Merge branch 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / net / dsa / bcm_sf2_cfp.c
1 /*
2  * Broadcom Starfighter 2 DSA switch CFP support
3  *
4  * Copyright (C) 2016, Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  */
11
12 #include <linux/list.h>
13 #include <linux/ethtool.h>
14 #include <linux/if_ether.h>
15 #include <linux/in.h>
16 #include <linux/netdevice.h>
17 #include <net/dsa.h>
18 #include <linux/bitmap.h>
19 #include <net/flow_offload.h>
20
21 #include "bcm_sf2.h"
22 #include "bcm_sf2_regs.h"
23
24 struct cfp_rule {
25         int port;
26         struct ethtool_rx_flow_spec fs;
27         struct list_head next;
28 };
29
30 struct cfp_udf_slice_layout {
31         u8 slices[UDFS_PER_SLICE];
32         u32 mask_value;
33         u32 base_offset;
34 };
35
36 struct cfp_udf_layout {
37         struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
38 };
39
40 static const u8 zero_slice[UDFS_PER_SLICE] = { };
41
42 /* UDF slices layout for a TCPv4/UDPv4 specification */
43 static const struct cfp_udf_layout udf_tcpip4_layout = {
44         .udfs = {
45                 [1] = {
46                         .slices = {
47                                 /* End of L2, byte offset 12, src IP[0:15] */
48                                 CFG_UDF_EOL2 | 6,
49                                 /* End of L2, byte offset 14, src IP[16:31] */
50                                 CFG_UDF_EOL2 | 7,
51                                 /* End of L2, byte offset 16, dst IP[0:15] */
52                                 CFG_UDF_EOL2 | 8,
53                                 /* End of L2, byte offset 18, dst IP[16:31] */
54                                 CFG_UDF_EOL2 | 9,
55                                 /* End of L3, byte offset 0, src port */
56                                 CFG_UDF_EOL3 | 0,
57                                 /* End of L3, byte offset 2, dst port */
58                                 CFG_UDF_EOL3 | 1,
59                                 0, 0, 0
60                         },
61                         .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
62                         .base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
63                 },
64         },
65 };
66
67 /* UDF slices layout for a TCPv6/UDPv6 specification */
68 static const struct cfp_udf_layout udf_tcpip6_layout = {
69         .udfs = {
70                 [0] = {
71                         .slices = {
72                                 /* End of L2, byte offset 8, src IP[0:15] */
73                                 CFG_UDF_EOL2 | 4,
74                                 /* End of L2, byte offset 10, src IP[16:31] */
75                                 CFG_UDF_EOL2 | 5,
76                                 /* End of L2, byte offset 12, src IP[32:47] */
77                                 CFG_UDF_EOL2 | 6,
78                                 /* End of L2, byte offset 14, src IP[48:63] */
79                                 CFG_UDF_EOL2 | 7,
80                                 /* End of L2, byte offset 16, src IP[64:79] */
81                                 CFG_UDF_EOL2 | 8,
82                                 /* End of L2, byte offset 18, src IP[80:95] */
83                                 CFG_UDF_EOL2 | 9,
84                                 /* End of L2, byte offset 20, src IP[96:111] */
85                                 CFG_UDF_EOL2 | 10,
86                                 /* End of L2, byte offset 22, src IP[112:127] */
87                                 CFG_UDF_EOL2 | 11,
88                                 /* End of L3, byte offset 0, src port */
89                                 CFG_UDF_EOL3 | 0,
90                         },
91                         .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
92                         .base_offset = CORE_UDF_0_B_0_8_PORT_0,
93                 },
94                 [3] = {
95                         .slices = {
96                                 /* End of L2, byte offset 24, dst IP[0:15] */
97                                 CFG_UDF_EOL2 | 12,
98                                 /* End of L2, byte offset 26, dst IP[16:31] */
99                                 CFG_UDF_EOL2 | 13,
100                                 /* End of L2, byte offset 28, dst IP[32:47] */
101                                 CFG_UDF_EOL2 | 14,
102                                 /* End of L2, byte offset 30, dst IP[48:63] */
103                                 CFG_UDF_EOL2 | 15,
104                                 /* End of L2, byte offset 32, dst IP[64:79] */
105                                 CFG_UDF_EOL2 | 16,
106                                 /* End of L2, byte offset 34, dst IP[80:95] */
107                                 CFG_UDF_EOL2 | 17,
108                                 /* End of L2, byte offset 36, dst IP[96:111] */
109                                 CFG_UDF_EOL2 | 18,
110                                 /* End of L2, byte offset 38, dst IP[112:127] */
111                                 CFG_UDF_EOL2 | 19,
112                                 /* End of L3, byte offset 2, dst port */
113                                 CFG_UDF_EOL3 | 1,
114                         },
115                         .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
116                         .base_offset = CORE_UDF_0_D_0_11_PORT_0,
117                 },
118         },
119 };
120
121 static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
122 {
123         unsigned int i, count = 0;
124
125         for (i = 0; i < UDFS_PER_SLICE; i++) {
126                 if (layout[i] != 0)
127                         count++;
128         }
129
130         return count;
131 }
132
133 static inline u32 udf_upper_bits(unsigned int num_udf)
134 {
135         return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
136 }
137
138 static inline u32 udf_lower_bits(unsigned int num_udf)
139 {
140         return (u8)GENMASK(num_udf - 1, 0);
141 }
142
143 static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
144                                              unsigned int start)
145 {
146         const struct cfp_udf_slice_layout *slice_layout;
147         unsigned int slice_idx;
148
149         for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
