Merge tag 'drm-fixes-2018-11-23' of git://anongit.freedesktop.org/drm/drm
[sfrench/cifs-2.6.git] / drivers / mtd / nand / raw / atmel / nand-controller.c
1 /*
2  * Copyright 2017 ATMEL
3  * Copyright 2017 Free Electrons
4  *
5  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
6  *
7  * Derived from the atmel_nand.c driver which contained the following
8  * copyrights:
9  *
10  *   Copyright 2003 Rick Bronson
11  *
12  *   Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
13  *      Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
14  *
15  *   Derived from drivers/mtd/spia.c (removed in v3.8)
16  *      Copyright 2000 Steven J. Hill (sjhill@cotw.com)
17  *
18  *
19  *   Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
20  *      Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
21  *
22  *   Derived from Das U-Boot source code
23  *      (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
24  *      Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
25  *
26  *   Add Programmable Multibit ECC support for various AT91 SoC
27  *      Copyright 2012 ATMEL, Hong Xu
28  *
29  *   Add Nand Flash Controller support for SAMA5 SoC
30  *      Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
31  *
32  * This program is free software; you can redistribute it and/or modify
33  * it under the terms of the GNU General Public License version 2 as
34  * published by the Free Software Foundation.
35  *
36  * A few words about the naming convention in this file. This convention
37  * applies to structure and function names.
38  *
39  * Prefixes:
40  *
41  * - atmel_nand_: all generic structures/functions
42  * - atmel_smc_nand_: all structures/functions specific to the SMC interface
43  *                    (at91sam9 and avr32 SoCs)
44  * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
45  *                     (sama5 SoCs and later)
46  * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
47  *               that is available in the HSMC block
48  * - <soc>_nand_: all SoC specific structures/functions
49  */
50
51 #include <linux/clk.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/dmaengine.h>
54 #include <linux/genalloc.h>
55 #include <linux/gpio/consumer.h>
56 #include <linux/interrupt.h>
57 #include <linux/mfd/syscon.h>
58 #include <linux/mfd/syscon/atmel-matrix.h>
59 #include <linux/mfd/syscon/atmel-smc.h>
60 #include <linux/module.h>
61 #include <linux/mtd/rawnand.h>
62 #include <linux/of_address.h>
63 #include <linux/of_irq.h>
64 #include <linux/of_platform.h>
65 #include <linux/iopoll.h>
66 #include <linux/platform_device.h>
67 #include <linux/regmap.h>
68
69 #include "pmecc.h"
70
71 #define ATMEL_HSMC_NFC_CFG                      0x0
72 #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x)         (((x) / 4) << 24)
73 #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK       GENMASK(30, 24)
74 #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul)        (((cyc) << 16) | ((mul) << 20))
75 #define ATMEL_HSMC_NFC_CFG_DTO_MAX              GENMASK(22, 16)
76 #define ATMEL_HSMC_NFC_CFG_RBEDGE               BIT(13)
77 #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE         BIT(12)
78 #define ATMEL_HSMC_NFC_CFG_RSPARE               BIT(9)
79 #define ATMEL_HSMC_NFC_CFG_WSPARE               BIT(8)
80 #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK        GENMASK(2, 0)
81 #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x)          (fls((x) / 512) - 1)
82
83 #define ATMEL_HSMC_NFC_CTRL                     0x4
84 #define ATMEL_HSMC_NFC_CTRL_EN                  BIT(0)
85 #define ATMEL_HSMC_NFC_CTRL_DIS                 BIT(1)
86
87 #define ATMEL_HSMC_NFC_SR                       0x8
88 #define ATMEL_HSMC_NFC_IER                      0xc
89 #define ATMEL_HSMC_NFC_IDR                      0x10
90 #define ATMEL_HSMC_NFC_IMR                      0x14
91 #define ATMEL_HSMC_NFC_SR_ENABLED               BIT(1)
92 #define ATMEL_HSMC_NFC_SR_RB_RISE               BIT(4)
93 #define ATMEL_HSMC_NFC_SR_RB_FALL               BIT(5)
94 #define ATMEL_HSMC_NFC_SR_BUSY                  BIT(8)
95 #define ATMEL_HSMC_NFC_SR_WR                    BIT(11)
96 #define ATMEL_HSMC_NFC_SR_CSID                  GENMASK(14, 12)
97 #define ATMEL_HSMC_NFC_SR_XFRDONE               BIT(16)
98 #define ATMEL_HSMC_NFC_SR_CMDDONE               BIT(17)
99 #define ATMEL_HSMC_NFC_SR_DTOE                  BIT(20)
100 #define ATMEL_HSMC_NFC_SR_UNDEF                 BIT(21)
101 #define ATMEL_HSMC_NFC_SR_AWB                   BIT(22)
102 #define ATMEL_HSMC_NFC_SR_NFCASE                BIT(23)
103 #define ATMEL_HSMC_NFC_SR_ERRORS                (ATMEL_HSMC_NFC_SR_DTOE | \
104                                                  ATMEL_HSMC_NFC_SR_UNDEF | \
105                                                  ATMEL_HSMC_NFC_SR_AWB | \
106                                                  ATMEL_HSMC_NFC_SR_NFCASE)
107 #define ATMEL_HSMC_NFC_SR_RBEDGE(x)             BIT((x) + 24)
108
109 #define ATMEL_HSMC_NFC_ADDR                     0x18
110 #define ATMEL_HSMC_NFC_BANK                     0x1c
111
112 #define ATMEL_NFC_MAX_RB_ID                     7
113
114 #define ATMEL_NFC_SRAM_SIZE                     0x2400
115
116 #define ATMEL_NFC_CMD(pos, cmd)                 ((cmd) << (((pos) * 8) + 2))
117 #define ATMEL_NFC_VCMD2                         BIT(18)
118 #define ATMEL_NFC_ACYCLE(naddrs)                ((naddrs) << 19)
119 #define ATMEL_NFC_CSID(cs)                      ((cs) << 22)
120 #define ATMEL_NFC_DATAEN                        BIT(25)
121 #define ATMEL_NFC_NFCWR                         BIT(26)
122
123 #define ATMEL_NFC_MAX_ADDR_CYCLES               5
124
125 #define ATMEL_NAND_ALE_OFFSET                   BIT(21)
126 #define ATMEL_NAND_CLE_OFFSET                   BIT(22)
127
128 #define DEFAULT_TIMEOUT_MS                      1000
129 #define MIN_DMA_LEN                             128
130
131 static bool atmel_nand_avoid_dma __read_mostly;
132
133 MODULE_PARM_DESC(avoiddma, "Avoid using DMA");
134 module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400);
135
136 enum atmel_nand_rb_type {
137         ATMEL_NAND_NO_RB,
138         ATMEL_NAND_NATIVE_RB,
139         ATMEL_NAND_GPIO_RB,
140 };
141
142 struct atmel_nand_rb {
143         enum atmel_nand_rb_type type;
144         union {
145                 struct gpio_desc *gpio;
146                 int id;
147         };
148 };
149
150 struct atmel_nand_cs {
151         int id;
152         struct atmel_nand_rb rb;
153         struct gpio_desc *csgpio;
154         struct {
155                 void __iomem *virt;
156                 dma_addr_t dma;
157         } io;
158
159         struct atmel_smc_cs_conf smcconf;
160 };
161
162 struct atmel_nand {
163         struct list_head node;
164         struct device *dev;
165         struct nand_chip base;
166         struct atmel_nand_cs *activecs;
167         struct atmel_pmecc_user *pmecc;
168         struct gpio_desc *cdgpio;
169         int numcs;
170         struct atmel_nand_cs cs[];
171 };
172
173 static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
174 {
175         return container_of(chip, struct atmel_nand, base);
176 }
177
178 enum atmel_nfc_data_xfer {
179         ATMEL_NFC_NO_DATA,
180         ATMEL_NFC_READ_DATA,
181         ATMEL_NFC_WRITE_DATA,
182 };
183
184 struct atmel_nfc_op {
185         u8 cs;
186         u8 ncmds;
187         u8 cmds[2];
188         u8 naddrs;
189         u8 addrs[5];
190         enum atmel_nfc_data_xfer data;
191         u32 wait;
192         u32 errors;
193 };
194
195 struct atmel_nand_controller;
196 struct atmel_nand_controller_caps;
197
198 struct atmel_nand_controller_ops {
199         int (*probe)(struct platform_device *pdev,
200                      const struct atmel_nand_controller_caps *caps);
201         int (*remove)(struct atmel_nand_controller *nc);
202         void (*nand_init)(struct atmel_nand_controller *nc,
203                           struct atmel_nand *nand);
204         int (*ecc_init)(struct nand_chip *chip);
205         int (*setup_data_interface)(struct atmel_nand *nand, int csline,
206                                     const struct nand_data_interface *conf);
207 };
208
209 struct atmel_nand_controller_caps {
210         bool has_dma;
211         bool legacy_of_bindings;
212         u32 ale_offs;
213         u32 cle_offs;
214         const struct atmel_nand_controller_ops *ops;
215 };
216
217 struct atmel_nand_controller {
218         struct nand_controller base;
219         const struct atmel_nand_controller_caps *caps;
220         struct device *dev;
221         struct regmap *smc;
222         struct dma_chan *dmac;
223         struct atmel_pmecc *pmecc;
224         struct list_head chips;
225         struct clk *mck;
226 };
227
228 static inline struct atmel_nand_controller *
229 to_nand_controller(struct nand_controller *ctl)
230 {
231         return container_of(ctl, struct atmel_nand_controller, base);
232 }
233
234 struct atmel_smc_nand_controller {
235         struct atmel_nand_controller base;
236         struct regmap *matrix;
237         unsigned int ebi_csa_offs;
238 };
239
240 static inline struct atmel_smc_nand_controller *
241 to_smc_nand_controller(struct nand_controller *ctl)
242 {
243         return container_of(to_nand_controller(ctl),
244                             struct atmel_smc_nand_controller, base);
245 }
246
247 struct atmel_hsmc_nand_controller {
248         struct atmel_nand_controller base;
249         struct {
250                 struct gen_pool *pool;
251                 void __iomem *virt;
252                 dma_addr_t dma;
253         } sram;
254         const struct atmel_hsmc_reg_layout *hsmc_layout;
255         struct regmap *io;
256         struct atmel_nfc_op op;
257         struct completion complete;
258         int irq;
259
260         /* Only used when instantiating from legacy DT bindings. */
261         struct clk *clk;
262 };
263
264 static inline struct atmel_hsmc_nand_controller *
265 to_hsmc_nand_controller(struct nand_controller *ctl)
266 {
267         return container_of(to_nand_controller(ctl),
268                             struct atmel_hsmc_nand_controller, base);
269 }
270
271 static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
272 {
273         op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
274         op->wait ^= status & op->wait;
275
276         return !op->wait || op->errors;
277 }
278
279 static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
280 {
281         struct atmel_hsmc_nand_controller *nc = data;
282         u32 sr, rcvd;
283         bool done;
284
285         regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
286
287         rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
288         done = atmel_nfc_op_done(&nc->op, sr);
289
290         if (rcvd)
291                 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
292
293         if (done)
294                 complete(&nc->complete);
295
296         return rcvd ? IRQ_HANDLED : IRQ_NONE;
297 }
298
299 static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
300                           unsigned int timeout_ms)
301 {
302         int ret;
303
304         if (!timeout_ms)
305                 timeout_ms = DEFAULT_TIMEOUT_MS;
306
307         if (poll) {
308                 u32 status;
309
310                 ret = regmap_read_poll_timeout(nc->base.smc,
311                                                ATMEL_HSMC_NFC_SR, status,
312                                                atmel_nfc_op_done(&nc->op,
313                                                                  status),
314                                                0, timeout_ms * 1000);
315         } else {
316                 init_completion(&nc->complete);
317                 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
318                              nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
319                 ret = wait_for_completion_timeout(&nc->complete,
