4bcfa374f4d6cc165cc20759b6a8b56694a4d25a
[sfrench/cifs-2.6.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern int e1000_up(struct e1000_adapter *adapter);
36 extern void e1000_down(struct e1000_adapter *adapter);
37 extern void e1000_reinit_locked(struct e1000_adapter *adapter);
38 extern void e1000_reset(struct e1000_adapter *adapter);
39 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
40 extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
41 extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
42 extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
43 extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_update_stats(struct e1000_adapter *adapter);
45
46
47 struct e1000_stats {
48         char stat_string[ETH_GSTRING_LEN];
49         int sizeof_stat;
50         int stat_offset;
51 };
52
53 #define E1000_STAT(m) FIELD_SIZEOF(struct e1000_adapter, m), \
54                       offsetof(struct e1000_adapter, m)
55 static const struct e1000_stats e1000_gstrings_stats[] = {
56         { "rx_packets", E1000_STAT(stats.gprc) },
57         { "tx_packets", E1000_STAT(stats.gptc) },
58         { "rx_bytes", E1000_STAT(stats.gorcl) },
59         { "tx_bytes", E1000_STAT(stats.gotcl) },
60         { "rx_broadcast", E1000_STAT(stats.bprc) },
61         { "tx_broadcast", E1000_STAT(stats.bptc) },
62         { "rx_multicast", E1000_STAT(stats.mprc) },
63         { "tx_multicast", E1000_STAT(stats.mptc) },
64         { "rx_errors", E1000_STAT(stats.rxerrc) },
65         { "tx_errors", E1000_STAT(stats.txerrc) },
66         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
67         { "multicast", E1000_STAT(stats.mprc) },
68         { "collisions", E1000_STAT(stats.colc) },
69         { "rx_length_errors", E1000_STAT(stats.rlerrc) },
70         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
71         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
72         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
73         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
74         { "rx_missed_errors", E1000_STAT(stats.mpc) },
75         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
76         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
77         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
78         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
79         { "tx_window_errors", E1000_STAT(stats.latecol) },
80         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
81         { "tx_deferred_ok", E1000_STAT(stats.dc) },
82         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
83         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
84         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
85         { "tx_restart_queue", E1000_STAT(restart_queue) },
86         { "rx_long_length_errors", E1000_STAT(stats.roc) },
87         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
88         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
89         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
90         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
91         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
92         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
93         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
94         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
95         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
96         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
97         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
98         { "rx_header_split", E1000_STAT(rx_hdr_split) },
99         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
100         { "tx_smbus", E1000_STAT(stats.mgptc) },
101         { "rx_smbus", E1000_STAT(stats.mgprc) },
102         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
103 };
104
105 #define E1000_QUEUE_STATS_LEN 0
106 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
107 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
108 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
109         "Register test  (offline)", "Eeprom test    (offline)",
110         "Interrupt test (offline)", "Loopback test  (offline)",
111         "Link test   (on/offline)"
112 };
113 #define E1000_TEST_LEN  ARRAY_SIZE(e1000_gstrings_test)
114
115 static int e1000_get_settings(struct net_device *netdev,
116                               struct ethtool_cmd *ecmd)
117 {
118         struct e1000_adapter *adapter = netdev_priv(netdev);
119         struct e1000_hw *hw = &adapter->hw;
120
121         if (hw->media_type == e1000_media_type_copper) {
122
123                 ecmd->supported = (SUPPORTED_10baseT_Half |
124                                    SUPPORTED_10baseT_Full |
125                                    SUPPORTED_100baseT_Half |
126                                    SUPPORTED_100baseT_Full |
127                                    SUPPORTED_1000baseT_Full|
128                                    SUPPORTED_Autoneg |
129                                    SUPPORTED_TP);
130                 if (hw->phy_type == e1000_phy_ife)
131                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
132                 ecmd->advertising = ADVERTISED_TP;
133
134                 if (hw->autoneg == 1) {
135                         ecmd->advertising |= ADVERTISED_Autoneg;
136                         /* the e1000 autoneg seems to match ethtool nicely */
137                         ecmd->advertising |= hw->autoneg_advertised;
138                 }
139
140                 ecmd->port = PORT_TP;
141                 ecmd->phy_address = hw->phy_addr;
142
143                 if (hw->mac_type == e1000_82543)
144                         ecmd->transceiver = XCVR_EXTERNAL;
145                 else
146                         ecmd->transceiver = XCVR_INTERNAL;
147
148         } else {
149                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
150                                      SUPPORTED_FIBRE |
151                                      SUPPORTED_Autoneg);
152
153                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
154                                      ADVERTISED_FIBRE |
155                                      ADVERTISED_Autoneg);
156
157                 ecmd->port = PORT_FIBRE;
158
159                 if (hw->mac_type >= e1000_82545)
160                         ecmd->transceiver = XCVR_INTERNAL;
161                 else
162                         ecmd->transceiver = XCVR_EXTERNAL;
163         }
164
165         if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU) {
166
167                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
168                                                    &adapter->link_duplex);
169                 ecmd->speed = adapter->link_speed;
170
171                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
172                  *          and HALF_DUPLEX != DUPLEX_HALF */
173
174                 if (adapter->link_duplex == FULL_DUPLEX)
175                         ecmd->duplex = DUPLEX_FULL;
176                 else
177                         ecmd->duplex = DUPLEX_HALF;
178         } else {
179                 ecmd->speed = -1;
180                 ecmd->duplex = -1;
181         }
182
183         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
184                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
185         return 0;
186 }
187
188 static int e1000_set_settings(struct net_device *netdev,
189                               struct ethtool_cmd *ecmd)
190 {
191         struct e1000_adapter *adapter = netdev_priv(netdev);
192         struct e1000_hw *hw = &adapter->hw;
193
194         /* When SoL/IDER sessions are active, autoneg/speed/duplex
195          * cannot be changed */
196         if (e1000_check_phy_reset_block(hw)) {
197                 DPRINTK(DRV, ERR, "Cannot change link characteristics "
198                         "when SoL/IDER is active.\n");
199                 return -EINVAL;
200         }
201
202         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
203                 msleep(1);
204
205         if (ecmd->autoneg == AUTONEG_ENABLE) {
206                 hw->autoneg = 1;
207                 if (hw->media_type == e1000_media_type_fiber)
208                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
209                                      ADVERTISED_FIBRE |
210                                      ADVERTISED_Autoneg;
211                 else
212                         hw->autoneg_advertised = ecmd->advertising |
213                                                  ADVERTISED_TP |
214                                                  ADVERTISED_Autoneg;
215                 ecmd->advertising = hw->autoneg_advertised;
216         } else
217                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
218                         clear_bit(__E1000_RESETTING, &adapter->flags);
219                         return -EINVAL;
220                 }
221
222         /* reset the link */
223
224         if (netif_running(adapter->netdev)) {
225                 e1000_down(adapter);
226                 e1000_up(adapter);
227         } else
228                 e1000_reset(adapter);
229
230         clear_bit(__E1000_RESETTING, &adapter->flags);
231         return 0;
232 }
233
234 static void e1000_get_pauseparam(struct net_device *netdev,
235                                  struct ethtool_pauseparam *pause)
236 {
237         struct e1000_adapter *adapter = netdev_priv(netdev);
238         struct e1000_hw *hw = &adapter->hw;
239
240         pause->autoneg =
241                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
242
243         if (hw->fc == E1000_FC_RX_PAUSE)
244                 pause->rx_pause = 1;
245         else if (hw->fc == E1000_FC_TX_PAUSE)
246                 pause->tx_pause = 1;
247         else if (hw->fc == E1000_FC_FULL) {
248                 pause->rx_pause = 1;
249                 pause->tx_pause = 1;
250         }
251 }
252
253 static int e1000_set_pauseparam(struct net_device *netdev,
254                                 struct ethtool_pauseparam *pause)
255 {
256         struct e1000_adapter *adapter = netdev_priv(netdev);
257         struct e1000_hw *hw = &adapter->hw;
258         int retval = 0;
259
260         adapter->fc_autoneg = pause->autoneg;
261
262         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
263                 msleep(1);
264
265         if (pause->rx_pause && pause->tx_pause)
266                 hw->fc = E1000_FC_FULL;
267         else if (pause->rx_pause && !pause->tx_pause)
268                 hw->fc = E1000_FC_RX_PAUSE;
269         else if (!pause->rx_pause && pause->tx_pause)
270                 hw->fc = E1000_FC_TX_PAUSE;
271         else if (!pause->rx_pause && !pause->tx_pause)
272                 hw->fc = E1000_FC_NONE;
273
274         hw->original_fc = hw->fc;
275
276         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
277                 if (netif_running(adapter->netdev)) {
278                         e1000_down(adapter);
279                         e1000_up(adapter);
280                 } else
281                         e1000_reset(adapter);
282         } else
283                 retval = ((hw->media_type == e1000_media_type_fiber) ?
