Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
[sfrench/cifs-2.6.git] / drivers / media / usb / gspca / ov534.c
1 /*
2  * ov534-ov7xxx gspca driver
3  *
4  * Copyright (C) 2008 Antonio Ospite <ospite@studenti.unina.it>
5  * Copyright (C) 2008 Jim Paris <jim@jtan.com>
6  * Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr
7  *
8  * Based on a prototype written by Mark Ferrell <majortrips@gmail.com>
9  * USB protocol reverse engineered by Jim Paris <jim@jtan.com>
10  * https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/
11  *
12  * PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr
13  * PS3 Eye camera - brightness, contrast, awb, agc, aec controls
14  *                  added by Max Thrun <bear24rw@gmail.com>
15  * PS3 Eye camera - FPS range extended by Joseph Howse
16  *                  <josephhowse@nummist.com> http://nummist.com
17  *
18  * This program is free software; you can redistribute it and/or modify
19  * it under the terms of the GNU General Public License as published by
20  * the Free Software Foundation; either version 2 of the License, or
21  * any later version.
22  *
23  * This program is distributed in the hope that it will be useful,
24  * but WITHOUT ANY WARRANTY; without even the implied warranty of
25  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26  * GNU General Public License for more details.
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #define MODULE_NAME "ov534"
32
33 #include "gspca.h"
34
35 #include <linux/fixp-arith.h>
36 #include <media/v4l2-ctrls.h>
37
38 #define OV534_REG_ADDRESS       0xf1    /* sensor address */
39 #define OV534_REG_SUBADDR       0xf2
40 #define OV534_REG_WRITE         0xf3
41 #define OV534_REG_READ          0xf4
42 #define OV534_REG_OPERATION     0xf5
43 #define OV534_REG_STATUS        0xf6
44
45 #define OV534_OP_WRITE_3        0x37
46 #define OV534_OP_WRITE_2        0x33
47 #define OV534_OP_READ_2         0xf9
48
49 #define CTRL_TIMEOUT 500
50 #define DEFAULT_FRAME_RATE 30
51
52 MODULE_AUTHOR("Antonio Ospite <ospite@studenti.unina.it>");
53 MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver");
54 MODULE_LICENSE("GPL");
55
56 /* specific webcam descriptor */
57 struct sd {
58         struct gspca_dev gspca_dev;     /* !! must be the first item */
59
60         struct v4l2_ctrl_handler ctrl_handler;
61         struct v4l2_ctrl *hue;
62         struct v4l2_ctrl *saturation;
63         struct v4l2_ctrl *brightness;
64         struct v4l2_ctrl *contrast;
65         struct { /* gain control cluster */
66                 struct v4l2_ctrl *autogain;
67                 struct v4l2_ctrl *gain;
68         };
69         struct v4l2_ctrl *autowhitebalance;
70         struct { /* exposure control cluster */
71                 struct v4l2_ctrl *autoexposure;
72                 struct v4l2_ctrl *exposure;
73         };
74         struct v4l2_ctrl *sharpness;
75         struct v4l2_ctrl *hflip;
76         struct v4l2_ctrl *vflip;
77         struct v4l2_ctrl *plfreq;
78
79         __u32 last_pts;
80         u16 last_fid;
81         u8 frame_rate;
82
83         u8 sensor;
84 };
85 enum sensors {
86         SENSOR_OV767x,
87         SENSOR_OV772x,
88         NSENSORS
89 };
90
91 static int sd_start(struct gspca_dev *gspca_dev);
92 static void sd_stopN(struct gspca_dev *gspca_dev);
93
94
95 static const struct v4l2_pix_format ov772x_mode[] = {
96         {320, 240, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
97          .bytesperline = 320 * 2,
98          .sizeimage = 320 * 240 * 2,
99          .colorspace = V4L2_COLORSPACE_SRGB,
100          .priv = 1},
101         {640, 480, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
102          .bytesperline = 640 * 2,
103          .sizeimage = 640 * 480 * 2,
104          .colorspace = V4L2_COLORSPACE_SRGB,
105          .priv = 0},
106 };
107 static const struct v4l2_pix_format ov767x_mode[] = {
108         {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
109                 .bytesperline = 320,
110                 .sizeimage = 320 * 240 * 3 / 8 + 590,
111                 .colorspace = V4L2_COLORSPACE_JPEG},
112         {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
113                 .bytesperline = 640,
114                 .sizeimage = 640 * 480 * 3 / 8 + 590,
115                 .colorspace = V4L2_COLORSPACE_JPEG},
116 };
117
118 static const u8 qvga_rates[] = {187, 150, 137, 125, 100, 75, 60, 50, 37, 30};
119 static const u8 vga_rates[] = {60, 50, 40, 30, 15};
120
121 static const struct framerates ov772x_framerates[] = {
122         { /* 320x240 */
123                 .rates = qvga_rates,
124                 .nrates = ARRAY_SIZE(qvga_rates),
125         },
126         { /* 640x480 */
127                 .rates = vga_rates,
128                 .nrates = ARRAY_SIZE(vga_rates),
129         },
130 };
131
132 struct reg_array {
133         const u8 (*val)[2];
134         int len;
135 };
136
137 static const u8 bridge_init_767x[][2] = {
138 /* comments from the ms-win file apollo7670.set */
139 /* str1 */
140         {0xf1, 0x42},
141         {0x88, 0xf8},
142         {0x89, 0xff},
143         {0x76, 0x03},
144         {0x92, 0x03},
145         {0x95, 0x10},
146         {0xe2, 0x00},
147         {0xe7, 0x3e},
148         {0x8d, 0x1c},
149         {0x8e, 0x00},
150         {0x8f, 0x00},
151         {0x1f, 0x00},
152         {0xc3, 0xf9},
153         {0x89, 0xff},
154         {0x88, 0xf8},
155         {0x76, 0x03},
156         {0x92, 0x01},
157         {0x93, 0x18},
158         {0x1c, 0x00},
159         {0x1d, 0x48},
160         {0x1d, 0x00},
161         {0x1d, 0xff},
162         {0x1d, 0x02},
163         {0x1d, 0x58},
164         {0x1d, 0x00},
165         {0x1c, 0x0a},
166         {0x1d, 0x0a},
167         {0x1d, 0x0e},
168         {0xc0, 0x50},   /* HSize 640 */
169         {0xc1, 0x3c},   /* VSize 480 */
170         {0x34, 0x05},   /* enable Audio Suspend mode */
171         {0xc2, 0x0c},   /* Input YUV */
172         {0xc3, 0xf9},   /* enable PRE */
173         {0x34, 0x05},   /* enable Audio Suspend mode */
174         {0xe7, 0x2e},   /* this solves failure of "SuspendResumeTest" */
175         {0x31, 0xf9},   /* enable 1.8V Suspend */
176         {0x35, 0x02},   /* turn on JPEG */
177         {0xd9, 0x10},
178         {0x25, 0x42},   /* GPIO[8]:Input */
179         {0x94, 0x11},   /* If the default setting is loaded when
180                          * system boots up, this flag is closed here */
181 };
182 static const u8 sensor_init_767x[][2] = {
183         {0x12, 0x80},
184         {0x11, 0x03},
185         {0x3a, 0x04},
186         {0x12, 0x00},
187         {0x17, 0x13},
188         {0x18, 0x01},
189         {0x32, 0xb6},
190         {0x19, 0x02},
191         {0x1a, 0x7a},
192         {0x03, 0x0a},
193         {0x0c, 0x00},
194         {0x3e, 0x00},
