Merge branch 'for-4.0-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[sfrench/cifs-2.6.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66
67 static bool devices_handle_discard_safely = false;
68 module_param(devices_handle_discard_safely, bool, 0644);
69 MODULE_PARM_DESC(devices_handle_discard_safely,
70                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
71 static struct workqueue_struct *raid5_wq;
72 /*
73  * Stripe cache
74  */
75
76 #define NR_STRIPES              256
77 #define STRIPE_SIZE             PAGE_SIZE
78 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
79 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
80 #define IO_THRESHOLD            1
81 #define BYPASS_THRESHOLD        1
82 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
83 #define HASH_MASK               (NR_HASH - 1)
84 #define MAX_STRIPE_BATCH        8
85
86 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
87 {
88         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
89         return &conf->stripe_hashtbl[hash];
90 }
91
92 static inline int stripe_hash_locks_hash(sector_t sect)
93 {
94         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
95 }
96
97 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
98 {
99         spin_lock_irq(conf->hash_locks + hash);
100         spin_lock(&conf->device_lock);
101 }
102
103 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
104 {
105         spin_unlock(&conf->device_lock);
106         spin_unlock_irq(conf->hash_locks + hash);
107 }
108
109 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
110 {
111         int i;
112         local_irq_disable();
113         spin_lock(conf->hash_locks);
114         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
115                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
116         spin_lock(&conf->device_lock);
117 }
118
119 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
120 {
121         int i;
122         spin_unlock(&conf->device_lock);
123         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
124                 spin_unlock(conf->hash_locks + i - 1);
125         local_irq_enable();
126 }
127
128 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
129  * order without overlap.  There may be several bio's per stripe+device, and
130  * a bio could span several devices.
131  * When walking this list for a particular stripe+device, we must never proceed
132  * beyond a bio that extends past this device, as the next bio might no longer
133  * be valid.
134  * This function is used to determine the 'next' bio in the list, given the sector
135  * of the current stripe+device
136  */
137 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
138 {
139         int sectors = bio_sectors(bio);
140         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
141                 return bio->bi_next;
142         else
143                 return NULL;
144 }
145
146 /*
147  * We maintain a biased count of active stripes in the bottom 16 bits of
148  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
149  */
150 static inline int raid5_bi_processed_stripes(struct bio *bio)
151 {
152         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
153         return (atomic_read(segments) >> 16) & 0xffff;
154 }
155
156 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
157 {
158         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
159         return atomic_sub_return(1, segments) & 0xffff;
160 }
161
162 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
163 {
164         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
165         atomic_inc(segments);
166 }
167
168 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
169         unsigned int cnt)
170 {
171         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
172         int old, new;
173
174         do {
175                 old = atomic_read(segments);
176                 new = (old & 0xffff) | (cnt << 16);
177         } while (atomic_cmpxchg(segments, old, new) != old);
178 }
179
180 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
181 {
182         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
183         atomic_set(segments, cnt);
184 }
185
186 /* Find first data disk in a raid6 stripe */
187 static inline int raid6_d0(struct stripe_head *sh)
188 {
189         if (sh->ddf_layout)
190                 /* ddf always start from first device */
191                 return 0;
192         /* md starts just after Q block */
193         if (sh->qd_idx == sh->disks - 1)
194                 return 0;
195         else
196                 return sh->qd_idx + 1;
197 }
198 static inline int raid6_next_disk(int disk, int raid_disks)
199 {
200         disk++;
201         return (disk < raid_disks) ? disk : 0;
202 }
203
204 /* When walking through the disks in a raid5, starting at raid6_d0,
205  * We need to map each disk to a 'slot', where the data disks are slot
206  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
207  * is raid_disks-1.  This help does that mapping.
208  */
209 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
210                              int *count, int syndrome_disks)
211 {
212         int slot = *count;
213
214         if (sh->ddf_layout)
215                 (*count)++;
216         if (idx == sh->pd_idx)
217                 return syndrome_disks;
218         if (idx == sh->qd_idx)
219                 return syndrome_disks + 1;
220         if (!sh->ddf_layout)
221                 (*count)++;
222         return slot;
223 }
224
225 static void return_io(struct bio *return_bi)
226 {
227         struct bio *bi = return_bi;
228         while (bi) {
229
230                 return_bi = bi->bi_next;
231                 bi->bi_next = NULL;
232                 bi->bi_iter.bi_size = 0;
233                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
234                                          bi, 0);
235                 bio_endio(bi, 0);
236                 bi = return_bi;
237         }
238 }
239
240 static void print_raid5_conf (struct r5conf *conf);
241
242 static int stripe_operations_active(struct stripe_head *sh)
243 {
244         return sh->check_state || sh->reconstruct_state ||
245                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
246                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
247 }
248
249 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
250 {
251         struct r5conf *conf = sh->raid_conf;
252         struct r5worker_group *group;
253         int thread_cnt;
254         int i, cpu = sh->cpu;
255
256         if (!cpu_online(cpu)) {
257                 cpu = cpumask_any(cpu_online_mask);
258                 sh->cpu = cpu;
259         }
260
261         if (list_empty(&sh->lru)) {
262                 struct r5worker_group *group;
263                 group = conf->worker_groups + cpu_to_group(cpu);
264                 list_add_tail(&sh->lru, &group->handle_list);
265                 group->stripes_cnt++;
266                 sh->group = group;
267         }
268
269         if (conf->worker_cnt_per_group == 0) {
270                 md_wakeup_thread(conf->mddev->thread);
271                 return;
272         }
273
274         group = conf->worker_groups + cpu_to_group(sh->cpu);
275
276         group->workers[0].working = true;
277         /* at least one worker should run to avoid race */
278         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
279
280         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
281         /* wakeup more workers */
282         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
283                 if (group->workers[i].working == false) {
284                         group->workers[i].working = true;
285                         queue_work_on(sh->cpu, raid5_wq,
286                                       &group->workers[i].work);
287                         thread_cnt--;
288                 }
289         }
290 }
291
292 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
293                               struct list_head *temp_inactive_list)
294 {
295         BUG_ON(!list_empty(&sh->lru));
296         BUG_ON(atomic_read(&conf->active_stripes)==0);
297         if (test_bit(STRIPE_HANDLE, &sh->state)) {
298                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
299                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
300                         list_add_tail(&sh->lru, &conf->delayed_list);
301                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
302                            sh->bm_seq - conf->seq_write > 0)
303                         list_add_tail(&sh->lru, &conf->bitmap_list);
304                 else {
305                         clear_bit(STRIPE_DELAYED, &sh->state);
306                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
307                         if (conf->worker_cnt_per_group == 0) {
308                                 list_add_tail(&sh->lru, &conf->handle_list);
309                         } else {
310                                 raid5_wakeup_stripe_thread(sh);
311                                 return;
312                         }
313                 }
314                 md_wakeup_thread(conf->mddev->thread);
315         } else {
316                 BUG_ON(stripe_operations_active(sh));
317                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
318                         if (atomic_dec_return(&conf->preread_active_stripes)
319                             < IO_THRESHOLD)
320                                 md_wakeup_thread(conf->mddev->thread);
321                 atomic_dec(&conf->active_stripes);
322                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
323                         list_add_tail(&sh->lru, temp_inactive_list);
324         }
325 }
326
327 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
328                              struct list_head *temp_inactive_list)
329 {
330         if (atomic_dec_and_test(&sh->count))
331                 do_release_stripe(conf, sh, temp_inactive_list);
332 }
333
334 /*
335  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
336  *
337  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
338  * given time. Adding stripes only takes device lock, while deleting stripes
339  * only takes hash lock.
340  */
341 static void release_inactive_stripe_list(struct r5conf *conf,
342                                          struct list_head *temp_inactive_list,
343                                          int hash)
344 {
345         int size;
346         bool do_wakeup = false;
347         unsigned long flags;
348
349         if (hash == NR_STRIPE_HASH_LOCKS) {
350                 size = NR_STRIPE_HASH_LOCKS;
351                 hash = NR_STRIPE_HASH_LOCKS - 1;
352         } else
353                 size = 1;
354         while (size) {
355                 struct list_head *list = &temp_inactive_list[size - 1];
356
357                 /*
358                  * We don't hold any lock here yet, get_active_stripe() might
359                  * remove stripes from the list
360                  */
361                 if (!list_empty_careful(list)) {
362                         spin_lock_irqsave(conf->hash_locks + hash, flags);
363                         if (list_empty(conf->inactive_list + hash) &&
364                             !list_empty(list))
365                                 atomic_dec(&conf->empty_inactive_list_nr);
366                         list_splice_tail_init(list, conf->inactive_list + hash);
367                         do_wakeup = true;
368                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
369                 }
370                 size--;
371                 hash--;
372         }
373
374         if (do_wakeup) {
375                 wake_up(&conf->wait_for_stripe);
376                 if (conf->retry_read_aligned)
377                         md_wakeup_thread(conf->mddev->thread);
378         }
379 }
380
381 /* should hold conf->device_lock already */
382 static int release_stripe_list(struct r5conf *conf,
383                                struct list_head *temp_inactive_list)
384 {
385         struct stripe_head *sh;
386         int count = 0;
387         struct llist_node *head;
388
389         head = llist_del_all(&conf->released_stripes);
390         head = llist_reverse_order(head);
391         while (head) {
392                 int hash;
393
394                 sh = llist_entry(head, struct stripe_head, release_list);
395                 head = llist_next(head);
396                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
397                 smp_mb();
398                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
399                 /*
400                  * Don't worry the bit is set here, because if the bit is set
401                  * again, the count is always > 1. This is true for
402                  * STRIPE_ON_UNPLUG_LIST bit too.
403                  */
404                 hash = sh->hash_lock_index;
405                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
406                 count++;
407         }
408
409         return count;
410 }
411
412 static void release_stripe(struct stripe_head *sh)
413 {
414         struct r5conf *conf = sh->raid_conf;
415         unsigned long flags;
416         struct list_head list;
417         int hash;
418         bool wakeup;
419
420         /* Avoid release_list until the last reference.
421          */
422         if (atomic_add_unless(&sh->count, -1, 1))
423                 return;
424
425         if (unlikely(!conf->mddev->thread) ||
426                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
427                 goto slow_path;
428         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
429         if (wakeup)
430                 md_wakeup_thread(conf->mddev->thread);
431         return;
432 slow_path:
433         local_irq_save(flags);
434         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
435         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
436                 INIT_LIST_HEAD(&list);
437                 hash = sh->hash_lock_index;
438                 do_release_stripe(conf, sh, &list);
439                 spin_unlock(&conf->device_lock);
440                 release_inactive_stripe_list(conf, &list, hash);
441         }
442         local_irq_restore(flags);
443 }
444
445 static inline void remove_hash(struct stripe_head *sh)
446 {
447         pr_debug("remove_hash(), stripe %llu\n",
448                 (unsigned long long)sh->sector);
449
450         hlist_del_init(&sh->hash);
451 }
452
453 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
454 {
455         struct hlist_head *hp = stripe_hash(conf, sh->sector);
456
457         pr_debug("insert_hash(), stripe %llu\n",
458                 (unsigned long long)sh->sector);
459
460         hlist_add_head(&sh->hash, hp);
461 }
462
463 /* find an idle stripe, make sure it is unhashed, and return it. */
464 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
465 {
466         struct stripe_head *sh = NULL;
467         struct list_head *first;
468
469         if (list_empty(conf->inactive_list + hash))
470                 goto out;
471         first = (conf->inactive_list + hash)->next;
472         sh = list_entry(first, struct stripe_head, lru);
473         list_del_init(first);
474         remove_hash(sh);
475         atomic_inc(&conf->active_stripes);
476         BUG_ON(hash != sh->hash_lock_index);
477         if (list_empty(conf->inactive_list + hash))
478                 atomic_inc(&conf->empty_inactive_list_nr);
479 out:
480         return sh;
481 }
482
483 static void shrink_buffers(struct stripe_head *sh)
484 {
485         struct page *p;
486         int i;
487         int num = sh->raid_conf->pool_size;
488
489         for (i = 0; i < num ; i++) {
490                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
491                 p = sh->dev[i].page;
492                 if (!p)
493                         continue;
494                 sh->dev[i].page = NULL;
495                 put_page(p);
496         }
497 }
498
499 static int grow_buffers(struct stripe_head *sh)
500 {
501         int i;
502         int num = sh->raid_conf->pool_size;
503
504         for (i = 0; i < num; i++) {
505                 struct page *page;
506
507                 if (!(page = alloc_page(GFP_KERNEL))) {
508                         return 1;
509                 }
510                 sh->dev[i].page = page;
511                 sh->dev[i].orig_page = page;
512         }
513         return 0;
514 }
515
516 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
517 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
518                             struct stripe_head *sh);
519
520 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
521 {
522         struct r5conf *conf = sh->raid_conf;
523         int i, seq;
524
525         BUG_ON(atomic_read(&sh->count) != 0);
526         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
527         BUG_ON(stripe_operations_active(sh));
528
529         pr_debug("init_stripe called, stripe %llu\n",
530                 (unsigned long long)sector);
531 retry:
532         seq = read_seqcount_begin(&conf->gen_lock);
533         sh->generation = conf->generation - previous;
534         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
535         sh->sector = sector;
536         stripe_set_idx(sector, conf, previous, sh);
537         sh->state = 0;
538
539         for (i = sh->disks; i--; ) {
540                 struct r5dev *dev = &sh->dev[i];
541
542                 if (dev->toread || dev->read || dev->towrite || dev->written ||
543                     test_bit(R5_LOCKED, &dev->flags)) {
544                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
545                                (unsigned long long)sh->sector, i, dev->toread,
546                                dev->read, dev->towrite, dev->written,
547                                test_bit(R5_LOCKED, &dev->flags));
548                         WARN_ON(1);
549                 }
550                 dev->flags = 0;
551                 raid5_build_block(sh, i, previous);
552         }
553         if (read_seqcount_retry(&conf->gen_lock, seq))
554                 goto retry;
555         insert_hash(conf, sh);
556         sh->cpu = smp_processor_id();
557 }
558
559 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
560                                          short generation)
561 {
562         struct stripe_head *sh;
563
564         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
565         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
566                 if (sh->sector == sector && sh->generation == generation)
567                         return sh;
568         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
569         return NULL;
570 }
571
572 /*
573  * Need to check if array has failed when deciding whether to:
574  *  - start an array
575  *  - remove non-faulty devices
576  *  - add a spare
577  *  - allow a reshape
578  * This determination is simple when no reshape is happening.
