Merge tag 'pci-v5.3-fixes-1' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
[sfrench/cifs-2.6.git] / drivers / mtd / nand / onenand / onenand_base.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright © 2005-2009 Samsung Electronics
4  *  Copyright © 2007 Nokia Corporation
5  *
6  *  Kyungmin Park <kyungmin.park@samsung.com>
7  *
8  *  Credits:
9  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
10  *      auto-placement support, read-while load support, various fixes
11  *
12  *      Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
13  *      Flex-OneNAND support
14  *      Amul Kumar Saha <amul.saha at samsung.com>
15  *      OTP support
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/jiffies.h>
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/onenand.h>
28 #include <linux/mtd/partitions.h>
29
30 #include <asm/io.h>
31
32 /*
33  * Multiblock erase if number of blocks to erase is 2 or more.
34  * Maximum number of blocks for simultaneous erase is 64.
35  */
36 #define MB_ERASE_MIN_BLK_COUNT 2
37 #define MB_ERASE_MAX_BLK_COUNT 64
38
39 /* Default Flex-OneNAND boundary and lock respectively */
40 static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
41
42 module_param_array(flex_bdry, int, NULL, 0400);
43 MODULE_PARM_DESC(flex_bdry,     "SLC Boundary information for Flex-OneNAND"
44                                 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
45                                 "DIE_BDRY: SLC boundary of the die"
46                                 "LOCK: Locking information for SLC boundary"
47                                 "    : 0->Set boundary in unlocked status"
48                                 "    : 1->Set boundary in locked status");
49
50 /* Default OneNAND/Flex-OneNAND OTP options*/
51 static int otp;
52
53 module_param(otp, int, 0400);
54 MODULE_PARM_DESC(otp,   "Corresponding behaviour of OneNAND in OTP"
55                         "Syntax : otp=LOCK_TYPE"
56                         "LOCK_TYPE : Keys issued, for specific OTP Lock type"
57                         "          : 0 -> Default (No Blocks Locked)"
58                         "          : 1 -> OTP Block lock"
59                         "          : 2 -> 1st Block lock"
60                         "          : 3 -> BOTH OTP Block and 1st Block lock");
61
62 /*
63  * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
64  * For now, we expose only 64 out of 80 ecc bytes
65  */
66 static int flexonenand_ooblayout_ecc(struct mtd_info *mtd, int section,
67                                      struct mtd_oob_region *oobregion)
68 {
69         if (section > 7)
70                 return -ERANGE;
71
72         oobregion->offset = (section * 16) + 6;
73         oobregion->length = 10;
74
75         return 0;
76 }
77
78 static int flexonenand_ooblayout_free(struct mtd_info *mtd, int section,
79                                       struct mtd_oob_region *oobregion)
80 {
81         if (section > 7)
82                 return -ERANGE;
83
84         oobregion->offset = (section * 16) + 2;
85         oobregion->length = 4;
86
87         return 0;
88 }
89
90 static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops = {
91         .ecc = flexonenand_ooblayout_ecc,
92         .free = flexonenand_ooblayout_free,
93 };
94
95 /*
96  * onenand_oob_128 - oob info for OneNAND with 4KB page
97  *
98  * Based on specification:
99  * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
100  *
101  */
102 static int onenand_ooblayout_128_ecc(struct mtd_info *mtd, int section,
103                                      struct mtd_oob_region *oobregion)
104 {
105         if (section > 7)
106                 return -ERANGE;
107
108         oobregion->offset = (section * 16) + 7;
109         oobregion->length = 9;
110
111         return 0;
112 }
113
114 static int onenand_ooblayout_128_free(struct mtd_info *mtd, int section,
115                                       struct mtd_oob_region *oobregion)
116 {
117         if (section >= 8)
118                 return -ERANGE;
119
120         /*
121          * free bytes are using the spare area fields marked as
122          * "Managed by internal ECC logic for Logical Sector Number area"
123          */
124         oobregion->offset = (section * 16) + 2;
125         oobregion->length = 3;
126
127         return 0;
128 }
129
130 static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops = {
131         .ecc = onenand_ooblayout_128_ecc,
132         .free = onenand_ooblayout_128_free,
133 };
134
135 /**
136  * onenand_oob_32_64 - oob info for large (2KB) page
137  */
138 static int onenand_ooblayout_32_64_ecc(struct mtd_info *mtd, int section,
139                                        struct mtd_oob_region *oobregion)
140 {
141         if (section > 3)
142                 return -ERANGE;
143
144         oobregion->offset = (section * 16) + 8;
145         oobregion->length = 5;
146
147         return 0;
148 }
149
150 static int onenand_ooblayout_32_64_free(struct mtd_info *mtd, int section,
151                                         struct mtd_oob_region *oobregion)
152 {
153         int sections = (mtd->oobsize / 32) * 2;
154
155         if (section >= sections)
156                 return -ERANGE;
157
158         if (section & 1) {
159                 oobregion->offset = ((section - 1) * 16) + 14;
160                 oobregion->length = 2;
161         } else  {
162                 oobregion->offset = (section * 16) + 2;
163                 oobregion->length = 3;
164         }
165
166         return 0;
167 }
168
169 static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops = {
170         .ecc = onenand_ooblayout_32_64_ecc,
171         .free = onenand_ooblayout_32_64_free,
172 };
173
174 static const unsigned char ffchars[] = {
175         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
176         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
177         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
178         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
179         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
180         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
181         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
182         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
183         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
184         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
185         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
186         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
187         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
188         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
189         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
190         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
191 };
192
193 /**
194  * onenand_readw - [OneNAND Interface] Read OneNAND register
195  * @param addr          address to read
196  *
197  * Read OneNAND register
198  */
199 static unsigned short onenand_readw(void __iomem *addr)
200 {
201         return readw(addr);
202 }
203
204 /**
205  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
206  * @param value         value to write
207  * @param addr          address to write
208  *
209  * Write OneNAND register with value
210  */
211 static void onenand_writew(unsigned short value, void __iomem *addr)
212 {
213         writew(value, addr);
214 }
215
216 /**
217  * onenand_block_address - [DEFAULT] Get block address
218  * @param this          onenand chip data structure
219  * @param block         the block
220  * @return              translated block address if DDP, otherwise same
221  *
222  * Setup Start Address 1 Register (F100h)
223  */
224 static int onenand_block_address(struct onenand_chip *this, int block)
225 {
226         /* Device Flash Core select, NAND Flash Block Address */
227         if (block & this->density_mask)
228                 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
229
230         return block;
231 }
232
233 /**
234  * onenand_bufferram_address - [DEFAULT] Get bufferram address
235  * @param this          onenand chip data structure
236  * @param block         the block
237  * @return              set DBS value if DDP, otherwise 0
238  *
239  * Setup Start Address 2 Register (F101h) for DDP
240  */
241 static int onenand_bufferram_address(struct onenand_chip *this, int block)
242 {
243         /* Device BufferRAM Select */
244         if (block & this->density_mask)
245                 return ONENAND_DDP_CHIP1;
246
247         return ONENAND_DDP_CHIP0;
248 }
249
250 /**
251  * onenand_page_address - [DEFAULT] Get page address
252  * @param page          the page address
253  * @param sector        the sector address
254  * @return              combined page and sector address
255  *
256  * Setup Start Address 8 Register (F107h)
257  */
258 static int onenand_page_address(int page, int sector)
259 {
260         /* Flash Page Address, Flash Sector Address */
261         int fpa, fsa;
262
263         fpa = page & ONENAND_FPA_MASK;
264         fsa = sector & ONENAND_FSA_MASK;
265
266         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
267 }
268
269 /**
270  * onenand_buffer_address - [DEFAULT] Get buffer address
271  * @param dataram1      DataRAM index
272  * @param sectors       the sector address
273  * @param count         the number of sectors
274  * @return              the start buffer value
275  *
276  * Setup Start Buffer Register (F200h)
277  */
278 static int onenand_buffer_address(int dataram1, int sectors, int count)
279 {
280         int bsa, bsc;
281
282         /* BufferRAM Sector Address */
283         bsa = sectors & ONENAND_BSA_MASK;
284
285         if (dataram1)
286                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
287         else
288                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
289
290         /* BufferRAM Sector Count */
291         bsc = count & ONENAND_BSC_MASK;
292
293         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
294 }
295
296 /**
297  * flexonenand_block- For given address return block number
298  * @param this         - OneNAND device structure
299  * @param addr          - Address for which block number is needed
300  */
301 static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
302 {
303         unsigned boundary, blk, die = 0;
304
305         if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
306                 die = 1;
307                 addr -= this->diesize[0];
308         }
309
310         boundary = this->boundary[die];
311
312         blk = addr >> (this->erase_shift - 1);
313         if (blk > boundary)
314                 blk = (blk + boundary + 1) >> 1;
315
316         blk += die ? this->density_mask : 0;
317         return blk;
318 }
319
320 inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
321 {
322         if (!FLEXONENAND(this))
323                 return addr >> this->erase_shift;
324         return flexonenand_block(this, addr);
325 }
326
327 /**
328  * flexonenand_addr - Return address of the block
329  * @this:               OneNAND device structure
330  * @block:              Block number on Flex-OneNAND
331  *
332  * Return address of the block
333  */
334 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
335 {
336         loff_t ofs = 0;
337         int die = 0, boundary;
338
339         if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
340                 block -= this->density_mask;
341                 die = 1;
342                 ofs = this->diesize[0];
343         }
344
345         boundary = this->boundary[die];
346         ofs += (loff_t)block << (this->erase_shift - 1);
347         if (block > (boundary + 1))
348                 ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
349         return ofs;
350 }
351
352 loff_t onenand_addr(struct onenand_chip *this, int block)
353 {
354         if (!FLEXONENAND(this))
355                 return (loff_t)block << this->erase_shift;
356         return flexonenand_addr(this, block);
357 }
358 EXPORT_SYMBOL(onenand_addr);
359
360 /**
361  * onenand_get_density - [DEFAULT] Get OneNAND density
362  * @param dev_id        OneNAND device ID
363  *
364  * Get OneNAND density from device ID
365  */
366 static inline int onenand_get_density(int dev_id)
367 {
368         int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
369         return (density & ONENAND_DEVICE_DENSITY_MASK);
370 }
371
372 /**
373  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
374  * @param mtd           MTD device structure
375  * @param addr          address whose erase region needs to be identified
376  */
377 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
378 {
379         int i;
380
381         for (i = 0; i < mtd->numeraseregions; i++)
382                 if (addr < mtd->eraseregions[i].offset)
383                         break;
384         return i - 1;
385 }
386 EXPORT_SYMBOL(flexonenand_region);
387
388 /**
389  * onenand_command - [DEFAULT] Send command to OneNAND device
390  * @param mtd           MTD device structure
391  * @param cmd           the command to be sent
392  * @param addr          offset to read from or write to
393  * @param len           number of bytes to read or write
394  *
395  * Send command to OneNAND device. This function is used for middle/large page
396  * devices (1KB/2KB Bytes per page)
397  */
398 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
399 {
400         struct onenand_chip *this = mtd->priv;
401         int value, block, page;
402
403         /* Address translation */
404         switch (cmd) {
405         case ONENAND_CMD_UNLOCK:
406         case ONENAND_CMD_LOCK:
407         case ONENAND_CMD_LOCK_TIGHT:
408         case ONENAND_CMD_UNLOCK_ALL:
409                 block = -1;
410                 page = -1;
411                 break;
412
413         case FLEXONENAND_CMD_PI_ACCESS:
414                 /* addr contains die index */
415                 block = addr * this->density_mask;
416                 page = -1;
417                 break;
418
419         case ONENAND_CMD_ERASE:
420         case ONENAND_CMD_MULTIBLOCK_ERASE:
421         case ONENAND_CMD_ERASE_VERIFY:
422         case ONENAND_CMD_BUFFERRAM:
423         case ONENAND_CMD_OTP_ACCESS:
424                 block = onenand_block(this, addr);
425                 page = -1;
426                 break;
427
428         case FLEXONENAND_CMD_READ_PI:
429                 cmd = ONENAND_CMD_READ;
430                 block = addr * this->density_mask;
431                 page = 0;
432                 break;
433
434         default:
435                 block = onenand_block(this, addr);
436                 if (FLEXONENAND(this))
437                         page = (int) (addr - onenand_addr(this, block))>>\
438                                 this->page_shift;
439                 else
440                         page = (int) (addr >> this->page_shift);
441                 if (ONENAND_IS_2PLANE(this)) {
442                         /* Make the even block number */
443                         block &= ~1;
444                         /* Is it the odd plane? */
445                         if (addr & this->writesize)
446                                 block++;
447                         page >>= 1;
448                 }
449                 page &= this->page_mask;
450                 break;
451         }
452
453         /* NOTE: The setting order of the registers is very important! */
454         if (cmd == ONENAND_CMD_BUFFERRAM) {
455                 /* Select DataRAM for DDP */
456                 value = onenand_bufferram_address(this, block);
457                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
458
459                 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
460                         /* It is always BufferRAM0 */
461                         ONENAND_SET_BUFFERRAM0(this);
462                 else
463                         /* Switch to the next data buffer */
464                         ONENAND_SET_NEXT_BUFFERRAM(this);
465
466                 return 0;
467         }
468
469         if (block != -1) {
470                 /* Write 'DFS, FBA' of Flash */
471                 value = onenand_block_address(this, block);
472                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
473
474                 /* Select DataRAM for DDP */
475                 value = onenand_bufferram_address(this, block);
476                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
477         }
478
479         if (page != -1) {
480                 /* Now we use page size operation */
481                 int sectors = 0, count = 0;
482                 int dataram;
483
484                 switch (cmd) {
485                 case FLEXONENAND_CMD_RECOVER_LSB:
486                 case ONENAND_CMD_READ:
487                 case ONENAND_CMD_READOOB:
488                         if (ONENAND_IS_4KB_PAGE(this))
489                                 /* It is always BufferRAM0 */
490                                 dataram = ONENAND_SET_BUFFERRAM0(this);
491                         else
492                                 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
493                         break;
494
495                 default:
496                         if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
497                                 cmd = ONENAND_CMD_2X_PROG;
498                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
499                         break;
500                 }
501
502                 /* Write 'FPA, FSA' of Flash */
503                 value = onenand_page_address(page, sectors);
504                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
505
506                 /* Write 'BSA, BSC' of DataRAM */
507                 value = onenand_buffer_address(dataram, sectors, count);
508                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
509         }
510
511         /* Interrupt clear */
512         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
513
514         /* Write command */
515         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
516
517         return 0;
518 }
519
520 /**
521  * onenand_read_ecc - return ecc status
522  * @param this          onenand chip structure
523  */
524 static inline int onenand_read_ecc(struct onenand_chip *this)
525 {
526         int ecc, i, result = 0;
527
528         if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
529                 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
530
531         for (i = 0; i < 4; i++) {
532                 ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
533                 if (likely(!ecc))
534                         continue;
535                 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
536                         return ONENAND_ECC_2BIT_ALL;
537                 else
538                         result = ONENAND_ECC_1BIT_ALL;
539         }
540
541         return result;
542 }
543
544 /**
545  * onenand_wait - [DEFAULT] wait until the command is done
546  * @param mtd           MTD device structure
547  * @param state         state to select the max. timeout value
548  *
549  * Wait for command done. This applies to all OneNAND command
550  * Read can take up to 30us, erase up to 2ms and program up to 350us
551  * according to general OneNAND specs
552  */
553 static int onenand_wait(struct mtd_info *mtd, int state)
554 {
555         struct onenand_chip * this = mtd->priv;
556         unsigned long timeout;
557         unsigned int flags = ONENAND_INT_MASTER;
558         unsigned int interrupt = 0;
559         unsigned int ctrl;
560
561         /* The 20 msec is enough */
562         timeout = jiffies + msecs_to_jiffies(20);
563         while (time_before(jiffies, timeout)) {
564                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
565
566                 if (interrupt & flags)
567                         break;
568
569                 if (state != FL_READING && state != FL_PREPARING_ERASE)
570                         cond_resched();
571         }
572         /* To get correct interrupt status in timeout case */
573         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
574
575         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
576
577         /*
578          * In the Spec. it checks the controller status first
579          * However if you get the correct information in case of
580          * power off recovery (POR) test, it should read ECC status first
581          */
582         if (interrupt & ONENAND_INT_READ) {
583                 int ecc = onenand_read_ecc(this);
584                 if (ecc) {
585                         if (ecc & ONENAND_ECC_2BIT_ALL) {
586                                 printk(KERN_ERR "%s: ECC error = 0x%04x\n",
587                                         __func__, ecc);
588                                 mtd->ecc_stats.failed++;
589                                 return -EBADMSG;
590                         } else if (ecc & ONENAND_ECC_1BIT_ALL) {
591                                 printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
592                                         __func__, ecc);
593                                 mtd->ecc_stats.corrected++;
594                         }
595                 }
596         } else if (state == FL_READING) {
597                 printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
598                         __func__, ctrl, interrupt);
599                 return -EIO;
600         }
601
602         if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
603                 printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
604                        __func__, ctrl, interrupt);
605                 return -EIO;
606         }
607
608         if (!(interrupt & ONENAND_INT_MASTER)) {
609                 printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
610                        __func__, ctrl, interrupt);
611                 return -EIO;
612         }
613
614         /* If there's controller error, it's a real error */
615         if (ctrl & ONENAND_CTRL_ERROR) {
616                 printk(KERN_ERR "%s: controller error = 0x%04x\n",
617                         __func__, ctrl);
618                 if (ctrl & ONENAND_CTRL_LOCK)
619                         printk(KERN_ERR "%s: it's locked error.\n", __func__);
620                 return -EIO;
621         }
622
623         return 0;
624 }
625
626 /*
627  * onenand_interrupt - [DEFAULT] onenand interrupt handler
628  * @param irq           onenand interrupt number
629  * @param dev_id        interrupt data
630  *
631  * complete the work
632  */
633 static irqreturn_t onenand_interrupt(int irq, void *data)
634 {
635         struct onenand_chip *this = data;
636
637         /* To handle shared interrupt */
638         if (!this->complete.done)
639                 complete(&this->complete);
640
641         return IRQ_HANDLED;
642 }
643
644 /*
645  * onenand_interrupt_wait - [DEFAULT] wait until the command is done
646  * @param mtd           MTD device structure
647  * @param state         state to select the max. timeout value
648  *
649  * Wait for command done.
