Merge branch 'parisc-4.20-1' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[sfrench/cifs-2.6.git] / drivers / mtd / nand / raw / mxc_nand.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
4  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
5  */
6
7 #include <linux/delay.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/mtd/mtd.h>
12 #include <linux/mtd/rawnand.h>
13 #include <linux/mtd/partitions.h>
14 #include <linux/interrupt.h>
15 #include <linux/device.h>
16 #include <linux/platform_device.h>
17 #include <linux/clk.h>
18 #include <linux/err.h>
19 #include <linux/io.h>
20 #include <linux/irq.h>
21 #include <linux/completion.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/platform_data/mtd-mxc_nand.h>
25
26 #define DRIVER_NAME "mxc_nand"
27
28 /* Addresses for NFC registers */
29 #define NFC_V1_V2_BUF_SIZE              (host->regs + 0x00)
30 #define NFC_V1_V2_BUF_ADDR              (host->regs + 0x04)
31 #define NFC_V1_V2_FLASH_ADDR            (host->regs + 0x06)
32 #define NFC_V1_V2_FLASH_CMD             (host->regs + 0x08)
33 #define NFC_V1_V2_CONFIG                (host->regs + 0x0a)
34 #define NFC_V1_V2_ECC_STATUS_RESULT     (host->regs + 0x0c)
35 #define NFC_V1_V2_RSLTMAIN_AREA         (host->regs + 0x0e)
36 #define NFC_V21_RSLTSPARE_AREA          (host->regs + 0x10)
37 #define NFC_V1_V2_WRPROT                (host->regs + 0x12)
38 #define NFC_V1_UNLOCKSTART_BLKADDR      (host->regs + 0x14)
39 #define NFC_V1_UNLOCKEND_BLKADDR        (host->regs + 0x16)
40 #define NFC_V21_UNLOCKSTART_BLKADDR0    (host->regs + 0x20)
41 #define NFC_V21_UNLOCKSTART_BLKADDR1    (host->regs + 0x24)
42 #define NFC_V21_UNLOCKSTART_BLKADDR2    (host->regs + 0x28)
43 #define NFC_V21_UNLOCKSTART_BLKADDR3    (host->regs + 0x2c)
44 #define NFC_V21_UNLOCKEND_BLKADDR0      (host->regs + 0x22)
45 #define NFC_V21_UNLOCKEND_BLKADDR1      (host->regs + 0x26)
46 #define NFC_V21_UNLOCKEND_BLKADDR2      (host->regs + 0x2a)
47 #define NFC_V21_UNLOCKEND_BLKADDR3      (host->regs + 0x2e)
48 #define NFC_V1_V2_NF_WRPRST             (host->regs + 0x18)
49 #define NFC_V1_V2_CONFIG1               (host->regs + 0x1a)
50 #define NFC_V1_V2_CONFIG2               (host->regs + 0x1c)
51
52 #define NFC_V2_CONFIG1_ECC_MODE_4       (1 << 0)
53 #define NFC_V1_V2_CONFIG1_SP_EN         (1 << 2)
54 #define NFC_V1_V2_CONFIG1_ECC_EN        (1 << 3)
55 #define NFC_V1_V2_CONFIG1_INT_MSK       (1 << 4)
56 #define NFC_V1_V2_CONFIG1_BIG           (1 << 5)
57 #define NFC_V1_V2_CONFIG1_RST           (1 << 6)
58 #define NFC_V1_V2_CONFIG1_CE            (1 << 7)
59 #define NFC_V2_CONFIG1_ONE_CYCLE        (1 << 8)
60 #define NFC_V2_CONFIG1_PPB(x)           (((x) & 0x3) << 9)
61 #define NFC_V2_CONFIG1_FP_INT           (1 << 11)
62
63 #define NFC_V1_V2_CONFIG2_INT           (1 << 15)
64
65 /*
66  * Operation modes for the NFC. Valid for v1, v2 and v3
67  * type controllers.
68  */
69 #define NFC_CMD                         (1 << 0)
70 #define NFC_ADDR                        (1 << 1)
71 #define NFC_INPUT                       (1 << 2)
72 #define NFC_OUTPUT                      (1 << 3)
73 #define NFC_ID                          (1 << 4)
74 #define NFC_STATUS                      (1 << 5)
75
76 #define NFC_V3_FLASH_CMD                (host->regs_axi + 0x00)
77 #define NFC_V3_FLASH_ADDR0              (host->regs_axi + 0x04)
78
79 #define NFC_V3_CONFIG1                  (host->regs_axi + 0x34)
80 #define NFC_V3_CONFIG1_SP_EN            (1 << 0)
81 #define NFC_V3_CONFIG1_RBA(x)           (((x) & 0x7 ) << 4)
82
83 #define NFC_V3_ECC_STATUS_RESULT        (host->regs_axi + 0x38)
84
85 #define NFC_V3_LAUNCH                   (host->regs_axi + 0x40)
86
87 #define NFC_V3_WRPROT                   (host->regs_ip + 0x0)
88 #define NFC_V3_WRPROT_LOCK_TIGHT        (1 << 0)
89 #define NFC_V3_WRPROT_LOCK              (1 << 1)
90 #define NFC_V3_WRPROT_UNLOCK            (1 << 2)
91 #define NFC_V3_WRPROT_BLS_UNLOCK        (2 << 6)
92
93 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
94
95 #define NFC_V3_CONFIG2                  (host->regs_ip + 0x24)
96 #define NFC_V3_CONFIG2_PS_512                   (0 << 0)
97 #define NFC_V3_CONFIG2_PS_2048                  (1 << 0)
98 #define NFC_V3_CONFIG2_PS_4096                  (2 << 0)
99 #define NFC_V3_CONFIG2_ONE_CYCLE                (1 << 2)
100 #define NFC_V3_CONFIG2_ECC_EN                   (1 << 3)
101 #define NFC_V3_CONFIG2_2CMD_PHASES              (1 << 4)
102 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0          (1 << 5)
103 #define NFC_V3_CONFIG2_ECC_MODE_8               (1 << 6)
104 #define NFC_V3_CONFIG2_PPB(x, shift)            (((x) & 0x3) << shift)
105 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)       (((x) & 0x3) << 12)
106 #define NFC_V3_CONFIG2_INT_MSK                  (1 << 15)
107 #define NFC_V3_CONFIG2_ST_CMD(x)                (((x) & 0xff) << 24)
108 #define NFC_V3_CONFIG2_SPAS(x)                  (((x) & 0xff) << 16)
109
110 #define NFC_V3_CONFIG3                          (host->regs_ip + 0x28)
111 #define NFC_V3_CONFIG3_ADD_OP(x)                (((x) & 0x3) << 0)
112 #define NFC_V3_CONFIG3_FW8                      (1 << 3)
113 #define NFC_V3_CONFIG3_SBB(x)                   (((x) & 0x7) << 8)
114 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)        (((x) & 0x7) << 12)
115 #define NFC_V3_CONFIG3_RBB_MODE                 (1 << 15)
116 #define NFC_V3_CONFIG3_NO_SDMA                  (1 << 20)
117
118 #define NFC_V3_IPC                      (host->regs_ip + 0x2C)
119 #define NFC_V3_IPC_CREQ                 (1 << 0)
120 #define NFC_V3_IPC_INT                  (1 << 31)
121
122 #define NFC_V3_DELAY_LINE               (host->regs_ip + 0x34)
123
124 struct mxc_nand_host;
125
126 struct mxc_nand_devtype_data {
127         void (*preset)(struct mtd_info *);
128         int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc,
129                          int page);
130         void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
131         void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
132         void (*send_page)(struct mtd_info *, unsigned int);
133         void (*send_read_id)(struct mxc_nand_host *);
134         uint16_t (*get_dev_status)(struct mxc_nand_host *);
135         int (*check_int)(struct mxc_nand_host *);
136         void (*irq_control)(struct mxc_nand_host *, int);
137         u32 (*get_ecc_status)(struct mxc_nand_host *);
138         const struct mtd_ooblayout_ops *ooblayout;
139         void (*select_chip)(struct nand_chip *chip, int cs);
140         int (*setup_data_interface)(struct nand_chip *chip, int csline,
141                                     const struct nand_data_interface *conf);
142         void (*enable_hwecc)(struct nand_chip *chip, bool enable);
143
144         /*
145          * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
146          * (CONFIG1:INT_MSK is set). To handle this the driver uses
147          * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
148          */
149         int irqpending_quirk;
150         int needs_ip;
151
152         size_t regs_offset;
153         size_t spare0_offset;
154         size_t axi_offset;
155
156         int spare_len;
157         int eccbytes;
158         int eccsize;
159         int ppb_shift;
160 };
161
162 struct mxc_nand_host {
163         struct nand_chip        nand;
164         struct device           *dev;
165
166         void __iomem            *spare0;
167         void __iomem            *main_area0;
168
169         void __iomem            *base;
170         void __iomem            *regs;
171         void __iomem            *regs_axi;
172         void __iomem            *regs_ip;
173         int                     status_request;
174         struct clk              *clk;
175         int                     clk_act;
176         int                     irq;
177         int                     eccsize;
178         int                     used_oobsize;
179         int                     active_cs;
180
181         struct completion       op_completion;
182
183         uint8_t                 *data_buf;
184         unsigned int            buf_start;
185
186         const struct mxc_nand_devtype_data *devtype_data;
187         struct mxc_nand_platform_data pdata;
188 };
189
190 static const char * const part_probes[] = {
191         "cmdlinepart", "RedBoot", "ofpart", NULL };
192
193 static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
194 {
195         int i;
196         u32 *t = trg;
197         const __iomem u32 *s = src;
198
199         for (i = 0; i < (size >> 2); i++)
200                 *t++ = __raw_readl(s++);
201 }
202
203 static void memcpy16_fromio(void *trg, const void __iomem  *src, size_t size)
204 {
205         int i;
206         u16 *t = trg;
207         const __iomem u16 *s = src;
208
209         /* We assume that src (IO) is always 32bit aligned */
