Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee13...
[sfrench/cifs-2.6.git] / drivers / mtd / nand / nand_base.c
1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *   Basic support for AG-AND chips is provided.
8  *
9  *      Additional technical information is available on
10  *      http://www.linux-mtd.infradead.org/tech/nand.html
11  *
12  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
14  *
15  *  Credits:
16  *      David Woodhouse for adding multichip support
17  *
18  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19  *      rework for 2K page size chips
20  *
21  *  TODO:
22  *      Enable cached programming for 2k page size chips
23  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
24  *      if we have HW ecc support.
25  *      The AG-AND chips have nice features for speed improvement,
26  *      which are not supported yet. Read / program 4 pages in one go.
27  *
28  * This program is free software; you can redistribute it and/or modify
29  * it under the terms of the GNU General Public License version 2 as
30  * published by the Free Software Foundation.
31  *
32  */
33
34 #include <linux/module.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/err.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/types.h>
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/nand_ecc.h>
44 #include <linux/mtd/compatmac.h>
45 #include <linux/interrupt.h>
46 #include <linux/bitops.h>
47 #include <linux/leds.h>
48 #include <asm/io.h>
49
50 #ifdef CONFIG_MTD_PARTITIONS
51 #include <linux/mtd/partitions.h>
52 #endif
53
54 /* Define default oob placement schemes for large and small page devices */
55 static struct nand_ecclayout nand_oob_8 = {
56         .eccbytes = 3,
57         .eccpos = {0, 1, 2},
58         .oobfree = {
59                 {.offset = 3,
60                  .length = 2},
61                 {.offset = 6,
62                  .length = 2}}
63 };
64
65 static struct nand_ecclayout nand_oob_16 = {
66         .eccbytes = 6,
67         .eccpos = {0, 1, 2, 3, 6, 7},
68         .oobfree = {
69                 {.offset = 8,
70                  . length = 8}}
71 };
72
73 static struct nand_ecclayout nand_oob_64 = {
74         .eccbytes = 24,
75         .eccpos = {
76                    40, 41, 42, 43, 44, 45, 46, 47,
77                    48, 49, 50, 51, 52, 53, 54, 55,
78                    56, 57, 58, 59, 60, 61, 62, 63},
79         .oobfree = {
80                 {.offset = 2,
81                  .length = 38}}
82 };
83
84 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
85                            int new_state);
86
87 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
88                              struct mtd_oob_ops *ops);
89
90 /*
91  * For devices which display every fart in the system on a seperate LED. Is
92  * compiled away when LED support is disabled.
93  */
94 DEFINE_LED_TRIGGER(nand_led_trigger);
95
96 /**
97  * nand_release_device - [GENERIC] release chip
98  * @mtd:        MTD device structure
99  *
100  * Deselect, release chip lock and wake up anyone waiting on the device
101  */
102 static void nand_release_device(struct mtd_info *mtd)
103 {
104         struct nand_chip *chip = mtd->priv;
105
106         /* De-select the NAND device */
107         chip->select_chip(mtd, -1);
108
109         /* Release the controller and the chip */
110         spin_lock(&chip->controller->lock);
111         chip->controller->active = NULL;
112         chip->state = FL_READY;
113         wake_up(&chip->controller->wq);
114         spin_unlock(&chip->controller->lock);
115 }
116
117 /**
118  * nand_read_byte - [DEFAULT] read one byte from the chip
119  * @mtd:        MTD device structure
120  *
121  * Default read function for 8bit buswith
122  */
123 static uint8_t nand_read_byte(struct mtd_info *mtd)
124 {
125         struct nand_chip *chip = mtd->priv;
126         return readb(chip->IO_ADDR_R);
127 }
128
129 /**
130  * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
131  * @mtd:        MTD device structure
132  *
133  * Default read function for 16bit buswith with
134  * endianess conversion
135  */
136 static uint8_t nand_read_byte16(struct mtd_info *mtd)
137 {
138         struct nand_chip *chip = mtd->priv;
139         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
140 }
141
142 /**
143  * nand_read_word - [DEFAULT] read one word from the chip
144  * @mtd:        MTD device structure
145  *
146  * Default read function for 16bit buswith without
147  * endianess conversion
148  */
149 static u16 nand_read_word(struct mtd_info *mtd)
150 {
151         struct nand_chip *chip = mtd->priv;
152         return readw(chip->IO_ADDR_R);
153 }
154
155 /**
156  * nand_select_chip - [DEFAULT] control CE line
157  * @mtd:        MTD device structure
158  * @chipnr:     chipnumber to select, -1 for deselect
159  *
160  * Default select function for 1 chip devices.
161  */
162 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
163 {
164         struct nand_chip *chip = mtd->priv;
165
166         switch (chipnr) {
167         case -1:
168                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
169                 break;
170         case 0:
171                 break;
172
173         default:
174                 BUG();
175         }
176 }
177
178 /**
179  * nand_write_buf - [DEFAULT] write buffer to chip
180  * @mtd:        MTD device structure
181  * @buf:        data buffer
182  * @len:        number of bytes to write
183  *
184  * Default write function for 8bit buswith
185  */
186 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
187 {
188         int i;
189         struct nand_chip *chip = mtd->priv;
190
191         for (i = 0; i < len; i++)
192                 writeb(buf[i], chip->IO_ADDR_W);
193 }
194
195 /**
196  * nand_read_buf - [DEFAULT] read chip data into buffer
197  * @mtd:        MTD device structure
198  * @buf:        buffer to store date
199  * @len:        number of bytes to read
200  *
201  * Default read function for 8bit buswith
202  */
203 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
204 {
205         int i;
206         struct nand_chip *chip = mtd->priv;
207
208         for (i = 0; i < len; i++)
209                 buf[i] = readb(chip->IO_ADDR_R);
210 }
211
212 /**
213  * nand_verify_buf - [DEFAULT] Verify chip data against buffer
214  * @mtd:        MTD device structure
215  * @buf:        buffer containing the data to compare
216  * @len:        number of bytes to compare
217  *
218  * Default verify function for 8bit buswith
219  */
220 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
221 {
222         int i;
223         struct nand_chip *chip = mtd->priv;
224
225         for (i = 0; i < len; i++)
226                 if (buf[i] != readb(chip->IO_ADDR_R))
227                         return -EFAULT;
228         return 0;
229 }
230
231 /**
232  * nand_write_buf16 - [DEFAULT] write buffer to chip
233  * @mtd:        MTD device structure
234  * @buf:        data buffer
235  * @len:        number of bytes to write
236  *
237  * Default write function for 16bit buswith
238  */
239 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
240 {
241         int i;
242         struct nand_chip *chip = mtd->priv;
243         u16 *p = (u16 *) buf;
244         len >>= 1;
245
246         for (i = 0; i < len; i++)
247                 writew(p[i], chip->IO_ADDR_W);
248
249 }
250
251 /**
252  * nand_read_buf16 - [DEFAULT] read chip data into buffer
253  * @mtd:        MTD device structure
254  * @buf:        buffer to store date
255  * @len:        number of bytes to read
256  *
257  * Default read function for 16bit buswith
258  */
259 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
260 {
261         int i;
262         struct nand_chip *chip = mtd->priv;
263         u16 *p = (u16 *) buf;
264         len >>= 1;
265
266         for (i = 0; i < len; i++)
267                 p[i] = readw(chip->IO_ADDR_R);
268 }
269
270 /**
271  * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
272  * @mtd:        MTD device structure
273  * @buf:        buffer containing the data to compare
274  * @len:        number of bytes to compare
275  *
276  * Default verify function for 16bit buswith
277  */
278 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
279 {
280         int i;
281         struct nand_chip *chip = mtd->priv;
282         u16 *p = (u16 *) buf;
283         len >>= 1;
284
285         for (i = 0; i < len; i++)
286                 if (p[i] != readw(chip->IO_ADDR_R))
287                         return -EFAULT;
288
289         return 0;
290 }
291
292 /**
293  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
294  * @mtd:        MTD device structure
295  * @ofs:        offset from device start
296  * @getchip:    0, if the chip is already selected
297  *
298  * Check, if the block is bad.
299  */
300 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
301 {
302         int page, chipnr, res = 0;
303         struct nand_chip *chip = mtd->priv;
304         u16 bad;
305
306         if (getchip) {
307                 page = (int)(ofs >> chip->page_shift);
308                 chipnr = (int)(ofs >> chip->chip_shift);
309
310                 nand_get_device(chip, mtd, FL_READING);
311
312                 /* Select the NAND device */
313                 chip->select_chip(mtd, chipnr);
314         } else
315                 page = (int)ofs;
316
317         if (chip->options & NAND_BUSWIDTH_16) {
318                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
319                               page & chip->pagemask);
320                 bad = cpu_to_le16(chip->read_word(mtd));
321                 if (chip->badblockpos & 0x1)
322                         bad >>= 8;
323                 if ((bad & 0xFF) != 0xff)
324                         res = 1;
325         } else {
326                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
327                               page & chip->pagemask);
328                 if (chip->read_byte(mtd) != 0xff)
329                         res = 1;
330         }
331
332         if (getchip)
333                 nand_release_device(mtd);
334
335         return res;
336 }
337
338 /**
339  * nand_default_block_markbad - [DEFAULT] mark a block bad
340  * @mtd:        MTD device structure
341  * @ofs:        offset from device start
342  *
343  * This is the default implementation, which can be overridden by
344  * a hardware specific driver.