320                                                 msecs_to_jiffies(timeout_ms));
321                 if (!ret)
322                         ret = -ETIMEDOUT;
323                 else
324                         ret = 0;
325
326                 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
327         }
328
329         if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
330                 dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
331                 ret = -ETIMEDOUT;
332         }
333
334         if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
335                 dev_err(nc->base.dev, "Access to an undefined area\n");
336                 ret = -EIO;
337         }
338
339         if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
340                 dev_err(nc->base.dev, "Access while busy\n");
341                 ret = -EIO;
342         }
343
344         if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
345                 dev_err(nc->base.dev, "Wrong access size\n");
346                 ret = -EIO;
347         }
348
349         return ret;
350 }
351
352 static void atmel_nand_dma_transfer_finished(void *data)
353 {
354         struct completion *finished = data;
355
356         complete(finished);
357 }
358
359 static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
360                                    void *buf, dma_addr_t dev_dma, size_t len,
361                                    enum dma_data_direction dir)
362 {
363         DECLARE_COMPLETION_ONSTACK(finished);
364         dma_addr_t src_dma, dst_dma, buf_dma;
365         struct dma_async_tx_descriptor *tx;
366         dma_cookie_t cookie;
367
368         buf_dma = dma_map_single(nc->dev, buf, len, dir);
369         if (dma_mapping_error(nc->dev, dev_dma)) {
370                 dev_err(nc->dev,
371                         "Failed to prepare a buffer for DMA access\n");
372                 goto err;
373         }
374
375         if (dir == DMA_FROM_DEVICE) {
376                 src_dma = dev_dma;
377                 dst_dma = buf_dma;
378         } else {
379                 src_dma = buf_dma;
380                 dst_dma = dev_dma;
381         }
382
383         tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
384                                        DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
385         if (!tx) {
386                 dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
387                 goto err_unmap;
388         }
389
390         tx->callback = atmel_nand_dma_transfer_finished;
391         tx->callback_param = &finished;
392
393         cookie = dmaengine_submit(tx);
394         if (dma_submit_error(cookie)) {
395                 dev_err(nc->dev, "Failed to do DMA tx_submit\n");
396                 goto err_unmap;
397         }
398
399         dma_async_issue_pending(nc->dmac);
400         wait_for_completion(&finished);
401
402         return 0;
403
404 err_unmap:
405         dma_unmap_single(nc->dev, buf_dma, len, dir);
406
407 err:
408         dev_dbg(nc->dev, "Fall back to CPU I/O\n");
409
410         return -EIO;
411 }
412
413 static u8 atmel_nand_read_byte(struct nand_chip *chip)
414 {
415         struct atmel_nand *nand = to_atmel_nand(chip);
416
417         return ioread8(nand->activecs->io.virt);
418 }
419
420 static void atmel_nand_write_byte(struct nand_chip *chip, u8 byte)
421 {
422         struct atmel_nand *nand = to_atmel_nand(chip);
423
424         if (chip->options & NAND_BUSWIDTH_16)
425                 iowrite16(byte | (byte << 8), nand->activecs->io.virt);
426         else
427                 iowrite8(byte, nand->activecs->io.virt);
428 }
429
430 static void atmel_nand_read_buf(struct nand_chip *chip, u8 *buf, int len)
431 {
432         struct atmel_nand *nand = to_atmel_nand(chip);
433         struct atmel_nand_controller *nc;
434
435         nc = to_nand_controller(chip->controller);
436
437         /*
438          * If the controller supports DMA, the buffer address is DMA-able and
439          * len is long enough to make DMA transfers profitable, let's trigger
440          * a DMA transfer. If it fails, fallback to PIO mode.
441          */
442         if (nc->dmac && virt_addr_valid(buf) &&
443             len >= MIN_DMA_LEN &&
444             !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
445                                      DMA_FROM_DEVICE))
446                 return;
447
448         if (chip->options & NAND_BUSWIDTH_16)
449                 ioread16_rep(nand->activecs->io.virt, buf, len / 2);
450         else
451                 ioread8_rep(nand->activecs->io.virt, buf, len);
452 }
453
454 static void atmel_nand_write_buf(struct nand_chip *chip, const u8 *buf, int len)
455 {
456         struct atmel_nand *nand = to_atmel_nand(chip);
457         struct atmel_nand_controller *nc;
458
459         nc = to_nand_controller(chip->controller);
460
461         /*
462          * If the controller supports DMA, the buffer address is DMA-able and
463          * len is long enough to make DMA transfers profitable, let's trigger
464          * a DMA transfer. If it fails, fallback to PIO mode.
465          */
466         if (nc->dmac && virt_addr_valid(buf) &&
467             len >= MIN_DMA_LEN &&
468             !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
469                                      len, DMA_TO_DEVICE))
470                 return;
471
472         if (chip->options & NAND_BUSWIDTH_16)
473                 iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
474         else
475                 iowrite8_rep(nand->activecs->io.virt, buf, len);
476 }
477
478 static int atmel_nand_dev_ready(struct nand_chip *chip)
479 {
480         struct atmel_nand *nand = to_atmel_nand(chip);
481
482         return gpiod_get_value(nand->activecs->rb.gpio);
483 }
484
485 static void atmel_nand_select_chip(struct nand_chip *chip, int cs)
486 {
487         struct atmel_nand *nand = to_atmel_nand(chip);
488
489         if (cs < 0 || cs >= nand->numcs) {
490                 nand->activecs = NULL;
491                 chip->legacy.dev_ready = NULL;
492                 return;
493         }
494
495         nand->activecs = &nand->cs[cs];
496
497         if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB)
498                 chip->legacy.dev_ready = atmel_nand_dev_ready;
499 }
500
501 static int atmel_hsmc_nand_dev_ready(struct nand_chip *chip)
502 {
503         struct atmel_nand *nand = to_atmel_nand(chip);
504         struct atmel_hsmc_nand_controller *nc;
505         u32 status;
506
507         nc = to_hsmc_nand_controller(chip->controller);
508
509         regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status);
510
511         return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
512 }
513
514 static void atmel_hsmc_nand_select_chip(struct nand_chip *chip, int cs)
515 {
516         struct mtd_info *mtd = nand_to_mtd(chip);
517         struct atmel_nand *nand = to_atmel_nand(chip);
518         struct atmel_hsmc_nand_controller *nc;
519
520         nc = to_hsmc_nand_controller(chip->controller);
521
522         atmel_nand_select_chip(chip, cs);
523
524         if (!nand->activecs) {
525                 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
526                              ATMEL_HSMC_NFC_CTRL_DIS);
527                 return;
528         }
529
530         if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB)
531                 chip->legacy.dev_ready = atmel_hsmc_nand_dev_ready;
532
533         regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
534                            ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
535                            ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
536                            ATMEL_HSMC_NFC_CFG_RSPARE |
537                            ATMEL_HSMC_NFC_CFG_WSPARE,
538                            ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
539                            ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
540                            ATMEL_HSMC_NFC_CFG_RSPARE);
541         regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
542                      ATMEL_HSMC_NFC_CTRL_EN);
543 }
544
545 static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
546 {
547         u8 *addrs = nc->op.addrs;
548         unsigned int op = 0;
549         u32 addr, val;
550         int i, ret;
551
552         nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
553
554         for (i = 0; i < nc->op.ncmds; i++)
555                 op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
556
557         if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
558                 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
559
560         op |= ATMEL_NFC_CSID(nc->op.cs) |
561               ATMEL_NFC_ACYCLE(nc->op.naddrs);
562
563         if (nc->op.ncmds > 1)
564                 op |= ATMEL_NFC_VCMD2;
565
566         addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
567                (addrs[3] << 24);
568
569         if (nc->op.data != ATMEL_NFC_NO_DATA) {
570                 op |= ATMEL_NFC_DATAEN;
571                 nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
572
573                 if (nc->op.data == ATMEL_NFC_WRITE_DATA)
574                         op |= ATMEL_NFC_NFCWR;
575         }
576
577         /* Clear all flags. */
578         regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
579
580         /* Send the command. */
581         regmap_write(nc->io, op, addr);
582
583         ret = atmel_nfc_wait(nc, poll, 0);
584         if (ret)
585                 dev_err(nc->base.dev,
586                         "Failed to send NAND command (err = %d)!",
587                         ret);
588
589         /* Reset the op state. */
590         memset(&nc->op, 0, sizeof(nc->op));
591
592         return ret;
593 }
594
595 static void atmel_hsmc_nand_cmd_ctrl(struct nand_chip *chip, int dat,
596                                      unsigned int ctrl)
597 {
598         struct atmel_nand *nand = to_atmel_nand(chip);
599         struct atmel_hsmc_nand_controller *nc;
600
601         nc = to_hsmc_nand_controller(chip->controller);
602
603         if (ctrl & NAND_ALE) {
604                 if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
605                         return;
606
607                 nc->op.addrs[nc->op.naddrs++] = dat;
608         } else if (ctrl & NAND_CLE) {
609                 if (nc->op.ncmds > 1)
610                         return;
611
612                 nc->op.cmds[nc->op.ncmds++] = dat;
613         }
614
615         if (dat == NAND_CMD_NONE) {
616                 nc->op.cs = nand->activecs->id;
617                 atmel_nfc_exec_op(nc, true);
618         }
619 }
620
621 static void atmel_nand_cmd_ctrl(struct nand_chip *chip, int cmd,
622                                 unsigned int ctrl)
623 {
624         struct atmel_nand *nand = to_atmel_nand(chip);
625         struct atmel_nand_controller *nc;
626
627         nc = to_nand_controller(chip->controller);
628
629         if ((ctrl & NAND_CTRL_CHANGE) && nand->activecs->csgpio) {
630                 if (ctrl & NAND_NCE)
631                         gpiod_set_value(nand->activecs->csgpio, 0);
632                 else
633                         gpiod_set_value(nand->activecs->csgpio, 1);
634         }
635
636         if (ctrl & NAND_ALE)
637                 writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs);
638         else if (ctrl & NAND_CLE)
639                 writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs);
640 }
641
642 static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
643                                    bool oob_required)
644 {
645         struct mtd_info *mtd = nand_to_mtd(chip);
646         struct atmel_hsmc_nand_controller *nc;
647         int ret = -EIO;
648
649         nc = to_hsmc_nand_controller(chip->controller);
650
651         if (nc->base.dmac)