150                 slice_layout = &l->udfs[slice_idx];
151                 if (memcmp(slice_layout->slices, zero_slice,
152                            sizeof(zero_slice)))
153                         break;
154         }
155
156         return slice_idx;
157 }
158
159 static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
160                                 const struct cfp_udf_layout *layout,
161                                 unsigned int slice_num)
162 {
163         u32 offset = layout->udfs[slice_num].base_offset;
164         unsigned int i;
165
166         for (i = 0; i < UDFS_PER_SLICE; i++)
167                 core_writel(priv, layout->udfs[slice_num].slices[i],
168                             offset + i * 4);
169 }
170
171 static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
172 {
173         unsigned int timeout = 1000;
174         u32 reg;
175
176         reg = core_readl(priv, CORE_CFP_ACC);
177         reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
178         reg |= OP_STR_DONE | op;
179         core_writel(priv, reg, CORE_CFP_ACC);
180
181         do {
182                 reg = core_readl(priv, CORE_CFP_ACC);
183                 if (!(reg & OP_STR_DONE))
184                         break;
185
186                 cpu_relax();
187         } while (timeout--);
188
189         if (!timeout)
190                 return -ETIMEDOUT;
191
192         return 0;
193 }
194
195 static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
196                                              unsigned int addr)
197 {
198         u32 reg;
199
200         WARN_ON(addr >= priv->num_cfp_rules);
201
202         reg = core_readl(priv, CORE_CFP_ACC);
203         reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
204         reg |= addr << XCESS_ADDR_SHIFT;
205         core_writel(priv, reg, CORE_CFP_ACC);
206 }
207
208 static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
209 {
210         /* Entry #0 is reserved */
211         return priv->num_cfp_rules - 1;
212 }
213
214 static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
215                                    unsigned int rule_index,
216                                    int src_port,
217                                    unsigned int port_num,
218                                    unsigned int queue_num,
219                                    bool fwd_map_change)
220 {
221         int ret;
222         u32 reg;
223
224         /* Replace ARL derived destination with DST_MAP derived, define
225          * which port and queue this should be forwarded to.
226          */
227         if (fwd_map_change)
228                 reg = CHANGE_FWRD_MAP_IB_REP_ARL |
229                       BIT(port_num + DST_MAP_IB_SHIFT) |
230                       CHANGE_TC | queue_num << NEW_TC_SHIFT;
231         else
232                 reg = 0;
233
234         /* Enable looping back to the original port */
235         if (src_port == port_num)
236                 reg |= LOOP_BK_EN;
237
238         core_writel(priv, reg, CORE_ACT_POL_DATA0);
239
240         /* Set classification ID that needs to be put in Broadcom tag */
241         core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
242
243         core_writel(priv, 0, CORE_ACT_POL_DATA2);
244
245         /* Configure policer RAM now */
246         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
247         if (ret) {
248                 pr_err("Policer entry at %d failed\n", rule_index);
249                 return ret;
250         }
251
252         /* Disable the policer */
253         core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
254
255         /* Now the rate meter */
256         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
257         if (ret) {
258                 pr_err("Meter entry at %d failed\n", rule_index);
259                 return ret;
260         }
261
262         return 0;
263 }
264
265 static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
266                                    struct flow_dissector_key_ipv4_addrs *addrs,
267                                    struct flow_dissector_key_ports *ports,
268                                    unsigned int slice_num,
269                                    bool mask)
270 {
271         u32 reg, offset;
272
273         /* C-Tag                [31:24]
274          * UDF_n_A8             [23:8]
275          * UDF_n_A7             [7:0]
276          */
277         reg = 0;
278         if (mask)
279                 offset = CORE_CFP_MASK_PORT(4);
280         else
281                 offset = CORE_CFP_DATA_PORT(4);
282         core_writel(priv, reg, offset);
283
284         /* UDF_n_A7             [31:24]
285          * UDF_n_A6             [23:8]
286          * UDF_n_A5             [7:0]
287          */
288         reg = be16_to_cpu(ports->dst) >> 8;
289         if (mask)
290                 offset = CORE_CFP_MASK_PORT(3);
291         else
292                 offset = CORE_CFP_DATA_PORT(3);
293         core_writel(priv, reg, offset);
294
295         /* UDF_n_A5             [31:24]
296          * UDF_n_A4             [23:8]
297          * UDF_n_A3             [7:0]
298          */
299         reg = (be16_to_cpu(ports->dst) & 0xff) << 24 |
300               (u32)be16_to_cpu(ports->src) << 8 |
301               (be32_to_cpu(addrs->dst) & 0x0000ff00) >> 8;
302         if (mask)
303                 offset = CORE_CFP_MASK_PORT(2);
304         else
305                 offset = CORE_CFP_DATA_PORT(2);
306         core_writel(priv, reg, offset);
307
308         /* UDF_n_A3             [31:24]
309          * UDF_n_A2             [23:8]
310          * UDF_n_A1             [7:0]
311          */
312         reg = (u32)(be32_to_cpu(addrs->dst) & 0xff) << 24 |
313               (u32)(be32_to_cpu(addrs->dst) >> 16) << 8 |
314               (be32_to_cpu(addrs->src) & 0x0000ff00) >> 8;
315         if (mask)
316                 offset = CORE_CFP_MASK_PORT(1);
317         else
318                 offset = CORE_CFP_DATA_PORT(1);
319         core_writel(priv, reg, offset);
320
321         /* UDF_n_A1             [31:24]
322          * UDF_n_A0             [23:8]
323          * Reserved             [7:4]
324          * Slice ID             [3:2]
325          * Slice valid          [1:0]
