Merge tag 'pci-v4.13-fixes-1' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[sfrench/cifs-2.6.git] / drivers / mtd / spi-nor / cadence-quadspi.c
1 /*
2  * Driver for Cadence QSPI Controller
3  *
4  * Copyright Altera Corporation (C) 2012-2014. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 #include <linux/clk.h>
19 #include <linux/completion.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/errno.h>
23 #include <linux/interrupt.h>
24 #include <linux/io.h>
25 #include <linux/jiffies.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/mtd/mtd.h>
29 #include <linux/mtd/partitions.h>
30 #include <linux/mtd/spi-nor.h>
31 #include <linux/of_device.h>
32 #include <linux/of.h>
33 #include <linux/platform_device.h>
34 #include <linux/sched.h>
35 #include <linux/spi/spi.h>
36 #include <linux/timer.h>
37
38 #define CQSPI_NAME                      "cadence-qspi"
39 #define CQSPI_MAX_CHIPSELECT            16
40
41 struct cqspi_st;
42
43 struct cqspi_flash_pdata {
44         struct spi_nor  nor;
45         struct cqspi_st *cqspi;
46         u32             clk_rate;
47         u32             read_delay;
48         u32             tshsl_ns;
49         u32             tsd2d_ns;
50         u32             tchsh_ns;
51         u32             tslch_ns;
52         u8              inst_width;
53         u8              addr_width;
54         u8              data_width;
55         u8              cs;
56         bool            registered;
57 };
58
59 struct cqspi_st {
60         struct platform_device  *pdev;
61
62         struct clk              *clk;
63         unsigned int            sclk;
64
65         void __iomem            *iobase;
66         void __iomem            *ahb_base;
67         struct completion       transfer_complete;
68         struct mutex            bus_mutex;
69
70         int                     current_cs;
71         int                     current_page_size;
72         int                     current_erase_size;
73         int                     current_addr_width;
74         unsigned long           master_ref_clk_hz;
75         bool                    is_decoded_cs;
76         u32                     fifo_depth;
77         u32                     fifo_width;
78         u32                     trigger_address;
79         struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
80 };
81
82 /* Operation timeout value */
83 #define CQSPI_TIMEOUT_MS                        500
84 #define CQSPI_READ_TIMEOUT_MS                   10
85
86 /* Instruction type */
87 #define CQSPI_INST_TYPE_SINGLE                  0
88 #define CQSPI_INST_TYPE_DUAL                    1
89 #define CQSPI_INST_TYPE_QUAD                    2
90
91 #define CQSPI_DUMMY_CLKS_PER_BYTE               8
92 #define CQSPI_DUMMY_BYTES_MAX                   4
93 #define CQSPI_DUMMY_CLKS_MAX                    31
94
95 #define CQSPI_STIG_DATA_LEN_MAX                 8
96
97 /* Register map */
98 #define CQSPI_REG_CONFIG                        0x00
99 #define CQSPI_REG_CONFIG_ENABLE_MASK            BIT(0)
100 #define CQSPI_REG_CONFIG_DECODE_MASK            BIT(9)
101 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB         10
102 #define CQSPI_REG_CONFIG_DMA_MASK               BIT(15)
103 #define CQSPI_REG_CONFIG_BAUD_LSB               19
104 #define CQSPI_REG_CONFIG_IDLE_LSB               31
105 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK        0xF
106 #define CQSPI_REG_CONFIG_BAUD_MASK              0xF
107
108 #define CQSPI_REG_RD_INSTR                      0x04
109 #define CQSPI_REG_RD_INSTR_OPCODE_LSB           0
110 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB       8
111 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB        12
112 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB        16
113 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB          20
114 #define CQSPI_REG_RD_INSTR_DUMMY_LSB            24
115 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK      0x3
116 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK       0x3
117 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK       0x3
118 #define CQSPI_REG_RD_INSTR_DUMMY_MASK           0x1F
119
120 #define CQSPI_REG_WR_INSTR                      0x08
121 #define CQSPI_REG_WR_INSTR_OPCODE_LSB           0
122 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB        12
123 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB        16
124
125 #define CQSPI_REG_DELAY                         0x0C
126 #define CQSPI_REG_DELAY_TSLCH_LSB               0
127 #define CQSPI_REG_DELAY_TCHSH_LSB               8
128 #define CQSPI_REG_DELAY_TSD2D_LSB               16
129 #define CQSPI_REG_DELAY_TSHSL_LSB               24
130 #define CQSPI_REG_DELAY_TSLCH_MASK              0xFF
131 #define CQSPI_REG_DELAY_TCHSH_MASK              0xFF
132 #define CQSPI_REG_DELAY_TSD2D_MASK              0xFF
133 #define CQSPI_REG_DELAY_TSHSL_MASK              0xFF
134
135 #define CQSPI_REG_READCAPTURE                   0x10
136 #define CQSPI_REG_READCAPTURE_BYPASS_LSB        0
137 #define CQSPI_REG_READCAPTURE_DELAY_LSB         1
138 #define CQSPI_REG_READCAPTURE_DELAY_MASK        0xF
139
140 #define CQSPI_REG_SIZE                          0x14
141 #define CQSPI_REG_SIZE_ADDRESS_LSB              0
142 #define CQSPI_REG_SIZE_PAGE_LSB                 4
143 #define CQSPI_REG_SIZE_BLOCK_LSB                16
144 #define CQSPI_REG_SIZE_ADDRESS_MASK             0xF
145 #define CQSPI_REG_SIZE_PAGE_MASK                0xFFF
146 #define CQSPI_REG_SIZE_BLOCK_MASK               0x3F
147
148 #define CQSPI_REG_SRAMPARTITION                 0x18
149 #define CQSPI_REG_INDIRECTTRIGGER               0x1C
150
151 #define CQSPI_REG_DMA                           0x20
152 #define CQSPI_REG_DMA_SINGLE_LSB                0
153 #define CQSPI_REG_DMA_BURST_LSB                 8
154 #define CQSPI_REG_DMA_SINGLE_MASK               0xFF
155 #define CQSPI_REG_DMA_BURST_MASK                0xFF
156
157 #define CQSPI_REG_REMAP                         0x24