284                           e1000_setup_link(hw) : e1000_force_mac_fc(hw));
285
286         clear_bit(__E1000_RESETTING, &adapter->flags);
287         return retval;
288 }
289
290 static u32 e1000_get_rx_csum(struct net_device *netdev)
291 {
292         struct e1000_adapter *adapter = netdev_priv(netdev);
293         return adapter->rx_csum;
294 }
295
296 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
297 {
298         struct e1000_adapter *adapter = netdev_priv(netdev);
299         adapter->rx_csum = data;
300
301         if (netif_running(netdev))
302                 e1000_reinit_locked(adapter);
303         else
304                 e1000_reset(adapter);
305         return 0;
306 }
307
308 static u32 e1000_get_tx_csum(struct net_device *netdev)
309 {
310         return (netdev->features & NETIF_F_HW_CSUM) != 0;
311 }
312
313 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
314 {
315         struct e1000_adapter *adapter = netdev_priv(netdev);
316
317         if (adapter->hw.mac_type < e1000_82543) {
318                 if (!data)
319                         return -EINVAL;
320                 return 0;
321         }
322
323         if (data)
324                 netdev->features |= NETIF_F_HW_CSUM;
325         else
326                 netdev->features &= ~NETIF_F_HW_CSUM;
327
328         return 0;
329 }
330
331 static int e1000_set_tso(struct net_device *netdev, u32 data)
332 {
333         struct e1000_adapter *adapter = netdev_priv(netdev);
334         if ((adapter->hw.mac_type < e1000_82544) ||
335             (adapter->hw.mac_type == e1000_82547))
336                 return data ? -EINVAL : 0;
337
338         if (data)
339                 netdev->features |= NETIF_F_TSO;
340         else
341                 netdev->features &= ~NETIF_F_TSO;
342
343         if (data && (adapter->hw.mac_type > e1000_82547_rev_2))
344                 netdev->features |= NETIF_F_TSO6;
345         else
346                 netdev->features &= ~NETIF_F_TSO6;
347
348         DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
349         adapter->tso_force = true;
350         return 0;
351 }
352
353 static u32 e1000_get_msglevel(struct net_device *netdev)
354 {
355         struct e1000_adapter *adapter = netdev_priv(netdev);
356         return adapter->msg_enable;
357 }
358
359 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
360 {
361         struct e1000_adapter *adapter = netdev_priv(netdev);
362         adapter->msg_enable = data;
363 }
364
365 static int e1000_get_regs_len(struct net_device *netdev)
366 {
367 #define E1000_REGS_LEN 32
368         return E1000_REGS_LEN * sizeof(u32);
369 }
370
371 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
372                            void *p)
373 {
374         struct e1000_adapter *adapter = netdev_priv(netdev);
375         struct e1000_hw *hw = &adapter->hw;
376         u32 *regs_buff = p;
377         u16 phy_data;
378
379         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
380
381         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
382
383         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
384         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
385
386         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
387         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
388         regs_buff[4]  = E1000_READ_REG(hw, RDH);
389         regs_buff[5]  = E1000_READ_REG(hw, RDT);
390         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
391
392         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
393         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
394         regs_buff[9]  = E1000_READ_REG(hw, TDH);
395         regs_buff[10] = E1000_READ_REG(hw, TDT);
396         regs_buff[11] = E1000_READ_REG(hw, TIDV);
397
398         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
399         if (hw->phy_type == e1000_phy_igp) {
400                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
401                                     IGP01E1000_PHY_AGC_A);
402                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
403                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
404                 regs_buff[13] = (u32)phy_data; /* cable length */
405                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
406                                     IGP01E1000_PHY_AGC_B);
407                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
408                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
409                 regs_buff[14] = (u32)phy_data; /* cable length */
410                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
411                                     IGP01E1000_PHY_AGC_C);
412                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
413                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
414                 regs_buff[15] = (u32)phy_data; /* cable length */
415                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
416                                     IGP01E1000_PHY_AGC_D);
417                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
418                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
419                 regs_buff[16] = (u32)phy_data; /* cable length */
420                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
421                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
422                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
423                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
424                 regs_buff[18] = (u32)phy_data; /* cable polarity */
425                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
426                                     IGP01E1000_PHY_PCS_INIT_REG);
427                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
428                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
429                 regs_buff[19] = (u32)phy_data; /* cable polarity */
430                 regs_buff[20] = 0; /* polarity correction enabled (always) */
431                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
432                 regs_buff[23] = regs_buff[18]; /* mdix mode */
433                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
434         } else {
435                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
436                 regs_buff[13] = (u32)phy_data; /* cable length */
437                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
438                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
439                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
440                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
441                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
442                 regs_buff[18] = regs_buff[13]; /* cable polarity */
443                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
444                 regs_buff[20] = regs_buff[17]; /* polarity correction */
445                 /* phy receive errors */
446                 regs_buff[22] = adapter->phy_stats.receive_errors;
447                 regs_buff[23] = regs_buff[13]; /* mdix mode */
448         }
449         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
450         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
451         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
452         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
453         if (hw->mac_type >= e1000_82540 &&
454             hw->mac_type < e1000_82571 &&
455             hw->media_type == e1000_media_type_copper) {
456                 regs_buff[26] = E1000_READ_REG(hw, MANC);
457         }
458 }
459
460 static int e1000_get_eeprom_len(struct net_device *netdev)
461 {
462         struct e1000_adapter *adapter = netdev_priv(netdev);
463         return adapter->hw.eeprom.word_size * 2;
464 }
465
466 static int e1000_get_eeprom(struct net_device *netdev,
467                             struct ethtool_eeprom *eeprom, u8 *bytes)
468 {
469         struct e1000_adapter *adapter = netdev_priv(netdev);
470         struct e1000_hw *hw = &adapter->hw;
471         u16 *eeprom_buff;
472         int first_word, last_word;
473         int ret_val = 0;
474         u16 i;
475
476         if (eeprom->len == 0)
477                 return -EINVAL;
478
479         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
480
481         first_word = eeprom->offset >> 1;
482         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
483
484         eeprom_buff = kmalloc(sizeof(u16) *
485                         (last_word - first_word + 1), GFP_KERNEL);
486         if (!eeprom_buff)
487                 return -ENOMEM;
488
489         if (hw->eeprom.type == e1000_eeprom_spi)
490                 ret_val = e1000_read_eeprom(hw, first_word,
491                                             last_word - first_word + 1,
492                                             eeprom_buff);
493         else {
494                 for (i = 0; i < last_word - first_word + 1; i++)
495                         if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
496                                                         &eeprom_buff[i])))
497                                 break;
498         }
499
500         /* Device's eeprom is always little-endian, word addressable */
501         for (i = 0; i < last_word - first_word + 1; i++)
502                 le16_to_cpus(&eeprom_buff[i]);
503
504         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
505                         eeprom->len);
506         kfree(eeprom_buff);
507
508         return ret_val;
509 }
510
511 static int e1000_set_eeprom(struct net_device *netdev,
512                             struct ethtool_eeprom *eeprom, u8 *bytes)
513 {
514         struct e1000_adapter *adapter = netdev_priv(netdev);
515         struct e1000_hw *hw = &adapter->hw;
516         u16 *eeprom_buff;
517         void *ptr;
518         int max_len, first_word, last_word, ret_val = 0;
519         u16 i;
520
521         if (eeprom->len == 0)
522                 return -EOPNOTSUPP;
523
524         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
525                 return -EFAULT;
526
527         max_len = hw->eeprom.word_size * 2;
528
529         first_word = eeprom->offset >> 1;