650  */
651 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
652 {
653         struct onenand_chip *this = mtd->priv;
654
655         wait_for_completion(&this->complete);
656
657         return onenand_wait(mtd, state);
658 }
659
660 /*
661  * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
662  * @param mtd           MTD device structure
663  * @param state         state to select the max. timeout value
664  *
665  * Try interrupt based wait (It is used one-time)
666  */
667 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
668 {
669         struct onenand_chip *this = mtd->priv;
670         unsigned long remain, timeout;
671
672         /* We use interrupt wait first */
673         this->wait = onenand_interrupt_wait;
674
675         timeout = msecs_to_jiffies(100);
676         remain = wait_for_completion_timeout(&this->complete, timeout);
677         if (!remain) {
678                 printk(KERN_INFO "OneNAND: There's no interrupt. "
679                                 "We use the normal wait\n");
680
681                 /* Release the irq */
682                 free_irq(this->irq, this);
683
684                 this->wait = onenand_wait;
685         }
686
687         return onenand_wait(mtd, state);
688 }
689
690 /*
691  * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
692  * @param mtd           MTD device structure
693  *
694  * There's two method to wait onenand work
695  * 1. polling - read interrupt status register
696  * 2. interrupt - use the kernel interrupt method
697  */
698 static void onenand_setup_wait(struct mtd_info *mtd)
699 {
700         struct onenand_chip *this = mtd->priv;
701         int syscfg;
702
703         init_completion(&this->complete);
704
705         if (this->irq <= 0) {
706                 this->wait = onenand_wait;
707                 return;
708         }
709
710         if (request_irq(this->irq, &onenand_interrupt,
711                                 IRQF_SHARED, "onenand", this)) {
712                 /* If we can't get irq, use the normal wait */
713                 this->wait = onenand_wait;
714                 return;
715         }
716
717         /* Enable interrupt */
718         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
719         syscfg |= ONENAND_SYS_CFG1_IOBE;
720         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
721
722         this->wait = onenand_try_interrupt_wait;
723 }
724
725 /**
726  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
727  * @param mtd           MTD data structure
728  * @param area          BufferRAM area
729  * @return              offset given area
730  *
731  * Return BufferRAM offset given area
732  */
733 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
734 {
735         struct onenand_chip *this = mtd->priv;
736
737         if (ONENAND_CURRENT_BUFFERRAM(this)) {
738                 /* Note: the 'this->writesize' is a real page size */
739                 if (area == ONENAND_DATARAM)
740                         return this->writesize;
741                 if (area == ONENAND_SPARERAM)
742                         return mtd->oobsize;
743         }
744
745         return 0;
746 }
747
748 /**
749  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
750  * @param mtd           MTD data structure
751  * @param area          BufferRAM area
752  * @param buffer        the databuffer to put/get data
753  * @param offset        offset to read from or write to
754  * @param count         number of bytes to read/write
755  *
756  * Read the BufferRAM area
757  */
758 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
759                 unsigned char *buffer, int offset, size_t count)
760 {
761         struct onenand_chip *this = mtd->priv;
762         void __iomem *bufferram;
763
764         bufferram = this->base + area;
765
766         bufferram += onenand_bufferram_offset(mtd, area);
767
768         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
769                 unsigned short word;
770
771                 /* Align with word(16-bit) size */
772                 count--;
773
774                 /* Read word and save byte */
775                 word = this->read_word(bufferram + offset + count);
776                 buffer[count] = (word & 0xff);
777         }
778
779         memcpy(buffer, bufferram + offset, count);
780
781         return 0;
782 }
783
784 /**
785  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
786  * @param mtd           MTD data structure
787  * @param area          BufferRAM area
788  * @param buffer        the databuffer to put/get data
789  * @param offset        offset to read from or write to
790  * @param count         number of bytes to read/write
791  *
792  * Read the BufferRAM area with Sync. Burst Mode
793  */
794 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
795                 unsigned char *buffer, int offset, size_t count)
796 {
797         struct onenand_chip *this = mtd->priv;
798         void __iomem *bufferram;
799
800         bufferram = this->base + area;
801
802         bufferram += onenand_bufferram_offset(mtd, area);
803
804         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
805
806         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
807                 unsigned short word;
808
809                 /* Align with word(16-bit) size */
810                 count--;
811
812                 /* Read word and save byte */
813                 word = this->read_word(bufferram + offset + count);
814                 buffer[count] = (word & 0xff);
815         }
816
817         memcpy(buffer, bufferram + offset, count);
818
819         this->mmcontrol(mtd, 0);
820
821         return 0;
822 }
823
824 /**
825  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
826  * @param mtd           MTD data structure
827  * @param area          BufferRAM area
828  * @param buffer        the databuffer to put/get data
829  * @param offset        offset to read from or write to
830  * @param count         number of bytes to read/write
831  *
832  * Write the BufferRAM area
833  */
834 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
835                 const unsigned char *buffer, int offset, size_t count)
836 {
837         struct onenand_chip *this = mtd->priv;
838         void __iomem *bufferram;
839
840         bufferram = this->base + area;
841
842         bufferram += onenand_bufferram_offset(mtd, area);
843
844         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
845                 unsigned short word;
846                 int byte_offset;
847
848                 /* Align with word(16-bit) size */
849                 count--;
850
851                 /* Calculate byte access offset */
852                 byte_offset = offset + count;
853
854                 /* Read word and save byte */
855                 word = this->read_word(bufferram + byte_offset);
856                 word = (word & ~0xff) | buffer[count];
857                 this->write_word(word, bufferram + byte_offset);
858         }
859
860         memcpy(bufferram + offset, buffer, count);
861
862         return 0;
863 }
864
865 /**
866  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
867  * @param mtd           MTD data structure
868  * @param addr          address to check
869  * @return              blockpage address
870  *
871  * Get blockpage address at 2x program mode
872  */
873 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
874 {
875         struct onenand_chip *this = mtd->priv;
876         int blockpage, block, page;
877
878         /* Calculate the even block number */
879         block = (int) (addr >> this->erase_shift) & ~1;
880         /* Is it the odd plane? */
881         if (addr & this->writesize)
882                 block++;
883         page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
884         blockpage = (block << 7) | page;
885
886         return blockpage;
887 }
888
889 /**
890  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
891  * @param mtd           MTD data structure
892  * @param addr          address to check
893  * @return              1 if there are valid data, otherwise 0
894  *
895  * Check bufferram if there is data we required
896  */
897 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
898 {
899         struct onenand_chip *this = mtd->priv;
900         int blockpage, found = 0;
901         unsigned int i;
902
903         if (ONENAND_IS_2PLANE(this))
904                 blockpage = onenand_get_2x_blockpage(mtd, addr);
905         else
906                 blockpage = (int) (addr >> this->page_shift);
907
908         /* Is there valid data? */
909         i = ONENAND_CURRENT_BUFFERRAM(this);
910         if (this->bufferram[i].blockpage == blockpage)
911                 found = 1;
912         else {
913                 /* Check another BufferRAM */
914                 i = ONENAND_NEXT_BUFFERRAM(this);
915                 if (this->bufferram[i].blockpage == blockpage) {
916                         ONENAND_SET_NEXT_BUFFERRAM(this);
917                         found = 1;
918                 }
919         }
920
921         if (found && ONENAND_IS_DDP(this)) {
922                 /* Select DataRAM for DDP */
923                 int block = onenand_block(this, addr);
924                 int value = onenand_bufferram_address(this, block);
925                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
926         }
927
928         return found;
929 }
930
931 /**
932  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
933  * @param mtd           MTD data structure
934  * @param addr          address to update
935  * @param valid         valid flag
936  *
937  * Update BufferRAM information
938  */
939 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
940                 int valid)
941 {
942         struct onenand_chip *this = mtd->priv;
943         int blockpage;
944         unsigned int i;
945
946         if (ONENAND_IS_2PLANE(this))
947                 blockpage = onenand_get_2x_blockpage(mtd, addr);
948         else
949                 blockpage = (int) (addr >> this->page_shift);
950
951         /* Invalidate another BufferRAM */
952         i = ONENAND_NEXT_BUFFERRAM(this);
953         if (this->bufferram[i].blockpage == blockpage)
954                 this->bufferram[i].blockpage = -1;
955
956         /* Update BufferRAM */
957         i = ONENAND_CURRENT_BUFFERRAM(this);
958         if (valid)
959                 this->bufferram[i].blockpage = blockpage;
960         else
961                 this->bufferram[i].blockpage = -1;
962 }
963
964 /**
965  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
966  * @param mtd           MTD data structure
967  * @param addr          start address to invalidate
968  * @param len           length to invalidate
969  *
970  * Invalidate BufferRAM information
971  */
972 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
973                 unsigned int len)
974 {
975         struct onenand_chip *this = mtd->priv;
976         int i;
977         loff_t end_addr = addr + len;
978
979         /* Invalidate BufferRAM */
980         for (i = 0; i < MAX_BUFFERRAM; i++) {
981                 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
982                 if (buf_addr >= addr && buf_addr < end_addr)
983                         this->bufferram[i].blockpage = -1;
984         }
985 }
986
987 /**
988  * onenand_get_device - [GENERIC] Get chip for selected access
989  * @param mtd           MTD device structure
990  * @param new_state     the state which is requested
991  *
992  * Get the device and lock it for exclusive access
993  */
994 static int onenand_get_device(struct mtd_info *mtd, int new_state)
995 {
996         struct onenand_chip *this = mtd->priv;
997         DECLARE_WAITQUEUE(wait, current);
998
999         /*
1000          * Grab the lock and see if the device is available
1001          */
1002         while (1) {
1003                 spin_lock(&this->chip_lock);
1004                 if (this->state == FL_READY) {
1005                         this->state = new_state;
1006                         spin_unlock(&this->chip_lock);
1007                         if (new_state != FL_PM_SUSPENDED && this->enable)
1008                                 this->enable(mtd);
1009                         break;
1010                 }
1011                 if (new_state == FL_PM_SUSPENDED) {
1012                         spin_unlock(&this->chip_lock);
1013                         return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
1014                 }
1015                 set_current_state(TASK_UNINTERRUPTIBLE);
1016                 add_wait_queue(&this->wq, &wait);
1017                 spin_unlock(&this->chip_lock);
1018                 schedule();
1019                 remove_wait_queue(&this->wq, &wait);
1020         }
1021
1022         return 0;
1023 }
1024
1025 /**
1026  * onenand_release_device - [GENERIC] release chip
1027  * @param mtd           MTD device structure
1028  *
1029  * Deselect, release chip lock and wake up anyone waiting on the device
1030  */
1031 static void onenand_release_device(struct mtd_info *mtd)
1032 {
1033         struct onenand_chip *this = mtd->priv;
1034
1035         if (this->state != FL_PM_SUSPENDED && this->disable)
1036                 this->disable(mtd);
1037         /* Release the chip */
1038         spin_lock(&this->chip_lock);
1039         this->state = FL_READY;
1040         wake_up(&this->wq);
1041         spin_unlock(&this->chip_lock);
1042 }
1043
1044 /**
1045  * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
1046  * @param mtd           MTD device structure
1047  * @param buf           destination address
1048  * @param column        oob offset to read from
1049  * @param thislen       oob length to read
1050  */
1051 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
1052                                 int thislen)
1053 {
1054         struct onenand_chip *this = mtd->priv;
1055         int ret;
1056
1057         this->read_bufferram(mtd, ONENAND_SPARERAM, this->oob_buf, 0,
1058                              mtd->oobsize);
1059         ret = mtd_ooblayout_get_databytes(mtd, buf, this->oob_buf,
1060                                           column, thislen);
1061         if (ret)
1062                 return ret;
1063
1064         return 0;
1065 }
1066
1067 /**
1068  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1069  * @param mtd           MTD device structure
1070  * @param addr          address to recover
1071  * @param status        return value from onenand_wait / onenand_bbt_wait
1072  *
1073  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1074  * lower page address and MSB page has higher page address in paired pages.