326          */
327         reg = (u32)(be32_to_cpu(addrs->src) & 0xff) << 24 |
328               (u32)(be32_to_cpu(addrs->src) >> 16) << 8 |
329               SLICE_NUM(slice_num) | SLICE_VALID;
330         if (mask)
331                 offset = CORE_CFP_MASK_PORT(0);
332         else
333                 offset = CORE_CFP_DATA_PORT(0);
334         core_writel(priv, reg, offset);
335 }
336
337 static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
338                                      unsigned int port_num,
339                                      unsigned int queue_num,
340                                      struct ethtool_rx_flow_spec *fs)
341 {
342         struct ethtool_rx_flow_spec_input input = {};
343         const struct cfp_udf_layout *layout;
344         unsigned int slice_num, rule_index;
345         struct ethtool_rx_flow_rule *flow;
346         struct flow_match_ipv4_addrs ipv4;
347         struct flow_match_ports ports;
348         struct flow_match_ip ip;
349         u8 ip_proto, ip_frag;
350         u8 num_udf;
351         u32 reg;
352         int ret;
353
354         switch (fs->flow_type & ~FLOW_EXT) {
355         case TCP_V4_FLOW:
356                 ip_proto = IPPROTO_TCP;
357                 break;
358         case UDP_V4_FLOW:
359                 ip_proto = IPPROTO_UDP;
360                 break;
361         default:
362                 return -EINVAL;
363         }
364
365         ip_frag = be32_to_cpu(fs->m_ext.data[0]);
366
367         /* Locate the first rule available */
368         if (fs->location == RX_CLS_LOC_ANY)
369                 rule_index = find_first_zero_bit(priv->cfp.used,
370                                                  priv->num_cfp_rules);
371         else
372                 rule_index = fs->location;
373
374         if (rule_index > bcm_sf2_cfp_rule_size(priv))
375                 return -ENOSPC;
376
377         input.fs = fs;
378         flow = ethtool_rx_flow_rule_create(&input);
379         if (IS_ERR(flow))
380                 return PTR_ERR(flow);
381
382         flow_rule_match_ipv4_addrs(flow->rule, &ipv4);
383         flow_rule_match_ports(flow->rule, &ports);
384         flow_rule_match_ip(flow->rule, &ip);
385
386         layout = &udf_tcpip4_layout;
387         /* We only use one UDF slice for now */
388         slice_num = bcm_sf2_get_slice_number(layout, 0);
389         if (slice_num == UDF_NUM_SLICES) {
390                 ret = -EINVAL;
391                 goto out_err_flow_rule;
392         }
393
394         num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
395
396         /* Apply the UDF layout for this filter */
397         bcm_sf2_cfp_udf_set(priv, layout, slice_num);
398
399         /* Apply to all packets received through this port */
400         core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
401
402         /* Source port map match */
403         core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
404
405         /* S-Tag status         [31:30]
406          * C-Tag status         [29:28]
407          * L2 framing           [27:26]
408          * L3 framing           [25:24]
409          * IP ToS               [23:16]
410          * IP proto             [15:08]
411          * IP Fragm             [7]
412          * Non 1st frag         [6]
413          * IP Authen            [5]
414          * TTL range            [4:3]
415          * PPPoE session        [2]
416          * Reserved             [1]
417          * UDF_Valid[8]         [0]
418          */
419         core_writel(priv, ip.key->tos << IPTOS_SHIFT |
420                     ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
421                     udf_upper_bits(num_udf),
422                     CORE_CFP_DATA_PORT(6));
423
424         /* Mask with the specific layout for IPv4 packets */
425         core_writel(priv, layout->udfs[slice_num].mask_value |
426                     udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
427
428         /* UDF_Valid[7:0]       [31:24]
429          * S-Tag                [23:8]
430          * C-Tag                [7:0]
431          */
432         core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
433
434         /* Mask all but valid UDFs */
435         core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
436
437         /* Program the match and the mask */
438         bcm_sf2_cfp_slice_ipv4(priv, ipv4.key, ports.key, slice_num, false);
439         bcm_sf2_cfp_slice_ipv4(priv, ipv4.mask, ports.mask, SLICE_NUM_MASK, true);
440
441         /* Insert into TCAM now */
442         bcm_sf2_cfp_rule_addr_set(priv, rule_index);
443
444         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
445         if (ret) {
446                 pr_err("TCAM entry at addr %d failed\n", rule_index);
447                 goto out_err_flow_rule;
448         }
449
450         /* Insert into Action and policer RAMs now */
451         ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port, port_num,
452                                       queue_num, true);
453         if (ret)
454                 goto out_err_flow_rule;
455
456         /* Turn on CFP for this rule now */
457         reg = core_readl(priv, CORE_CFP_CTL_REG);
458         reg |= BIT(port);
459         core_writel(priv, reg, CORE_CFP_CTL_REG);
460
461         /* Flag the rule as being used and return it */
462         set_bit(rule_index, priv->cfp.used);
463         set_bit(rule_index, priv->cfp.unique);
464         fs->location = rule_index;
465
466         return 0;
467
468 out_err_flow_rule:
469         ethtool_rx_flow_rule_destroy(flow);
470         return ret;
471 }
472
473 static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
474                                    const __be32 *ip6_addr, const __be16 port,
475                                    unsigned int slice_num,
476                                    bool mask)
477 {
478         u32 reg, tmp, val, offset;
479
480         /* C-Tag                [31:24]
481          * UDF_n_B8             [23:8]  (port)
482          * UDF_n_B7 (upper)     [7:0]   (addr[15:8])
483          */
484         reg = be32_to_cpu(ip6_addr[3]);
485         val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
486         if (mask)