530         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
531         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
532         if (!eeprom_buff)
533                 return -ENOMEM;
534
535         ptr = (void *)eeprom_buff;
536
537         if (eeprom->offset & 1) {
538                 /* need read/modify/write of first changed EEPROM word */
539                 /* only the second byte of the word is being modified */
540                 ret_val = e1000_read_eeprom(hw, first_word, 1,
541                                             &eeprom_buff[0]);
542                 ptr++;
543         }
544         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
545                 /* need read/modify/write of last changed EEPROM word */
546                 /* only the first byte of the word is being modified */
547                 ret_val = e1000_read_eeprom(hw, last_word, 1,
548                                   &eeprom_buff[last_word - first_word]);
549         }
550
551         /* Device's eeprom is always little-endian, word addressable */
552         for (i = 0; i < last_word - first_word + 1; i++)
553                 le16_to_cpus(&eeprom_buff[i]);
554
555         memcpy(ptr, bytes, eeprom->len);
556
557         for (i = 0; i < last_word - first_word + 1; i++)
558                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
559
560         ret_val = e1000_write_eeprom(hw, first_word,
561                                      last_word - first_word + 1, eeprom_buff);
562
563         /* Update the checksum over the first part of the EEPROM if needed
564          * and flush shadow RAM for 82573 conrollers */
565         if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
566                                 (hw->mac_type == e1000_82573)))
567                 e1000_update_eeprom_checksum(hw);
568
569         kfree(eeprom_buff);
570         return ret_val;
571 }
572
573 static void e1000_get_drvinfo(struct net_device *netdev,
574                               struct ethtool_drvinfo *drvinfo)
575 {
576         struct e1000_adapter *adapter = netdev_priv(netdev);
577         char firmware_version[32];
578         u16 eeprom_data;
579
580         strncpy(drvinfo->driver,  e1000_driver_name, 32);
581         strncpy(drvinfo->version, e1000_driver_version, 32);
582
583         /* EEPROM image version # is reported as firmware version # for
584          * 8257{1|2|3} controllers */
585         e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
586         switch (adapter->hw.mac_type) {
587         case e1000_82571:
588         case e1000_82572:
589         case e1000_82573:
590         case e1000_80003es2lan:
591         case e1000_ich8lan:
592                 sprintf(firmware_version, "%d.%d-%d",
593                         (eeprom_data & 0xF000) >> 12,
594                         (eeprom_data & 0x0FF0) >> 4,
595                         eeprom_data & 0x000F);
596                 break;
597         default:
598                 sprintf(firmware_version, "N/A");
599         }
600
601         strncpy(drvinfo->fw_version, firmware_version, 32);
602         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
603         drvinfo->regdump_len = e1000_get_regs_len(netdev);
604         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
605 }
606
607 static void e1000_get_ringparam(struct net_device *netdev,
608                                 struct ethtool_ringparam *ring)
609 {
610         struct e1000_adapter *adapter = netdev_priv(netdev);
611         e1000_mac_type mac_type = adapter->hw.mac_type;
612         struct e1000_tx_ring *txdr = adapter->tx_ring;
613         struct e1000_rx_ring *rxdr = adapter->rx_ring;
614
615         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
616                 E1000_MAX_82544_RXD;
617         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
618                 E1000_MAX_82544_TXD;
619         ring->rx_mini_max_pending = 0;
620         ring->rx_jumbo_max_pending = 0;
621         ring->rx_pending = rxdr->count;
622         ring->tx_pending = txdr->count;
623         ring->rx_mini_pending = 0;
624         ring->rx_jumbo_pending = 0;
625 }
626
627 static int e1000_set_ringparam(struct net_device *netdev,
628                                struct ethtool_ringparam *ring)
629 {
630         struct e1000_adapter *adapter = netdev_priv(netdev);
631         e1000_mac_type mac_type = adapter->hw.mac_type;
632         struct e1000_tx_ring *txdr, *tx_old;
633         struct e1000_rx_ring *rxdr, *rx_old;
634         int i, err;
635
636         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
637                 return -EINVAL;
638
639         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
640                 msleep(1);
641
642         if (netif_running(adapter->netdev))
643                 e1000_down(adapter);
644
645         tx_old = adapter->tx_ring;
646         rx_old = adapter->rx_ring;
647
648         err = -ENOMEM;
649         txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
650         if (!txdr)
651                 goto err_alloc_tx;
652
653         rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
654         if (!rxdr)
655                 goto err_alloc_rx;
656
657         adapter->tx_ring = txdr;
658         adapter->rx_ring = rxdr;
659
660         rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
661         rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
662                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
663         rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
664
665         txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
666         txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
667                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
668         txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
669
670         for (i = 0; i < adapter->num_tx_queues; i++)
671                 txdr[i].count = txdr->count;
672         for (i = 0; i < adapter->num_rx_queues; i++)
673                 rxdr[i].count = rxdr->count;
674
675         if (netif_running(adapter->netdev)) {
676                 /* Try to get new resources before deleting old */
677                 if ((err = e1000_setup_all_rx_resources(adapter)))
678                         goto err_setup_rx;
679                 if ((err = e1000_setup_all_tx_resources(adapter)))
680                         goto err_setup_tx;
681
682                 /* save the new, restore the old in order to free it,
683                  * then restore the new back again */
684
685                 adapter->rx_ring = rx_old;
686                 adapter->tx_ring = tx_old;
687                 e1000_free_all_rx_resources(adapter);
688                 e1000_free_all_tx_resources(adapter);
689                 kfree(tx_old);
690                 kfree(rx_old);
691                 adapter->rx_ring = rxdr;
692                 adapter->tx_ring = txdr;
693                 if ((err = e1000_up(adapter)))
694                         goto err_setup;
695         }
696
697         clear_bit(__E1000_RESETTING, &adapter->flags);
698         return 0;
699 err_setup_tx:
700         e1000_free_all_rx_resources(adapter);
701 err_setup_rx:
702         adapter->rx_ring = rx_old;
703         adapter->tx_ring = tx_old;
704         kfree(rxdr);
705 err_alloc_rx:
706         kfree(txdr);
707 err_alloc_tx:
708         e1000_up(adapter);
709 err_setup:
710         clear_bit(__E1000_RESETTING, &adapter->flags);
711         return err;
712 }
713
714 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
715                              u32 mask, u32 write)
716 {
717         static const u32 test[] =
718                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
719         u8 __iomem *address = adapter->hw.hw_addr + reg;
720         u32 read;
721         int i;
722
723         for (i = 0; i < ARRAY_SIZE(test); i++) {
724                 writel(write & test[i], address);
725                 read = readl(address);
726                 if (read != (write & test[i] & mask)) {
727                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: "
728                                 "got 0x%08X expected 0x%08X\n",
729                                 reg, read, (write & test[i] & mask));
730                         *data = reg;
731                         return true;
732                 }
733         }
734         return false;
735 }
736
737 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
738                               u32 mask, u32 write)
739 {
740         u8 __iomem *address = adapter->hw.hw_addr + reg;
741         u32 read;
742
743         writel(write & mask, address);
744         read = readl(address);
745         if ((read & mask) != (write & mask)) {
746                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: "
747                         "got 0x%08X expected 0x%08X\n",
748                         reg, (read & mask), (write & mask));
749                 *data = reg;
750                 return true;
751         }
752         return false;
753 }
754
755 #define REG_PATTERN_TEST(reg, mask, write)                           \
756         do {                                                         \
757                 if (reg_pattern_test(adapter, data,                  \
758                              (adapter->hw.mac_type >= e1000_82543)   \
759                              ? E1000_##reg : E1000_82542_##reg,      \
760                              mask, write))                           \
761                         return 1;                                    \
762         } while (0)
763
764 #define REG_SET_AND_CHECK(reg, mask, write)                          \
765         do {                                                         \
766                 if (reg_set_and_check(adapter, data,                 \
767                               (adapter->hw.mac_type >= e1000_82543)  \
768                               ? E1000_##reg : E1000_82542_##reg,     \
769                               mask, write))                          \
770                         return 1;                                    \
771         } while (0)
772
773 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
774 {
775         u32 value, before, after;
776         u32 i, toggle;
777
778         /* The status register is Read Only, so a write should fail.