1075  * If power off occurs during MSB page program, the paired LSB page data can
1076  * become corrupt. LSB page recovery read is a way to read LSB page though page
1077  * data are corrupted. When uncorrectable error occurs as a result of LSB page
1078  * read after power up, issue LSB page recovery read.
1079  */
1080 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1081 {
1082         struct onenand_chip *this = mtd->priv;
1083         int i;
1084
1085         /* Recovery is only for Flex-OneNAND */
1086         if (!FLEXONENAND(this))
1087                 return status;
1088
1089         /* check if we failed due to uncorrectable error */
1090         if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
1091                 return status;
1092
1093         /* check if address lies in MLC region */
1094         i = flexonenand_region(mtd, addr);
1095         if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1096                 return status;
1097
1098         /* We are attempting to reread, so decrement stats.failed
1099          * which was incremented by onenand_wait due to read failure
1100          */
1101         printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1102                 __func__);
1103         mtd->ecc_stats.failed--;
1104
1105         /* Issue the LSB page recovery command */
1106         this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1107         return this->wait(mtd, FL_READING);
1108 }
1109
1110 /**
1111  * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1112  * @param mtd           MTD device structure
1113  * @param from          offset to read from
1114  * @param ops:          oob operation description structure
1115  *
1116  * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1117  * So, read-while-load is not present.
1118  */
1119 static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1120                                 struct mtd_oob_ops *ops)
1121 {
1122         struct onenand_chip *this = mtd->priv;
1123         struct mtd_ecc_stats stats;
1124         size_t len = ops->len;
1125         size_t ooblen = ops->ooblen;
1126         u_char *buf = ops->datbuf;
1127         u_char *oobbuf = ops->oobbuf;
1128         int read = 0, column, thislen;
1129         int oobread = 0, oobcolumn, thisooblen, oobsize;
1130         int ret = 0;
1131         int writesize = this->writesize;
1132
1133         pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1134                         (int)len);
1135
1136         oobsize = mtd_oobavail(mtd, ops);
1137         oobcolumn = from & (mtd->oobsize - 1);
1138
1139         /* Do not allow reads past end of device */
1140         if (from + len > mtd->size) {
1141                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1142                         __func__);
1143                 ops->retlen = 0;
1144                 ops->oobretlen = 0;
1145                 return -EINVAL;
1146         }
1147
1148         stats = mtd->ecc_stats;
1149
1150         while (read < len) {
1151                 cond_resched();
1152
1153                 thislen = min_t(int, writesize, len - read);
1154
1155                 column = from & (writesize - 1);
1156                 if (column + thislen > writesize)
1157                         thislen = writesize - column;
1158
1159                 if (!onenand_check_bufferram(mtd, from)) {
1160                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1161
1162                         ret = this->wait(mtd, FL_READING);
1163                         if (unlikely(ret))
1164                                 ret = onenand_recover_lsb(mtd, from, ret);
1165                         onenand_update_bufferram(mtd, from, !ret);
1166                         if (mtd_is_eccerr(ret))
1167                                 ret = 0;
1168                         if (ret)
1169                                 break;
1170                 }
1171
1172                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1173                 if (oobbuf) {
1174                         thisooblen = oobsize - oobcolumn;
1175                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
1176
1177                         if (ops->mode == MTD_OPS_AUTO_OOB)
1178                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1179                         else
1180                                 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1181                         oobread += thisooblen;
1182                         oobbuf += thisooblen;
1183                         oobcolumn = 0;
1184                 }
1185
1186                 read += thislen;
1187                 if (read == len)
1188                         break;
1189
1190                 from += thislen;
1191                 buf += thislen;
1192         }
1193
1194         /*
1195          * Return success, if no ECC failures, else -EBADMSG
1196          * fs driver will take care of that, because
1197          * retlen == desired len and result == -EBADMSG
1198          */
1199         ops->retlen = read;
1200         ops->oobretlen = oobread;
1201
1202         if (ret)
1203                 return ret;
1204
1205         if (mtd->ecc_stats.failed - stats.failed)
1206                 return -EBADMSG;
1207
1208         /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1209         return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1210 }
1211
1212 /**
1213  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1214  * @param mtd           MTD device structure
1215  * @param from          offset to read from
1216  * @param ops:          oob operation description structure
1217  *
1218  * OneNAND read main and/or out-of-band data
1219  */
1220 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1221                                 struct mtd_oob_ops *ops)
1222 {
1223         struct onenand_chip *this = mtd->priv;
1224         struct mtd_ecc_stats stats;
1225         size_t len = ops->len;
1226         size_t ooblen = ops->ooblen;
1227         u_char *buf = ops->datbuf;
1228         u_char *oobbuf = ops->oobbuf;
1229         int read = 0, column, thislen;
1230         int oobread = 0, oobcolumn, thisooblen, oobsize;
1231         int ret = 0, boundary = 0;
1232         int writesize = this->writesize;
1233
1234         pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1235                         (int)len);
1236
1237         oobsize = mtd_oobavail(mtd, ops);
1238         oobcolumn = from & (mtd->oobsize - 1);
1239
1240         /* Do not allow reads past end of device */
1241         if ((from + len) > mtd->size) {
1242                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1243                         __func__);
1244                 ops->retlen = 0;
1245                 ops->oobretlen = 0;
1246                 return -EINVAL;
1247         }
1248
1249         stats = mtd->ecc_stats;
1250
1251         /* Read-while-load method */
1252
1253         /* Do first load to bufferRAM */
1254         if (read < len) {
1255                 if (!onenand_check_bufferram(mtd, from)) {
1256                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1257                         ret = this->wait(mtd, FL_READING);
1258                         onenand_update_bufferram(mtd, from, !ret);
1259                         if (mtd_is_eccerr(ret))
1260                                 ret = 0;
1261                 }
1262         }
1263
1264         thislen = min_t(int, writesize, len - read);
1265         column = from & (writesize - 1);
1266         if (column + thislen > writesize)
1267                 thislen = writesize - column;
1268
1269         while (!ret) {
1270                 /* If there is more to load then start next load */
1271                 from += thislen;
1272                 if (read + thislen < len) {
1273                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1274                         /*
1275                          * Chip boundary handling in DDP
1276                          * Now we issued chip 1 read and pointed chip 1
1277                          * bufferram so we have to point chip 0 bufferram.
1278                          */
1279                         if (ONENAND_IS_DDP(this) &&
1280                             unlikely(from == (this->chipsize >> 1))) {
1281                                 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1282                                 boundary = 1;
1283                         } else
1284                                 boundary = 0;
1285                         ONENAND_SET_PREV_BUFFERRAM(this);
1286                 }
1287                 /* While load is going, read from last bufferRAM */
1288                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1289
1290                 /* Read oob area if needed */
1291                 if (oobbuf) {
1292                         thisooblen = oobsize - oobcolumn;
1293                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
1294
1295                         if (ops->mode == MTD_OPS_AUTO_OOB)
1296                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1297                         else
1298                                 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1299                         oobread += thisooblen;
1300                         oobbuf += thisooblen;
1301                         oobcolumn = 0;
1302                 }
1303
1304                 /* See if we are done */
1305                 read += thislen;
1306                 if (read == len)
1307                         break;
1308                 /* Set up for next read from bufferRAM */
1309                 if (unlikely(boundary))
1310                         this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1311                 ONENAND_SET_NEXT_BUFFERRAM(this);
1312                 buf += thislen;
1313                 thislen = min_t(int, writesize, len - read);
1314                 column = 0;
1315                 cond_resched();
1316                 /* Now wait for load */
1317                 ret = this->wait(mtd, FL_READING);
1318                 onenand_update_bufferram(mtd, from, !ret);
1319                 if (mtd_is_eccerr(ret))
1320                         ret = 0;
1321         }
1322
1323         /*
1324          * Return success, if no ECC failures, else -EBADMSG
1325          * fs driver will take care of that, because
1326          * retlen == desired len and result == -EBADMSG
1327          */
1328         ops->retlen = read;
1329         ops->oobretlen = oobread;
1330
1331         if (ret)
1332                 return ret;
1333
1334         if (mtd->ecc_stats.failed - stats.failed)
1335                 return -EBADMSG;
1336
1337         /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1338         return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1339 }
1340
1341 /**
1342  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1343  * @param mtd           MTD device structure
1344  * @param from          offset to read from
1345  * @param ops:          oob operation description structure
1346  *
1347  * OneNAND read out-of-band data from the spare area
1348  */
1349 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1350                         struct mtd_oob_ops *ops)
1351 {
1352         struct onenand_chip *this = mtd->priv;
1353         struct mtd_ecc_stats stats;
1354         int read = 0, thislen, column, oobsize;
1355         size_t len = ops->ooblen;
1356         unsigned int mode = ops->mode;
1357         u_char *buf = ops->oobbuf;
1358         int ret = 0, readcmd;
1359
1360         from += ops->ooboffs;
1361
1362         pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1363                         (int)len);
1364
1365         /* Initialize return length value */
1366         ops->oobretlen = 0;
1367
1368         if (mode == MTD_OPS_AUTO_OOB)
1369                 oobsize = mtd->oobavail;
1370         else
1371                 oobsize = mtd->oobsize;
1372
1373         column = from & (mtd->oobsize - 1);
1374
1375         if (unlikely(column >= oobsize)) {
1376                 printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1377                         __func__);
1378                 return -EINVAL;
1379         }
1380
1381         stats = mtd->ecc_stats;
1382
1383         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1384
1385         while (read < len) {
1386                 cond_resched();
1387
1388                 thislen = oobsize - column;
1389                 thislen = min_t(int, thislen, len);
1390
1391                 this->command(mtd, readcmd, from, mtd->oobsize);
1392
1393                 onenand_update_bufferram(mtd, from, 0);
1394
1395                 ret = this->wait(mtd, FL_READING);
1396                 if (unlikely(ret))
1397                         ret = onenand_recover_lsb(mtd, from, ret);
1398
1399                 if (ret && !mtd_is_eccerr(ret)) {
1400                         printk(KERN_ERR "%s: read failed = 0x%x\n",
1401                                 __func__, ret);
1402                         break;
1403                 }
1404
1405                 if (mode == MTD_OPS_AUTO_OOB)
1406                         onenand_transfer_auto_oob(mtd, buf, column, thislen);
1407                 else
1408                         this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1409
1410                 read += thislen;
1411
1412                 if (read == len)
1413                         break;
1414
1415                 buf += thislen;
1416
1417                 /* Read more? */
1418                 if (read < len) {
1419                         /* Page size */
1420                         from += mtd->writesize;
1421                         column = 0;
1422                 }
1423         }
1424
1425         ops->oobretlen = read;
1426
1427         if (ret)
1428                 return ret;
1429
1430         if (mtd->ecc_stats.failed - stats.failed)
1431                 return -EBADMSG;
1432
1433         return 0;
1434 }
1435
1436 /**
1437  * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1438  * @param mtd:          MTD device structure
1439  * @param from:         offset to read from
1440  * @param ops:          oob operation description structure
1441
1442  * Read main and/or out-of-band
1443  */
1444 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1445                             struct mtd_oob_ops *ops)
1446 {
1447         struct onenand_chip *this = mtd->priv;
1448         int ret;
1449
1450         switch (ops->mode) {
1451         case MTD_OPS_PLACE_OOB:
1452         case MTD_OPS_AUTO_OOB:
1453                 break;
1454         case MTD_OPS_RAW:
1455                 /* Not implemented yet */
1456         default:
1457                 return -EINVAL;
1458         }
1459
1460         onenand_get_device(mtd, FL_READING);
1461         if (ops->datbuf)
1462                 ret = ONENAND_IS_4KB_PAGE(this) ?
1463                         onenand_mlc_read_ops_nolock(mtd, from, ops) :
1464                         onenand_read_ops_nolock(mtd, from, ops);
1465         else
1466                 ret = onenand_read_oob_nolock(mtd, from, ops);
1467         onenand_release_device(mtd);
1468
1469         return ret;
1470 }
1471
1472 /**
1473  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1474  * @param mtd           MTD device structure
1475  * @param state         state to select the max. timeout value
1476  *
1477  * Wait for command done.