158 #define CQSPI_REG_MODE_BIT                      0x28
159
160 #define CQSPI_REG_SDRAMLEVEL                    0x2C
161 #define CQSPI_REG_SDRAMLEVEL_RD_LSB             0
162 #define CQSPI_REG_SDRAMLEVEL_WR_LSB             16
163 #define CQSPI_REG_SDRAMLEVEL_RD_MASK            0xFFFF
164 #define CQSPI_REG_SDRAMLEVEL_WR_MASK            0xFFFF
165
166 #define CQSPI_REG_IRQSTATUS                     0x40
167 #define CQSPI_REG_IRQMASK                       0x44
168
169 #define CQSPI_REG_INDIRECTRD                    0x60
170 #define CQSPI_REG_INDIRECTRD_START_MASK         BIT(0)
171 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK        BIT(1)
172 #define CQSPI_REG_INDIRECTRD_DONE_MASK          BIT(5)
173
174 #define CQSPI_REG_INDIRECTRDWATERMARK           0x64
175 #define CQSPI_REG_INDIRECTRDSTARTADDR           0x68
176 #define CQSPI_REG_INDIRECTRDBYTES               0x6C
177
178 #define CQSPI_REG_CMDCTRL                       0x90
179 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK          BIT(0)
180 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK       BIT(1)
181 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB          12
182 #define CQSPI_REG_CMDCTRL_WR_EN_LSB             15
183 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB         16
184 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB           19
185 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB          20
186 #define CQSPI_REG_CMDCTRL_RD_EN_LSB             23
187 #define CQSPI_REG_CMDCTRL_OPCODE_LSB            24
188 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK         0x7
189 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK        0x3
190 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK         0x7
191
192 #define CQSPI_REG_INDIRECTWR                    0x70
193 #define CQSPI_REG_INDIRECTWR_START_MASK         BIT(0)
194 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK        BIT(1)
195 #define CQSPI_REG_INDIRECTWR_DONE_MASK          BIT(5)
196
197 #define CQSPI_REG_INDIRECTWRWATERMARK           0x74
198 #define CQSPI_REG_INDIRECTWRSTARTADDR           0x78
199 #define CQSPI_REG_INDIRECTWRBYTES               0x7C
200
201 #define CQSPI_REG_CMDADDRESS                    0x94
202 #define CQSPI_REG_CMDREADDATALOWER              0xA0
203 #define CQSPI_REG_CMDREADDATAUPPER              0xA4
204 #define CQSPI_REG_CMDWRITEDATALOWER             0xA8
205 #define CQSPI_REG_CMDWRITEDATAUPPER             0xAC
206
207 /* Interrupt status bits */
208 #define CQSPI_REG_IRQ_MODE_ERR                  BIT(0)
209 #define CQSPI_REG_IRQ_UNDERFLOW                 BIT(1)
210 #define CQSPI_REG_IRQ_IND_COMP                  BIT(2)
211 #define CQSPI_REG_IRQ_IND_RD_REJECT             BIT(3)
212 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR          BIT(4)
213 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR           BIT(5)
214 #define CQSPI_REG_IRQ_WATERMARK                 BIT(6)
215 #define CQSPI_REG_IRQ_IND_SRAM_FULL             BIT(12)
216
217 #define CQSPI_IRQ_MASK_RD               (CQSPI_REG_IRQ_WATERMARK        | \
218                                          CQSPI_REG_IRQ_IND_SRAM_FULL    | \
219                                          CQSPI_REG_IRQ_IND_COMP)
220
221 #define CQSPI_IRQ_MASK_WR               (CQSPI_REG_IRQ_IND_COMP         | \
222                                          CQSPI_REG_IRQ_WATERMARK        | \
223                                          CQSPI_REG_IRQ_UNDERFLOW)
224
225 #define CQSPI_IRQ_STATUS_MASK           0x1FFFF
226
227 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clear)
228 {
229         unsigned long end = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
230         u32 val;
231
232         while (1) {
233                 val = readl(reg);
234                 if (clear)
235                         val = ~val;
236                 val &= mask;
237
238                 if (val == mask)
239                         return 0;
240
241                 if (time_after(jiffies, end))
242                         return -ETIMEDOUT;
243         }
244 }
245
246 static bool cqspi_is_idle(struct cqspi_st *cqspi)
247 {
248         u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
249
250         return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
251 }
252
253 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
254 {
255         u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
256
257         reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
258         return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
259 }
260
261 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
262 {
263         struct cqspi_st *cqspi = dev;
264         unsigned int irq_status;
265
266         /* Read interrupt status */
267         irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
268
269         /* Clear interrupt */
270         writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
271
272         irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
273
274         if (irq_status)
275                 complete(&cqspi->transfer_complete);
276
277         return IRQ_HANDLED;
278 }
279
280 static unsigned int cqspi_calc_rdreg(struct spi_nor *nor, const u8 opcode)
281 {
282         struct cqspi_flash_pdata *f_pdata = nor->priv;
283         u32 rdreg = 0;
284
285         rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
286         rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
287         rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
288
289         return rdreg;
290 }
291
292 static int cqspi_wait_idle(struct cqspi_st *cqspi)
293 {
294         const unsigned int poll_idle_retry = 3;
295         unsigned int count = 0;
296         unsigned long timeout;
297
298         timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
299         while (1) {
300                 /*
301                  * Read few times in succession to ensure the controller
302                  * is indeed idle, that is, the bit does not transition
303                  * low again.