345 */
346 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
347 {
348         struct nand_chip *chip = mtd->priv;
349         uint8_t buf[2] = { 0, 0 };
350         int block, ret;
351
352         /* Get block number */
353         block = ((int)ofs) >> chip->bbt_erase_shift;
354         if (chip->bbt)
355                 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
356
357         /* Do we have a flash based bad block table ? */
358         if (chip->options & NAND_USE_FLASH_BBT)
359                 ret = nand_update_bbt(mtd, ofs);
360         else {
361                 /* We write two bytes, so we dont have to mess with 16 bit
362                  * access
363                  */
364                 ofs += mtd->oobsize;
365                 chip->ops.len = 2;
366                 chip->ops.datbuf = NULL;
367                 chip->ops.oobbuf = buf;
368                 chip->ops.ooboffs = chip->badblockpos & ~0x01;
369
370                 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
371         }
372         if (!ret)
373                 mtd->ecc_stats.badblocks++;
374         return ret;
375 }
376
377 /**
378  * nand_check_wp - [GENERIC] check if the chip is write protected
379  * @mtd:        MTD device structure
380  * Check, if the device is write protected
381  *
382  * The function expects, that the device is already selected
383  */
384 static int nand_check_wp(struct mtd_info *mtd)
385 {
386         struct nand_chip *chip = mtd->priv;
387         /* Check the WP bit */
388         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
389         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
390 }
391
392 /**
393  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
394  * @mtd:        MTD device structure
395  * @ofs:        offset from device start
396  * @getchip:    0, if the chip is already selected
397  * @allowbbt:   1, if its allowed to access the bbt area
398  *
399  * Check, if the block is bad. Either by reading the bad block table or
400  * calling of the scan function.
401  */
402 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
403                                int allowbbt)
404 {
405         struct nand_chip *chip = mtd->priv;
406
407         if (!chip->bbt)
408                 return chip->block_bad(mtd, ofs, getchip);
409
410         /* Return info from the table */
411         return nand_isbad_bbt(mtd, ofs, allowbbt);
412 }
413
414 /*
415  * Wait for the ready pin, after a command
416  * The timeout is catched later.
417  */
418 void nand_wait_ready(struct mtd_info *mtd)
419 {
420         struct nand_chip *chip = mtd->priv;
421         unsigned long timeo = jiffies + 2;
422
423         led_trigger_event(nand_led_trigger, LED_FULL);
424         /* wait until command is processed or timeout occures */
425         do {
426                 if (chip->dev_ready(mtd))
427                         break;
428                 touch_softlockup_watchdog();
429         } while (time_before(jiffies, timeo));
430         led_trigger_event(nand_led_trigger, LED_OFF);
431 }
432 EXPORT_SYMBOL_GPL(nand_wait_ready);
433
434 /**
435  * nand_command - [DEFAULT] Send command to NAND device
436  * @mtd:        MTD device structure
437  * @command:    the command to be sent
438  * @column:     the column address for this command, -1 if none
439  * @page_addr:  the page address for this command, -1 if none
440  *
441  * Send command to NAND device. This function is used for small page
442  * devices (256/512 Bytes per page)
443  */
444 static void nand_command(struct mtd_info *mtd, unsigned int command,
445                          int column, int page_addr)
446 {
447         register struct nand_chip *chip = mtd->priv;
448         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
449
450         /*
451          * Write out the command to the device.
452          */
453         if (command == NAND_CMD_SEQIN) {
454                 int readcmd;
455
456                 if (column >= mtd->writesize) {
457                         /* OOB area */
458                         column -= mtd->writesize;
459                         readcmd = NAND_CMD_READOOB;
460                 } else if (column < 256) {
461                         /* First 256 bytes --> READ0 */
462                         readcmd = NAND_CMD_READ0;
463                 } else {
464                         column -= 256;
465                         readcmd = NAND_CMD_READ1;
466                 }
467                 chip->cmd_ctrl(mtd, readcmd, ctrl);
468                 ctrl &= ~NAND_CTRL_CHANGE;
469         }
470         chip->cmd_ctrl(mtd, command, ctrl);
471
472         /*
473          * Address cycle, when necessary
474          */
475         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
476         /* Serially input address */
477         if (column != -1) {
478                 /* Adjust columns for 16 bit buswidth */
479                 if (chip->options & NAND_BUSWIDTH_16)
480                         column >>= 1;
481                 chip->cmd_ctrl(mtd, column, ctrl);
482                 ctrl &= ~NAND_CTRL_CHANGE;
483         }
484         if (page_addr != -1) {
485                 chip->cmd_ctrl(mtd, page_addr, ctrl);
486                 ctrl &= ~NAND_CTRL_CHANGE;
487                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
488                 /* One more address cycle for devices > 32MiB */
489                 if (chip->chipsize > (32 << 20))
490                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
491         }
492         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
493
494         /*
495          * program and erase have their own busy handlers
496          * status and sequential in needs no delay
497          */
498         switch (command) {
499
500         case NAND_CMD_PAGEPROG:
501         case NAND_CMD_ERASE1:
502         case NAND_CMD_ERASE2:
503         case NAND_CMD_SEQIN:
504         case NAND_CMD_STATUS:
505                 return;
506
507         case NAND_CMD_RESET:
508                 if (chip->dev_ready)
509                         break;
510                 udelay(chip->chip_delay);
511                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
512                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
513                 chip->cmd_ctrl(mtd,
514                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
515                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
516                 return;
517
518                 /* This applies to read commands */
519         default:
520                 /*
521                  * If we don't have access to the busy pin, we apply the given
522                  * command delay
523                  */
524                 if (!chip->dev_ready) {
525                         udelay(chip->chip_delay);
526                         return;
527                 }
528         }
529         /* Apply this short delay always to ensure that we do wait tWB in
530          * any case on any machine. */
531         ndelay(100);
532
533         nand_wait_ready(mtd);
534 }
535
536 /**
537  * nand_command_lp - [DEFAULT] Send command to NAND large page device
538  * @mtd:        MTD device structure
539  * @command:    the command to be sent
540  * @column:     the column address for this command, -1 if none
541  * @page_addr:  the page address for this command, -1 if none
542  *
543  * Send command to NAND device. This is the version for the new large page
544  * devices We dont have the separate regions as we have in the small page
545  * devices.  We must emulate NAND_CMD_READOOB to keep the code compatible.
546  */
547 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
548                             int column, int page_addr)
549 {
550         register struct nand_chip *chip = mtd->priv;
551
552         /* Emulate NAND_CMD_READOOB */
553         if (command == NAND_CMD_READOOB) {
554                 column += mtd->writesize;
555                 command = NAND_CMD_READ0;
556         }
557
558         /* Command latch cycle */
559         chip->cmd_ctrl(mtd, command & 0xff,
560                        NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
561
562         if (column != -1 || page_addr != -1) {
563                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
564
565                 /* Serially input address */
566                 if (column != -1) {
567                         /* Adjust columns for 16 bit buswidth */
568                         if (chip->options & NAND_BUSWIDTH_16)
569                                 column >>= 1;
570                         chip->cmd_ctrl(mtd, column, ctrl);
571                         ctrl &= ~NAND_CTRL_CHANGE;
572                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
573                 }
574                 if (page_addr != -1) {
575                         chip->cmd_ctrl(mtd, page_addr, ctrl);
576                         chip->cmd_ctrl(mtd, page_addr >> 8,
577                                        NAND_NCE | NAND_ALE);
578                         /* One more address cycle for devices > 128MiB */
579                         if (chip->chipsize > (128 << 20))
580                                 chip->cmd_ctrl(mtd, page_addr >> 16,
581                                                NAND_NCE | NAND_ALE);
582                 }
583         }
584         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
585
586         /*
587          * program and erase have their own busy handlers
588          * status, sequential in, and deplete1 need no delay
589          */
590         switch (command) {
591
592         case NAND_CMD_CACHEDPROG:
593         case NAND_CMD_PAGEPROG:
594         case NAND_CMD_ERASE1:
595         case NAND_CMD_ERASE2:
596         case NAND_CMD_SEQIN:
597         case NAND_CMD_RNDIN:
598         case NAND_CMD_STATUS:
599         case NAND_CMD_DEPLETE1:
600                 return;
601
602                 /*
603                  * read error status commands require only a short delay
604                  */
605         case NAND_CMD_STATUS_ERROR:
606         case NAND_CMD_STATUS_ERROR0:
607         case NAND_CMD_STATUS_ERROR1:
608         case NAND_CMD_STATUS_ERROR2:
609         case NAND_CMD_STATUS_ERROR3:
610                 udelay(chip->chip_delay);
611                 return;
612
613         case NAND_CMD_RESET:
614                 if (chip->dev_ready)
615                         break;
616                 udelay(chip->chip_delay);
617                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
618                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
619                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
620                                NAND_NCE | NAND_CTRL_CHANGE);
621                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
622                 return;
623
624         case NAND_CMD_RNDOUT:
625                 /* No ready / busy check necessary */
626                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
627                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
628                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
629                                NAND_NCE | NAND_CTRL_CHANGE);
630                 return;
631
632         case NAND_CMD_READ0:
633                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
634                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
635                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
636                                NAND_NCE | NAND_CTRL_CHANGE);
637
638                 /* This applies to read commands */
639         default:
640                 /*
641                  * If we don't have access to the busy pin, we apply the given
642                  * command delay
643                  */
644                 if (!chip->dev_ready) {
645                         udelay(chip->chip_delay);
646                         return;
647                 }
648         }
649
650         /* Apply this short delay always to ensure that we do wait tWB in
651          * any case on any machine. */
652         ndelay(100);
653
654         nand_wait_ready(mtd);
655 }
656
657 /**
658  * nand_get_device - [GENERIC] Get chip for selected access
659  * @chip:       the nand chip descriptor
660  * @mtd:        MTD device structure
661  * @new_state:  the state which is requested
662  *
663  * Get the device and lock it for exclusive access
664  */
665 static int
666 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
667 {
668         spinlock_t *lock = &chip->controller->lock;
669         wait_queue_head_t *wq = &chip->controller->wq;
670         DECLARE_WAITQUEUE(wait, current);
671  retry:
672         spin_lock(lock);
673
674         /* Hardware controller shared among independend devices */
675         /* Hardware controller shared among independend devices */
676         if (!chip->controller->active)
677                 chip->controller->active = chip;
678
679         if (chip->controller->active == chip && chip->state == FL_READY) {