195         {0x70, 0x3a},
196         {0x71, 0x35},
197         {0x72, 0x11},
198         {0x73, 0xf0},
199         {0xa2, 0x02},
200         {0x7a, 0x2a},   /* set Gamma=1.6 below */
201         {0x7b, 0x12},
202         {0x7c, 0x1d},
203         {0x7d, 0x2d},
204         {0x7e, 0x45},
205         {0x7f, 0x50},
206         {0x80, 0x59},
207         {0x81, 0x62},
208         {0x82, 0x6b},
209         {0x83, 0x73},
210         {0x84, 0x7b},
211         {0x85, 0x8a},
212         {0x86, 0x98},
213         {0x87, 0xb2},
214         {0x88, 0xca},
215         {0x89, 0xe0},
216         {0x13, 0xe0},
217         {0x00, 0x00},
218         {0x10, 0x00},
219         {0x0d, 0x40},
220         {0x14, 0x38},   /* gain max 16x */
221         {0xa5, 0x05},
222         {0xab, 0x07},
223         {0x24, 0x95},
224         {0x25, 0x33},
225         {0x26, 0xe3},
226         {0x9f, 0x78},
227         {0xa0, 0x68},
228         {0xa1, 0x03},
229         {0xa6, 0xd8},
230         {0xa7, 0xd8},
231         {0xa8, 0xf0},
232         {0xa9, 0x90},
233         {0xaa, 0x94},
234         {0x13, 0xe5},
235         {0x0e, 0x61},
236         {0x0f, 0x4b},
237         {0x16, 0x02},
238         {0x21, 0x02},
239         {0x22, 0x91},
240         {0x29, 0x07},
241         {0x33, 0x0b},
242         {0x35, 0x0b},
243         {0x37, 0x1d},
244         {0x38, 0x71},
245         {0x39, 0x2a},
246         {0x3c, 0x78},
247         {0x4d, 0x40},
248         {0x4e, 0x20},
249         {0x69, 0x00},
250         {0x6b, 0x4a},
251         {0x74, 0x10},
252         {0x8d, 0x4f},
253         {0x8e, 0x00},
254         {0x8f, 0x00},
255         {0x90, 0x00},
256         {0x91, 0x00},
257         {0x96, 0x00},
258         {0x9a, 0x80},
259         {0xb0, 0x84},
260         {0xb1, 0x0c},
261         {0xb2, 0x0e},
262         {0xb3, 0x82},
263         {0xb8, 0x0a},
264         {0x43, 0x0a},
265         {0x44, 0xf0},
266         {0x45, 0x34},
267         {0x46, 0x58},
268         {0x47, 0x28},
269         {0x48, 0x3a},
270         {0x59, 0x88},
271         {0x5a, 0x88},
272         {0x5b, 0x44},
273         {0x5c, 0x67},
274         {0x5d, 0x49},
275         {0x5e, 0x0e},
276         {0x6c, 0x0a},
277         {0x6d, 0x55},
278         {0x6e, 0x11},
279         {0x6f, 0x9f},
280         {0x6a, 0x40},
281         {0x01, 0x40},
282         {0x02, 0x40},
283         {0x13, 0xe7},
284         {0x4f, 0x80},
285         {0x50, 0x80},
286         {0x51, 0x00},
287         {0x52, 0x22},
288         {0x53, 0x5e},
289         {0x54, 0x80},
290         {0x58, 0x9e},
291         {0x41, 0x08},
292         {0x3f, 0x00},
293         {0x75, 0x04},
294         {0x76, 0xe1},
295         {0x4c, 0x00},
296         {0x77, 0x01},
297         {0x3d, 0xc2},
298         {0x4b, 0x09},
299         {0xc9, 0x60},
300         {0x41, 0x38},   /* jfm: auto sharpness + auto de-noise  */
301         {0x56, 0x40},
302         {0x34, 0x11},
303         {0x3b, 0xc2},
304         {0xa4, 0x8a},   /* Night mode trigger point */
305         {0x96, 0x00},
306         {0x97, 0x30},
307         {0x98, 0x20},
308         {0x99, 0x20},
309         {0x9a, 0x84},
310         {0x9b, 0x29},
311         {0x9c, 0x03},
312         {0x9d, 0x4c},
313         {0x9e, 0x3f},
314         {0x78, 0x04},
315         {0x79, 0x01},
316         {0xc8, 0xf0},
317         {0x79, 0x0f},
318         {0xc8, 0x00},
319         {0x79, 0x10},
320         {0xc8, 0x7e},
321         {0x79, 0x0a},
322         {0xc8, 0x80},
323         {0x79, 0x0b},
324         {0xc8, 0x01},
325         {0x79, 0x0c},
326         {0xc8, 0x0f},
327         {0x79, 0x0d},
328         {0xc8, 0x20},
329         {0x79, 0x09},
330         {0xc8, 0x80},
331         {0x79, 0x02},
332         {0xc8, 0xc0},
333         {0x79, 0x03},
334         {0xc8, 0x20},
335         {0x79, 0x26},
336 };
337 static const u8 bridge_start_vga_767x[][2] = {
338 /* str59 JPG */
339         {0x94, 0xaa},
340         {0xf1, 0x42},
341         {0xe5, 0x04},
342         {0xc0, 0x50},
343         {0xc1, 0x3c},
344         {0xc2, 0x0c},
345         {0x35, 0x02},   /* turn on JPEG */
346         {0xd9, 0x10},
347         {0xda, 0x00},   /* for higher clock rate(30fps) */
348         {0x34, 0x05},   /* enable Audio Suspend mode */
349         {0xc3, 0xf9},   /* enable PRE */
350         {0x8c, 0x00},   /* CIF VSize LSB[2:0] */
351         {0x8d, 0x1c},   /* output YUV */
352 /*      {0x34, 0x05},    * enable Audio Suspend mode (?) */
353         {0x50, 0x00},   /* H/V divider=0 */
354         {0x51, 0xa0},   /* input H=640/4 */
355         {0x52, 0x3c},   /* input V=480/4 */
356         {0x53, 0x00},   /* offset X=0 */
357         {0x54, 0x00},   /* offset Y=0 */
358         {0x55, 0x00},   /* H/V size[8]=0 */
359         {0x57, 0x00},   /* H-size[9]=0 */
360         {0x5c, 0x00},   /* output size[9:8]=0 */
361         {0x5a, 0xa0},   /* output H=640/4 */
362         {0x5b, 0x78},   /* output V=480/4 */
363         {0x1c, 0x0a},
364         {0x1d, 0x0a},
365         {0x94, 0x11},
366 };
367 static const u8 sensor_start_vga_767x[][2] = {
368         {0x11, 0x01},
369         {0x1e, 0x04},
370         {0x19, 0x02},
371         {0x1a, 0x7a},
372 };
373 static const u8 bridge_start_qvga_767x[][2] = {
374 /* str86 JPG */
375         {0x94, 0xaa},
376         {0xf1, 0x42},
377         {0xe5, 0x04},
378         {0xc0, 0x80},
379         {0xc1, 0x60},
380         {0xc2, 0x0c},
381         {0x35, 0x02},   /* turn on JPEG */
382         {0xd9, 0x10},
383         {0xc0, 0x50},   /* CIF HSize 640 */
384         {0xc1, 0x3c},   /* CIF VSize 480 */
385         {0x8c, 0x00},   /* CIF VSize LSB[2:0] */
386         {0x8d, 0x1c},   /* output YUV */
387         {0x34, 0x05},   /* enable Audio Suspend mode */
388         {0xc2, 0x4c},   /* output YUV and Enable DCW */
389         {0xc3, 0xf9},   /* enable PRE */
390         {0x1c, 0x00},   /* indirect addressing */
391         {0x1d, 0x48},   /* output YUV422 */
392         {0x50, 0x89},   /* H/V divider=/2; plus DCW AVG */
393         {0x51, 0xa0},   /* DCW input H=640/4 */
394         {0x52, 0x78},   /* DCW input V=480/4 */
395         {0x53, 0x00},   /* offset X=0 */
396         {0x54, 0x00},   /* offset Y=0 */
397         {0x55, 0x00},   /* H/V size[8]=0 */
398         {0x57, 0x00},   /* H-size[9]=0 */
399         {0x5c, 0x00},   /* DCW output size[9:8]=0 */
400         {0x5a, 0x50},   /* DCW output H=320/4 */
401         {0x5b, 0x3c},   /* DCW output V=240/4 */
402         {0x1c, 0x0a},
403         {0x1d, 0x0a},
404         {0x94, 0x11},
405 };
406 static const u8 sensor_start_qvga_767x[][2] = {
407         {0x11, 0x01},
408         {0x1e, 0x04},
409         {0x19, 0x02},
410         {0x1a, 0x7a},
411 };
412
413 static const u8 bridge_init_772x[][2] = {
414         { 0xc2, 0x0c },
415         { 0x88, 0xf8 },
416         { 0xc3, 0x69 },
417         { 0x89, 0xff },
