Merge tag 'drm-intel-next-2018-12-04' of git://anongit.freedesktop.org/drm/drm-intel...
[sfrench/cifs-2.6.git] / drivers / media / v4l2-core / v4l2-mem2mem.c
1 /*
2  * Memory-to-memory device framework for Video for Linux 2 and videobuf.
3  *
4  * Helper functions for devices that use videobuf buffers for both their
5  * source and destination.
6  *
7  * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
8  * Pawel Osciak, <pawel@osciak.com>
9  * Marek Szyprowski, <m.szyprowski@samsung.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2 of the License, or (at your
14  * option) any later version.
15  */
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19
20 #include <media/media-device.h>
21 #include <media/videobuf2-v4l2.h>
22 #include <media/v4l2-mem2mem.h>
23 #include <media/v4l2-dev.h>
24 #include <media/v4l2-device.h>
25 #include <media/v4l2-fh.h>
26 #include <media/v4l2-event.h>
27
28 MODULE_DESCRIPTION("Mem to mem device framework for videobuf");
29 MODULE_AUTHOR("Pawel Osciak, <pawel@osciak.com>");
30 MODULE_LICENSE("GPL");
31
32 static bool debug;
33 module_param(debug, bool, 0644);
34
35 #define dprintk(fmt, arg...)                                            \
36         do {                                                            \
37                 if (debug)                                              \
38                         printk(KERN_DEBUG "%s: " fmt, __func__, ## arg);\
39         } while (0)
40
41
42 /* Instance is already queued on the job_queue */
43 #define TRANS_QUEUED            (1 << 0)
44 /* Instance is currently running in hardware */
45 #define TRANS_RUNNING           (1 << 1)
46 /* Instance is currently aborting */
47 #define TRANS_ABORT             (1 << 2)
48
49
50 /* Offset base for buffers on the destination queue - used to distinguish
51  * between source and destination buffers when mmapping - they receive the same
52  * offsets but for different queues */
53 #define DST_QUEUE_OFF_BASE      (1 << 30)
54
55 enum v4l2_m2m_entity_type {
56         MEM2MEM_ENT_TYPE_SOURCE,
57         MEM2MEM_ENT_TYPE_SINK,
58         MEM2MEM_ENT_TYPE_PROC
59 };
60
61 static const char * const m2m_entity_name[] = {
62         "source",
63         "sink",
64         "proc"
65 };
66
67 /**
68  * struct v4l2_m2m_dev - per-device context
69  * @source:             &struct media_entity pointer with the source entity
70  *                      Used only when the M2M device is registered via
71  *                      v4l2_m2m_unregister_media_controller().
72  * @source_pad:         &struct media_pad with the source pad.
73  *                      Used only when the M2M device is registered via
74  *                      v4l2_m2m_unregister_media_controller().
75  * @sink:               &struct media_entity pointer with the sink entity
76  *                      Used only when the M2M device is registered via
77  *                      v4l2_m2m_unregister_media_controller().
78  * @sink_pad:           &struct media_pad with the sink pad.
79  *                      Used only when the M2M device is registered via
80  *                      v4l2_m2m_unregister_media_controller().
81  * @proc:               &struct media_entity pointer with the M2M device itself.
82  * @proc_pads:          &struct media_pad with the @proc pads.
83  *                      Used only when the M2M device is registered via
84  *                      v4l2_m2m_unregister_media_controller().
85  * @intf_devnode:       &struct media_intf devnode pointer with the interface
86  *                      with controls the M2M device.
87  * @curr_ctx:           currently running instance
88  * @job_queue:          instances queued to run
89  * @job_spinlock:       protects job_queue
90  * @m2m_ops:            driver callbacks
91  */
92 struct v4l2_m2m_dev {
93         struct v4l2_m2m_ctx     *curr_ctx;
94 #ifdef CONFIG_MEDIA_CONTROLLER
95         struct media_entity     *source;
96         struct media_pad        source_pad;
97         struct media_entity     sink;
98         struct media_pad        sink_pad;
99         struct media_entity     proc;
100         struct media_pad        proc_pads[2];
101         struct media_intf_devnode *intf_devnode;
102 #endif
103
104         struct list_head        job_queue;
105         spinlock_t              job_spinlock;
106
107         const struct v4l2_m2m_ops *m2m_ops;
108 };
109
110 static struct v4l2_m2m_queue_ctx *get_queue_ctx(struct v4l2_m2m_ctx *m2m_ctx,
111                                                 enum v4l2_buf_type type)
112 {
113         if (V4L2_TYPE_IS_OUTPUT(type))
114                 return &m2m_ctx->out_q_ctx;
115         else
116                 return &m2m_ctx->cap_q_ctx;
117 }
118
119 struct vb2_queue *v4l2_m2m_get_vq(struct v4l2_m2m_ctx *m2m_ctx,
120                                        enum v4l2_buf_type type)
121 {
122         struct v4l2_m2m_queue_ctx *q_ctx;
123
124         q_ctx = get_queue_ctx(m2m_ctx, type);
125         if (!q_ctx)
126                 return NULL;
127
128         return &q_ctx->q;
129 }
130 EXPORT_SYMBOL(v4l2_m2m_get_vq);
131
132 void *v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx *q_ctx)
133 {
134         struct v4l2_m2m_buffer *b;
