                                 spddplx = SPEED_10;
4859                                         spddplx += (mii_reg & 0x100)
4860                                                    ? DUPLEX_FULL :
4861                                                    DUPLEX_HALF;
4862                                         retval = e1000_set_spd_dplx(adapter,
4863                                                                     spddplx);
4864                                         if (retval)
4865                                                 return retval;
4866                                 }
4867                                 if (netif_running(adapter->netdev))
4868                                         e1000_reinit_locked(adapter);
4869                                 else
4870                                         e1000_reset(adapter);
4871                                 break;
4872                         case M88E1000_PHY_SPEC_CTRL:
4873                         case M88E1000_EXT_PHY_SPEC_CTRL:
4874                                 if (e1000_phy_reset(&adapter->hw))
4875                                         return -EIO;
4876                                 break;
4877                         }
4878                 } else {
4879                         switch (data->reg_num) {
4880                         case PHY_CTRL:
4881                                 if (mii_reg & MII_CR_POWER_DOWN)
4882                                         break;
4883                                 if (netif_running(adapter->netdev))
4884                                         e1000_reinit_locked(adapter);
4885                                 else
4886                                         e1000_reset(adapter);
4887                                 break;
4888                         }
4889                 }
4890                 break;
4891         default:
4892                 return -EOPNOTSUPP;
4893         }
4894         return E1000_SUCCESS;
4895 }
4896
4897 void
4898 e1000_pci_set_mwi(struct e1000_hw *hw)
4899 {
4900         struct e1000_adapter *adapter = hw->back;
4901         int ret_val = pci_set_mwi(adapter->pdev);
4902
4903         if (ret_val)
4904                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4905 }
4906
4907 void
4908 e1000_pci_clear_mwi(struct e1000_hw *hw)
4909 {
4910         struct e1000_adapter *adapter = hw->back;
4911
4912         pci_clear_mwi(adapter->pdev);
4913 }
4914
4915 int
4916 e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4917 {
4918         struct e1000_adapter *adapter = hw->back;
4919         return pcix_get_mmrbc(adapter->pdev);
4920 }
4921
4922 void
4923 e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4924 {
4925         struct e1000_adapter *adapter = hw->back;
4926         pcix_set_mmrbc(adapter->pdev, mmrbc);
4927 }
4928
4929 s32
4930 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
4931 {
4932     struct e1000_adapter *adapter = hw->back;
4933     u16 cap_offset;
4934
4935     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4936     if (!cap_offset)
4937         return -E1000_ERR_CONFIG;
4938
4939     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4940
4941     return E1000_SUCCESS;
4942 }
4943
4944 void
4945 e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4946 {
4947         outl(value, port);
4948 }
4949
4950 static void
4951 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4952 {
4953         struct e1000_adapter *adapter = netdev_priv(netdev);
4954         u32 ctrl, rctl;
4955
4956         if (!test_bit(__E1000_DOWN, &adapter->flags))
4957                 e1000_irq_disable(adapter);
4958         adapter->vlgrp = grp;
4959
4960         if (grp) {
4961                 /* enable VLAN tag insert/strip */
4962                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4963                 ctrl |= E1000_CTRL_VME;
4964                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4965
4966                 if (adapter->hw.mac_type != e1000_ich8lan) {
4967                         /* enable VLAN receive filtering */
4968                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4969                         rctl |= E1000_RCTL_VFE;
4970                         rctl &= ~E1000_RCTL_CFIEN;
4971                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4972                         e1000_update_mng_vlan(adapter);
4973                 }
4974         } else {
4975                 /* disable VLAN tag insert/strip */
4976                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4977                 ctrl &= ~E1000_CTRL_VME;
4978                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4979
4980                 if (adapter->hw.mac_type != e1000_ich8lan) {
4981                         /* disable VLAN filtering */
4982                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4983                         rctl &= ~E1000_RCTL_VFE;
4984                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4985                         if (adapter->mng_vlan_id !=