579  * However if there is a reshape, we need to carefully check
580  * both the before and after sections.
581  * This is because some failed devices may only affect one
582  * of the two sections, and some non-in_sync devices may
583  * be insync in the section most affected by failed devices.
584  */
585 static int calc_degraded(struct r5conf *conf)
586 {
587         int degraded, degraded2;
588         int i;
589
590         rcu_read_lock();
591         degraded = 0;
592         for (i = 0; i < conf->previous_raid_disks; i++) {
593                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
594                 if (rdev && test_bit(Faulty, &rdev->flags))
595                         rdev = rcu_dereference(conf->disks[i].replacement);
596                 if (!rdev || test_bit(Faulty, &rdev->flags))
597                         degraded++;
598                 else if (test_bit(In_sync, &rdev->flags))
599                         ;
600                 else
601                         /* not in-sync or faulty.
602                          * If the reshape increases the number of devices,
603                          * this is being recovered by the reshape, so
604                          * this 'previous' section is not in_sync.
605                          * If the number of devices is being reduced however,
606                          * the device can only be part of the array if
607                          * we are reverting a reshape, so this section will
608                          * be in-sync.
609                          */
610                         if (conf->raid_disks >= conf->previous_raid_disks)
611                                 degraded++;
612         }
613         rcu_read_unlock();
614         if (conf->raid_disks == conf->previous_raid_disks)
615                 return degraded;
616         rcu_read_lock();
617         degraded2 = 0;
618         for (i = 0; i < conf->raid_disks; i++) {
619                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
620                 if (rdev && test_bit(Faulty, &rdev->flags))
621                         rdev = rcu_dereference(conf->disks[i].replacement);
622                 if (!rdev || test_bit(Faulty, &rdev->flags))
623                         degraded2++;
624                 else if (test_bit(In_sync, &rdev->flags))
625                         ;
626                 else
627                         /* not in-sync or faulty.
628                          * If reshape increases the number of devices, this
629                          * section has already been recovered, else it
630                          * almost certainly hasn't.
631                          */
632                         if (conf->raid_disks <= conf->previous_raid_disks)
633                                 degraded2++;
634         }
635         rcu_read_unlock();
636         if (degraded2 > degraded)
637                 return degraded2;
638         return degraded;
639 }
640
641 static int has_failed(struct r5conf *conf)
642 {
643         int degraded;
644
645         if (conf->mddev->reshape_position == MaxSector)
646                 return conf->mddev->degraded > conf->max_degraded;
647
648         degraded = calc_degraded(conf);
649         if (degraded > conf->max_degraded)
650                 return 1;
651         return 0;
652 }
653
654 static struct stripe_head *
655 get_active_stripe(struct r5conf *conf, sector_t sector,
656                   int previous, int noblock, int noquiesce)
657 {
658         struct stripe_head *sh;
659         int hash = stripe_hash_locks_hash(sector);
660
661         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
662
663         spin_lock_irq(conf->hash_locks + hash);
664
665         do {
666                 wait_event_lock_irq(conf->wait_for_stripe,
667                                     conf->quiesce == 0 || noquiesce,
668                                     *(conf->hash_locks + hash));
669                 sh = __find_stripe(conf, sector, conf->generation - previous);
670                 if (!sh) {
671                         if (!conf->inactive_blocked)
672                                 sh = get_free_stripe(conf, hash);
673                         if (noblock && sh == NULL)
674                                 break;
675                         if (!sh) {
676                                 conf->inactive_blocked = 1;
677                                 wait_event_lock_irq(
678                                         conf->wait_for_stripe,
679                                         !list_empty(conf->inactive_list + hash) &&
680                                         (atomic_read(&conf->active_stripes)
681                                          < (conf->max_nr_stripes * 3 / 4)
682                                          || !conf->inactive_blocked),
683                                         *(conf->hash_locks + hash));
684                                 conf->inactive_blocked = 0;
685                         } else {
686                                 init_stripe(sh, sector, previous);
687                                 atomic_inc(&sh->count);
688                         }
689                 } else if (!atomic_inc_not_zero(&sh->count)) {
690                         spin_lock(&conf->device_lock);
691                         if (!atomic_read(&sh->count)) {
692                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
693                                         atomic_inc(&conf->active_stripes);
694                                 BUG_ON(list_empty(&sh->lru) &&
695                                        !test_bit(STRIPE_EXPANDING, &sh->state));
696                                 list_del_init(&sh->lru);
697                                 if (sh->group) {
698                                         sh->group->stripes_cnt--;
699                                         sh->group = NULL;
700                                 }
701                         }
702                         atomic_inc(&sh->count);
703                         spin_unlock(&conf->device_lock);
704                 }
705         } while (sh == NULL);
706
707         spin_unlock_irq(conf->hash_locks + hash);
708         return sh;
709 }
710
711 /* Determine if 'data_offset' or 'new_data_offset' should be used
712  * in this stripe_head.
713  */
714 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
715 {
716         sector_t progress = conf->reshape_progress;
717         /* Need a memory barrier to make sure we see the value
718          * of conf->generation, or ->data_offset that was set before
719          * reshape_progress was updated.
720          */
721         smp_rmb();
722         if (progress == MaxSector)
723                 return 0;
724         if (sh->generation == conf->generation - 1)
725                 return 0;
726         /* We are in a reshape, and this is a new-generation stripe,
727          * so use new_data_offset.
728          */
729         return 1;
730 }
731
732 static void
733 raid5_end_read_request(struct bio *bi, int error);
734 static void
735 raid5_end_write_request(struct bio *bi, int error);
736
737 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
738 {
739         struct r5conf *conf = sh->raid_conf;
740         int i, disks = sh->disks;
741
742         might_sleep();
743
744         for (i = disks; i--; ) {
745                 int rw;
746                 int replace_only = 0;
747                 struct bio *bi, *rbi;
748                 struct md_rdev *rdev, *rrdev = NULL;
749                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
750                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
751                                 rw = WRITE_FUA;
752                         else
753                                 rw = WRITE;
754                         if (test_bit(R5_Discard, &sh->dev[i].flags))
755                                 rw |= REQ_DISCARD;
756                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
757                         rw = READ;
758                 else if (test_and_clear_bit(R5_WantReplace,
759                                             &sh->dev[i].flags)) {
760                         rw = WRITE;
761                         replace_only = 1;
762                 } else
763                         continue;
764                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
765                         rw |= REQ_SYNC;
766
767                 bi = &sh->dev[i].req;
768                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
769
770                 rcu_read_lock();
771                 rrdev = rcu_dereference(conf->disks[i].replacement);
772                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
773                 rdev = rcu_dereference(conf->disks[i].rdev);
774                 if (!rdev) {
775                         rdev = rrdev;
776                         rrdev = NULL;
777                 }
778                 if (rw & WRITE) {
779                         if (replace_only)
780                                 rdev = NULL;
781                         if (rdev == rrdev)
782                                 /* We raced and saw duplicates */
783                                 rrdev = NULL;
784                 } else {
785                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
786                                 rdev = rrdev;
787                         rrdev = NULL;
788                 }
789
790                 if (rdev && test_bit(Faulty, &rdev->flags))
791                         rdev = NULL;
792                 if (rdev)
793                         atomic_inc(&rdev->nr_pending);
794                 if (rrdev && test_bit(Faulty, &rrdev->flags))
795                         rrdev = NULL;
796                 if (rrdev)
797                         atomic_inc(&rrdev->nr_pending);
798                 rcu_read_unlock();
799
800                 /* We have already checked bad blocks for reads.  Now
801                  * need to check for writes.  We never accept write errors
802                  * on the replacement, so we don't to check rrdev.
803                  */
804                 while ((rw & WRITE) && rdev &&
805                        test_bit(WriteErrorSeen, &rdev->flags)) {
806                         sector_t first_bad;
807                         int bad_sectors;
808                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
809                                               &first_bad, &bad_sectors);
810                         if (!bad)
811                                 break;
812
813                         if (bad < 0) {
814                                 set_bit(BlockedBadBlocks, &rdev->flags);
815                                 if (!conf->mddev->external &&
816                                     conf->mddev->flags) {
817                                         /* It is very unlikely, but we might
818                                          * still need to write out the
819                                          * bad block log - better give it
820                                          * a chance*/
821                                         md_check_recovery(conf->mddev);
822                                 }
823                                 /*
824                                  * Because md_wait_for_blocked_rdev
825                                  * will dec nr_pending, we must
826                                  * increment it first.