210         if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
211                 memcpy32_fromio(trg, src, size);
212                 return;
213         }
214
215         for (i = 0; i < (size >> 1); i++)
216                 *t++ = __raw_readw(s++);
217 }
218
219 static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
220 {
221         /* __iowrite32_copy use 32bit size values so divide by 4 */
222         __iowrite32_copy(trg, src, size / 4);
223 }
224
225 static void memcpy16_toio(void __iomem *trg, const void *src, int size)
226 {
227         int i;
228         __iomem u16 *t = trg;
229         const u16 *s = src;
230
231         /* We assume that trg (IO) is always 32bit aligned */
232         if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
233                 memcpy32_toio(trg, src, size);
234                 return;
235         }
236
237         for (i = 0; i < (size >> 1); i++)
238                 __raw_writew(*s++, t++);
239 }
240
241 /*
242  * The controller splits a page into data chunks of 512 bytes + partial oob.
243  * There are writesize / 512 such chunks, the size of the partial oob parts is
244  * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
245  * contains additionally the byte lost by rounding (if any).
246  * This function handles the needed shuffling between host->data_buf (which
247  * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
248  * spare) and the NFC buffer.
249  */
250 static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf)
251 {
252         struct nand_chip *this = mtd_to_nand(mtd);
253         struct mxc_nand_host *host = nand_get_controller_data(this);
254         u16 i, oob_chunk_size;
255         u16 num_chunks = mtd->writesize / 512;
256
257         u8 *d = buf;
258         u8 __iomem *s = host->spare0;
259         u16 sparebuf_size = host->devtype_data->spare_len;
260
261         /* size of oob chunk for all but possibly the last one */
262         oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
263
264         if (bfrom) {
265                 for (i = 0; i < num_chunks - 1; i++)
266                         memcpy16_fromio(d + i * oob_chunk_size,
267                                         s + i * sparebuf_size,
268                                         oob_chunk_size);
269
270                 /* the last chunk */
271                 memcpy16_fromio(d + i * oob_chunk_size,
272                                 s + i * sparebuf_size,
273                                 host->used_oobsize - i * oob_chunk_size);
274         } else {
275                 for (i = 0; i < num_chunks - 1; i++)
276                         memcpy16_toio(&s[i * sparebuf_size],
277                                       &d[i * oob_chunk_size],
278                                       oob_chunk_size);
279
280                 /* the last chunk */
281                 memcpy16_toio(&s[i * sparebuf_size],
282                               &d[i * oob_chunk_size],
283                               host->used_oobsize - i * oob_chunk_size);
284         }
285 }
286
287 /*
288  * MXC NANDFC can only perform full page+spare or spare-only read/write.  When
289  * the upper layers perform a read/write buf operation, the saved column address
290  * is used to index into the full page. So usually this function is called with
291  * column == 0 (unless no column cycle is needed indicated by column == -1)
292  */
293 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
294 {
295         struct nand_chip *nand_chip = mtd_to_nand(mtd);
296         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
297
298         /* Write out column address, if necessary */
299         if (column != -1) {
300                 host->devtype_data->send_addr(host, column & 0xff,
301                                               page_addr == -1);
302                 if (mtd->writesize > 512)
303                         /* another col addr cycle for 2k page */
304                         host->devtype_data->send_addr(host,
305                                                       (column >> 8) & 0xff,
306                                                       false);
307         }
308
309         /* Write out page address, if necessary */
310         if (page_addr != -1) {
311                 /* paddr_0 - p_addr_7 */
312                 host->devtype_data->send_addr(host, (page_addr & 0xff), false);
313
314                 if (mtd->writesize > 512) {
315                         if (mtd->size >= 0x10000000) {
316                                 /* paddr_8 - paddr_15 */
317                                 host->devtype_data->send_addr(host,
318                                                 (page_addr >> 8) & 0xff,
319                                                 false);
320                                 host->devtype_data->send_addr(host,
321                                                 (page_addr >> 16) & 0xff,
322                                                 true);
323                         } else
324                                 /* paddr_8 - paddr_15 */
325                                 host->devtype_data->send_addr(host,
326                                                 (page_addr >> 8) & 0xff, true);
327                 } else {
328                         if (nand_chip->options & NAND_ROW_ADDR_3) {
329                                 /* paddr_8 - paddr_15 */
330                                 host->devtype_data->send_addr(host,
331                                                 (page_addr >> 8) & 0xff,
332                                                 false);
333                                 host->devtype_data->send_addr(host,
334                                                 (page_addr >> 16) & 0xff,
335                                                 true);
336                         } else
337                                 /* paddr_8 - paddr_15 */
338                                 host->devtype_data->send_addr(host,
339                                                 (page_addr >> 8) & 0xff, true);
340                 }
341         }
342 }
343
344 static int check_int_v3(struct mxc_nand_host *host)
345 {
346         uint32_t tmp;
347
348         tmp = readl(NFC_V3_IPC);
349         if (!(tmp & NFC_V3_IPC_INT))
350                 return 0;
351
352         tmp &= ~NFC_V3_IPC_INT;
353         writel(tmp, NFC_V3_IPC);
354
355         return 1;
356 }
357
358 static int check_int_v1_v2(struct mxc_nand_host *host)
359 {
360         uint32_t tmp;
361
362         tmp = readw(NFC_V1_V2_CONFIG2);
363         if (!(tmp & NFC_V1_V2_CONFIG2_INT))
364                 return 0;
365
366         if (!host->devtype_data->irqpending_quirk)
367                 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
368
369         return 1;
370 }
371
372 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
373 {
374         uint16_t tmp;
375
376         tmp = readw(NFC_V1_V2_CONFIG1);
377
378         if (activate)
379                 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
380         else
381                 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
382
383         writew(tmp, NFC_V1_V2_CONFIG1);
384 }
385
386 static void irq_control_v3(struct mxc_nand_host *host, int activate)
387 {
388         uint32_t tmp;
389
390         tmp = readl(NFC_V3_CONFIG2);
391
392         if (activate)
393                 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
394         else
395                 tmp |= NFC_V3_CONFIG2_INT_MSK;
396
397         writel(tmp, NFC_V3_CONFIG2);
398 }
399
400 static void irq_control(struct mxc_nand_host *host, int activate)
401 {
402         if (host->devtype_data->irqpending_quirk) {
403                 if (activate)
404                         enable_irq(host->irq);
405                 else
406                         disable_irq_nosync(host->irq);
407         } else {
408                 host->devtype_data->irq_control(host, activate);
409         }
410 }
411
412 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
413 {
414         return readw(NFC_V1_V2_ECC_STATUS_RESULT);
415 }
416
417 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
418 {
419         return readl(NFC_V1_V2_ECC_STATUS_RESULT);
420 }
421
422 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
423 {
424         return readl(NFC_V3_ECC_STATUS_RESULT);
425 }
426
427 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
428 {
429         struct mxc_nand_host *host = dev_id;
430
431         if (!host->devtype_data->check_int(host))
432                 return IRQ_NONE;
433
434         irq_control(host, 0);
435
436         complete(&host->op_completion);
437
438         return IRQ_HANDLED;
439 }
440
441 /* This function polls the NANDFC to wait for the basic operation to
442  * complete by checking the INT bit of config2 register.