652                 ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
653                                               nc->sram.dma, mtd->writesize,
654                                               DMA_TO_DEVICE);
655
656         /* Falling back to CPU copy. */
657         if (ret)
658                 memcpy_toio(nc->sram.virt, buf, mtd->writesize);
659
660         if (oob_required)
661                 memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
662                             mtd->oobsize);
663 }
664
665 static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
666                                      bool oob_required)
667 {
668         struct mtd_info *mtd = nand_to_mtd(chip);
669         struct atmel_hsmc_nand_controller *nc;
670         int ret = -EIO;
671
672         nc = to_hsmc_nand_controller(chip->controller);
673
674         if (nc->base.dmac)
675                 ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
676                                               mtd->writesize, DMA_FROM_DEVICE);
677
678         /* Falling back to CPU copy. */
679         if (ret)
680                 memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
681
682         if (oob_required)
683                 memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
684                               mtd->oobsize);
685 }
686
687 static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
688 {
689         struct mtd_info *mtd = nand_to_mtd(chip);
690         struct atmel_hsmc_nand_controller *nc;
691
692         nc = to_hsmc_nand_controller(chip->controller);
693
694         if (column >= 0) {
695                 nc->op.addrs[nc->op.naddrs++] = column;
696
697                 /*
698                  * 2 address cycles for the column offset on large page NANDs.
699                  */
700                 if (mtd->writesize > 512)
701                         nc->op.addrs[nc->op.naddrs++] = column >> 8;
702         }
703
704         if (page >= 0) {
705                 nc->op.addrs[nc->op.naddrs++] = page;
706                 nc->op.addrs[nc->op.naddrs++] = page >> 8;
707
708                 if (chip->options & NAND_ROW_ADDR_3)
709                         nc->op.addrs[nc->op.naddrs++] = page >> 16;
710         }
711 }
712
713 static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
714 {
715         struct atmel_nand *nand = to_atmel_nand(chip);
716         struct atmel_nand_controller *nc;
717         int ret;
718
719         nc = to_nand_controller(chip->controller);
720
721         if (raw)
722                 return 0;
723
724         ret = atmel_pmecc_enable(nand->pmecc, op);
725         if (ret)
726                 dev_err(nc->dev,
727                         "Failed to enable ECC engine (err = %d)\n", ret);
728
729         return ret;
730 }
731
732 static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
733 {
734         struct atmel_nand *nand = to_atmel_nand(chip);
735
736         if (!raw)
737                 atmel_pmecc_disable(nand->pmecc);
738 }
739
740 static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
741 {
742         struct atmel_nand *nand = to_atmel_nand(chip);
743         struct mtd_info *mtd = nand_to_mtd(chip);
744         struct atmel_nand_controller *nc;
745         struct mtd_oob_region oobregion;
746         void *eccbuf;
747         int ret, i;
748
749         nc = to_nand_controller(chip->controller);
750
751         if (raw)
752                 return 0;
753
754         ret = atmel_pmecc_wait_rdy(nand->pmecc);
755         if (ret) {
756                 dev_err(nc->dev,
757                         "Failed to transfer NAND page data (err = %d)\n",
758                         ret);
759                 return ret;
760         }
761
762         mtd_ooblayout_ecc(mtd, 0, &oobregion);
763         eccbuf = chip->oob_poi + oobregion.offset;
764
765         for (i = 0; i < chip->ecc.steps; i++) {
766                 atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
767                                                    eccbuf);
768                 eccbuf += chip->ecc.bytes;
769         }
770
771         return 0;
772 }
773
774 static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
775                                          bool raw)
776 {
777         struct atmel_nand *nand = to_atmel_nand(chip);
778         struct mtd_info *mtd = nand_to_mtd(chip);
779         struct atmel_nand_controller *nc;
780         struct mtd_oob_region oobregion;
781         int ret, i, max_bitflips = 0;
782         void *databuf, *eccbuf;
783
784         nc = to_nand_controller(chip->controller);
785
786         if (raw)
787                 return 0;
788
789         ret = atmel_pmecc_wait_rdy(nand->pmecc);
790         if (ret) {
791                 dev_err(nc->dev,
792                         "Failed to read NAND page data (err = %d)\n",
793                         ret);
794                 return ret;
795         }
796
797         mtd_ooblayout_ecc(mtd, 0, &oobregion);
798         eccbuf = chip->oob_poi + oobregion.offset;
799         databuf = buf;
800
801         for (i = 0; i < chip->ecc.steps; i++) {
802                 ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
803                                                  eccbuf);
804                 if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
805                         ret = nand_check_erased_ecc_chunk(databuf,
806                                                           chip->ecc.size,
807                                                           eccbuf,
808                                                           chip->ecc.bytes,
809                                                           NULL, 0,
810                                                           chip->ecc.strength);
811
812                 if (ret >= 0)
813                         max_bitflips = max(ret, max_bitflips);
814                 else
815                         mtd->ecc_stats.failed++;
816
817                 databuf += chip->ecc.size;
818                 eccbuf += chip->ecc.bytes;
819         }
820
821         return max_bitflips;
822 }
823
824 static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
825                                      bool oob_required, int page, bool raw)
826 {
827         struct mtd_info *mtd = nand_to_mtd(chip);
828         struct atmel_nand *nand = to_atmel_nand(chip);
829         int ret;
830
831         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
832
833         ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
834         if (ret)
835                 return ret;
836
837         atmel_nand_write_buf(chip, buf, mtd->writesize);
838
839         ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
840         if (ret) {
841                 atmel_pmecc_disable(nand->pmecc);
842                 return ret;
843         }
844
845         atmel_nand_pmecc_disable(chip, raw);
846
847         atmel_nand_write_buf(chip, chip->oob_poi, mtd->oobsize);
848
849         return nand_prog_page_end_op(chip);
850 }
851
852 static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf,
853                                        int oob_required, int page)
854 {
855         return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
856 }
857
858 static int atmel_nand_pmecc_write_page_raw(struct nand_chip *chip,
859                                            const u8 *buf, int oob_required,
860                                            int page)
861 {
862         return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
863 }
864
865 static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
866                                     bool oob_required, int page, bool raw)
867 {
868         struct mtd_info *mtd = nand_to_mtd(chip);
869         int ret;
870
871         nand_read_page_op(chip, page, 0, NULL, 0);
872
873         ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
874         if (ret)
875                 return ret;
876
877         atmel_nand_read_buf(chip, buf, mtd->writesize);
878         atmel_nand_read_buf(chip, chip->oob_poi, mtd->oobsize);
879
880         ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
881
882         atmel_nand_pmecc_disable(chip, raw);
883
884         return ret;
885 }
886
887 static int atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
888                                       int oob_required, int page)
889 {
890         return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
891 }
892
893 static int atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf,
894                                           int oob_required, int page)
895 {
896         return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
897 }
898
899 static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
900                                           const u8 *buf, bool oob_required,
901                                           int page, bool raw)
902 {
903         struct mtd_info *mtd = nand_to_mtd(chip);
904         struct atmel_nand *nand = to_atmel_nand(chip);
905         struct atmel_hsmc_nand_controller *nc;
906         int ret, status;
907
908         nc = to_hsmc_nand_controller(chip->controller);
909
910         atmel_nfc_copy_to_sram(chip, buf, false);
911
912         nc->op.cmds[0] = NAND_CMD_SEQIN;
913         nc->op.ncmds = 1;
914         atmel_nfc_set_op_addr(chip, page, 0x0);
915         nc->op.cs = nand->activecs->id;
916         nc->op.data = ATMEL_NFC_WRITE_DATA;
917
918         ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
919         if (ret)
920                 return ret;
921
922         ret = atmel_nfc_exec_op(nc, false);
923         if (ret) {
924                 atmel_nand_pmecc_disable(chip, raw);
925                 dev_err(nc->base.dev,
926                         "Failed to transfer NAND page data (err = %d)\n",
927                         ret);
928                 return ret;
929         }
930
931         ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
932
933         atmel_nand_pmecc_disable(chip, raw);
934
935         if (ret)
936                 return ret;
937
938         atmel_nand_write_buf(chip, chip->oob_poi, mtd->oobsize);
939
940         nc->op.cmds[0] = NAND_CMD_PAGEPROG;
941         nc->op.ncmds = 1;
942         nc->op.cs = nand->activecs->id;
943         ret = atmel_nfc_exec_op(nc, false);
944         if (ret)
945                 dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
946                         ret);
947
948         status = chip->legacy.waitfunc(chip);
949         if (status & NAND_STATUS_FAIL)
950                 return -EIO;
951
952         return ret;
953 }
954
955 static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip,
956                                             const u8 *buf, int oob_required,
957                                             int page)
958 {
959         return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
960                                               false);
961 }
962
963 static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip,
964                                                 const u8 *buf,
965                                                 int oob_required, int page)
966 {
967         return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
968                                               true);
969 }
970
971 static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
972                                          bool oob_required, int page,
973                                          bool raw)
974 {
975         struct mtd_info *mtd = nand_to_mtd(chip);
976         struct atmel_nand *nand = to_atmel_nand(chip);
977         struct atmel_hsmc_nand_controller *nc;
978         int ret;
979
980         nc = to_hsmc_nand_controller(chip->controller);
981
982         /*
983          * Optimized read page accessors only work when the NAND R/B pin is
984          * connected to a native SoC R/B pin. If that's not the case, fallback
985          * to the non-optimized one.