4986                             (u16)E1000_MNG_VLAN_NONE) {
4987                                 e1000_vlan_rx_kill_vid(netdev,
4988                                                        adapter->mng_vlan_id);
4989                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4990                         }
4991                 }
4992         }
4993
4994         if (!test_bit(__E1000_DOWN, &adapter->flags))
4995                 e1000_irq_enable(adapter);
4996 }
4997
4998 static void
4999 e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5000 {
5001         struct e1000_adapter *adapter = netdev_priv(netdev);
5002         u32 vfta, index;
5003
5004         if ((adapter->hw.mng_cookie.status &
5005              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
5006             (vid == adapter->mng_vlan_id))
5007                 return;
5008         /* add VID to filter table */
5009         index = (vid >> 5) & 0x7F;
5010         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5011         vfta |= (1 << (vid & 0x1F));
5012         e1000_write_vfta(&adapter->hw, index, vfta);
5013 }
5014
5015 static void
5016 e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5017 {
5018         struct e1000_adapter *adapter = netdev_priv(netdev);
5019         u32 vfta, index;
5020
5021         if (!test_bit(__E1000_DOWN, &adapter->flags))
5022                 e1000_irq_disable(adapter);
5023         vlan_group_set_device(adapter->vlgrp, vid, NULL);
5024         if (!test_bit(__E1000_DOWN, &adapter->flags))
5025                 e1000_irq_enable(adapter);
5026
5027         if ((adapter->hw.mng_cookie.status &
5028              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
5029             (vid == adapter->mng_vlan_id)) {
5030                 /* release control to f/w */
5031                 e1000_release_hw_control(adapter);
5032                 return;
5033         }
5034
5035         /* remove VID from filter table */
5036         index = (vid >> 5) & 0x7F;
5037         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5038         vfta &= ~(1 << (vid & 0x1F));
5039         e1000_write_vfta(&adapter->hw, index, vfta);
5040 }
5041
5042 static void
5043 e1000_restore_vlan(struct e1000_adapter *adapter)
5044 {
5045         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5046
5047         if (adapter->vlgrp) {
5048                 u16 vid;
5049                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5050                         if (!vlan_group_get_device(adapter->vlgrp, vid))
5051                                 continue;
5052                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
5053                 }
5054         }
5055 }
5056
5057 int
5058 e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
5059 {
5060         adapter->hw.autoneg = 0;
5061
5062         /* Fiber NICs only allow 1000 gbps Full duplex */
5063         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
5064                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5065                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5066                 return -EINVAL;
5067         }
5068
5069         switch (spddplx) {
5070         case SPEED_10 + DUPLEX_HALF:
5071                 adapter->hw.forced_speed_duplex = e1000_10_half;
5072                 break;
5073         case SPEED_10 + DUPLEX_FULL:
5074                 adapter->hw.forced_speed_duplex = e1000_10_full;
5075                 break;
5076         case SPEED_100 + DUPLEX_HALF:
5077                 adapter->hw.forced_speed_duplex = e1000_100_half;
5078                 break;
5079         case SPEED_100 + DUPLEX_FULL:
5080                 adapter->hw.forced_speed_duplex = e1000_100_full;
5081                 break;
5082         case SPEED_1000 + DUPLEX_FULL:
5083                 adapter->hw.autoneg = 1;
5084                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
5085                 break;
5086         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5087         default:
5088                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5089                 return -EINVAL;
5090         }
5091         return 0;
5092 }
5093
5094 static int
5095 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5096 {
5097         struct net_device *netdev = pci_get_drvdata(pdev);
5098         struct e1000_adapter *adapter = netdev_priv(netdev);
5099         u32 ctrl, ctrl_ext, rctl, status;
5100         u32 wufc = adapter->wol;
5101 #ifdef CONFIG_PM
5102         int retval = 0;
5103 #endif
5104
5105         netif_device_detach(netdev);
5106
5107         if (netif_running(netdev)) {
5108                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5109                 e1000_down(adapter);
5110         }
5111
5112 #ifdef CONFIG_PM
5113         retval = pci_save_state(pdev);
5114         if (retval)
5115                 return retval;
5116 #endif
5117
5118         status = E1000_READ_REG(&adapter->hw, STATUS);
5119         if (status & E1000_STATUS_LU)
5120                 wufc &= ~E1000_WUFC_LNKC;