487                 offset = CORE_CFP_MASK_PORT(4);
488         else
489                 offset = CORE_CFP_DATA_PORT(4);
490         core_writel(priv, val, offset);
491
492         /* UDF_n_B7 (lower)     [31:24] (addr[7:0])
493          * UDF_n_B6             [23:8] (addr[31:16])
494          * UDF_n_B5 (upper)     [7:0] (addr[47:40])
495          */
496         tmp = be32_to_cpu(ip6_addr[2]);
497         val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
498               ((tmp >> 8) & 0xff);
499         if (mask)
500                 offset = CORE_CFP_MASK_PORT(3);
501         else
502                 offset = CORE_CFP_DATA_PORT(3);
503         core_writel(priv, val, offset);
504
505         /* UDF_n_B5 (lower)     [31:24] (addr[39:32])
506          * UDF_n_B4             [23:8] (addr[63:48])
507          * UDF_n_B3 (upper)     [7:0] (addr[79:72])
508          */
509         reg = be32_to_cpu(ip6_addr[1]);
510         val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
511               ((reg >> 8) & 0xff);
512         if (mask)
513                 offset = CORE_CFP_MASK_PORT(2);
514         else
515                 offset = CORE_CFP_DATA_PORT(2);
516         core_writel(priv, val, offset);
517
518         /* UDF_n_B3 (lower)     [31:24] (addr[71:64])
519          * UDF_n_B2             [23:8] (addr[95:80])
520          * UDF_n_B1 (upper)     [7:0] (addr[111:104])
521          */
522         tmp = be32_to_cpu(ip6_addr[0]);
523         val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
524               ((tmp >> 8) & 0xff);
525         if (mask)
526                 offset = CORE_CFP_MASK_PORT(1);
527         else
528                 offset = CORE_CFP_DATA_PORT(1);
529         core_writel(priv, val, offset);
530
531         /* UDF_n_B1 (lower)     [31:24] (addr[103:96])
532          * UDF_n_B0             [23:8] (addr[127:112])
533          * Reserved             [7:4]
534          * Slice ID             [3:2]
535          * Slice valid          [1:0]
536          */
537         reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
538                SLICE_NUM(slice_num) | SLICE_VALID;
539         if (mask)
540                 offset = CORE_CFP_MASK_PORT(0);
541         else
542                 offset = CORE_CFP_DATA_PORT(0);
543         core_writel(priv, reg, offset);
544 }
545
546 static struct cfp_rule *bcm_sf2_cfp_rule_find(struct bcm_sf2_priv *priv,
547                                               int port, u32 location)
548 {
549         struct cfp_rule *rule = NULL;
550
551         list_for_each_entry(rule, &priv->cfp.rules_list, next) {
552                 if (rule->port == port && rule->fs.location == location)
553                         break;
554         }
555
556         return rule;
557 }
558
559 static int bcm_sf2_cfp_rule_cmp(struct bcm_sf2_priv *priv, int port,
560                                 struct ethtool_rx_flow_spec *fs)
561 {
562         struct cfp_rule *rule = NULL;
563         size_t fs_size = 0;
564         int ret = 1;
565
566         if (list_empty(&priv->cfp.rules_list))
567                 return ret;
568
569         list_for_each_entry(rule, &priv->cfp.rules_list, next) {
570                 ret = 1;
571                 if (rule->port != port)
572                         continue;
573
574                 if (rule->fs.flow_type != fs->flow_type ||
575                     rule->fs.ring_cookie != fs->ring_cookie ||
576                     rule->fs.m_ext.data[0] != fs->m_ext.data[0])
577                         continue;
578
579                 switch (fs->flow_type & ~FLOW_EXT) {
580                 case TCP_V6_FLOW:
581                 case UDP_V6_FLOW:
582                         fs_size = sizeof(struct ethtool_tcpip6_spec);
583                         break;
584                 case TCP_V4_FLOW:
585                 case UDP_V4_FLOW:
586                         fs_size = sizeof(struct ethtool_tcpip4_spec);
587                         break;
588                 default:
589                         continue;
590                 }
591
592                 ret = memcmp(&rule->fs.h_u, &fs->h_u, fs_size);
593                 ret |= memcmp(&rule->fs.m_u, &fs->m_u, fs_size);
594                 if (ret == 0)
595                         break;
596         }
597
598         return ret;
599 }
600
601 static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
602                                      unsigned int port_num,
603                                      unsigned int queue_num,
604                                      struct ethtool_rx_flow_spec *fs)
605 {
606         struct ethtool_rx_flow_spec_input input = {};
607         unsigned int slice_num, rule_index[2];
608         const struct cfp_udf_layout *layout;
609         struct ethtool_rx_flow_rule *flow;
610         struct flow_match_ipv6_addrs ipv6;
611         struct flow_match_ports ports;
612         u8 ip_proto, ip_frag;
613         int ret = 0;
614         u8 num_udf;
615         u32 reg;
616
617         switch (fs->flow_type & ~FLOW_EXT) {
618         case TCP_V6_FLOW:
619                 ip_proto = IPPROTO_TCP;
620                 break;
621         case UDP_V6_FLOW:
622                 ip_proto = IPPROTO_UDP;
623                 break;
624         default:
625                 return -EINVAL;
626         }
627
628         ip_frag = be32_to_cpu(fs->m_ext.data[0]);
629
630         layout = &udf_tcpip6_layout;
631         slice_num = bcm_sf2_get_slice_number(layout, 0);
632         if (slice_num == UDF_NUM_SLICES)
633                 return -EINVAL;
634
635         num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
636
637         /* Negotiate two indexes, one for the second half which we are chained
638          * from, which is what we will return to user-space, and a second one
639          * which is used to store its first half. That first half does not
640          * allow any choice of placement, so it just needs to find the next
641          * available bit. We return the second half as fs->location because
642          * that helps with the rule lookup later on since the second half is
643          * chained from its first half, we can easily identify IPv6 CFP rules
644          * by looking whether they carry a CHAIN_ID.