779          * Some bits that get toggled are ignored.
780          */
781         switch (adapter->hw.mac_type) {
782         /* there are several bits on newer hardware that are r/w */
783         case e1000_82571:
784         case e1000_82572:
785         case e1000_80003es2lan:
786                 toggle = 0x7FFFF3FF;
787                 break;
788         case e1000_82573:
789         case e1000_ich8lan:
790                 toggle = 0x7FFFF033;
791                 break;
792         default:
793                 toggle = 0xFFFFF833;
794                 break;
795         }
796
797         before = E1000_READ_REG(&adapter->hw, STATUS);
798         value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
799         E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
800         after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
801         if (value != after) {
802                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
803                         "0x%08X expected: 0x%08X\n", after, value);
804                 *data = 1;
805                 return 1;
806         }
807         /* restore previous status */
808         E1000_WRITE_REG(&adapter->hw, STATUS, before);
809
810         if (adapter->hw.mac_type != e1000_ich8lan) {
811                 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
812                 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
813                 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
814                 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
815         }
816
817         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
818         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
819         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
820         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
821         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
822         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
823         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
824         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
825         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
826         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
827
828         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
829
830         before = (adapter->hw.mac_type == e1000_ich8lan ?
831                   0x06C3B33E : 0x06DFB3FE);
832         REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
833         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
834
835         if (adapter->hw.mac_type >= e1000_82543) {
836
837                 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
838                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
839                 if (adapter->hw.mac_type != e1000_ich8lan)
840                         REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
841                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
842                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
843                 value = (adapter->hw.mac_type == e1000_ich8lan ?
844                          E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES);
845                 for (i = 0; i < value; i++) {
846                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
847                                          0xFFFFFFFF);
848                 }
849
850         } else {
851
852                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
853                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
854                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
855                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
856
857         }
858
859         value = (adapter->hw.mac_type == e1000_ich8lan ?
860                         E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE);
861         for (i = 0; i < value; i++)
862                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
863
864         *data = 0;
865         return 0;
866 }
867
868 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
869 {
870         u16 temp;
871         u16 checksum = 0;
872         u16 i;
873
874         *data = 0;
875         /* Read and add up the contents of the EEPROM */
876         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
877                 if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
878                         *data = 1;
879                         break;
880                 }
881                 checksum += temp;
882         }
883
884         /* If Checksum is not Correct return error else test passed */
885         if ((checksum != (u16) EEPROM_SUM) && !(*data))
886                 *data = 2;
887
888         return *data;
889 }
890
891 static irqreturn_t e1000_test_intr(int irq, void *data)
892 {
893         struct net_device *netdev = (struct net_device *) data;
894         struct e1000_adapter *adapter = netdev_priv(netdev);
895
896         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
897
898         return IRQ_HANDLED;
899 }
900
901 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
902 {
903         struct net_device *netdev = adapter->netdev;
904         u32 mask, i = 0;
905         bool shared_int = true;
906         u32 irq = adapter->pdev->irq;
907
908         *data = 0;
909
910         /* NOTE: we don't test MSI interrupts here, yet */
911         /* Hook up test interrupt handler just for this test */
912         if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
913                          netdev))
914                 shared_int = false;
915         else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
916                  netdev->name, netdev)) {
917                 *data = 1;
918                 return -1;
919         }
920         DPRINTK(HW, INFO, "testing %s interrupt\n",
921                 (shared_int ? "shared" : "unshared"));
922
923         /* Disable all the interrupts */
924         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
925         msleep(10);
926
927         /* Test each interrupt */
928         for (; i < 10; i++) {
929
930                 if (adapter->hw.mac_type == e1000_ich8lan && i == 8)
931                         continue;
932
933                 /* Interrupt to test */
934                 mask = 1 << i;
935
936                 if (!shared_int) {
937                         /* Disable the interrupt to be reported in
938                          * the cause register and then force the same
939                          * interrupt and see if one gets posted.  If
940                          * an interrupt was posted to the bus, the
941                          * test failed.
942                          */
943                         adapter->test_icr = 0;
944                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
945                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
946                         msleep(10);
947
948                         if (adapter->test_icr & mask) {
949                                 *data = 3;
950                                 break;
951                         }
952                 }
953
954                 /* Enable the interrupt to be reported in
955                  * the cause register and then force the same
956                  * interrupt and see if one gets posted.  If
957                  * an interrupt was not posted to the bus, the
958                  * test failed.
959                  */
960                 adapter->test_icr = 0;
961                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
962                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
963                 msleep(10);
964
965                 if (!(adapter->test_icr & mask)) {
966                         *data = 4;
967                         break;
968                 }
969
970                 if (!shared_int) {
971                         /* Disable the other interrupts to be reported in
972                          * the cause register and then force the other
973                          * interrupts and see if any get posted.  If
974                          * an interrupt was posted to the bus, the
975                          * test failed.