827                                  */
828                                 atomic_inc(&rdev->nr_pending);
829                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
830                         } else {
831                                 /* Acknowledged bad block - skip the write */
832                                 rdev_dec_pending(rdev, conf->mddev);
833                                 rdev = NULL;
834                         }
835                 }
836
837                 if (rdev) {
838                         if (s->syncing || s->expanding || s->expanded
839                             || s->replacing)
840                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
841
842                         set_bit(STRIPE_IO_STARTED, &sh->state);
843
844                         bio_reset(bi);
845                         bi->bi_bdev = rdev->bdev;
846                         bi->bi_rw = rw;
847                         bi->bi_end_io = (rw & WRITE)
848                                 ? raid5_end_write_request
849                                 : raid5_end_read_request;
850                         bi->bi_private = sh;
851
852                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
853                                 __func__, (unsigned long long)sh->sector,
854                                 bi->bi_rw, i);
855                         atomic_inc(&sh->count);
856                         if (use_new_offset(conf, sh))
857                                 bi->bi_iter.bi_sector = (sh->sector
858                                                  + rdev->new_data_offset);
859                         else
860                                 bi->bi_iter.bi_sector = (sh->sector
861                                                  + rdev->data_offset);
862                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
863                                 bi->bi_rw |= REQ_NOMERGE;
864
865                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
866                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
867                         sh->dev[i].vec.bv_page = sh->dev[i].page;
868                         bi->bi_vcnt = 1;
869                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
870                         bi->bi_io_vec[0].bv_offset = 0;
871                         bi->bi_iter.bi_size = STRIPE_SIZE;
872                         /*
873                          * If this is discard request, set bi_vcnt 0. We don't
874                          * want to confuse SCSI because SCSI will replace payload
875                          */
876                         if (rw & REQ_DISCARD)
877                                 bi->bi_vcnt = 0;
878                         if (rrdev)
879                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
880
881                         if (conf->mddev->gendisk)
882                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
883                                                       bi, disk_devt(conf->mddev->gendisk),
884                                                       sh->dev[i].sector);
885                         generic_make_request(bi);
886                 }
887                 if (rrdev) {
888                         if (s->syncing || s->expanding || s->expanded
889                             || s->replacing)
890                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
891
892                         set_bit(STRIPE_IO_STARTED, &sh->state);
893
894                         bio_reset(rbi);
895                         rbi->bi_bdev = rrdev->bdev;
896                         rbi->bi_rw = rw;
897                         BUG_ON(!(rw & WRITE));
898                         rbi->bi_end_io = raid5_end_write_request;
899                         rbi->bi_private = sh;
900
901                         pr_debug("%s: for %llu schedule op %ld on "
902                                  "replacement disc %d\n",
903                                 __func__, (unsigned long long)sh->sector,
904                                 rbi->bi_rw, i);
905                         atomic_inc(&sh->count);
906                         if (use_new_offset(conf, sh))
907                                 rbi->bi_iter.bi_sector = (sh->sector
908                                                   + rrdev->new_data_offset);
909                         else
910                                 rbi->bi_iter.bi_sector = (sh->sector
911                                                   + rrdev->data_offset);
912                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
913                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
914                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
915                         rbi->bi_vcnt = 1;
916                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
917                         rbi->bi_io_vec[0].bv_offset = 0;
918                         rbi->bi_iter.bi_size = STRIPE_SIZE;
919                         /*
920                          * If this is discard request, set bi_vcnt 0. We don't
921                          * want to confuse SCSI because SCSI will replace payload
922                          */
923                         if (rw & REQ_DISCARD)
924                                 rbi->bi_vcnt = 0;
925                         if (conf->mddev->gendisk)
926                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
927                                                       rbi, disk_devt(conf->mddev->gendisk),
928                                                       sh->dev[i].sector);
929                         generic_make_request(rbi);
930                 }
931                 if (!rdev && !rrdev) {
932                         if (rw & WRITE)
933                                 set_bit(STRIPE_DEGRADED, &sh->state);
934                         pr_debug("skip op %ld on disc %d for sector %llu\n",
935                                 bi->bi_rw, i, (unsigned long long)sh->sector);
936                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
937                         set_bit(STRIPE_HANDLE, &sh->state);
938                 }
939         }
940 }
941
942 static struct dma_async_tx_descriptor *
943 async_copy_data(int frombio, struct bio *bio, struct page **page,
944         sector_t sector, struct dma_async_tx_descriptor *tx,
945         struct stripe_head *sh)
946 {
947         struct bio_vec bvl;
948         struct bvec_iter iter;
949         struct page *bio_page;
950         int page_offset;
951         struct async_submit_ctl submit;
952         enum async_tx_flags flags = 0;
953
954         if (bio->bi_iter.bi_sector >= sector)
955                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
956         else
957                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
958
959         if (frombio)
960                 flags |= ASYNC_TX_FENCE;
961         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
962
963         bio_for_each_segment(bvl, bio, iter) {
964                 int len = bvl.bv_len;
965                 int clen;
966                 int b_offset = 0;
967
968                 if (page_offset < 0) {
969                         b_offset = -page_offset;
970                         page_offset += b_offset;
971                         len -= b_offset;
972                 }
973
974                 if (len > 0 && page_offset + len > STRIPE_SIZE)
975                         clen = STRIPE_SIZE - page_offset;
976                 else
977                         clen = len;
978
979                 if (clen > 0) {
980                         b_offset += bvl.bv_offset;
981                         bio_page = bvl.bv_page;
982                         if (frombio) {
983                                 if (sh->raid_conf->skip_copy &&
984                                     b_offset == 0 && page_offset == 0 &&
985                                     clen == STRIPE_SIZE)
986                                         *page = bio_page;
987                                 else
988                                         tx = async_memcpy(*page, bio_page, page_offset,
989                                                   b_offset, clen, &submit);
990                         } else
991                                 tx = async_memcpy(bio_page, *page, b_offset,
992                                                   page_offset, clen, &submit);
993                 }
994                 /* chain the operations */
995                 submit.depend_tx = tx;
996
997                 if (clen < len) /* hit end of page */
998                         break;
999                 page_offset +=  len;
1000         }
1001
1002         return tx;
1003 }
1004
1005 static void ops_complete_biofill(void *stripe_head_ref)
1006 {
1007         struct stripe_head *sh = stripe_head_ref;
1008         struct bio *return_bi = NULL;
1009         int i;
1010
1011         pr_debug("%s: stripe %llu\n", __func__,
1012                 (unsigned long long)sh->sector);
1013
1014         /* clear completed biofills */
1015         for (i = sh->disks; i--; ) {
1016                 struct r5dev *dev = &sh->dev[i];
1017
1018                 /* acknowledge completion of a biofill operation */
1019                 /* and check if we need to reply to a read request,
1020                  * new R5_Wantfill requests are held off until
1021                  * !STRIPE_BIOFILL_RUN
1022                  */
1023                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1024                         struct bio *rbi, *rbi2;
1025
1026                         BUG_ON(!dev->read);
1027                         rbi = dev->read;
1028                         dev->read = NULL;
1029                         while (rbi && rbi->bi_iter.bi_sector <
1030                                 dev->sector + STRIPE_SECTORS) {
1031                                 rbi2 = r5_next_bio(rbi, dev->sector);
1032                                 if (!raid5_dec_bi_active_stripes(rbi)) {
1033                                         rbi->bi_next = return_bi;
1034                                         return_bi = rbi;
1035                                 }
1036                                 rbi = rbi2;
1037                         }
1038                 }
1039         }
1040         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1041
1042         return_io(return_bi);
1043
1044         set_bit(STRIPE_HANDLE, &sh->state);
1045         release_stripe(sh);
1046 }
1047
1048 static void ops_run_biofill(struct stripe_head *sh)
1049 {
1050         struct dma_async_tx_descriptor *tx = NULL;
1051         struct async_submit_ctl submit;
1052         int i;
1053
1054         pr_debug("%s: stripe %llu\n", __func__,
1055                 (unsigned long long)sh->sector);
1056
1057         for (i = sh->disks; i--; ) {
1058                 struct r5dev *dev = &sh->dev[i];
1059                 if (test_bit(R5_Wantfill, &dev->flags)) {
1060                         struct bio *rbi;
1061                         spin_lock_irq(&sh->stripe_lock);
1062                         dev->read = rbi = dev->toread;
1063                         dev->toread = NULL;
1064                         spin_unlock_irq(&sh->stripe_lock);
1065                         while (rbi && rbi->bi_iter.bi_sector <
1066                                 dev->sector + STRIPE_SECTORS) {
1067                                 tx = async_copy_data(0, rbi, &dev->page,
1068                                         dev->sector, tx, sh);
1069                                 rbi = r5_next_bio(rbi, dev->sector);
1070                         }
1071                 }
1072         }
1073
1074         atomic_inc(&sh->count);
1075         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1076         async_trigger_callback(&submit);
1077 }
1078
1079 static void mark_target_uptodate(struct stripe_head *sh, int target)
1080 {
1081         struct r5dev *tgt;
1082
1083         if (target < 0)
1084                 return;
1085
1086         tgt = &sh->dev[target];
1087         set_bit(R5_UPTODATE, &tgt->flags);
1088         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1089         clear_bit(R5_Wantcompute, &tgt->flags);
1090 }
1091
1092 static void ops_complete_compute(void *stripe_head_ref)
1093 {
1094         struct stripe_head *sh = stripe_head_ref;
1095
1096         pr_debug("%s: stripe %llu\n", __func__,
1097                 (unsigned long long)sh->sector);
1098
1099         /* mark the computed target(s) as uptodate */
1100         mark_target_uptodate(sh, sh->ops.target);
1101         mark_target_uptodate(sh, sh->ops.target2);
1102
1103         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1104         if (sh->check_state == check_state_compute_run)
1105                 sh->check_state = check_state_compute_result;
1106         set_bit(STRIPE_HANDLE, &sh->state);
1107         release_stripe(sh);
1108 }
1109
1110 /* return a pointer to the address conversion region of the scribble buffer */
1111 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1112                                  struct raid5_percpu *percpu)
1113 {
1114         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1115 }
1116
1117 static struct dma_async_tx_descriptor *
1118 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1119 {
1120         int disks = sh->disks;
1121         struct page **xor_srcs = percpu->scribble;
1122         int target = sh->ops.target;
1123         struct r5dev *tgt = &sh->dev[target];
1124         struct page *xor_dest = tgt->page;
1125         int count = 0;
1126         struct dma_async_tx_descriptor *tx;
1127         struct async_submit_ctl submit;
1128         int i;
1129
1130         pr_debug("%s: stripe %llu block: %d\n",
1131                 __func__, (unsigned long long)sh->sector, target);
1132         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1133
1134         for (i = disks; i--; )
1135                 if (i != target)
1136                         xor_srcs[count++] = sh->dev[i].page;
1137
1138         atomic_inc(&sh->count);
1139
1140         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1141                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
1142         if (unlikely(count == 1))
1143                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1144         else
1145                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1146
1147         return tx;
1148 }
1149
1150 /* set_syndrome_sources - populate source buffers for gen_syndrome
1151  * @srcs - (struct page *) array of size sh->disks
1152  * @sh - stripe_head to parse
1153  *
1154  * Populates srcs in proper layout order for the stripe and returns the
1155  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1156  * destination buffer is recorded in srcs[count] and the Q destination
1157  * is recorded in srcs[count+1]].