1478  */
1479 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1480 {
1481         struct onenand_chip *this = mtd->priv;
1482         unsigned long timeout;
1483         unsigned int interrupt, ctrl, ecc, addr1, addr8;
1484
1485         /* The 20 msec is enough */
1486         timeout = jiffies + msecs_to_jiffies(20);
1487         while (time_before(jiffies, timeout)) {
1488                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1489                 if (interrupt & ONENAND_INT_MASTER)
1490                         break;
1491         }
1492         /* To get correct interrupt status in timeout case */
1493         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1494         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1495         addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
1496         addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
1497
1498         if (interrupt & ONENAND_INT_READ) {
1499                 ecc = onenand_read_ecc(this);
1500                 if (ecc & ONENAND_ECC_2BIT_ALL) {
1501                         printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
1502                                "intr 0x%04x addr1 %#x addr8 %#x\n",
1503                                __func__, ecc, ctrl, interrupt, addr1, addr8);
1504                         return ONENAND_BBT_READ_ECC_ERROR;
1505                 }
1506         } else {
1507                 printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
1508                        "intr 0x%04x addr1 %#x addr8 %#x\n",
1509                        __func__, ctrl, interrupt, addr1, addr8);
1510                 return ONENAND_BBT_READ_FATAL_ERROR;
1511         }
1512
1513         /* Initial bad block case: 0x2400 or 0x0400 */
1514         if (ctrl & ONENAND_CTRL_ERROR) {
1515                 printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1516                        "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
1517                 return ONENAND_BBT_READ_ERROR;
1518         }
1519
1520         return 0;
1521 }
1522
1523 /**
1524  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1525  * @param mtd           MTD device structure
1526  * @param from          offset to read from
1527  * @param ops           oob operation description structure
1528  *
1529  * OneNAND read out-of-band data from the spare area for bbt scan
1530  */
1531 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
1532                             struct mtd_oob_ops *ops)
1533 {
1534         struct onenand_chip *this = mtd->priv;
1535         int read = 0, thislen, column;
1536         int ret = 0, readcmd;
1537         size_t len = ops->ooblen;
1538         u_char *buf = ops->oobbuf;
1539
1540         pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from,
1541                         len);
1542
1543         /* Initialize return value */
1544         ops->oobretlen = 0;
1545
1546         /* Do not allow reads past end of device */
1547         if (unlikely((from + len) > mtd->size)) {
1548                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1549                         __func__);
1550                 return ONENAND_BBT_READ_FATAL_ERROR;
1551         }
1552
1553         /* Grab the lock and see if the device is available */
1554         onenand_get_device(mtd, FL_READING);
1555
1556         column = from & (mtd->oobsize - 1);
1557
1558         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1559
1560         while (read < len) {
1561                 cond_resched();
1562
1563                 thislen = mtd->oobsize - column;
1564                 thislen = min_t(int, thislen, len);
1565
1566                 this->command(mtd, readcmd, from, mtd->oobsize);
1567
1568                 onenand_update_bufferram(mtd, from, 0);
1569
1570                 ret = this->bbt_wait(mtd, FL_READING);
1571                 if (unlikely(ret))
1572                         ret = onenand_recover_lsb(mtd, from, ret);
1573
1574                 if (ret)
1575                         break;
1576
1577                 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1578                 read += thislen;
1579                 if (read == len)
1580                         break;
1581
1582                 buf += thislen;
1583
1584                 /* Read more? */
1585                 if (read < len) {
1586                         /* Update Page size */
1587                         from += this->writesize;
1588                         column = 0;
1589                 }
1590         }
1591
1592         /* Deselect and wake up anyone waiting on the device */
1593         onenand_release_device(mtd);
1594
1595         ops->oobretlen = read;
1596         return ret;
1597 }
1598
1599 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1600 /**
1601  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1602  * @param mtd           MTD device structure
1603  * @param buf           the databuffer to verify
1604  * @param to            offset to read from
1605  */
1606 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1607 {
1608         struct onenand_chip *this = mtd->priv;
1609         u_char *oob_buf = this->oob_buf;
1610         int status, i, readcmd;
1611
1612         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1613
1614         this->command(mtd, readcmd, to, mtd->oobsize);
1615         onenand_update_bufferram(mtd, to, 0);
1616         status = this->wait(mtd, FL_READING);
1617         if (status)
1618                 return status;
1619
1620         this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1621         for (i = 0; i < mtd->oobsize; i++)
1622                 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1623                         return -EBADMSG;
1624
1625         return 0;
1626 }
1627
1628 /**
1629  * onenand_verify - [GENERIC] verify the chip contents after a write
1630  * @param mtd          MTD device structure
1631  * @param buf          the databuffer to verify
1632  * @param addr         offset to read from
1633  * @param len          number of bytes to read and compare
1634  */
1635 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1636 {
1637         struct onenand_chip *this = mtd->priv;
1638         int ret = 0;
1639         int thislen, column;
1640
1641         column = addr & (this->writesize - 1);
1642
1643         while (len != 0) {
1644                 thislen = min_t(int, this->writesize - column, len);
1645
1646                 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1647
1648                 onenand_update_bufferram(mtd, addr, 0);
1649
1650                 ret = this->wait(mtd, FL_READING);
1651                 if (ret)
1652                         return ret;
1653
1654                 onenand_update_bufferram(mtd, addr, 1);
1655
1656                 this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1657
1658                 if (memcmp(buf, this->verify_buf + column, thislen))
1659                         return -EBADMSG;
1660
1661                 len -= thislen;
1662                 buf += thislen;
1663                 addr += thislen;
1664                 column = 0;
1665         }
1666
1667         return 0;
1668 }
1669 #else
1670 #define onenand_verify(...)             (0)
1671 #define onenand_verify_oob(...)         (0)
1672 #endif
1673
1674 #define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1675
1676 static void onenand_panic_wait(struct mtd_info *mtd)
1677 {
1678         struct onenand_chip *this = mtd->priv;
1679         unsigned int interrupt;
1680         int i;
1681         
1682         for (i = 0; i < 2000; i++) {
1683                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1684                 if (interrupt & ONENAND_INT_MASTER)
1685                         break;
1686                 udelay(10);
1687         }
1688 }
1689
1690 /**
1691  * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1692  * @param mtd           MTD device structure
1693  * @param to            offset to write to
1694  * @param len           number of bytes to write
1695  * @param retlen        pointer to variable to store the number of written bytes
1696  * @param buf           the data to write
1697  *
1698  * Write with ECC
1699  */
1700 static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1701                          size_t *retlen, const u_char *buf)
1702 {
1703         struct onenand_chip *this = mtd->priv;
1704         int column, subpage;
1705         int written = 0;
1706
1707         if (this->state == FL_PM_SUSPENDED)
1708                 return -EBUSY;
1709
1710         /* Wait for any existing operation to clear */
1711         onenand_panic_wait(mtd);
1712
1713         pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1714                         (int)len);
1715
1716         /* Reject writes, which are not page aligned */
1717         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1718                 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1719                         __func__);
1720                 return -EINVAL;
1721         }
1722
1723         column = to & (mtd->writesize - 1);
1724
1725         /* Loop until all data write */
1726         while (written < len) {
1727                 int thislen = min_t(int, mtd->writesize - column, len - written);
1728                 u_char *wbuf = (u_char *) buf;
1729
1730                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1731
1732                 /* Partial page write */
1733                 subpage = thislen < mtd->writesize;
1734                 if (subpage) {
1735                         memset(this->page_buf, 0xff, mtd->writesize);
1736                         memcpy(this->page_buf + column, buf, thislen);
1737                         wbuf = this->page_buf;
1738                 }
1739
1740                 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1741                 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1742
1743                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1744
1745                 onenand_panic_wait(mtd);
1746
1747                 /* In partial page write we don't update bufferram */
1748                 onenand_update_bufferram(mtd, to, !subpage);
1749                 if (ONENAND_IS_2PLANE(this)) {
1750                         ONENAND_SET_BUFFERRAM1(this);
1751                         onenand_update_bufferram(mtd, to + this->writesize, !subpage);
1752                 }
1753
1754                 written += thislen;
1755
1756                 if (written == len)
1757                         break;
1758
1759                 column = 0;
1760                 to += thislen;
1761                 buf += thislen;
1762         }
1763
1764         *retlen = written;
1765         return 0;
1766 }
1767
1768 /**
1769  * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1770  * @param mtd           MTD device structure
1771  * @param oob_buf       oob buffer
1772  * @param buf           source address
1773  * @param column        oob offset to write to
1774  * @param thislen       oob length to write
1775  */
1776 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1777                                   const u_char *buf, int column, int thislen)
1778 {
1779         return mtd_ooblayout_set_databytes(mtd, buf, oob_buf, column, thislen);
1780 }
1781
1782 /**
1783  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1784  * @param mtd           MTD device structure
1785  * @param to            offset to write to
1786  * @param ops           oob operation description structure
1787  *
1788  * Write main and/or oob with ECC
1789  */
1790 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1791                                 struct mtd_oob_ops *ops)
1792 {
1793         struct onenand_chip *this = mtd->priv;
1794         int written = 0, column, thislen = 0, subpage = 0;
1795         int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1796         int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1797         size_t len = ops->len;
1798         size_t ooblen = ops->ooblen;
1799         const u_char *buf = ops->datbuf;
1800         const u_char *oob = ops->oobbuf;
1801         u_char *oobbuf;
1802         int ret = 0, cmd;
1803
1804         pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1805                         (int)len);
1806
1807         /* Initialize retlen, in case of early exit */
1808         ops->retlen = 0;
1809         ops->oobretlen = 0;
1810
1811         /* Reject writes, which are not page aligned */
1812         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1813                 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1814                         __func__);
1815                 return -EINVAL;
1816         }
1817
1818         /* Check zero length */
1819         if (!len)
1820                 return 0;
1821         oobsize = mtd_oobavail(mtd, ops);
1822         oobcolumn = to & (mtd->oobsize - 1);
1823
1824         column = to & (mtd->writesize - 1);
1825
1826         /* Loop until all data write */
1827         while (1) {
1828                 if (written < len) {
1829                         u_char *wbuf = (u_char *) buf;
1830
1831                         thislen = min_t(int, mtd->writesize - column, len - written);
1832                         thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1833
1834                         cond_resched();
1835
1836                         this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1837
1838                         /* Partial page write */
1839                         subpage = thislen < mtd->writesize;
1840                         if (subpage) {
1841                                 memset(this->page_buf, 0xff, mtd->writesize);
1842                                 memcpy(this->page_buf + column, buf, thislen);
1843                                 wbuf = this->page_buf;
1844                         }
1845
1846                         this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1847
1848                         if (oob) {
1849                                 oobbuf = this->oob_buf;
1850
1851                                 /* We send data to spare ram with oobsize
1852                                  * to prevent byte access */
1853                                 memset(oobbuf, 0xff, mtd->oobsize);
1854                                 if (ops->mode == MTD_OPS_AUTO_OOB)
1855                                         onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1856                                 else
1857                                         memcpy(oobbuf + oobcolumn, oob, thisooblen);
1858
1859                                 oobwritten += thisooblen;
1860                                 oob += thisooblen;
1861                                 oobcolumn = 0;
1862                         } else
1863                                 oobbuf = (u_char *) ffchars;
1864
1865                         this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1866                 } else
1867                         ONENAND_SET_NEXT_BUFFERRAM(this);
1868
1869                 /*
1870                  * 2 PLANE, MLC, and Flex-OneNAND do not support
1871                  * write-while-program feature.
1872                  */
1873                 if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1874                         ONENAND_SET_PREV_BUFFERRAM(this);
1875
1876                         ret = this->wait(mtd, FL_WRITING);
1877
1878                         /* In partial page write we don't update bufferram */
1879                         onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1880                         if (ret) {
1881                                 written -= prevlen;
1882                                 printk(KERN_ERR "%s: write failed %d\n",
1883                                         __func__, ret);
1884                                 break;
1885                         }
1886
1887                         if (written == len) {
1888                                 /* Only check verify write turn on */
1889                                 ret = onenand_verify(mtd, buf - len, to - len, len);
1890                                 if (ret)
1891                                         printk(KERN_ERR "%s: verify failed %d\n",
1892                                                 __func__, ret);
1893                                 break;
1894                         }
1895
1896                         ONENAND_SET_NEXT_BUFFERRAM(this);
1897                 }
1898
1899                 this->ongoing = 0;
1900                 cmd = ONENAND_CMD_PROG;
1901
1902                 /* Exclude 1st OTP and OTP blocks for cache program feature */
1903                 if (ONENAND_IS_CACHE_PROGRAM(this) &&
1904                     likely(onenand_block(this, to) != 0) &&
1905                     ONENAND_IS_4KB_PAGE(this) &&
1906                     ((written + thislen) < len)) {
1907                         cmd = ONENAND_CMD_2X_CACHE_PROG;
1908                         this->ongoing = 1;
1909                 }
1910
1911                 this->command(mtd, cmd, to, mtd->writesize);
1912
1913                 /*
1914                  * 2 PLANE, MLC, and Flex-OneNAND wait here
1915                  */
1916                 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1917                         ret = this->wait(mtd, FL_WRITING);
1918
1919                         /* In partial page write we don't update bufferram */
1920                         onenand_update_bufferram(mtd, to, !ret && !subpage);
1921                         if (ret) {
1922                                 printk(KERN_ERR "%s: write failed %d\n",
1923                                         __func__, ret);
1924                                 break;
1925                         }
1926
1927                         /* Only check verify write turn on */
1928                         ret = onenand_verify(mtd, buf, to, thislen);
1929                         if (ret) {
1930                                 printk(KERN_ERR "%s: verify failed %d\n",
1931                                         __func__, ret);
1932                                 break;
1933                         }
1934
1935                         written += thislen;
1936
1937                         if (written == len)
1938                                 break;
1939
1940                 } else
1941                         written += thislen;
1942
1943                 column = 0;
1944                 prev_subpage = subpage;
1945                 prev = to;
1946                 prevlen = thislen;
1947                 to += thislen;
1948                 buf += thislen;
1949                 first = 0;
1950         }
1951
1952         /* In error case, clear all bufferrams */
1953         if (written != len)
1954                 onenand_invalidate_bufferram(mtd, 0, -1);
1955
1956         ops->retlen = written;
1957         ops->oobretlen = oobwritten;
1958
1959         return ret;
1960 }
1961
1962
1963 /**
1964  * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1965  * @param mtd           MTD device structure
1966  * @param to            offset to write to
1967  * @param len           number of bytes to write
1968  * @param retlen        pointer to variable to store the number of written bytes
1969  * @param buf           the data to write
1970  * @param mode          operation mode
1971  *
1972  * OneNAND write out-of-band
1973  */
1974 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1975                                     struct mtd_oob_ops *ops)
1976 {
1977         struct onenand_chip *this = mtd->priv;
1978         int column, ret = 0, oobsize;
1979         int written = 0, oobcmd;
1980         u_char *oobbuf;
1981         size_t len = ops->ooblen;
1982         const u_char *buf = ops->oobbuf;
1983         unsigned int mode = ops->mode;
1984
1985         to += ops->ooboffs;
1986
1987         pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1988                         (int)len);
1989
1990         /* Initialize retlen, in case of early exit */
1991         ops->oobretlen = 0;
1992
1993         if (mode == MTD_OPS_AUTO_OOB)
1994                 oobsize = mtd->oobavail;
1995         else
1996                 oobsize = mtd->oobsize;
1997
1998         column = to & (mtd->oobsize - 1);
1999
2000         if (unlikely(column >= oobsize)) {
2001                 printk(KERN_ERR "%s: Attempted to start write outside oob\n",
2002                         __func__);
2003                 return -EINVAL;
2004         }
2005
2006         /* For compatibility with NAND: Do not allow write past end of page */
2007         if (unlikely(column + len > oobsize)) {
2008                 printk(KERN_ERR "%s: Attempt to write past end of page\n",
2009                         __func__);
2010                 return -EINVAL;
2011         }
2012
2013         oobbuf = this->oob_buf;
2014
2015         oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2016
2017         /* Loop until all data write */
2018         while (written < len) {
2019                 int thislen = min_t(int, oobsize, len - written);
2020
2021                 cond_resched();
2022
2023                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2024
2025                 /* We send data to spare ram with oobsize
2026                  * to prevent byte access */
2027                 memset(oobbuf, 0xff, mtd->oobsize);
2028                 if (mode == MTD_OPS_AUTO_OOB)
2029                         onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2030                 else
2031                         memcpy(oobbuf + column, buf, thislen);
2032                 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2033
2034                 if (ONENAND_IS_4KB_PAGE(this)) {
2035                         /* Set main area of DataRAM to 0xff*/
2036                         memset(this->page_buf, 0xff, mtd->writesize);
2037                         this->write_bufferram(mtd, ONENAND_DATARAM,
2038                                          this->page_buf, 0, mtd->writesize);
2039                 }
2040
2041                 this->command(mtd, oobcmd, to, mtd->oobsize);
2042
2043                 onenand_update_bufferram(mtd, to, 0);
2044                 if (ONENAND_IS_2PLANE(this)) {
2045                         ONENAND_SET_BUFFERRAM1(this);
2046                         onenand_update_bufferram(mtd, to + this->writesize, 0);
2047                 }
2048
2049                 ret = this->wait(mtd, FL_WRITING);
2050                 if (ret) {
2051                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2052                         break;
2053                 }
2054
2055                 ret = onenand_verify_oob(mtd, oobbuf, to);
2056                 if (ret) {
2057                         printk(KERN_ERR "%s: verify failed %d\n",
2058                                 __func__, ret);
2059                         break;
2060                 }
2061
2062                 written += thislen;
2063                 if (written == len)
2064                         break;
2065
2066                 to += mtd->writesize;
2067                 buf += thislen;
2068                 column = 0;
2069         }
2070
2071         ops->oobretlen = written;
2072
2073         return ret;
2074 }
2075
2076 /**
2077  * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2078  * @param mtd:          MTD device structure
2079  * @param to:           offset to write
2080  * @param ops:          oob operation description structure
2081  */
2082 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2083                              struct mtd_oob_ops *ops)
2084 {
2085         int ret;
2086
2087         switch (ops->mode) {
2088         case MTD_OPS_PLACE_OOB:
2089         case MTD_OPS_AUTO_OOB:
2090                 break;
2091         case MTD_OPS_RAW:
2092                 /* Not implemented yet */
2093         default:
2094                 return -EINVAL;
2095         }
2096
2097         onenand_get_device(mtd, FL_WRITING);
2098         if (ops->datbuf)
2099                 ret = onenand_write_ops_nolock(mtd, to, ops);
2100         else
2101                 ret = onenand_write_oob_nolock(mtd, to, ops);
2102         onenand_release_device(mtd);
2103
2104         return ret;
2105 }
2106
2107 /**
2108  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2109  * @param mtd           MTD device structure
2110  * @param ofs           offset from device start
2111  * @param allowbbt      1, if its allowed to access the bbt area
2112  *
2113  * Check, if the block is bad. Either by reading the bad block table or
2114  * calling of the scan function.