976                          */
977                         adapter->test_icr = 0;
978                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
979                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
980                         msleep(10);
981
982                         if (adapter->test_icr) {
983                                 *data = 5;
984                                 break;
985                         }
986                 }
987         }
988
989         /* Disable all the interrupts */
990         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
991         msleep(10);
992
993         /* Unhook test interrupt handler */
994         free_irq(irq, netdev);
995
996         return *data;
997 }
998
999 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1000 {
1001         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1002         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1003         struct pci_dev *pdev = adapter->pdev;
1004         int i;
1005
1006         if (txdr->desc && txdr->buffer_info) {
1007                 for (i = 0; i < txdr->count; i++) {
1008                         if (txdr->buffer_info[i].dma)
1009                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
1010                                                  txdr->buffer_info[i].length,
1011                                                  PCI_DMA_TODEVICE);
1012                         if (txdr->buffer_info[i].skb)
1013                                 dev_kfree_skb(txdr->buffer_info[i].skb);
1014                 }
1015         }
1016
1017         if (rxdr->desc && rxdr->buffer_info) {
1018                 for (i = 0; i < rxdr->count; i++) {
1019                         if (rxdr->buffer_info[i].dma)
1020                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
1021                                                  rxdr->buffer_info[i].length,
1022                                                  PCI_DMA_FROMDEVICE);
1023                         if (rxdr->buffer_info[i].skb)
1024                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
1025                 }
1026         }
1027
1028         if (txdr->desc) {
1029                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
1030                 txdr->desc = NULL;
1031         }
1032         if (rxdr->desc) {
1033                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
1034                 rxdr->desc = NULL;
1035         }
1036
1037         kfree(txdr->buffer_info);
1038         txdr->buffer_info = NULL;
1039         kfree(rxdr->buffer_info);
1040         rxdr->buffer_info = NULL;
1041
1042         return;
1043 }
1044
1045 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1046 {
1047         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1048         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1049         struct pci_dev *pdev = adapter->pdev;
1050         u32 rctl;
1051         int i, ret_val;
1052
1053         /* Setup Tx descriptor ring and Tx buffers */
1054
1055         if (!txdr->count)
1056                 txdr->count = E1000_DEFAULT_TXD;
1057
1058         if (!(txdr->buffer_info = kcalloc(txdr->count,
1059                                           sizeof(struct e1000_buffer),
1060                                           GFP_KERNEL))) {
1061                 ret_val = 1;
1062                 goto err_nomem;
1063         }
1064
1065         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1066         txdr->size = ALIGN(txdr->size, 4096);
1067         if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size,
1068                                                 &txdr->dma))) {
1069                 ret_val = 2;
1070                 goto err_nomem;
1071         }
1072         memset(txdr->desc, 0, txdr->size);
1073         txdr->next_to_use = txdr->next_to_clean = 0;
1074
1075         E1000_WRITE_REG(&adapter->hw, TDBAL,
1076                         ((u64) txdr->dma & 0x00000000FFFFFFFF));
1077         E1000_WRITE_REG(&adapter->hw, TDBAH, ((u64) txdr->dma >> 32));
1078         E1000_WRITE_REG(&adapter->hw, TDLEN,
1079                         txdr->count * sizeof(struct e1000_tx_desc));
1080         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1081         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1082         E1000_WRITE_REG(&adapter->hw, TCTL,
1083                         E1000_TCTL_PSP | E1000_TCTL_EN |
1084                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1085                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1086
1087         for (i = 0; i < txdr->count; i++) {
1088                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1089                 struct sk_buff *skb;
1090                 unsigned int size = 1024;
1091
1092                 if (!(skb = alloc_skb(size, GFP_KERNEL))) {
1093                         ret_val = 3;
1094                         goto err_nomem;
1095                 }
1096                 skb_put(skb, size);
1097                 txdr->buffer_info[i].skb = skb;
1098                 txdr->buffer_info[i].length = skb->len;
1099                 txdr->buffer_info[i].dma =
1100                         pci_map_single(pdev, skb->data, skb->len,
1101                                        PCI_DMA_TODEVICE);
1102                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1103                 tx_desc->lower.data = cpu_to_le32(skb->len);
1104                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1105                                                    E1000_TXD_CMD_IFCS |
1106                                                    E1000_TXD_CMD_RPS);
1107                 tx_desc->upper.data = 0;
1108         }
1109
1110         /* Setup Rx descriptor ring and Rx buffers */
1111
1112         if (!rxdr->count)
1113                 rxdr->count = E1000_DEFAULT_RXD;
1114
1115         if (!(rxdr->buffer_info = kcalloc(rxdr->count,
1116                                           sizeof(struct e1000_buffer),
1117                                           GFP_KERNEL))) {
1118                 ret_val = 4;
1119                 goto err_nomem;
1120         }
1121
1122         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1123         if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1124                 ret_val = 5;
1125                 goto err_nomem;
1126         }
1127         memset(rxdr->desc, 0, rxdr->size);
1128         rxdr->next_to_use = rxdr->next_to_clean = 0;
1129
1130         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1131         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1132         E1000_WRITE_REG(&adapter->hw, RDBAL,
1133                         ((u64) rxdr->dma & 0xFFFFFFFF));
1134         E1000_WRITE_REG(&adapter->hw, RDBAH, ((u64) rxdr->dma >> 32));
1135         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1136         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1137         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1138         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1139                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1140                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1141         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1142
1143         for (i = 0; i < rxdr->count; i++) {
1144                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1145                 struct sk_buff *skb;
1146
1147                 if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1148                                 GFP_KERNEL))) {
1149                         ret_val = 6;
1150                         goto err_nomem;
1151                 }
1152                 skb_reserve(skb, NET_IP_ALIGN);
1153                 rxdr->buffer_info[i].skb = skb;
1154                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1155                 rxdr->buffer_info[i].dma =
1156                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1157                                        PCI_DMA_FROMDEVICE);
1158                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1159                 memset(skb->data, 0x00, skb->len);
1160         }
1161
1162         return 0;
1163
1164 err_nomem:
1165         e1000_free_desc_rings(adapter);
1166         return ret_val;
1167 }
1168
1169 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1170 {
1171         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1172         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1173         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1174         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1175         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1176 }
1177
1178 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1179 {
1180         u16 phy_reg;
1181
1182         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1183          * Extended PHY Specific Control Register to 25MHz clock.  This
1184          * value defaults back to a 2.5MHz clock when the PHY is reset.
1185          */
1186         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1187         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1188         e1000_write_phy_reg(&adapter->hw,
1189                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1190
1191         /* In addition, because of the s/w reset above, we need to enable
1192          * CRS on TX.  This must be set for both full and half duplex
1193          * operation.
1194          */
1195         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1196         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1197         e1000_write_phy_reg(&adapter->hw,
1198                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1199 }
1200
1201 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1202 {
1203         u32 ctrl_reg;
1204         u16 phy_reg;
1205
1206         /* Setup the Device Control Register for PHY loopback test. */
1207
1208         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1209         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1210                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1211                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1212                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1213                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1214
1215         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1216
1217         /* Read the PHY Specific Control Register (0x10) */
1218         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1219
1220         /* Clear Auto-Crossover bits in PHY Specific Control Register
1221          * (bits 6:5).
1222          */
1223         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1224         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1225
1226         /* Perform software reset on the PHY */
1227         e1000_phy_reset(&adapter->hw);
1228
1229         /* Have to setup TX_CLK and TX_CRS after software reset */
1230         e1000_phy_reset_clk_and_crs(adapter);
1231
1232         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1233
1234         /* Wait for reset to complete. */
1235         udelay(500);
1236
1237         /* Have to setup TX_CLK and TX_CRS after software reset */
1238         e1000_phy_reset_clk_and_crs(adapter);
1239
1240         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1241         e1000_phy_disable_receiver(adapter);
1242
1243         /* Set the loopback bit in the PHY control register. */
1244         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1245         phy_reg |= MII_CR_LOOPBACK;
1246         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1247
1248         /* Setup TX_CLK and TX_CRS one more time. */
1249         e1000_phy_reset_clk_and_crs(adapter);
1250
1251         /* Check Phy Configuration */
1252         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1253         if (phy_reg != 0x4100)
1254                  return 9;
1255
1256         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1257         if (phy_reg != 0x0070)
1258                 return 10;
1259
1260         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1261         if (phy_reg != 0x001A)
1262                 return 11;
1263
1264         return 0;
1265 }
1266
1267 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1268 {
1269         u32 ctrl_reg = 0;
1270         u32 stat_reg = 0;
1271
1272         adapter->hw.autoneg = false;
1273
1274         if (adapter->hw.phy_type == e1000_phy_m88) {
1275                 /* Auto-MDI/MDIX Off */
1276                 e1000_write_phy_reg(&adapter->hw,
1277                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1278                 /* reset to update Auto-MDI/MDIX */
1279                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1280                 /* autoneg off */
1281                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1282         } else if (adapter->hw.phy_type == e1000_phy_gg82563)
1283                 e1000_write_phy_reg(&adapter->hw,
1284                                     GG82563_PHY_KMRN_MODE_CTRL,
1285                                     0x1CC);
1286
1287         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1288
1289         if (adapter->hw.phy_type == e1000_phy_ife) {
1290                 /* force 100, set loopback */
1291                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x6100);
1292
1293                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1294                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1295                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1296                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1297                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1298                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1299         } else {
1300                 /* force 1000, set loopback */
1301                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1302
1303                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1304                 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1305                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1306                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1307                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1308                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1309                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1310         }
1311
1312         if (adapter->hw.media_type == e1000_media_type_copper &&
1313            adapter->hw.phy_type == e1000_phy_m88)
1314                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1315         else {
1316                 /* Set the ILOS bit on the fiber Nic is half
1317                  * duplex link is detected. */
1318                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1319                 if ((stat_reg & E1000_STATUS_FD) == 0)
1320                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1321         }
1322
1323         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1324
1325         /* Disable the receiver on the PHY so when a cable is plugged in, the
1326          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1327          */
1328         if (adapter->hw.phy_type == e1000_phy_m88)
1329                 e1000_phy_disable_receiver(adapter);
1330
1331         udelay(500);
1332
1333         return 0;
1334 }
1335
1336 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1337 {
1338         u16 phy_reg = 0;
1339         u16 count = 0;
1340
1341         switch (adapter->hw.mac_type) {
1342         case e1000_82543:
1343                 if (adapter->hw.media_type == e1000_media_type_copper) {
1344                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1345                          * Some PHY registers get corrupted at random, so
1346                          * attempt this 10 times.