304                  */
305                 if (cqspi_is_idle(cqspi))
306                         count++;
307                 else
308                         count = 0;
309
310                 if (count >= poll_idle_retry)
311                         return 0;
312
313                 if (time_after(jiffies, timeout)) {
314                         /* Timeout, in busy mode. */
315                         dev_err(&cqspi->pdev->dev,
316                                 "QSPI is still busy after %dms timeout.\n",
317                                 CQSPI_TIMEOUT_MS);
318                         return -ETIMEDOUT;
319                 }
320
321                 cpu_relax();
322         }
323 }
324
325 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
326 {
327         void __iomem *reg_base = cqspi->iobase;
328         int ret;
329
330         /* Write the CMDCTRL without start execution. */
331         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
332         /* Start execute */
333         reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
334         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
335
336         /* Polling for completion. */
337         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
338                                  CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
339         if (ret) {
340                 dev_err(&cqspi->pdev->dev,
341                         "Flash command execution timed out.\n");
342                 return ret;
343         }
344
345         /* Polling QSPI idle status. */
346         return cqspi_wait_idle(cqspi);
347 }
348
349 static int cqspi_command_read(struct spi_nor *nor,
350                               const u8 *txbuf, const unsigned n_tx,
351                               u8 *rxbuf, const unsigned n_rx)
352 {
353         struct cqspi_flash_pdata *f_pdata = nor->priv;
354         struct cqspi_st *cqspi = f_pdata->cqspi;
355         void __iomem *reg_base = cqspi->iobase;
356         unsigned int rdreg;
357         unsigned int reg;
358         unsigned int read_len;
359         int status;
360
361         if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
362                 dev_err(nor->dev, "Invalid input argument, len %d rxbuf 0x%p\n",
363                         n_rx, rxbuf);
364                 return -EINVAL;
365         }
366
367         reg = txbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB;
368
369         rdreg = cqspi_calc_rdreg(nor, txbuf[0]);
370         writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
371
372         reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
373
374         /* 0 means 1 byte. */
375         reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
376                 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
377         status = cqspi_exec_flash_cmd(cqspi, reg);
378         if (status)
379                 return status;
380
381         reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
382
383         /* Put the read value into rx_buf */
384         read_len = (n_rx > 4) ? 4 : n_rx;
385         memcpy(rxbuf, &reg, read_len);
386         rxbuf += read_len;
387
388         if (n_rx > 4) {
389                 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
390
391                 read_len = n_rx - read_len;
392                 memcpy(rxbuf, &reg, read_len);
393         }
394
395         return 0;
396 }
397
398 static int cqspi_command_write(struct spi_nor *nor, const u8 opcode,
399                                const u8 *txbuf, const unsigned n_tx)
400 {
401         struct cqspi_flash_pdata *f_pdata = nor->priv;
402         struct cqspi_st *cqspi = f_pdata->cqspi;
403         void __iomem *reg_base = cqspi->iobase;
404         unsigned int reg;
405         unsigned int data;
406         int ret;
407
408         if (n_tx > 4 || (n_tx && !txbuf)) {
409                 dev_err(nor->dev,
410                         "Invalid input argument, cmdlen %d txbuf 0x%p\n",
411                         n_tx, txbuf);
412                 return -EINVAL;
413         }
414
415         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
416         if (n_tx) {
417                 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
418                 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
419                         << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
420                 data = 0;
421                 memcpy(&data, txbuf, n_tx);
422                 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
423         }
424
425         ret = cqspi_exec_flash_cmd(cqspi, reg);
426         return ret;
427 }
428
429 static int cqspi_command_write_addr(struct spi_nor *nor,
430                                     const u8 opcode, const unsigned int addr)
431 {
432         struct cqspi_flash_pdata *f_pdata = nor->priv;
433         struct cqspi_st *cqspi = f_pdata->cqspi;
434         void __iomem *reg_base = cqspi->iobase;
435         unsigned int reg;
436
437         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
438         reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
439         reg |= ((nor->addr_width - 1) & CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
440                 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
441
442         writel(addr, reg_base + CQSPI_REG_CMDADDRESS);
443
444         return cqspi_exec_flash_cmd(cqspi, reg);
445 }
446
447 static int cqspi_indirect_read_setup(struct spi_nor *nor,
448                                      const unsigned int from_addr)
449 {
450         struct cqspi_flash_pdata *f_pdata = nor->priv;
451         struct cqspi_st *cqspi = f_pdata->cqspi;
452         void __iomem *reg_base = cqspi->iobase;
453         unsigned int dummy_clk = 0;
454         unsigned int reg;
455
456         writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
457
458         reg = nor->read_opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
459         reg |= cqspi_calc_rdreg(nor, nor->read_opcode);
460
461         /* Setup dummy clock cycles */
462         dummy_clk = nor->read_dummy;
463         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
464                 dummy_clk = CQSPI_DUMMY_CLKS_MAX;