443  */
444 static int wait_op_done(struct mxc_nand_host *host, int useirq)
445 {
446         int ret = 0;
447
448         /*
449          * If operation is already complete, don't bother to setup an irq or a
450          * loop.
451          */
452         if (host->devtype_data->check_int(host))
453                 return 0;
454
455         if (useirq) {
456                 unsigned long timeout;
457
458                 reinit_completion(&host->op_completion);
459
460                 irq_control(host, 1);
461
462                 timeout = wait_for_completion_timeout(&host->op_completion, HZ);
463                 if (!timeout && !host->devtype_data->check_int(host)) {
464                         dev_dbg(host->dev, "timeout waiting for irq\n");
465                         ret = -ETIMEDOUT;
466                 }
467         } else {
468                 int max_retries = 8000;
469                 int done;
470
471                 do {
472                         udelay(1);
473
474                         done = host->devtype_data->check_int(host);
475                         if (done)
476                                 break;
477
478                 } while (--max_retries);
479
480                 if (!done) {
481                         dev_dbg(host->dev, "timeout polling for completion\n");
482                         ret = -ETIMEDOUT;
483                 }
484         }
485
486         WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
487
488         return ret;
489 }
490
491 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
492 {
493         /* fill command */
494         writel(cmd, NFC_V3_FLASH_CMD);
495
496         /* send out command */
497         writel(NFC_CMD, NFC_V3_LAUNCH);
498
499         /* Wait for operation to complete */
500         wait_op_done(host, useirq);
501 }
502
503 /* This function issues the specified command to the NAND device and
504  * waits for completion. */
505 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
506 {
507         dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
508
509         writew(cmd, NFC_V1_V2_FLASH_CMD);
510         writew(NFC_CMD, NFC_V1_V2_CONFIG2);
511
512         if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
513                 int max_retries = 100;
514                 /* Reset completion is indicated by NFC_CONFIG2 */
515                 /* being set to 0 */
516                 while (max_retries-- > 0) {
517                         if (readw(NFC_V1_V2_CONFIG2) == 0) {
518                                 break;
519                         }
520                         udelay(1);
521                 }
522                 if (max_retries < 0)
523                         dev_dbg(host->dev, "%s: RESET failed\n", __func__);
524         } else {
525                 /* Wait for operation to complete */
526                 wait_op_done(host, useirq);
527         }
528 }
529
530 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
531 {
532         /* fill address */
533         writel(addr, NFC_V3_FLASH_ADDR0);
534
535         /* send out address */
536         writel(NFC_ADDR, NFC_V3_LAUNCH);
537
538         wait_op_done(host, 0);
539 }
540
541 /* This function sends an address (or partial address) to the
542  * NAND device. The address is used to select the source/destination for
543  * a NAND command. */
544 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
545 {
546         dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast);
547
548         writew(addr, NFC_V1_V2_FLASH_ADDR);
549         writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
550
551         /* Wait for operation to complete */
552         wait_op_done(host, islast);
553 }
554
555 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
556 {
557         struct nand_chip *nand_chip = mtd_to_nand(mtd);
558         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
559         uint32_t tmp;
560
561         tmp = readl(NFC_V3_CONFIG1);
562         tmp &= ~(7 << 4);
563         writel(tmp, NFC_V3_CONFIG1);
564
565         /* transfer data from NFC ram to nand */
566         writel(ops, NFC_V3_LAUNCH);
567
568         wait_op_done(host, false);
569 }
570
571 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
572 {
573         struct nand_chip *nand_chip = mtd_to_nand(mtd);
574         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
575
576         /* NANDFC buffer 0 is used for page read/write */
577         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
578
579         writew(ops, NFC_V1_V2_CONFIG2);
580
581         /* Wait for operation to complete */
582         wait_op_done(host, true);
583 }
584
585 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
586 {
587         struct nand_chip *nand_chip = mtd_to_nand(mtd);
588         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
589         int bufs, i;
590
591         if (mtd->writesize > 512)
592                 bufs = 4;
593         else
594                 bufs = 1;
595
596         for (i = 0; i < bufs; i++) {
597
598                 /* NANDFC buffer 0 is used for page read/write */
599                 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
600
601                 writew(ops, NFC_V1_V2_CONFIG2);
602
603                 /* Wait for operation to complete */
604                 wait_op_done(host, true);
605         }
606 }
607
608 static void send_read_id_v3(struct mxc_nand_host *host)
609 {
610         /* Read ID into main buffer */
611         writel(NFC_ID, NFC_V3_LAUNCH);
612
613         wait_op_done(host, true);
614
615         memcpy32_fromio(host->data_buf, host->main_area0, 16);
616 }
617
618 /* Request the NANDFC to perform a read of the NAND device ID. */
619 static void send_read_id_v1_v2(struct mxc_nand_host *host)
620 {
621         /* NANDFC buffer 0 is used for device ID output */
622         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
623
624         writew(NFC_ID, NFC_V1_V2_CONFIG2);
625
626         /* Wait for operation to complete */
627         wait_op_done(host, true);
628
629         memcpy32_fromio(host->data_buf, host->main_area0, 16);
630 }
631
632 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
633 {
634         writew(NFC_STATUS, NFC_V3_LAUNCH);
635         wait_op_done(host, true);
636
637         return readl(NFC_V3_CONFIG1) >> 16;
638 }
639
640 /* This function requests the NANDFC to perform a read of the
641  * NAND device status and returns the current status. */
642 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
643 {
644         void __iomem *main_buf = host->main_area0;
645         uint32_t store;
646         uint16_t ret;
647
648         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
649
650         /*
651          * The device status is stored in main_area0. To
652          * prevent corruption of the buffer save the value
653          * and restore it afterwards.
654          */
655         store = readl(main_buf);
656
657         writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
658         wait_op_done(host, true);
659
660         ret = readw(main_buf);
661
662         writel(store, main_buf);
663
664         return ret;
665 }
666
667 static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable)
668 {
669         struct mxc_nand_host *host = nand_get_controller_data(chip);
670         uint16_t config1;
671
672         if (chip->ecc.mode != NAND_ECC_HW)
673                 return;
674
675         config1 = readw(NFC_V1_V2_CONFIG1);
676
677         if (enable)
678                 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
679         else
680                 config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN;
681
682         writew(config1, NFC_V1_V2_CONFIG1);
683 }
684
685 static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable)
686 {
687         struct mxc_nand_host *host = nand_get_controller_data(chip);
688         uint32_t config2;
689
690         if (chip->ecc.mode != NAND_ECC_HW)
691                 return;
692
693         config2 = readl(NFC_V3_CONFIG2);
694
695         if (enable)
696                 config2 |= NFC_V3_CONFIG2_ECC_EN;
697         else
698                 config2 &= ~NFC_V3_CONFIG2_ECC_EN;
699
700         writel(config2, NFC_V3_CONFIG2);
701 }
702
703 /* This functions is used by upper layer to checks if device is ready */
704 static int mxc_nand_dev_ready(struct nand_chip *chip)
705 {
706         /*
707          * NFC handles R/B internally. Therefore, this function
708          * always returns status as ready.