135         unsigned long flags;
136
137         spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
138
139         if (list_empty(&q_ctx->rdy_queue)) {
140                 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
141                 return NULL;
142         }
143
144         b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
145         spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
146         return &b->vb;
147 }
148 EXPORT_SYMBOL_GPL(v4l2_m2m_next_buf);
149
150 void *v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx *q_ctx)
151 {
152         struct v4l2_m2m_buffer *b;
153         unsigned long flags;
154
155         spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
156
157         if (list_empty(&q_ctx->rdy_queue)) {
158                 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
159                 return NULL;
160         }
161
162         b = list_last_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
163         spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
164         return &b->vb;
165 }
166 EXPORT_SYMBOL_GPL(v4l2_m2m_last_buf);
167
168 void *v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx *q_ctx)
169 {
170         struct v4l2_m2m_buffer *b;
171         unsigned long flags;
172
173         spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
174         if (list_empty(&q_ctx->rdy_queue)) {
175                 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
176                 return NULL;
177         }
178         b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
179         list_del(&b->list);
180         q_ctx->num_rdy--;
181         spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
182
183         return &b->vb;
184 }
185 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove);
186
187 void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx *q_ctx,
188                                 struct vb2_v4l2_buffer *vbuf)
189 {
190         struct v4l2_m2m_buffer *b;
191         unsigned long flags;
192
193         spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
194         b = container_of(vbuf, struct v4l2_m2m_buffer, vb);
195         list_del(&b->list);
196         q_ctx->num_rdy--;
197         spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
198 }
199 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_buf);
200
201 struct vb2_v4l2_buffer *
202 v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx *q_ctx, unsigned int idx)
203
204 {
205         struct v4l2_m2m_buffer *b, *tmp;
206         struct vb2_v4l2_buffer *ret = NULL;
207         unsigned long flags;
208
209         spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
210         list_for_each_entry_safe(b, tmp, &q_ctx->rdy_queue, list) {
211                 if (b->vb.vb2_buf.index == idx) {
212                         list_del(&b->list);
213                         q_ctx->num_rdy--;
214                         ret = &b->vb;
215                         break;
216                 }
217         }
218         spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
219
220         return ret;
221 }
222 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_idx);
223
224 /*
225  * Scheduling handlers
226  */
227
228 void *v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev *m2m_dev)
229 {
230         unsigned long flags;
231         void *ret = NULL;
232
233         spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
234         if (m2m_dev->curr_ctx)
235                 ret = m2m_dev->curr_ctx->priv;
236         spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
237
238         return ret;
239 }
240 EXPORT_SYMBOL(v4l2_m2m_get_curr_priv);
241
242 /**
243  * v4l2_m2m_try_run() - select next job to perform and run it if possible
244  * @m2m_dev: per-device context
245  *
246  * Get next transaction (if present) from the waiting jobs list and run it.
247  */
248 static void v4l2_m2m_try_run(struct v4l2_m2m_dev *m2m_dev)
249 {
250         unsigned long flags;
251
252         spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
253         if (NULL != m2m_dev->curr_ctx) {
254                 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
255                 dprintk("Another instance is running, won't run now\n");
256                 return;
257         }
258
259         if (list_empty(&m2m_dev->job_queue)) {
260                 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
261                 dprintk("No job pending\n");
262                 return;
263         }
264
265         m2m_dev->curr_ctx = list_first_entry(&m2m_dev->job_queue,
266                                    struct v4l2_m2m_ctx, queue);
267         m2m_dev->curr_ctx->job_flags |= TRANS_RUNNING;
268         spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
269
270         dprintk("Running job on m2m_ctx: %p\n", m2m_dev->curr_ctx);
271         m2m_dev->m2m_ops->device_run(m2m_dev->curr_ctx->priv);
272 }
273
274 /*
275  * __v4l2_m2m_try_queue() - queue a job
276  * @m2m_dev: m2m device
277  * @m2m_ctx: m2m context
278  *
279  * Check if this context is ready to queue a job.
280  *
281  * This function can run in interrupt context.