2115  */
2116 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2117 {
2118         struct onenand_chip *this = mtd->priv;
2119         struct bbm_info *bbm = this->bbm;
2120
2121         /* Return info from the table */
2122         return bbm->isbad_bbt(mtd, ofs, allowbbt);
2123 }
2124
2125
2126 static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2127                                            struct erase_info *instr)
2128 {
2129         struct onenand_chip *this = mtd->priv;
2130         loff_t addr = instr->addr;
2131         int len = instr->len;
2132         unsigned int block_size = (1 << this->erase_shift);
2133         int ret = 0;
2134
2135         while (len) {
2136                 this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2137                 ret = this->wait(mtd, FL_VERIFYING_ERASE);
2138                 if (ret) {
2139                         printk(KERN_ERR "%s: Failed verify, block %d\n",
2140                                __func__, onenand_block(this, addr));
2141                         instr->fail_addr = addr;
2142                         return -1;
2143                 }
2144                 len -= block_size;
2145                 addr += block_size;
2146         }
2147         return 0;
2148 }
2149
2150 /**
2151  * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
2152  * @param mtd           MTD device structure
2153  * @param instr         erase instruction
2154  * @param region        erase region
2155  *
2156  * Erase one or more blocks up to 64 block at a time
2157  */
2158 static int onenand_multiblock_erase(struct mtd_info *mtd,
2159                                     struct erase_info *instr,
2160                                     unsigned int block_size)
2161 {
2162         struct onenand_chip *this = mtd->priv;
2163         loff_t addr = instr->addr;
2164         int len = instr->len;
2165         int eb_count = 0;
2166         int ret = 0;
2167         int bdry_block = 0;
2168
2169         if (ONENAND_IS_DDP(this)) {
2170                 loff_t bdry_addr = this->chipsize >> 1;
2171                 if (addr < bdry_addr && (addr + len) > bdry_addr)
2172                         bdry_block = bdry_addr >> this->erase_shift;
2173         }
2174
2175         /* Pre-check bbs */
2176         while (len) {
2177                 /* Check if we have a bad block, we do not erase bad blocks */
2178                 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2179                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2180                                "at addr 0x%012llx\n",
2181                                __func__, (unsigned long long) addr);
2182                         return -EIO;
2183                 }
2184                 len -= block_size;
2185                 addr += block_size;
2186         }
2187
2188         len = instr->len;
2189         addr = instr->addr;
2190
2191         /* loop over 64 eb batches */
2192         while (len) {
2193                 struct erase_info verify_instr = *instr;
2194                 int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2195
2196                 verify_instr.addr = addr;
2197                 verify_instr.len = 0;
2198
2199                 /* do not cross chip boundary */
2200                 if (bdry_block) {
2201                         int this_block = (addr >> this->erase_shift);
2202
2203                         if (this_block < bdry_block) {
2204                                 max_eb_count = min(max_eb_count,
2205                                                    (bdry_block - this_block));
2206                         }
2207                 }
2208
2209                 eb_count = 0;
2210
2211                 while (len > block_size && eb_count < (max_eb_count - 1)) {
2212                         this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2213                                       addr, block_size);
2214                         onenand_invalidate_bufferram(mtd, addr, block_size);
2215
2216                         ret = this->wait(mtd, FL_PREPARING_ERASE);
2217                         if (ret) {
2218                                 printk(KERN_ERR "%s: Failed multiblock erase, "
2219                                        "block %d\n", __func__,
2220                                        onenand_block(this, addr));
2221                                 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2222                                 return -EIO;
2223                         }
2224
2225                         len -= block_size;
2226                         addr += block_size;
2227                         eb_count++;
2228                 }
2229
2230                 /* last block of 64-eb series */
2231                 cond_resched();
2232                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2233                 onenand_invalidate_bufferram(mtd, addr, block_size);
2234
2235                 ret = this->wait(mtd, FL_ERASING);
2236                 /* Check if it is write protected */
2237                 if (ret) {
2238                         printk(KERN_ERR "%s: Failed erase, block %d\n",
2239                                __func__, onenand_block(this, addr));
2240                         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2241                         return -EIO;
2242                 }
2243
2244                 len -= block_size;
2245                 addr += block_size;
2246                 eb_count++;
2247
2248                 /* verify */
2249                 verify_instr.len = eb_count * block_size;
2250                 if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2251                         instr->fail_addr = verify_instr.fail_addr;
2252                         return -EIO;
2253                 }
2254
2255         }
2256         return 0;
2257 }
2258
2259
2260 /**
2261  * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
2262  * @param mtd           MTD device structure
2263  * @param instr         erase instruction
2264  * @param region        erase region
2265  * @param block_size    erase block size
2266  *
2267  * Erase one or more blocks one block at a time
2268  */
2269 static int onenand_block_by_block_erase(struct mtd_info *mtd,
2270                                         struct erase_info *instr,
2271                                         struct mtd_erase_region_info *region,
2272                                         unsigned int block_size)
2273 {
2274         struct onenand_chip *this = mtd->priv;
2275         loff_t addr = instr->addr;
2276         int len = instr->len;
2277         loff_t region_end = 0;
2278         int ret = 0;
2279
2280         if (region) {
2281                 /* region is set for Flex-OneNAND */
2282                 region_end = region->offset + region->erasesize * region->numblocks;
2283         }
2284
2285         /* Loop through the blocks */
2286         while (len) {
2287                 cond_resched();
2288
2289                 /* Check if we have a bad block, we do not erase bad blocks */
2290                 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2291                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2292                                         "at addr 0x%012llx\n",
2293                                         __func__, (unsigned long long) addr);
2294                         return -EIO;
2295                 }
2296
2297                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2298
2299                 onenand_invalidate_bufferram(mtd, addr, block_size);
2300
2301                 ret = this->wait(mtd, FL_ERASING);
2302                 /* Check, if it is write protected */
2303                 if (ret) {
2304                         printk(KERN_ERR "%s: Failed erase, block %d\n",
2305                                 __func__, onenand_block(this, addr));
2306                         instr->fail_addr = addr;
2307                         return -EIO;
2308                 }
2309
2310                 len -= block_size;
2311                 addr += block_size;
2312
2313                 if (region && addr == region_end) {
2314                         if (!len)
2315                                 break;
2316                         region++;
2317
2318                         block_size = region->erasesize;
2319                         region_end = region->offset + region->erasesize * region->numblocks;
2320
2321                         if (len & (block_size - 1)) {
2322                                 /* FIXME: This should be handled at MTD partitioning level. */
2323                                 printk(KERN_ERR "%s: Unaligned address\n",
2324                                         __func__);
2325                                 return -EIO;
2326                         }
2327                 }
2328         }
2329         return 0;
2330 }
2331
2332 /**
2333  * onenand_erase - [MTD Interface] erase block(s)
2334  * @param mtd           MTD device structure
2335  * @param instr         erase instruction
2336  *
2337  * Erase one or more blocks
2338  */
2339 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2340 {
2341         struct onenand_chip *this = mtd->priv;
2342         unsigned int block_size;
2343         loff_t addr = instr->addr;
2344         loff_t len = instr->len;
2345         int ret = 0;
2346         struct mtd_erase_region_info *region = NULL;
2347         loff_t region_offset = 0;
2348
2349         pr_debug("%s: start=0x%012llx, len=%llu\n", __func__,
2350                         (unsigned long long)instr->addr,
2351                         (unsigned long long)instr->len);
2352
2353         if (FLEXONENAND(this)) {
2354                 /* Find the eraseregion of this address */
2355                 int i = flexonenand_region(mtd, addr);
2356
2357                 region = &mtd->eraseregions[i];
2358                 block_size = region->erasesize;
2359
2360                 /* Start address within region must align on block boundary.
2361                  * Erase region's start offset is always block start address.
2362                  */
2363                 region_offset = region->offset;
2364         } else
2365                 block_size = 1 << this->erase_shift;
2366
2367         /* Start address must align on block boundary */
2368         if (unlikely((addr - region_offset) & (block_size - 1))) {
2369                 printk(KERN_ERR "%s: Unaligned address\n", __func__);
2370                 return -EINVAL;
2371         }
2372
2373         /* Length must align on block boundary */
2374         if (unlikely(len & (block_size - 1))) {
2375                 printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2376                 return -EINVAL;
2377         }
2378
2379         /* Grab the lock and see if the device is available */
2380         onenand_get_device(mtd, FL_ERASING);
2381
2382         if (ONENAND_IS_4KB_PAGE(this) || region ||
2383             instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2384                 /* region is set for Flex-OneNAND (no mb erase) */
2385                 ret = onenand_block_by_block_erase(mtd, instr,
2386                                                    region, block_size);
2387         } else {
2388                 ret = onenand_multiblock_erase(mtd, instr, block_size);
2389         }
2390
2391         /* Deselect and wake up anyone waiting on the device */
2392         onenand_release_device(mtd);
2393
2394         return ret;
2395 }
2396
2397 /**
2398  * onenand_sync - [MTD Interface] sync
2399  * @param mtd           MTD device structure
2400  *
2401  * Sync is actually a wait for chip ready function
2402  */
2403 static void onenand_sync(struct mtd_info *mtd)
2404 {
2405         pr_debug("%s: called\n", __func__);
2406
2407         /* Grab the lock and see if the device is available */
2408         onenand_get_device(mtd, FL_SYNCING);
2409
2410         /* Release it and go back */
2411         onenand_release_device(mtd);
2412 }
2413
2414 /**
2415  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2416  * @param mtd           MTD device structure
2417  * @param ofs           offset relative to mtd start
2418  *
2419  * Check whether the block is bad
2420  */
2421 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2422 {
2423         int ret;
2424
2425         onenand_get_device(mtd, FL_READING);
2426         ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2427         onenand_release_device(mtd);
2428         return ret;
2429 }
2430
2431 /**
2432  * onenand_default_block_markbad - [DEFAULT] mark a block bad
2433  * @param mtd           MTD device structure
2434  * @param ofs           offset from device start
2435  *
2436  * This is the default implementation, which can be overridden by
2437  * a hardware specific driver.
2438  */
2439 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2440 {
2441         struct onenand_chip *this = mtd->priv;
2442         struct bbm_info *bbm = this->bbm;
2443         u_char buf[2] = {0, 0};
2444         struct mtd_oob_ops ops = {
2445                 .mode = MTD_OPS_PLACE_OOB,
2446                 .ooblen = 2,
2447                 .oobbuf = buf,
2448                 .ooboffs = 0,
2449         };
2450         int block;
2451
2452         /* Get block number */
2453         block = onenand_block(this, ofs);
2454         if (bbm->bbt)
2455                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2456
2457         /* We write two bytes, so we don't have to mess with 16-bit access */
2458         ofs += mtd->oobsize + (this->badblockpos & ~0x01);
2459         /* FIXME : What to do when marking SLC block in partition
2460          *         with MLC erasesize? For now, it is not advisable to
2461          *         create partitions containing both SLC and MLC regions.