645          *
646          * We also want the second half to have a lower rule_index than its
647          * first half because the HW search is by incrementing addresses.
648          */
649         if (fs->location == RX_CLS_LOC_ANY)
650                 rule_index[1] = find_first_zero_bit(priv->cfp.used,
651                                                     priv->num_cfp_rules);
652         else
653                 rule_index[1] = fs->location;
654         if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
655                 return -ENOSPC;
656
657         /* Flag it as used (cleared on error path) such that we can immediately
658          * obtain a second one to chain from.
659          */
660         set_bit(rule_index[1], priv->cfp.used);
661
662         rule_index[0] = find_first_zero_bit(priv->cfp.used,
663                                             priv->num_cfp_rules);
664         if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
665                 ret = -ENOSPC;
666                 goto out_err;
667         }
668
669         input.fs = fs;
670         flow = ethtool_rx_flow_rule_create(&input);
671         if (IS_ERR(flow)) {
672                 ret = PTR_ERR(flow);
673                 goto out_err;
674         }
675         flow_rule_match_ipv6_addrs(flow->rule, &ipv6);
676         flow_rule_match_ports(flow->rule, &ports);
677
678         /* Apply the UDF layout for this filter */
679         bcm_sf2_cfp_udf_set(priv, layout, slice_num);
680
681         /* Apply to all packets received through this port */
682         core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
683
684         /* Source port map match */
685         core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
686
687         /* S-Tag status         [31:30]
688          * C-Tag status         [29:28]
689          * L2 framing           [27:26]
690          * L3 framing           [25:24]
691          * IP ToS               [23:16]
692          * IP proto             [15:08]
693          * IP Fragm             [7]
694          * Non 1st frag         [6]
695          * IP Authen            [5]
696          * TTL range            [4:3]
697          * PPPoE session        [2]
698          * Reserved             [1]
699          * UDF_Valid[8]         [0]
700          */
701         reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
702                 ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
703         core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
704
705         /* Mask with the specific layout for IPv6 packets including
706          * UDF_Valid[8]
707          */
708         reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
709         core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
710
711         /* UDF_Valid[7:0]       [31:24]
712          * S-Tag                [23:8]
713          * C-Tag                [7:0]
714          */
715         core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
716
717         /* Mask all but valid UDFs */
718         core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
719
720         /* Slice the IPv6 source address and port */
721         bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->src.in6_u.u6_addr32,
722                                ports.key->src, slice_num, false);
723         bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->src.in6_u.u6_addr32,
724                                ports.mask->src, SLICE_NUM_MASK, true);
725
726         /* Insert into TCAM now because we need to insert a second rule */
727         bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
728
729         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
730         if (ret) {
731                 pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
732                 goto out_err_flow_rule;
733         }
734
735         /* Insert into Action and policer RAMs now */
736         ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port, port_num,
737                                       queue_num, false);
738         if (ret)
739                 goto out_err_flow_rule;
740
741         /* Now deal with the second slice to chain this rule */
742         slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
743         if (slice_num == UDF_NUM_SLICES) {
744                 ret = -EINVAL;
745                 goto out_err_flow_rule;
746         }
747
748         num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
749
750         /* Apply the UDF layout for this filter */
751         bcm_sf2_cfp_udf_set(priv, layout, slice_num);
752
753         /* Chained rule, source port match is coming from the rule we are
754          * chained from.