680                 chip->state = new_state;
681                 spin_unlock(lock);
682                 return 0;
683         }
684         if (new_state == FL_PM_SUSPENDED) {
685                 spin_unlock(lock);
686                 return (chip->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
687         }
688         set_current_state(TASK_UNINTERRUPTIBLE);
689         add_wait_queue(wq, &wait);
690         spin_unlock(lock);
691         schedule();
692         remove_wait_queue(wq, &wait);
693         goto retry;
694 }
695
696 /**
697  * nand_wait - [DEFAULT]  wait until the command is done
698  * @mtd:        MTD device structure
699  * @chip:       NAND chip structure
700  *
701  * Wait for command done. This applies to erase and program only
702  * Erase can take up to 400ms and program up to 20ms according to
703  * general NAND and SmartMedia specs
704  */
705 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
706 {
707
708         unsigned long timeo = jiffies;
709         int status, state = chip->state;
710
711         if (state == FL_ERASING)
712                 timeo += (HZ * 400) / 1000;
713         else
714                 timeo += (HZ * 20) / 1000;
715
716         led_trigger_event(nand_led_trigger, LED_FULL);
717
718         /* Apply this short delay always to ensure that we do wait tWB in
719          * any case on any machine. */
720         ndelay(100);
721
722         if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
723                 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
724         else
725                 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
726
727         while (time_before(jiffies, timeo)) {
728                 if (chip->dev_ready) {
729                         if (chip->dev_ready(mtd))
730                                 break;
731                 } else {
732                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
733                                 break;
734                 }
735                 cond_resched();
736         }
737         led_trigger_event(nand_led_trigger, LED_OFF);
738
739         status = (int)chip->read_byte(mtd);
740         return status;
741 }
742
743 /**
744  * nand_read_page_raw - [Intern] read raw page data without ecc
745  * @mtd:        mtd info structure
746  * @chip:       nand chip info structure
747  * @buf:        buffer to store read data
748  */
749 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
750                               uint8_t *buf)
751 {
752         chip->read_buf(mtd, buf, mtd->writesize);
753         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
754         return 0;
755 }
756
757 /**
758  * nand_read_page_swecc - {REPLACABLE] software ecc based page read function
759  * @mtd:        mtd info structure
760  * @chip:       nand chip info structure
761  * @buf:        buffer to store read data
762  */
763 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
764                                 uint8_t *buf)
765 {
766         int i, eccsize = chip->ecc.size;
767         int eccbytes = chip->ecc.bytes;
768         int eccsteps = chip->ecc.steps;
769         uint8_t *p = buf;
770         uint8_t *ecc_calc = chip->buffers->ecccalc;
771         uint8_t *ecc_code = chip->buffers->ecccode;
772         int *eccpos = chip->ecc.layout->eccpos;
773
774         nand_read_page_raw(mtd, chip, buf);
775
776         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
777                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
778
779         for (i = 0; i < chip->ecc.total; i++)
780                 ecc_code[i] = chip->oob_poi[eccpos[i]];
781
782         eccsteps = chip->ecc.steps;
783         p = buf;
784
785         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
786                 int stat;
787
788                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
789                 if (stat == -1)
790                         mtd->ecc_stats.failed++;
791                 else
792                         mtd->ecc_stats.corrected += stat;
793         }
794         return 0;
795 }
796
797 /**
798  * nand_read_page_hwecc - {REPLACABLE] hardware ecc based page read function
799  * @mtd:        mtd info structure
800  * @chip:       nand chip info structure
801  * @buf:        buffer to store read data
802  *
803  * Not for syndrome calculating ecc controllers which need a special oob layout
804  */
805 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
806                                 uint8_t *buf)
807 {
808         int i, eccsize = chip->ecc.size;
809         int eccbytes = chip->ecc.bytes;
810         int eccsteps = chip->ecc.steps;
811         uint8_t *p = buf;
812         uint8_t *ecc_calc = chip->buffers->ecccalc;
813         uint8_t *ecc_code = chip->buffers->ecccode;
814         int *eccpos = chip->ecc.layout->eccpos;
815
816         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
817                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
818                 chip->read_buf(mtd, p, eccsize);
819                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
820         }
821         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
822
823         for (i = 0; i < chip->ecc.total; i++)
824                 ecc_code[i] = chip->oob_poi[eccpos[i]];
825
826         eccsteps = chip->ecc.steps;
827         p = buf;
828
829         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
830                 int stat;
831
832                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
833                 if (stat == -1)
834                         mtd->ecc_stats.failed++;
835                 else
836                         mtd->ecc_stats.corrected += stat;
837         }
838         return 0;
839 }
840
841 /**
842  * nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
843  * @mtd:        mtd info structure
844  * @chip:       nand chip info structure
845  * @buf:        buffer to store read data
846  *
847  * The hw generator calculates the error syndrome automatically. Therefor
848  * we need a special oob layout and handling.
849  */
850 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
851                                    uint8_t *buf)
852 {
853         int i, eccsize = chip->ecc.size;
854         int eccbytes = chip->ecc.bytes;
855         int eccsteps = chip->ecc.steps;
856         uint8_t *p = buf;
857         uint8_t *oob = chip->oob_poi;
858
859         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
860                 int stat;
861
862                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
863                 chip->read_buf(mtd, p, eccsize);
864
865                 if (chip->ecc.prepad) {
866                         chip->read_buf(mtd, oob, chip->ecc.prepad);
867                         oob += chip->ecc.prepad;
868                 }
869
870                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
871                 chip->read_buf(mtd, oob, eccbytes);
872                 stat = chip->ecc.correct(mtd, p, oob, NULL);
873
874                 if (stat == -1)
875                         mtd->ecc_stats.failed++;
876                 else
877                         mtd->ecc_stats.corrected += stat;
878
879                 oob += eccbytes;
880
881                 if (chip->ecc.postpad) {
882                         chip->read_buf(mtd, oob, chip->ecc.postpad);
883                         oob += chip->ecc.postpad;
884                 }
885         }
886
887         /* Calculate remaining oob bytes */
888         i = mtd->oobsize - (oob - chip->oob_poi);
889         if (i)
890                 chip->read_buf(mtd, oob, i);
891
892         return 0;
893 }
894
895 /**
896  * nand_transfer_oob - [Internal] Transfer oob to client buffer
897  * @chip:       nand chip structure
898  * @oob:        oob destination address
899  * @ops:        oob ops structure
900  */
901 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
902                                   struct mtd_oob_ops *ops)
903 {
904         size_t len = ops->ooblen;
905
906         switch(ops->mode) {
907
908         case MTD_OOB_PLACE:
909         case MTD_OOB_RAW:
910                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
911                 return oob + len;
912
913         case MTD_OOB_AUTO: {
914                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
915                 uint32_t boffs = 0, roffs = ops->ooboffs;
916                 size_t bytes = 0;
917
918                 for(; free->length && len; free++, len -= bytes) {
919                         /* Read request not from offset 0 ? */
920                         if (unlikely(roffs)) {
921                                 if (roffs >= free->length) {
922                                         roffs -= free->length;
923                                         continue;
924                                 }
925                                 boffs = free->offset + roffs;
926                                 bytes = min_t(size_t, len,
927                                               (free->length - roffs));
928                                 roffs = 0;
929                         } else {
930                                 bytes = min_t(size_t, len, free->length);
931                                 boffs = free->offset;
932                         }
933                         memcpy(oob, chip->oob_poi + boffs, bytes);
934                         oob += bytes;
935                 }
936                 return oob;
937         }
938         default:
939                 BUG();
940         }
941         return NULL;
942 }
943
944 /**
945  * nand_do_read_ops - [Internal] Read data with ECC
946  *
947  * @mtd:        MTD device structure
948  * @from:       offset to read from
949  * @ops:        oob ops structure
950  *
951  * Internal function. Called with chip held.
952  */
953 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
954                             struct mtd_oob_ops *ops)
955 {
956         int chipnr, page, realpage, col, bytes, aligned;
957         struct nand_chip *chip = mtd->priv;
958         struct mtd_ecc_stats stats;
959         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
960         int sndcmd = 1;
961         int ret = 0;
962         uint32_t readlen = ops->len;
963         uint8_t *bufpoi, *oob, *buf;
964
965         stats = mtd->ecc_stats;
966
967         chipnr = (int)(from >> chip->chip_shift);
968         chip->select_chip(mtd, chipnr);
969
970         realpage = (int)(from >> chip->page_shift);
971         page = realpage & chip->pagemask;
972
973         col = (int)(from & (mtd->writesize - 1));
974         chip->oob_poi = chip->buffers->oobrbuf;
975
976         buf = ops->datbuf;
977         oob = ops->oobbuf;
978
979         while(1) {
980                 bytes = min(mtd->writesize - col, readlen);
981                 aligned = (bytes == mtd->writesize);
982
983                 /* Is the current page in the buffer ? */
984                 if (realpage != chip->pagebuf || oob) {
985                         bufpoi = aligned ? buf : chip->buffers->databuf;
986
987                         if (likely(sndcmd)) {
988                                 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
989                                 sndcmd = 0;
990                         }
991
992                         /* Now read the page into the buffer */
993                         if (unlikely(ops->mode == MTD_OOB_RAW))
994                                 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi);
995                         else
996                                 ret = chip->ecc.read_page(mtd, chip, bufpoi);
997                         if (ret < 0)
998                                 break;
999
1000                         /* Transfer not aligned data */
1001                         if (!aligned) {
1002                                 chip->pagebuf = realpage;
1003                                 memcpy(buf, chip->buffers->databuf + col, bytes);
1004                         }
1005
1006                         buf += bytes;
1007
1008                         if (unlikely(oob)) {
1009                                 /* Raw mode does data:oob:data:oob */
1010                                 if (ops->mode != MTD_OOB_RAW)
1011                                         oob = nand_transfer_oob(chip, oob, ops);
1012                                 else
1013                                         buf = nand_transfer_oob(chip, buf, ops);
1014                         }
1015
1016                         if (!(chip->options & NAND_NO_READRDY)) {
1017                                 /*
1018                                  * Apply delay or wait for ready/busy pin. Do
1019                                  * this before the AUTOINCR check, so no
1020                                  * problems arise if a chip which does auto
1021                                  * increment is marked as NOAUTOINCR by the
1022                                  * board driver.