282  */
283 static void __v4l2_m2m_try_queue(struct v4l2_m2m_dev *m2m_dev,
284                                  struct v4l2_m2m_ctx *m2m_ctx)
285 {
286         unsigned long flags_job, flags_out, flags_cap;
287
288         dprintk("Trying to schedule a job for m2m_ctx: %p\n", m2m_ctx);
289
290         if (!m2m_ctx->out_q_ctx.q.streaming
291             || !m2m_ctx->cap_q_ctx.q.streaming) {
292                 dprintk("Streaming needs to be on for both queues\n");
293                 return;
294         }
295
296         spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
297
298         /* If the context is aborted then don't schedule it */
299         if (m2m_ctx->job_flags & TRANS_ABORT) {
300                 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
301                 dprintk("Aborted context\n");
302                 return;
303         }
304
305         if (m2m_ctx->job_flags & TRANS_QUEUED) {
306                 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
307                 dprintk("On job queue already\n");
308                 return;
309         }
310
311         spin_lock_irqsave(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out);
312         if (list_empty(&m2m_ctx->out_q_ctx.rdy_queue)
313             && !m2m_ctx->out_q_ctx.buffered) {
314                 spin_unlock_irqrestore(&m2m_ctx->out_q_ctx.rdy_spinlock,
315                                         flags_out);
316                 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
317                 dprintk("No input buffers available\n");
318                 return;
319         }
320         spin_lock_irqsave(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap);
321         if (list_empty(&m2m_ctx->cap_q_ctx.rdy_queue)
322             && !m2m_ctx->cap_q_ctx.buffered) {
323                 spin_unlock_irqrestore(&m2m_ctx->cap_q_ctx.rdy_spinlock,
324                                         flags_cap);
325                 spin_unlock_irqrestore(&m2m_ctx->out_q_ctx.rdy_spinlock,
326                                         flags_out);
327                 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
328                 dprintk("No output buffers available\n");
329                 return;
330         }
331         spin_unlock_irqrestore(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap);
332         spin_unlock_irqrestore(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out);
333
334         if (m2m_dev->m2m_ops->job_ready
335                 && (!m2m_dev->m2m_ops->job_ready(m2m_ctx->priv))) {
336                 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
337                 dprintk("Driver not ready\n");
338                 return;
339         }
340
341         list_add_tail(&m2m_ctx->queue, &m2m_dev->job_queue);
342         m2m_ctx->job_flags |= TRANS_QUEUED;
343
344         spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
345 }
346
347 /**
348  * v4l2_m2m_try_schedule() - schedule and possibly run a job for any context
349  * @m2m_ctx: m2m context
350  *
351  * Check if this context is ready to queue a job. If suitable,
352  * run the next queued job on the mem2mem device.
353  *
354  * This function shouldn't run in interrupt context.
355  *
356  * Note that v4l2_m2m_try_schedule() can schedule one job for this context,
357  * and then run another job for another context.
358  */
359 void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx *m2m_ctx)
360 {
361         struct v4l2_m2m_dev *m2m_dev = m2m_ctx->m2m_dev;
362
363         __v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
364         v4l2_m2m_try_run(m2m_dev);
365 }
366 EXPORT_SYMBOL_GPL(v4l2_m2m_try_schedule);
367
368 /**
369  * v4l2_m2m_cancel_job() - cancel pending jobs for the context
370  * @m2m_ctx: m2m context with jobs to be canceled
371  *
372  * In case of streamoff or release called on any context,
373  * 1] If the context is currently running, then abort job will be called
374  * 2] If the context is queued, then the context will be removed from
375  *    the job_queue
376  */
377 static void v4l2_m2m_cancel_job(struct v4l2_m2m_ctx *m2m_ctx)
378 {
379         struct v4l2_m2m_dev *m2m_dev;
380         unsigned long flags;
381
382         m2m_dev = m2m_ctx->m2m_dev;
383         spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
384
385         m2m_ctx->job_flags |= TRANS_ABORT;
386         if (m2m_ctx->job_flags & TRANS_RUNNING) {
387                 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
388                 if (m2m_dev->m2m_ops->job_abort)
389                         m2m_dev->m2m_ops->job_abort(m2m_ctx->priv);
390                 dprintk("m2m_ctx %p running, will wait to complete\n", m2m_ctx);
391                 wait_event(m2m_ctx->finished,
392                                 !(m2m_ctx->job_flags & TRANS_RUNNING));
393         } else if (m2m_ctx->job_flags & TRANS_QUEUED) {
394                 list_del(&m2m_ctx->queue);
395                 m2m_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
396                 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
397                 dprintk("m2m_ctx: %p had been on queue and was removed\n",
398                         m2m_ctx);
399         } else {
400                 /* Do nothing, was not on queue/running */
401                 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
402         }
403 }
404
405 void v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev,
406                          struct v4l2_m2m_ctx *m2m_ctx)
407 {
408         unsigned long flags;
409
410         spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
411         if (!m2m_dev->curr_ctx || m2m_dev->curr_ctx != m2m_ctx) {
412                 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
413                 dprintk("Called by an instance not currently running\n");
414                 return;
415         }
416
417         list_del(&m2m_dev->curr_ctx->queue);
418         m2m_dev->curr_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
419         wake_up(&m2m_dev->curr_ctx->finished);
420         m2m_dev->curr_ctx = NULL;
421
422         spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
423
424         /* This instance might have more buffers ready, but since we do not
425          * allow more than one job on the job_queue per instance, each has
426          * to be scheduled separately after the previous one finishes. */
427         v4l2_m2m_try_schedule(m2m_ctx);
428 }
429 EXPORT_SYMBOL(v4l2_m2m_job_finish);
430
431 int v4l2_m2m_reqbufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
432                      struct v4l2_requestbuffers *reqbufs)
433 {
434         struct vb2_queue *vq;
435         int ret;
436
437         vq = v4l2_m2m_get_vq(m2m_ctx, reqbufs->type);
438         ret = vb2_reqbufs(vq, reqbufs);