755          */
756         core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
757         core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
758
759         /*
760          * CHAIN ID             [31:24] chain to previous slice
761          * Reserved             [23:20]
762          * UDF_Valid[11:8]      [19:16]
763          * UDF_Valid[7:0]       [15:8]
764          * UDF_n_D11            [7:0]
765          */
766         reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
767                 udf_lower_bits(num_udf) << 8;
768         core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
769
770         /* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
771         reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
772                 udf_lower_bits(num_udf) << 8;
773         core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
774
775         /* Don't care */
776         core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
777
778         /* Mask all */
779         core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
780
781         bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->dst.in6_u.u6_addr32,
782                                ports.key->dst, slice_num, false);
783         bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->dst.in6_u.u6_addr32,
784                                ports.key->dst, SLICE_NUM_MASK, true);
785
786         /* Insert into TCAM now */
787         bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
788
789         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
790         if (ret) {
791                 pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
792                 goto out_err_flow_rule;
793         }
794
795         /* Insert into Action and policer RAMs now, set chain ID to
796          * the one we are chained to
797          */
798         ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port, port_num,
799                                       queue_num, true);
800         if (ret)
801                 goto out_err_flow_rule;
802
803         /* Turn on CFP for this rule now */
804         reg = core_readl(priv, CORE_CFP_CTL_REG);
805         reg |= BIT(port);
806         core_writel(priv, reg, CORE_CFP_CTL_REG);
807
808         /* Flag the second half rule as being used now, return it as the
809          * location, and flag it as unique while dumping rules
810          */
811         set_bit(rule_index[0], priv->cfp.used);
812         set_bit(rule_index[1], priv->cfp.unique);
813         fs->location = rule_index[1];
814
815         return ret;
816
817 out_err_flow_rule:
818         ethtool_rx_flow_rule_destroy(flow);
819 out_err:
820         clear_bit(rule_index[1], priv->cfp.used);
821         return ret;
822 }
823
824 static int bcm_sf2_cfp_rule_insert(struct dsa_switch *ds, int port,
825                                    struct ethtool_rx_flow_spec *fs)
826 {
827         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
828         s8 cpu_port = ds->ports[port].cpu_dp->index;
829         __u64 ring_cookie = fs->ring_cookie;
830         unsigned int queue_num, port_num;
831         int ret;
832
833         /* This rule is a Wake-on-LAN filter and we must specifically
834          * target the CPU port in order for it to be working.
835          */
836         if (ring_cookie == RX_CLS_FLOW_WAKE)
837                 ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES;
838
839         /* We do not support discarding packets, check that the
840          * destination port is enabled and that we are within the
841          * number of ports supported by the switch
842          */
843         port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES;
844
845         if (ring_cookie == RX_CLS_FLOW_DISC ||
846             !(dsa_is_user_port(ds, port_num) ||
847               dsa_is_cpu_port(ds, port_num)) ||
848             port_num >= priv->hw_params.num_ports)
849                 return -EINVAL;
850         /*
851          * We have a small oddity where Port 6 just does not have a
852          * valid bit here (so we substract by one).
853          */
854         queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES;
855         if (port_num >= 7)
856                 port_num -= 1;
857
858         switch (fs->flow_type & ~FLOW_EXT) {
859         case TCP_V4_FLOW:
860         case UDP_V4_FLOW:
861                 ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
862                                                 queue_num, fs);
863                 break;
864         case TCP_V6_FLOW:
865         case UDP_V6_FLOW:
866                 ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
867                                                 queue_num, fs);
868                 break;
869         default:
870                 ret = -EINVAL;
871                 break;
872         }
873
874         return ret;
875 }
876
877 static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
878                                 struct ethtool_rx_flow_spec *fs)
879 {
880         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
881         struct cfp_rule *rule = NULL;
882         int ret = -EINVAL;
883
884         /* Check for unsupported extensions */
885         if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
886              fs->m_ext.data[1]))
887                 return -EINVAL;
888
889         if (fs->location != RX_CLS_LOC_ANY && fs->location >= CFP_NUM_RULES)
890                 return -EINVAL;
891
892         if (fs->location != RX_CLS_LOC_ANY &&
893             test_bit(fs->location, priv->cfp.used))
894                 return -EBUSY;
895
896         if (fs->location != RX_CLS_LOC_ANY &&
897             fs->location > bcm_sf2_cfp_rule_size(priv))
898                 return -EINVAL;
899
900         ret = bcm_sf2_cfp_rule_cmp(priv, port, fs);
901         if (ret == 0)
902                 return -EEXIST;
903
904         rule = kzalloc(sizeof(*rule), GFP_KERNEL);
905         if (!rule)
906                 return -ENOMEM;
907
908         ret = bcm_sf2_cfp_rule_insert(ds, port, fs);
909         if (ret) {
910                 kfree(rule);
911                 return ret;
912         }
913
914         rule->port = port;
915         memcpy(&rule->fs, fs, sizeof(*fs));
916         list_add_tail(&rule->next, &priv->cfp.rules_list);
917
918         return ret;
919 }
920
921 static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
922                                     u32 loc, u32 *next_loc)
923 {
924         int ret;
925         u32 reg;
926
927         /* Indicate which rule we want to read */
928         bcm_sf2_cfp_rule_addr_set(priv, loc);
929
930         ret =  bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
931         if (ret)
932                 return ret;
933
934         /* Check if this is possibly an IPv6 rule that would
935          * indicate we need to delete its companion rule
936          * as well
937          */
938         reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
939         if (next_loc)
940                 *next_loc = (reg >> 24) & CHAIN_ID_MASK;
941
942         /* Clear its valid bits */
943         reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
944         reg &= ~SLICE_VALID;
945         core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
946
947         /* Write back this entry into the TCAM now */
948         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
949         if (ret)
950                 return ret;
951
952         clear_bit(loc, priv->cfp.used);
953         clear_bit(loc, priv->cfp.unique);
954
955         return 0;
956 }
957
958 static int bcm_sf2_cfp_rule_remove(struct bcm_sf2_priv *priv, int port,
959                                    u32 loc)
960 {
961         u32 next_loc = 0;
962         int ret;
963
964         ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
965         if (ret)
966                 return ret;
967
968         /* If this was an IPv6 rule, delete is companion rule too */
969         if (next_loc)
970                 ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
971
972         return ret;
973 }
974
975 static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, u32 loc)
976 {
977         struct cfp_rule *rule;
978         int ret;
979
980         if (loc >= CFP_NUM_RULES)
981                 return -EINVAL;
982
983         /* Refuse deleting unused rules, and those that are not unique since
984          * that could leave IPv6 rules with one of the chained rule in the
985          * table.