709          */
710         return 1;
711 }
712
713 static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob,
714                                  bool ecc, int page)
715 {
716         struct mtd_info *mtd = nand_to_mtd(chip);
717         struct mxc_nand_host *host = nand_get_controller_data(chip);
718         unsigned int bitflips_corrected = 0;
719         int no_subpages;
720         int i;
721
722         host->devtype_data->enable_hwecc(chip, ecc);
723
724         host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
725         mxc_do_addr_cycle(mtd, 0, page);
726
727         if (mtd->writesize > 512)
728                 host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true);
729
730         no_subpages = mtd->writesize >> 9;
731
732         for (i = 0; i < no_subpages; i++) {
733                 uint16_t ecc_stats;
734
735                 /* NANDFC buffer 0 is used for page read/write */
736                 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
737
738                 writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2);
739
740                 /* Wait for operation to complete */
741                 wait_op_done(host, true);
742
743                 ecc_stats = get_ecc_status_v1(host);
744
745                 ecc_stats >>= 2;
746
747                 if (buf && ecc) {
748                         switch (ecc_stats & 0x3) {
749                         case 0:
750                         default:
751                                 break;
752                         case 1:
753                                 mtd->ecc_stats.corrected++;
754                                 bitflips_corrected = 1;
755                                 break;
756                         case 2:
757                                 mtd->ecc_stats.failed++;
758                                 break;
759                         }
760                 }
761         }
762
763         if (buf)
764                 memcpy32_fromio(buf, host->main_area0, mtd->writesize);
765         if (oob)
766                 copy_spare(mtd, true, oob);
767
768         return bitflips_corrected;
769 }
770
771 static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf,
772                                     void *oob, bool ecc, int page)
773 {
774         struct mtd_info *mtd = nand_to_mtd(chip);
775         struct mxc_nand_host *host = nand_get_controller_data(chip);
776         unsigned int max_bitflips = 0;
777         u32 ecc_stat, err;
778         int no_subpages;
779         u8 ecc_bit_mask, err_limit;
780
781         host->devtype_data->enable_hwecc(chip, ecc);
782
783         host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
784         mxc_do_addr_cycle(mtd, 0, page);
785
786         if (mtd->writesize > 512)
787                 host->devtype_data->send_cmd(host,
788                                 NAND_CMD_READSTART, true);
789
790         host->devtype_data->send_page(mtd, NFC_OUTPUT);
791
792         if (buf)
793                 memcpy32_fromio(buf, host->main_area0, mtd->writesize);
794         if (oob)
795                 copy_spare(mtd, true, oob);
796
797         ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
798         err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
799
800         no_subpages = mtd->writesize >> 9;
801
802         ecc_stat = host->devtype_data->get_ecc_status(host);
803
804         do {
805                 err = ecc_stat & ecc_bit_mask;
806                 if (err > err_limit) {
807                         mtd->ecc_stats.failed++;
808                 } else {
809                         mtd->ecc_stats.corrected += err;
810                         max_bitflips = max_t(unsigned int, max_bitflips, err);
811                 }
812
813                 ecc_stat >>= 4;
814         } while (--no_subpages);
815
816         return max_bitflips;
817 }
818
819 static int mxc_nand_read_page(struct nand_chip *chip, uint8_t *buf,
820                               int oob_required, int page)
821 {
822         struct mxc_nand_host *host = nand_get_controller_data(chip);
823         void *oob_buf;
824
825         if (oob_required)
826                 oob_buf = chip->oob_poi;
827         else
828                 oob_buf = NULL;
829
830         return host->devtype_data->read_page(chip, buf, oob_buf, 1, page);
831 }
832
833 static int mxc_nand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
834                                   int oob_required, int page)
835 {
836         struct mxc_nand_host *host = nand_get_controller_data(chip);
837         void *oob_buf;
838
839         if (oob_required)
840                 oob_buf = chip->oob_poi;
841         else
842                 oob_buf = NULL;
843
844         return host->devtype_data->read_page(chip, buf, oob_buf, 0, page);
845 }
846
847 static int mxc_nand_read_oob(struct nand_chip *chip, int page)
848 {
849         struct mxc_nand_host *host = nand_get_controller_data(chip);
850
851         return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0,
852                                              page);
853 }
854
855 static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf,
856                                bool ecc, int page)
857 {
858         struct mtd_info *mtd = nand_to_mtd(chip);
859         struct mxc_nand_host *host = nand_get_controller_data(chip);
860
861         host->devtype_data->enable_hwecc(chip, ecc);
862
863         host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false);
864         mxc_do_addr_cycle(mtd, 0, page);
865
866         memcpy32_toio(host->main_area0, buf, mtd->writesize);
867         copy_spare(mtd, false, chip->oob_poi);
868
869         host->devtype_data->send_page(mtd, NFC_INPUT);
870         host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true);
871         mxc_do_addr_cycle(mtd, 0, page);
872
873         return 0;
874 }
875
876 static int mxc_nand_write_page_ecc(struct nand_chip *chip, const uint8_t *buf,
877                                    int oob_required, int page)
878 {
879         return mxc_nand_write_page(chip, buf, true, page);
880 }
881
882 static int mxc_nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
883                                    int oob_required, int page)
884 {
885         return mxc_nand_write_page(chip, buf, false, page);
886 }
887
888 static int mxc_nand_write_oob(struct nand_chip *chip, int page)
889 {
890         struct mtd_info *mtd = nand_to_mtd(chip);
891         struct mxc_nand_host *host = nand_get_controller_data(chip);
892
893         memset(host->data_buf, 0xff, mtd->writesize);
894
895         return mxc_nand_write_page(chip, host->data_buf, false, page);
896 }
897
898 static u_char mxc_nand_read_byte(struct nand_chip *nand_chip)
899 {
900         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
901         uint8_t ret;
902
903         /* Check for status request */
904         if (host->status_request)
905                 return host->devtype_data->get_dev_status(host) & 0xFF;
906
907         if (nand_chip->options & NAND_BUSWIDTH_16) {
908                 /* only take the lower byte of each word */
909                 ret = *(uint16_t *)(host->data_buf + host->buf_start);
910
911                 host->buf_start += 2;
912         } else {
913                 ret = *(uint8_t *)(host->data_buf + host->buf_start);
914                 host->buf_start++;
915         }
916
917         dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
918         return ret;
919 }
920
921 /* Write data of length len to buffer buf. The data to be
922  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
923  * Operation by the NFC, the data is written to NAND Flash */
924 static void mxc_nand_write_buf(struct nand_chip *nand_chip, const u_char *buf,
925                                int len)
926 {
927         struct mtd_info *mtd = nand_to_mtd(nand_chip);
928         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
929         u16 col = host->buf_start;
930         int n = mtd->oobsize + mtd->writesize - col;
931
932         n = min(n, len);
933
934         memcpy(host->data_buf + col, buf, n);
935
936         host->buf_start += n;
937 }
938
939 /* Read the data buffer from the NAND Flash. To read the data from NAND
940  * Flash first the data output cycle is initiated by the NFC, which copies
941  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
942  */
943 static void mxc_nand_read_buf(struct nand_chip *nand_chip, u_char *buf,
944                               int len)
945 {
946         struct mtd_info *mtd = nand_to_mtd(nand_chip);
947         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
948         u16 col = host->buf_start;
949         int n = mtd->oobsize + mtd->writesize - col;
950
951         n = min(n, len);
952
953         memcpy(buf, host->data_buf + col, n);
954
955         host->buf_start += n;
956 }
957
958 /* This function is used by upper layer for select and
959  * deselect of the NAND chip */
960 static void mxc_nand_select_chip_v1_v3(struct nand_chip *nand_chip, int chip)
961 {
962         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
963
964         if (chip == -1) {
965                 /* Disable the NFC clock */
966                 if (host->clk_act) {