5121
5122         if (wufc) {
5123                 e1000_setup_rctl(adapter);
5124                 e1000_set_rx_mode(netdev);
5125
5126                 /* turn on all-multi mode if wake on multicast is enabled */
5127                 if (wufc & E1000_WUFC_MC) {
5128                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
5129                         rctl |= E1000_RCTL_MPE;
5130                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5131                 }
5132
5133                 if (adapter->hw.mac_type >= e1000_82540) {
5134                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5135                         /* advertise wake from D3Cold */
5136                         #define E1000_CTRL_ADVD3WUC 0x00100000
5137                         /* phy power management enable */
5138                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5139                         ctrl |= E1000_CTRL_ADVD3WUC |
5140                                 E1000_CTRL_EN_PHY_PWR_MGMT;
5141                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5142                 }
5143
5144                 if (adapter->hw.media_type == e1000_media_type_fiber ||
5145                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
5146                         /* keep the laser running in D3 */
5147                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
5148                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5149                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
5150                 }
5151
5152                 /* Allow time for pending master requests to run */
5153                 e1000_disable_pciex_master(&adapter->hw);
5154
5155                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
5156                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
5157                 pci_enable_wake(pdev, PCI_D3hot, 1);
5158                 pci_enable_wake(pdev, PCI_D3cold, 1);
5159         } else {
5160                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
5161                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
5162                 pci_enable_wake(pdev, PCI_D3hot, 0);
5163                 pci_enable_wake(pdev, PCI_D3cold, 0);
5164         }
5165
5166         e1000_release_manageability(adapter);
5167
5168         /* make sure adapter isn't asleep if manageability is enabled */
5169         if (adapter->en_mng_pt) {
5170                 pci_enable_wake(pdev, PCI_D3hot, 1);
5171                 pci_enable_wake(pdev, PCI_D3cold, 1);
5172         }
5173
5174         if (adapter->hw.phy_type == e1000_phy_igp_3)
5175                 e1000_phy_powerdown_workaround(&adapter->hw);
5176
5177         if (netif_running(netdev))
5178                 e1000_free_irq(adapter);
5179
5180         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5181          * would have already happened in close and is redundant. */
5182         e1000_release_hw_control(adapter);
5183
5184         pci_disable_device(pdev);
5185
5186         pci_set_power_state(pdev, pci_choose_state(pdev, state));
5187
5188         return 0;
5189 }
5190
5191 #ifdef CONFIG_PM
5192 static int
5193 e1000_resume(struct pci_dev *pdev)
5194 {
5195         struct net_device *netdev = pci_get_drvdata(pdev);
5196         struct e1000_adapter *adapter = netdev_priv(netdev);
5197         u32 err;
5198
5199         pci_set_power_state(pdev, PCI_D0);
5200         pci_restore_state(pdev);
5201         if ((err = pci_enable_device(pdev))) {
5202                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5203                 return err;
5204         }
5205         pci_set_master(pdev);
5206
5207         pci_enable_wake(pdev, PCI_D3hot, 0);
5208         pci_enable_wake(pdev, PCI_D3cold, 0);
5209
5210         if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
5211                 return err;
5212
5213         e1000_power_up_phy(adapter);
5214         e1000_reset(adapter);
5215         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5216
5217         e1000_init_manageability(adapter);
5218
5219         if (netif_running(netdev))
5220                 e1000_up(adapter);
5221
5222         netif_device_attach(netdev);
5223
5224         /* If the controller is 82573 and f/w is AMT, do not set
5225          * DRV_LOAD until the interface is up.  For all other cases,
5226          * let the f/w know that the h/w is now under the control
5227          * of the driver. */
5228         if (adapter->hw.mac_type != e1000_82573 ||
5229             !e1000_check_mng_mode(&adapter->hw))
5230                 e1000_get_hw_control(adapter);
5231
5232         return 0;
5233 }
5234 #endif
5235
5236 static void e1000_shutdown(struct pci_dev *pdev)
5237 {
5238         e1000_suspend(pdev, PMSG_SUSPEND);
5239 }
5240
5241 #ifdef CONFIG_NET_POLL_CONTROLLER
5242 /*
5243  * Polling 'interrupt' - used by things like netconsole to send skbs
5244  * without having to re-enable interrupts. It's not called while
5245  * the interrupt routine is executing.