418         { 0x76, 0x03 },
419         { 0x92, 0x01 },
420         { 0x93, 0x18 },
421         { 0x94, 0x10 },
422         { 0x95, 0x10 },
423         { 0xe2, 0x00 },
424         { 0xe7, 0x3e },
425
426         { 0x96, 0x00 },
427
428         { 0x97, 0x20 },
429         { 0x97, 0x20 },
430         { 0x97, 0x20 },
431         { 0x97, 0x0a },
432         { 0x97, 0x3f },
433         { 0x97, 0x4a },
434         { 0x97, 0x20 },
435         { 0x97, 0x15 },
436         { 0x97, 0x0b },
437
438         { 0x8e, 0x40 },
439         { 0x1f, 0x81 },
440         { 0x34, 0x05 },
441         { 0xe3, 0x04 },
442         { 0x88, 0x00 },
443         { 0x89, 0x00 },
444         { 0x76, 0x00 },
445         { 0xe7, 0x2e },
446         { 0x31, 0xf9 },
447         { 0x25, 0x42 },
448         { 0x21, 0xf0 },
449
450         { 0x1c, 0x00 },
451         { 0x1d, 0x40 },
452         { 0x1d, 0x02 }, /* payload size 0x0200 * 4 = 2048 bytes */
453         { 0x1d, 0x00 }, /* payload size */
454
455         { 0x1d, 0x02 }, /* frame size 0x025800 * 4 = 614400 */
456         { 0x1d, 0x58 }, /* frame size */
457         { 0x1d, 0x00 }, /* frame size */
458
459         { 0x1c, 0x0a },
460         { 0x1d, 0x08 }, /* turn on UVC header */
461         { 0x1d, 0x0e }, /* .. */
462
463         { 0x8d, 0x1c },
464         { 0x8e, 0x80 },
465         { 0xe5, 0x04 },
466
467         { 0xc0, 0x50 },
468         { 0xc1, 0x3c },
469         { 0xc2, 0x0c },
470 };
471 static const u8 sensor_init_772x[][2] = {
472         { 0x12, 0x80 },
473         { 0x11, 0x01 },
474 /*fixme: better have a delay?*/
475         { 0x11, 0x01 },
476         { 0x11, 0x01 },
477         { 0x11, 0x01 },
478         { 0x11, 0x01 },
479         { 0x11, 0x01 },
480         { 0x11, 0x01 },
481         { 0x11, 0x01 },
482         { 0x11, 0x01 },
483         { 0x11, 0x01 },
484         { 0x11, 0x01 },
485
486         { 0x3d, 0x03 },
487         { 0x17, 0x26 },
488         { 0x18, 0xa0 },
489         { 0x19, 0x07 },
490         { 0x1a, 0xf0 },
491         { 0x32, 0x00 },
492         { 0x29, 0xa0 },
493         { 0x2c, 0xf0 },
494         { 0x65, 0x20 },
495         { 0x11, 0x01 },
496         { 0x42, 0x7f },
497         { 0x63, 0xaa },         /* AWB - was e0 */
498         { 0x64, 0xff },
499         { 0x66, 0x00 },
500         { 0x13, 0xf0 },         /* com8 */
501         { 0x0d, 0x41 },
502         { 0x0f, 0xc5 },
503         { 0x14, 0x11 },
504
505         { 0x22, 0x7f },
506         { 0x23, 0x03 },
507         { 0x24, 0x40 },
508         { 0x25, 0x30 },
509         { 0x26, 0xa1 },
510         { 0x2a, 0x00 },
511         { 0x2b, 0x00 },
512         { 0x6b, 0xaa },
513         { 0x13, 0xff },         /* AWB */
514
515         { 0x90, 0x05 },
516         { 0x91, 0x01 },
517         { 0x92, 0x03 },
518         { 0x93, 0x00 },
519         { 0x94, 0x60 },
520         { 0x95, 0x3c },
521         { 0x96, 0x24 },
522         { 0x97, 0x1e },
523         { 0x98, 0x62 },
524         { 0x99, 0x80 },
525         { 0x9a, 0x1e },
526         { 0x9b, 0x08 },
527         { 0x9c, 0x20 },
528         { 0x9e, 0x81 },
529
530         { 0xa6, 0x07 },
531         { 0x7e, 0x0c },
532         { 0x7f, 0x16 },
533         { 0x80, 0x2a },
534         { 0x81, 0x4e },
535         { 0x82, 0x61 },
536         { 0x83, 0x6f },
537         { 0x84, 0x7b },
538         { 0x85, 0x86 },
539         { 0x86, 0x8e },
540         { 0x87, 0x97 },
541         { 0x88, 0xa4 },
542         { 0x89, 0xaf },
543         { 0x8a, 0xc5 },
544         { 0x8b, 0xd7 },
545         { 0x8c, 0xe8 },
546         { 0x8d, 0x20 },
547
548         { 0x0c, 0x90 },
549
550         { 0x2b, 0x00 },
551         { 0x22, 0x7f },
552         { 0x23, 0x03 },
553         { 0x11, 0x01 },
554         { 0x0c, 0xd0 },
555         { 0x64, 0xff },
556         { 0x0d, 0x41 },
557
558         { 0x14, 0x41 },
559         { 0x0e, 0xcd },
560         { 0xac, 0xbf },
561         { 0x8e, 0x00 },         /* De-noise threshold */
562         { 0x0c, 0xd0 }
563 };
564 static const u8 bridge_start_vga_772x[][2] = {
565         {0x1c, 0x00},
566         {0x1d, 0x40},
567         {0x1d, 0x02},
568         {0x1d, 0x00},
569         {0x1d, 0x02},
570         {0x1d, 0x58},
571         {0x1d, 0x00},
572         {0xc0, 0x50},
573         {0xc1, 0x3c},
574 };
575 static const u8 sensor_start_vga_772x[][2] = {
576         {0x12, 0x00},
577         {0x17, 0x26},
578         {0x18, 0xa0},
579         {0x19, 0x07},
580         {0x1a, 0xf0},
581         {0x29, 0xa0},
582         {0x2c, 0xf0},
583         {0x65, 0x20},
584 };
585 static const u8 bridge_start_qvga_772x[][2] = {
586         {0x1c, 0x00},
587         {0x1d, 0x40},
588         {0x1d, 0x02},
589         {0x1d, 0x00},
590         {0x1d, 0x01},
591         {0x1d, 0x4b},
592         {0x1d, 0x00},
593         {0xc0, 0x28},
594         {0xc1, 0x1e},
595 };
596 static const u8 sensor_start_qvga_772x[][2] = {
597         {0x12, 0x40},
598         {0x17, 0x3f},
599         {0x18, 0x50},
600         {0x19, 0x03},
601         {0x1a, 0x78},
602         {0x29, 0x50},
603         {0x2c, 0x78},
604         {0x65, 0x2f},
605 };
606
607 static void ov534_reg_write(struct gspca_dev *gspca_dev, u16 reg, u8 val)
608 {
609         struct usb_device *udev = gspca_dev->dev;
610         int ret;
611
612         if (gspca_dev->usb_err < 0)
613                 return;
614
615         gspca_dbg(gspca_dev, D_USBO, "SET 01 0000 %04x %02x\n", reg, val);
616         gspca_dev->usb_buf[0] = val;
617         ret = usb_control_msg(udev,
618                               usb_sndctrlpipe(udev, 0),
619                               0x01,
620                               USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
621                               0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
622         if (ret < 0) {
623                 pr_err("write failed %d\n", ret);
624                 gspca_dev->usb_err = ret;
625         }
626 }
627
628 static u8 ov534_reg_read(struct gspca_dev *gspca_dev, u16 reg)
629 {
630         struct usb_device *udev = gspca_dev->dev;
631         int ret;
632
633         if (gspca_dev->usb_err < 0)
634                 return 0;
635         ret = usb_control_msg(udev,
636                               usb_rcvctrlpipe(udev, 0),
637                               0x01,
638                               USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
639                               0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
640         gspca_dbg(gspca_dev, D_USBI, "GET 01 0000 %04x %02x\n",
641                   reg, gspca_dev->usb_buf[0]);
642         if (ret < 0) {
643                 pr_err("read failed %d\n", ret);
644                 gspca_dev->usb_err = ret;
645         }
646         return gspca_dev->usb_buf[0];
647 }
648
649 /* Two bits control LED: 0x21 bit 7 and 0x23 bit 7.