967                         clk_disable_unprepare(host->clk);
968                         host->clk_act = 0;
969                 }
970                 return;
971         }
972
973         if (!host->clk_act) {
974                 /* Enable the NFC clock */
975                 clk_prepare_enable(host->clk);
976                 host->clk_act = 1;
977         }
978 }
979
980 static void mxc_nand_select_chip_v2(struct nand_chip *nand_chip, int chip)
981 {
982         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
983
984         if (chip == -1) {
985                 /* Disable the NFC clock */
986                 if (host->clk_act) {
987                         clk_disable_unprepare(host->clk);
988                         host->clk_act = 0;
989                 }
990                 return;
991         }
992
993         if (!host->clk_act) {
994                 /* Enable the NFC clock */
995                 clk_prepare_enable(host->clk);
996                 host->clk_act = 1;
997         }
998
999         host->active_cs = chip;
1000         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
1001 }
1002
1003 #define MXC_V1_ECCBYTES         5
1004
1005 static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
1006                                 struct mtd_oob_region *oobregion)
1007 {
1008         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1009
1010         if (section >= nand_chip->ecc.steps)
1011                 return -ERANGE;
1012
1013         oobregion->offset = (section * 16) + 6;
1014         oobregion->length = MXC_V1_ECCBYTES;
1015
1016         return 0;
1017 }
1018
1019 static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
1020                                  struct mtd_oob_region *oobregion)
1021 {
1022         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1023
1024         if (section > nand_chip->ecc.steps)
1025                 return -ERANGE;
1026
1027         if (!section) {
1028                 if (mtd->writesize <= 512) {
1029                         oobregion->offset = 0;
1030                         oobregion->length = 5;
1031                 } else {
1032                         oobregion->offset = 2;
1033                         oobregion->length = 4;
1034                 }
1035         } else {
1036                 oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6;
1037                 if (section < nand_chip->ecc.steps)
1038                         oobregion->length = (section * 16) + 6 -
1039                                             oobregion->offset;
1040                 else
1041                         oobregion->length = mtd->oobsize - oobregion->offset;
1042         }
1043
1044         return 0;
1045 }
1046
1047 static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
1048         .ecc = mxc_v1_ooblayout_ecc,
1049         .free = mxc_v1_ooblayout_free,
1050 };
1051
1052 static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
1053                                 struct mtd_oob_region *oobregion)
1054 {
1055         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1056         int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1057
1058         if (section >= nand_chip->ecc.steps)
1059                 return -ERANGE;
1060
1061         oobregion->offset = (section * stepsize) + 7;
1062         oobregion->length = nand_chip->ecc.bytes;
1063
1064         return 0;
1065 }
1066
1067 static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
1068                                  struct mtd_oob_region *oobregion)
1069 {
1070         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1071         int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1072
1073         if (section >= nand_chip->ecc.steps)
1074                 return -ERANGE;
1075
1076         if (!section) {
1077                 if (mtd->writesize <= 512) {
1078                         oobregion->offset = 0;
1079                         oobregion->length = 5;
1080                 } else {
1081                         oobregion->offset = 2;
1082                         oobregion->length = 4;
1083                 }
1084         } else {
1085                 oobregion->offset = section * stepsize;
1086                 oobregion->length = 7;
1087         }
1088
1089         return 0;
1090 }
1091
1092 static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
1093         .ecc = mxc_v2_ooblayout_ecc,
1094         .free = mxc_v2_ooblayout_free,
1095 };
1096
1097 /*
1098  * v2 and v3 type controllers can do 4bit or 8bit ecc depending
1099  * on how much oob the nand chip has. For 8bit ecc we need at least
1100  * 26 bytes of oob data per 512 byte block.
1101  */
1102 static int get_eccsize(struct mtd_info *mtd)
1103 {
1104         int oobbytes_per_512 = 0;
1105
1106         oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
1107
1108         if (oobbytes_per_512 < 26)
1109                 return 4;
1110         else
1111                 return 8;
1112 }
1113
1114 static void preset_v1(struct mtd_info *mtd)
1115 {
1116         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1117         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1118         uint16_t config1 = 0;
1119
1120         if (nand_chip->ecc.mode == NAND_ECC_HW && mtd->writesize)
1121                 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1122
1123         if (!host->devtype_data->irqpending_quirk)
1124                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1125
1126         host->eccsize = 1;
1127
1128         writew(config1, NFC_V1_V2_CONFIG1);
1129         /* preset operation */
1130
1131         /* Unlock the internal RAM Buffer */
1132         writew(0x2, NFC_V1_V2_CONFIG);
1133
1134         /* Blocks to be unlocked */
1135         writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
1136         writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
1137
1138         /* Unlock Block Command for given address range */
1139         writew(0x4, NFC_V1_V2_WRPROT);
1140 }
1141
1142 static int mxc_nand_v2_setup_data_interface(struct nand_chip *chip, int csline,
1143                                         const struct nand_data_interface *conf)
1144 {
1145         struct mxc_nand_host *host = nand_get_controller_data(chip);
1146         int tRC_min_ns, tRC_ps, ret;
1147         unsigned long rate, rate_round;
1148         const struct nand_sdr_timings *timings;
1149         u16 config1;
1150
1151         timings = nand_get_sdr_timings(conf);
1152         if (IS_ERR(timings))
1153                 return -ENOTSUPP;
1154
1155         config1 = readw(NFC_V1_V2_CONFIG1);
1156
1157         tRC_min_ns = timings->tRC_min / 1000;
1158         rate = 1000000000 / tRC_min_ns;
1159
1160         /*
1161          * For tRC < 30ns we have to use EDO mode. In this case the controller
1162          * does one access per clock cycle. Otherwise the controller does one
1163          * access in two clock cycles, thus we have to double the rate to the
1164          * controller.
1165          */
1166         if (tRC_min_ns < 30) {
1167                 rate_round = clk_round_rate(host->clk, rate);
1168                 config1 |= NFC_V2_CONFIG1_ONE_CYCLE;
1169                 tRC_ps = 1000000000 / (rate_round / 1000);
1170         } else {
1171                 rate *= 2;
1172                 rate_round = clk_round_rate(host->clk, rate);
1173                 config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE;
1174                 tRC_ps = 1000000000 / (rate_round / 1000 / 2);
1175         }
1176
1177         /*
1178          * The timing values compared against are from the i.MX25 Automotive
1179          * datasheet, Table 50. NFC Timing Parameters
1180          */
1181         if (timings->tCLS_min > tRC_ps - 1000 ||
1182             timings->tCLH_min > tRC_ps - 2000 ||
1183             timings->tCS_min > tRC_ps - 1000 ||
1184             timings->tCH_min > tRC_ps - 2000 ||
1185             timings->tWP_min > tRC_ps - 1500 ||
1186             timings->tALS_min > tRC_ps ||
1187             timings->tALH_min > tRC_ps - 3000 ||
1188             timings->tDS_min > tRC_ps ||
1189             timings->tDH_min > tRC_ps - 5000 ||
1190             timings->tWC_min > 2 * tRC_ps ||
1191             timings->tWH_min > tRC_ps - 2500 ||
1192             timings->tRR_min > 6 * tRC_ps ||
1193             timings->tRP_min > 3 * tRC_ps / 2 ||
1194             timings->tRC_min > 2 * tRC_ps ||
1195             timings->tREH_min > (tRC_ps / 2) - 2500) {
1196                 dev_dbg(host->dev, "Timing out of bounds\n");
1197                 return -EINVAL;
1198         }
1199
1200         if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1201                 return 0;
1202
1203         ret = clk_set_rate(host->clk, rate);
1204         if (ret)
1205                 return ret;
1206
1207         writew(config1, NFC_V1_V2_CONFIG1);
1208
1209         dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round,
1210                 config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" :
1211                 "normal");
1212
1213         return 0;
1214 }
1215
1216 static void preset_v2(struct mtd_info *mtd)
1217 {