1347                          */
1348                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1349                               count++ < 10);
1350                         if (count < 11)
1351                                 return 0;
1352                 }
1353                 break;
1354
1355         case e1000_82544:
1356         case e1000_82540:
1357         case e1000_82545:
1358         case e1000_82545_rev_3:
1359         case e1000_82546:
1360         case e1000_82546_rev_3:
1361         case e1000_82541:
1362         case e1000_82541_rev_2:
1363         case e1000_82547:
1364         case e1000_82547_rev_2:
1365         case e1000_82571:
1366         case e1000_82572:
1367         case e1000_82573:
1368         case e1000_80003es2lan:
1369         case e1000_ich8lan:
1370                 return e1000_integrated_phy_loopback(adapter);
1371                 break;
1372
1373         default:
1374                 /* Default PHY loopback work is to read the MII
1375                  * control register and assert bit 14 (loopback mode).
1376                  */
1377                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1378                 phy_reg |= MII_CR_LOOPBACK;
1379                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1380                 return 0;
1381                 break;
1382         }
1383
1384         return 8;
1385 }
1386
1387 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1388 {
1389         struct e1000_hw *hw = &adapter->hw;
1390         u32 rctl;
1391
1392         if (hw->media_type == e1000_media_type_fiber ||
1393             hw->media_type == e1000_media_type_internal_serdes) {
1394                 switch (hw->mac_type) {
1395                 case e1000_82545:
1396                 case e1000_82546:
1397                 case e1000_82545_rev_3:
1398                 case e1000_82546_rev_3:
1399                         return e1000_set_phy_loopback(adapter);
1400                         break;
1401                 case e1000_82571:
1402                 case e1000_82572:
1403 #define E1000_SERDES_LB_ON 0x410
1404                         e1000_set_phy_loopback(adapter);
1405                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
1406                         msleep(10);
1407                         return 0;
1408                         break;
1409                 default:
1410                         rctl = E1000_READ_REG(hw, RCTL);
1411                         rctl |= E1000_RCTL_LBM_TCVR;
1412                         E1000_WRITE_REG(hw, RCTL, rctl);
1413                         return 0;
1414                 }
1415         } else if (hw->media_type == e1000_media_type_copper)
1416                 return e1000_set_phy_loopback(adapter);
1417
1418         return 7;
1419 }
1420
1421 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1422 {
1423         struct e1000_hw *hw = &adapter->hw;
1424         u32 rctl;
1425         u16 phy_reg;
1426
1427         rctl = E1000_READ_REG(hw, RCTL);
1428         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1429         E1000_WRITE_REG(hw, RCTL, rctl);
1430
1431         switch (hw->mac_type) {
1432         case e1000_82571:
1433         case e1000_82572:
1434                 if (hw->media_type == e1000_media_type_fiber ||
1435                     hw->media_type == e1000_media_type_internal_serdes) {
1436 #define E1000_SERDES_LB_OFF 0x400
1437                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
1438                         msleep(10);
1439                         break;
1440                 }
1441                 /* Fall Through */
1442         case e1000_82545:
1443         case e1000_82546:
1444         case e1000_82545_rev_3:
1445         case e1000_82546_rev_3:
1446         default:
1447                 hw->autoneg = true;
1448                 if (hw->phy_type == e1000_phy_gg82563)
1449                         e1000_write_phy_reg(hw,
1450                                             GG82563_PHY_KMRN_MODE_CTRL,
1451                                             0x180);
1452                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1453                 if (phy_reg & MII_CR_LOOPBACK) {
1454                         phy_reg &= ~MII_CR_LOOPBACK;
1455                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1456                         e1000_phy_reset(hw);
1457                 }
1458                 break;
1459         }
1460 }
1461
1462 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1463                                       unsigned int frame_size)
1464 {
1465         memset(skb->data, 0xFF, frame_size);
1466         frame_size &= ~1;
1467         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1468         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1469         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1470 }
1471
1472 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1473                                     unsigned int frame_size)
1474 {
1475         frame_size &= ~1;
1476         if (*(skb->data + 3) == 0xFF) {
1477                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1478                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1479                         return 0;
1480                 }
1481         }
1482         return 13;
1483 }
1484
1485 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1486 {
1487         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1488         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1489         struct pci_dev *pdev = adapter->pdev;
1490         int i, j, k, l, lc, good_cnt, ret_val=0;
1491         unsigned long time;
1492
1493         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1494
1495         /* Calculate the loop count based on the largest descriptor ring
1496          * The idea is to wrap the largest ring a number of times using 64
1497          * send/receive pairs during each loop
1498          */
1499
1500         if (rxdr->count <= txdr->count)
1501                 lc = ((txdr->count / 64) * 2) + 1;
1502         else
1503                 lc = ((rxdr->count / 64) * 2) + 1;
1504
1505         k = l = 0;
1506         for (j = 0; j <= lc; j++) { /* loop count loop */
1507                 for (i = 0; i < 64; i++) { /* send the packets */
1508                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1509                                         1024);
1510                         pci_dma_sync_single_for_device(pdev,
1511                                         txdr->buffer_info[k].dma,
1512                                         txdr->buffer_info[k].length,
1513                                         PCI_DMA_TODEVICE);
1514                         if (unlikely(++k == txdr->count)) k = 0;
1515                 }
1516                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1517                 msleep(200);
1518                 time = jiffies; /* set the start time for the receive */
1519                 good_cnt = 0;
1520                 do { /* receive the sent packets */
1521                         pci_dma_sync_single_for_cpu(pdev,
1522                                         rxdr->buffer_info[l].dma,
1523                                         rxdr->buffer_info[l].length,
1524                                         PCI_DMA_FROMDEVICE);
1525
1526                         ret_val = e1000_check_lbtest_frame(
1527                                         rxdr->buffer_info[l].skb,
1528                                         1024);
1529                         if (!ret_val)
1530                                 good_cnt++;
1531                         if (unlikely(++l == rxdr->count)) l = 0;
1532                         /* time + 20 msecs (200 msecs on 2.4) is more than
1533                          * enough time to complete the receives, if it's
1534                          * exceeded, break and error off
1535                          */
1536                 } while (good_cnt < 64 && jiffies < (time + 20));
1537                 if (good_cnt != 64) {
1538                         ret_val = 13; /* ret_val is the same as mis-compare */
1539                         break;
1540                 }
1541                 if (jiffies >= (time + 2)) {
1542                         ret_val = 14; /* error code for time out error */
1543                         break;
1544                 }
1545         } /* end loop count loop */
1546         return ret_val;
1547 }
1548
1549 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1550 {