1158  */
1159 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1160 {
1161         int disks = sh->disks;
1162         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1163         int d0_idx = raid6_d0(sh);
1164         int count;
1165         int i;
1166
1167         for (i = 0; i < disks; i++)
1168                 srcs[i] = NULL;
1169
1170         count = 0;
1171         i = d0_idx;
1172         do {
1173                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1174
1175                 srcs[slot] = sh->dev[i].page;
1176                 i = raid6_next_disk(i, disks);
1177         } while (i != d0_idx);
1178
1179         return syndrome_disks;
1180 }
1181
1182 static struct dma_async_tx_descriptor *
1183 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1184 {
1185         int disks = sh->disks;
1186         struct page **blocks = percpu->scribble;
1187         int target;
1188         int qd_idx = sh->qd_idx;
1189         struct dma_async_tx_descriptor *tx;
1190         struct async_submit_ctl submit;
1191         struct r5dev *tgt;
1192         struct page *dest;
1193         int i;
1194         int count;
1195
1196         if (sh->ops.target < 0)
1197                 target = sh->ops.target2;
1198         else if (sh->ops.target2 < 0)
1199                 target = sh->ops.target;
1200         else
1201                 /* we should only have one valid target */
1202                 BUG();
1203         BUG_ON(target < 0);
1204         pr_debug("%s: stripe %llu block: %d\n",
1205                 __func__, (unsigned long long)sh->sector, target);
1206
1207         tgt = &sh->dev[target];
1208         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1209         dest = tgt->page;
1210
1211         atomic_inc(&sh->count);
1212
1213         if (target == qd_idx) {
1214                 count = set_syndrome_sources(blocks, sh);
1215                 blocks[count] = NULL; /* regenerating p is not necessary */
1216                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1217                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1218                                   ops_complete_compute, sh,
1219                                   to_addr_conv(sh, percpu));
1220                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1221         } else {
1222                 /* Compute any data- or p-drive using XOR */
1223                 count = 0;
1224                 for (i = disks; i-- ; ) {
1225                         if (i == target || i == qd_idx)
1226                                 continue;
1227                         blocks[count++] = sh->dev[i].page;
1228                 }
1229
1230                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1231                                   NULL, ops_complete_compute, sh,
1232                                   to_addr_conv(sh, percpu));
1233                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1234         }
1235
1236         return tx;
1237 }
1238
1239 static struct dma_async_tx_descriptor *
1240 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1241 {
1242         int i, count, disks = sh->disks;
1243         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1244         int d0_idx = raid6_d0(sh);
1245         int faila = -1, failb = -1;
1246         int target = sh->ops.target;
1247         int target2 = sh->ops.target2;
1248         struct r5dev *tgt = &sh->dev[target];
1249         struct r5dev *tgt2 = &sh->dev[target2];
1250         struct dma_async_tx_descriptor *tx;
1251         struct page **blocks = percpu->scribble;
1252         struct async_submit_ctl submit;
1253
1254         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1255                  __func__, (unsigned long long)sh->sector, target, target2);
1256         BUG_ON(target < 0 || target2 < 0);
1257         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1258         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1259
1260         /* we need to open-code set_syndrome_sources to handle the
1261          * slot number conversion for 'faila' and 'failb'
1262          */
1263         for (i = 0; i < disks ; i++)
1264                 blocks[i] = NULL;
1265         count = 0;
1266         i = d0_idx;
1267         do {
1268                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1269
1270                 blocks[slot] = sh->dev[i].page;
1271
1272                 if (i == target)
1273                         faila = slot;
1274                 if (i == target2)
1275                         failb = slot;
1276                 i = raid6_next_disk(i, disks);
1277         } while (i != d0_idx);
1278
1279         BUG_ON(faila == failb);
1280         if (failb < faila)
1281                 swap(faila, failb);
1282         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1283                  __func__, (unsigned long long)sh->sector, faila, failb);
1284
1285         atomic_inc(&sh->count);
1286
1287         if (failb == syndrome_disks+1) {
1288                 /* Q disk is one of the missing disks */
1289                 if (faila == syndrome_disks) {
1290                         /* Missing P+Q, just recompute */
1291                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1292                                           ops_complete_compute, sh,
1293                                           to_addr_conv(sh, percpu));
1294                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1295                                                   STRIPE_SIZE, &submit);
1296                 } else {
1297                         struct page *dest;
1298                         int data_target;
1299                         int qd_idx = sh->qd_idx;
1300
1301                         /* Missing D+Q: recompute D from P, then recompute Q */
1302                         if (target == qd_idx)
1303                                 data_target = target2;
1304                         else
1305                                 data_target = target;
1306
1307                         count = 0;
1308                         for (i = disks; i-- ; ) {
1309                                 if (i == data_target || i == qd_idx)
1310                                         continue;
1311                                 blocks[count++] = sh->dev[i].page;
1312                         }
1313                         dest = sh->dev[data_target].page;
1314                         init_async_submit(&submit,
1315                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1316                                           NULL, NULL, NULL,
1317                                           to_addr_conv(sh, percpu));
1318                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1319                                        &submit);
1320
1321                         count = set_syndrome_sources(blocks, sh);
1322                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1323                                           ops_complete_compute, sh,
1324                                           to_addr_conv(sh, percpu));
1325                         return async_gen_syndrome(blocks, 0, count+2,
1326                                                   STRIPE_SIZE, &submit);
1327                 }
1328         } else {
1329                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1330                                   ops_complete_compute, sh,
1331                                   to_addr_conv(sh, percpu));
1332                 if (failb == syndrome_disks) {
1333                         /* We're missing D+P. */
1334                         return async_raid6_datap_recov(syndrome_disks+2,
1335                                                        STRIPE_SIZE, faila,
1336                                                        blocks, &submit);
1337                 } else {
1338                         /* We're missing D+D. */
1339                         return async_raid6_2data_recov(syndrome_disks+2,
1340                                                        STRIPE_SIZE, faila, failb,
1341                                                        blocks, &submit);
1342                 }
1343         }
1344 }
1345
1346 static void ops_complete_prexor(void *stripe_head_ref)
1347 {
1348         struct stripe_head *sh = stripe_head_ref;
1349
1350         pr_debug("%s: stripe %llu\n", __func__,
1351                 (unsigned long long)sh->sector);
1352 }
1353
1354 static struct dma_async_tx_descriptor *
1355 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1356                struct dma_async_tx_descriptor *tx)
1357 {
1358         int disks = sh->disks;
1359         struct page **xor_srcs = percpu->scribble;
1360         int count = 0, pd_idx = sh->pd_idx, i;
1361         struct async_submit_ctl submit;
1362
1363         /* existing parity data subtracted */
1364         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1365
1366         pr_debug("%s: stripe %llu\n", __func__,
1367                 (unsigned long long)sh->sector);
1368
1369         for (i = disks; i--; ) {
1370                 struct r5dev *dev = &sh->dev[i];
1371                 /* Only process blocks that are known to be uptodate */
1372                 if (test_bit(R5_Wantdrain, &dev->flags))
1373                         xor_srcs[count++] = dev->page;
1374         }
1375
1376         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1377                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1378         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1379
1380         return tx;
1381 }
1382
1383 static struct dma_async_tx_descriptor *
1384 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1385 {
1386         int disks = sh->disks;
1387         int i;
1388
1389         pr_debug("%s: stripe %llu\n", __func__,
1390                 (unsigned long long)sh->sector);
1391
1392         for (i = disks; i--; ) {
1393                 struct r5dev *dev = &sh->dev[i];
1394                 struct bio *chosen;
1395
1396                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1397                         struct bio *wbi;
1398
1399                         spin_lock_irq(&sh->stripe_lock);
1400                         chosen = dev->towrite;
1401                         dev->towrite = NULL;
1402                         BUG_ON(dev->written);
1403                         wbi = dev->written = chosen;
1404                         spin_unlock_irq(&sh->stripe_lock);
1405                         WARN_ON(dev->page != dev->orig_page);
1406
1407                         while (wbi && wbi->bi_iter.bi_sector <
1408                                 dev->sector + STRIPE_SECTORS) {
1409                                 if (wbi->bi_rw & REQ_FUA)
1410                                         set_bit(R5_WantFUA, &dev->flags);
1411                                 if (wbi->bi_rw & REQ_SYNC)
1412                                         set_bit(R5_SyncIO, &dev->flags);
1413                                 if (wbi->bi_rw & REQ_DISCARD)
1414                                         set_bit(R5_Discard, &dev->flags);
1415                                 else {
1416                                         tx = async_copy_data(1, wbi, &dev->page,
1417                                                 dev->sector, tx, sh);
1418                                         if (dev->page != dev->orig_page) {
1419                                                 set_bit(R5_SkipCopy, &dev->flags);
1420                                                 clear_bit(R5_UPTODATE, &dev->flags);
1421                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1422                                         }
1423                                 }
1424                                 wbi = r5_next_bio(wbi, dev->sector);
1425                         }
1426                 }
1427         }
1428
1429         return tx;
1430 }
1431
1432 static void ops_complete_reconstruct(void *stripe_head_ref)
1433 {
1434         struct stripe_head *sh = stripe_head_ref;
1435         int disks = sh->disks;
1436         int pd_idx = sh->pd_idx;
1437         int qd_idx = sh->qd_idx;
1438         int i;
1439         bool fua = false, sync = false, discard = false;
1440
1441         pr_debug("%s: stripe %llu\n", __func__,
1442                 (unsigned long long)sh->sector);
1443
1444         for (i = disks; i--; ) {
1445                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1446                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1447                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1448         }
1449
1450         for (i = disks; i--; ) {
1451                 struct r5dev *dev = &sh->dev[i];
1452
1453                 if (dev->written || i == pd_idx || i == qd_idx) {
1454                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1455                                 set_bit(R5_UPTODATE, &dev->flags);
1456                         if (fua)
1457                                 set_bit(R5_WantFUA, &dev->flags);
1458                         if (sync)
1459                                 set_bit(R5_SyncIO, &dev->flags);
1460                 }
1461         }
1462
1463         if (sh->reconstruct_state == reconstruct_state_drain_run)
1464                 sh->reconstruct_state = reconstruct_state_drain_result;
1465         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1466                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1467         else {
1468                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1469                 sh->reconstruct_state = reconstruct_state_result;
1470         }
1471
1472         set_bit(STRIPE_HANDLE, &sh->state);
1473         release_stripe(sh);
1474 }
1475
1476 static void
1477 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1478                      struct dma_async_tx_descriptor *tx)
1479 {
1480         int disks = sh->disks;
1481         struct page **xor_srcs = percpu->scribble;
1482         struct async_submit_ctl submit;
1483         int count = 0, pd_idx = sh->pd_idx, i;
1484         struct page *xor_dest;
1485         int prexor = 0;
1486         unsigned long flags;
1487
1488         pr_debug("%s: stripe %llu\n", __func__,
1489                 (unsigned long long)sh->sector);
1490
1491         for (i = 0; i < sh->disks; i++) {
1492                 if (pd_idx == i)
1493                         continue;
1494                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1495                         break;
1496         }
1497         if (i >= sh->disks) {
1498                 atomic_inc(&sh->count);
1499                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1500                 ops_complete_reconstruct(sh);
1501                 return;
1502         }
1503         /* check if prexor is active which means only process blocks
1504          * that are part of a read-modify-write (written)
1505          */
1506         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1507                 prexor = 1;
1508                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1509                 for (i = disks; i--; ) {
1510                         struct r5dev *dev = &sh->dev[i];
1511                         if (dev->written)
1512                                 xor_srcs[count++] = dev->page;
1513                 }
1514         } else {
1515                 xor_dest = sh->dev[pd_idx].page;
1516                 for (i = disks; i--; ) {
1517                         struct r5dev *dev = &sh->dev[i];
1518                         if (i != pd_idx)
1519                                 xor_srcs[count++] = dev->page;
1520                 }
1521         }
1522
1523         /* 1/ if we prexor'd then the dest is reused as a source
1524          * 2/ if we did not prexor then we are redoing the parity
1525          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1526          * for the synchronous xor case
1527          */
1528         flags = ASYNC_TX_ACK |
1529                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1530
1531         atomic_inc(&sh->count);
1532
1533         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1534                           to_addr_conv(sh, percpu));
1535         if (unlikely(count == 1))
1536                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1537         else
1538                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1539 }
1540
1541 static void
1542 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1543                      struct dma_async_tx_descriptor *tx)
1544 {
1545         struct async_submit_ctl submit;
1546         struct page **blocks = percpu->scribble;
1547         int count, i;
1548
1549         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1550
1551         for (i = 0; i < sh->disks; i++) {
1552                 if (sh->pd_idx == i || sh->qd_idx == i)
1553                         continue;
1554                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1555                         break;
1556         }
1557         if (i >= sh->disks) {
1558                 atomic_inc(&sh->count);
1559                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1560                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1561                 ops_complete_reconstruct(sh);