1023                                  */
1024                                 if (!chip->dev_ready)
1025                                         udelay(chip->chip_delay);
1026                                 else
1027                                         nand_wait_ready(mtd);
1028                         }
1029                 } else {
1030                         memcpy(buf, chip->buffers->databuf + col, bytes);
1031                         buf += bytes;
1032                 }
1033
1034                 readlen -= bytes;
1035
1036                 if (!readlen)
1037                         break;
1038
1039                 /* For subsequent reads align to page boundary. */
1040                 col = 0;
1041                 /* Increment page address */
1042                 realpage++;
1043
1044                 page = realpage & chip->pagemask;
1045                 /* Check, if we cross a chip boundary */
1046                 if (!page) {
1047                         chipnr++;
1048                         chip->select_chip(mtd, -1);
1049                         chip->select_chip(mtd, chipnr);
1050                 }
1051
1052                 /* Check, if the chip supports auto page increment
1053                  * or if we have hit a block boundary.
1054                  */
1055                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1056                         sndcmd = 1;
1057         }
1058
1059         ops->retlen = ops->len - (size_t) readlen;
1060
1061         if (ret)
1062                 return ret;
1063
1064         if (mtd->ecc_stats.failed - stats.failed)
1065                 return -EBADMSG;
1066
1067         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1068 }
1069
1070 /**
1071  * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1072  * @mtd:        MTD device structure
1073  * @from:       offset to read from
1074  * @len:        number of bytes to read
1075  * @retlen:     pointer to variable to store the number of read bytes
1076  * @buf:        the databuffer to put data
1077  *
1078  * Get hold of the chip and call nand_do_read
1079  */
1080 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1081                      size_t *retlen, uint8_t *buf)
1082 {
1083         struct nand_chip *chip = mtd->priv;
1084         int ret;
1085
1086         /* Do not allow reads past end of device */
1087         if ((from + len) > mtd->size)
1088                 return -EINVAL;
1089         if (!len)
1090                 return 0;
1091
1092         nand_get_device(chip, mtd, FL_READING);
1093
1094         chip->ops.len = len;
1095         chip->ops.datbuf = buf;
1096         chip->ops.oobbuf = NULL;
1097
1098         ret = nand_do_read_ops(mtd, from, &chip->ops);
1099
1100         *retlen = chip->ops.retlen;
1101
1102         nand_release_device(mtd);
1103
1104         return ret;
1105 }
1106
1107 /**
1108  * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1109  * @mtd:        mtd info structure
1110  * @chip:       nand chip info structure
1111  * @page:       page number to read
1112  * @sndcmd:     flag whether to issue read command or not
1113  */
1114 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1115                              int page, int sndcmd)
1116 {
1117         if (sndcmd) {
1118                 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1119                 sndcmd = 0;
1120         }
1121         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1122         return sndcmd;
1123 }
1124
1125 /**
1126  * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1127  *                          with syndromes
1128  * @mtd:        mtd info structure
1129  * @chip:       nand chip info structure
1130  * @page:       page number to read
1131  * @sndcmd:     flag whether to issue read command or not
1132  */
1133 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1134                                   int page, int sndcmd)
1135 {
1136         uint8_t *buf = chip->oob_poi;
1137         int length = mtd->oobsize;
1138         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1139         int eccsize = chip->ecc.size;
1140         uint8_t *bufpoi = buf;
1141         int i, toread, sndrnd = 0, pos;
1142
1143         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1144         for (i = 0; i < chip->ecc.steps; i++) {
1145                 if (sndrnd) {
1146                         pos = eccsize + i * (eccsize + chunk);
1147                         if (mtd->writesize > 512)
1148                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1149                         else
1150                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1151                 } else
1152                         sndrnd = 1;
1153                 toread = min_t(int, length, chunk);
1154                 chip->read_buf(mtd, bufpoi, toread);
1155                 bufpoi += toread;
1156                 length -= toread;
1157         }
1158         if (length > 0)
1159                 chip->read_buf(mtd, bufpoi, length);
1160
1161         return 1;
1162 }
1163
1164 /**
1165  * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1166  * @mtd:        mtd info structure
1167  * @chip:       nand chip info structure
1168  * @page:       page number to write
1169  */
1170 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1171                               int page)
1172 {
1173         int status = 0;
1174         const uint8_t *buf = chip->oob_poi;
1175         int length = mtd->oobsize;
1176
1177         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1178         chip->write_buf(mtd, buf, length);
1179         /* Send command to program the OOB data */
1180         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1181
1182         status = chip->waitfunc(mtd, chip);
1183
1184         return status & NAND_STATUS_FAIL ? -EIO : 0;
1185 }
1186
1187 /**
1188  * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1189  *                           with syndrome - only for large page flash !
1190  * @mtd:        mtd info structure
1191  * @chip:       nand chip info structure
1192  * @page:       page number to write
1193  */
1194 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1195                                    struct nand_chip *chip, int page)
1196 {
1197         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1198         int eccsize = chip->ecc.size, length = mtd->oobsize;
1199         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1200         const uint8_t *bufpoi = chip->oob_poi;
1201
1202         /*
1203          * data-ecc-data-ecc ... ecc-oob
1204          * or
1205          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1206          */
1207         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1208                 pos = steps * (eccsize + chunk);
1209                 steps = 0;
1210         } else
1211                 pos = eccsize;
1212
1213         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1214         for (i = 0; i < steps; i++) {
1215                 if (sndcmd) {
1216                         if (mtd->writesize <= 512) {
1217                                 uint32_t fill = 0xFFFFFFFF;
1218
1219                                 len = eccsize;
1220                                 while (len > 0) {
1221                                         int num = min_t(int, len, 4);
1222                                         chip->write_buf(mtd, (uint8_t *)&fill,
1223                                                         num);
1224                                         len -= num;
1225                                 }
1226                         } else {
1227                                 pos = eccsize + i * (eccsize + chunk);
1228                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1229                         }
1230                 } else
1231                         sndcmd = 1;
1232                 len = min_t(int, length, chunk);
1233                 chip->write_buf(mtd, bufpoi, len);
1234                 bufpoi += len;
1235                 length -= len;
1236         }
1237         if (length > 0)
1238                 chip->write_buf(mtd, bufpoi, length);
1239
1240         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1241         status = chip->waitfunc(mtd, chip);
1242
1243         return status & NAND_STATUS_FAIL ? -EIO : 0;
1244 }
1245
1246 /**
1247  * nand_do_read_oob - [Intern] NAND read out-of-band
1248  * @mtd:        MTD device structure
1249  * @from:       offset to read from
1250  * @ops:        oob operations description structure
1251  *
1252  * NAND read out-of-band data from the spare area
1253  */
1254 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1255                             struct mtd_oob_ops *ops)
1256 {
1257         int page, realpage, chipnr, sndcmd = 1;
1258         struct nand_chip *chip = mtd->priv;
1259         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1260         int readlen = ops->len;
1261         uint8_t *buf = ops->oobbuf;
1262
1263         DEBUG(MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08Lx, len = %i\n",
1264               (unsigned long long)from, readlen);
1265
1266         chipnr = (int)(from >> chip->chip_shift);
1267         chip->select_chip(mtd, chipnr);
1268
1269         /* Shift to get page */
1270         realpage = (int)(from >> chip->page_shift);
1271         page = realpage & chip->pagemask;
1272
1273         chip->oob_poi = chip->buffers->oobrbuf;
1274
1275         while(1) {
1276                 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1277                 buf = nand_transfer_oob(chip, buf, ops);
1278
1279                 if (!(chip->options & NAND_NO_READRDY)) {
1280                         /*
1281                          * Apply delay or wait for ready/busy pin. Do this
1282                          * before the AUTOINCR check, so no problems arise if a
1283                          * chip which does auto increment is marked as
1284                          * NOAUTOINCR by the board driver.
1285                          */
1286                         if (!chip->dev_ready)
1287                                 udelay(chip->chip_delay);
1288                         else
1289                                 nand_wait_ready(mtd);
1290                 }
1291
1292                 readlen -= ops->ooblen;
1293                 if (!readlen)
1294                         break;
1295
1296                 /* Increment page address */
1297                 realpage++;
1298
1299                 page = realpage & chip->pagemask;
1300                 /* Check, if we cross a chip boundary */
1301                 if (!page) {
1302                         chipnr++;
1303                         chip->select_chip(mtd, -1);
1304                         chip->select_chip(mtd, chipnr);
1305                 }
1306
1307                 /* Check, if the chip supports auto page increment
1308                  * or if we have hit a block boundary.