986          */
987         if (!test_bit(loc, priv->cfp.unique) || loc == 0)
988                 return -EINVAL;
989
990         rule = bcm_sf2_cfp_rule_find(priv, port, loc);
991         if (!rule)
992                 return -EINVAL;
993
994         ret = bcm_sf2_cfp_rule_remove(priv, port, loc);
995
996         list_del(&rule->next);
997         kfree(rule);
998
999         return ret;
1000 }
1001
1002 static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
1003 {
1004         unsigned int i;
1005
1006         for (i = 0; i < sizeof(flow->m_u); i++)
1007                 flow->m_u.hdata[i] ^= 0xff;
1008
1009         flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
1010         flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
1011         flow->m_ext.data[0] ^= cpu_to_be32(~0);
1012         flow->m_ext.data[1] ^= cpu_to_be32(~0);
1013 }
1014
1015 static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
1016                                 struct ethtool_rxnfc *nfc)
1017 {
1018         struct cfp_rule *rule;
1019
1020         rule = bcm_sf2_cfp_rule_find(priv, port, nfc->fs.location);
1021         if (!rule)
1022                 return -EINVAL;
1023
1024         memcpy(&nfc->fs, &rule->fs, sizeof(rule->fs));
1025
1026         bcm_sf2_invert_masks(&nfc->fs);
1027
1028         /* Put the TCAM size here */
1029         nfc->data = bcm_sf2_cfp_rule_size(priv);
1030
1031         return 0;
1032 }
1033
1034 /* We implement the search doing a TCAM search operation */
1035 static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
1036                                     int port, struct ethtool_rxnfc *nfc,
1037                                     u32 *rule_locs)
1038 {
1039         unsigned int index = 1, rules_cnt = 0;
1040
1041         for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
1042                 rule_locs[rules_cnt] = index;
1043                 rules_cnt++;
1044         }
1045
1046         /* Put the TCAM size here */
1047         nfc->data = bcm_sf2_cfp_rule_size(priv);
1048         nfc->rule_cnt = rules_cnt;
1049
1050         return 0;
1051 }
1052
1053 int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
1054                       struct ethtool_rxnfc *nfc, u32 *rule_locs)
1055 {
1056         struct net_device *p = ds->ports[port].cpu_dp->master;
1057         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1058         int ret = 0;
1059
1060         mutex_lock(&priv->cfp.lock);
1061
1062         switch (nfc->cmd) {
1063         case ETHTOOL_GRXCLSRLCNT:
1064                 /* Subtract the default, unusable rule */
1065                 nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
1066                                               priv->num_cfp_rules) - 1;
1067                 /* We support specifying rule locations */
1068                 nfc->data |= RX_CLS_LOC_SPECIAL;
1069                 break;
1070         case ETHTOOL_GRXCLSRULE:
1071                 ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
1072                 break;
1073         case ETHTOOL_GRXCLSRLALL:
1074                 ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
1075                 break;
1076         default:
1077                 ret = -EOPNOTSUPP;
1078                 break;
1079         }
1080
1081         mutex_unlock(&priv->cfp.lock);
1082
1083         if (ret)
1084                 return ret;
1085
1086         /* Pass up the commands to the attached master network device */
1087         if (p->ethtool_ops->get_rxnfc) {
1088                 ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs);
1089                 if (ret == -EOPNOTSUPP)
1090                         ret = 0;
1091         }
1092
1093         return ret;
1094 }
1095
1096 int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
1097                       struct ethtool_rxnfc *nfc)
1098 {
1099         struct net_device *p = ds->ports[port].cpu_dp->master;
1100         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1101         int ret = 0;
1102
1103         mutex_lock(&priv->cfp.lock);
1104
1105         switch (nfc->cmd) {
1106         case ETHTOOL_SRXCLSRLINS:
1107                 ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
1108                 break;
1109
1110         case ETHTOOL_SRXCLSRLDEL:
1111                 ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1112                 break;
1113         default:
1114                 ret = -EOPNOTSUPP;
1115                 break;
1116         }
1117
1118         mutex_unlock(&priv->cfp.lock);
1119
1120         if (ret)
1121                 return ret;
1122
1123         /* Pass up the commands to the attached master network device.
1124          * This can fail, so rollback the operation if we need to.