1562                 return;
1563         }
1564
1565         count = set_syndrome_sources(blocks, sh);
1566
1567         atomic_inc(&sh->count);
1568
1569         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1570                           sh, to_addr_conv(sh, percpu));
1571         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1572 }
1573
1574 static void ops_complete_check(void *stripe_head_ref)
1575 {
1576         struct stripe_head *sh = stripe_head_ref;
1577
1578         pr_debug("%s: stripe %llu\n", __func__,
1579                 (unsigned long long)sh->sector);
1580
1581         sh->check_state = check_state_check_result;
1582         set_bit(STRIPE_HANDLE, &sh->state);
1583         release_stripe(sh);
1584 }
1585
1586 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1587 {
1588         int disks = sh->disks;
1589         int pd_idx = sh->pd_idx;
1590         int qd_idx = sh->qd_idx;
1591         struct page *xor_dest;
1592         struct page **xor_srcs = percpu->scribble;
1593         struct dma_async_tx_descriptor *tx;
1594         struct async_submit_ctl submit;
1595         int count;
1596         int i;
1597
1598         pr_debug("%s: stripe %llu\n", __func__,
1599                 (unsigned long long)sh->sector);
1600
1601         count = 0;
1602         xor_dest = sh->dev[pd_idx].page;
1603         xor_srcs[count++] = xor_dest;
1604         for (i = disks; i--; ) {
1605                 if (i == pd_idx || i == qd_idx)
1606                         continue;
1607                 xor_srcs[count++] = sh->dev[i].page;
1608         }
1609
1610         init_async_submit(&submit, 0, NULL, NULL, NULL,
1611                           to_addr_conv(sh, percpu));
1612         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1613                            &sh->ops.zero_sum_result, &submit);
1614
1615         atomic_inc(&sh->count);
1616         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1617         tx = async_trigger_callback(&submit);
1618 }
1619
1620 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1621 {
1622         struct page **srcs = percpu->scribble;
1623         struct async_submit_ctl submit;
1624         int count;
1625
1626         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1627                 (unsigned long long)sh->sector, checkp);
1628
1629         count = set_syndrome_sources(srcs, sh);
1630         if (!checkp)
1631                 srcs[count] = NULL;
1632
1633         atomic_inc(&sh->count);
1634         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1635                           sh, to_addr_conv(sh, percpu));
1636         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1637                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1638 }
1639
1640 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1641 {
1642         int overlap_clear = 0, i, disks = sh->disks;
1643         struct dma_async_tx_descriptor *tx = NULL;
1644         struct r5conf *conf = sh->raid_conf;
1645         int level = conf->level;
1646         struct raid5_percpu *percpu;
1647         unsigned long cpu;
1648
1649         cpu = get_cpu();
1650         percpu = per_cpu_ptr(conf->percpu, cpu);
1651         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1652                 ops_run_biofill(sh);
1653                 overlap_clear++;
1654         }
1655
1656         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1657                 if (level < 6)
1658                         tx = ops_run_compute5(sh, percpu);
1659                 else {
1660                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1661                                 tx = ops_run_compute6_1(sh, percpu);
1662                         else
1663                                 tx = ops_run_compute6_2(sh, percpu);
1664                 }
1665                 /* terminate the chain if reconstruct is not set to be run */
1666                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1667                         async_tx_ack(tx);
1668         }
1669
1670         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1671                 tx = ops_run_prexor(sh, percpu, tx);
1672
1673         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1674                 tx = ops_run_biodrain(sh, tx);
1675                 overlap_clear++;
1676         }
1677
1678         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1679                 if (level < 6)
1680                         ops_run_reconstruct5(sh, percpu, tx);
1681                 else
1682                         ops_run_reconstruct6(sh, percpu, tx);
1683         }
1684
1685         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1686                 if (sh->check_state == check_state_run)
1687                         ops_run_check_p(sh, percpu);
1688                 else if (sh->check_state == check_state_run_q)
1689                         ops_run_check_pq(sh, percpu, 0);
1690                 else if (sh->check_state == check_state_run_pq)
1691                         ops_run_check_pq(sh, percpu, 1);
1692                 else
1693                         BUG();
1694         }
1695
1696         if (overlap_clear)
1697                 for (i = disks; i--; ) {
1698                         struct r5dev *dev = &sh->dev[i];
1699                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1700                                 wake_up(&sh->raid_conf->wait_for_overlap);
1701                 }
1702         put_cpu();
1703 }
1704
1705 static int grow_one_stripe(struct r5conf *conf, int hash)
1706 {
1707         struct stripe_head *sh;
1708         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1709         if (!sh)
1710                 return 0;
1711
1712         sh->raid_conf = conf;
1713
1714         spin_lock_init(&sh->stripe_lock);
1715
1716         if (grow_buffers(sh)) {
1717                 shrink_buffers(sh);
1718                 kmem_cache_free(conf->slab_cache, sh);
1719                 return 0;
1720         }
1721         sh->hash_lock_index = hash;
1722         /* we just created an active stripe so... */
1723         atomic_set(&sh->count, 1);
1724         atomic_inc(&conf->active_stripes);
1725         INIT_LIST_HEAD(&sh->lru);
1726         release_stripe(sh);
1727         return 1;
1728 }
1729
1730 static int grow_stripes(struct r5conf *conf, int num)
1731 {
1732         struct kmem_cache *sc;
1733         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1734         int hash;
1735
1736         if (conf->mddev->gendisk)
1737                 sprintf(conf->cache_name[0],
1738                         "raid%d-%s", conf->level, mdname(conf->mddev));
1739         else
1740                 sprintf(conf->cache_name[0],
1741                         "raid%d-%p", conf->level, conf->mddev);
1742         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1743
1744         conf->active_name = 0;
1745         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1746                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1747                                0, 0, NULL);
1748         if (!sc)
1749                 return 1;
1750         conf->slab_cache = sc;
1751         conf->pool_size = devs;
1752         hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1753         while (num--) {
1754                 if (!grow_one_stripe(conf, hash))
1755                         return 1;
1756                 conf->max_nr_stripes++;
1757                 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1758         }
1759         return 0;
1760 }
1761
1762 /**
1763  * scribble_len - return the required size of the scribble region
1764  * @num - total number of disks in the array
1765  *
1766  * The size must be enough to contain:
1767  * 1/ a struct page pointer for each device in the array +2
1768  * 2/ room to convert each entry in (1) to its corresponding dma
1769  *    (dma_map_page()) or page (page_address()) address.
1770  *
1771  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1772  * calculate over all devices (not just the data blocks), using zeros in place
1773  * of the P and Q blocks.
1774  */
1775 static size_t scribble_len(int num)
1776 {
1777         size_t len;
1778
1779         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1780
1781         return len;
1782 }
1783
1784 static int resize_stripes(struct r5conf *conf, int newsize)
1785 {
1786         /* Make all the stripes able to hold 'newsize' devices.
1787          * New slots in each stripe get 'page' set to a new page.
1788          *
1789          * This happens in stages:
1790          * 1/ create a new kmem_cache and allocate the required number of
1791          *    stripe_heads.
1792          * 2/ gather all the old stripe_heads and transfer the pages across
1793          *    to the new stripe_heads.  This will have the side effect of
1794          *    freezing the array as once all stripe_heads have been collected,
1795          *    no IO will be possible.  Old stripe heads are freed once their
1796          *    pages have been transferred over, and the old kmem_cache is
1797          *    freed when all stripes are done.
1798          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1799          *    we simple return a failre status - no need to clean anything up.
1800          * 4/ allocate new pages for the new slots in the new stripe_heads.
1801          *    If this fails, we don't bother trying the shrink the
1802          *    stripe_heads down again, we just leave them as they are.
1803          *    As each stripe_head is processed the new one is released into
1804          *    active service.
1805          *
1806          * Once step2 is started, we cannot afford to wait for a write,
1807          * so we use GFP_NOIO allocations.
1808          */
1809         struct stripe_head *osh, *nsh;
1810         LIST_HEAD(newstripes);
1811         struct disk_info *ndisks;
1812         unsigned long cpu;
1813         int err;
1814         struct kmem_cache *sc;
1815         int i;
1816         int hash, cnt;
1817
1818         if (newsize <= conf->pool_size)
1819                 return 0; /* never bother to shrink */
1820
1821         err = md_allow_write(conf->mddev);
1822         if (err)
1823                 return err;
1824
1825         /* Step 1 */
1826         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1827                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1828                                0, 0, NULL);
1829         if (!sc)
1830                 return -ENOMEM;
1831
1832         for (i = conf->max_nr_stripes; i; i--) {
1833                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1834                 if (!nsh)
1835                         break;
1836
1837                 nsh->raid_conf = conf;
1838                 spin_lock_init(&nsh->stripe_lock);
1839
1840                 list_add(&nsh->lru, &newstripes);
1841         }
1842         if (i) {
1843                 /* didn't get enough, give up */
1844                 while (!list_empty(&newstripes)) {
1845                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1846                         list_del(&nsh->lru);
1847                         kmem_cache_free(sc, nsh);
1848                 }
1849                 kmem_cache_destroy(sc);
1850                 return -ENOMEM;
1851         }
1852         /* Step 2 - Must use GFP_NOIO now.
1853          * OK, we have enough stripes, start collecting inactive
1854          * stripes and copying them over
1855          */
1856         hash = 0;
1857         cnt = 0;
1858         list_for_each_entry(nsh, &newstripes, lru) {
1859                 lock_device_hash_lock(conf, hash);
1860                 wait_event_cmd(conf->wait_for_stripe,
1861                                     !list_empty(conf->inactive_list + hash),
1862                                     unlock_device_hash_lock(conf, hash),
1863                                     lock_device_hash_lock(conf, hash));
1864                 osh = get_free_stripe(conf, hash);
1865                 unlock_device_hash_lock(conf, hash);
1866                 atomic_set(&nsh->count, 1);
1867                 for(i=0; i<conf->pool_size; i++) {
1868                         nsh->dev[i].page = osh->dev[i].page;
1869                         nsh->dev[i].orig_page = osh->dev[i].page;
1870                 }
1871                 for( ; i<newsize; i++)
1872                         nsh->dev[i].page = NULL;
1873                 nsh->hash_lock_index = hash;
1874                 kmem_cache_free(conf->slab_cache, osh);
1875                 cnt++;
1876                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1877                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1878                         hash++;
1879                         cnt = 0;
1880                 }
1881         }
1882         kmem_cache_destroy(conf->slab_cache);
1883
1884         /* Step 3.
1885          * At this point, we are holding all the stripes so the array
1886          * is completely stalled, so now is a good time to resize
1887          * conf->disks and the scribble region
1888          */
1889         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1890         if (ndisks) {
1891                 for (i=0; i<conf->raid_disks; i++)
1892                         ndisks[i] = conf->disks[i];
1893                 kfree(conf->disks);
1894                 conf->disks = ndisks;
1895         } else
1896                 err = -ENOMEM;
1897
1898         get_online_cpus();
1899         conf->scribble_len = scribble_len(newsize);
1900         for_each_present_cpu(cpu) {
1901                 struct raid5_percpu *percpu;
1902                 void *scribble;
1903
1904                 percpu = per_cpu_ptr(conf->percpu, cpu);
1905                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1906
1907                 if (scribble) {
1908                         kfree(percpu->scribble);
1909                         percpu->scribble = scribble;
1910                 } else {
1911                         err = -ENOMEM;
1912                         break;
1913                 }
1914         }
1915         put_online_cpus();
1916
1917         /* Step 4, return new stripes to service */
1918         while(!list_empty(&newstripes)) {
1919                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1920                 list_del_init(&nsh->lru);
1921
1922                 for (i=conf->raid_disks; i < newsize; i++)
1923                         if (nsh->dev[i].page == NULL) {
1924                                 struct page *p = alloc_page(GFP_NOIO);
1925                                 nsh->dev[i].page = p;
1926                                 nsh->dev[i].orig_page = p;
1927                                 if (!p)
1928                                         err = -ENOMEM;
1929                         }
1930                 release_stripe(nsh);
1931         }
1932         /* critical section pass, GFP_NOIO no longer needed */
1933
1934         conf->slab_cache = sc;
1935         conf->active_name = 1-conf->active_name;
1936         conf->pool_size = newsize;
1937         return err;
1938 }
1939
1940 static int drop_one_stripe(struct r5conf *conf, int hash)
1941 {
1942         struct stripe_head *sh;
1943
1944         spin_lock_irq(conf->hash_locks + hash);
1945         sh = get_free_stripe(conf, hash);
1946         spin_unlock_irq(conf->hash_locks + hash);
1947         if (!sh)
1948                 return 0;
1949         BUG_ON(atomic_read(&sh->count));
1950         shrink_buffers(sh);
1951         kmem_cache_free(conf->slab_cache, sh);
1952         atomic_dec(&conf->active_stripes);
1953         return 1;
1954 }
1955
1956 static void shrink_stripes(struct r5conf *conf)
1957 {
1958         int hash;
1959         for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1960                 while (drop_one_stripe(conf, hash))
1961                         ;
1962
1963         if (conf->slab_cache)
1964                 kmem_cache_destroy(conf->slab_cache);
1965         conf->slab_cache = NULL;
1966 }
1967
1968 static void raid5_end_read_request(struct bio * bi, int error)
1969 {
1970         struct stripe_head *sh = bi->bi_private;
1971         struct r5conf *conf = sh->raid_conf;
1972         int disks = sh->disks, i;
1973         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1974         char b[BDEVNAME_SIZE];
1975         struct md_rdev *rdev = NULL;
1976         sector_t s;
1977
1978         for (i=0 ; i<disks; i++)
1979                 if (bi == &sh->dev[i].req)
1980                         break;
1981
1982         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1983                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1984                 uptodate);
1985         if (i == disks) {
1986                 BUG();
1987                 return;
1988         }
1989         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1990                 /* If replacement finished while this request was outstanding,
1991                  * 'replacement' might be NULL already.
1992                  * In that case it moved down to 'rdev'.
1993                  * rdev is not removed until all requests are finished.