650  * (direction and output)? */
651 static void ov534_set_led(struct gspca_dev *gspca_dev, int status)
652 {
653         u8 data;
654
655         gspca_dbg(gspca_dev, D_CONF, "led status: %d\n", status);
656
657         data = ov534_reg_read(gspca_dev, 0x21);
658         data |= 0x80;
659         ov534_reg_write(gspca_dev, 0x21, data);
660
661         data = ov534_reg_read(gspca_dev, 0x23);
662         if (status)
663                 data |= 0x80;
664         else
665                 data &= ~0x80;
666
667         ov534_reg_write(gspca_dev, 0x23, data);
668
669         if (!status) {
670                 data = ov534_reg_read(gspca_dev, 0x21);
671                 data &= ~0x80;
672                 ov534_reg_write(gspca_dev, 0x21, data);
673         }
674 }
675
676 static int sccb_check_status(struct gspca_dev *gspca_dev)
677 {
678         u8 data;
679         int i;
680
681         for (i = 0; i < 5; i++) {
682                 msleep(10);
683                 data = ov534_reg_read(gspca_dev, OV534_REG_STATUS);
684
685                 switch (data) {
686                 case 0x00:
687                         return 1;
688                 case 0x04:
689                         return 0;
690                 case 0x03:
691                         break;
692                 default:
693                         gspca_err(gspca_dev, "sccb status 0x%02x, attempt %d/5\n",
694                                   data, i + 1);
695                 }
696         }
697         return 0;
698 }
699
700 static void sccb_reg_write(struct gspca_dev *gspca_dev, u8 reg, u8 val)
701 {
702         gspca_dbg(gspca_dev, D_USBO, "sccb write: %02x %02x\n", reg, val);
703         ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
704         ov534_reg_write(gspca_dev, OV534_REG_WRITE, val);
705         ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_3);
706
707         if (!sccb_check_status(gspca_dev)) {
708                 pr_err("sccb_reg_write failed\n");
709                 gspca_dev->usb_err = -EIO;
710         }
711 }
712
713 static u8 sccb_reg_read(struct gspca_dev *gspca_dev, u16 reg)
714 {
715         ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
716         ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_2);
717         if (!sccb_check_status(gspca_dev))
718                 pr_err("sccb_reg_read failed 1\n");
719
720         ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_READ_2);
721         if (!sccb_check_status(gspca_dev))
722                 pr_err("sccb_reg_read failed 2\n");
723
724         return ov534_reg_read(gspca_dev, OV534_REG_READ);
725 }
726
727 /* output a bridge sequence (reg - val) */
728 static void reg_w_array(struct gspca_dev *gspca_dev,
729                         const u8 (*data)[2], int len)
730 {
731         while (--len >= 0) {
732                 ov534_reg_write(gspca_dev, (*data)[0], (*data)[1]);
733                 data++;
734         }
735 }
736
737 /* output a sensor sequence (reg - val) */
738 static void sccb_w_array(struct gspca_dev *gspca_dev,
739                         const u8 (*data)[2], int len)
740 {
741         while (--len >= 0) {
742                 if ((*data)[0] != 0xff) {
743                         sccb_reg_write(gspca_dev, (*data)[0], (*data)[1]);
744                 } else {
745                         sccb_reg_read(gspca_dev, (*data)[1]);
746                         sccb_reg_write(gspca_dev, 0xff, 0x00);
747                 }
748                 data++;
749         }
750 }
751
752 /* ov772x specific controls */
753 static void set_frame_rate(struct gspca_dev *gspca_dev)
754 {
755         struct sd *sd = (struct sd *) gspca_dev;
756         int i;
757         struct rate_s {
758                 u8 fps;
759                 u8 r11;
760                 u8 r0d;
761                 u8 re5;
762         };
763         const struct rate_s *r;
764         static const struct rate_s rate_0[] = { /* 640x480 */
765                 {60, 0x01, 0xc1, 0x04},
766                 {50, 0x01, 0x41, 0x02},
767                 {40, 0x02, 0xc1, 0x04},
768                 {30, 0x04, 0x81, 0x02},
769                 {15, 0x03, 0x41, 0x04},
770         };
771         static const struct rate_s rate_1[] = { /* 320x240 */
772 /*              {205, 0x01, 0xc1, 0x02},  * 205 FPS: video is partly corrupt */
773                 {187, 0x01, 0x81, 0x02}, /* 187 FPS or below: video is valid */
774                 {150, 0x01, 0xc1, 0x04},
775                 {137, 0x02, 0xc1, 0x02},
776                 {125, 0x02, 0x81, 0x02},
777                 {100, 0x02, 0xc1, 0x04},
778                 {75, 0x03, 0xc1, 0x04},
779                 {60, 0x04, 0xc1, 0x04},
780                 {50, 0x02, 0x41, 0x04},
781                 {37, 0x03, 0x41, 0x04},
782                 {30, 0x04, 0x41, 0x04},
783         };
784
785         if (sd->sensor != SENSOR_OV772x)
786                 return;
787         if (gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv == 0) {
788                 r = rate_0;
789                 i = ARRAY_SIZE(rate_0);
790         } else {
791                 r = rate_1;
792                 i = ARRAY_SIZE(rate_1);
793         }
794         while (--i > 0) {
795                 if (sd->frame_rate >= r->fps)
796                         break;
797                 r++;
798         }
799
800         sccb_reg_write(gspca_dev, 0x11, r->r11);
801         sccb_reg_write(gspca_dev, 0x0d, r->r0d);
802         ov534_reg_write(gspca_dev, 0xe5, r->re5);
803
804         gspca_dbg(gspca_dev, D_PROBE, "frame_rate: %d\n", r->fps);
805 }
806
807 static void sethue(struct gspca_dev *gspca_dev, s32 val)
808 {
809         struct sd *sd = (struct sd *) gspca_dev;
810
811         if (sd->sensor == SENSOR_OV767x) {
812                 /* TBD */
813         } else {
814                 s16 huesin;
815                 s16 huecos;
816
817                 /* According to the datasheet the registers expect HUESIN and
818                  * HUECOS to be the result of the trigonometric functions,
819                  * scaled by 0x80.
820                  *
821                  * The 0x7fff here represents the maximum absolute value
822                  * returned byt fixp_sin and fixp_cos, so the scaling will
823                  * consider the result like in the interval [-1.0, 1.0].