1551         /* PHY loopback cannot be performed if SoL/IDER
1552          * sessions are active */
1553         if (e1000_check_phy_reset_block(&adapter->hw)) {
1554                 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1555                         "when SoL/IDER is active.\n");
1556                 *data = 0;
1557                 goto out;
1558         }
1559
1560         if ((*data = e1000_setup_desc_rings(adapter)))
1561                 goto out;
1562         if ((*data = e1000_setup_loopback_test(adapter)))
1563                 goto err_loopback;
1564         *data = e1000_run_loopback_test(adapter);
1565         e1000_loopback_cleanup(adapter);
1566
1567 err_loopback:
1568         e1000_free_desc_rings(adapter);
1569 out:
1570         return *data;
1571 }
1572
1573 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1574 {
1575         *data = 0;
1576         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1577                 int i = 0;
1578                 adapter->hw.serdes_link_down = true;
1579
1580                 /* On some blade server designs, link establishment
1581                  * could take as long as 2-3 minutes */
1582                 do {
1583                         e1000_check_for_link(&adapter->hw);
1584                         if (!adapter->hw.serdes_link_down)
1585                                 return *data;
1586                         msleep(20);
1587                 } while (i++ < 3750);
1588
1589                 *data = 1;
1590         } else {
1591                 e1000_check_for_link(&adapter->hw);
1592                 if (adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1593                         msleep(4000);
1594
1595                 if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1596                         *data = 1;
1597                 }
1598         }
1599         return *data;
1600 }
1601
1602 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1603 {
1604         switch (sset) {
1605         case ETH_SS_TEST:
1606                 return E1000_TEST_LEN;
1607         case ETH_SS_STATS:
1608                 return E1000_STATS_LEN;
1609         default:
1610                 return -EOPNOTSUPP;
1611         }
1612 }
1613
1614 static void e1000_diag_test(struct net_device *netdev,
1615                             struct ethtool_test *eth_test, u64 *data)
1616 {
1617         struct e1000_adapter *adapter = netdev_priv(netdev);
1618         bool if_running = netif_running(netdev);
1619
1620         set_bit(__E1000_TESTING, &adapter->flags);
1621         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1622                 /* Offline tests */
1623
1624                 /* save speed, duplex, autoneg settings */
1625                 u16 autoneg_advertised = adapter->hw.autoneg_advertised;
1626                 u8 forced_speed_duplex = adapter->hw.forced_speed_duplex;
1627                 u8 autoneg = adapter->hw.autoneg;
1628
1629                 DPRINTK(HW, INFO, "offline testing starting\n");
1630
1631                 /* Link test performed before hardware reset so autoneg doesn't
1632                  * interfere with test result */
1633                 if (e1000_link_test(adapter, &data[4]))
1634                         eth_test->flags |= ETH_TEST_FL_FAILED;
1635
1636                 if (if_running)
1637                         /* indicate we're in test mode */
1638                         dev_close(netdev);
1639                 else
1640                         e1000_reset(adapter);
1641
1642                 if (e1000_reg_test(adapter, &data[0]))
1643                         eth_test->flags |= ETH_TEST_FL_FAILED;
1644
1645                 e1000_reset(adapter);
1646                 if (e1000_eeprom_test(adapter, &data[1]))
1647                         eth_test->flags |= ETH_TEST_FL_FAILED;
1648
1649                 e1000_reset(adapter);
1650                 if (e1000_intr_test(adapter, &data[2]))
1651                         eth_test->flags |= ETH_TEST_FL_FAILED;
1652
1653                 e1000_reset(adapter);
1654                 /* make sure the phy is powered up */
1655                 e1000_power_up_phy(adapter);
1656                 if (e1000_loopback_test(adapter, &data[3]))
1657                         eth_test->flags |= ETH_TEST_FL_FAILED;
1658
1659                 /* restore speed, duplex, autoneg settings */
1660                 adapter->hw.autoneg_advertised = autoneg_advertised;
1661                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1662                 adapter->hw.autoneg = autoneg;
1663
1664                 e1000_reset(adapter);
1665                 clear_bit(__E1000_TESTING, &adapter->flags);
1666                 if (if_running)
1667                         dev_open(netdev);
1668         } else {
1669                 DPRINTK(HW, INFO, "online testing starting\n");
1670                 /* Online tests */
1671                 if (e1000_link_test(adapter, &data[4]))
1672                         eth_test->flags |= ETH_TEST_FL_FAILED;
1673
1674                 /* Online tests aren't run; pass by default */
1675                 data[0] = 0;
1676                 data[1] = 0;
1677                 data[2] = 0;
1678                 data[3] = 0;
1679
1680                 clear_bit(__E1000_TESTING, &adapter->flags);
1681         }
1682         msleep_interruptible(4 * 1000);
1683 }
1684
1685 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1686                                struct ethtool_wolinfo *wol)
1687 {
1688         struct e1000_hw *hw = &adapter->hw;
1689         int retval = 1; /* fail by default */
1690
1691         switch (hw->device_id) {
1692         case E1000_DEV_ID_82542:
1693         case E1000_DEV_ID_82543GC_FIBER:
1694         case E1000_DEV_ID_82543GC_COPPER:
1695         case E1000_DEV_ID_82544EI_FIBER:
1696         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1697         case E1000_DEV_ID_82545EM_FIBER:
1698         case E1000_DEV_ID_82545EM_COPPER:
1699         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1700         case E1000_DEV_ID_82546GB_PCIE:
1701         case E1000_DEV_ID_82571EB_SERDES_QUAD:
1702                 /* these don't support WoL at all */
1703                 wol->supported = 0;
1704                 break;
1705         case E1000_DEV_ID_82546EB_FIBER:
1706         case E1000_DEV_ID_82546GB_FIBER:
1707         case E1000_DEV_ID_82571EB_FIBER:
1708         case E1000_DEV_ID_82571EB_SERDES:
1709         case E1000_DEV_ID_82571EB_COPPER:
1710                 /* Wake events not supported on port B */
1711                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1712                         wol->supported = 0;
1713                         break;
1714                 }
1715                 /* return success for non excluded adapter ports */
1716                 retval = 0;
1717                 break;
1718         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1719         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1720         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1721         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1722         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1723                 /* quad port adapters only support WoL on port A */
1724                 if (!adapter->quad_port_a) {
1725                         wol->supported = 0;
1726                         break;
1727                 }
1728                 /* return success for non excluded adapter ports */
1729                 retval = 0;
1730                 break;
1731         default:
1732                 /* dual port cards only support WoL on port A from now on
1733                  * unless it was enabled in the eeprom for port B
1734                  * so exclude FUNC_1 ports from having WoL enabled */
1735                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1 &&
1736                     !adapter->eeprom_wol) {
1737                         wol->supported = 0;
1738                         break;
1739                 }
1740
1741                 retval = 0;
1742         }
1743
1744         return retval;
1745 }
1746
1747 static void e1000_get_wol(struct net_device *netdev,
1748                           struct ethtool_wolinfo *wol)
1749 {
1750         struct e1000_adapter *adapter = netdev_priv(netdev);
1751
1752         wol->supported = WAKE_UCAST | WAKE_MCAST |
1753                          WAKE_BCAST | WAKE_MAGIC;
1754         wol->wolopts = 0;
1755
1756         /* this function will set ->supported = 0 and return 1 if wol is not