1994                  */
1995                 rdev = conf->disks[i].replacement;
1996         if (!rdev)
1997                 rdev = conf->disks[i].rdev;
1998
1999         if (use_new_offset(conf, sh))
2000                 s = sh->sector + rdev->new_data_offset;
2001         else
2002                 s = sh->sector + rdev->data_offset;
2003         if (uptodate) {
2004                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2005                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2006                         /* Note that this cannot happen on a
2007                          * replacement device.  We just fail those on
2008                          * any error
2009                          */
2010                         printk_ratelimited(
2011                                 KERN_INFO
2012                                 "md/raid:%s: read error corrected"
2013                                 " (%lu sectors at %llu on %s)\n",
2014                                 mdname(conf->mddev), STRIPE_SECTORS,
2015                                 (unsigned long long)s,
2016                                 bdevname(rdev->bdev, b));
2017                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2018                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2019                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2020                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2021                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2022
2023                 if (atomic_read(&rdev->read_errors))
2024                         atomic_set(&rdev->read_errors, 0);
2025         } else {
2026                 const char *bdn = bdevname(rdev->bdev, b);
2027                 int retry = 0;
2028                 int set_bad = 0;
2029
2030                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2031                 atomic_inc(&rdev->read_errors);
2032                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2033                         printk_ratelimited(
2034                                 KERN_WARNING
2035                                 "md/raid:%s: read error on replacement device "
2036                                 "(sector %llu on %s).\n",
2037                                 mdname(conf->mddev),
2038                                 (unsigned long long)s,
2039                                 bdn);
2040                 else if (conf->mddev->degraded >= conf->max_degraded) {
2041                         set_bad = 1;
2042                         printk_ratelimited(
2043                                 KERN_WARNING
2044                                 "md/raid:%s: read error not correctable "
2045                                 "(sector %llu on %s).\n",
2046                                 mdname(conf->mddev),
2047                                 (unsigned long long)s,
2048                                 bdn);
2049                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2050                         /* Oh, no!!! */
2051                         set_bad = 1;
2052                         printk_ratelimited(
2053                                 KERN_WARNING
2054                                 "md/raid:%s: read error NOT corrected!! "
2055                                 "(sector %llu on %s).\n",
2056                                 mdname(conf->mddev),
2057                                 (unsigned long long)s,
2058                                 bdn);
2059                 } else if (atomic_read(&rdev->read_errors)
2060                          > conf->max_nr_stripes)
2061                         printk(KERN_WARNING
2062                                "md/raid:%s: Too many read errors, failing device %s.\n",
2063                                mdname(conf->mddev), bdn);
2064                 else
2065                         retry = 1;
2066                 if (set_bad && test_bit(In_sync, &rdev->flags)
2067                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2068                         retry = 1;
2069                 if (retry)
2070                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2071                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2072                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2073                         } else
2074                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2075                 else {
2076                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2077                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2078                         if (!(set_bad
2079                               && test_bit(In_sync, &rdev->flags)
2080                               && rdev_set_badblocks(
2081                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2082                                 md_error(conf->mddev, rdev);
2083                 }
2084         }
2085         rdev_dec_pending(rdev, conf->mddev);
2086         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2087         set_bit(STRIPE_HANDLE, &sh->state);
2088         release_stripe(sh);
2089 }
2090
2091 static void raid5_end_write_request(struct bio *bi, int error)
2092 {
2093         struct stripe_head *sh = bi->bi_private;
2094         struct r5conf *conf = sh->raid_conf;
2095         int disks = sh->disks, i;
2096         struct md_rdev *uninitialized_var(rdev);
2097         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2098         sector_t first_bad;
2099         int bad_sectors;
2100         int replacement = 0;
2101
2102         for (i = 0 ; i < disks; i++) {
2103                 if (bi == &sh->dev[i].req) {
2104                         rdev = conf->disks[i].rdev;
2105                         break;
2106                 }
2107                 if (bi == &sh->dev[i].rreq) {
2108                         rdev = conf->disks[i].replacement;
2109                         if (rdev)
2110                                 replacement = 1;
2111                         else
2112                                 /* rdev was removed and 'replacement'
2113                                  * replaced it.  rdev is not removed
2114                                  * until all requests are finished.
2115                                  */
2116                                 rdev = conf->disks[i].rdev;
2117                         break;
2118                 }
2119         }
2120         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2121                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2122                 uptodate);
2123         if (i == disks) {
2124                 BUG();
2125                 return;
2126         }
2127
2128         if (replacement) {
2129                 if (!uptodate)
2130                         md_error(conf->mddev, rdev);
2131                 else if (is_badblock(rdev, sh->sector,
2132                                      STRIPE_SECTORS,
2133                                      &first_bad, &bad_sectors))
2134                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2135         } else {
2136                 if (!uptodate) {
2137                         set_bit(STRIPE_DEGRADED, &sh->state);
2138                         set_bit(WriteErrorSeen, &rdev->flags);
2139                         set_bit(R5_WriteError, &sh->dev[i].flags);
2140                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2141                                 set_bit(MD_RECOVERY_NEEDED,
2142                                         &rdev->mddev->recovery);
2143                 } else if (is_badblock(rdev, sh->sector,
2144                                        STRIPE_SECTORS,
2145                                        &first_bad, &bad_sectors)) {
2146                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2147                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2148                                 /* That was a successful write so make
2149                                  * sure it looks like we already did
2150                                  * a re-write.
2151                                  */
2152                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2153                 }
2154         }
2155         rdev_dec_pending(rdev, conf->mddev);
2156
2157         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2158                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2159         set_bit(STRIPE_HANDLE, &sh->state);
2160         release_stripe(sh);
2161 }
2162
2163 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2164
2165 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2166 {
2167         struct r5dev *dev = &sh->dev[i];
2168
2169         bio_init(&dev->req);
2170         dev->req.bi_io_vec = &dev->vec;
2171         dev->req.bi_max_vecs = 1;
2172         dev->req.bi_private = sh;
2173
2174         bio_init(&dev->rreq);
2175         dev->rreq.bi_io_vec = &dev->rvec;
2176         dev->rreq.bi_max_vecs = 1;
2177         dev->rreq.bi_private = sh;
2178
2179         dev->flags = 0;
2180         dev->sector = compute_blocknr(sh, i, previous);
2181 }
2182
2183 static void error(struct mddev *mddev, struct md_rdev *rdev)
2184 {
2185         char b[BDEVNAME_SIZE];
2186         struct r5conf *conf = mddev->private;
2187         unsigned long flags;
2188         pr_debug("raid456: error called\n");
2189
2190         spin_lock_irqsave(&conf->device_lock, flags);
2191         clear_bit(In_sync, &rdev->flags);
2192         mddev->degraded = calc_degraded(conf);
2193         spin_unlock_irqrestore(&conf->device_lock, flags);
2194         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2195
2196         set_bit(Blocked, &rdev->flags);
2197         set_bit(Faulty, &rdev->flags);
2198         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2199         printk(KERN_ALERT
2200                "md/raid:%s: Disk failure on %s, disabling device.\n"
2201                "md/raid:%s: Operation continuing on %d devices.\n",
2202                mdname(mddev),
2203                bdevname(rdev->bdev, b),
2204                mdname(mddev),
2205                conf->raid_disks - mddev->degraded);
2206 }
2207
2208 /*
2209  * Input: a 'big' sector number,
2210  * Output: index of the data and parity disk, and the sector # in them.
2211  */
2212 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2213                                      int previous, int *dd_idx,
2214                                      struct stripe_head *sh)
2215 {
2216         sector_t stripe, stripe2;
2217         sector_t chunk_number;
2218         unsigned int chunk_offset;
2219         int pd_idx, qd_idx;
2220         int ddf_layout = 0;
2221         sector_t new_sector;
2222         int algorithm = previous ? conf->prev_algo
2223                                  : conf->algorithm;
2224         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2225                                          : conf->chunk_sectors;
2226         int raid_disks = previous ? conf->previous_raid_disks
2227                                   : conf->raid_disks;
2228         int data_disks = raid_disks - conf->max_degraded;
2229
2230         /* First compute the information on this sector */
2231
2232         /*
2233          * Compute the chunk number and the sector offset inside the chunk
2234          */
2235         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2236         chunk_number = r_sector;
2237
2238         /*
2239          * Compute the stripe number
2240          */
2241         stripe = chunk_number;
2242         *dd_idx = sector_div(stripe, data_disks);
2243         stripe2 = stripe;
2244         /*
2245          * Select the parity disk based on the user selected algorithm.
2246          */
2247         pd_idx = qd_idx = -1;
2248         switch(conf->level) {
2249         case 4:
2250                 pd_idx = data_disks;
2251                 break;
2252         case 5:
2253                 switch (algorithm) {
2254                 case ALGORITHM_LEFT_ASYMMETRIC:
2255                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2256                         if (*dd_idx >= pd_idx)
2257                                 (*dd_idx)++;
2258                         break;
2259                 case ALGORITHM_RIGHT_ASYMMETRIC:
2260                         pd_idx = sector_div(stripe2, raid_disks);
2261                         if (*dd_idx >= pd_idx)
2262                                 (*dd_idx)++;
2263                         break;
2264                 case ALGORITHM_LEFT_SYMMETRIC:
2265                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2266                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2267                         break;
2268                 case ALGORITHM_RIGHT_SYMMETRIC:
2269                         pd_idx = sector_div(stripe2, raid_disks);
2270                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2271                         break;
2272                 case ALGORITHM_PARITY_0:
2273                         pd_idx = 0;
2274                         (*dd_idx)++;
2275                         break;
2276                 case ALGORITHM_PARITY_N:
2277                         pd_idx = data_disks;
2278                         break;
2279                 default:
2280                         BUG();
2281                 }
2282                 break;
2283         case 6:
2284
2285                 switch (algorithm) {
2286                 case ALGORITHM_LEFT_ASYMMETRIC:
2287                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2288                         qd_idx = pd_idx + 1;
2289                         if (pd_idx == raid_disks-1) {
2290                                 (*dd_idx)++;    /* Q D D D P */
2291                                 qd_idx = 0;
2292                         } else if (*dd_idx >= pd_idx)
2293                                 (*dd_idx) += 2; /* D D P Q D */
2294                         break;
2295                 case ALGORITHM_RIGHT_ASYMMETRIC:
2296                         pd_idx = sector_div(stripe2, raid_disks);
2297                         qd_idx = pd_idx + 1;
2298                         if (pd_idx == raid_disks-1) {
2299                                 (*dd_idx)++;    /* Q D D D P */
2300                                 qd_idx = 0;
2301                         } else if (*dd_idx >= pd_idx)
2302                                 (*dd_idx) += 2; /* D D P Q D */
2303                         break;
2304                 case ALGORITHM_LEFT_SYMMETRIC:
2305                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2306                         qd_idx = (pd_idx + 1) % raid_disks;
2307                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2308                         break;
2309                 case ALGORITHM_RIGHT_SYMMETRIC:
2310                         pd_idx = sector_div(stripe2, raid_disks);
2311                         qd_idx = (pd_idx + 1) % raid_disks;
2312                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2313                         break;
2314
2315                 case ALGORITHM_PARITY_0:
2316                         pd_idx = 0;
2317                         qd_idx = 1;
2318                         (*dd_idx) += 2;
2319                         break;
2320                 case ALGORITHM_PARITY_N:
2321                         pd_idx = data_disks;
2322                         qd_idx = data_disks + 1;
2323                         break;
2324
2325                 case ALGORITHM_ROTATING_ZERO_RESTART:
2326                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2327                          * of blocks for computing Q is different.