986          */
987         if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) {
988                 nand_read_page_op(chip, page, 0, NULL, 0);
989
990                 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
991                                                 raw);
992         }
993
994         nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
995
996         if (mtd->writesize > 512)
997                 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
998
999         atmel_nfc_set_op_addr(chip, page, 0x0);
1000         nc->op.cs = nand->activecs->id;
1001         nc->op.data = ATMEL_NFC_READ_DATA;
1002
1003         ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
1004         if (ret)
1005                 return ret;
1006
1007         ret = atmel_nfc_exec_op(nc, false);
1008         if (ret) {
1009                 atmel_nand_pmecc_disable(chip, raw);
1010                 dev_err(nc->base.dev,
1011                         "Failed to load NAND page data (err = %d)\n",
1012                         ret);
1013                 return ret;
1014         }
1015
1016         atmel_nfc_copy_from_sram(chip, buf, true);
1017
1018         ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
1019
1020         atmel_nand_pmecc_disable(chip, raw);
1021
1022         return ret;
1023 }
1024
1025 static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
1026                                            int oob_required, int page)
1027 {
1028         return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1029                                              false);
1030 }
1031
1032 static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip,
1033                                                u8 *buf, int oob_required,
1034                                                int page)
1035 {
1036         return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1037                                              true);
1038 }
1039
1040 static int atmel_nand_pmecc_init(struct nand_chip *chip)
1041 {
1042         struct mtd_info *mtd = nand_to_mtd(chip);
1043         struct atmel_nand *nand = to_atmel_nand(chip);
1044         struct atmel_nand_controller *nc;
1045         struct atmel_pmecc_user_req req;
1046
1047         nc = to_nand_controller(chip->controller);
1048
1049         if (!nc->pmecc) {
1050                 dev_err(nc->dev, "HW ECC not supported\n");
1051                 return -ENOTSUPP;
1052         }
1053
1054         if (nc->caps->legacy_of_bindings) {
1055                 u32 val;
1056
1057                 if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
1058                                           &val))
1059                         chip->ecc.strength = val;
1060
1061                 if (!of_property_read_u32(nc->dev->of_node,
1062                                           "atmel,pmecc-sector-size",
1063                                           &val))
1064                         chip->ecc.size = val;
1065         }
1066
1067         if (chip->ecc.options & NAND_ECC_MAXIMIZE)
1068                 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1069         else if (chip->ecc.strength)
1070                 req.ecc.strength = chip->ecc.strength;
1071         else if (chip->ecc_strength_ds)
1072                 req.ecc.strength = chip->ecc_strength_ds;
1073         else
1074                 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1075
1076         if (chip->ecc.size)
1077                 req.ecc.sectorsize = chip->ecc.size;
1078         else if (chip->ecc_step_ds)
1079                 req.ecc.sectorsize = chip->ecc_step_ds;
1080         else
1081                 req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
1082
1083         req.pagesize = mtd->writesize;
1084         req.oobsize = mtd->oobsize;
1085
1086         if (mtd->writesize <= 512) {
1087                 req.ecc.bytes = 4;
1088                 req.ecc.ooboffset = 0;
1089         } else {
1090                 req.ecc.bytes = mtd->oobsize - 2;
1091                 req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
1092         }
1093
1094         nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
1095         if (IS_ERR(nand->pmecc))
1096                 return PTR_ERR(nand->pmecc);
1097
1098         chip->ecc.algo = NAND_ECC_BCH;
1099         chip->ecc.size = req.ecc.sectorsize;
1100         chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
1101         chip->ecc.strength = req.ecc.strength;
1102
1103         chip->options |= NAND_NO_SUBPAGE_WRITE;
1104
1105         mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
1106
1107         return 0;
1108 }
1109
1110 static int atmel_nand_ecc_init(struct nand_chip *chip)
1111 {
1112         struct atmel_nand_controller *nc;
1113         int ret;
1114
1115         nc = to_nand_controller(chip->controller);
1116
1117         switch (chip->ecc.mode) {
1118         case NAND_ECC_NONE:
1119         case NAND_ECC_SOFT:
1120                 /*
1121                  * Nothing to do, the core will initialize everything for us.
1122                  */
1123                 break;
1124
1125         case NAND_ECC_HW:
1126                 ret = atmel_nand_pmecc_init(chip);
1127                 if (ret)
1128                         return ret;
1129
1130                 chip->ecc.read_page = atmel_nand_pmecc_read_page;
1131                 chip->ecc.write_page = atmel_nand_pmecc_write_page;
1132                 chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
1133                 chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
1134                 break;
1135
1136         default:
1137                 /* Other modes are not supported. */
1138                 dev_err(nc->dev, "Unsupported ECC mode: %d\n",
1139                         chip->ecc.mode);
1140                 return -ENOTSUPP;
1141         }
1142
1143         return 0;
1144 }
1145
1146 static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
1147 {
1148         int ret;
1149
1150         ret = atmel_nand_ecc_init(chip);
1151         if (ret)
1152                 return ret;
1153
1154         if (chip->ecc.mode != NAND_ECC_HW)
1155                 return 0;
1156
1157         /* Adjust the ECC operations for the HSMC IP. */
1158         chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
1159         chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
1160         chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
1161         chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
1162
1163         return 0;
1164 }
1165
1166 static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
1167                                         const struct nand_data_interface *conf,
1168                                         struct atmel_smc_cs_conf *smcconf)
1169 {
1170         u32 ncycles, totalcycles, timeps, mckperiodps;
1171         struct atmel_nand_controller *nc;
1172         int ret;
1173
1174         nc = to_nand_controller(nand->base.controller);
1175
1176         /* DDR interface not supported. */
1177         if (conf->type != NAND_SDR_IFACE)
1178                 return -ENOTSUPP;
1179
1180         /*
1181          * tRC < 30ns implies EDO mode. This controller does not support this
1182          * mode.
1183          */
1184         if (conf->timings.sdr.tRC_min < 30000)
1185                 return -ENOTSUPP;
1186
1187         atmel_smc_cs_conf_init(smcconf);
1188
1189         mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
1190         mckperiodps *= 1000;
1191
1192         /*
1193          * Set write pulse timing. This one is easy to extract:
1194          *
1195          * NWE_PULSE = tWP
1196          */
1197         ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
1198         totalcycles = ncycles;
1199         ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
1200                                           ncycles);
1201         if (ret)
1202                 return ret;
1203
1204         /*
1205          * The write setup timing depends on the operation done on the NAND.
1206          * All operations goes through the same data bus, but the operation
1207          * type depends on the address we are writing to (ALE/CLE address
1208          * lines).
1209          * Since we have no way to differentiate the different operations at
1210          * the SMC level, we must consider the worst case (the biggest setup
1211          * time among all operation types):
1212          *
1213          * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
1214          */
1215         timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
1216                       conf->timings.sdr.tALS_min);
1217         timeps = max(timeps, conf->timings.sdr.tDS_min);
1218         ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1219         ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
1220         totalcycles += ncycles;
1221         ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
1222                                           ncycles);
1223         if (ret)
1224                 return ret;
1225
1226         /*
1227          * As for the write setup timing, the write hold timing depends on the
1228          * operation done on the NAND:
1229          *
1230          * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
1231          */
1232         timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
1233                       conf->timings.sdr.tALH_min);
1234         timeps = max3(timeps, conf->timings.sdr.tDH_min,
1235                       conf->timings.sdr.tWH_min);
1236         ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1237         totalcycles += ncycles;
1238
1239         /*
1240          * The write cycle timing is directly matching tWC, but is also
1241          * dependent on the other timings on the setup and hold timings we
1242          * calculated earlier, which gives:
1243          *
1244          * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
1245          */
1246         ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
1247         ncycles = max(totalcycles, ncycles);
1248         ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
1249                                           ncycles);
1250         if (ret)
1251                 return ret;
1252
1253         /*
1254          * We don't want the CS line to be toggled between each byte/word
1255          * transfer to the NAND. The only way to guarantee that is to have the
1256          * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1257          *
1258          * NCS_WR_PULSE = NWE_CYCLE
1259          */
1260         ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
1261                                           ncycles);
1262         if (ret)
1263                 return ret;
1264
1265         /*
1266          * As for the write setup timing, the read hold timing depends on the
1267          * operation done on the NAND:
1268          *
1269          * NRD_HOLD = max(tREH, tRHOH)
1270          */
1271         timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
1272         ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1273         totalcycles = ncycles;
1274
1275         /*
1276          * TDF = tRHZ - NRD_HOLD
1277          */
1278         ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
1279         ncycles -= totalcycles;
1280
1281         /*
1282          * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
1283          * we might end up with a config that does not fit in the TDF field.