1757          * supported by this hardware */
1758         if (e1000_wol_exclusion(adapter, wol))
1759                 return;
1760
1761         /* apply any specific unsupported masks here */
1762         switch (adapter->hw.device_id) {
1763         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1764                 /* KSP3 does not suppport UCAST wake-ups */
1765                 wol->supported &= ~WAKE_UCAST;
1766
1767                 if (adapter->wol & E1000_WUFC_EX)
1768                         DPRINTK(DRV, ERR, "Interface does not support "
1769                         "directed (unicast) frame wake-up packets\n");
1770                 break;
1771         default:
1772                 break;
1773         }
1774
1775         if (adapter->wol & E1000_WUFC_EX)
1776                 wol->wolopts |= WAKE_UCAST;
1777         if (adapter->wol & E1000_WUFC_MC)
1778                 wol->wolopts |= WAKE_MCAST;
1779         if (adapter->wol & E1000_WUFC_BC)
1780                 wol->wolopts |= WAKE_BCAST;
1781         if (adapter->wol & E1000_WUFC_MAG)
1782                 wol->wolopts |= WAKE_MAGIC;
1783
1784         return;
1785 }
1786
1787 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1788 {
1789         struct e1000_adapter *adapter = netdev_priv(netdev);
1790         struct e1000_hw *hw = &adapter->hw;
1791
1792         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1793                 return -EOPNOTSUPP;
1794
1795         if (e1000_wol_exclusion(adapter, wol))
1796                 return wol->wolopts ? -EOPNOTSUPP : 0;
1797
1798         switch (hw->device_id) {
1799         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1800                 if (wol->wolopts & WAKE_UCAST) {
1801                         DPRINTK(DRV, ERR, "Interface does not support "
1802                         "directed (unicast) frame wake-up packets\n");
1803                         return -EOPNOTSUPP;
1804                 }
1805                 break;
1806         default:
1807                 break;
1808         }
1809
1810         /* these settings will always override what we currently have */
1811         adapter->wol = 0;
1812
1813         if (wol->wolopts & WAKE_UCAST)
1814                 adapter->wol |= E1000_WUFC_EX;
1815         if (wol->wolopts & WAKE_MCAST)
1816                 adapter->wol |= E1000_WUFC_MC;
1817         if (wol->wolopts & WAKE_BCAST)
1818                 adapter->wol |= E1000_WUFC_BC;
1819         if (wol->wolopts & WAKE_MAGIC)
1820                 adapter->wol |= E1000_WUFC_MAG;
1821
1822         return 0;
1823 }
1824
1825 /* toggle LED 4 times per second = 2 "blinks" per second */
1826 #define E1000_ID_INTERVAL       (HZ/4)
1827
1828 /* bit defines for adapter->led_status */
1829 #define E1000_LED_ON            0
1830
1831 static void e1000_led_blink_callback(unsigned long data)
1832 {
1833         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1834
1835         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1836                 e1000_led_off(&adapter->hw);
1837         else
1838                 e1000_led_on(&adapter->hw);
1839
1840         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1841 }
1842
1843 static int e1000_phys_id(struct net_device *netdev, u32 data)
1844 {
1845         struct e1000_adapter *adapter = netdev_priv(netdev);
1846
1847         if (!data)
1848                 data = INT_MAX;
1849
1850         if (adapter->hw.mac_type < e1000_82571) {
1851                 if (!adapter->blink_timer.function) {
1852                         init_timer(&adapter->blink_timer);
1853                         adapter->blink_timer.function = e1000_led_blink_callback;
1854                         adapter->blink_timer.data = (unsigned long) adapter;
1855                 }
1856                 e1000_setup_led(&adapter->hw);
1857                 mod_timer(&adapter->blink_timer, jiffies);
1858                 msleep_interruptible(data * 1000);
1859                 del_timer_sync(&adapter->blink_timer);
1860         } else if (adapter->hw.phy_type == e1000_phy_ife) {
1861                 if (!adapter->blink_timer.function) {
1862                         init_timer(&adapter->blink_timer);
1863                         adapter->blink_timer.function = e1000_led_blink_callback;
1864                         adapter->blink_timer.data = (unsigned long) adapter;
1865                 }
1866                 mod_timer(&adapter->blink_timer, jiffies);
1867                 msleep_interruptible(data * 1000);
1868                 del_timer_sync(&adapter->blink_timer);
1869                 e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0);
1870         } else {
1871                 e1000_blink_led_start(&adapter->hw);
1872                 msleep_interruptible(data * 1000);
1873         }
1874
1875         e1000_led_off(&adapter->hw);
1876         clear_bit(E1000_LED_ON, &adapter->led_status);
1877         e1000_cleanup_led(&adapter->hw);
1878
1879         return 0;
1880 }
1881
1882 static int e1000_nway_reset(struct net_device *netdev)
1883 {
1884         struct e1000_adapter *adapter = netdev_priv(netdev);
1885         if (netif_running(netdev))
1886                 e1000_reinit_locked(adapter);
1887         return 0;
1888 }
1889
1890 static void e1000_get_ethtool_stats(struct net_device *netdev,
1891                                     struct ethtool_stats *stats, u64 *data)
1892 {
1893         struct e1000_adapter *adapter = netdev_priv(netdev);
1894         int i;
1895
1896         e1000_update_stats(adapter);
1897         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1898                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1899                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1900                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1901         }
1902 /*      BUG_ON(i != E1000_STATS_LEN); */
1903 }
1904
1905 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1906                               u8 *data)
1907 {
1908         u8 *p = data;
1909         int i;
1910
1911         switch (stringset) {
1912         case ETH_SS_TEST:
1913                 memcpy(data, *e1000_gstrings_test,
1914                         sizeof(e1000_gstrings_test));
1915                 break;
1916         case ETH_SS_STATS:
1917                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1918                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1919                                ETH_GSTRING_LEN);
1920                         p += ETH_GSTRING_LEN;
1921                 }
1922 /*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1923                 break;
1924         }
1925 }
1926
1927 static const struct ethtool_ops e1000_ethtool_ops = {
1928         .get_settings           = e1000_get_settings,
1929         .set_settings           = e1000_set_settings,
1930         .get_drvinfo            = e1000_get_drvinfo,
1931         .get_regs_len           = e1000_get_regs_len,
1932         .get_regs               = e1000_get_regs,
1933         .get_wol                = e1000_get_wol,
1934         .set_wol                = e1000_set_wol,
1935         .get_msglevel           = e1000_get_msglevel,
1936         .set_msglevel           = e1000_set_msglevel,
1937         .nway_reset             = e1000_nway_reset,
1938         .get_link               = ethtool_op_get_link,
1939         .get_eeprom_len         = e1000_get_eeprom_len,
1940         .get_eeprom             = e1000_get_eeprom,
1941         .set_eeprom             = e1000_set_eeprom,
1942         .get_ringparam          = e1000_get_ringparam,
1943         .set_ringparam          = e1000_set_ringparam,
1944         .get_pauseparam         = e1000_get_pauseparam,
1945         .set_pauseparam         = e1000_set_pauseparam,
1946         .get_rx_csum            = e1000_get_rx_csum,
1947         .set_rx_csum            = e1000_set_rx_csum,
1948         .get_tx_csum            = e1000_get_tx_csum,
1949         .set_tx_csum            = e1000_set_tx_csum,
1950         .set_sg                 = ethtool_op_set_sg,
1951         .set_tso                = e1000_set_tso,
1952         .self_test              = e1000_diag_test,
1953         .get_strings            = e1000_get_strings,
1954         .phys_id                = e1000_phys_id,
1955         .get_ethtool_stats      = e1000_get_ethtool_stats,
1956         .get_sset_count         = e1000_get_sset_count,
1957 };
1958
1959 void e1000_set_ethtool_ops(struct net_device *netdev)
1960 {
1961         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1962 }