1309                  */
1310                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1311                         sndcmd = 1;
1312         }
1313
1314         ops->retlen = ops->len;
1315         return 0;
1316 }
1317
1318 /**
1319  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1320  * @mtd:        MTD device structure
1321  * @from:       offset to read from
1322  * @ops:        oob operation description structure
1323  *
1324  * NAND read data and/or out-of-band data
1325  */
1326 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1327                          struct mtd_oob_ops *ops)
1328 {
1329         struct nand_chip *chip = mtd->priv;
1330         int ret = -ENOTSUPP;
1331
1332         ops->retlen = 0;
1333
1334         /* Do not allow reads past end of device */
1335         if ((from + ops->len) > mtd->size) {
1336                 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1337                       "Attempt read beyond end of device\n");
1338                 return -EINVAL;
1339         }
1340
1341         nand_get_device(chip, mtd, FL_READING);
1342
1343         switch(ops->mode) {
1344         case MTD_OOB_PLACE:
1345         case MTD_OOB_AUTO:
1346         case MTD_OOB_RAW:
1347                 break;
1348
1349         default:
1350                 goto out;
1351         }
1352
1353         if (!ops->datbuf)
1354                 ret = nand_do_read_oob(mtd, from, ops);
1355         else
1356                 ret = nand_do_read_ops(mtd, from, ops);
1357
1358  out:
1359         nand_release_device(mtd);
1360         return ret;
1361 }
1362
1363
1364 /**
1365  * nand_write_page_raw - [Intern] raw page write function
1366  * @mtd:        mtd info structure
1367  * @chip:       nand chip info structure
1368  * @buf:        data buffer
1369  */
1370 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1371                                 const uint8_t *buf)
1372 {
1373         chip->write_buf(mtd, buf, mtd->writesize);
1374         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1375 }
1376
1377 /**
1378  * nand_write_page_swecc - {REPLACABLE] software ecc based page write function
1379  * @mtd:        mtd info structure
1380  * @chip:       nand chip info structure
1381  * @buf:        data buffer
1382  */
1383 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1384                                   const uint8_t *buf)
1385 {
1386         int i, eccsize = chip->ecc.size;
1387         int eccbytes = chip->ecc.bytes;
1388         int eccsteps = chip->ecc.steps;
1389         uint8_t *ecc_calc = chip->buffers->ecccalc;
1390         const uint8_t *p = buf;
1391         int *eccpos = chip->ecc.layout->eccpos;
1392
1393         /* Software ecc calculation */
1394         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1395                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1396
1397         for (i = 0; i < chip->ecc.total; i++)
1398                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1399
1400         nand_write_page_raw(mtd, chip, buf);
1401 }
1402
1403 /**
1404  * nand_write_page_hwecc - {REPLACABLE] hardware ecc based page write function
1405  * @mtd:        mtd info structure
1406  * @chip:       nand chip info structure
1407  * @buf:        data buffer
1408  */
1409 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1410                                   const uint8_t *buf)
1411 {
1412         int i, eccsize = chip->ecc.size;
1413         int eccbytes = chip->ecc.bytes;
1414         int eccsteps = chip->ecc.steps;
1415         uint8_t *ecc_calc = chip->buffers->ecccalc;
1416         const uint8_t *p = buf;
1417         int *eccpos = chip->ecc.layout->eccpos;
1418
1419         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1420                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1421                 chip->write_buf(mtd, p, eccsize);
1422                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1423         }
1424
1425         for (i = 0; i < chip->ecc.total; i++)
1426                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1427
1428         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1429 }
1430
1431 /**
1432  * nand_write_page_syndrome - {REPLACABLE] hardware ecc syndrom based page write
1433  * @mtd:        mtd info structure
1434  * @chip:       nand chip info structure
1435  * @buf:        data buffer
1436  *
1437  * The hw generator calculates the error syndrome automatically. Therefor
1438  * we need a special oob layout and handling.
1439  */
1440 static void nand_write_page_syndrome(struct mtd_info *mtd,
1441                                     struct nand_chip *chip, const uint8_t *buf)
1442 {
1443         int i, eccsize = chip->ecc.size;
1444         int eccbytes = chip->ecc.bytes;
1445         int eccsteps = chip->ecc.steps;
1446         const uint8_t *p = buf;
1447         uint8_t *oob = chip->oob_poi;
1448
1449         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1450
1451                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1452                 chip->write_buf(mtd, p, eccsize);
1453
1454                 if (chip->ecc.prepad) {
1455                         chip->write_buf(mtd, oob, chip->ecc.prepad);
1456                         oob += chip->ecc.prepad;
1457                 }
1458
1459                 chip->ecc.calculate(mtd, p, oob);
1460                 chip->write_buf(mtd, oob, eccbytes);
1461                 oob += eccbytes;
1462
1463                 if (chip->ecc.postpad) {
1464                         chip->write_buf(mtd, oob, chip->ecc.postpad);
1465                         oob += chip->ecc.postpad;
1466                 }
1467         }
1468
1469         /* Calculate remaining oob bytes */
1470         i = mtd->oobsize - (oob - chip->oob_poi);
1471         if (i)
1472                 chip->write_buf(mtd, oob, i);
1473 }
1474
1475 /**
1476  * nand_write_page - [REPLACEABLE] write one page
1477  * @mtd:        MTD device structure
1478  * @chip:       NAND chip descriptor
1479  * @buf:        the data to write
1480  * @page:       page number to write
1481  * @cached:     cached programming
1482  */
1483 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1484                            const uint8_t *buf, int page, int cached, int raw)
1485 {
1486         int status;
1487
1488         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1489
1490         if (unlikely(raw))
1491                 chip->ecc.write_page_raw(mtd, chip, buf);
1492         else
1493                 chip->ecc.write_page(mtd, chip, buf);
1494
1495         /*
1496          * Cached progamming disabled for now, Not sure if its worth the
1497          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1498          */
1499         cached = 0;
1500
1501         if (!cached || !(chip->options & NAND_CACHEPRG)) {
1502
1503                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1504                 status = chip->waitfunc(mtd, chip);
1505                 /*
1506                  * See if operation failed and additional status checks are
1507                  * available
1508                  */
1509                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1510                         status = chip->errstat(mtd, chip, FL_WRITING, status,
1511                                                page);
1512
1513                 if (status & NAND_STATUS_FAIL)
1514                         return -EIO;
1515         } else {
1516                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
1517                 status = chip->waitfunc(mtd, chip);
1518         }
1519
1520 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1521         /* Send command to read back the data */
1522         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1523
1524         if (chip->verify_buf(mtd, buf, mtd->writesize))
1525                 return -EIO;
1526 #endif
1527         return 0;
1528 }
1529
1530 /**
1531  * nand_fill_oob - [Internal] Transfer client buffer to oob
1532  * @chip:       nand chip structure
1533  * @oob:        oob data buffer
1534  * @ops:        oob ops structure
1535  */
1536 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
1537                                   struct mtd_oob_ops *ops)
1538 {
1539         size_t len = ops->ooblen;
1540
1541         switch(ops->mode) {
1542
1543         case MTD_OOB_PLACE:
1544         case MTD_OOB_RAW:
1545                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
1546                 return oob + len;
1547
1548         case MTD_OOB_AUTO: {
1549                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1550                 uint32_t boffs = 0, woffs = ops->ooboffs;
1551                 size_t bytes = 0;
1552
1553                 for(; free->length && len; free++, len -= bytes) {
1554                         /* Write request not from offset 0 ? */
1555                         if (unlikely(woffs)) {
1556                                 if (woffs >= free->length) {
1557                                         woffs -= free->length;
1558                                         continue;
1559                                 }
1560                                 boffs = free->offset + woffs;
1561                                 bytes = min_t(size_t, len,
1562                                               (free->length - woffs));
1563                                 woffs = 0;
1564                         } else {
1565                                 bytes = min_t(size_t, len, free->length);
1566                                 boffs = free->offset;
1567                         }
1568                         memcpy(chip->oob_poi + boffs, oob, bytes);
1569                         oob += bytes;
1570                 }
1571                 return oob;
1572         }
1573         default:
1574                 BUG();
1575         }
1576         return NULL;
1577 }
1578
1579 #define NOTALIGNED(x) (x & (mtd->writesize-1)) != 0
1580
1581 /**
1582  * nand_do_write_ops - [Internal] NAND write with ECC
1583  * @mtd:        MTD device structure
1584  * @to:         offset to write to
1585  * @ops:        oob operations description structure
1586  *
1587  * NAND write with ECC
1588  */
1589 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
1590                              struct mtd_oob_ops *ops)
1591 {
1592         int chipnr, realpage, page, blockmask;
1593         struct nand_chip *chip = mtd->priv;
1594         uint32_t writelen = ops->len;
1595         uint8_t *oob = ops->oobbuf;
1596         uint8_t *buf = ops->datbuf;
1597         int bytes = mtd->writesize;
1598         int ret;
1599
1600         ops->retlen = 0;
1601
1602         /* reject writes, which are not page aligned */
1603         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
1604                 printk(KERN_NOTICE "nand_write: "
1605                        "Attempt to write not page aligned data\n");
1606                 return -EINVAL;
1607         }
1608
1609         if (!writelen)
1610                 return 0;
1611
1612         chipnr = (int)(to >> chip->chip_shift);
1613         chip->select_chip(mtd, chipnr);
1614
1615         /* Check, if it is write protected */
1616         if (nand_check_wp(mtd))
1617                 return -EIO;
1618
1619         realpage = (int)(to >> chip->page_shift);
1620         page = realpage & chip->pagemask;
1621         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1622
1623         /* Invalidate the page cache, when we write to the cached page */
1624         if (to <= (chip->pagebuf << chip->page_shift) &&
1625             (chip->pagebuf << chip->page_shift) < (to + ops->len))
1626                 chip->pagebuf = -1;
1627
1628         chip->oob_poi = chip->buffers->oobwbuf;
1629
1630         while(1) {
1631                 int cached = writelen > bytes && page != blockmask;
1632
1633                 if (unlikely(oob))
1634                         oob = nand_fill_oob(chip, oob, ops);
1635
1636                 ret = chip->write_page(mtd, chip, buf, page, cached,
1637                                        (ops->mode == MTD_OOB_RAW));
1638                 if (ret)
1639                         break;
1640
1641                 writelen -= bytes;
1642                 if (!writelen)
1643                         break;
1644
1645                 buf += bytes;
1646                 realpage++;
1647
1648                 page = realpage & chip->pagemask;
1649                 /* Check, if we cross a chip boundary */
1650                 if (!page) {
1651                         chipnr++;
1652                         chip->select_chip(mtd, -1);
1653                         chip->select_chip(mtd, chipnr);
1654                 }
1655         }
1656
1657         if (unlikely(oob))
1658                 memset(chip->oob_poi, 0xff, mtd->oobsize);
1659
1660         ops->retlen = ops->len - writelen;
1661         return ret;
1662 }
1663
1664 /**
1665  * nand_write - [MTD Interface] NAND write with ECC
1666  * @mtd:        MTD device structure
1667  * @to:         offset to write to
1668  * @len:        number of bytes to write
1669  * @retlen:     pointer to variable to store the number of written bytes
1670  * @buf:        the data to write
1671  *
1672  * NAND write with ECC
1673  */
1674 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
1675                           size_t *retlen, const uint8_t *buf)
1676 {
1677         struct nand_chip *chip = mtd->priv;
1678         int ret;
1679
1680         /* Do not allow reads past end of device */
1681         if ((to + len) > mtd->size)
1682                 return -EINVAL;
1683         if (!len)
1684                 return 0;
1685
1686         nand_get_device(chip, mtd, FL_WRITING);
1687
1688         chip->ops.len = len;
1689         chip->ops.datbuf = (uint8_t *)buf;
1690         chip->ops.oobbuf = NULL;
1691
1692         ret = nand_do_write_ops(mtd, to, &chip->ops);
1693
1694         *retlen = chip->ops.retlen;
1695
1696         nand_release_device(mtd);
1697
1698         return ret;
1699 }
1700
1701 /**
1702  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1703  * @mtd:        MTD device structure
1704  * @to:         offset to write to
1705  * @ops:        oob operation description structure
1706  *
1707  * NAND write out-of-band
1708  */
1709 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
1710                              struct mtd_oob_ops *ops)
1711 {
1712         int chipnr, page, status;
1713         struct nand_chip *chip = mtd->priv;
1714
1715         DEBUG(MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n",
1716               (unsigned int)to, (int)ops->len);
1717
1718         /* Do not allow write past end of page */
1719         if ((ops->ooboffs + ops->len) > mtd->oobsize) {
1720                 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: "
1721                       "Attempt to write past end of page\n");
1722                 return -EINVAL;
1723         }
1724
1725         chipnr = (int)(to >> chip->chip_shift);
1726         chip->select_chip(mtd, chipnr);
1727
1728         /* Shift to get page */
1729         page = (int)(to >> chip->page_shift);
1730
1731         /*
1732          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
1733          * of my DiskOnChip 2000 test units) will clear the whole data page too
1734          * if we don't do this. I have no clue why, but I seem to have 'fixed'
1735          * it in the doc2000 driver in August 1999.  dwmw2.