2328                          */
2329                         pd_idx = sector_div(stripe2, raid_disks);
2330                         qd_idx = pd_idx + 1;
2331                         if (pd_idx == raid_disks-1) {
2332                                 (*dd_idx)++;    /* Q D D D P */
2333                                 qd_idx = 0;
2334                         } else if (*dd_idx >= pd_idx)
2335                                 (*dd_idx) += 2; /* D D P Q D */
2336                         ddf_layout = 1;
2337                         break;
2338
2339                 case ALGORITHM_ROTATING_N_RESTART:
2340                         /* Same a left_asymmetric, by first stripe is
2341                          * D D D P Q  rather than
2342                          * Q D D D P
2343                          */
2344                         stripe2 += 1;
2345                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2346                         qd_idx = pd_idx + 1;
2347                         if (pd_idx == raid_disks-1) {
2348                                 (*dd_idx)++;    /* Q D D D P */
2349                                 qd_idx = 0;
2350                         } else if (*dd_idx >= pd_idx)
2351                                 (*dd_idx) += 2; /* D D P Q D */
2352                         ddf_layout = 1;
2353                         break;
2354
2355                 case ALGORITHM_ROTATING_N_CONTINUE:
2356                         /* Same as left_symmetric but Q is before P */
2357                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2358                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2359                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2360                         ddf_layout = 1;
2361                         break;
2362
2363                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2364                         /* RAID5 left_asymmetric, with Q on last device */
2365                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2366                         if (*dd_idx >= pd_idx)
2367                                 (*dd_idx)++;
2368                         qd_idx = raid_disks - 1;
2369                         break;
2370
2371                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2372                         pd_idx = sector_div(stripe2, raid_disks-1);
2373                         if (*dd_idx >= pd_idx)
2374                                 (*dd_idx)++;
2375                         qd_idx = raid_disks - 1;
2376                         break;
2377
2378                 case ALGORITHM_LEFT_SYMMETRIC_6:
2379                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2380                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2381                         qd_idx = raid_disks - 1;
2382                         break;
2383
2384                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2385                         pd_idx = sector_div(stripe2, raid_disks-1);
2386                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2387                         qd_idx = raid_disks - 1;
2388                         break;
2389
2390                 case ALGORITHM_PARITY_0_6:
2391                         pd_idx = 0;
2392                         (*dd_idx)++;
2393                         qd_idx = raid_disks - 1;
2394                         break;
2395
2396                 default:
2397                         BUG();
2398                 }
2399                 break;
2400         }
2401
2402         if (sh) {
2403                 sh->pd_idx = pd_idx;
2404                 sh->qd_idx = qd_idx;
2405                 sh->ddf_layout = ddf_layout;
2406         }
2407         /*
2408          * Finally, compute the new sector number
2409          */
2410         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2411         return new_sector;
2412 }
2413
2414 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2415 {
2416         struct r5conf *conf = sh->raid_conf;
2417         int raid_disks = sh->disks;
2418         int data_disks = raid_disks - conf->max_degraded;
2419         sector_t new_sector = sh->sector, check;
2420         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2421                                          : conf->chunk_sectors;
2422         int algorithm = previous ? conf->prev_algo
2423                                  : conf->algorithm;
2424         sector_t stripe;
2425         int chunk_offset;
2426         sector_t chunk_number;
2427         int dummy1, dd_idx = i;
2428         sector_t r_sector;
2429         struct stripe_head sh2;
2430
2431         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2432         stripe = new_sector;
2433
2434         if (i == sh->pd_idx)
2435                 return 0;
2436         switch(conf->level) {
2437         case 4: break;
2438         case 5:
2439                 switch (algorithm) {
2440                 case ALGORITHM_LEFT_ASYMMETRIC:
2441                 case ALGORITHM_RIGHT_ASYMMETRIC:
2442                         if (i > sh->pd_idx)
2443                                 i--;
2444                         break;
2445                 case ALGORITHM_LEFT_SYMMETRIC:
2446                 case ALGORITHM_RIGHT_SYMMETRIC:
2447                         if (i < sh->pd_idx)
2448                                 i += raid_disks;
2449                         i -= (sh->pd_idx + 1);
2450                         break;
2451                 case ALGORITHM_PARITY_0:
2452                         i -= 1;
2453                         break;
2454                 case ALGORITHM_PARITY_N:
2455                         break;
2456                 default:
2457                         BUG();
2458                 }
2459                 break;
2460         case 6:
2461                 if (i == sh->qd_idx)
2462                         return 0; /* It is the Q disk */
2463                 switch (algorithm) {
2464                 case ALGORITHM_LEFT_ASYMMETRIC:
2465                 case ALGORITHM_RIGHT_ASYMMETRIC:
2466                 case ALGORITHM_ROTATING_ZERO_RESTART:
2467                 case ALGORITHM_ROTATING_N_RESTART:
2468                         if (sh->pd_idx == raid_disks-1)
2469                                 i--;    /* Q D D D P */
2470                         else if (i > sh->pd_idx)
2471                                 i -= 2; /* D D P Q D */
2472                         break;
2473                 case ALGORITHM_LEFT_SYMMETRIC:
2474                 case ALGORITHM_RIGHT_SYMMETRIC:
2475                         if (sh->pd_idx == raid_disks-1)
2476                                 i--; /* Q D D D P */
2477                         else {
2478                                 /* D D P Q D */
2479                                 if (i < sh->pd_idx)
2480                                         i += raid_disks;
2481                                 i -= (sh->pd_idx + 2);
2482                         }
2483                         break;
2484                 case ALGORITHM_PARITY_0:
2485                         i -= 2;
2486                         break;
2487                 case ALGORITHM_PARITY_N:
2488                         break;
2489                 case ALGORITHM_ROTATING_N_CONTINUE:
2490                         /* Like left_symmetric, but P is before Q */
2491                         if (sh->pd_idx == 0)
2492                                 i--;    /* P D D D Q */
2493                         else {
2494                                 /* D D Q P D */
2495                                 if (i < sh->pd_idx)
2496                                         i += raid_disks;
2497                                 i -= (sh->pd_idx + 1);
2498                         }
2499                         break;
2500                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2501                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2502                         if (i > sh->pd_idx)
2503                                 i--;
2504                         break;
2505                 case ALGORITHM_LEFT_SYMMETRIC_6:
2506                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2507                         if (i < sh->pd_idx)
2508                                 i += data_disks + 1;
2509                         i -= (sh->pd_idx + 1);
2510                         break;
2511                 case ALGORITHM_PARITY_0_6:
2512                         i -= 1;
2513                         break;
2514                 default:
2515                         BUG();
2516                 }
2517                 break;
2518         }
2519
2520         chunk_number = stripe * data_disks + i;
2521         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2522
2523         check = raid5_compute_sector(conf, r_sector,
2524                                      previous, &dummy1, &sh2);
2525         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2526                 || sh2.qd_idx != sh->qd_idx) {
2527                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2528                        mdname(conf->mddev));
2529                 return 0;
2530         }
2531         return r_sector;
2532 }
2533
2534 static void
2535 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2536                          int rcw, int expand)
2537 {
2538         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2539         struct r5conf *conf = sh->raid_conf;
2540         int level = conf->level;
2541
2542         if (rcw) {
2543
2544                 for (i = disks; i--; ) {
2545                         struct r5dev *dev = &sh->dev[i];
2546
2547                         if (dev->towrite) {
2548                                 set_bit(R5_LOCKED, &dev->flags);
2549                                 set_bit(R5_Wantdrain, &dev->flags);
2550                                 if (!expand)
2551                                         clear_bit(R5_UPTODATE, &dev->flags);
2552                                 s->locked++;
2553                         }
2554                 }
2555                 /* if we are not expanding this is a proper write request, and
2556                  * there will be bios with new data to be drained into the
2557                  * stripe cache
2558                  */
2559                 if (!expand) {
2560                         if (!s->locked)
2561                                 /* False alarm, nothing to do */
2562                                 return;
2563                         sh->reconstruct_state = reconstruct_state_drain_run;
2564                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2565                 } else
2566                         sh->reconstruct_state = reconstruct_state_run;
2567
2568                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2569
2570                 if (s->locked + conf->max_degraded == disks)
2571                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2572                                 atomic_inc(&conf->pending_full_writes);
2573         } else {
2574                 BUG_ON(level == 6);
2575                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2576                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2577
2578                 for (i = disks; i--; ) {
2579                         struct r5dev *dev = &sh->dev[i];
2580                         if (i == pd_idx)
2581                                 continue;
2582
2583                         if (dev->towrite &&
2584                             (test_bit(R5_UPTODATE, &dev->flags) ||
2585                              test_bit(R5_Wantcompute, &dev->flags))) {
2586                                 set_bit(R5_Wantdrain, &dev->flags);
2587                                 set_bit(R5_LOCKED, &dev->flags);
2588                                 clear_bit(R5_UPTODATE, &dev->flags);
2589                                 s->locked++;
2590                         }
2591                 }
2592                 if (!s->locked)
2593                         /* False alarm - nothing to do */
2594                         return;
2595                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2596                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2597                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2598                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2599         }
2600
2601         /* keep the parity disk(s) locked while asynchronous operations
2602          * are in flight
2603          */
2604         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2605         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2606         s->locked++;
2607
2608         if (level == 6) {
2609                 int qd_idx = sh->qd_idx;
2610                 struct r5dev *dev = &sh->dev[qd_idx];
2611
2612                 set_bit(R5_LOCKED, &dev->flags);
2613                 clear_bit(R5_UPTODATE, &dev->flags);
2614                 s->locked++;
2615         }
2616
2617         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2618                 __func__, (unsigned long long)sh->sector,
2619                 s->locked, s->ops_request);
2620 }
2621
2622 /*
2623  * Each stripe/dev can have one or more bion attached.
2624  * toread/towrite point to the first in a chain.
2625  * The bi_next chain must be in order.
2626  */
2627 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2628 {
2629         struct bio **bip;
2630         struct r5conf *conf = sh->raid_conf;
2631         int firstwrite=0;
2632
2633         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2634                 (unsigned long long)bi->bi_iter.bi_sector,
2635                 (unsigned long long)sh->sector);
2636
2637         /*
2638          * If several bio share a stripe. The bio bi_phys_segments acts as a
2639          * reference count to avoid race. The reference count should already be
2640          * increased before this function is called (for example, in
2641          * make_request()), so other bio sharing this stripe will not free the
2642          * stripe. If a stripe is owned by one stripe, the stripe lock will
2643          * protect it.
2644          */
2645         spin_lock_irq(&sh->stripe_lock);
2646         if (forwrite) {
2647                 bip = &sh->dev[dd_idx].towrite;
2648                 if (*bip == NULL)
2649                         firstwrite = 1;
2650         } else
2651                 bip = &sh->dev[dd_idx].toread;
2652         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2653                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2654                         goto overlap;
2655                 bip = & (*bip)->bi_next;
2656         }
2657         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2658                 goto overlap;
2659
2660         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2661         if (*bip)
2662                 bi->bi_next = *bip;
2663         *bip = bi;
2664         raid5_inc_bi_active_stripes(bi);
2665
2666         if (forwrite) {
2667                 /* check if page is covered */
2668                 sector_t sector = sh->dev[dd_idx].sector;
2669                 for (bi=sh->dev[dd_idx].towrite;
2670                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2671                              bi && bi->bi_iter.bi_sector <= sector;
2672                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2673                         if (bio_end_sector(bi) >= sector)
2674                                 sector = bio_end_sector(bi);
2675                 }
2676                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2677                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2678         }
2679
2680         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2681                 (unsigned long long)(*bip)->bi_iter.bi_sector,
2682                 (unsigned long long)sh->sector, dd_idx);
2683         spin_unlock_irq(&sh->stripe_lock);
2684
2685         if (conf->mddev->bitmap && firstwrite) {
2686                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2687                                   STRIPE_SECTORS, 0);
2688                 sh->bm_seq = conf->seq_flush+1;
2689                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2690         }
2691         return 1;
2692
2693  overlap:
2694         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2695         spin_unlock_irq(&sh->stripe_lock);
2696         return 0;
2697 }
2698
2699 static void end_reshape(struct r5conf *conf);
2700
2701 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2702                             struct stripe_head *sh)
2703 {
2704         int sectors_per_chunk =
2705                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2706         int dd_idx;
2707         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2708         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2709
2710         raid5_compute_sector(conf,
2711                              stripe * (disks - conf->max_degraded)
2712                              *sectors_per_chunk + chunk_offset,
2713                              previous,
2714                              &dd_idx, sh);
2715 }
2716
2717 static void
2718 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2719                                 struct stripe_head_state *s, int disks,
2720                                 struct bio **return_bi)
2721 {
2722         int i;
2723         for (i = disks; i--; ) {
2724                 struct bio *bi;
2725                 int bitmap_end = 0;
2726
2727                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2728                         struct md_rdev *rdev;
2729                         rcu_read_lock();
2730                         rdev = rcu_dereference(conf->disks[i].rdev);
2731                         if (rdev && test_bit(In_sync, &rdev->flags))
2732                                 atomic_inc(&rdev->nr_pending);
2733                         else
2734                                 rdev = NULL;
2735                         rcu_read_unlock();
2736                         if (rdev) {
2737                                 if (!rdev_set_badblocks(
2738                                             rdev,
2739                                             sh->sector,
2740                                             STRIPE_SECTORS, 0))
2741                                         md_error(conf->mddev, rdev);
2742                                 rdev_dec_pending(rdev, conf->mddev);
2743                         }
2744                 }
2745                 spin_lock_irq(&sh->stripe_lock);
2746                 /* fail all writes first */
2747                 bi = sh->dev[i].towrite;
2748                 sh->dev[i].towrite = NULL;
2749                 spin_unlock_irq(&sh->stripe_lock);
2750                 if (bi)
2751                         bitmap_end = 1;
2752
2753                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2754                         wake_up(&conf->wait_for_overlap);
2755
2756                 while (bi && bi->bi_iter.bi_sector <
2757                         sh->dev[i].sector + STRIPE_SECTORS) {
2758                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2759                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2760                         if (!raid5_dec_bi_active_stripes(bi)) {
2761                                 md_write_end(conf->mddev);
2762                                 bi->bi_next = *return_bi;
2763                                 *return_bi = bi;
2764                         }
2765                         bi = nextbi;
2766                 }
2767                 if (bitmap_end)
2768                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2769                                 STRIPE_SECTORS, 0, 0);
2770                 bitmap_end = 0;
2771                 /* and fail all 'written' */
2772                 bi = sh->dev[i].written;
2773                 sh->dev[i].written = NULL;
2774                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
2775                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
2776                         sh->dev[i].page = sh->dev[i].orig_page;
2777                 }
2778
2779                 if (bi) bitmap_end = 1;
2780                 while (bi && bi->bi_iter.bi_sector <
2781                        sh->dev[i].sector + STRIPE_SECTORS) {
2782                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2783                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2784                         if (!raid5_dec_bi_active_stripes(bi)) {
2785                                 md_write_end(conf->mddev);
2786                                 bi->bi_next = *return_bi;
2787                                 *return_bi = bi;
2788                         }
2789                         bi = bi2;
2790                 }
2791
2792                 /* fail any reads if this device is non-operational and
2793                  * the data has not reached the cache yet.