465
466         if (dummy_clk / 8) {
467                 reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
468                 /* Set mode bits high to ensure chip doesn't enter XIP */
469                 writel(0xFF, reg_base + CQSPI_REG_MODE_BIT);
470
471                 /* Need to subtract the mode byte (8 clocks). */
472                 if (f_pdata->inst_width != CQSPI_INST_TYPE_QUAD)
473                         dummy_clk -= 8;
474
475                 if (dummy_clk)
476                         reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
477                                << CQSPI_REG_RD_INSTR_DUMMY_LSB;
478         }
479
480         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
481
482         /* Set address width */
483         reg = readl(reg_base + CQSPI_REG_SIZE);
484         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
485         reg |= (nor->addr_width - 1);
486         writel(reg, reg_base + CQSPI_REG_SIZE);
487         return 0;
488 }
489
490 static int cqspi_indirect_read_execute(struct spi_nor *nor,
491                                        u8 *rxbuf, const unsigned n_rx)
492 {
493         struct cqspi_flash_pdata *f_pdata = nor->priv;
494         struct cqspi_st *cqspi = f_pdata->cqspi;
495         void __iomem *reg_base = cqspi->iobase;
496         void __iomem *ahb_base = cqspi->ahb_base;
497         unsigned int remaining = n_rx;
498         unsigned int bytes_to_read = 0;
499         int ret = 0;
500
501         writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
502
503         /* Clear all interrupts. */
504         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
505
506         writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
507
508         reinit_completion(&cqspi->transfer_complete);
509         writel(CQSPI_REG_INDIRECTRD_START_MASK,
510                reg_base + CQSPI_REG_INDIRECTRD);
511
512         while (remaining > 0) {
513                 ret = wait_for_completion_timeout(&cqspi->transfer_complete,
514                                                   msecs_to_jiffies
515                                                   (CQSPI_READ_TIMEOUT_MS));
516
517                 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
518
519                 if (!ret && bytes_to_read == 0) {
520                         dev_err(nor->dev, "Indirect read timeout, no bytes\n");
521                         ret = -ETIMEDOUT;
522                         goto failrd;
523                 }
524
525                 while (bytes_to_read != 0) {
526                         bytes_to_read *= cqspi->fifo_width;
527                         bytes_to_read = bytes_to_read > remaining ?
528                                         remaining : bytes_to_read;
529                         ioread32_rep(ahb_base, rxbuf,
530                                      DIV_ROUND_UP(bytes_to_read, 4));
531                         rxbuf += bytes_to_read;
532                         remaining -= bytes_to_read;
533                         bytes_to_read = cqspi_get_rd_sram_level(cqspi);
534                 }
535
536                 if (remaining > 0)
537                         reinit_completion(&cqspi->transfer_complete);
538         }
539
540         /* Check indirect done status */
541         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
542                                  CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
543         if (ret) {
544                 dev_err(nor->dev,
545                         "Indirect read completion error (%i)\n", ret);
546                 goto failrd;
547         }
548
549         /* Disable interrupt */
550         writel(0, reg_base + CQSPI_REG_IRQMASK);
551
552         /* Clear indirect completion status */
553         writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
554
555         return 0;
556
557 failrd:
558         /* Disable interrupt */
559         writel(0, reg_base + CQSPI_REG_IRQMASK);
560
561         /* Cancel the indirect read */
562         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
563                reg_base + CQSPI_REG_INDIRECTRD);
564         return ret;
565 }
566
567 static int cqspi_indirect_write_setup(struct spi_nor *nor,
568                                       const unsigned int to_addr)
569 {
570         unsigned int reg;
571         struct cqspi_flash_pdata *f_pdata = nor->priv;
572         struct cqspi_st *cqspi = f_pdata->cqspi;
573         void __iomem *reg_base = cqspi->iobase;
574
575         /* Set opcode. */
576         reg = nor->program_opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
577         writel(reg, reg_base + CQSPI_REG_WR_INSTR);
578         reg = cqspi_calc_rdreg(nor, nor->program_opcode);
579         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
580
581         writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
582
583         reg = readl(reg_base + CQSPI_REG_SIZE);
584         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
585         reg |= (nor->addr_width - 1);
586         writel(reg, reg_base + CQSPI_REG_SIZE);
587         return 0;
588 }
589
590 static int cqspi_indirect_write_execute(struct spi_nor *nor,
591                                         const u8 *txbuf, const unsigned n_tx)
592 {
593         const unsigned int page_size = nor->page_size;
594         struct cqspi_flash_pdata *f_pdata = nor->priv;
595         struct cqspi_st *cqspi = f_pdata->cqspi;
596         void __iomem *reg_base = cqspi->iobase;
597         unsigned int remaining = n_tx;
598         unsigned int write_bytes;
599         int ret;
600
601         writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
602
603         /* Clear all interrupts. */
604         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
605
606         writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
607
608         reinit_completion(&cqspi->transfer_complete);
609         writel(CQSPI_REG_INDIRECTWR_START_MASK,
610                reg_base + CQSPI_REG_INDIRECTWR);
611
612         while (remaining > 0) {
613                 write_bytes = remaining > page_size ? page_size : remaining;
614                 iowrite32_rep(cqspi->ahb_base, txbuf,