1736          */
1737         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1738
1739         /* Check, if it is write protected */
1740         if (nand_check_wp(mtd))
1741                 return -EROFS;
1742
1743         /* Invalidate the page cache, if we write to the cached page */
1744         if (page == chip->pagebuf)
1745                 chip->pagebuf = -1;
1746
1747         chip->oob_poi = chip->buffers->oobwbuf;
1748         memset(chip->oob_poi, 0xff, mtd->oobsize);
1749         nand_fill_oob(chip, ops->oobbuf, ops);
1750         status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1751         memset(chip->oob_poi, 0xff, mtd->oobsize);
1752
1753         if (status)
1754                 return status;
1755
1756         ops->retlen = ops->len;
1757
1758         return 0;
1759 }
1760
1761 /**
1762  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1763  * @mtd:        MTD device structure
1764  * @to:         offset to write to
1765  * @ops:        oob operation description structure
1766  */
1767 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
1768                           struct mtd_oob_ops *ops)
1769 {
1770         struct nand_chip *chip = mtd->priv;
1771         int ret = -ENOTSUPP;
1772
1773         ops->retlen = 0;
1774
1775         /* Do not allow writes past end of device */
1776         if ((to + ops->len) > mtd->size) {
1777                 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1778                       "Attempt read beyond end of device\n");
1779                 return -EINVAL;
1780         }
1781
1782         nand_get_device(chip, mtd, FL_WRITING);
1783
1784         switch(ops->mode) {
1785         case MTD_OOB_PLACE:
1786         case MTD_OOB_AUTO:
1787         case MTD_OOB_RAW:
1788                 break;
1789
1790         default:
1791                 goto out;
1792         }
1793
1794         if (!ops->datbuf)
1795                 ret = nand_do_write_oob(mtd, to, ops);
1796         else
1797                 ret = nand_do_write_ops(mtd, to, ops);
1798
1799  out:
1800         nand_release_device(mtd);
1801         return ret;
1802 }
1803
1804 /**
1805  * single_erease_cmd - [GENERIC] NAND standard block erase command function
1806  * @mtd:        MTD device structure
1807  * @page:       the page address of the block which will be erased
1808  *
1809  * Standard erase command for NAND chips
1810  */
1811 static void single_erase_cmd(struct mtd_info *mtd, int page)
1812 {
1813         struct nand_chip *chip = mtd->priv;
1814         /* Send commands to erase a block */
1815         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1816         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1817 }
1818
1819 /**
1820  * multi_erease_cmd - [GENERIC] AND specific block erase command function
1821  * @mtd:        MTD device structure
1822  * @page:       the page address of the block which will be erased
1823  *
1824  * AND multi block erase command function
1825  * Erase 4 consecutive blocks
1826  */
1827 static void multi_erase_cmd(struct mtd_info *mtd, int page)
1828 {
1829         struct nand_chip *chip = mtd->priv;
1830         /* Send commands to erase a block */
1831         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1832         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1833         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1834         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1835         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1836 }
1837
1838 /**
1839  * nand_erase - [MTD Interface] erase block(s)
1840  * @mtd:        MTD device structure
1841  * @instr:      erase instruction
1842  *
1843  * Erase one ore more blocks
1844  */
1845 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1846 {
1847         return nand_erase_nand(mtd, instr, 0);
1848 }
1849
1850 #define BBT_PAGE_MASK   0xffffff3f
1851 /**
1852  * nand_erase_nand - [Internal] erase block(s)
1853  * @mtd:        MTD device structure
1854  * @instr:      erase instruction
1855  * @allowbbt:   allow erasing the bbt area
1856  *
1857  * Erase one ore more blocks
1858  */
1859 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
1860                     int allowbbt)
1861 {
1862         int page, len, status, pages_per_block, ret, chipnr;
1863         struct nand_chip *chip = mtd->priv;
1864         int rewrite_bbt[NAND_MAX_CHIPS]={0};
1865         unsigned int bbt_masked_page = 0xffffffff;
1866
1867         DEBUG(MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n",
1868               (unsigned int)instr->addr, (unsigned int)instr->len);
1869
1870         /* Start address must align on block boundary */
1871         if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
1872                 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
1873                 return -EINVAL;
1874         }
1875
1876         /* Length must align on block boundary */
1877         if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
1878                 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1879                       "Length not block aligned\n");
1880                 return -EINVAL;
1881         }
1882
1883         /* Do not allow erase past end of device */
1884         if ((instr->len + instr->addr) > mtd->size) {
1885                 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1886                       "Erase past end of device\n");
1887                 return -EINVAL;
1888         }
1889
1890         instr->fail_addr = 0xffffffff;
1891
1892         /* Grab the lock and see if the device is available */
1893         nand_get_device(chip, mtd, FL_ERASING);
1894
1895         /* Shift to get first page */
1896         page = (int)(instr->addr >> chip->page_shift);
1897         chipnr = (int)(instr->addr >> chip->chip_shift);
1898
1899         /* Calculate pages in each block */
1900         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1901
1902         /* Select the NAND device */
1903         chip->select_chip(mtd, chipnr);
1904
1905         /* Check, if it is write protected */
1906         if (nand_check_wp(mtd)) {
1907                 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1908                       "Device is write protected!!!\n");
1909                 instr->state = MTD_ERASE_FAILED;
1910                 goto erase_exit;
1911         }
1912
1913         /*
1914          * If BBT requires refresh, set the BBT page mask to see if the BBT
1915          * should be rewritten. Otherwise the mask is set to 0xffffffff which
1916          * can not be matched. This is also done when the bbt is actually
1917          * erased to avoid recusrsive updates
1918          */
1919         if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
1920                 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
1921
1922         /* Loop through the pages */
1923         len = instr->len;
1924
1925         instr->state = MTD_ERASING;
1926
1927         while (len) {
1928                 /*
1929                  * heck if we have a bad block, we do not erase bad blocks !