2462          */
2463         return onenand_write_oob_nolock(mtd, ofs, &ops);
2464 }
2465
2466 /**
2467  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2468  * @param mtd           MTD device structure
2469  * @param ofs           offset relative to mtd start
2470  *
2471  * Mark the block as bad
2472  */
2473 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2474 {
2475         struct onenand_chip *this = mtd->priv;
2476         int ret;
2477
2478         ret = onenand_block_isbad(mtd, ofs);
2479         if (ret) {
2480                 /* If it was bad already, return success and do nothing */
2481                 if (ret > 0)
2482                         return 0;
2483                 return ret;
2484         }
2485
2486         onenand_get_device(mtd, FL_WRITING);
2487         ret = this->block_markbad(mtd, ofs);
2488         onenand_release_device(mtd);
2489         return ret;
2490 }
2491
2492 /**
2493  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2494  * @param mtd           MTD device structure
2495  * @param ofs           offset relative to mtd start
2496  * @param len           number of bytes to lock or unlock
2497  * @param cmd           lock or unlock command
2498  *
2499  * Lock or unlock one or more blocks
2500  */
2501 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2502 {
2503         struct onenand_chip *this = mtd->priv;
2504         int start, end, block, value, status;
2505         int wp_status_mask;
2506
2507         start = onenand_block(this, ofs);
2508         end = onenand_block(this, ofs + len) - 1;
2509
2510         if (cmd == ONENAND_CMD_LOCK)
2511                 wp_status_mask = ONENAND_WP_LS;
2512         else
2513                 wp_status_mask = ONENAND_WP_US;
2514
2515         /* Continuous lock scheme */
2516         if (this->options & ONENAND_HAS_CONT_LOCK) {
2517                 /* Set start block address */
2518                 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2519                 /* Set end block address */
2520                 this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
2521                 /* Write lock command */
2522                 this->command(mtd, cmd, 0, 0);
2523
2524                 /* There's no return value */
2525                 this->wait(mtd, FL_LOCKING);
2526
2527                 /* Sanity check */
2528                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2529                     & ONENAND_CTRL_ONGO)
2530                         continue;
2531
2532                 /* Check lock status */
2533                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2534                 if (!(status & wp_status_mask))
2535                         printk(KERN_ERR "%s: wp status = 0x%x\n",
2536                                 __func__, status);
2537
2538                 return 0;
2539         }
2540
2541         /* Block lock scheme */
2542         for (block = start; block < end + 1; block++) {
2543                 /* Set block address */
2544                 value = onenand_block_address(this, block);
2545                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2546                 /* Select DataRAM for DDP */
2547                 value = onenand_bufferram_address(this, block);
2548                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2549                 /* Set start block address */
2550                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2551                 /* Write lock command */
2552                 this->command(mtd, cmd, 0, 0);
2553
2554                 /* There's no return value */
2555                 this->wait(mtd, FL_LOCKING);
2556
2557                 /* Sanity check */
2558                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2559                     & ONENAND_CTRL_ONGO)
2560                         continue;
2561
2562                 /* Check lock status */
2563                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2564                 if (!(status & wp_status_mask))
2565                         printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2566                                 __func__, block, status);
2567         }
2568
2569         return 0;
2570 }
2571
2572 /**
2573  * onenand_lock - [MTD Interface] Lock block(s)
2574  * @param mtd           MTD device structure
2575  * @param ofs           offset relative to mtd start
2576  * @param len           number of bytes to unlock
2577  *
2578  * Lock one or more blocks
2579  */
2580 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2581 {
2582         int ret;
2583
2584         onenand_get_device(mtd, FL_LOCKING);
2585         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2586         onenand_release_device(mtd);
2587         return ret;
2588 }
2589
2590 /**
2591  * onenand_unlock - [MTD Interface] Unlock block(s)
2592  * @param mtd           MTD device structure
2593  * @param ofs           offset relative to mtd start
2594  * @param len           number of bytes to unlock
2595  *
2596  * Unlock one or more blocks
2597  */
2598 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2599 {
2600         int ret;
2601
2602         onenand_get_device(mtd, FL_LOCKING);
2603         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2604         onenand_release_device(mtd);
2605         return ret;
2606 }
2607
2608 /**
2609  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2610  * @param this          onenand chip data structure
2611  *
2612  * Check lock status
2613  */
2614 static int onenand_check_lock_status(struct onenand_chip *this)
2615 {
2616         unsigned int value, block, status;
2617         unsigned int end;
2618
2619         end = this->chipsize >> this->erase_shift;
2620         for (block = 0; block < end; block++) {
2621                 /* Set block address */
2622                 value = onenand_block_address(this, block);
2623                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2624                 /* Select DataRAM for DDP */
2625                 value = onenand_bufferram_address(this, block);
2626                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2627                 /* Set start block address */
2628                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2629
2630                 /* Check lock status */
2631                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2632                 if (!(status & ONENAND_WP_US)) {
2633                         printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2634                                 __func__, block, status);
2635                         return 0;
2636                 }
2637         }
2638
2639         return 1;
2640 }
2641
2642 /**
2643  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2644  * @param mtd           MTD device structure
2645  *
2646  * Unlock all blocks
2647  */
2648 static void onenand_unlock_all(struct mtd_info *mtd)
2649 {
2650         struct onenand_chip *this = mtd->priv;
2651         loff_t ofs = 0;
2652         loff_t len = mtd->size;
2653
2654         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2655                 /* Set start block address */
2656                 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2657                 /* Write unlock command */
2658                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2659
2660                 /* There's no return value */
2661                 this->wait(mtd, FL_LOCKING);
2662
2663                 /* Sanity check */
2664                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2665                     & ONENAND_CTRL_ONGO)
2666                         continue;
2667
2668                 /* Don't check lock status */
2669                 if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2670                         return;
2671
2672                 /* Check lock status */
2673                 if (onenand_check_lock_status(this))
2674                         return;
2675
2676                 /* Workaround for all block unlock in DDP */
2677                 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2678                         /* All blocks on another chip */
2679                         ofs = this->chipsize >> 1;
2680                         len = this->chipsize >> 1;
2681                 }
2682         }
2683
2684         onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2685 }
2686
2687 #ifdef CONFIG_MTD_ONENAND_OTP
2688
2689 /**
2690  * onenand_otp_command - Send OTP specific command to OneNAND device
2691  * @param mtd    MTD device structure
2692  * @param cmd    the command to be sent
2693  * @param addr   offset to read from or write to
2694  * @param len    number of bytes to read or write
2695  */
2696 static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2697                                 size_t len)
2698 {
2699         struct onenand_chip *this = mtd->priv;
2700         int value, block, page;
2701
2702         /* Address translation */
2703         switch (cmd) {
2704         case ONENAND_CMD_OTP_ACCESS:
2705                 block = (int) (addr >> this->erase_shift);
2706                 page = -1;
2707                 break;
2708
2709         default:
2710                 block = (int) (addr >> this->erase_shift);
2711                 page = (int) (addr >> this->page_shift);
2712
2713                 if (ONENAND_IS_2PLANE(this)) {
2714                         /* Make the even block number */
2715                         block &= ~1;
2716                         /* Is it the odd plane? */
2717                         if (addr & this->writesize)
2718                                 block++;
2719                         page >>= 1;
2720                 }
2721                 page &= this->page_mask;
2722                 break;
2723         }
2724
2725         if (block != -1) {
2726                 /* Write 'DFS, FBA' of Flash */
2727                 value = onenand_block_address(this, block);
2728                 this->write_word(value, this->base +
2729                                 ONENAND_REG_START_ADDRESS1);
2730         }
2731
2732         if (page != -1) {
2733                 /* Now we use page size operation */
2734                 int sectors = 4, count = 4;
2735                 int dataram;
2736
2737                 switch (cmd) {
2738                 default:
2739                         if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2740                                 cmd = ONENAND_CMD_2X_PROG;
2741                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
2742                         break;
2743                 }
2744
2745                 /* Write 'FPA, FSA' of Flash */
2746                 value = onenand_page_address(page, sectors);
2747                 this->write_word(value, this->base +
2748                                 ONENAND_REG_START_ADDRESS8);
2749
2750                 /* Write 'BSA, BSC' of DataRAM */
2751                 value = onenand_buffer_address(dataram, sectors, count);
2752                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2753         }
2754
2755         /* Interrupt clear */
2756         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2757
2758         /* Write command */
2759         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2760
2761         return 0;
2762 }
2763
2764 /**
2765  * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
2766  * @param mtd           MTD device structure
2767  * @param to            offset to write to
2768  * @param len           number of bytes to write
2769  * @param retlen        pointer to variable to store the number of written bytes
2770  * @param buf           the data to write
2771  *
2772  * OneNAND write out-of-band only for OTP
2773  */
2774 static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2775                                     struct mtd_oob_ops *ops)
2776 {
2777         struct onenand_chip *this = mtd->priv;
2778         int column, ret = 0, oobsize;
2779         int written = 0;
2780         u_char *oobbuf;
2781         size_t len = ops->ooblen;
2782         const u_char *buf = ops->oobbuf;
2783         int block, value, status;
2784
2785         to += ops->ooboffs;
2786
2787         /* Initialize retlen, in case of early exit */
2788         ops->oobretlen = 0;
2789
2790         oobsize = mtd->oobsize;
2791
2792         column = to & (mtd->oobsize - 1);
2793
2794         oobbuf = this->oob_buf;
2795
2796         /* Loop until all data write */
2797         while (written < len) {
2798                 int thislen = min_t(int, oobsize, len - written);
2799
2800                 cond_resched();
2801
2802                 block = (int) (to >> this->erase_shift);
2803                 /*
2804                  * Write 'DFS, FBA' of Flash
2805                  * Add: F100h DQ=DFS, FBA
2806                  */
2807
2808                 value = onenand_block_address(this, block);
2809                 this->write_word(value, this->base +
2810                                 ONENAND_REG_START_ADDRESS1);
2811
2812                 /*
2813                  * Select DataRAM for DDP
2814                  * Add: F101h DQ=DBS
2815                  */
2816
2817                 value = onenand_bufferram_address(this, block);
2818                 this->write_word(value, this->base +
2819                                 ONENAND_REG_START_ADDRESS2);
2820                 ONENAND_SET_NEXT_BUFFERRAM(this);
2821
2822                 /*
2823                  * Enter OTP access mode
2824                  */
2825                 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2826                 this->wait(mtd, FL_OTPING);
2827
2828                 /* We send data to spare ram with oobsize
2829                  * to prevent byte access */
2830                 memcpy(oobbuf + column, buf, thislen);
2831
2832                 /*
2833                  * Write Data into DataRAM
2834                  * Add: 8th Word
2835                  * in sector0/spare/page0
2836                  * DQ=XXFCh
2837                  */
2838                 this->write_bufferram(mtd, ONENAND_SPARERAM,
2839                                         oobbuf, 0, mtd->oobsize);
2840
2841                 onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2842                 onenand_update_bufferram(mtd, to, 0);
2843                 if (ONENAND_IS_2PLANE(this)) {
2844                         ONENAND_SET_BUFFERRAM1(this);
2845                         onenand_update_bufferram(mtd, to + this->writesize, 0);
2846                 }
2847
2848                 ret = this->wait(mtd, FL_WRITING);
2849                 if (ret) {
2850                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2851                         break;
2852                 }
2853
2854                 /* Exit OTP access mode */
2855                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2856                 this->wait(mtd, FL_RESETING);
2857
2858                 status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2859                 status &= 0x60;
2860
2861                 if (status == 0x60) {
2862                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2863                         printk(KERN_DEBUG "1st Block\tLOCKED\n");
2864                         printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2865                 } else if (status == 0x20) {
2866                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2867                         printk(KERN_DEBUG "1st Block\tLOCKED\n");
2868                         printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
2869                 } else if (status == 0x40) {
2870                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2871                         printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
2872                         printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2873                 } else {
2874                         printk(KERN_DEBUG "Reboot to check\n");
2875                 }
2876
2877                 written += thislen;
2878                 if (written == len)
2879                         break;
2880
2881                 to += mtd->writesize;
2882                 buf += thislen;
2883                 column = 0;
2884         }
2885
2886         ops->oobretlen = written;
2887
2888         return ret;
2889 }
2890
2891 /* Internal OTP operation */
2892 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
2893                 size_t *retlen, u_char *buf);
2894
2895 /**
2896  * do_otp_read - [DEFAULT] Read OTP block area
2897  * @param mtd           MTD device structure
2898  * @param from          The offset to read
2899  * @param len           number of bytes to read
2900  * @param retlen        pointer to variable to store the number of readbytes
2901  * @param buf           the databuffer to put/get data
2902  *
2903  * Read OTP block area.
2904  */
2905 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
2906                 size_t *retlen, u_char *buf)
2907 {
2908         struct onenand_chip *this = mtd->priv;
2909         struct mtd_oob_ops ops = {
2910                 .len    = len,
2911                 .ooblen = 0,
2912                 .datbuf = buf,
2913                 .oobbuf = NULL,
2914         };
2915         int ret;
2916
2917         /* Enter OTP access mode */
2918         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2919         this->wait(mtd, FL_OTPING);
2920
2921         ret = ONENAND_IS_4KB_PAGE(this) ?
2922                 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
2923                 onenand_read_ops_nolock(mtd, from, &ops);
2924
2925         /* Exit OTP access mode */
2926         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2927         this->wait(mtd, FL_RESETING);
2928
2929         return ret;
2930 }
2931
2932 /**
2933  * do_otp_write - [DEFAULT] Write OTP block area
2934  * @param mtd           MTD device structure
2935  * @param to            The offset to write
2936  * @param len           number of bytes to write
2937  * @param retlen        pointer to variable to store the number of write bytes
2938  * @param buf           the databuffer to put/get data
2939  *
2940  * Write OTP block area.
2941  */
2942 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
2943                 size_t *retlen, u_char *buf)
2944 {
2945         struct onenand_chip *this = mtd->priv;
2946         unsigned char *pbuf = buf;
2947         int ret;
2948         struct mtd_oob_ops ops;
2949
2950         /* Force buffer page aligned */
2951         if (len < mtd->writesize) {
2952                 memcpy(this->page_buf, buf, len);
2953                 memset(this->page_buf + len, 0xff, mtd->writesize - len);
2954                 pbuf = this->page_buf;
2955                 len = mtd->writesize;
2956         }
2957
2958         /* Enter OTP access mode */
2959         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2960         this->wait(mtd, FL_OTPING);
2961
2962         ops.len = len;
2963         ops.ooblen = 0;
2964         ops.datbuf = pbuf;
2965         ops.oobbuf = NULL;
2966         ret = onenand_write_ops_nolock(mtd, to, &ops);
2967         *retlen = ops.retlen;
2968
2969         /* Exit OTP access mode */
2970         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2971         this->wait(mtd, FL_RESETING);
2972
2973         return ret;
2974 }
2975
2976 /**
2977  * do_otp_lock - [DEFAULT] Lock OTP block area
2978  * @param mtd           MTD device structure
2979  * @param from          The offset to lock
2980  * @param len           number of bytes to lock
2981  * @param retlen        pointer to variable to store the number of lock bytes
2982  * @param buf           the databuffer to put/get data
2983  *
2984  * Lock OTP block area.
2985  */
2986 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
2987                 size_t *retlen, u_char *buf)
2988 {
2989         struct onenand_chip *this = mtd->priv;
2990         struct mtd_oob_ops ops;
2991         int ret;
2992
2993         if (FLEXONENAND(this)) {
2994
2995                 /* Enter OTP access mode */
2996                 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2997                 this->wait(mtd, FL_OTPING);
2998                 /*
2999                  * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3000                  * main area of page 49.
3001                  */
3002                 ops.len = mtd->writesize;
3003                 ops.ooblen = 0;
3004                 ops.datbuf = buf;
3005                 ops.oobbuf = NULL;
3006                 ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
3007                 *retlen = ops.retlen;
3008
3009                 /* Exit OTP access mode */
3010                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3011                 this->wait(mtd, FL_RESETING);
3012         } else {
3013                 ops.mode = MTD_OPS_PLACE_OOB;
3014                 ops.ooblen = len;
3015                 ops.oobbuf = buf;
3016                 ops.ooboffs = 0;
3017                 ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3018                 *retlen = ops.oobretlen;
3019         }
3020
3021         return ret;
3022 }
3023
3024 /**
3025  * onenand_otp_walk - [DEFAULT] Handle OTP operation
3026  * @param mtd           MTD device structure
3027  * @param from          The offset to read/write
3028  * @param len           number of bytes to read/write
3029  * @param retlen        pointer to variable to store the number of read bytes
3030  * @param buf           the databuffer to put/get data
3031  * @param action        do given action
3032  * @param mode          specify user and factory
3033  *
3034  * Handle OTP operation.
3035  */
3036 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3037                         size_t *retlen, u_char *buf,
3038                         otp_op_t action, int mode)
3039 {
3040         struct onenand_chip *this = mtd->priv;
3041         int otp_pages;
3042         int density;
3043         int ret = 0;
3044
3045         *retlen = 0;
3046
3047         density = onenand_get_density(this->device_id);
3048         if (density < ONENAND_DEVICE_DENSITY_512Mb)
3049                 otp_pages = 20;
3050         else
3051                 otp_pages = 50;
3052
3053         if (mode == MTD_OTP_FACTORY) {
3054                 from += mtd->writesize * otp_pages;
3055                 otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3056         }
3057
3058         /* Check User/Factory boundary */
3059         if (mode == MTD_OTP_USER) {
3060                 if (mtd->writesize * otp_pages < from + len)
3061                         return 0;
3062         } else {
3063                 if (mtd->writesize * otp_pages <  len)
3064                         return 0;
3065         }
3066
3067         onenand_get_device(mtd, FL_OTPING);
3068         while (len > 0 && otp_pages > 0) {
3069                 if (!action) {  /* OTP Info functions */
3070                         struct otp_info *otpinfo;
3071
3072                         len -= sizeof(struct otp_info);
3073                         if (len <= 0) {
3074                                 ret = -ENOSPC;
3075                                 break;
3076                         }
3077
3078                         otpinfo = (struct otp_info *) buf;
3079                         otpinfo->start = from;
3080                         otpinfo->length = mtd->writesize;
3081                         otpinfo->locked = 0;
3082
3083                         from += mtd->writesize;
3084                         buf += sizeof(struct otp_info);
3085                         *retlen += sizeof(struct otp_info);
3086                 } else {
3087                         size_t tmp_retlen;
3088
3089                         ret = action(mtd, from, len, &tmp_retlen, buf);
3090                         if (ret)
3091                                 break;
3092
3093                         buf += tmp_retlen;
3094                         len -= tmp_retlen;
3095                         *retlen += tmp_retlen;
3096
3097                 }
3098                 otp_pages--;
3099         }
3100         onenand_release_device(mtd);
3101
3102         return ret;
3103 }
3104
3105 /**
3106  * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3107  * @param mtd           MTD device structure
3108  * @param len           number of bytes to read
3109  * @param retlen        pointer to variable to store the number of read bytes
3110  * @param buf           the databuffer to put/get data
3111  *
3112  * Read factory OTP info.