1218         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1219         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1220         uint16_t config1 = 0;
1221
1222         config1 |= NFC_V2_CONFIG1_FP_INT;
1223
1224         if (!host->devtype_data->irqpending_quirk)
1225                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1226
1227         if (mtd->writesize) {
1228                 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
1229
1230                 if (nand_chip->ecc.mode == NAND_ECC_HW)
1231                         config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1232
1233                 host->eccsize = get_eccsize(mtd);
1234                 if (host->eccsize == 4)
1235                         config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
1236
1237                 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
1238         } else {
1239                 host->eccsize = 1;
1240         }
1241
1242         writew(config1, NFC_V1_V2_CONFIG1);
1243         /* preset operation */
1244
1245         /* spare area size in 16-bit half-words */
1246         writew(mtd->oobsize / 2, NFC_V21_RSLTSPARE_AREA);
1247
1248         /* Unlock the internal RAM Buffer */
1249         writew(0x2, NFC_V1_V2_CONFIG);
1250
1251         /* Blocks to be unlocked */
1252         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
1253         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
1254         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
1255         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
1256         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
1257         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
1258         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
1259         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
1260
1261         /* Unlock Block Command for given address range */
1262         writew(0x4, NFC_V1_V2_WRPROT);
1263 }
1264
1265 static void preset_v3(struct mtd_info *mtd)
1266 {
1267         struct nand_chip *chip = mtd_to_nand(mtd);
1268         struct mxc_nand_host *host = nand_get_controller_data(chip);
1269         uint32_t config2, config3;
1270         int i, addr_phases;
1271
1272         writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
1273         writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
1274
1275         /* Unlock the internal RAM Buffer */
1276         writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1277                         NFC_V3_WRPROT);
1278
1279         /* Blocks to be unlocked */
1280         for (i = 0; i < NAND_MAX_CHIPS; i++)
1281                 writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1282
1283         writel(0, NFC_V3_IPC);
1284
1285         config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1286                 NFC_V3_CONFIG2_2CMD_PHASES |
1287                 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1288                 NFC_V3_CONFIG2_ST_CMD(0x70) |
1289                 NFC_V3_CONFIG2_INT_MSK |
1290                 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1291
1292         addr_phases = fls(chip->pagemask) >> 3;
1293
1294         if (mtd->writesize == 2048) {
1295                 config2 |= NFC_V3_CONFIG2_PS_2048;
1296                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1297         } else if (mtd->writesize == 4096) {
1298                 config2 |= NFC_V3_CONFIG2_PS_4096;
1299                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1300         } else {
1301                 config2 |= NFC_V3_CONFIG2_PS_512;
1302                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1303         }
1304
1305         if (mtd->writesize) {
1306                 if (chip->ecc.mode == NAND_ECC_HW)
1307                         config2 |= NFC_V3_CONFIG2_ECC_EN;
1308
1309                 config2 |= NFC_V3_CONFIG2_PPB(
1310                                 ffs(mtd->erasesize / mtd->writesize) - 6,
1311                                 host->devtype_data->ppb_shift);
1312                 host->eccsize = get_eccsize(mtd);
1313                 if (host->eccsize == 8)
1314                         config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1315         }
1316
1317         writel(config2, NFC_V3_CONFIG2);
1318
1319         config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1320                         NFC_V3_CONFIG3_NO_SDMA |
1321                         NFC_V3_CONFIG3_RBB_MODE |
1322                         NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1323                         NFC_V3_CONFIG3_ADD_OP(0);
1324
1325         if (!(chip->options & NAND_BUSWIDTH_16))
1326                 config3 |= NFC_V3_CONFIG3_FW8;
1327
1328         writel(config3, NFC_V3_CONFIG3);
1329
1330         writel(0, NFC_V3_DELAY_LINE);
1331 }
1332
1333 /* Used by the upper layer to write command to NAND Flash for
1334  * different operations to be carried out on NAND Flash */
1335 static void mxc_nand_command(struct nand_chip *nand_chip, unsigned command,
1336                              int column, int page_addr)
1337 {
1338         struct mtd_info *mtd = nand_to_mtd(nand_chip);
1339         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1340
1341         dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1342               command, column, page_addr);
1343
1344         /* Reset command state information */
1345         host->status_request = false;
1346
1347         /* Command pre-processing step */
1348         switch (command) {
1349         case NAND_CMD_RESET:
1350                 host->devtype_data->preset(mtd);
1351                 host->devtype_data->send_cmd(host, command, false);
1352                 break;
1353
1354         case NAND_CMD_STATUS:
1355                 host->buf_start = 0;
1356                 host->status_request = true;
1357
1358                 host->devtype_data->send_cmd(host, command, true);
1359                 WARN_ONCE(column != -1 || page_addr != -1,
1360                           "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1361                           command, column, page_addr);
1362                 mxc_do_addr_cycle(mtd, column, page_addr);
1363                 break;
1364
1365         case NAND_CMD_READID:
1366                 host->devtype_data->send_cmd(host, command, true);
1367                 mxc_do_addr_cycle(mtd, column, page_addr);
1368                 host->devtype_data->send_read_id(host);
1369                 host->buf_start = 0;
1370                 break;
1371
1372         case NAND_CMD_ERASE1:
1373         case NAND_CMD_ERASE2:
1374                 host->devtype_data->send_cmd(host, command, false);
1375                 WARN_ONCE(column != -1,
1376                           "Unexpected column value (cmd=%u, col=%d)\n",
1377                           command, column);
1378                 mxc_do_addr_cycle(mtd, column, page_addr);
1379
1380                 break;
1381         case NAND_CMD_PARAM:
1382                 host->devtype_data->send_cmd(host, command, false);
1383                 mxc_do_addr_cycle(mtd, column, page_addr);
1384                 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1385                 memcpy32_fromio(host->data_buf, host->main_area0, 512);
1386                 host->buf_start = 0;
1387                 break;
1388         default:
1389                 WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1390                           command);
1391                 break;
1392         }
1393 }
1394
1395 static int mxc_nand_set_features(struct nand_chip *chip, int addr,
1396                                  u8 *subfeature_param)
1397 {
1398         struct mtd_info *mtd = nand_to_mtd(chip);
1399         struct mxc_nand_host *host = nand_get_controller_data(chip);
1400         int i;
1401
1402         host->buf_start = 0;
1403
1404         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1405                 chip->legacy.write_byte(chip, subfeature_param[i]);
1406
1407         memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1408         host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
1409         mxc_do_addr_cycle(mtd, addr, -1);
1410         host->devtype_data->send_page(mtd, NFC_INPUT);
1411
1412         return 0;
1413 }
1414
1415 static int mxc_nand_get_features(struct nand_chip *chip, int addr,
1416                                  u8 *subfeature_param)
1417 {
1418         struct mtd_info *mtd = nand_to_mtd(chip);
1419         struct mxc_nand_host *host = nand_get_controller_data(chip);
1420         int i;
1421
1422         host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
1423         mxc_do_addr_cycle(mtd, addr, -1);
1424         host->devtype_data->send_page(mtd, NFC_OUTPUT);
1425         memcpy32_fromio(host->data_buf, host->main_area0, 512);
1426         host->buf_start = 0;
1427
1428         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1429                 *subfeature_param++ = chip->legacy.read_byte(chip);
1430
1431         return 0;
1432 }
1433
1434 /*
1435  * The generic flash bbt decriptors overlap with our ecc
1436  * hardware, so define some i.MX specific ones.