5246  */
5247 static void
5248 e1000_netpoll(struct net_device *netdev)
5249 {
5250         struct e1000_adapter *adapter = netdev_priv(netdev);
5251
5252         disable_irq(adapter->pdev->irq);
5253         e1000_intr(adapter->pdev->irq, netdev);
5254 #ifndef CONFIG_E1000_NAPI
5255         adapter->clean_rx(adapter, adapter->rx_ring);
5256 #endif
5257         enable_irq(adapter->pdev->irq);
5258 }
5259 #endif
5260
5261 /**
5262  * e1000_io_error_detected - called when PCI error is detected
5263  * @pdev: Pointer to PCI device
5264  * @state: The current pci conneection state
5265  *
5266  * This function is called after a PCI bus error affecting
5267  * this device has been detected.
5268  */
5269 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
5270 {
5271         struct net_device *netdev = pci_get_drvdata(pdev);
5272         struct e1000_adapter *adapter = netdev->priv;
5273
5274         netif_device_detach(netdev);
5275
5276         if (netif_running(netdev))
5277                 e1000_down(adapter);
5278         pci_disable_device(pdev);
5279
5280         /* Request a slot slot reset. */
5281         return PCI_ERS_RESULT_NEED_RESET;
5282 }
5283
5284 /**
5285  * e1000_io_slot_reset - called after the pci bus has been reset.
5286  * @pdev: Pointer to PCI device
5287  *
5288  * Restart the card from scratch, as if from a cold-boot. Implementation
5289  * resembles the first-half of the e1000_resume routine.
5290  */
5291 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5292 {
5293         struct net_device *netdev = pci_get_drvdata(pdev);
5294         struct e1000_adapter *adapter = netdev->priv;
5295
5296         if (pci_enable_device(pdev)) {
5297                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5298                 return PCI_ERS_RESULT_DISCONNECT;
5299         }
5300         pci_set_master(pdev);
5301
5302         pci_enable_wake(pdev, PCI_D3hot, 0);
5303         pci_enable_wake(pdev, PCI_D3cold, 0);
5304
5305         e1000_reset(adapter);
5306         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5307
5308         return PCI_ERS_RESULT_RECOVERED;
5309 }
5310
5311 /**
5312  * e1000_io_resume - called when traffic can start flowing again.
5313  * @pdev: Pointer to PCI device
5314  *
5315  * This callback is called when the error recovery driver tells us that
5316  * its OK to resume normal operation. Implementation resembles the
5317  * second-half of the e1000_resume routine.
5318  */
5319 static void e1000_io_resume(struct pci_dev *pdev)
5320 {
5321         struct net_device *netdev = pci_get_drvdata(pdev);
5322         struct e1000_adapter *adapter = netdev->priv;
5323
5324         e1000_init_manageability(adapter);
5325
5326         if (netif_running(netdev)) {
5327                 if (e1000_up(adapter)) {
5328                         printk("e1000: can't bring device back up after reset\n");
5329                         return;
5330                 }
5331         }
5332
5333         netif_device_attach(netdev);
5334
5335         /* If the controller is 82573 and f/w is AMT, do not set
5336          * DRV_LOAD until the interface is up.  For all other cases,
5337          * let the f/w know that the h/w is now under the control
5338          * of the driver. */
5339         if (adapter->hw.mac_type != e1000_82573 ||
5340             !e1000_check_mng_mode(&adapter->hw))
5341                 e1000_get_hw_control(adapter);
5342
5343 }
5344
5345 /* e1000_main.c */