824                  */
825                 huesin = fixp_sin16(val) * 0x80 / 0x7fff;
826                 huecos = fixp_cos16(val) * 0x80 / 0x7fff;
827
828                 if (huesin < 0) {
829                         sccb_reg_write(gspca_dev, 0xab,
830                                 sccb_reg_read(gspca_dev, 0xab) | 0x2);
831                         huesin = -huesin;
832                 } else {
833                         sccb_reg_write(gspca_dev, 0xab,
834                                 sccb_reg_read(gspca_dev, 0xab) & ~0x2);
835
836                 }
837                 sccb_reg_write(gspca_dev, 0xa9, (u8)huecos);
838                 sccb_reg_write(gspca_dev, 0xaa, (u8)huesin);
839         }
840 }
841
842 static void setsaturation(struct gspca_dev *gspca_dev, s32 val)
843 {
844         struct sd *sd = (struct sd *) gspca_dev;
845
846         if (sd->sensor == SENSOR_OV767x) {
847                 int i;
848                 static u8 color_tb[][6] = {
849                         {0x42, 0x42, 0x00, 0x11, 0x30, 0x41},
850                         {0x52, 0x52, 0x00, 0x16, 0x3c, 0x52},
851                         {0x66, 0x66, 0x00, 0x1b, 0x4b, 0x66},
852                         {0x80, 0x80, 0x00, 0x22, 0x5e, 0x80},
853                         {0x9a, 0x9a, 0x00, 0x29, 0x71, 0x9a},
854                         {0xb8, 0xb8, 0x00, 0x31, 0x87, 0xb8},
855                         {0xdd, 0xdd, 0x00, 0x3b, 0xa2, 0xdd},
856                 };
857
858                 for (i = 0; i < ARRAY_SIZE(color_tb[0]); i++)
859                         sccb_reg_write(gspca_dev, 0x4f + i, color_tb[val][i]);
860         } else {
861                 sccb_reg_write(gspca_dev, 0xa7, val); /* U saturation */
862                 sccb_reg_write(gspca_dev, 0xa8, val); /* V saturation */
863         }
864 }
865
866 static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
867 {
868         struct sd *sd = (struct sd *) gspca_dev;
869
870         if (sd->sensor == SENSOR_OV767x) {
871                 if (val < 0)
872                         val = 0x80 - val;
873                 sccb_reg_write(gspca_dev, 0x55, val);   /* bright */
874         } else {
875                 sccb_reg_write(gspca_dev, 0x9b, val);
876         }
877 }
878
879 static void setcontrast(struct gspca_dev *gspca_dev, s32 val)
880 {
881         struct sd *sd = (struct sd *) gspca_dev;
882
883         if (sd->sensor == SENSOR_OV767x)
884                 sccb_reg_write(gspca_dev, 0x56, val);   /* contras */
885         else
886                 sccb_reg_write(gspca_dev, 0x9c, val);
887 }
888
889 static void setgain(struct gspca_dev *gspca_dev, s32 val)
890 {
891         switch (val & 0x30) {
892         case 0x00:
893                 val &= 0x0f;
894                 break;
895         case 0x10:
896                 val &= 0x0f;
897                 val |= 0x30;
898                 break;
899         case 0x20:
900                 val &= 0x0f;
901                 val |= 0x70;
902                 break;
903         default:
904 /*      case 0x30: */
905                 val &= 0x0f;
906                 val |= 0xf0;
907                 break;
908         }
909         sccb_reg_write(gspca_dev, 0x00, val);
910 }
911
912 static s32 getgain(struct gspca_dev *gspca_dev)
913 {
914         return sccb_reg_read(gspca_dev, 0x00);
915 }
916
917 static void setexposure(struct gspca_dev *gspca_dev, s32 val)
918 {
919         struct sd *sd = (struct sd *) gspca_dev;
920
921         if (sd->sensor == SENSOR_OV767x) {
922
923                 /* set only aec[9:2] */
924                 sccb_reg_write(gspca_dev, 0x10, val);   /* aech */
925         } else {
926
927                 /* 'val' is one byte and represents half of the exposure value
928                  * we are going to set into registers, a two bytes value:
929                  *
930                  *    MSB: ((u16) val << 1) >> 8   == val >> 7
931                  *    LSB: ((u16) val << 1) & 0xff == val << 1
932                  */
933                 sccb_reg_write(gspca_dev, 0x08, val >> 7);
934                 sccb_reg_write(gspca_dev, 0x10, val << 1);
935         }
936 }
937
938 static s32 getexposure(struct gspca_dev *gspca_dev)
939 {
940         struct sd *sd = (struct sd *) gspca_dev;
941
942         if (sd->sensor == SENSOR_OV767x) {
943                 /* get only aec[9:2] */
944                 return sccb_reg_read(gspca_dev, 0x10);  /* aech */
945         } else {
946                 u8 hi = sccb_reg_read(gspca_dev, 0x08);
947                 u8 lo = sccb_reg_read(gspca_dev, 0x10);
948                 return (hi << 8 | lo) >> 1;
949         }
950 }
951
952 static void setagc(struct gspca_dev *gspca_dev, s32 val)
953 {
954         if (val) {
955                 sccb_reg_write(gspca_dev, 0x13,
956                                 sccb_reg_read(gspca_dev, 0x13) | 0x04);
957                 sccb_reg_write(gspca_dev, 0x64,
958                                 sccb_reg_read(gspca_dev, 0x64) | 0x03);
959         } else {
960                 sccb_reg_write(gspca_dev, 0x13,
961                                 sccb_reg_read(gspca_dev, 0x13) & ~0x04);
962                 sccb_reg_write(gspca_dev, 0x64,
963                                 sccb_reg_read(gspca_dev, 0x64) & ~0x03);
964         }
965 }
966
967 static void setawb(struct gspca_dev *gspca_dev, s32 val)
968 {
969         struct sd *sd = (struct sd *) gspca_dev;
970
971         if (val) {
972                 sccb_reg_write(gspca_dev, 0x13,
973                                 sccb_reg_read(gspca_dev, 0x13) | 0x02);
974                 if (sd->sensor == SENSOR_OV772x)
975                         sccb_reg_write(gspca_dev, 0x63,
976                                 sccb_reg_read(gspca_dev, 0x63) | 0xc0);
977         } else {
978                 sccb_reg_write(gspca_dev, 0x13,
979                                 sccb_reg_read(gspca_dev, 0x13) & ~0x02);
980                 if (sd->sensor == SENSOR_OV772x)
981                         sccb_reg_write(gspca_dev, 0x63,
982                                 sccb_reg_read(gspca_dev, 0x63) & ~0xc0);
983         }
984 }
985
986 static void setaec(struct gspca_dev *gspca_dev, s32 val)
987 {
988         struct sd *sd = (struct sd *) gspca_dev;
989         u8 data;
990
991         data = sd->sensor == SENSOR_OV767x ?