439         /* If count == 0, then the owner has released all buffers and he
440            is no longer owner of the queue. Otherwise we have an owner. */
441         if (ret == 0)
442                 vq->owner = reqbufs->count ? file->private_data : NULL;
443
444         return ret;
445 }
446 EXPORT_SYMBOL_GPL(v4l2_m2m_reqbufs);
447
448 int v4l2_m2m_querybuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
449                       struct v4l2_buffer *buf)
450 {
451         struct vb2_queue *vq;
452         int ret = 0;
453         unsigned int i;
454
455         vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
456         ret = vb2_querybuf(vq, buf);
457
458         /* Adjust MMAP memory offsets for the CAPTURE queue */
459         if (buf->memory == V4L2_MEMORY_MMAP && !V4L2_TYPE_IS_OUTPUT(vq->type)) {
460                 if (V4L2_TYPE_IS_MULTIPLANAR(vq->type)) {
461                         for (i = 0; i < buf->length; ++i)
462                                 buf->m.planes[i].m.mem_offset
463                                         += DST_QUEUE_OFF_BASE;
464                 } else {
465                         buf->m.offset += DST_QUEUE_OFF_BASE;
466                 }
467         }
468
469         return ret;
470 }
471 EXPORT_SYMBOL_GPL(v4l2_m2m_querybuf);
472
473 int v4l2_m2m_qbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
474                   struct v4l2_buffer *buf)
475 {
476         struct video_device *vdev = video_devdata(file);
477         struct vb2_queue *vq;
478         int ret;
479
480         vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
481         if (!V4L2_TYPE_IS_OUTPUT(vq->type) &&
482             (buf->flags & V4L2_BUF_FLAG_REQUEST_FD)) {
483                 dprintk("%s: requests cannot be used with capture buffers\n",
484                         __func__);
485                 return -EPERM;
486         }
487         ret = vb2_qbuf(vq, vdev->v4l2_dev->mdev, buf);
488         if (!ret && !(buf->flags & V4L2_BUF_FLAG_IN_REQUEST))
489                 v4l2_m2m_try_schedule(m2m_ctx);
490
491         return ret;
492 }
493 EXPORT_SYMBOL_GPL(v4l2_m2m_qbuf);
494
495 int v4l2_m2m_dqbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
496                    struct v4l2_buffer *buf)
497 {
498         struct vb2_queue *vq;
499
500         vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
501         return vb2_dqbuf(vq, buf, file->f_flags & O_NONBLOCK);
502 }
503 EXPORT_SYMBOL_GPL(v4l2_m2m_dqbuf);
504
505 int v4l2_m2m_prepare_buf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
506                          struct v4l2_buffer *buf)
507 {
508         struct video_device *vdev = video_devdata(file);
509         struct vb2_queue *vq;
510
511         vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
512         return vb2_prepare_buf(vq, vdev->v4l2_dev->mdev, buf);
513 }
514 EXPORT_SYMBOL_GPL(v4l2_m2m_prepare_buf);
515
516 int v4l2_m2m_create_bufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
517                          struct v4l2_create_buffers *create)
518 {
519         struct vb2_queue *vq;
520
521         vq = v4l2_m2m_get_vq(m2m_ctx, create->format.type);
522         return vb2_create_bufs(vq, create);
523 }
524 EXPORT_SYMBOL_GPL(v4l2_m2m_create_bufs);
525
526 int v4l2_m2m_expbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
527                   struct v4l2_exportbuffer *eb)
528 {
529         struct vb2_queue *vq;
530
531         vq = v4l2_m2m_get_vq(m2m_ctx, eb->type);
532         return vb2_expbuf(vq, eb);
533 }
534 EXPORT_SYMBOL_GPL(v4l2_m2m_expbuf);
535
536 int v4l2_m2m_streamon(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
537                       enum v4l2_buf_type type)
538 {
539         struct vb2_queue *vq;
540         int ret;
541
542         vq = v4l2_m2m_get_vq(m2m_ctx, type);
543         ret = vb2_streamon(vq, type);
544         if (!ret)
545                 v4l2_m2m_try_schedule(m2m_ctx);
546
547         return ret;
548 }
549 EXPORT_SYMBOL_GPL(v4l2_m2m_streamon);
550
551 int v4l2_m2m_streamoff(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
552                        enum v4l2_buf_type type)
553 {
554         struct v4l2_m2m_dev *m2m_dev;
555         struct v4l2_m2m_queue_ctx *q_ctx;
556         unsigned long flags_job, flags;
557         int ret;
558
559         /* wait until the current context is dequeued from job_queue */
560         v4l2_m2m_cancel_job(m2m_ctx);
561
562         q_ctx = get_queue_ctx(m2m_ctx, type);
563         ret = vb2_streamoff(&q_ctx->q, type);
564         if (ret)
565                 return ret;
566
567         m2m_dev = m2m_ctx->m2m_dev;
568         spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
569         /* We should not be scheduled anymore, since we're dropping a queue. */
570         if (m2m_ctx->job_flags & TRANS_QUEUED)
571                 list_del(&m2m_ctx->queue);
572         m2m_ctx->job_flags = 0;
573
574         spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
575         /* Drop queue, since streamoff returns device to the same state as after
576          * calling reqbufs. */
577         INIT_LIST_HEAD(&q_ctx->rdy_queue);
578         q_ctx->num_rdy = 0;
579         spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
580
581         if (m2m_dev->curr_ctx == m2m_ctx) {
582                 m2m_dev->curr_ctx = NULL;
583                 wake_up(&m2m_ctx->finished);
584         }
585         spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
586
587         return 0;
588 }
589 EXPORT_SYMBOL_GPL(v4l2_m2m_streamoff);
590
591 __poll_t v4l2_m2m_poll(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
592                            struct poll_table_struct *wait)
593 {
594         struct video_device *vfd = video_devdata(file);
595         __poll_t req_events = poll_requested_events(wait);
596         struct vb2_queue *src_q, *dst_q;
597         struct vb2_buffer *src_vb = NULL, *dst_vb = NULL;
598         __poll_t rc = 0;
599         unsigned long flags;
600
601         if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags)) {
602                 struct v4l2_fh *fh = file->private_data;
603
604                 if (v4l2_event_pending(fh))
605                         rc = EPOLLPRI;
606                 else if (req_events & EPOLLPRI)
607                         poll_wait(file, &fh->wait, wait);
608                 if (!(req_events & (EPOLLOUT | EPOLLWRNORM | EPOLLIN | EPOLLRDNORM)))
609                         return rc;
610         }
611
612         src_q = v4l2_m2m_get_src_vq(m2m_ctx);
613         dst_q = v4l2_m2m_get_dst_vq(m2m_ctx);
614
615         /*
616          * There has to be at least one buffer queued on each queued_list, which
617          * means either in driver already or waiting for driver to claim it
618          * and start processing.