1284          * Just take the max value in this case and hope that the NAND is more
1285          * tolerant than advertised.
1286          */
1287         if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
1288                 ncycles = ATMEL_SMC_MODE_TDF_MAX;
1289         else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
1290                 ncycles = ATMEL_SMC_MODE_TDF_MIN;
1291
1292         smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
1293                          ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
1294
1295         /*
1296          * Read pulse timing directly matches tRP:
1297          *
1298          * NRD_PULSE = tRP
1299          */
1300         ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
1301         totalcycles += ncycles;
1302         ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
1303                                           ncycles);
1304         if (ret)
1305                 return ret;
1306
1307         /*
1308          * The write cycle timing is directly matching tWC, but is also
1309          * dependent on the setup and hold timings we calculated earlier,
1310          * which gives:
1311          *
1312          * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
1313          *
1314          * NRD_SETUP is always 0.
1315          */
1316         ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
1317         ncycles = max(totalcycles, ncycles);
1318         ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
1319                                           ncycles);
1320         if (ret)
1321                 return ret;
1322
1323         /*
1324          * We don't want the CS line to be toggled between each byte/word
1325          * transfer from the NAND. The only way to guarantee that is to have
1326          * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1327          *
1328          * NCS_RD_PULSE = NRD_CYCLE
1329          */
1330         ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
1331                                           ncycles);
1332         if (ret)
1333                 return ret;
1334
1335         /* Txxx timings are directly matching tXXX ones. */
1336         ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
1337         ret = atmel_smc_cs_conf_set_timing(smcconf,
1338                                            ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
1339                                            ncycles);
1340         if (ret)
1341                 return ret;
1342
1343         ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
1344         ret = atmel_smc_cs_conf_set_timing(smcconf,
1345                                            ATMEL_HSMC_TIMINGS_TADL_SHIFT,
1346                                            ncycles);
1347         /*
1348          * Version 4 of the ONFI spec mandates that tADL be at least 400
1349          * nanoseconds, but, depending on the master clock rate, 400 ns may not
1350          * fit in the tADL field of the SMC reg. We need to relax the check and
1351          * accept the -ERANGE return code.
1352          *
1353          * Note that previous versions of the ONFI spec had a lower tADL_min
1354          * (100 or 200 ns). It's not clear why this timing constraint got
1355          * increased but it seems most NANDs are fine with values lower than
1356          * 400ns, so we should be safe.
1357          */
1358         if (ret && ret != -ERANGE)
1359                 return ret;
1360
1361         ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
1362         ret = atmel_smc_cs_conf_set_timing(smcconf,
1363                                            ATMEL_HSMC_TIMINGS_TAR_SHIFT,
1364                                            ncycles);
1365         if (ret)
1366                 return ret;
1367
1368         ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
1369         ret = atmel_smc_cs_conf_set_timing(smcconf,
1370                                            ATMEL_HSMC_TIMINGS_TRR_SHIFT,
1371                                            ncycles);
1372         if (ret)
1373                 return ret;
1374
1375         ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
1376         ret = atmel_smc_cs_conf_set_timing(smcconf,
1377                                            ATMEL_HSMC_TIMINGS_TWB_SHIFT,
1378                                            ncycles);
1379         if (ret)
1380                 return ret;
1381
1382         /* Attach the CS line to the NFC logic. */
1383         smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
1384
1385         /* Set the appropriate data bus width. */
1386         if (nand->base.options & NAND_BUSWIDTH_16)
1387                 smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
1388
1389         /* Operate in NRD/NWE READ/WRITEMODE. */
1390         smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
1391                          ATMEL_SMC_MODE_WRITEMODE_NWE;
1392
1393         return 0;
1394 }
1395
1396 static int atmel_smc_nand_setup_data_interface(struct atmel_nand *nand,
1397                                         int csline,
1398                                         const struct nand_data_interface *conf)
1399 {
1400         struct atmel_nand_controller *nc;
1401         struct atmel_smc_cs_conf smcconf;
1402         struct atmel_nand_cs *cs;
1403         int ret;
1404
1405         nc = to_nand_controller(nand->base.controller);
1406
1407         ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1408         if (ret)
1409                 return ret;
1410
1411         if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1412                 return 0;
1413
1414         cs = &nand->cs[csline];
1415         cs->smcconf = smcconf;
1416         atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
1417
1418         return 0;
1419 }
1420
1421 static int atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand,
1422                                         int csline,
1423                                         const struct nand_data_interface *conf)
1424 {
1425         struct atmel_hsmc_nand_controller *nc;
1426         struct atmel_smc_cs_conf smcconf;
1427         struct atmel_nand_cs *cs;
1428         int ret;
1429
1430         nc = to_hsmc_nand_controller(nand->base.controller);
1431
1432         ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1433         if (ret)
1434                 return ret;
1435
1436         if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1437                 return 0;
1438
1439         cs = &nand->cs[csline];
1440         cs->smcconf = smcconf;
1441
1442         if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
1443                 cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
1444
1445         atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
1446                                  &cs->smcconf);
1447
1448         return 0;
1449 }
1450
1451 static int atmel_nand_setup_data_interface(struct nand_chip *chip, int csline,
1452                                         const struct nand_data_interface *conf)
1453 {
1454         struct atmel_nand *nand = to_atmel_nand(chip);
1455         struct atmel_nand_controller *nc;
1456
1457         nc = to_nand_controller(nand->base.controller);
1458
1459         if (csline >= nand->numcs ||
1460             (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
1461                 return -EINVAL;
1462
1463         return nc->caps->ops->setup_data_interface(nand, csline, conf);
1464 }
1465
1466 static void atmel_nand_init(struct atmel_nand_controller *nc,
1467                             struct atmel_nand *nand)
1468 {
1469         struct nand_chip *chip = &nand->base;
1470         struct mtd_info *mtd = nand_to_mtd(chip);
1471
1472         mtd->dev.parent = nc->dev;
1473         nand->base.controller = &nc->base;
1474
1475         chip->legacy.cmd_ctrl = atmel_nand_cmd_ctrl;
1476         chip->legacy.read_byte = atmel_nand_read_byte;
1477         chip->legacy.write_byte = atmel_nand_write_byte;
1478         chip->legacy.read_buf = atmel_nand_read_buf;
1479         chip->legacy.write_buf = atmel_nand_write_buf;
1480         chip->select_chip = atmel_nand_select_chip;
1481
1482         if (nc->mck && nc->caps->ops->setup_data_interface)
1483                 chip->setup_data_interface = atmel_nand_setup_data_interface;
1484
1485         /* Some NANDs require a longer delay than the default one (20us). */
1486         chip->legacy.chip_delay = 40;
1487
1488         /*
1489          * Use a bounce buffer when the buffer passed by the MTD user is not
1490          * suitable for DMA.
1491          */
1492         if (nc->dmac)
1493                 chip->options |= NAND_USE_BOUNCE_BUFFER;
1494
1495         /* Default to HW ECC if pmecc is available. */
1496         if (nc->pmecc)
1497                 chip->ecc.mode = NAND_ECC_HW;
1498 }
1499
1500 static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
1501                                 struct atmel_nand *nand)
1502 {
1503         struct nand_chip *chip = &nand->base;
1504         struct atmel_smc_nand_controller *smc_nc;
1505         int i;
1506
1507         atmel_nand_init(nc, nand);
1508
1509         smc_nc = to_smc_nand_controller(chip->controller);
1510         if (!smc_nc->matrix)
1511                 return;
1512
1513         /* Attach the CS to the NAND Flash logic. */
1514         for (i = 0; i < nand->numcs; i++)
1515                 regmap_update_bits(smc_nc->matrix, smc_nc->ebi_csa_offs,
1516                                    BIT(nand->cs[i].id), BIT(nand->cs[i].id));
1517 }
1518
1519 static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc,
1520                                  struct atmel_nand *nand)
1521 {
1522         struct nand_chip *chip = &nand->base;
1523
1524         atmel_nand_init(nc, nand);
1525
1526         /* Overload some methods for the HSMC controller. */
1527         chip->legacy.cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
1528         chip->select_chip = atmel_hsmc_nand_select_chip;
1529 }
1530
1531 static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
1532 {
1533         struct nand_chip *chip = &nand->base;
1534         struct mtd_info *mtd = nand_to_mtd(chip);
1535         int ret;
1536
1537         ret = mtd_device_unregister(mtd);
1538         if (ret)
1539                 return ret;
1540
1541         nand_cleanup(chip);
1542         list_del(&nand->node);
1543
1544         return 0;
1545 }
1546
1547 static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
1548                                             struct device_node *np,
1549                                             int reg_cells)
1550 {
1551         struct atmel_nand *nand;
1552         struct gpio_desc *gpio;
1553         int numcs, ret, i;
1554
1555         numcs = of_property_count_elems_of_size(np, "reg",
1556                                                 reg_cells * sizeof(u32));
1557         if (numcs < 1) {
1558                 dev_err(nc->dev, "Missing or invalid reg property\n");
1559                 return ERR_PTR(-EINVAL);
1560         }
1561
1562         nand = devm_kzalloc(nc->dev, struct_size(nand, cs, numcs), GFP_KERNEL);
1563         if (!nand) {
1564                 dev_err(nc->dev, "Failed to allocate NAND object\n");
1565                 return ERR_PTR(-ENOMEM);
1566         }
1567
1568         nand->numcs = numcs;
1569
1570         gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "det", 0,
1571                                                       &np->fwnode, GPIOD_IN,
1572                                                       "nand-det");
1573         if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1574                 dev_err(nc->dev,
1575                         "Failed to get detect gpio (err = %ld)\n",
1576                         PTR_ERR(gpio));
1577                 return ERR_CAST(gpio);
1578         }
1579