1437  */
1438 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1439 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1440
1441 static struct nand_bbt_descr bbt_main_descr = {
1442         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1443             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1444         .offs = 0,
1445         .len = 4,
1446         .veroffs = 4,
1447         .maxblocks = 4,
1448         .pattern = bbt_pattern,
1449 };
1450
1451 static struct nand_bbt_descr bbt_mirror_descr = {
1452         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1453             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1454         .offs = 0,
1455         .len = 4,
1456         .veroffs = 4,
1457         .maxblocks = 4,
1458         .pattern = mirror_pattern,
1459 };
1460
1461 /* v1 + irqpending_quirk: i.MX21 */
1462 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1463         .preset = preset_v1,
1464         .read_page = mxc_nand_read_page_v1,
1465         .send_cmd = send_cmd_v1_v2,
1466         .send_addr = send_addr_v1_v2,
1467         .send_page = send_page_v1,
1468         .send_read_id = send_read_id_v1_v2,
1469         .get_dev_status = get_dev_status_v1_v2,
1470         .check_int = check_int_v1_v2,
1471         .irq_control = irq_control_v1_v2,
1472         .get_ecc_status = get_ecc_status_v1,
1473         .ooblayout = &mxc_v1_ooblayout_ops,
1474         .select_chip = mxc_nand_select_chip_v1_v3,
1475         .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1476         .irqpending_quirk = 1,
1477         .needs_ip = 0,
1478         .regs_offset = 0xe00,
1479         .spare0_offset = 0x800,
1480         .spare_len = 16,
1481         .eccbytes = 3,
1482         .eccsize = 1,
1483 };
1484
1485 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1486 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1487         .preset = preset_v1,
1488         .read_page = mxc_nand_read_page_v1,
1489         .send_cmd = send_cmd_v1_v2,
1490         .send_addr = send_addr_v1_v2,
1491         .send_page = send_page_v1,
1492         .send_read_id = send_read_id_v1_v2,
1493         .get_dev_status = get_dev_status_v1_v2,
1494         .check_int = check_int_v1_v2,
1495         .irq_control = irq_control_v1_v2,
1496         .get_ecc_status = get_ecc_status_v1,
1497         .ooblayout = &mxc_v1_ooblayout_ops,
1498         .select_chip = mxc_nand_select_chip_v1_v3,
1499         .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1500         .irqpending_quirk = 0,
1501         .needs_ip = 0,
1502         .regs_offset = 0xe00,
1503         .spare0_offset = 0x800,
1504         .axi_offset = 0,
1505         .spare_len = 16,
1506         .eccbytes = 3,
1507         .eccsize = 1,
1508 };
1509
1510 /* v21: i.MX25, i.MX35 */
1511 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1512         .preset = preset_v2,
1513         .read_page = mxc_nand_read_page_v2_v3,
1514         .send_cmd = send_cmd_v1_v2,
1515         .send_addr = send_addr_v1_v2,
1516         .send_page = send_page_v2,
1517         .send_read_id = send_read_id_v1_v2,
1518         .get_dev_status = get_dev_status_v1_v2,
1519         .check_int = check_int_v1_v2,
1520         .irq_control = irq_control_v1_v2,
1521         .get_ecc_status = get_ecc_status_v2,
1522         .ooblayout = &mxc_v2_ooblayout_ops,
1523         .select_chip = mxc_nand_select_chip_v2,
1524         .setup_data_interface = mxc_nand_v2_setup_data_interface,
1525         .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1526         .irqpending_quirk = 0,
1527         .needs_ip = 0,
1528         .regs_offset = 0x1e00,
1529         .spare0_offset = 0x1000,
1530         .axi_offset = 0,
1531         .spare_len = 64,
1532         .eccbytes = 9,
1533         .eccsize = 0,
1534 };
1535
1536 /* v3.2a: i.MX51 */
1537 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1538         .preset = preset_v3,
1539         .read_page = mxc_nand_read_page_v2_v3,
1540         .send_cmd = send_cmd_v3,
1541         .send_addr = send_addr_v3,
1542         .send_page = send_page_v3,
1543         .send_read_id = send_read_id_v3,
1544         .get_dev_status = get_dev_status_v3,
1545         .check_int = check_int_v3,
1546         .irq_control = irq_control_v3,
1547         .get_ecc_status = get_ecc_status_v3,
1548         .ooblayout = &mxc_v2_ooblayout_ops,
1549         .select_chip = mxc_nand_select_chip_v1_v3,
1550         .enable_hwecc = mxc_nand_enable_hwecc_v3,
1551         .irqpending_quirk = 0,
1552         .needs_ip = 1,
1553         .regs_offset = 0,
1554         .spare0_offset = 0x1000,
1555         .axi_offset = 0x1e00,
1556         .spare_len = 64,
1557         .eccbytes = 0,
1558         .eccsize = 0,
1559         .ppb_shift = 7,
1560 };
1561
1562 /* v3.2b: i.MX53 */
1563 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1564         .preset = preset_v3,
1565         .read_page = mxc_nand_read_page_v2_v3,
1566         .send_cmd = send_cmd_v3,
1567         .send_addr = send_addr_v3,
1568         .send_page = send_page_v3,
1569         .send_read_id = send_read_id_v3,
1570         .get_dev_status = get_dev_status_v3,
1571         .check_int = check_int_v3,
1572         .irq_control = irq_control_v3,
1573         .get_ecc_status = get_ecc_status_v3,
1574         .ooblayout = &mxc_v2_ooblayout_ops,
1575         .select_chip = mxc_nand_select_chip_v1_v3,
1576         .enable_hwecc = mxc_nand_enable_hwecc_v3,
1577         .irqpending_quirk = 0,
1578         .needs_ip = 1,
1579         .regs_offset = 0,
1580         .spare0_offset = 0x1000,
1581         .axi_offset = 0x1e00,
1582         .spare_len = 64,
1583         .eccbytes = 0,
1584         .eccsize = 0,
1585         .ppb_shift = 8,
1586 };
1587
1588 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1589 {
1590         return host->devtype_data == &imx21_nand_devtype_data;
1591 }
1592
1593 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1594 {
1595         return host->devtype_data == &imx27_nand_devtype_data;
1596 }
1597
1598 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1599 {
1600         return host->devtype_data == &imx25_nand_devtype_data;
1601 }
1602
1603 static inline int is_imx51_nfc(struct mxc_nand_host *host)
1604 {
1605         return host->devtype_data == &imx51_nand_devtype_data;
1606 }
1607
1608 static inline int is_imx53_nfc(struct mxc_nand_host *host)
1609 {
1610         return host->devtype_data == &imx53_nand_devtype_data;
1611 }
1612
1613 static const struct platform_device_id mxcnd_devtype[] = {
1614         {
1615                 .name = "imx21-nand",
1616                 .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1617         }, {
1618                 .name = "imx27-nand",
1619                 .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1620         }, {
1621                 .name = "imx25-nand",
1622                 .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1623         }, {
1624                 .name = "imx51-nand",
1625                 .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1626         }, {
1627                 .name = "imx53-nand",
1628                 .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1629         }, {
1630                 /* sentinel */
1631         }
1632 };
1633 MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1634
1635 #ifdef CONFIG_OF
1636 static const struct of_device_id mxcnd_dt_ids[] = {
1637         {
1638                 .compatible = "fsl,imx21-nand",
1639                 .data = &imx21_nand_devtype_data,
1640         }, {
1641                 .compatible = "fsl,imx27-nand",
1642                 .data = &imx27_nand_devtype_data,
1643         }, {
1644                 .compatible = "fsl,imx25-nand",
1645                 .data = &imx25_nand_devtype_data,
1646         }, {
1647                 .compatible = "fsl,imx51-nand",
1648                 .data = &imx51_nand_devtype_data,
1649         }, {
1650                 .compatible = "fsl,imx53-nand",
1651                 .data = &imx53_nand_devtype_data,
1652         },
1653         { /* sentinel */ }
1654 };
1655 MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
1656
1657 static int mxcnd_probe_dt(struct mxc_nand_host *host)
1658 {
1659         struct device_node *np = host->dev->of_node;
1660         const struct of_device_id *of_id =
1661                 of_match_device(mxcnd_dt_ids, host->dev);
1662
1663         if (!np)
1664                 return 1;
1665
1666         host->devtype_data = of_id->data;
1667
1668         return 0;
1669 }
1670 #else
1671 static int mxcnd_probe_dt(struct mxc_nand_host *host)
1672 {
1673         return 1;
1674 }
1675 #endif
1676
1677 static int mxcnd_attach_chip(struct nand_chip *chip)
1678 {
1679         struct mtd_info *mtd = nand_to_mtd(chip);
1680         struct mxc_nand_host *host = nand_get_controller_data(chip);
1681         struct device *dev = mtd->dev.parent;
1682
1683         switch (chip->ecc.mode) {
1684         case NAND_ECC_HW:
1685                 chip->ecc.read_page = mxc_nand_read_page;
1686                 chip->ecc.read_page_raw = mxc_nand_read_page_raw;
1687                 chip->ecc.read_oob = mxc_nand_read_oob;
1688                 chip->ecc.write_page = mxc_nand_write_page_ecc;
1689                 chip->ecc.write_page_raw = mxc_nand_write_page_raw;
1690                 chip->ecc.write_oob = mxc_nand_write_oob;
1691                 break;
1692
1693         case NAND_ECC_SOFT:
1694                 break;
1695
1696         default:
1697                 return -EINVAL;
1698         }
1699
1700         if (chip->bbt_options & NAND_BBT_USE_FLASH) {
1701                 chip->bbt_td = &bbt_main_descr;
1702                 chip->bbt_md = &bbt_mirror_descr;
1703         }
1704
1705         /* Allocate the right size buffer now */
1706         devm_kfree(dev, (void *)host->data_buf);
1707         host->data_buf = devm_kzalloc(dev, mtd->writesize + mtd->oobsize,
1708                                       GFP_KERNEL);
1709         if (!host->data_buf)
1710                 return -ENOMEM;
1711
1712         /* Call preset again, with correct writesize chip time */
1713         host->devtype_data->preset(mtd);
1714
1715         if (!chip->ecc.bytes) {
1716                 if (host->eccsize == 8)
1717                         chip->ecc.bytes = 18;
1718                 else if (host->eccsize == 4)
1719                         chip->ecc.bytes = 9;
1720         }
1721
1722         /*
1723          * Experimentation shows that i.MX NFC can only handle up to 218 oob
1724          * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
1725          * into copying invalid data to/from the spare IO buffer, as this
1726          * might cause ECC data corruption when doing sub-page write to a
1727          * partially written page.