619          */
620         if ((!src_q->streaming || list_empty(&src_q->queued_list))
621                 && (!dst_q->streaming || list_empty(&dst_q->queued_list))) {
622                 rc |= EPOLLERR;
623                 goto end;
624         }
625
626         spin_lock_irqsave(&src_q->done_lock, flags);
627         if (list_empty(&src_q->done_list))
628                 poll_wait(file, &src_q->done_wq, wait);
629         spin_unlock_irqrestore(&src_q->done_lock, flags);
630
631         spin_lock_irqsave(&dst_q->done_lock, flags);
632         if (list_empty(&dst_q->done_list)) {
633                 /*
634                  * If the last buffer was dequeued from the capture queue,
635                  * return immediately. DQBUF will return -EPIPE.
636                  */
637                 if (dst_q->last_buffer_dequeued) {
638                         spin_unlock_irqrestore(&dst_q->done_lock, flags);
639                         return rc | EPOLLIN | EPOLLRDNORM;
640                 }
641
642                 poll_wait(file, &dst_q->done_wq, wait);
643         }
644         spin_unlock_irqrestore(&dst_q->done_lock, flags);
645
646         spin_lock_irqsave(&src_q->done_lock, flags);
647         if (!list_empty(&src_q->done_list))
648                 src_vb = list_first_entry(&src_q->done_list, struct vb2_buffer,
649                                                 done_entry);
650         if (src_vb && (src_vb->state == VB2_BUF_STATE_DONE
651                         || src_vb->state == VB2_BUF_STATE_ERROR))
652                 rc |= EPOLLOUT | EPOLLWRNORM;
653         spin_unlock_irqrestore(&src_q->done_lock, flags);
654
655         spin_lock_irqsave(&dst_q->done_lock, flags);
656         if (!list_empty(&dst_q->done_list))
657                 dst_vb = list_first_entry(&dst_q->done_list, struct vb2_buffer,
658                                                 done_entry);
659         if (dst_vb && (dst_vb->state == VB2_BUF_STATE_DONE
660                         || dst_vb->state == VB2_BUF_STATE_ERROR))
661                 rc |= EPOLLIN | EPOLLRDNORM;
662         spin_unlock_irqrestore(&dst_q->done_lock, flags);
663
664 end:
665         return rc;
666 }
667 EXPORT_SYMBOL_GPL(v4l2_m2m_poll);
668
669 int v4l2_m2m_mmap(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
670                          struct vm_area_struct *vma)
671 {
672         unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
673         struct vb2_queue *vq;
674
675         if (offset < DST_QUEUE_OFF_BASE) {
676                 vq = v4l2_m2m_get_src_vq(m2m_ctx);
677         } else {
678                 vq = v4l2_m2m_get_dst_vq(m2m_ctx);
679                 vma->vm_pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT);
680         }
681
682         return vb2_mmap(vq, vma);
683 }
684 EXPORT_SYMBOL(v4l2_m2m_mmap);
685
686 #if defined(CONFIG_MEDIA_CONTROLLER)
687 void v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev *m2m_dev)
688 {
689         media_remove_intf_links(&m2m_dev->intf_devnode->intf);
690         media_devnode_remove(m2m_dev->intf_devnode);
691
692         media_entity_remove_links(m2m_dev->source);
693         media_entity_remove_links(&m2m_dev->sink);
694         media_entity_remove_links(&m2m_dev->proc);
695         media_device_unregister_entity(m2m_dev->source);
696         media_device_unregister_entity(&m2m_dev->sink);
697         media_device_unregister_entity(&m2m_dev->proc);
698         kfree(m2m_dev->source->name);
699         kfree(m2m_dev->sink.name);
700         kfree(m2m_dev->proc.name);
701 }
702 EXPORT_SYMBOL_GPL(v4l2_m2m_unregister_media_controller);
703
704 static int v4l2_m2m_register_entity(struct media_device *mdev,
705         struct v4l2_m2m_dev *m2m_dev, enum v4l2_m2m_entity_type type,
706         struct video_device *vdev, int function)
707 {
708         struct media_entity *entity;
709         struct media_pad *pads;
710         char *name;
711         unsigned int len;
712         int num_pads;
713         int ret;
714
715         switch (type) {
716         case MEM2MEM_ENT_TYPE_SOURCE:
717                 entity = m2m_dev->source;
718                 pads = &m2m_dev->source_pad;
719                 pads[0].flags = MEDIA_PAD_FL_SOURCE;
720                 num_pads = 1;
721                 break;
722         case MEM2MEM_ENT_TYPE_SINK:
723                 entity = &m2m_dev->sink;
724                 pads = &m2m_dev->sink_pad;
725                 pads[0].flags = MEDIA_PAD_FL_SINK;
726                 num_pads = 1;