1580         if (!IS_ERR(gpio))
1581                 nand->cdgpio = gpio;
1582
1583         for (i = 0; i < numcs; i++) {
1584                 struct resource res;
1585                 u32 val;
1586
1587                 ret = of_address_to_resource(np, 0, &res);
1588                 if (ret) {
1589                         dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1590                                 ret);
1591                         return ERR_PTR(ret);
1592                 }
1593
1594                 ret = of_property_read_u32_index(np, "reg", i * reg_cells,
1595                                                  &val);
1596                 if (ret) {
1597                         dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1598                                 ret);
1599                         return ERR_PTR(ret);
1600                 }
1601
1602                 nand->cs[i].id = val;
1603
1604                 nand->cs[i].io.dma = res.start;
1605                 nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
1606                 if (IS_ERR(nand->cs[i].io.virt))
1607                         return ERR_CAST(nand->cs[i].io.virt);
1608
1609                 if (!of_property_read_u32(np, "atmel,rb", &val)) {
1610                         if (val > ATMEL_NFC_MAX_RB_ID)
1611                                 return ERR_PTR(-EINVAL);
1612
1613                         nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
1614                         nand->cs[i].rb.id = val;
1615                 } else {
1616                         gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev,
1617                                                         "rb", i, &np->fwnode,
1618                                                         GPIOD_IN, "nand-rb");
1619                         if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1620                                 dev_err(nc->dev,
1621                                         "Failed to get R/B gpio (err = %ld)\n",
1622                                         PTR_ERR(gpio));
1623                                 return ERR_CAST(gpio);
1624                         }
1625
1626                         if (!IS_ERR(gpio)) {
1627                                 nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
1628                                 nand->cs[i].rb.gpio = gpio;
1629                         }
1630                 }
1631
1632                 gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "cs",
1633                                                               i, &np->fwnode,
1634                                                               GPIOD_OUT_HIGH,
1635                                                               "nand-cs");
1636                 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1637                         dev_err(nc->dev,
1638                                 "Failed to get CS gpio (err = %ld)\n",
1639                                 PTR_ERR(gpio));
1640                         return ERR_CAST(gpio);
1641                 }
1642
1643                 if (!IS_ERR(gpio))
1644                         nand->cs[i].csgpio = gpio;
1645         }
1646
1647         nand_set_flash_node(&nand->base, np);
1648
1649         return nand;
1650 }
1651
1652 static int
1653 atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
1654                                struct atmel_nand *nand)
1655 {
1656         struct nand_chip *chip = &nand->base;
1657         struct mtd_info *mtd = nand_to_mtd(chip);
1658         int ret;
1659
1660         /* No card inserted, skip this NAND. */
1661         if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
1662                 dev_info(nc->dev, "No SmartMedia card inserted.\n");
1663                 return 0;
1664         }
1665
1666         nc->caps->ops->nand_init(nc, nand);
1667
1668         ret = nand_scan(chip, nand->numcs);
1669         if (ret) {
1670                 dev_err(nc->dev, "NAND scan failed: %d\n", ret);
1671                 return ret;
1672         }
1673
1674         ret = mtd_device_register(mtd, NULL, 0);
1675         if (ret) {
1676                 dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
1677                 nand_cleanup(chip);
1678                 return ret;
1679         }
1680
1681         list_add_tail(&nand->node, &nc->chips);
1682
1683         return 0;
1684 }
1685
1686 static int
1687 atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
1688 {
1689         struct atmel_nand *nand, *tmp;
1690         int ret;
1691
1692         list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
1693                 ret = atmel_nand_controller_remove_nand(nand);
1694                 if (ret)
1695                         return ret;
1696         }
1697
1698         return 0;
1699 }
1700
1701 static int
1702 atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
1703 {
1704         struct device *dev = nc->dev;
1705         struct platform_device *pdev = to_platform_device(dev);
1706         struct atmel_nand *nand;
1707         struct gpio_desc *gpio;
1708         struct resource *res;
1709
1710         /*
1711          * Legacy bindings only allow connecting a single NAND with a unique CS
1712          * line to the controller.
1713          */
1714         nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
1715                             GFP_KERNEL);
1716         if (!nand)
1717                 return -ENOMEM;
1718
1719         nand->numcs = 1;
1720
1721         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1722         nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
1723         if (IS_ERR(nand->cs[0].io.virt))
1724                 return PTR_ERR(nand->cs[0].io.virt);
1725
1726         nand->cs[0].io.dma = res->start;
1727
1728         /*
1729          * The old driver was hardcoding the CS id to 3 for all sama5
1730          * controllers. Since this id is only meaningful for the sama5
1731          * controller we can safely assign this id to 3 no matter the
1732          * controller.
1733          * If one wants to connect a NAND to a different CS line, he will
1734          * have to use the new bindings.
1735          */
1736         nand->cs[0].id = 3;
1737
1738         /* R/B GPIO. */
1739         gpio = devm_gpiod_get_index_optional(dev, NULL, 0,  GPIOD_IN);
1740         if (IS_ERR(gpio)) {
1741                 dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
1742                         PTR_ERR(gpio));
1743                 return PTR_ERR(gpio);
1744         }
1745
1746         if (gpio) {
1747                 nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
1748                 nand->cs[0].rb.gpio = gpio;
1749         }
1750
1751         /* CS GPIO. */
1752         gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
1753         if (IS_ERR(gpio)) {
1754                 dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
1755                         PTR_ERR(gpio));
1756                 return PTR_ERR(gpio);
1757         }
1758
1759         nand->cs[0].csgpio = gpio;
1760
1761         /* Card detect GPIO. */
1762         gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
1763         if (IS_ERR(gpio)) {
1764                 dev_err(dev,
1765                         "Failed to get detect gpio (err = %ld)\n",
1766                         PTR_ERR(gpio));
1767                 return PTR_ERR(gpio);
1768         }
1769
1770         nand->cdgpio = gpio;
1771
1772         nand_set_flash_node(&nand->base, nc->dev->of_node);
1773
1774         return atmel_nand_controller_add_nand(nc, nand);
1775 }
1776
1777 static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
1778 {
1779         struct device_node *np, *nand_np;
1780         struct device *dev = nc->dev;
1781         int ret, reg_cells;
1782         u32 val;
1783
1784         /* We do not retrieve the SMC syscon when parsing old DTs. */
1785         if (nc->caps->legacy_of_bindings)
1786                 return atmel_nand_controller_legacy_add_nands(nc);
1787
1788         np = dev->of_node;
1789
1790         ret = of_property_read_u32(np, "#address-cells", &val);
1791         if (ret) {
1792                 dev_err(dev, "missing #address-cells property\n");
1793                 return ret;
1794         }
1795
1796         reg_cells = val;
1797
1798         ret = of_property_read_u32(np, "#size-cells", &val);
1799         if (ret) {
1800                 dev_err(dev, "missing #address-cells property\n");
1801                 return ret;
1802         }
1803
1804         reg_cells += val;
1805
1806         for_each_child_of_node(np, nand_np) {
1807                 struct atmel_nand *nand;
1808
1809                 nand = atmel_nand_create(nc, nand_np, reg_cells);
1810                 if (IS_ERR(nand)) {
1811                         ret = PTR_ERR(nand);
1812                         goto err;
1813                 }
1814
1815                 ret = atmel_nand_controller_add_nand(nc, nand);
1816                 if (ret)
1817                         goto err;
1818         }
1819
1820         return 0;
1821
1822 err:
1823         atmel_nand_controller_remove_nands(nc);
1824
1825         return ret;
1826 }
1827
1828 static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
1829 {
1830         if (nc->dmac)
1831                 dma_release_channel(nc->dmac);
1832
1833         clk_put(nc->mck);
1834 }
1835
1836 static const struct of_device_id atmel_matrix_of_ids[] = {
1837         {
1838                 .compatible = "atmel,at91sam9260-matrix",
1839                 .data = (void *)AT91SAM9260_MATRIX_EBICSA,
1840         },
1841         {
1842                 .compatible = "atmel,at91sam9261-matrix",
1843                 .data = (void *)AT91SAM9261_MATRIX_EBICSA,
1844         },
1845         {
1846                 .compatible = "atmel,at91sam9263-matrix",
1847                 .data = (void *)AT91SAM9263_MATRIX_EBI0CSA,
1848         },
1849         {
1850                 .compatible = "atmel,at91sam9rl-matrix",
1851                 .data = (void *)AT91SAM9RL_MATRIX_EBICSA,
1852         },
1853         {
1854                 .compatible = "atmel,at91sam9g45-matrix",
1855                 .data = (void *)AT91SAM9G45_MATRIX_EBICSA,
1856         },
1857         {
1858                 .compatible = "atmel,at91sam9n12-matrix",
1859                 .data = (void *)AT91SAM9N12_MATRIX_EBICSA,
1860         },
1861         {
1862                 .compatible = "atmel,at91sam9x5-matrix",
1863                 .data = (void *)AT91SAM9X5_MATRIX_EBICSA,
1864         },
1865         { /* sentinel */ },
1866 };
1867
1868 static int atmel_nand_attach_chip(struct nand_chip *chip)
1869 {
1870         struct atmel_nand_controller *nc = to_nand_controller(chip->controller);
1871         struct atmel_nand *nand = to_atmel_nand(chip);
1872         struct mtd_info *mtd = nand_to_mtd(chip);
1873         int ret;
1874
1875         ret = nc->caps->ops->ecc_init(chip);
1876         if (ret)
1877                 return ret;
1878
1879         if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
1880                 /*
1881                  * We keep the MTD name unchanged to avoid breaking platforms
1882                  * where the MTD cmdline parser is used and the bootloader
1883                  * has not been updated to use the new naming scheme.
1884                  */
1885                 mtd->name = "atmel_nand";
1886         } else if (!mtd->name) {
1887                 /*
1888                  * If the new bindings are used and the bootloader has not been
1889                  * updated to pass a new mtdparts parameter on the cmdline, you
1890                  * should define the following property in your nand node:
1891                  *
1892                  *      label = "atmel_nand";
1893                  *
1894                  * This way, mtd->name will be set by the core when
1895                  * nand_set_flash_node() is called.