1125          */
1126         if (p->ethtool_ops->set_rxnfc) {
1127                 ret = p->ethtool_ops->set_rxnfc(p, nfc);
1128                 if (ret && ret != -EOPNOTSUPP) {
1129                         mutex_lock(&priv->cfp.lock);
1130                         bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1131                         mutex_unlock(&priv->cfp.lock);
1132                 } else {
1133                         ret = 0;
1134                 }
1135         }
1136
1137         return ret;
1138 }
1139
1140 int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
1141 {
1142         unsigned int timeout = 1000;
1143         u32 reg;
1144
1145         reg = core_readl(priv, CORE_CFP_ACC);
1146         reg |= TCAM_RESET;
1147         core_writel(priv, reg, CORE_CFP_ACC);
1148
1149         do {
1150                 reg = core_readl(priv, CORE_CFP_ACC);
1151                 if (!(reg & TCAM_RESET))
1152                         break;
1153
1154                 cpu_relax();
1155         } while (timeout--);
1156
1157         if (!timeout)
1158                 return -ETIMEDOUT;
1159
1160         return 0;
1161 }
1162
1163 void bcm_sf2_cfp_exit(struct dsa_switch *ds)
1164 {
1165         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1166         struct cfp_rule *rule, *n;
1167
1168         if (list_empty(&priv->cfp.rules_list))
1169                 return;
1170
1171         list_for_each_entry_safe_reverse(rule, n, &priv->cfp.rules_list, next)
1172                 bcm_sf2_cfp_rule_del(priv, rule->port, rule->fs.location);
1173 }
1174
1175 int bcm_sf2_cfp_resume(struct dsa_switch *ds)
1176 {
1177         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1178         struct cfp_rule *rule;
1179         int ret = 0;
1180         u32 reg;
1181
1182         if (list_empty(&priv->cfp.rules_list))
1183                 return ret;
1184
1185         reg = core_readl(priv, CORE_CFP_CTL_REG);
1186         reg &= ~CFP_EN_MAP_MASK;
1187         core_writel(priv, reg, CORE_CFP_CTL_REG);
1188
1189         ret = bcm_sf2_cfp_rst(priv);
1190         if (ret)
1191                 return ret;
1192
1193         list_for_each_entry(rule, &priv->cfp.rules_list, next) {
1194                 ret = bcm_sf2_cfp_rule_remove(priv, rule->port,
1195                                               rule->fs.location);
1196                 if (ret) {
1197                         dev_err(ds->dev, "failed to remove rule\n");
1198                         return ret;
1199                 }
1200
1201                 ret = bcm_sf2_cfp_rule_insert(ds, rule->port, &rule->fs);
1202                 if (ret) {
1203                         dev_err(ds->dev, "failed to restore rule\n");
1204                         return ret;
1205                 }
1206         }
1207
1208         return ret;
1209 }
1210
1211 static const struct bcm_sf2_cfp_stat {
1212         unsigned int offset;
1213         unsigned int ram_loc;
1214         const char *name;
1215 } bcm_sf2_cfp_stats[] = {
1216         {
1217                 .offset = CORE_STAT_GREEN_CNTR,
1218                 .ram_loc = GREEN_STAT_RAM,
1219                 .name = "Green"
1220         },
1221         {
1222                 .offset = CORE_STAT_YELLOW_CNTR,
1223                 .ram_loc = YELLOW_STAT_RAM,
1224                 .name = "Yellow"
1225         },
1226         {
1227                 .offset = CORE_STAT_RED_CNTR,
1228                 .ram_loc = RED_STAT_RAM,
1229                 .name = "Red"
1230         },
1231 };
1232
1233 void bcm_sf2_cfp_get_strings(struct dsa_switch *ds, int port,
1234                              u32 stringset, uint8_t *data)
1235 {
1236         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1237         unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
1238         char buf[ETH_GSTRING_LEN];
1239         unsigned int i, j, iter;
1240
1241         if (stringset != ETH_SS_STATS)
1242                 return;
1243
1244         for (i = 1; i < priv->num_cfp_rules; i++) {
1245                 for (j = 0; j < s; j++) {
1246                         snprintf(buf, sizeof(buf),
1247                                  "CFP%03d_%sCntr",
1248                                  i, bcm_sf2_cfp_stats[j].name);
1249                         iter = (i - 1) * s + j;
1250                         strlcpy(data + iter * ETH_GSTRING_LEN,
1251                                 buf, ETH_GSTRING_LEN);
1252                 }
1253         }
1254 }
1255
1256 void bcm_sf2_cfp_get_ethtool_stats(struct dsa_switch *ds, int port,
1257                                    uint64_t *data)
1258 {
1259         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1260         unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
1261         const struct bcm_sf2_cfp_stat *stat;
1262         unsigned int i, j, iter;
1263         struct cfp_rule *rule;
1264         int ret;
1265
1266         mutex_lock(&priv->cfp.lock);
1267         for (i = 1; i < priv->num_cfp_rules; i++) {
1268                 rule = bcm_sf2_cfp_rule_find(priv, port, i);
1269                 if (!rule)
1270                         continue;
1271
1272                 for (j = 0; j < s; j++) {
1273                         stat = &bcm_sf2_cfp_stats[j];
1274
1275                         bcm_sf2_cfp_rule_addr_set(priv, i);
1276                         ret = bcm_sf2_cfp_op(priv, stat->ram_loc | OP_SEL_READ);
1277                         if (ret)
1278                                 continue;
1279
1280                         iter = (i - 1) * s + j;
1281                         data[iter] = core_readl(priv, stat->offset);
1282                 }
1283
1284         }
1285         mutex_unlock(&priv->cfp.lock);
1286 }
1287
1288 int bcm_sf2_cfp_get_sset_count(struct dsa_switch *ds, int port, int sset)
1289 {
1290         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1291
1292         if (sset != ETH_SS_STATS)
1293                 return 0;
1294
1295         /* 3 counters per CFP rules */
1296         return (priv->num_cfp_rules - 1) * ARRAY_SIZE(bcm_sf2_cfp_stats);
1297 }