992                         0x05 :          /* agc + aec */
993                         0x01;           /* agc */
994         switch (val) {
995         case V4L2_EXPOSURE_AUTO:
996                 sccb_reg_write(gspca_dev, 0x13,
997                                 sccb_reg_read(gspca_dev, 0x13) | data);
998                 break;
999         case V4L2_EXPOSURE_MANUAL:
1000                 sccb_reg_write(gspca_dev, 0x13,
1001                                 sccb_reg_read(gspca_dev, 0x13) & ~data);
1002                 break;
1003         }
1004 }
1005
1006 static void setsharpness(struct gspca_dev *gspca_dev, s32 val)
1007 {
1008         sccb_reg_write(gspca_dev, 0x91, val);   /* Auto de-noise threshold */
1009         sccb_reg_write(gspca_dev, 0x8e, val);   /* De-noise threshold */
1010 }
1011
1012 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip)
1013 {
1014         struct sd *sd = (struct sd *) gspca_dev;
1015         u8 val;
1016
1017         if (sd->sensor == SENSOR_OV767x) {
1018                 val = sccb_reg_read(gspca_dev, 0x1e);   /* mvfp */
1019                 val &= ~0x30;
1020                 if (hflip)
1021                         val |= 0x20;
1022                 if (vflip)
1023                         val |= 0x10;
1024                 sccb_reg_write(gspca_dev, 0x1e, val);
1025         } else {
1026                 val = sccb_reg_read(gspca_dev, 0x0c);
1027                 val &= ~0xc0;
1028                 if (hflip == 0)
1029                         val |= 0x40;
1030                 if (vflip == 0)
1031                         val |= 0x80;
1032                 sccb_reg_write(gspca_dev, 0x0c, val);
1033         }
1034 }
1035
1036 static void setlightfreq(struct gspca_dev *gspca_dev, s32 val)
1037 {
1038         struct sd *sd = (struct sd *) gspca_dev;
1039
1040         val = val ? 0x9e : 0x00;
1041         if (sd->sensor == SENSOR_OV767x) {
1042                 sccb_reg_write(gspca_dev, 0x2a, 0x00);
1043                 if (val)
1044                         val = 0x9d;     /* insert dummy to 25fps for 50Hz */
1045         }
1046         sccb_reg_write(gspca_dev, 0x2b, val);
1047 }
1048
1049
1050 /* this function is called at probe time */
1051 static int sd_config(struct gspca_dev *gspca_dev,
1052                      const struct usb_device_id *id)
1053 {
1054         struct sd *sd = (struct sd *) gspca_dev;
1055         struct cam *cam;
1056
1057         cam = &gspca_dev->cam;
1058
1059         cam->cam_mode = ov772x_mode;
1060         cam->nmodes = ARRAY_SIZE(ov772x_mode);
1061
1062         sd->frame_rate = DEFAULT_FRAME_RATE;
1063
1064         return 0;
1065 }
1066
1067 static int ov534_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1068 {
1069         struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1070         struct gspca_dev *gspca_dev = &sd->gspca_dev;
1071
1072         switch (ctrl->id) {
1073         case V4L2_CID_AUTOGAIN:
1074                 gspca_dev->usb_err = 0;
1075                 if (ctrl->val && sd->gain && gspca_dev->streaming)
1076                         sd->gain->val = getgain(gspca_dev);
1077                 return gspca_dev->usb_err;
1078
1079         case V4L2_CID_EXPOSURE_AUTO:
1080                 gspca_dev->usb_err = 0;
1081                 if (ctrl->val == V4L2_EXPOSURE_AUTO && sd->exposure &&
1082                     gspca_dev->streaming)
1083                         sd->exposure->val = getexposure(gspca_dev);
1084                 return gspca_dev->usb_err;
1085         }
1086         return -EINVAL;
1087 }
1088
1089 static int ov534_s_ctrl(struct v4l2_ctrl *ctrl)
1090 {
1091         struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1092         struct gspca_dev *gspca_dev = &sd->gspca_dev;
1093
1094         gspca_dev->usb_err = 0;
1095         if (!gspca_dev->streaming)
1096                 return 0;
1097
1098         switch (ctrl->id) {
1099         case V4L2_CID_HUE:
1100                 sethue(gspca_dev, ctrl->val);
1101                 break;
1102         case V4L2_CID_SATURATION:
1103                 setsaturation(gspca_dev, ctrl->val);
1104                 break;
1105         case V4L2_CID_BRIGHTNESS:
1106                 setbrightness(gspca_dev, ctrl->val);
1107                 break;
1108         case V4L2_CID_CONTRAST:
1109                 setcontrast(gspca_dev, ctrl->val);
1110                 break;
1111         case V4L2_CID_AUTOGAIN:
1112         /* case V4L2_CID_GAIN: */
1113                 setagc(gspca_dev, ctrl->val);
1114                 if (!gspca_dev->usb_err && !ctrl->val && sd->gain)
1115                         setgain(gspca_dev, sd->gain->val);
1116                 break;
1117         case V4L2_CID_AUTO_WHITE_BALANCE:
1118                 setawb(gspca_dev, ctrl->val);
1119                 break;
1120         case V4L2_CID_EXPOSURE_AUTO:
1121         /* case V4L2_CID_EXPOSURE: */
1122                 setaec(gspca_dev, ctrl->val);
1123                 if (!gspca_dev->usb_err && ctrl->val == V4L2_EXPOSURE_MANUAL &&
1124                     sd->exposure)
1125                         setexposure(gspca_dev, sd->exposure->val);
1126                 break;
1127         case V4L2_CID_SHARPNESS:
1128                 setsharpness(gspca_dev, ctrl->val);
1129                 break;
1130         case V4L2_CID_HFLIP:
1131                 sethvflip(gspca_dev, ctrl->val, sd->vflip->val);
1132                 break;
1133         case V4L2_CID_VFLIP:
1134                 sethvflip(gspca_dev, sd->hflip->val, ctrl->val);
1135                 break;
1136         case V4L2_CID_POWER_LINE_FREQUENCY:
1137                 setlightfreq(gspca_dev, ctrl->val);
1138                 break;
1139         }
1140         return gspca_dev->usb_err;
1141 }
1142
1143 static const struct v4l2_ctrl_ops ov534_ctrl_ops = {
1144         .g_volatile_ctrl = ov534_g_volatile_ctrl,
1145         .s_ctrl = ov534_s_ctrl,
1146 };
1147
1148 static int sd_init_controls(struct gspca_dev *gspca_dev)
1149 {
1150         struct sd *sd = (struct sd *) gspca_dev;
1151         struct v4l2_ctrl_handler *hdl = &sd->ctrl_handler;
1152         /* parameters with different values between the supported sensors */
1153         int saturation_min;
1154         int saturation_max;
1155         int saturation_def;
1156         int brightness_min;
1157         int brightness_max;
1158         int brightness_def;
1159         int contrast_max;
1160         int contrast_def;
1161         int exposure_min;
1162         int exposure_max;
1163         int exposure_def;
1164         int hflip_def;
1165
1166         if (sd->sensor == SENSOR_OV767x) {
1167                 saturation_min = 0,
1168                 saturation_max = 6,
1169                 saturation_def = 3,
1170                 brightness_min = -127;
1171                 brightness_max = 127;
1172                 brightness_def = 0;
1173                 contrast_max = 0x80;
1174                 contrast_def = 0x40;
1175                 exposure_min = 0x08;
1176                 exposure_max = 0x60;
1177                 exposure_def = 0x13;
1178                 hflip_def = 1;
1179         } else {
1180                 saturation_min = 0,
1181                 saturation_max = 255,
1182                 saturation_def = 64,
1183                 brightness_min = 0;
1184                 brightness_max = 255;
1185                 brightness_def = 0;
1186                 contrast_max = 255;
1187                 contrast_def = 32;
1188                 exposure_min = 0;
1189                 exposure_max = 255;
1190                 exposure_def = 120;
1191                 hflip_def = 0;
1192         }
1193
1194         gspca_dev->vdev.ctrl_handler = hdl;
1195
1196         v4l2_ctrl_handler_init(hdl, 13);
1197
1198         if (sd->sensor == SENSOR_OV772x)