1930                  */
1931                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
1932                                         chip->page_shift, 0, allowbbt)) {
1933                         printk(KERN_WARNING "nand_erase: attempt to erase a "
1934                                "bad block at page 0x%08x\n", page);
1935                         instr->state = MTD_ERASE_FAILED;
1936                         goto erase_exit;
1937                 }
1938
1939                 /*
1940                  * Invalidate the page cache, if we erase the block which
1941                  * contains the current cached page
1942                  */
1943                 if (page <= chip->pagebuf && chip->pagebuf <
1944                     (page + pages_per_block))
1945                         chip->pagebuf = -1;
1946
1947                 chip->erase_cmd(mtd, page & chip->pagemask);
1948
1949                 status = chip->waitfunc(mtd, chip);
1950
1951                 /*
1952                  * See if operation failed and additional status checks are
1953                  * available
1954                  */
1955                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1956                         status = chip->errstat(mtd, chip, FL_ERASING,
1957                                                status, page);
1958
1959                 /* See if block erase succeeded */
1960                 if (status & NAND_STATUS_FAIL) {
1961                         DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1962                               "Failed erase, page 0x%08x\n", page);
1963                         instr->state = MTD_ERASE_FAILED;
1964                         instr->fail_addr = (page << chip->page_shift);
1965                         goto erase_exit;
1966                 }
1967
1968                 /*
1969                  * If BBT requires refresh, set the BBT rewrite flag to the
1970                  * page being erased
1971                  */
1972                 if (bbt_masked_page != 0xffffffff &&
1973                     (page & BBT_PAGE_MASK) == bbt_masked_page)
1974                             rewrite_bbt[chipnr] = (page << chip->page_shift);
1975
1976                 /* Increment page address and decrement length */
1977                 len -= (1 << chip->phys_erase_shift);
1978                 page += pages_per_block;
1979
1980                 /* Check, if we cross a chip boundary */
1981                 if (len && !(page & chip->pagemask)) {
1982                         chipnr++;
1983                         chip->select_chip(mtd, -1);
1984                         chip->select_chip(mtd, chipnr);
1985
1986                         /*
1987                          * If BBT requires refresh and BBT-PERCHIP, set the BBT
1988                          * page mask to see if this BBT should be rewritten
1989                          */
1990                         if (bbt_masked_page != 0xffffffff &&
1991                             (chip->bbt_td->options & NAND_BBT_PERCHIP))
1992                                 bbt_masked_page = chip->bbt_td->pages[chipnr] &
1993                                         BBT_PAGE_MASK;
1994                 }
1995         }
1996         instr->state = MTD_ERASE_DONE;
1997
1998  erase_exit:
1999
2000         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2001         /* Do call back function */
2002         if (!ret)
2003                 mtd_erase_callback(instr);
2004
2005         /* Deselect and wake up anyone waiting on the device */
2006         nand_release_device(mtd);
2007
2008         /*
2009          * If BBT requires refresh and erase was successful, rewrite any
2010          * selected bad block tables
2011          */
2012         if (bbt_masked_page == 0xffffffff || ret)
2013                 return ret;
2014
2015         for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2016                 if (!rewrite_bbt[chipnr])
2017                         continue;
2018                 /* update the BBT for chip */
2019                 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt "
2020                       "(%d:0x%0x 0x%0x)\n", chipnr, rewrite_bbt[chipnr],
2021                       chip->bbt_td->pages[chipnr]);
2022                 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2023         }
2024
2025         /* Return more or less happy */
2026         return ret;
2027 }
2028
2029 /**
2030  * nand_sync - [MTD Interface] sync
2031  * @mtd:        MTD device structure
2032  *
2033  * Sync is actually a wait for chip ready function
2034  */
2035 static void nand_sync(struct mtd_info *mtd)
2036 {
2037         struct nand_chip *chip = mtd->priv;
2038
2039         DEBUG(MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2040
2041         /* Grab the lock and see if the device is available */
2042         nand_get_device(chip, mtd, FL_SYNCING);
2043         /* Release it and go back */
2044         nand_release_device(mtd);
2045 }
2046
2047 /**
2048  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2049  * @mtd:        MTD device structure
2050  * @offs:       offset relative to mtd start
2051  */
2052 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2053 {
2054         /* Check for invalid offset */
2055         if (offs > mtd->size)
2056                 return -EINVAL;
2057
2058         return nand_block_checkbad(mtd, offs, 1, 0);
2059 }
2060
2061 /**
2062  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2063  * @mtd:        MTD device structure
2064  * @ofs:        offset relative to mtd start
2065  */
2066 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2067 {
2068         struct nand_chip *chip = mtd->priv;
2069         int ret;
2070
2071         if ((ret = nand_block_isbad(mtd, ofs))) {
2072                 /* If it was bad already, return success and do nothing. */
2073                 if (ret > 0)
2074                         return 0;
2075                 return ret;
2076         }
2077
2078         return chip->block_markbad(mtd, ofs);
2079 }
2080
2081 /**
2082  * nand_suspend - [MTD Interface] Suspend the NAND flash
2083  * @mtd:        MTD device structure
2084  */
2085 static int nand_suspend(struct mtd_info *mtd)
2086 {
2087         struct nand_chip *chip = mtd->priv;
2088
2089         return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2090 }
2091
2092 /**
2093  * nand_resume - [MTD Interface] Resume the NAND flash
2094  * @mtd:        MTD device structure
2095  */
2096 static void nand_resume(struct mtd_info *mtd)
2097 {
2098         struct nand_chip *chip = mtd->priv;
2099
2100         if (chip->state == FL_PM_SUSPENDED)
2101                 nand_release_device(mtd);
2102         else
2103                 printk(KERN_ERR "nand_resume() called for a chip which is not "
2104                        "in suspended state\n");
2105 }
2106
2107 /*
2108  * Set default functions
2109  */
2110 static void nand_set_defaults(struct nand_chip *chip, int busw)
2111 {
2112         /* check for proper chip_delay setup, set 20us if not */
2113         if (!chip->chip_delay)
2114                 chip->chip_delay = 20;
2115
2116         /* check, if a user supplied command function given */
2117         if (chip->cmdfunc == NULL)
2118                 chip->cmdfunc = nand_command;
2119
2120         /* check, if a user supplied wait function given */
2121         if (chip->waitfunc == NULL)
2122                 chip->waitfunc = nand_wait;
2123
2124         if (!chip->select_chip)
2125                 chip->select_chip = nand_select_chip;
2126         if (!chip->read_byte)
2127                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2128         if (!chip->read_word)
2129                 chip->read_word = nand_read_word;
2130         if (!chip->block_bad)
2131                 chip->block_bad = nand_block_bad;
2132         if (!chip->block_markbad)
2133                 chip->block_markbad = nand_default_block_markbad;
2134         if (!chip->write_buf)
2135                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2136         if (!chip->read_buf)
2137                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2138         if (!chip->verify_buf)
2139                 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2140         if (!chip->scan_bbt)
2141                 chip->scan_bbt = nand_default_bbt;
2142
2143         if (!chip->controller) {
2144                 chip->controller = &chip->hwcontrol;
2145                 spin_lock_init(&chip->controller->lock);
2146                 init_waitqueue_head(&chip->controller->wq);
2147         }
2148
2149 }
2150
2151 /*
2152  * Get the flash and manufacturer id and lookup if the type is supported
2153  */
2154 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2155                                                   struct nand_chip *chip,
2156                                                   int busw, int *maf_id)
2157 {
2158         struct nand_flash_dev *type = NULL;
2159         int i, dev_id, maf_idx;
2160
2161         /* Select the device */
2162         chip->select_chip(mtd, 0);
2163
2164         /* Send the command for reading device ID */
2165         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2166
2167         /* Read manufacturer and device IDs */
2168         *maf_id = chip->read_byte(mtd);
2169         dev_id = chip->read_byte(mtd);
2170
2171         /* Lookup the flash id */
2172         for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2173                 if (dev_id == nand_flash_ids[i].id) {
2174                         type =  &nand_flash_ids[i];
2175                         break;
2176                 }
2177         }
2178
2179         if (!type)
2180                 return ERR_PTR(-ENODEV);
2181
2182         if (!mtd->name)
2183                 mtd->name = type->name;
2184
2185         chip->chipsize = type->chipsize << 20;
2186
2187         /* Newer devices have all the information in additional id bytes */
2188         if (!type->pagesize) {
2189                 int extid;
2190                 /* The 3rd id byte contains non relevant data ATM */
2191                 extid = chip->read_byte(mtd);
2192                 /* The 4th id byte is the important one */
2193                 extid = chip->read_byte(mtd);
2194                 /* Calc pagesize */
2195                 mtd->writesize = 1024 << (extid & 0x3);
2196                 extid >>= 2;
2197                 /* Calc oobsize */
2198                 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
2199                 extid >>= 2;
2200                 /* Calc blocksize. Blocksize is multiples of 64KiB */
2201                 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2202                 extid >>= 2;
2203                 /* Get buswidth information */
2204                 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2205
2206         } else {
2207                 /*
2208                  * Old devices have chip data hardcoded in the device id table
2209                  */
2210                 mtd->erasesize = type->erasesize;
2211                 mtd->writesize = type->pagesize;
2212                 mtd->oobsize = mtd->writesize / 32;
2213                 busw = type->options & NAND_BUSWIDTH_16;
2214         }
2215
2216         /* Try to identify manufacturer */
2217         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2218                 if (nand_manuf_ids[maf_idx].id == *maf_id)
2219                         break;
2220         }
2221
2222         /*
2223          * Check, if buswidth is correct. Hardware drivers should set
2224          * chip correct !
2225          */
2226         if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2227                 printk(KERN_INFO "NAND device: Manufacturer ID:"
2228                        " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2229                        dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2230                 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2231                        (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2232                        busw ? 16 : 8);
2233                 return ERR_PTR(-EINVAL);
2234         }
2235
2236         /* Calculate the address shift from the page size */
2237         chip->page_shift = ffs(mtd->writesize) - 1;
2238         /* Convert chipsize to number of pages per chip -1. */
2239         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2240
2241         chip->bbt_erase_shift = chip->phys_erase_shift =
2242                 ffs(mtd->erasesize) - 1;
2243         chip->chip_shift = ffs(chip->chipsize) - 1;
2244
2245         /* Set the bad block position */
2246         chip->badblockpos = mtd->writesize > 512 ?
2247                 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2248
2249         /* Get chip options, preserve non chip based options */
2250         chip->options &= ~NAND_CHIPOPTIONS_MSK;
2251         chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2252
2253         /*
2254          * Set chip as a default. Board drivers can override it, if necessary
2255          */
2256         chip->options |= NAND_NO_AUTOINCR;
2257
2258         /* Check if chip is a not a samsung device. Do not clear the
2259          * options for chips which are not having an extended id.
2260          */
2261         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2262                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2263
2264         /* Check for AND chips with 4 page planes */
2265         if (chip->options & NAND_4PAGE_ARRAY)
2266                 chip->erase_cmd = multi_erase_cmd;
2267         else
2268                 chip->erase_cmd = single_erase_cmd;
2269
2270         /* Do not replace user supplied command function ! */
2271         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2272                 chip->cmdfunc = nand_command_lp;
2273
2274         printk(KERN_INFO "NAND device: Manufacturer ID:"
2275                " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2276                nand_manuf_ids[maf_idx].name, type->name);
2277
2278         return type;
2279 }
2280
2281 /**
2282  * nand_scan_ident - [NAND Interface] Scan for the NAND device
2283  * @mtd:             MTD device structure
2284  * @maxchips:        Number of chips to scan for
2285  *
2286  * This is the first phase of the normal nand_scan() function. It
2287  * reads the flash ID and sets up MTD fields accordingly.
2288  *
2289  * The mtd->owner field must be set to the module of the caller.
2290  */
2291 int nand_scan_ident(struct mtd_info *mtd, int maxchips)
2292 {
2293         int i, busw, nand_maf_id;
2294         struct nand_chip *chip = mtd->priv;
2295         struct nand_flash_dev *type;
2296
2297         /* Get buswidth to select the correct functions */
2298         busw = chip->options & NAND_BUSWIDTH_16;
2299         /* Set the default functions */
2300         nand_set_defaults(chip, busw);
2301
2302         /* Read the flash type */
2303         type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
2304
2305         if (IS_ERR(type)) {
2306                 printk(KERN_WARNING "No NAND device found!!!\n");
2307                 chip->select_chip(mtd, -1);
2308                 return PTR_ERR(type);
2309         }
2310
2311         /* Check for a chip array */
2312         for (i = 1; i < maxchips; i++) {
2313                 chip->select_chip(mtd, i);
2314                 /* Send the command for reading device ID */
2315                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2316                 /* Read manufacturer and device IDs */
2317                 if (nand_maf_id != chip->read_byte(mtd) ||
2318                     type->id != chip->read_byte(mtd))
2319                         break;
2320         }
2321         if (i > 1)
2322                 printk(KERN_INFO "%d NAND chips detected\n", i);
2323
2324         /* Store the number of chips and calc total size for mtd */
2325         chip->numchips = i;
2326         mtd->size = i * chip->chipsize;
2327
2328         return 0;
2329 }
2330
2331
2332 /**
2333  * nand_scan_tail - [NAND Interface] Scan for the NAND device
2334  * @mtd:            MTD device structure
2335  * @maxchips:       Number of chips to scan for
2336  *
2337  * This is the second phase of the normal nand_scan() function. It
2338  * fills out all the uninitialized function pointers with the defaults
2339  * and scans for a bad block table if appropriate.