615                               DIV_ROUND_UP(write_bytes, 4));
616
617                 ret = wait_for_completion_timeout(&cqspi->transfer_complete,
618                                                   msecs_to_jiffies
619                                                   (CQSPI_TIMEOUT_MS));
620                 if (!ret) {
621                         dev_err(nor->dev, "Indirect write timeout\n");
622                         ret = -ETIMEDOUT;
623                         goto failwr;
624                 }
625
626                 txbuf += write_bytes;
627                 remaining -= write_bytes;
628
629                 if (remaining > 0)
630                         reinit_completion(&cqspi->transfer_complete);
631         }
632
633         /* Check indirect done status */
634         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
635                                  CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
636         if (ret) {
637                 dev_err(nor->dev,
638                         "Indirect write completion error (%i)\n", ret);
639                 goto failwr;
640         }
641
642         /* Disable interrupt. */
643         writel(0, reg_base + CQSPI_REG_IRQMASK);
644
645         /* Clear indirect completion status */
646         writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
647
648         cqspi_wait_idle(cqspi);
649
650         return 0;
651
652 failwr:
653         /* Disable interrupt. */
654         writel(0, reg_base + CQSPI_REG_IRQMASK);
655
656         /* Cancel the indirect write */
657         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
658                reg_base + CQSPI_REG_INDIRECTWR);
659         return ret;
660 }
661
662 static void cqspi_chipselect(struct spi_nor *nor)
663 {
664         struct cqspi_flash_pdata *f_pdata = nor->priv;
665         struct cqspi_st *cqspi = f_pdata->cqspi;
666         void __iomem *reg_base = cqspi->iobase;
667         unsigned int chip_select = f_pdata->cs;
668         unsigned int reg;
669
670         reg = readl(reg_base + CQSPI_REG_CONFIG);
671         if (cqspi->is_decoded_cs) {
672                 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
673         } else {
674                 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
675
676                 /* Convert CS if without decoder.
677                  * CS0 to 4b'1110
678                  * CS1 to 4b'1101
679                  * CS2 to 4b'1011
680                  * CS3 to 4b'0111
681                  */
682                 chip_select = 0xF & ~(1 << chip_select);
683         }
684
685         reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
686                  << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
687         reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
688             << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
689         writel(reg, reg_base + CQSPI_REG_CONFIG);
690 }
691
692 static void cqspi_configure_cs_and_sizes(struct spi_nor *nor)
693 {
694         struct cqspi_flash_pdata *f_pdata = nor->priv;
695         struct cqspi_st *cqspi = f_pdata->cqspi;
696         void __iomem *iobase = cqspi->iobase;
697         unsigned int reg;
698
699         /* configure page size and block size. */
700         reg = readl(iobase + CQSPI_REG_SIZE);
701         reg &= ~(CQSPI_REG_SIZE_PAGE_MASK << CQSPI_REG_SIZE_PAGE_LSB);
702         reg &= ~(CQSPI_REG_SIZE_BLOCK_MASK << CQSPI_REG_SIZE_BLOCK_LSB);
703         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
704         reg |= (nor->page_size << CQSPI_REG_SIZE_PAGE_LSB);
705         reg |= (ilog2(nor->mtd.erasesize) << CQSPI_REG_SIZE_BLOCK_LSB);
706         reg |= (nor->addr_width - 1);
707         writel(reg, iobase + CQSPI_REG_SIZE);
708
709         /* configure the chip select */
710         cqspi_chipselect(nor);
711
712         /* Store the new configuration of the controller */
713         cqspi->current_page_size = nor->page_size;
714         cqspi->current_erase_size = nor->mtd.erasesize;
715         cqspi->current_addr_width = nor->addr_width;
716 }
717
718 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
719                                            const unsigned int ns_val)
720 {
721         unsigned int ticks;
722
723         ticks = ref_clk_hz / 1000;      /* kHz */
724         ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
725
726         return ticks;
727 }
728
729 static void cqspi_delay(struct spi_nor *nor)
730 {
731         struct cqspi_flash_pdata *f_pdata = nor->priv;
732         struct cqspi_st *cqspi = f_pdata->cqspi;
733         void __iomem *iobase = cqspi->iobase;
734         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
735         unsigned int tshsl, tchsh, tslch, tsd2d;
736         unsigned int reg;
737         unsigned int tsclk;
738
739         /* calculate the number of ref ticks for one sclk tick */
740         tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
741
742         tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
743         /* this particular value must be at least one sclk */
744         if (tshsl < tsclk)
745                 tshsl = tsclk;
746
747         tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
748         tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
749         tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
750
751         reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
752                << CQSPI_REG_DELAY_TSHSL_LSB;
753         reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
754                 << CQSPI_REG_DELAY_TCHSH_LSB;
755         reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
756                 << CQSPI_REG_DELAY_TSLCH_LSB;
757         reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
758                 << CQSPI_REG_DELAY_TSD2D_LSB;
759         writel(reg, iobase + CQSPI_REG_DELAY);
760 }
761
762 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
763 {
764         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
765         void __iomem *reg_base = cqspi->iobase;
766         u32 reg, div;
767
768         /* Recalculate the baudrate divisor based on QSPI specification. */