1199                 sd->hue = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1200                                 V4L2_CID_HUE, -90, 90, 1, 0);
1201
1202         sd->saturation = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1203                         V4L2_CID_SATURATION, saturation_min, saturation_max, 1,
1204                         saturation_def);
1205         sd->brightness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1206                         V4L2_CID_BRIGHTNESS, brightness_min, brightness_max, 1,
1207                         brightness_def);
1208         sd->contrast = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1209                         V4L2_CID_CONTRAST, 0, contrast_max, 1, contrast_def);
1210
1211         if (sd->sensor == SENSOR_OV772x) {
1212                 sd->autogain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1213                                 V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
1214                 sd->gain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1215                                 V4L2_CID_GAIN, 0, 63, 1, 20);
1216         }
1217
1218         sd->autoexposure = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1219                         V4L2_CID_EXPOSURE_AUTO,
1220                         V4L2_EXPOSURE_MANUAL, 0,
1221                         V4L2_EXPOSURE_AUTO);
1222         sd->exposure = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1223                         V4L2_CID_EXPOSURE, exposure_min, exposure_max, 1,
1224                         exposure_def);
1225
1226         sd->autowhitebalance = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1227                         V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1);
1228
1229         if (sd->sensor == SENSOR_OV772x)
1230                 sd->sharpness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1231                                 V4L2_CID_SHARPNESS, 0, 63, 1, 0);
1232
1233         sd->hflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1234                         V4L2_CID_HFLIP, 0, 1, 1, hflip_def);
1235         sd->vflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1236                         V4L2_CID_VFLIP, 0, 1, 1, 0);
1237         sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1238                         V4L2_CID_POWER_LINE_FREQUENCY,
1239                         V4L2_CID_POWER_LINE_FREQUENCY_50HZ, 0,
1240                         V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);
1241
1242         if (hdl->error) {
1243                 pr_err("Could not initialize controls\n");
1244                 return hdl->error;
1245         }
1246
1247         if (sd->sensor == SENSOR_OV772x)
1248                 v4l2_ctrl_auto_cluster(2, &sd->autogain, 0, true);
1249
1250         v4l2_ctrl_auto_cluster(2, &sd->autoexposure, V4L2_EXPOSURE_MANUAL,
1251                                true);
1252
1253         return 0;
1254 }
1255
1256 /* this function is called at probe and resume time */
1257 static int sd_init(struct gspca_dev *gspca_dev)
1258 {
1259         struct sd *sd = (struct sd *) gspca_dev;
1260         u16 sensor_id;
1261         static const struct reg_array bridge_init[NSENSORS] = {
1262         [SENSOR_OV767x] = {bridge_init_767x, ARRAY_SIZE(bridge_init_767x)},
1263         [SENSOR_OV772x] = {bridge_init_772x, ARRAY_SIZE(bridge_init_772x)},
1264         };
1265         static const struct reg_array sensor_init[NSENSORS] = {
1266         [SENSOR_OV767x] = {sensor_init_767x, ARRAY_SIZE(sensor_init_767x)},
1267         [SENSOR_OV772x] = {sensor_init_772x, ARRAY_SIZE(sensor_init_772x)},
1268         };
1269
1270         /* reset bridge */
1271         ov534_reg_write(gspca_dev, 0xe7, 0x3a);
1272         ov534_reg_write(gspca_dev, 0xe0, 0x08);
1273         msleep(100);
1274
1275         /* initialize the sensor address */
1276         ov534_reg_write(gspca_dev, OV534_REG_ADDRESS, 0x42);
1277
1278         /* reset sensor */
1279         sccb_reg_write(gspca_dev, 0x12, 0x80);
1280         msleep(10);
1281
1282         /* probe the sensor */
1283         sccb_reg_read(gspca_dev, 0x0a);
1284         sensor_id = sccb_reg_read(gspca_dev, 0x0a) << 8;
1285         sccb_reg_read(gspca_dev, 0x0b);
1286         sensor_id |= sccb_reg_read(gspca_dev, 0x0b);
1287         gspca_dbg(gspca_dev, D_PROBE, "Sensor ID: %04x\n", sensor_id);
1288
1289         if ((sensor_id & 0xfff0) == 0x7670) {
1290                 sd->sensor = SENSOR_OV767x;
1291                 gspca_dev->cam.cam_mode = ov767x_mode;
1292                 gspca_dev->cam.nmodes = ARRAY_SIZE(ov767x_mode);
1293         } else {
1294                 sd->sensor = SENSOR_OV772x;
1295                 gspca_dev->cam.bulk = 1;
1296                 gspca_dev->cam.bulk_size = 16384;
1297                 gspca_dev->cam.bulk_nurbs = 2;
1298                 gspca_dev->cam.mode_framerates = ov772x_framerates;
1299         }
1300
1301         /* initialize */
1302         reg_w_array(gspca_dev, bridge_init[sd->sensor].val,
1303                         bridge_init[sd->sensor].len);
1304         ov534_set_led(gspca_dev, 1);
1305         sccb_w_array(gspca_dev, sensor_init[sd->sensor].val,
1306                         sensor_init[sd->sensor].len);
1307
1308         sd_stopN(gspca_dev);
1309 /*      set_frame_rate(gspca_dev);      */
1310
1311         return gspca_dev->usb_err;
1312 }
1313
1314 static int sd_start(struct gspca_dev *gspca_dev)
1315 {
1316         struct sd *sd = (struct sd *) gspca_dev;
1317         int mode;
1318         static const struct reg_array bridge_start[NSENSORS][2] = {
1319         [SENSOR_OV767x] = {{bridge_start_qvga_767x,
1320                                         ARRAY_SIZE(bridge_start_qvga_767x)},
1321                         {bridge_start_vga_767x,
1322                                         ARRAY_SIZE(bridge_start_vga_767x)}},
1323         [SENSOR_OV772x] = {{bridge_start_qvga_772x,
1324                                         ARRAY_SIZE(bridge_start_qvga_772x)},
1325                         {bridge_start_vga_772x,
1326                                         ARRAY_SIZE(bridge_start_vga_772x)}},
1327         };
1328         static const struct reg_array sensor_start[NSENSORS][2] = {
1329         [SENSOR_OV767x] = {{sensor_start_qvga_767x,
1330                                         ARRAY_SIZE(sensor_start_qvga_767x)},
1331                         {sensor_start_vga_767x,
1332                                         ARRAY_SIZE(sensor_start_vga_767x)}},
1333         [SENSOR_OV772x] = {{sensor_start_qvga_772x,
1334                                         ARRAY_SIZE(sensor_start_qvga_772x)},
1335                         {sensor_start_vga_772x,
1336                                         ARRAY_SIZE(sensor_start_vga_772x)}},
1337         };
1338
1339         /* (from ms-win trace) */
1340         if (sd->sensor == SENSOR_OV767x)
1341                 sccb_reg_write(gspca_dev, 0x1e, 0x04);
1342                                         /* black sun enable ? */
1343
1344         mode = gspca_dev->curr_mode;    /* 0: 320x240, 1: 640x480 */
1345         reg_w_array(gspca_dev, bridge_start[sd->sensor][mode].val,
1346                                 bridge_start[sd->sensor][mode].len);
1347         sccb_w_array(gspca_dev, sensor_start[sd->sensor][mode].val,
1348                                 sensor_start[sd->sensor][mode].len);
1349
1350         set_frame_rate(gspca_dev);
1351
1352         if (sd->hue)
1353                 sethue(gspca_dev, v4l2_ctrl_g_ctrl(sd->hue));
1354         setsaturation(gspca_dev, v4l2_ctrl_g_ctrl(sd->saturation));
1355         if (sd->autogain)
1356                 setagc(gspca_dev, v4l2_ctrl_g_ctrl(sd->autogain));
1357         setawb(gspca_dev, v4l2_ctrl_g_ctrl(sd->autowhitebalance));