1896                  */
1897                 mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
1898                                            "%s:nand.%d", dev_name(nc->dev),
1899                                            nand->cs[0].id);
1900                 if (!mtd->name) {
1901                         dev_err(nc->dev, "Failed to allocate mtd->name\n");
1902                         return -ENOMEM;
1903                 }
1904         }
1905
1906         return 0;
1907 }
1908
1909 static const struct nand_controller_ops atmel_nand_controller_ops = {
1910         .attach_chip = atmel_nand_attach_chip,
1911 };
1912
1913 static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
1914                                 struct platform_device *pdev,
1915                                 const struct atmel_nand_controller_caps *caps)
1916 {
1917         struct device *dev = &pdev->dev;
1918         struct device_node *np = dev->of_node;
1919         int ret;
1920
1921         nand_controller_init(&nc->base);
1922         nc->base.ops = &atmel_nand_controller_ops;
1923         INIT_LIST_HEAD(&nc->chips);
1924         nc->dev = dev;
1925         nc->caps = caps;
1926
1927         platform_set_drvdata(pdev, nc);
1928
1929         nc->pmecc = devm_atmel_pmecc_get(dev);
1930         if (IS_ERR(nc->pmecc)) {
1931                 ret = PTR_ERR(nc->pmecc);
1932                 if (ret != -EPROBE_DEFER)
1933                         dev_err(dev, "Could not get PMECC object (err = %d)\n",
1934                                 ret);
1935                 return ret;
1936         }
1937
1938         if (nc->caps->has_dma && !atmel_nand_avoid_dma) {
1939                 dma_cap_mask_t mask;
1940
1941                 dma_cap_zero(mask);
1942                 dma_cap_set(DMA_MEMCPY, mask);
1943
1944                 nc->dmac = dma_request_channel(mask, NULL, NULL);
1945                 if (!nc->dmac)
1946                         dev_err(nc->dev, "Failed to request DMA channel\n");
1947         }
1948
1949         /* We do not retrieve the SMC syscon when parsing old DTs. */
1950         if (nc->caps->legacy_of_bindings)
1951                 return 0;
1952
1953         nc->mck = of_clk_get(dev->parent->of_node, 0);
1954         if (IS_ERR(nc->mck)) {
1955                 dev_err(dev, "Failed to retrieve MCK clk\n");
1956                 return PTR_ERR(nc->mck);
1957         }
1958
1959         np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
1960         if (!np) {
1961                 dev_err(dev, "Missing or invalid atmel,smc property\n");
1962                 return -EINVAL;
1963         }
1964
1965         nc->smc = syscon_node_to_regmap(np);
1966         of_node_put(np);
1967         if (IS_ERR(nc->smc)) {
1968                 ret = PTR_ERR(nc->smc);
1969                 dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
1970                 return ret;
1971         }
1972
1973         return 0;
1974 }
1975
1976 static int
1977 atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
1978 {
1979         struct device *dev = nc->base.dev;
1980         const struct of_device_id *match;
1981         struct device_node *np;
1982         int ret;
1983
1984         /* We do not retrieve the matrix syscon when parsing old DTs. */
1985         if (nc->base.caps->legacy_of_bindings)
1986                 return 0;
1987
1988         np = of_parse_phandle(dev->parent->of_node, "atmel,matrix", 0);
1989         if (!np)
1990                 return 0;
1991
1992         match = of_match_node(atmel_matrix_of_ids, np);
1993         if (!match) {
1994                 of_node_put(np);
1995                 return 0;
1996         }
1997
1998         nc->matrix = syscon_node_to_regmap(np);
1999         of_node_put(np);
2000         if (IS_ERR(nc->matrix)) {
2001                 ret = PTR_ERR(nc->matrix);
2002                 dev_err(dev, "Could not get Matrix regmap (err = %d)\n", ret);
2003                 return ret;
2004         }
2005
2006         nc->ebi_csa_offs = (uintptr_t)match->data;
2007
2008         /*
2009          * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
2010          * add 4 to ->ebi_csa_offs.
2011          */
2012         if (of_device_is_compatible(dev->parent->of_node,
2013                                     "atmel,at91sam9263-ebi1"))
2014                 nc->ebi_csa_offs += 4;
2015
2016         return 0;
2017 }
2018
2019 static int
2020 atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
2021 {
2022         struct regmap_config regmap_conf = {
2023                 .reg_bits = 32,
2024                 .val_bits = 32,
2025                 .reg_stride = 4,
2026         };
2027
2028         struct device *dev = nc->base.dev;
2029         struct device_node *nand_np, *nfc_np;
2030         void __iomem *iomem;
2031         struct resource res;
2032         int ret;
2033
2034         nand_np = dev->of_node;
2035         nfc_np = of_get_compatible_child(dev->of_node, "atmel,sama5d3-nfc");
2036         if (!nfc_np) {
2037                 dev_err(dev, "Could not find device node for sama5d3-nfc\n");
2038                 return -ENODEV;
2039         }
2040
2041         nc->clk = of_clk_get(nfc_np, 0);
2042         if (IS_ERR(nc->clk)) {
2043                 ret = PTR_ERR(nc->clk);
2044                 dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
2045                         ret);
2046                 goto out;
2047         }
2048
2049         ret = clk_prepare_enable(nc->clk);
2050         if (ret) {
2051                 dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
2052                         ret);
2053                 goto out;
2054         }
2055
2056         nc->irq = of_irq_get(nand_np, 0);
2057         if (nc->irq <= 0) {
2058                 ret = nc->irq ?: -ENXIO;
2059                 if (ret != -EPROBE_DEFER)
2060                         dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2061                                 ret);
2062                 goto out;
2063         }
2064
2065         ret = of_address_to_resource(nfc_np, 0, &res);
2066         if (ret) {
2067                 dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
2068                         ret);
2069                 goto out;
2070         }
2071
2072         iomem = devm_ioremap_resource(dev, &res);
2073         if (IS_ERR(iomem)) {
2074                 ret = PTR_ERR(iomem);
2075                 goto out;
2076         }
2077
2078         regmap_conf.name = "nfc-io";
2079         regmap_conf.max_register = resource_size(&res) - 4;
2080         nc->io = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2081         if (IS_ERR(nc->io)) {
2082                 ret = PTR_ERR(nc->io);
2083                 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2084                         ret);
2085                 goto out;
2086         }
2087
2088         ret = of_address_to_resource(nfc_np, 1, &res);
2089         if (ret) {
2090                 dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
2091                         ret);
2092                 goto out;
2093         }
2094
2095         iomem = devm_ioremap_resource(dev, &res);
2096         if (IS_ERR(iomem)) {
2097                 ret = PTR_ERR(iomem);
2098                 goto out;
2099         }
2100
2101         regmap_conf.name = "smc";
2102         regmap_conf.max_register = resource_size(&res) - 4;
2103         nc->base.smc = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2104         if (IS_ERR(nc->base.smc)) {
2105                 ret = PTR_ERR(nc->base.smc);
2106                 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2107                         ret);
2108                 goto out;
2109         }
2110
2111         ret = of_address_to_resource(nfc_np, 2, &res);
2112         if (ret) {
2113                 dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
2114                         ret);
2115                 goto out;
2116         }
2117
2118         nc->sram.virt = devm_ioremap_resource(dev, &res);
2119         if (IS_ERR(nc->sram.virt)) {
2120                 ret = PTR_ERR(nc->sram.virt);
2121                 goto out;
2122         }
2123
2124         nc->sram.dma = res.start;
2125
2126 out:
2127         of_node_put(nfc_np);
2128
2129         return ret;
2130 }
2131
2132 static int
2133 atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
2134 {
2135         struct device *dev = nc->base.dev;
2136         struct device_node *np;
2137         int ret;
2138
2139         np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2140         if (!np) {
2141                 dev_err(dev, "Missing or invalid atmel,smc property\n");
2142                 return -EINVAL;
2143         }
2144
2145         nc->hsmc_layout = atmel_hsmc_get_reg_layout(np);
2146
2147         nc->irq = of_irq_get(np, 0);
2148         of_node_put(np);
2149         if (nc->irq <= 0) {
2150                 ret = nc->irq ?: -ENXIO;
2151                 if (ret != -EPROBE_DEFER)
2152                         dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2153                                 ret);
2154                 return ret;
2155         }
2156
2157         np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
2158         if (!np) {
2159                 dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
2160                 return -EINVAL;
2161         }
2162
2163         nc->io = syscon_node_to_regmap(np);
2164         of_node_put(np);
2165         if (IS_ERR(nc->io)) {
2166                 ret = PTR_ERR(nc->io);
2167                 dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
2168                 return ret;
2169         }
2170
2171         nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
2172                                          "atmel,nfc-sram", 0);
2173         if (!nc->sram.pool) {
2174                 dev_err(nc->base.dev, "Missing SRAM\n");
2175                 return -ENOMEM;
2176         }
2177
2178         nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool,
2179                                                            ATMEL_NFC_SRAM_SIZE,
2180                                                            &nc->sram.dma);
2181         if (!nc->sram.virt) {
2182                 dev_err(nc->base.dev,
2183                         "Could not allocate memory from the NFC SRAM pool\n");
2184                 return -ENOMEM;
2185         }
2186
2187         return 0;
2188 }
2189
2190 static int
2191 atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
2192 {
2193         struct atmel_hsmc_nand_controller *hsmc_nc;
2194         int ret;
2195
2196         ret = atmel_nand_controller_remove_nands(nc);
2197         if (ret)
2198                 return ret;
2199
2200         hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
2201         if (hsmc_nc->sram.pool)
2202                 gen_pool_free(hsmc_nc->sram.pool,
2203                               (unsigned long)hsmc_nc->sram.virt,
2204                               ATMEL_NFC_SRAM_SIZE);
2205
2206         if (hsmc_nc->clk) {
2207                 clk_disable_unprepare(hsmc_nc->clk);
2208                 clk_put(hsmc_nc->clk);
2209         }
2210
2211         atmel_nand_controller_cleanup(nc);
2212
2213         return 0;
2214 }
2215
2216 static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
2217                                 const struct atmel_nand_controller_caps *caps)