1728          */
1729         host->used_oobsize = min(mtd->oobsize, 218U);
1730
1731         if (chip->ecc.mode == NAND_ECC_HW) {
1732                 if (is_imx21_nfc(host) || is_imx27_nfc(host))
1733                         chip->ecc.strength = 1;
1734                 else
1735                         chip->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1736         }
1737
1738         return 0;
1739 }
1740
1741 static const struct nand_controller_ops mxcnd_controller_ops = {
1742         .attach_chip = mxcnd_attach_chip,
1743 };
1744
1745 static int mxcnd_probe(struct platform_device *pdev)
1746 {
1747         struct nand_chip *this;
1748         struct mtd_info *mtd;
1749         struct mxc_nand_host *host;
1750         struct resource *res;
1751         int err = 0;
1752
1753         /* Allocate memory for MTD device structure and private data */
1754         host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1755                         GFP_KERNEL);
1756         if (!host)
1757                 return -ENOMEM;
1758
1759         /* allocate a temporary buffer for the nand_scan_ident() */
1760         host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1761         if (!host->data_buf)
1762                 return -ENOMEM;
1763
1764         host->dev = &pdev->dev;
1765         /* structures must be linked */
1766         this = &host->nand;
1767         mtd = nand_to_mtd(this);
1768         mtd->dev.parent = &pdev->dev;
1769         mtd->name = DRIVER_NAME;
1770
1771         /* 50 us command delay time */
1772         this->legacy.chip_delay = 5;
1773
1774         nand_set_controller_data(this, host);
1775         nand_set_flash_node(this, pdev->dev.of_node),
1776         this->legacy.dev_ready = mxc_nand_dev_ready;
1777         this->legacy.cmdfunc = mxc_nand_command;
1778         this->legacy.read_byte = mxc_nand_read_byte;
1779         this->legacy.write_buf = mxc_nand_write_buf;
1780         this->legacy.read_buf = mxc_nand_read_buf;
1781         this->legacy.set_features = mxc_nand_set_features;
1782         this->legacy.get_features = mxc_nand_get_features;
1783
1784         host->clk = devm_clk_get(&pdev->dev, NULL);
1785         if (IS_ERR(host->clk))
1786                 return PTR_ERR(host->clk);
1787
1788         err = mxcnd_probe_dt(host);
1789         if (err > 0) {
1790                 struct mxc_nand_platform_data *pdata =
1791                                         dev_get_platdata(&pdev->dev);
1792                 if (pdata) {
1793                         host->pdata = *pdata;
1794                         host->devtype_data = (struct mxc_nand_devtype_data *)
1795                                                 pdev->id_entry->driver_data;
1796                 } else {
1797                         err = -ENODEV;
1798                 }
1799         }
1800         if (err < 0)
1801                 return err;
1802
1803         this->setup_data_interface = host->devtype_data->setup_data_interface;
1804
1805         if (host->devtype_data->needs_ip) {
1806                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1807                 host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1808                 if (IS_ERR(host->regs_ip))
1809                         return PTR_ERR(host->regs_ip);
1810
1811                 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1812         } else {
1813                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1814         }
1815
1816         host->base = devm_ioremap_resource(&pdev->dev, res);
1817         if (IS_ERR(host->base))
1818                 return PTR_ERR(host->base);
1819
1820         host->main_area0 = host->base;
1821
1822         if (host->devtype_data->regs_offset)
1823                 host->regs = host->base + host->devtype_data->regs_offset;
1824         host->spare0 = host->base + host->devtype_data->spare0_offset;
1825         if (host->devtype_data->axi_offset)
1826                 host->regs_axi = host->base + host->devtype_data->axi_offset;
1827
1828         this->ecc.bytes = host->devtype_data->eccbytes;
1829         host->eccsize = host->devtype_data->eccsize;
1830
1831         this->select_chip = host->devtype_data->select_chip;
1832         this->ecc.size = 512;
1833         mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
1834
1835         if (host->pdata.hw_ecc) {
1836                 this->ecc.mode = NAND_ECC_HW;
1837         } else {
1838                 this->ecc.mode = NAND_ECC_SOFT;
1839                 this->ecc.algo = NAND_ECC_HAMMING;
1840         }
1841
1842         /* NAND bus width determines access functions used by upper layer */
1843         if (host->pdata.width == 2)
1844                 this->options |= NAND_BUSWIDTH_16;
1845
1846         /* update flash based bbt */
1847         if (host->pdata.flash_bbt)
1848                 this->bbt_options |= NAND_BBT_USE_FLASH;
1849
1850         init_completion(&host->op_completion);
1851
1852         host->irq = platform_get_irq(pdev, 0);
1853         if (host->irq < 0)
1854                 return host->irq;
1855
1856         /*
1857          * Use host->devtype_data->irq_control() here instead of irq_control()
1858          * because we must not disable_irq_nosync without having requested the
1859          * irq.
1860          */
1861         host->devtype_data->irq_control(host, 0);
1862
1863         err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1864                         0, DRIVER_NAME, host);
1865         if (err)
1866                 return err;
1867
1868         err = clk_prepare_enable(host->clk);
1869         if (err)
1870                 return err;
1871         host->clk_act = 1;
1872
1873         /*
1874          * Now that we "own" the interrupt make sure the interrupt mask bit is
1875          * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1876          * on this machine.
1877          */
1878         if (host->devtype_data->irqpending_quirk) {
1879                 disable_irq_nosync(host->irq);
1880                 host->devtype_data->irq_control(host, 1);
1881         }
1882
1883         /* Scan the NAND device */
1884         this->dummy_controller.ops = &mxcnd_controller_ops;
1885         err = nand_scan(this, is_imx25_nfc(host) ? 4 : 1);
1886         if (err)
1887                 goto escan;
1888
1889         /* Register the partitions */
1890         err = mtd_device_parse_register(mtd, part_probes, NULL,
1891                                         host->pdata.parts,
1892                                         host->pdata.nr_parts);
1893         if (err)
1894                 goto cleanup_nand;
1895
1896         platform_set_drvdata(pdev, host);
1897
1898         return 0;
1899
1900 cleanup_nand:
1901         nand_cleanup(this);
1902 escan:
1903         if (host->clk_act)
1904                 clk_disable_unprepare(host->clk);
1905
1906         return err;
1907 }
1908
1909 static int mxcnd_remove(struct platform_device *pdev)
1910 {
1911         struct mxc_nand_host *host = platform_get_drvdata(pdev);
1912
1913         nand_release(&host->nand);
1914         if (host->clk_act)
1915                 clk_disable_unprepare(host->clk);
1916
1917         return 0;
1918 }
1919
1920 static struct platform_driver mxcnd_driver = {
1921         .driver = {
1922                    .name = DRIVER_NAME,
1923                    .of_match_table = of_match_ptr(mxcnd_dt_ids),
1924         },
1925         .id_table = mxcnd_devtype,
1926         .probe = mxcnd_probe,
1927         .remove = mxcnd_remove,
1928 };
1929 module_platform_driver(mxcnd_driver);
1930
1931 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1932 MODULE_DESCRIPTION("MXC NAND MTD driver");
1933 MODULE_LICENSE("GPL");