769         div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
770
771         reg = readl(reg_base + CQSPI_REG_CONFIG);
772         reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
773         reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
774         writel(reg, reg_base + CQSPI_REG_CONFIG);
775 }
776
777 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
778                                    const unsigned int bypass,
779                                    const unsigned int delay)
780 {
781         void __iomem *reg_base = cqspi->iobase;
782         unsigned int reg;
783
784         reg = readl(reg_base + CQSPI_REG_READCAPTURE);
785
786         if (bypass)
787                 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
788         else
789                 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
790
791         reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
792                  << CQSPI_REG_READCAPTURE_DELAY_LSB);
793
794         reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
795                 << CQSPI_REG_READCAPTURE_DELAY_LSB;
796
797         writel(reg, reg_base + CQSPI_REG_READCAPTURE);
798 }
799
800 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
801 {
802         void __iomem *reg_base = cqspi->iobase;
803         unsigned int reg;
804
805         reg = readl(reg_base + CQSPI_REG_CONFIG);
806
807         if (enable)
808                 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
809         else
810                 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
811
812         writel(reg, reg_base + CQSPI_REG_CONFIG);
813 }
814
815 static void cqspi_configure(struct spi_nor *nor)
816 {
817         struct cqspi_flash_pdata *f_pdata = nor->priv;
818         struct cqspi_st *cqspi = f_pdata->cqspi;
819         const unsigned int sclk = f_pdata->clk_rate;
820         int switch_cs = (cqspi->current_cs != f_pdata->cs);
821         int switch_ck = (cqspi->sclk != sclk);
822
823         if ((cqspi->current_page_size != nor->page_size) ||
824             (cqspi->current_erase_size != nor->mtd.erasesize) ||
825             (cqspi->current_addr_width != nor->addr_width))
826                 switch_cs = 1;
827
828         if (switch_cs || switch_ck)
829                 cqspi_controller_enable(cqspi, 0);
830
831         /* Switch chip select. */
832         if (switch_cs) {
833                 cqspi->current_cs = f_pdata->cs;
834                 cqspi_configure_cs_and_sizes(nor);
835         }
836
837         /* Setup baudrate divisor and delays */
838         if (switch_ck) {
839                 cqspi->sclk = sclk;
840                 cqspi_config_baudrate_div(cqspi);
841                 cqspi_delay(nor);
842                 cqspi_readdata_capture(cqspi, 1, f_pdata->read_delay);
843         }
844
845         if (switch_cs || switch_ck)
846                 cqspi_controller_enable(cqspi, 1);
847 }
848
849 static int cqspi_set_protocol(struct spi_nor *nor, const int read)
850 {
851         struct cqspi_flash_pdata *f_pdata = nor->priv;
852
853         f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
854         f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
855         f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
856
857         if (read) {
858                 switch (nor->read_proto) {
859                 case SNOR_PROTO_1_1_1:
860                         f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
861                         break;
862                 case SNOR_PROTO_1_1_2:
863                         f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
864                         break;
865                 case SNOR_PROTO_1_1_4:
866                         f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
867                         break;
868                 default:
869                         return -EINVAL;
870                 }
871         }
872
873         cqspi_configure(nor);
874
875         return 0;
876 }
877
878 static ssize_t cqspi_write(struct spi_nor *nor, loff_t to,
879                            size_t len, const u_char *buf)
880 {
881         int ret;
882
883         ret = cqspi_set_protocol(nor, 0);
884         if (ret)
885                 return ret;
886
887         ret = cqspi_indirect_write_setup(nor, to);
888         if (ret)
889                 return ret;
890
891         ret = cqspi_indirect_write_execute(nor, buf, len);
892         if (ret)
893                 return ret;
894
895         return len;
896 }
897
898 static ssize_t cqspi_read(struct spi_nor *nor, loff_t from,
899                           size_t len, u_char *buf)
900 {
901         int ret;
902
903         ret = cqspi_set_protocol(nor, 1);
904         if (ret)
905                 return ret;
906
907         ret = cqspi_indirect_read_setup(nor, from);
908         if (ret)
909                 return ret;
910
911         ret = cqspi_indirect_read_execute(nor, buf, len);
912         if (ret)
913                 return ret;
914
915         return len;
916 }
917
918 static int cqspi_erase(struct spi_nor *nor, loff_t offs)
919 {
920         int ret;
921
922         ret = cqspi_set_protocol(nor, 0);
923         if (ret)
924                 return ret;
925
926         /* Send write enable, then erase commands. */
927         ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
928         if (ret)
929                 return ret;
930
931         /* Set up command buffer. */
932         ret = cqspi_command_write_addr(nor, nor->erase_opcode, offs);
933         if (ret)
934                 return ret;
935
936         return 0;
937 }
938
939 static int cqspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
940 {
941         struct cqspi_flash_pdata *f_pdata = nor->priv;
942         struct cqspi_st *cqspi = f_pdata->cqspi;
943
944         mutex_lock(&cqspi->bus_mutex);
945
946         return 0;
947 }
948
949 static void cqspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
950 {
951         struct cqspi_flash_pdata *f_pdata = nor->priv;
952         struct cqspi_st *cqspi = f_pdata->cqspi;
953
954         mutex_unlock(&cqspi->bus_mutex);
955 }
956
957 static int cqspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
958 {
959         int ret;