727                 break;
728         case MEM2MEM_ENT_TYPE_PROC:
729                 entity = &m2m_dev->proc;
730                 pads = m2m_dev->proc_pads;
731                 pads[0].flags = MEDIA_PAD_FL_SINK;
732                 pads[1].flags = MEDIA_PAD_FL_SOURCE;
733                 num_pads = 2;
734                 break;
735         default:
736                 return -EINVAL;
737         }
738
739         entity->obj_type = MEDIA_ENTITY_TYPE_BASE;
740         if (type != MEM2MEM_ENT_TYPE_PROC) {
741                 entity->info.dev.major = VIDEO_MAJOR;
742                 entity->info.dev.minor = vdev->minor;
743         }
744         len = strlen(vdev->name) + 2 + strlen(m2m_entity_name[type]);
745         name = kmalloc(len, GFP_KERNEL);
746         if (!name)
747                 return -ENOMEM;
748         snprintf(name, len, "%s-%s", vdev->name, m2m_entity_name[type]);
749         entity->name = name;
750         entity->function = function;
751
752         ret = media_entity_pads_init(entity, num_pads, pads);
753         if (ret)
754                 return ret;
755         ret = media_device_register_entity(mdev, entity);
756         if (ret)
757                 return ret;
758
759         return 0;
760 }
761
762 int v4l2_m2m_register_media_controller(struct v4l2_m2m_dev *m2m_dev,
763                 struct video_device *vdev, int function)
764 {
765         struct media_device *mdev = vdev->v4l2_dev->mdev;
766         struct media_link *link;
767         int ret;
768
769         if (!mdev)
770                 return 0;
771
772         /* A memory-to-memory device consists in two
773          * DMA engine and one video processing entities.
774          * The DMA engine entities are linked to a V4L interface
775          */
776
777         /* Create the three entities with their pads */
778         m2m_dev->source = &vdev->entity;
779         ret = v4l2_m2m_register_entity(mdev, m2m_dev,
780                         MEM2MEM_ENT_TYPE_SOURCE, vdev, MEDIA_ENT_F_IO_V4L);
781         if (ret)
782                 return ret;
783         ret = v4l2_m2m_register_entity(mdev, m2m_dev,
784                         MEM2MEM_ENT_TYPE_PROC, vdev, function);
785         if (ret)
786                 goto err_rel_entity0;
787         ret = v4l2_m2m_register_entity(mdev, m2m_dev,
788                         MEM2MEM_ENT_TYPE_SINK, vdev, MEDIA_ENT_F_IO_V4L);
789         if (ret)
790                 goto err_rel_entity1;
791
792         /* Connect the three entities */
793         ret = media_create_pad_link(m2m_dev->source, 0, &m2m_dev->proc, 1,
794                         MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
795         if (ret)
796                 goto err_rel_entity2;
797
798         ret = media_create_pad_link(&m2m_dev->proc, 0, &m2m_dev->sink, 0,
799                         MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
800         if (ret)
801                 goto err_rm_links0;
802
803         /* Create video interface */
804         m2m_dev->intf_devnode = media_devnode_create(mdev,
805                         MEDIA_INTF_T_V4L_VIDEO, 0,
806                         VIDEO_MAJOR, vdev->minor);
807         if (!m2m_dev->intf_devnode) {
808                 ret = -ENOMEM;
809                 goto err_rm_links1;
810         }
811
812         /* Connect the two DMA engines to the interface */
813         link = media_create_intf_link(m2m_dev->source,
814                         &m2m_dev->intf_devnode->intf,
815                         MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
816         if (!link) {
817                 ret = -ENOMEM;
818                 goto err_rm_devnode;
819         }
820
821         link = media_create_intf_link(&m2m_dev->sink,
822                         &m2m_dev->intf_devnode->intf,
823                         MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
824         if (!link) {
825                 ret = -ENOMEM;
826                 goto err_rm_intf_link;
827         }
828         return 0;
829
830 err_rm_intf_link:
831         media_remove_intf_links(&m2m_dev->intf_devnode->intf);
832 err_rm_devnode:
833         media_devnode_remove(m2m_dev->intf_devnode);
834 err_rm_links1:
835         media_entity_remove_links(&m2m_dev->sink);
836 err_rm_links0:
837         media_entity_remove_links(&m2m_dev->proc);
838         media_entity_remove_links(m2m_dev->source);
839 err_rel_entity2:
840         media_device_unregister_entity(&m2m_dev->proc);
841         kfree(m2m_dev->proc.name);
842 err_rel_entity1:
843         media_device_unregister_entity(&m2m_dev->sink);
844         kfree(m2m_dev->sink.name);
845 err_rel_entity0:
846         media_device_unregister_entity(m2m_dev->source);
847         kfree(m2m_dev->source->name);
848         return ret;
849         return 0;
850 }
851 EXPORT_SYMBOL_GPL(v4l2_m2m_register_media_controller);
852 #endif
853
854 struct v4l2_m2m_dev *v4l2_m2m_init(const struct v4l2_m2m_ops *m2m_ops)
855 {
856         struct v4l2_m2m_dev *m2m_dev;
857
858         if (!m2m_ops || WARN_ON(!m2m_ops->device_run))
859                 return ERR_PTR(-EINVAL);
860
861         m2m_dev = kzalloc(sizeof *m2m_dev, GFP_KERNEL);
862         if (!m2m_dev)
863                 return ERR_PTR(-ENOMEM);
864
865         m2m_dev->curr_ctx = NULL;
866         m2m_dev->m2m_ops = m2m_ops;
867         INIT_LIST_HEAD(&m2m_dev->job_queue);
868         spin_lock_init(&m2m_dev->job_spinlock);
869
870         return m2m_dev;
871 }
872 EXPORT_SYMBOL_GPL(v4l2_m2m_init);
873
874 void v4l2_m2m_release(struct v4l2_m2m_dev *m2m_dev)
875 {
876         kfree(m2m_dev);
877 }
878 EXPORT_SYMBOL_GPL(v4l2_m2m_release);
879
880 struct v4l2_m2m_ctx *v4l2_m2m_ctx_init(struct v4l2_m2m_dev *m2m_dev,
881                 void *drv_priv,
882                 int (*queue_init)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq))
883 {
884         struct v4l2_m2m_ctx *m2m_ctx;
885         struct v4l2_m2m_queue_ctx *out_q_ctx, *cap_q_ctx;
886         int ret;
887
888         m2m_ctx = kzalloc(sizeof *m2m_ctx, GFP_KERNEL);
889         if (!m2m_ctx)
890                 return ERR_PTR(-ENOMEM);
891
892         m2m_ctx->priv = drv_priv;
893         m2m_ctx->m2m_dev = m2m_dev;
894         init_waitqueue_head(&m2m_ctx->finished);
895
896         out_q_ctx = &m2m_ctx->out_q_ctx;
897         cap_q_ctx = &m2m_ctx->cap_q_ctx;
898
899         INIT_LIST_HEAD(&out_q_ctx->rdy_queue);
900         INIT_LIST_HEAD(&cap_q_ctx->rdy_queue);
901         spin_lock_init(&out_q_ctx->rdy_spinlock);
902         spin_lock_init(&cap_q_ctx->rdy_spinlock);
903
904         INIT_LIST_HEAD(&m2m_ctx->queue);
905
906         ret = queue_init(drv_priv, &out_q_ctx->q, &cap_q_ctx->q);
907
908         if (ret)
909                 goto err;
910         /*
911          * If both queues use same mutex assign it as the common buffer
912          * queues lock to the m2m context. This lock is used in the
913          * v4l2_m2m_ioctl_* helpers.
914          */
915         if (out_q_ctx->q.lock == cap_q_ctx->q.lock)
916                 m2m_ctx->q_lock = out_q_ctx->q.lock;
917
918         return m2m_ctx;
919 err:
920         kfree(m2m_ctx);
921         return ERR_PTR(ret);
922 }
923 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_init);
924
925 void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx *m2m_ctx)
926 {
927         /* wait until the current context is dequeued from job_queue */
928         v4l2_m2m_cancel_job(m2m_ctx);
929
930         vb2_queue_release(&m2m_ctx->cap_q_ctx.q);
931         vb2_queue_release(&m2m_ctx->out_q_ctx.q);
932
933         kfree(m2m_ctx);
934 }
935 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_release);
936
937 void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx *m2m_ctx,
938                 struct vb2_v4l2_buffer *vbuf)
939 {
940         struct v4l2_m2m_buffer *b = container_of(vbuf,
941                                 struct v4l2_m2m_buffer, vb);
942         struct v4l2_m2m_queue_ctx *q_ctx;
943         unsigned long flags;
944
945         q_ctx = get_queue_ctx(m2m_ctx, vbuf->vb2_buf.vb2_queue->type);
946         if (!q_ctx)
947                 return;
948
949         spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
950         list_add_tail(&b->list, &q_ctx->rdy_queue);
951         q_ctx->num_rdy++;
952         spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
953 }
954 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_queue);
955
956 void v4l2_m2m_request_queue(struct media_request *req)
957 {
958         struct media_request_object *obj, *obj_safe;
959         struct v4l2_m2m_ctx *m2m_ctx = NULL;
960
961         /*
962          * Queue all objects. Note that buffer objects are at the end of the
963          * objects list, after all other object types. Once buffer objects
964          * are queued, the driver might delete them immediately (if the driver
965          * processes the buffer at once), so we have to use
966          * list_for_each_entry_safe() to handle the case where the object we
967          * queue is deleted.