2340  */
2341 int nand_scan_tail(struct mtd_info *mtd)
2342 {
2343         int i;
2344         struct nand_chip *chip = mtd->priv;
2345
2346         if (!(chip->options & NAND_OWN_BUFFERS))
2347                 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
2348         if (!chip->buffers)
2349                 return -ENOMEM;
2350
2351         /* Preset the internal oob write buffer */
2352         memset(chip->buffers->oobwbuf, 0xff, mtd->oobsize);
2353
2354         /*
2355          * If no default placement scheme is given, select an appropriate one
2356          */
2357         if (!chip->ecc.layout) {
2358                 switch (mtd->oobsize) {
2359                 case 8:
2360                         chip->ecc.layout = &nand_oob_8;
2361                         break;
2362                 case 16:
2363                         chip->ecc.layout = &nand_oob_16;
2364                         break;
2365                 case 64:
2366                         chip->ecc.layout = &nand_oob_64;
2367                         break;
2368                 default:
2369                         printk(KERN_WARNING "No oob scheme defined for "
2370                                "oobsize %d\n", mtd->oobsize);
2371                         BUG();
2372                 }
2373         }
2374
2375         if (!chip->write_page)
2376                 chip->write_page = nand_write_page;
2377
2378         /*
2379          * check ECC mode, default to software if 3byte/512byte hardware ECC is
2380          * selected and we have 256 byte pagesize fallback to software ECC
2381          */
2382         if (!chip->ecc.read_page_raw)
2383                 chip->ecc.read_page_raw = nand_read_page_raw;
2384         if (!chip->ecc.write_page_raw)
2385                 chip->ecc.write_page_raw = nand_write_page_raw;
2386
2387         switch (chip->ecc.mode) {
2388         case NAND_ECC_HW:
2389                 /* Use standard hwecc read page function ? */
2390                 if (!chip->ecc.read_page)
2391                         chip->ecc.read_page = nand_read_page_hwecc;
2392                 if (!chip->ecc.write_page)
2393                         chip->ecc.write_page = nand_write_page_hwecc;
2394                 if (!chip->ecc.read_oob)
2395                         chip->ecc.read_oob = nand_read_oob_std;
2396                 if (!chip->ecc.write_oob)
2397                         chip->ecc.write_oob = nand_write_oob_std;
2398
2399         case NAND_ECC_HW_SYNDROME:
2400                 if (!chip->ecc.calculate || !chip->ecc.correct ||
2401                     !chip->ecc.hwctl) {
2402                         printk(KERN_WARNING "No ECC functions supplied, "
2403                                "Hardware ECC not possible\n");
2404                         BUG();
2405                 }
2406                 /* Use standard syndrome read/write page function ? */
2407                 if (!chip->ecc.read_page)
2408                         chip->ecc.read_page = nand_read_page_syndrome;
2409                 if (!chip->ecc.write_page)
2410                         chip->ecc.write_page = nand_write_page_syndrome;
2411                 if (!chip->ecc.read_oob)
2412                         chip->ecc.read_oob = nand_read_oob_syndrome;
2413                 if (!chip->ecc.write_oob)
2414                         chip->ecc.write_oob = nand_write_oob_syndrome;
2415
2416                 if (mtd->writesize >= chip->ecc.size)
2417                         break;
2418                 printk(KERN_WARNING "%d byte HW ECC not possible on "
2419                        "%d byte page size, fallback to SW ECC\n",
2420                        chip->ecc.size, mtd->writesize);
2421                 chip->ecc.mode = NAND_ECC_SOFT;
2422
2423         case NAND_ECC_SOFT:
2424                 chip->ecc.calculate = nand_calculate_ecc;
2425                 chip->ecc.correct = nand_correct_data;
2426                 chip->ecc.read_page = nand_read_page_swecc;
2427                 chip->ecc.write_page = nand_write_page_swecc;
2428                 chip->ecc.read_oob = nand_read_oob_std;
2429                 chip->ecc.write_oob = nand_write_oob_std;
2430                 chip->ecc.size = 256;
2431                 chip->ecc.bytes = 3;
2432                 break;
2433
2434         case NAND_ECC_NONE:
2435                 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
2436                        "This is not recommended !!\n");
2437                 chip->ecc.read_page = nand_read_page_raw;
2438                 chip->ecc.write_page = nand_write_page_raw;
2439                 chip->ecc.read_oob = nand_read_oob_std;
2440                 chip->ecc.write_oob = nand_write_oob_std;
2441                 chip->ecc.size = mtd->writesize;
2442                 chip->ecc.bytes = 0;
2443                 break;
2444
2445         default:
2446                 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
2447                        chip->ecc.mode);
2448                 BUG();
2449         }
2450
2451         /*
2452          * The number of bytes available for a client to place data into
2453          * the out of band area
2454          */
2455         chip->ecc.layout->oobavail = 0;
2456         for (i = 0; chip->ecc.layout->oobfree[i].length; i++)
2457                 chip->ecc.layout->oobavail +=
2458                         chip->ecc.layout->oobfree[i].length;
2459
2460         /*
2461          * Set the number of read / write steps for one page depending on ECC
2462          * mode
2463          */
2464         chip->ecc.steps = mtd->writesize / chip->ecc.size;
2465         if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
2466                 printk(KERN_WARNING "Invalid ecc parameters\n");
2467                 BUG();
2468         }
2469         chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
2470
2471         /* Initialize state */
2472         chip->state = FL_READY;
2473
2474         /* De-select the device */
2475         chip->select_chip(mtd, -1);
2476
2477         /* Invalidate the pagebuffer reference */
2478         chip->pagebuf = -1;
2479
2480         /* Fill in remaining MTD driver data */
2481         mtd->type = MTD_NANDFLASH;
2482         mtd->flags = MTD_CAP_NANDFLASH;
2483         mtd->ecctype = MTD_ECC_SW;
2484         mtd->erase = nand_erase;
2485         mtd->point = NULL;
2486         mtd->unpoint = NULL;
2487         mtd->read = nand_read;
2488         mtd->write = nand_write;
2489         mtd->read_oob = nand_read_oob;
2490         mtd->write_oob = nand_write_oob;
2491         mtd->sync = nand_sync;
2492         mtd->lock = NULL;
2493         mtd->unlock = NULL;
2494         mtd->suspend = nand_suspend;
2495         mtd->resume = nand_resume;
2496         mtd->block_isbad = nand_block_isbad;
2497         mtd->block_markbad = nand_block_markbad;
2498
2499         /* propagate ecc.layout to mtd_info */
2500         mtd->ecclayout = chip->ecc.layout;
2501
2502         /* Check, if we should skip the bad block table scan */
2503         if (chip->options & NAND_SKIP_BBTSCAN)
2504                 return 0;
2505
2506         /* Build bad block table */
2507         return chip->scan_bbt(mtd);
2508 }
2509
2510 /* module_text_address() isn't exported, and it's mostly a pointless
2511    test if this is a module _anyway_ -- they'd have to try _really_ hard
2512    to call us from in-kernel code if the core NAND support is modular. */
2513 #ifdef MODULE
2514 #define caller_is_module() (1)
2515 #else
2516 #define caller_is_module() \
2517         module_text_address((unsigned long)__builtin_return_address(0))
2518 #endif
2519
2520 /**
2521  * nand_scan - [NAND Interface] Scan for the NAND device
2522  * @mtd:        MTD device structure
2523  * @maxchips:   Number of chips to scan for
2524  *
2525  * This fills out all the uninitialized function pointers
2526  * with the defaults.
2527  * The flash ID is read and the mtd/chip structures are
2528  * filled with the appropriate values.
2529  * The mtd->owner field must be set to the module of the caller
2530  *
2531  */
2532 int nand_scan(struct mtd_info *mtd, int maxchips)
2533 {
2534         int ret;
2535
2536         /* Many callers got this wrong, so check for it for a while... */
2537         if (!mtd->owner && caller_is_module()) {
2538                 printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n");
2539                 BUG();
2540         }
2541
2542         ret = nand_scan_ident(mtd, maxchips);
2543         if (!ret)
2544                 ret = nand_scan_tail(mtd);
2545         return ret;
2546 }
2547
2548 /**
2549  * nand_release - [NAND Interface] Free resources held by the NAND device
2550  * @mtd:        MTD device structure
2551 */
2552 void nand_release(struct mtd_info *mtd)
2553 {
2554         struct nand_chip *chip = mtd->priv;
2555
2556 #ifdef CONFIG_MTD_PARTITIONS
2557         /* Deregister partitions */
2558         del_mtd_partitions(mtd);
2559 #endif
2560         /* Deregister the device */
2561         del_mtd_device(mtd);
2562
2563         /* Free bad block table memory */
2564         kfree(chip->bbt);
2565         if (!(chip->options & NAND_OWN_BUFFERS))
2566                 kfree(chip->buffers);
2567 }
2568
2569 EXPORT_SYMBOL_GPL(nand_scan);
2570 EXPORT_SYMBOL_GPL(nand_scan_ident);
2571 EXPORT_SYMBOL_GPL(nand_scan_tail);
2572 EXPORT_SYMBOL_GPL(nand_release);
2573
2574 static int __init nand_base_init(void)
2575 {
2576         led_trigger_register_simple("nand-disk", &nand_led_trigger);
2577         return 0;
2578 }
2579
2580 static void __exit nand_base_exit(void)
2581 {
2582         led_trigger_unregister_simple(nand_led_trigger);
2583 }
2584
2585 module_init(nand_base_init);
2586 module_exit(nand_base_exit);
2587
2588 MODULE_LICENSE("GPL");
2589 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2590 MODULE_DESCRIPTION("Generic NAND flash driver code");