960
961         ret = cqspi_set_protocol(nor, 0);
962         if (!ret)
963                 ret = cqspi_command_read(nor, &opcode, 1, buf, len);
964
965         return ret;
966 }
967
968 static int cqspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
969 {
970         int ret;
971
972         ret = cqspi_set_protocol(nor, 0);
973         if (!ret)
974                 ret = cqspi_command_write(nor, opcode, buf, len);
975
976         return ret;
977 }
978
979 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
980                                     struct cqspi_flash_pdata *f_pdata,
981                                     struct device_node *np)
982 {
983         if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
984                 dev_err(&pdev->dev, "couldn't determine read-delay\n");
985                 return -ENXIO;
986         }
987
988         if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
989                 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
990                 return -ENXIO;
991         }
992
993         if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
994                 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
995                 return -ENXIO;
996         }
997
998         if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
999                 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1000                 return -ENXIO;
1001         }
1002
1003         if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1004                 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1005                 return -ENXIO;
1006         }
1007
1008         if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1009                 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1010                 return -ENXIO;
1011         }
1012
1013         return 0;
1014 }
1015
1016 static int cqspi_of_get_pdata(struct platform_device *pdev)
1017 {
1018         struct device_node *np = pdev->dev.of_node;
1019         struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1020
1021         cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1022
1023         if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1024                 dev_err(&pdev->dev, "couldn't determine fifo-depth\n");
1025                 return -ENXIO;
1026         }
1027
1028         if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1029                 dev_err(&pdev->dev, "couldn't determine fifo-width\n");
1030                 return -ENXIO;
1031         }
1032
1033         if (of_property_read_u32(np, "cdns,trigger-address",
1034                                  &cqspi->trigger_address)) {
1035                 dev_err(&pdev->dev, "couldn't determine trigger-address\n");
1036                 return -ENXIO;
1037         }
1038
1039         return 0;
1040 }
1041
1042 static void cqspi_controller_init(struct cqspi_st *cqspi)
1043 {
1044         cqspi_controller_enable(cqspi, 0);
1045
1046         /* Configure the remap address register, no remap */
1047         writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1048
1049         /* Disable all interrupts. */
1050         writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1051
1052         /* Configure the SRAM split to 1:1 . */
1053         writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1054
1055         /* Load indirect trigger address. */
1056         writel(cqspi->trigger_address,
1057                cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1058
1059         /* Program read watermark -- 1/2 of the FIFO. */
1060         writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1061                cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1062         /* Program write watermark -- 1/8 of the FIFO. */
1063         writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1064                cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1065
1066         cqspi_controller_enable(cqspi, 1);
1067 }
1068
1069 static int cqspi_setup_flash(struct cqspi_st *cqspi, struct device_node *np)
1070 {
1071         const struct spi_nor_hwcaps hwcaps = {
1072                 .mask = SNOR_HWCAPS_READ |
1073                         SNOR_HWCAPS_READ_FAST |
1074                         SNOR_HWCAPS_READ_1_1_2 |
1075                         SNOR_HWCAPS_READ_1_1_4 |
1076                         SNOR_HWCAPS_PP,
1077         };
1078         struct platform_device *pdev = cqspi->pdev;
1079         struct device *dev = &pdev->dev;
1080         struct cqspi_flash_pdata *f_pdata;
1081         struct spi_nor *nor;
1082         struct mtd_info *mtd;
1083         unsigned int cs;
1084         int i, ret;
1085
1086         /* Get flash device data */
1087         for_each_available_child_of_node(dev->of_node, np) {
1088                 ret = of_property_read_u32(np, "reg", &cs);
1089                 if (ret) {
1090                         dev_err(dev, "Couldn't determine chip select.\n");
1091                         goto err;
1092                 }
1093
1094                 if (cs >= CQSPI_MAX_CHIPSELECT) {
1095                         ret = -EINVAL;
1096                         dev_err(dev, "Chip select %d out of range.\n", cs);
1097                         goto err;
1098                 }
1099
1100                 f_pdata = &cqspi->f_pdata[cs];
1101                 f_pdata->cqspi = cqspi;
1102                 f_pdata->cs = cs;
1103
1104                 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1105                 if (ret)
1106                         goto err;
1107
1108                 nor = &f_pdata->nor;
1109                 mtd = &nor->mtd;
1110
1111                 mtd->priv = nor;
1112
1113                 nor->dev = dev;
1114                 spi_nor_set_flash_node(nor, np);
1115                 nor->priv = f_pdata;
1116
1117                 nor->read_reg = cqspi_read_reg;
1118                 nor->write_reg = cqspi_write_reg;
1119                 nor->read = cqspi_read;
1120                 nor->write = cqspi_write;
1121                 nor->erase = cqspi_erase;
1122                 nor->prepare = cqspi_prep;
1123                 nor->unprepare = cqspi_unprep;
1124