3113  */
3114 static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len,
3115                                       size_t *retlen, struct otp_info *buf)
3116 {
3117         return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3118                                 MTD_OTP_FACTORY);
3119 }
3120
3121 /**
3122  * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3123  * @param mtd           MTD device structure
3124  * @param from          The offset to read
3125  * @param len           number of bytes to read
3126  * @param retlen        pointer to variable to store the number of read bytes
3127  * @param buf           the databuffer to put/get data
3128  *
3129  * Read factory OTP area.
3130  */
3131 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3132                         size_t len, size_t *retlen, u_char *buf)
3133 {
3134         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3135 }
3136
3137 /**
3138  * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3139  * @param mtd           MTD device structure
3140  * @param retlen        pointer to variable to store the number of read bytes
3141  * @param len           number of bytes to read
3142  * @param buf           the databuffer to put/get data
3143  *
3144  * Read user OTP info.
3145  */
3146 static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len,
3147                                       size_t *retlen, struct otp_info *buf)
3148 {
3149         return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3150                                 MTD_OTP_USER);
3151 }
3152
3153 /**
3154  * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3155  * @param mtd           MTD device structure
3156  * @param from          The offset to read
3157  * @param len           number of bytes to read
3158  * @param retlen        pointer to variable to store the number of read bytes
3159  * @param buf           the databuffer to put/get data
3160  *
3161  * Read user OTP area.
3162  */
3163 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3164                         size_t len, size_t *retlen, u_char *buf)
3165 {
3166         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3167 }
3168
3169 /**
3170  * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3171  * @param mtd           MTD device structure
3172  * @param from          The offset to write
3173  * @param len           number of bytes to write
3174  * @param retlen        pointer to variable to store the number of write bytes
3175  * @param buf           the databuffer to put/get data
3176  *
3177  * Write user OTP area.
3178  */
3179 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3180                         size_t len, size_t *retlen, u_char *buf)
3181 {
3182         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
3183 }
3184
3185 /**
3186  * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3187  * @param mtd           MTD device structure
3188  * @param from          The offset to lock
3189  * @param len           number of bytes to unlock
3190  *
3191  * Write lock mark on spare area in page 0 in OTP block
3192  */
3193 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3194                         size_t len)
3195 {
3196         struct onenand_chip *this = mtd->priv;
3197         u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3198         size_t retlen;
3199         int ret;
3200         unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3201
3202         memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3203                                                  : mtd->oobsize);
3204         /*
3205          * Write lock mark to 8th word of sector0 of page0 of the spare0.
3206          * We write 16 bytes spare area instead of 2 bytes.
3207          * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3208          * main area of page 49.
3209          */
3210
3211         from = 0;
3212         len = FLEXONENAND(this) ? mtd->writesize : 16;
3213
3214         /*
3215          * Note: OTP lock operation
3216          *       OTP block : 0xXXFC                     XX 1111 1100
3217          *       1st block : 0xXXF3 (If chip support)   XX 1111 0011
3218          *       Both      : 0xXXF0 (If chip support)   XX 1111 0000
3219          */
3220         if (FLEXONENAND(this))
3221                 otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3222
3223         /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3224         if (otp == 1)
3225                 buf[otp_lock_offset] = 0xFC;
3226         else if (otp == 2)
3227                 buf[otp_lock_offset] = 0xF3;
3228         else if (otp == 3)
3229                 buf[otp_lock_offset] = 0xF0;
3230         else if (otp != 0)
3231                 printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3232
3233         ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3234
3235         return ret ? : retlen;
3236 }
3237
3238 #endif  /* CONFIG_MTD_ONENAND_OTP */
3239
3240 /**
3241  * onenand_check_features - Check and set OneNAND features
3242  * @param mtd           MTD data structure
3243  *
3244  * Check and set OneNAND features
3245  * - lock scheme
3246  * - two plane
3247  */
3248 static void onenand_check_features(struct mtd_info *mtd)
3249 {
3250         struct onenand_chip *this = mtd->priv;
3251         unsigned int density, process, numbufs;
3252
3253         /* Lock scheme depends on density and process */
3254         density = onenand_get_density(this->device_id);
3255         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3256         numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
3257
3258         /* Lock scheme */
3259         switch (density) {
3260         case ONENAND_DEVICE_DENSITY_8Gb:
3261                 this->options |= ONENAND_HAS_NOP_1;
3262                 /* fall through */
3263         case ONENAND_DEVICE_DENSITY_4Gb:
3264                 if (ONENAND_IS_DDP(this))
3265                         this->options |= ONENAND_HAS_2PLANE;
3266                 else if (numbufs == 1) {
3267                         this->options |= ONENAND_HAS_4KB_PAGE;
3268                         this->options |= ONENAND_HAS_CACHE_PROGRAM;
3269                         /*
3270                          * There are two different 4KiB pagesize chips
3271                          * and no way to detect it by H/W config values.
3272                          *
3273                          * To detect the correct NOP for each chips,
3274                          * It should check the version ID as workaround.
3275                          *
3276                          * Now it has as following
3277                          * KFM4G16Q4M has NOP 4 with version ID 0x0131
3278                          * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
3279                          */
3280                         if ((this->version_id & 0xf) == 0xe)
3281                                 this->options |= ONENAND_HAS_NOP_1;
3282                 }
3283                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3284                 break;
3285
3286         case ONENAND_DEVICE_DENSITY_2Gb:
3287                 /* 2Gb DDP does not have 2 plane */
3288                 if (!ONENAND_IS_DDP(this))
3289                         this->options |= ONENAND_HAS_2PLANE;
3290                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3291                 break;
3292
3293         case ONENAND_DEVICE_DENSITY_1Gb:
3294                 /* A-Die has all block unlock */
3295                 if (process)
3296                         this->options |= ONENAND_HAS_UNLOCK_ALL;
3297                 break;
3298
3299         default:
3300                 /* Some OneNAND has continuous lock scheme */
3301                 if (!process)
3302                         this->options |= ONENAND_HAS_CONT_LOCK;
3303                 break;
3304         }
3305
3306         /* The MLC has 4KiB pagesize. */
3307         if (ONENAND_IS_MLC(this))
3308                 this->options |= ONENAND_HAS_4KB_PAGE;
3309
3310         if (ONENAND_IS_4KB_PAGE(this))
3311                 this->options &= ~ONENAND_HAS_2PLANE;
3312
3313         if (FLEXONENAND(this)) {
3314                 this->options &= ~ONENAND_HAS_CONT_LOCK;
3315                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3316         }
3317
3318         if (this->options & ONENAND_HAS_CONT_LOCK)
3319                 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3320         if (this->options & ONENAND_HAS_UNLOCK_ALL)
3321                 printk(KERN_DEBUG "Chip support all block unlock\n");
3322         if (this->options & ONENAND_HAS_2PLANE)
3323                 printk(KERN_DEBUG "Chip has 2 plane\n");
3324         if (this->options & ONENAND_HAS_4KB_PAGE)
3325                 printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3326         if (this->options & ONENAND_HAS_CACHE_PROGRAM)
3327                 printk(KERN_DEBUG "Chip has cache program feature\n");
3328 }
3329
3330 /**
3331  * onenand_print_device_info - Print device & version ID
3332  * @param device        device ID
3333  * @param version       version ID
3334  *
3335  * Print device & version ID
3336  */
3337 static void onenand_print_device_info(int device, int version)
3338 {
3339         int vcc, demuxed, ddp, density, flexonenand;
3340
3341         vcc = device & ONENAND_DEVICE_VCC_MASK;
3342         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3343         ddp = device & ONENAND_DEVICE_IS_DDP;
3344         density = onenand_get_density(device);
3345         flexonenand = device & DEVICE_IS_FLEXONENAND;
3346         printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3347                 demuxed ? "" : "Muxed ",
3348                 flexonenand ? "Flex-" : "",
3349                 ddp ? "(DDP)" : "",
3350                 (16 << density),
3351                 vcc ? "2.65/3.3" : "1.8",
3352                 device);
3353         printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3354 }
3355
3356 static const struct onenand_manufacturers onenand_manuf_ids[] = {
3357         {ONENAND_MFR_SAMSUNG, "Samsung"},
3358         {ONENAND_MFR_NUMONYX, "Numonyx"},
3359 };
3360
3361 /**
3362  * onenand_check_maf - Check manufacturer ID
3363  * @param manuf         manufacturer ID
3364  *
3365  * Check manufacturer ID
3366  */
3367 static int onenand_check_maf(int manuf)
3368 {
3369         int size = ARRAY_SIZE(onenand_manuf_ids);
3370         char *name;
3371         int i;
3372
3373         for (i = 0; i < size; i++)
3374                 if (manuf == onenand_manuf_ids[i].id)
3375                         break;
3376
3377         if (i < size)
3378                 name = onenand_manuf_ids[i].name;
3379         else
3380                 name = "Unknown";
3381
3382         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3383
3384         return (i == size);
3385 }
3386
3387 /**
3388 * flexonenand_get_boundary      - Reads the SLC boundary
3389 * @param onenand_info           - onenand info structure
3390 **/
3391 static int flexonenand_get_boundary(struct mtd_info *mtd)
3392 {
3393         struct onenand_chip *this = mtd->priv;
3394         unsigned die, bdry;
3395         int syscfg, locked;
3396
3397         /* Disable ECC */
3398         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3399         this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3400
3401         for (die = 0; die < this->dies; die++) {
3402                 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3403                 this->wait(mtd, FL_SYNCING);
3404
3405                 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3406                 this->wait(mtd, FL_READING);
3407
3408                 bdry = this->read_word(this->base + ONENAND_DATARAM);
3409                 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3410                         locked = 0;
3411                 else
3412                         locked = 1;
3413                 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3414
3415                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3416                 this->wait(mtd, FL_RESETING);
3417
3418                 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3419                        this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3420         }
3421
3422         /* Enable ECC */
3423         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3424         return 0;
3425 }
3426
3427 /**
3428  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3429  *                        boundary[], diesize[], mtd->size, mtd->erasesize
3430  * @param mtd           - MTD device structure
3431  */
3432 static void flexonenand_get_size(struct mtd_info *mtd)
3433 {
3434         struct onenand_chip *this = mtd->priv;
3435         int die, i, eraseshift, density;
3436         int blksperdie, maxbdry;
3437         loff_t ofs;
3438
3439         density = onenand_get_density(this->device_id);
3440         blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3441         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3442         maxbdry = blksperdie - 1;
3443         eraseshift = this->erase_shift - 1;
3444
3445         mtd->numeraseregions = this->dies << 1;
3446
3447         /* This fills up the device boundary */
3448         flexonenand_get_boundary(mtd);
3449         die = ofs = 0;
3450         i = -1;
3451         for (; die < this->dies; die++) {
3452                 if (!die || this->boundary[die-1] != maxbdry) {
3453                         i++;
3454                         mtd->eraseregions[i].offset = ofs;
3455                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
3456                         mtd->eraseregions[i].numblocks =
3457                                                         this->boundary[die] + 1;
3458                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
3459                         eraseshift++;
3460                 } else {
3461                         mtd->numeraseregions -= 1;
3462                         mtd->eraseregions[i].numblocks +=
3463                                                         this->boundary[die] + 1;
3464                         ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3465                 }
3466                 if (this->boundary[die] != maxbdry) {
3467                         i++;
3468                         mtd->eraseregions[i].offset = ofs;
3469                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
3470                         mtd->eraseregions[i].numblocks = maxbdry ^
3471                                                          this->boundary[die];
3472                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
3473                         eraseshift--;
3474                 } else
3475                         mtd->numeraseregions -= 1;
3476         }
3477
3478         /* Expose MLC erase size except when all blocks are SLC */
3479         mtd->erasesize = 1 << this->erase_shift;
3480         if (mtd->numeraseregions == 1)
3481                 mtd->erasesize >>= 1;
3482
3483         printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3484         for (i = 0; i < mtd->numeraseregions; i++)
3485                 printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3486                         " numblocks: %04u]\n",
3487                         (unsigned int) mtd->eraseregions[i].offset,
3488                         mtd->eraseregions[i].erasesize,
3489                         mtd->eraseregions[i].numblocks);
3490
3491         for (die = 0, mtd->size = 0; die < this->dies; die++) {
3492                 this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3493                 this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3494                                                  << (this->erase_shift - 1);
3495                 mtd->size += this->diesize[die];
3496         }
3497 }
3498
3499 /**
3500  * flexonenand_check_blocks_erased - Check if blocks are erased
3501  * @param mtd_info      - mtd info structure
3502  * @param start         - first erase block to check
3503  * @param end           - last erase block to check
3504  *
3505  * Converting an unerased block from MLC to SLC
3506  * causes byte values to change. Since both data and its ECC
3507  * have changed, reads on the block give uncorrectable error.
3508  * This might lead to the block being detected as bad.
3509  *
3510  * Avoid this by ensuring that the block to be converted is
3511  * erased.
3512  */
3513 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3514 {
3515         struct onenand_chip *this = mtd->priv;
3516         int i, ret;
3517         int block;
3518         struct mtd_oob_ops ops = {
3519                 .mode = MTD_OPS_PLACE_OOB,
3520                 .ooboffs = 0,
3521                 .ooblen = mtd->oobsize,
3522                 .datbuf = NULL,
3523                 .oobbuf = this->oob_buf,
3524         };
3525         loff_t addr;
3526
3527         printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3528
3529         for (block = start; block <= end; block++) {
3530                 addr = flexonenand_addr(this, block);
3531                 if (onenand_block_isbad_nolock(mtd, addr, 0))
3532                         continue;
3533
3534                 /*
3535                  * Since main area write results in ECC write to spare,
3536                  * it is sufficient to check only ECC bytes for change.