1358         setaec(gspca_dev, v4l2_ctrl_g_ctrl(sd->autoexposure));
1359         if (sd->gain)
1360                 setgain(gspca_dev, v4l2_ctrl_g_ctrl(sd->gain));
1361         setexposure(gspca_dev, v4l2_ctrl_g_ctrl(sd->exposure));
1362         setbrightness(gspca_dev, v4l2_ctrl_g_ctrl(sd->brightness));
1363         setcontrast(gspca_dev, v4l2_ctrl_g_ctrl(sd->contrast));
1364         if (sd->sharpness)
1365                 setsharpness(gspca_dev, v4l2_ctrl_g_ctrl(sd->sharpness));
1366         sethvflip(gspca_dev, v4l2_ctrl_g_ctrl(sd->hflip),
1367                   v4l2_ctrl_g_ctrl(sd->vflip));
1368         setlightfreq(gspca_dev, v4l2_ctrl_g_ctrl(sd->plfreq));
1369
1370         ov534_set_led(gspca_dev, 1);
1371         ov534_reg_write(gspca_dev, 0xe0, 0x00);
1372         return gspca_dev->usb_err;
1373 }
1374
1375 static void sd_stopN(struct gspca_dev *gspca_dev)
1376 {
1377         ov534_reg_write(gspca_dev, 0xe0, 0x09);
1378         ov534_set_led(gspca_dev, 0);
1379 }
1380
1381 /* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */
1382 #define UVC_STREAM_EOH  (1 << 7)
1383 #define UVC_STREAM_ERR  (1 << 6)
1384 #define UVC_STREAM_STI  (1 << 5)
1385 #define UVC_STREAM_RES  (1 << 4)
1386 #define UVC_STREAM_SCR  (1 << 3)
1387 #define UVC_STREAM_PTS  (1 << 2)
1388 #define UVC_STREAM_EOF  (1 << 1)
1389 #define UVC_STREAM_FID  (1 << 0)
1390
1391 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
1392                         u8 *data, int len)
1393 {
1394         struct sd *sd = (struct sd *) gspca_dev;
1395         __u32 this_pts;
1396         u16 this_fid;
1397         int remaining_len = len;
1398         int payload_len;
1399
1400         payload_len = gspca_dev->cam.bulk ? 2048 : 2040;
1401         do {
1402                 len = min(remaining_len, payload_len);
1403
1404                 /* Payloads are prefixed with a UVC-style header.  We
1405                    consider a frame to start when the FID toggles, or the PTS
1406                    changes.  A frame ends when EOF is set, and we've received
1407                    the correct number of bytes. */
1408
1409                 /* Verify UVC header.  Header length is always 12 */
1410                 if (data[0] != 12 || len < 12) {
1411                         gspca_dbg(gspca_dev, D_PACK, "bad header\n");
1412                         goto discard;
1413                 }
1414
1415                 /* Check errors */
1416                 if (data[1] & UVC_STREAM_ERR) {
1417                         gspca_dbg(gspca_dev, D_PACK, "payload error\n");
1418                         goto discard;
1419                 }
1420
1421                 /* Extract PTS and FID */
1422                 if (!(data[1] & UVC_STREAM_PTS)) {
1423                         gspca_dbg(gspca_dev, D_PACK, "PTS not present\n");
1424                         goto discard;
1425                 }
1426                 this_pts = (data[5] << 24) | (data[4] << 16)
1427                                                 | (data[3] << 8) | data[2];
1428                 this_fid = (data[1] & UVC_STREAM_FID) ? 1 : 0;
1429
1430                 /* If PTS or FID has changed, start a new frame. */
1431                 if (this_pts != sd->last_pts || this_fid != sd->last_fid) {
1432                         if (gspca_dev->last_packet_type == INTER_PACKET)
1433                                 gspca_frame_add(gspca_dev, LAST_PACKET,
1434                                                 NULL, 0);
1435                         sd->last_pts = this_pts;
1436                         sd->last_fid = this_fid;
1437                         gspca_frame_add(gspca_dev, FIRST_PACKET,
1438                                         data + 12, len - 12);
1439                 /* If this packet is marked as EOF, end the frame */
1440                 } else if (data[1] & UVC_STREAM_EOF) {
1441                         sd->last_pts = 0;
1442                         if (gspca_dev->pixfmt.pixelformat == V4L2_PIX_FMT_YUYV
1443                          && gspca_dev->image_len + len - 12 !=
1444                                    gspca_dev->pixfmt.width *
1445                                         gspca_dev->pixfmt.height * 2) {
1446                                 gspca_dbg(gspca_dev, D_PACK, "wrong sized frame\n");
1447                                 goto discard;
1448                         }
1449                         gspca_frame_add(gspca_dev, LAST_PACKET,
1450                                         data + 12, len - 12);
1451                 } else {
1452
1453                         /* Add the data from this payload */
1454                         gspca_frame_add(gspca_dev, INTER_PACKET,
1455                                         data + 12, len - 12);
1456                 }
1457
1458                 /* Done this payload */
1459                 goto scan_next;
1460
1461 discard:
1462                 /* Discard data until a new frame starts. */
1463                 gspca_dev->last_packet_type = DISCARD_PACKET;
1464
1465 scan_next:
1466                 remaining_len -= len;
1467                 data += len;
1468         } while (remaining_len > 0);
1469 }
1470
1471 /* get stream parameters (framerate) */
1472 static void sd_get_streamparm(struct gspca_dev *gspca_dev,
1473                              struct v4l2_streamparm *parm)
1474 {
1475         struct v4l2_captureparm *cp = &parm->parm.capture;
1476         struct v4l2_fract *tpf = &cp->timeperframe;
1477         struct sd *sd = (struct sd *) gspca_dev;
1478
1479         cp->capability |= V4L2_CAP_TIMEPERFRAME;
1480         tpf->numerator = 1;
1481         tpf->denominator = sd->frame_rate;
1482 }
1483
1484 /* set stream parameters (framerate) */
1485 static void sd_set_streamparm(struct gspca_dev *gspca_dev,
1486                              struct v4l2_streamparm *parm)
1487 {
1488         struct v4l2_captureparm *cp = &parm->parm.capture;
1489         struct v4l2_fract *tpf = &cp->timeperframe;
1490         struct sd *sd = (struct sd *) gspca_dev;
1491
1492         if (tpf->numerator == 0 || tpf->denominator == 0)
1493                 sd->frame_rate = DEFAULT_FRAME_RATE;
1494         else
1495                 sd->frame_rate = tpf->denominator / tpf->numerator;
1496
1497         if (gspca_dev->streaming)
1498                 set_frame_rate(gspca_dev);
1499
1500         /* Return the actual framerate */
1501         tpf->numerator = 1;
1502         tpf->denominator = sd->frame_rate;
1503 }
1504
1505 /* sub-driver description */
1506 static const struct sd_desc sd_desc = {
1507         .name     = MODULE_NAME,
1508         .config   = sd_config,
1509         .init     = sd_init,
1510         .init_controls = sd_init_controls,
1511         .start    = sd_start,
1512         .stopN    = sd_stopN,
1513         .pkt_scan = sd_pkt_scan,
1514         .get_streamparm = sd_get_streamparm,
1515         .set_streamparm = sd_set_streamparm,
1516 };
1517
1518 /* -- module initialisation -- */
1519 static const struct usb_device_id device_table[] = {
1520         {USB_DEVICE(0x1415, 0x2000)},
1521         {USB_DEVICE(0x06f8, 0x3002)},
1522         {}
1523 };
1524
1525 MODULE_DEVICE_TABLE(usb, device_table);
1526
1527 /* -- device connect -- */
1528 static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id)
1529 {
1530         return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
1531                                 THIS_MODULE);
1532 }
1533
1534 static struct usb_driver sd_driver = {
1535         .name       = MODULE_NAME,
1536         .id_table   = device_table,
1537         .probe      = sd_probe,
1538         .disconnect = gspca_disconnect,
1539 #ifdef CONFIG_PM
1540         .suspend    = gspca_suspend,
1541         .resume     = gspca_resume,
1542         .reset_resume = gspca_resume,
1543 #endif
1544 };
1545
1546 module_usb_driver(sd_driver);