2218 {
2219         struct device *dev = &pdev->dev;
2220         struct atmel_hsmc_nand_controller *nc;
2221         int ret;
2222
2223         nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2224         if (!nc)
2225                 return -ENOMEM;
2226
2227         ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2228         if (ret)
2229                 return ret;
2230
2231         if (caps->legacy_of_bindings)
2232                 ret = atmel_hsmc_nand_controller_legacy_init(nc);
2233         else
2234                 ret = atmel_hsmc_nand_controller_init(nc);
2235
2236         if (ret)
2237                 return ret;
2238
2239         /* Make sure all irqs are masked before registering our IRQ handler. */
2240         regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
2241         ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
2242                                IRQF_SHARED, "nfc", nc);
2243         if (ret) {
2244                 dev_err(dev,
2245                         "Could not get register NFC interrupt handler (err = %d)\n",
2246                         ret);
2247                 goto err;
2248         }
2249
2250         /* Initial NFC configuration. */
2251         regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
2252                      ATMEL_HSMC_NFC_CFG_DTO_MAX);
2253
2254         ret = atmel_nand_controller_add_nands(&nc->base);
2255         if (ret)
2256                 goto err;
2257
2258         return 0;
2259
2260 err:
2261         atmel_hsmc_nand_controller_remove(&nc->base);
2262
2263         return ret;
2264 }
2265
2266 static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
2267         .probe = atmel_hsmc_nand_controller_probe,
2268         .remove = atmel_hsmc_nand_controller_remove,
2269         .ecc_init = atmel_hsmc_nand_ecc_init,
2270         .nand_init = atmel_hsmc_nand_init,
2271         .setup_data_interface = atmel_hsmc_nand_setup_data_interface,
2272 };
2273
2274 static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
2275         .has_dma = true,
2276         .ale_offs = BIT(21),
2277         .cle_offs = BIT(22),
2278         .ops = &atmel_hsmc_nc_ops,
2279 };
2280
2281 /* Only used to parse old bindings. */
2282 static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
2283         .has_dma = true,
2284         .ale_offs = BIT(21),
2285         .cle_offs = BIT(22),
2286         .ops = &atmel_hsmc_nc_ops,
2287         .legacy_of_bindings = true,
2288 };
2289
2290 static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
2291                                 const struct atmel_nand_controller_caps *caps)
2292 {
2293         struct device *dev = &pdev->dev;
2294         struct atmel_smc_nand_controller *nc;
2295         int ret;
2296
2297         nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2298         if (!nc)
2299                 return -ENOMEM;
2300
2301         ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2302         if (ret)
2303                 return ret;
2304
2305         ret = atmel_smc_nand_controller_init(nc);
2306         if (ret)
2307                 return ret;
2308
2309         return atmel_nand_controller_add_nands(&nc->base);
2310 }
2311
2312 static int
2313 atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
2314 {
2315         int ret;
2316
2317         ret = atmel_nand_controller_remove_nands(nc);
2318         if (ret)
2319                 return ret;
2320
2321         atmel_nand_controller_cleanup(nc);
2322
2323         return 0;
2324 }
2325
2326 /*
2327  * The SMC reg layout of at91rm9200 is completely different which prevents us
2328  * from re-using atmel_smc_nand_setup_data_interface() for the
2329  * ->setup_data_interface() hook.
2330  * At this point, there's no support for the at91rm9200 SMC IP, so we leave
2331  * ->setup_data_interface() unassigned.
2332  */
2333 static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
2334         .probe = atmel_smc_nand_controller_probe,
2335         .remove = atmel_smc_nand_controller_remove,
2336         .ecc_init = atmel_nand_ecc_init,
2337         .nand_init = atmel_smc_nand_init,
2338 };
2339
2340 static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
2341         .ale_offs = BIT(21),
2342         .cle_offs = BIT(22),
2343         .ops = &at91rm9200_nc_ops,
2344 };
2345
2346 static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
2347         .probe = atmel_smc_nand_controller_probe,
2348         .remove = atmel_smc_nand_controller_remove,
2349         .ecc_init = atmel_nand_ecc_init,
2350         .nand_init = atmel_smc_nand_init,
2351         .setup_data_interface = atmel_smc_nand_setup_data_interface,
2352 };
2353
2354 static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
2355         .ale_offs = BIT(21),
2356         .cle_offs = BIT(22),
2357         .ops = &atmel_smc_nc_ops,
2358 };
2359
2360 static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
2361         .ale_offs = BIT(22),
2362         .cle_offs = BIT(21),
2363         .ops = &atmel_smc_nc_ops,
2364 };
2365
2366 static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
2367         .has_dma = true,
2368         .ale_offs = BIT(21),
2369         .cle_offs = BIT(22),
2370         .ops = &atmel_smc_nc_ops,
2371 };
2372
2373 /* Only used to parse old bindings. */
2374 static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
2375         .ale_offs = BIT(21),
2376         .cle_offs = BIT(22),
2377         .ops = &atmel_smc_nc_ops,
2378         .legacy_of_bindings = true,
2379 };
2380
2381 static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
2382         .ale_offs = BIT(22),
2383         .cle_offs = BIT(21),
2384         .ops = &atmel_smc_nc_ops,
2385         .legacy_of_bindings = true,
2386 };
2387
2388 static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
2389         .has_dma = true,
2390         .ale_offs = BIT(21),
2391         .cle_offs = BIT(22),
2392         .ops = &atmel_smc_nc_ops,
2393         .legacy_of_bindings = true,
2394 };
2395
2396 static const struct of_device_id atmel_nand_controller_of_ids[] = {
2397         {
2398                 .compatible = "atmel,at91rm9200-nand-controller",
2399                 .data = &atmel_rm9200_nc_caps,
2400         },
2401         {
2402                 .compatible = "atmel,at91sam9260-nand-controller",
2403                 .data = &atmel_sam9260_nc_caps,
2404         },
2405         {
2406                 .compatible = "atmel,at91sam9261-nand-controller",
2407                 .data = &atmel_sam9261_nc_caps,
2408         },
2409         {
2410                 .compatible = "atmel,at91sam9g45-nand-controller",
2411                 .data = &atmel_sam9g45_nc_caps,
2412         },
2413         {
2414                 .compatible = "atmel,sama5d3-nand-controller",
2415                 .data = &atmel_sama5_nc_caps,
2416         },
2417         /* Support for old/deprecated bindings: */
2418         {
2419                 .compatible = "atmel,at91rm9200-nand",
2420                 .data = &atmel_rm9200_nand_caps,
2421         },
2422         {
2423                 .compatible = "atmel,sama5d4-nand",
2424                 .data = &atmel_rm9200_nand_caps,
2425         },
2426         {
2427                 .compatible = "atmel,sama5d2-nand",
2428                 .data = &atmel_rm9200_nand_caps,
2429         },
2430         { /* sentinel */ },
2431 };
2432 MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
2433
2434 static int atmel_nand_controller_probe(struct platform_device *pdev)
2435 {
2436         const struct atmel_nand_controller_caps *caps;
2437
2438         if (pdev->id_entry)
2439                 caps = (void *)pdev->id_entry->driver_data;
2440         else
2441                 caps = of_device_get_match_data(&pdev->dev);
2442
2443         if (!caps) {
2444                 dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
2445                 return -EINVAL;
2446         }
2447
2448         if (caps->legacy_of_bindings) {
2449                 struct device_node *nfc_node;
2450                 u32 ale_offs = 21;
2451
2452                 /*
2453                  * If we are parsing legacy DT props and the DT contains a
2454                  * valid NFC node, forward the request to the sama5 logic.
2455                  */
2456                 nfc_node = of_get_compatible_child(pdev->dev.of_node,
2457                                                    "atmel,sama5d3-nfc");
2458                 if (nfc_node) {
2459                         caps = &atmel_sama5_nand_caps;
2460                         of_node_put(nfc_node);
2461                 }
2462
2463                 /*
2464                  * Even if the compatible says we are dealing with an
2465                  * at91rm9200 controller, the atmel,nand-has-dma specify that
2466                  * this controller supports DMA, which means we are in fact
2467                  * dealing with an at91sam9g45+ controller.
2468                  */
2469                 if (!caps->has_dma &&
2470                     of_property_read_bool(pdev->dev.of_node,
2471                                           "atmel,nand-has-dma"))
2472                         caps = &atmel_sam9g45_nand_caps;
2473
2474                 /*
2475                  * All SoCs except the at91sam9261 are assigning ALE to A21 and
2476                  * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
2477                  * actually dealing with an at91sam9261 controller.
2478                  */
2479                 of_property_read_u32(pdev->dev.of_node,
2480                                      "atmel,nand-addr-offset", &ale_offs);
2481                 if (ale_offs != 21)
2482                         caps = &atmel_sam9261_nand_caps;
2483         }
2484
2485         return caps->ops->probe(pdev, caps);
2486 }
2487
2488 static int atmel_nand_controller_remove(struct platform_device *pdev)
2489 {
2490         struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
2491
2492         return nc->caps->ops->remove(nc);
2493 }
2494
2495 static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
2496 {
2497         struct atmel_nand_controller *nc = dev_get_drvdata(dev);
2498         struct atmel_nand *nand;
2499
2500         if (nc->pmecc)
2501                 atmel_pmecc_reset(nc->pmecc);
2502
2503         list_for_each_entry(nand, &nc->chips, node) {
2504                 int i;
2505
2506                 for (i = 0; i < nand->numcs; i++)
2507                         nand_reset(&nand->base, i);
2508         }
2509
2510         return 0;
2511 }
2512
2513 static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
2514                          atmel_nand_controller_resume);
2515
2516 static struct platform_driver atmel_nand_controller_driver = {
2517         .driver = {
2518                 .name = "atmel-nand-controller",
2519                 .of_match_table = of_match_ptr(atmel_nand_controller_of_ids),
2520                 .pm = &atmel_nand_controller_pm_ops,
2521         },
2522         .probe = atmel_nand_controller_probe,
2523         .remove = atmel_nand_controller_remove,
2524 };
2525 module_platform_driver(atmel_nand_controller_driver);
2526
2527 MODULE_LICENSE("GPL");
2528 MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
2529 MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
2530 MODULE_ALIAS("platform:atmel-nand-controller");