3537                  */
3538                 ret = onenand_read_oob_nolock(mtd, addr, &ops);
3539                 if (ret)
3540                         return ret;
3541
3542                 for (i = 0; i < mtd->oobsize; i++)
3543                         if (this->oob_buf[i] != 0xff)
3544                                 break;
3545
3546                 if (i != mtd->oobsize) {
3547                         printk(KERN_WARNING "%s: Block %d not erased.\n",
3548                                 __func__, block);
3549                         return 1;
3550                 }
3551         }
3552
3553         return 0;
3554 }
3555
3556 /**
3557  * flexonenand_set_boundary     - Writes the SLC boundary
3558  * @param mtd                   - mtd info structure
3559  */
3560 static int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3561                                     int boundary, int lock)
3562 {
3563         struct onenand_chip *this = mtd->priv;
3564         int ret, density, blksperdie, old, new, thisboundary;
3565         loff_t addr;
3566
3567         /* Change only once for SDP Flex-OneNAND */
3568         if (die && (!ONENAND_IS_DDP(this)))
3569                 return 0;
3570
3571         /* boundary value of -1 indicates no required change */
3572         if (boundary < 0 || boundary == this->boundary[die])
3573                 return 0;
3574
3575         density = onenand_get_density(this->device_id);
3576         blksperdie = ((16 << density) << 20) >> this->erase_shift;
3577         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3578
3579         if (boundary >= blksperdie) {
3580                 printk(KERN_ERR "%s: Invalid boundary value. "
3581                                 "Boundary not changed.\n", __func__);
3582                 return -EINVAL;
3583         }
3584
3585         /* Check if converting blocks are erased */
3586         old = this->boundary[die] + (die * this->density_mask);
3587         new = boundary + (die * this->density_mask);
3588         ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3589         if (ret) {
3590                 printk(KERN_ERR "%s: Please erase blocks "
3591                                 "before boundary change\n", __func__);
3592                 return ret;
3593         }
3594
3595         this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3596         this->wait(mtd, FL_SYNCING);
3597
3598         /* Check is boundary is locked */
3599         this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3600         this->wait(mtd, FL_READING);
3601
3602         thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3603         if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3604                 printk(KERN_ERR "%s: boundary locked\n", __func__);
3605                 ret = 1;
3606                 goto out;
3607         }
3608
3609         printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3610                         die, boundary, lock ? "(Locked)" : "(Unlocked)");
3611
3612         addr = die ? this->diesize[0] : 0;
3613
3614         boundary &= FLEXONENAND_PI_MASK;
3615         boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3616
3617         this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3618         ret = this->wait(mtd, FL_ERASING);
3619         if (ret) {
3620                 printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3621                        __func__, die);
3622                 goto out;
3623         }
3624
3625         this->write_word(boundary, this->base + ONENAND_DATARAM);
3626         this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3627         ret = this->wait(mtd, FL_WRITING);
3628         if (ret) {
3629                 printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3630                         __func__, die);
3631                 goto out;
3632         }
3633
3634         this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3635         ret = this->wait(mtd, FL_WRITING);
3636 out:
3637         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3638         this->wait(mtd, FL_RESETING);
3639         if (!ret)
3640                 /* Recalculate device size on boundary change*/
3641                 flexonenand_get_size(mtd);
3642
3643         return ret;
3644 }
3645
3646 /**
3647  * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3648  * @param mtd           MTD device structure
3649  *
3650  * OneNAND detection method:
3651  *   Compare the values from command with ones from register
3652  */
3653 static int onenand_chip_probe(struct mtd_info *mtd)
3654 {
3655         struct onenand_chip *this = mtd->priv;
3656         int bram_maf_id, bram_dev_id, maf_id, dev_id;
3657         int syscfg;
3658
3659         /* Save system configuration 1 */
3660         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3661         /* Clear Sync. Burst Read mode to read BootRAM */
3662         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3663
3664         /* Send the command for reading device ID from BootRAM */
3665         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3666
3667         /* Read manufacturer and device IDs from BootRAM */
3668         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3669         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3670
3671         /* Reset OneNAND to read default register values */
3672         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3673         /* Wait reset */
3674         this->wait(mtd, FL_RESETING);
3675
3676         /* Restore system configuration 1 */
3677         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3678
3679         /* Check manufacturer ID */
3680         if (onenand_check_maf(bram_maf_id))
3681                 return -ENXIO;
3682
3683         /* Read manufacturer and device IDs from Register */
3684         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3685         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3686
3687         /* Check OneNAND device */
3688         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3689                 return -ENXIO;
3690
3691         return 0;
3692 }
3693
3694 /**
3695  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3696  * @param mtd           MTD device structure
3697  */
3698 static int onenand_probe(struct mtd_info *mtd)
3699 {
3700         struct onenand_chip *this = mtd->priv;
3701         int dev_id, ver_id;
3702         int density;
3703         int ret;
3704
3705         ret = this->chip_probe(mtd);
3706         if (ret)
3707                 return ret;
3708
3709         /* Device and version IDs from Register */
3710         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3711         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3712         this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3713
3714         /* Flash device information */
3715         onenand_print_device_info(dev_id, ver_id);
3716         this->device_id = dev_id;
3717         this->version_id = ver_id;
3718
3719         /* Check OneNAND features */
3720         onenand_check_features(mtd);
3721
3722         density = onenand_get_density(dev_id);
3723         if (FLEXONENAND(this)) {
3724                 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3725                 /* Maximum possible erase regions */
3726                 mtd->numeraseregions = this->dies << 1;
3727                 mtd->eraseregions =
3728                         kcalloc(this->dies << 1,
3729                                 sizeof(struct mtd_erase_region_info),
3730                                 GFP_KERNEL);
3731                 if (!mtd->eraseregions)
3732                         return -ENOMEM;
3733         }
3734
3735         /*
3736          * For Flex-OneNAND, chipsize represents maximum possible device size.
3737          * mtd->size represents the actual device size.
3738          */
3739         this->chipsize = (16 << density) << 20;
3740
3741         /* OneNAND page size & block size */
3742         /* The data buffer size is equal to page size */
3743         mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3744         /* We use the full BufferRAM */
3745         if (ONENAND_IS_4KB_PAGE(this))
3746                 mtd->writesize <<= 1;
3747
3748         mtd->oobsize = mtd->writesize >> 5;
3749         /* Pages per a block are always 64 in OneNAND */
3750         mtd->erasesize = mtd->writesize << 6;
3751         /*
3752          * Flex-OneNAND SLC area has 64 pages per block.
3753          * Flex-OneNAND MLC area has 128 pages per block.
3754          * Expose MLC erase size to find erase_shift and page_mask.
3755          */
3756         if (FLEXONENAND(this))
3757                 mtd->erasesize <<= 1;
3758
3759         this->erase_shift = ffs(mtd->erasesize) - 1;
3760         this->page_shift = ffs(mtd->writesize) - 1;
3761         this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3762         /* Set density mask. it is used for DDP */
3763         if (ONENAND_IS_DDP(this))
3764                 this->density_mask = this->chipsize >> (this->erase_shift + 1);
3765         /* It's real page size */
3766         this->writesize = mtd->writesize;
3767
3768         /* REVISIT: Multichip handling */
3769
3770         if (FLEXONENAND(this))
3771                 flexonenand_get_size(mtd);
3772         else
3773                 mtd->size = this->chipsize;
3774
3775         /*
3776          * We emulate the 4KiB page and 256KiB erase block size
3777          * But oobsize is still 64 bytes.
3778          * It is only valid if you turn on 2X program support,
3779          * Otherwise it will be ignored by compiler.
3780          */
3781         if (ONENAND_IS_2PLANE(this)) {
3782                 mtd->writesize <<= 1;
3783                 mtd->erasesize <<= 1;
3784         }
3785
3786         return 0;
3787 }
3788
3789 /**
3790  * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3791  * @param mtd           MTD device structure
3792  */
3793 static int onenand_suspend(struct mtd_info *mtd)
3794 {
3795         return onenand_get_device(mtd, FL_PM_SUSPENDED);
3796 }
3797
3798 /**
3799  * onenand_resume - [MTD Interface] Resume the OneNAND flash
3800  * @param mtd           MTD device structure
3801  */
3802 static void onenand_resume(struct mtd_info *mtd)
3803 {
3804         struct onenand_chip *this = mtd->priv;
3805
3806         if (this->state == FL_PM_SUSPENDED)
3807                 onenand_release_device(mtd);
3808         else
3809                 printk(KERN_ERR "%s: resume() called for the chip which is not "
3810                                 "in suspended state\n", __func__);
3811 }
3812
3813 /**
3814  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3815  * @param mtd           MTD device structure
3816  * @param maxchips      Number of chips to scan for
3817  *
3818  * This fills out all the not initialized function pointers
3819  * with the defaults.
3820  * The flash ID is read and the mtd/chip structures are
3821  * filled with the appropriate values.
3822  */
3823 int onenand_scan(struct mtd_info *mtd, int maxchips)
3824 {
3825         int i, ret;
3826         struct onenand_chip *this = mtd->priv;
3827
3828         if (!this->read_word)
3829                 this->read_word = onenand_readw;
3830         if (!this->write_word)
3831                 this->write_word = onenand_writew;
3832
3833         if (!this->command)
3834                 this->command = onenand_command;
3835         if (!this->wait)
3836                 onenand_setup_wait(mtd);
3837         if (!this->bbt_wait)
3838                 this->bbt_wait = onenand_bbt_wait;
3839         if (!this->unlock_all)
3840                 this->unlock_all = onenand_unlock_all;
3841
3842         if (!this->chip_probe)
3843                 this->chip_probe = onenand_chip_probe;
3844
3845         if (!this->read_bufferram)
3846                 this->read_bufferram = onenand_read_bufferram;
3847         if (!this->write_bufferram)
3848                 this->write_bufferram = onenand_write_bufferram;
3849
3850         if (!this->block_markbad)
3851                 this->block_markbad = onenand_default_block_markbad;
3852         if (!this->scan_bbt)
3853                 this->scan_bbt = onenand_default_bbt;
3854
3855         if (onenand_probe(mtd))
3856                 return -ENXIO;
3857
3858         /* Set Sync. Burst Read after probing */
3859         if (this->mmcontrol) {
3860                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3861                 this->read_bufferram = onenand_sync_read_bufferram;
3862         }
3863
3864         /* Allocate buffers, if necessary */
3865         if (!this->page_buf) {
3866                 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3867                 if (!this->page_buf)
3868                         return -ENOMEM;
3869 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3870                 this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3871                 if (!this->verify_buf) {
3872                         kfree(this->page_buf);
3873                         return -ENOMEM;
3874                 }
3875 #endif
3876                 this->options |= ONENAND_PAGEBUF_ALLOC;
3877         }
3878         if (!this->oob_buf) {
3879                 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3880                 if (!this->oob_buf) {
3881                         if (this->options & ONENAND_PAGEBUF_ALLOC) {
3882                                 this->options &= ~ONENAND_PAGEBUF_ALLOC;
3883                                 kfree(this->page_buf);
3884                         }
3885                         return -ENOMEM;
3886                 }
3887                 this->options |= ONENAND_OOBBUF_ALLOC;
3888         }
3889
3890         this->state = FL_READY;
3891         init_waitqueue_head(&this->wq);
3892         spin_lock_init(&this->chip_lock);
3893
3894         /*
3895          * Allow subpage writes up to oobsize.
3896          */
3897         switch (mtd->oobsize) {
3898         case 128:
3899                 if (FLEXONENAND(this)) {
3900                         mtd_set_ooblayout(mtd, &flexonenand_ooblayout_ops);
3901                         mtd->subpage_sft = 0;
3902                 } else {
3903                         mtd_set_ooblayout(mtd, &onenand_oob_128_ooblayout_ops);
3904                         mtd->subpage_sft = 2;
3905                 }
3906                 if (ONENAND_IS_NOP_1(this))
3907                         mtd->subpage_sft = 0;
3908                 break;
3909         case 64:
3910                 mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3911                 mtd->subpage_sft = 2;
3912                 break;
3913
3914         case 32:
3915                 mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3916                 mtd->subpage_sft = 1;
3917                 break;
3918
3919         default:
3920                 printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
3921                         __func__, mtd->oobsize);
3922                 mtd->subpage_sft = 0;
3923                 /* To prevent kernel oops */
3924                 mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3925                 break;
3926         }
3927
3928         this->subpagesize = mtd->writesize >> mtd->subpage_sft;
3929
3930         /*
3931          * The number of bytes available for a client to place data into
3932          * the out of band area
3933          */
3934         ret = mtd_ooblayout_count_freebytes(mtd);
3935         if (ret < 0)
3936                 ret = 0;
3937
3938         mtd->oobavail = ret;
3939
3940         mtd->ecc_strength = 1;
3941
3942         /* Fill in remaining MTD driver data */
3943         mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
3944         mtd->flags = MTD_CAP_NANDFLASH;
3945         mtd->_erase = onenand_erase;
3946         mtd->_point = NULL;
3947         mtd->_unpoint = NULL;
3948         mtd->_read_oob = onenand_read_oob;
3949         mtd->_write_oob = onenand_write_oob;
3950         mtd->_panic_write = onenand_panic_write;
3951 #ifdef CONFIG_MTD_ONENAND_OTP
3952         mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
3953         mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
3954         mtd->_get_user_prot_info = onenand_get_user_prot_info;
3955         mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
3956         mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
3957         mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
3958 #endif
3959         mtd->_sync = onenand_sync;
3960         mtd->_lock = onenand_lock;
3961         mtd->_unlock = onenand_unlock;
3962         mtd->_suspend = onenand_suspend;
3963         mtd->_resume = onenand_resume;
3964         mtd->_block_isbad = onenand_block_isbad;
3965         mtd->_block_markbad = onenand_block_markbad;
3966         mtd->owner = THIS_MODULE;
3967         mtd->writebufsize = mtd->writesize;
3968
3969         /* Unlock whole block */
3970         if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
3971                 this->unlock_all(mtd);
3972
3973         /* Set the bad block marker position */
3974         this->badblockpos = ONENAND_BADBLOCK_POS;
3975
3976         ret = this->scan_bbt(mtd);
3977         if ((!FLEXONENAND(this)) || ret)
3978                 return ret;
3979
3980         /* Change Flex-OneNAND boundaries if required */
3981         for (i = 0; i < MAX_DIES; i++)
3982                 flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
3983                                                  flex_bdry[(2 * i) + 1]);
3984
3985         return 0;
3986 }
3987
3988 /**
3989  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
3990  * @param mtd           MTD device structure
3991  */
3992 void onenand_release(struct mtd_info *mtd)
3993 {
3994         struct onenand_chip *this = mtd->priv;
3995
3996         /* Deregister partitions */
3997         mtd_device_unregister(mtd);
3998
3999         /* Free bad block table memory, if allocated */
4000         if (this->bbm) {
4001                 struct bbm_info *bbm = this->bbm;
4002                 kfree(bbm->bbt);
4003                 kfree(this->bbm);
4004         }
4005         /* Buffers allocated by onenand_scan */
4006         if (this->options & ONENAND_PAGEBUF_ALLOC) {
4007                 kfree(this->page_buf);
4008 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4009                 kfree(this->verify_buf);
4010 #endif
4011         }
4012         if (this->options & ONENAND_OOBBUF_ALLOC)
4013                 kfree(this->oob_buf);
4014         kfree(mtd->eraseregions);
4015 }
4016
4017 EXPORT_SYMBOL_GPL(onenand_scan);
4018 EXPORT_SYMBOL_GPL(onenand_release);
4019
4020 MODULE_LICENSE("GPL");
4021 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4022 MODULE_DESCRIPTION("Generic OneNAND flash driver code");