968          */
969         list_for_each_entry_safe(obj, obj_safe, &req->objects, list) {
970                 struct v4l2_m2m_ctx *m2m_ctx_obj;
971                 struct vb2_buffer *vb;
972
973                 if (!obj->ops->queue)
974                         continue;
975
976                 if (vb2_request_object_is_buffer(obj)) {
977                         /* Sanity checks */
978                         vb = container_of(obj, struct vb2_buffer, req_obj);
979                         WARN_ON(!V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type));
980                         m2m_ctx_obj = container_of(vb->vb2_queue,
981                                                    struct v4l2_m2m_ctx,
982                                                    out_q_ctx.q);
983                         WARN_ON(m2m_ctx && m2m_ctx_obj != m2m_ctx);
984                         m2m_ctx = m2m_ctx_obj;
985                 }
986
987                 /*
988                  * The buffer we queue here can in theory be immediately
989                  * unbound, hence the use of list_for_each_entry_safe()
990                  * above and why we call the queue op last.
991                  */
992                 obj->ops->queue(obj);
993         }
994
995         WARN_ON(!m2m_ctx);
996
997         if (m2m_ctx)
998                 v4l2_m2m_try_schedule(m2m_ctx);
999 }
1000 EXPORT_SYMBOL_GPL(v4l2_m2m_request_queue);
1001
1002 /* Videobuf2 ioctl helpers */
1003
1004 int v4l2_m2m_ioctl_reqbufs(struct file *file, void *priv,
1005                                 struct v4l2_requestbuffers *rb)
1006 {
1007         struct v4l2_fh *fh = file->private_data;
1008
1009         return v4l2_m2m_reqbufs(file, fh->m2m_ctx, rb);
1010 }
1011 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_reqbufs);
1012
1013 int v4l2_m2m_ioctl_create_bufs(struct file *file, void *priv,
1014                                 struct v4l2_create_buffers *create)
1015 {
1016         struct v4l2_fh *fh = file->private_data;
1017
1018         return v4l2_m2m_create_bufs(file, fh->m2m_ctx, create);
1019 }
1020 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_create_bufs);
1021
1022 int v4l2_m2m_ioctl_querybuf(struct file *file, void *priv,
1023                                 struct v4l2_buffer *buf)
1024 {
1025         struct v4l2_fh *fh = file->private_data;
1026
1027         return v4l2_m2m_querybuf(file, fh->m2m_ctx, buf);
1028 }
1029 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_querybuf);
1030
1031 int v4l2_m2m_ioctl_qbuf(struct file *file, void *priv,
1032                                 struct v4l2_buffer *buf)
1033 {
1034         struct v4l2_fh *fh = file->private_data;
1035
1036         return v4l2_m2m_qbuf(file, fh->m2m_ctx, buf);
1037 }
1038 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_qbuf);
1039
1040 int v4l2_m2m_ioctl_dqbuf(struct file *file, void *priv,
1041                                 struct v4l2_buffer *buf)
1042 {
1043         struct v4l2_fh *fh = file->private_data;
1044
1045         return v4l2_m2m_dqbuf(file, fh->m2m_ctx, buf);
1046 }
1047 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_dqbuf);
1048
1049 int v4l2_m2m_ioctl_prepare_buf(struct file *file, void *priv,
1050                                struct v4l2_buffer *buf)
1051 {
1052         struct v4l2_fh *fh = file->private_data;
1053
1054         return v4l2_m2m_prepare_buf(file, fh->m2m_ctx, buf);
1055 }
1056 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_prepare_buf);
1057
1058 int v4l2_m2m_ioctl_expbuf(struct file *file, void *priv,
1059                                 struct v4l2_exportbuffer *eb)
1060 {
1061         struct v4l2_fh *fh = file->private_data;
1062
1063         return v4l2_m2m_expbuf(file, fh->m2m_ctx, eb);
1064 }
1065 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_expbuf);
1066
1067 int v4l2_m2m_ioctl_streamon(struct file *file, void *priv,
1068                                 enum v4l2_buf_type type)
1069 {
1070         struct v4l2_fh *fh = file->private_data;
1071
1072         return v4l2_m2m_streamon(file, fh->m2m_ctx, type);
1073 }
1074 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamon);
1075
1076 int v4l2_m2m_ioctl_streamoff(struct file *file, void *priv,
1077                                 enum v4l2_buf_type type)
1078 {
1079         struct v4l2_fh *fh = file->private_data;
1080
1081         return v4l2_m2m_streamoff(file, fh->m2m_ctx, type);
1082 }
1083 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamoff);
1084
1085 /*
1086  * v4l2_file_operations helpers. It is assumed here same lock is used
1087  * for the output and the capture buffer queue.
1088  */
1089
1090 int v4l2_m2m_fop_mmap(struct file *file, struct vm_area_struct *vma)
1091 {
1092         struct v4l2_fh *fh = file->private_data;
1093
1094         return v4l2_m2m_mmap(file, fh->m2m_ctx, vma);
1095 }
1096 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_mmap);
1097
1098 __poll_t v4l2_m2m_fop_poll(struct file *file, poll_table *wait)
1099 {
1100         struct v4l2_fh *fh = file->private_data;
1101         struct v4l2_m2m_ctx *m2m_ctx = fh->m2m_ctx;
1102         __poll_t ret;
1103
1104         if (m2m_ctx->q_lock)
1105                 mutex_lock(m2m_ctx->q_lock);
1106
1107         ret = v4l2_m2m_poll(file, m2m_ctx, wait);
1108
1109         if (m2m_ctx->q_lock)
1110                 mutex_unlock(m2m_ctx->q_lock);
1111
1112         return ret;
1113 }
1114 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_poll);
1115