1125                 mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s.%d",
1126                                            dev_name(dev), cs);
1127                 if (!mtd->name) {
1128                         ret = -ENOMEM;
1129                         goto err;
1130                 }
1131
1132                 ret = spi_nor_scan(nor, NULL, &hwcaps);
1133                 if (ret)
1134                         goto err;
1135
1136                 ret = mtd_device_register(mtd, NULL, 0);
1137                 if (ret)
1138                         goto err;
1139
1140                 f_pdata->registered = true;
1141         }
1142
1143         return 0;
1144
1145 err:
1146         for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
1147                 if (cqspi->f_pdata[i].registered)
1148                         mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
1149         return ret;
1150 }
1151
1152 static int cqspi_probe(struct platform_device *pdev)
1153 {
1154         struct device_node *np = pdev->dev.of_node;
1155         struct device *dev = &pdev->dev;
1156         struct cqspi_st *cqspi;
1157         struct resource *res;
1158         struct resource *res_ahb;
1159         int ret;
1160         int irq;
1161
1162         cqspi = devm_kzalloc(dev, sizeof(*cqspi), GFP_KERNEL);
1163         if (!cqspi)
1164                 return -ENOMEM;
1165
1166         mutex_init(&cqspi->bus_mutex);
1167         cqspi->pdev = pdev;
1168         platform_set_drvdata(pdev, cqspi);
1169
1170         /* Obtain configuration from OF. */
1171         ret = cqspi_of_get_pdata(pdev);
1172         if (ret) {
1173                 dev_err(dev, "Cannot get mandatory OF data.\n");
1174                 return -ENODEV;
1175         }
1176
1177         /* Obtain QSPI clock. */
1178         cqspi->clk = devm_clk_get(dev, NULL);
1179         if (IS_ERR(cqspi->clk)) {
1180                 dev_err(dev, "Cannot claim QSPI clock.\n");
1181                 return PTR_ERR(cqspi->clk);
1182         }
1183
1184         /* Obtain and remap controller address. */
1185         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1186         cqspi->iobase = devm_ioremap_resource(dev, res);
1187         if (IS_ERR(cqspi->iobase)) {
1188                 dev_err(dev, "Cannot remap controller address.\n");
1189                 return PTR_ERR(cqspi->iobase);
1190         }
1191
1192         /* Obtain and remap AHB address. */
1193         res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1194         cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1195         if (IS_ERR(cqspi->ahb_base)) {
1196                 dev_err(dev, "Cannot remap AHB address.\n");
1197                 return PTR_ERR(cqspi->ahb_base);
1198         }
1199
1200         init_completion(&cqspi->transfer_complete);
1201
1202         /* Obtain IRQ line. */
1203         irq = platform_get_irq(pdev, 0);
1204         if (irq < 0) {
1205                 dev_err(dev, "Cannot obtain IRQ.\n");
1206                 return -ENXIO;
1207         }
1208
1209         ret = clk_prepare_enable(cqspi->clk);
1210         if (ret) {
1211                 dev_err(dev, "Cannot enable QSPI clock.\n");
1212                 return ret;
1213         }
1214
1215         cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1216
1217         ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1218                                pdev->name, cqspi);
1219         if (ret) {
1220                 dev_err(dev, "Cannot request IRQ.\n");
1221                 goto probe_irq_failed;
1222         }
1223
1224         cqspi_wait_idle(cqspi);
1225         cqspi_controller_init(cqspi);
1226         cqspi->current_cs = -1;
1227         cqspi->sclk = 0;
1228
1229         ret = cqspi_setup_flash(cqspi, np);
1230         if (ret) {
1231                 dev_err(dev, "Cadence QSPI NOR probe failed %d\n", ret);
1232                 goto probe_setup_failed;
1233         }
1234
1235         return ret;
1236 probe_irq_failed:
1237         cqspi_controller_enable(cqspi, 0);
1238 probe_setup_failed:
1239         clk_disable_unprepare(cqspi->clk);
1240         return ret;
1241 }
1242
1243 static int cqspi_remove(struct platform_device *pdev)
1244 {
1245         struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1246         int i;
1247
1248         for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
1249                 if (cqspi->f_pdata[i].registered)
1250                         mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
1251
1252         cqspi_controller_enable(cqspi, 0);
1253
1254         clk_disable_unprepare(cqspi->clk);
1255
1256         return 0;
1257 }
1258
1259 #ifdef CONFIG_PM_SLEEP
1260 static int cqspi_suspend(struct device *dev)
1261 {
1262         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1263
1264         cqspi_controller_enable(cqspi, 0);
1265         return 0;
1266 }
1267
1268 static int cqspi_resume(struct device *dev)
1269 {
1270         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1271
1272         cqspi_controller_enable(cqspi, 1);
1273         return 0;
1274 }
1275
1276 static const struct dev_pm_ops cqspi__dev_pm_ops = {
1277         .suspend = cqspi_suspend,
1278         .resume = cqspi_resume,
1279 };
1280
1281 #define CQSPI_DEV_PM_OPS        (&cqspi__dev_pm_ops)
1282 #else
1283 #define CQSPI_DEV_PM_OPS        NULL
1284 #endif
1285
1286 static const struct of_device_id cqspi_dt_ids[] = {
1287         {.compatible = "cdns,qspi-nor",},
1288         { /* end of table */ }
1289 };
1290
1291 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1292
1293 static struct platform_driver cqspi_platform_driver = {
1294         .probe = cqspi_probe,
1295         .remove = cqspi_remove,
1296         .driver = {
1297                 .name = CQSPI_NAME,
1298                 .pm = CQSPI_DEV_PM_OPS,
1299                 .of_match_table = cqspi_dt_ids,
1300         },
1301 };
1302
1303 module_platform_driver(cqspi_platform_driver);
1304
1305 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1306 MODULE_LICENSE("GPL v2");
1307 MODULE_ALIAS("platform:" CQSPI_NAME);
1308 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1309 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");