2794                  */
2795                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2796                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2797                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2798                         spin_lock_irq(&sh->stripe_lock);
2799                         bi = sh->dev[i].toread;
2800                         sh->dev[i].toread = NULL;
2801                         spin_unlock_irq(&sh->stripe_lock);
2802                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2803                                 wake_up(&conf->wait_for_overlap);
2804                         while (bi && bi->bi_iter.bi_sector <
2805                                sh->dev[i].sector + STRIPE_SECTORS) {
2806                                 struct bio *nextbi =
2807                                         r5_next_bio(bi, sh->dev[i].sector);
2808                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2809                                 if (!raid5_dec_bi_active_stripes(bi)) {
2810                                         bi->bi_next = *return_bi;
2811                                         *return_bi = bi;
2812                                 }
2813                                 bi = nextbi;
2814                         }
2815                 }
2816                 if (bitmap_end)
2817                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2818                                         STRIPE_SECTORS, 0, 0);
2819                 /* If we were in the middle of a write the parity block might
2820                  * still be locked - so just clear all R5_LOCKED flags
2821                  */
2822                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2823         }
2824
2825         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2826                 if (atomic_dec_and_test(&conf->pending_full_writes))
2827                         md_wakeup_thread(conf->mddev->thread);
2828 }
2829
2830 static void
2831 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2832                    struct stripe_head_state *s)
2833 {
2834         int abort = 0;
2835         int i;
2836
2837         clear_bit(STRIPE_SYNCING, &sh->state);
2838         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2839                 wake_up(&conf->wait_for_overlap);
2840         s->syncing = 0;
2841         s->replacing = 0;
2842         /* There is nothing more to do for sync/check/repair.
2843          * Don't even need to abort as that is handled elsewhere
2844          * if needed, and not always wanted e.g. if there is a known
2845          * bad block here.
2846          * For recover/replace we need to record a bad block on all
2847          * non-sync devices, or abort the recovery
2848          */
2849         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2850                 /* During recovery devices cannot be removed, so
2851                  * locking and refcounting of rdevs is not needed
2852                  */
2853                 for (i = 0; i < conf->raid_disks; i++) {
2854                         struct md_rdev *rdev = conf->disks[i].rdev;
2855                         if (rdev
2856                             && !test_bit(Faulty, &rdev->flags)
2857                             && !test_bit(In_sync, &rdev->flags)
2858                             && !rdev_set_badblocks(rdev, sh->sector,
2859                                                    STRIPE_SECTORS, 0))
2860                                 abort = 1;
2861                         rdev = conf->disks[i].replacement;
2862                         if (rdev
2863                             && !test_bit(Faulty, &rdev->flags)
2864                             && !test_bit(In_sync, &rdev->flags)
2865                             && !rdev_set_badblocks(rdev, sh->sector,
2866                                                    STRIPE_SECTORS, 0))
2867                                 abort = 1;
2868                 }
2869                 if (abort)
2870                         conf->recovery_disabled =
2871                                 conf->mddev->recovery_disabled;
2872         }
2873         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2874 }
2875
2876 static int want_replace(struct stripe_head *sh, int disk_idx)
2877 {
2878         struct md_rdev *rdev;
2879         int rv = 0;
2880         /* Doing recovery so rcu locking not required */
2881         rdev = sh->raid_conf->disks[disk_idx].replacement;
2882         if (rdev
2883             && !test_bit(Faulty, &rdev->flags)
2884             && !test_bit(In_sync, &rdev->flags)
2885             && (rdev->recovery_offset <= sh->sector
2886                 || rdev->mddev->recovery_cp <= sh->sector))
2887                 rv = 1;
2888
2889         return rv;
2890 }
2891
2892 /* fetch_block - checks the given member device to see if its data needs
2893  * to be read or computed to satisfy a request.
2894  *
2895  * Returns 1 when no more member devices need to be checked, otherwise returns
2896  * 0 to tell the loop in handle_stripe_fill to continue
2897  */
2898
2899 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
2900                            int disk_idx, int disks)
2901 {
2902         struct r5dev *dev = &sh->dev[disk_idx];
2903         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2904                                   &sh->dev[s->failed_num[1]] };
2905         int i;
2906
2907
2908         if (test_bit(R5_LOCKED, &dev->flags) ||
2909             test_bit(R5_UPTODATE, &dev->flags))
2910                 /* No point reading this as we already have it or have
2911                  * decided to get it.
2912                  */
2913                 return 0;
2914
2915         if (dev->toread ||
2916             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
2917                 /* We need this block to directly satisfy a request */
2918                 return 1;
2919
2920         if (s->syncing || s->expanding ||
2921             (s->replacing && want_replace(sh, disk_idx)))
2922                 /* When syncing, or expanding we read everything.
2923                  * When replacing, we need the replaced block.
2924                  */
2925                 return 1;
2926
2927         if ((s->failed >= 1 && fdev[0]->toread) ||
2928             (s->failed >= 2 && fdev[1]->toread))
2929                 /* If we want to read from a failed device, then
2930                  * we need to actually read every other device.
2931                  */
2932                 return 1;
2933
2934         /* Sometimes neither read-modify-write nor reconstruct-write
2935          * cycles can work.  In those cases we read every block we
2936          * can.  Then the parity-update is certain to have enough to
2937          * work with.
2938          * This can only be a problem when we need to write something,
2939          * and some device has failed.  If either of those tests
2940          * fail we need look no further.
2941          */
2942         if (!s->failed || !s->to_write)
2943                 return 0;
2944
2945         if (test_bit(R5_Insync, &dev->flags) &&
2946             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2947                 /* Pre-reads at not permitted until after short delay
2948                  * to gather multiple requests.  However if this
2949                  * device is no Insync, the block could only be be computed
2950                  * and there is no need to delay that.
2951                  */
2952                 return 0;
2953
2954         for (i = 0; i < s->failed; i++) {
2955                 if (fdev[i]->towrite &&
2956                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
2957                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
2958                         /* If we have a partial write to a failed
2959                          * device, then we will need to reconstruct
2960                          * the content of that device, so all other
2961                          * devices must be read.
2962                          */
2963                         return 1;
2964         }
2965
2966         /* If we are forced to do a reconstruct-write, either because
2967          * the current RAID6 implementation only supports that, or
2968          * or because parity cannot be trusted and we are currently
2969          * recovering it, there is extra need to be careful.
2970          * If one of the devices that we would need to read, because
2971          * it is not being overwritten (and maybe not written at all)
2972          * is missing/faulty, then we need to read everything we can.
2973          */
2974         if (sh->raid_conf->level != 6 &&
2975             sh->sector < sh->raid_conf->mddev->recovery_cp)
2976                 /* reconstruct-write isn't being forced */
2977                 return 0;
2978         for (i = 0; i < s->failed; i++) {
2979                 if (!test_bit(R5_UPTODATE, &fdev[i]->flags) &&
2980                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
2981                         return 1;
2982         }
2983
2984         return 0;
2985 }
2986
2987 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2988                        int disk_idx, int disks)
2989 {
2990         struct r5dev *dev = &sh->dev[disk_idx];
2991
2992         /* is the data in this block needed, and can we get it? */
2993         if (need_this_block(sh, s, disk_idx, disks)) {
2994                 /* we would like to get this block, possibly by computing it,
2995                  * otherwise read it if the backing disk is insync
2996                  */
2997                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2998                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2999                 if ((s->uptodate == disks - 1) &&
3000                     (s->failed && (disk_idx == s->failed_num[0] ||
3001                                    disk_idx == s->failed_num[1]))) {
3002                         /* have disk failed, and we're requested to fetch it;
3003                          * do compute it
3004                          */
3005                         pr_debug("Computing stripe %llu block %d\n",
3006                                (unsigned long long)sh->sector, disk_idx);
3007                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3008                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3009                         set_bit(R5_Wantcompute, &dev->flags);
3010                         sh->ops.target = disk_idx;
3011                         sh->ops.target2 = -1; /* no 2nd target */
3012                         s->req_compute = 1;
3013                         /* Careful: from this point on 'uptodate' is in the eye
3014                          * of raid_run_ops which services 'compute' operations
3015                          * before writes. R5_Wantcompute flags a block that will
3016                          * be R5_UPTODATE by the time it is needed for a
3017                          * subsequent operation.
3018                          */
3019                         s->uptodate++;
3020                         return 1;
3021                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3022                         /* Computing 2-failure is *very* expensive; only
3023                          * do it if failed >= 2
3024                          */
3025                         int other;
3026                         for (other = disks; other--; ) {
3027                                 if (other == disk_idx)
3028                                         continue;
3029                                 if (!test_bit(R5_UPTODATE,
3030                                       &sh->dev[other].flags))
3031                                         break;
3032                         }
3033                         BUG_ON(other < 0);
3034                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3035                                (unsigned long long)sh->sector,
3036                                disk_idx, other);
3037                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3038                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3039                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3040                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3041                         sh->ops.target = disk_idx;
3042                         sh->ops.target2 = other;
3043                         s->uptodate += 2;
3044                         s->req_compute = 1;
3045                         return 1;
3046                 } else if (test_bit(R5_Insync, &dev->flags)) {
3047                         set_bit(R5_LOCKED, &dev->flags);
3048                         set_bit(R5_Wantread, &dev->flags);
3049                         s->locked++;
3050                         pr_debug("Reading block %d (sync=%d)\n",
3051                                 disk_idx, s->syncing);
3052                 }
3053         }
3054
3055         return 0;
3056 }
3057
3058 /**
3059  * handle_stripe_fill - read or compute data to satisfy pending requests.
3060  */
3061 static void handle_stripe_fill(struct stripe_head *sh,
3062                                struct stripe_head_state *s,
3063                                int disks)
3064 {
3065         int i;
3066
3067         /* look for blocks to read/compute, skip this if a compute
3068          * is already in flight, or if the stripe contents are in the
3069          * midst of changing due to a write
3070          */
3071         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3072             !sh->reconstruct_state)
3073                 for (i = disks; i--; )
3074                         if (fetch_block(sh, s, i, disks))
3075                                 break;
3076         set_bit(STRIPE_HANDLE, &sh->state);
3077 }
3078
3079 /* handle_stripe_clean_event
3080  * any written block on an uptodate or failed drive can be returned.
3081  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3082  * never LOCKED, so we don't need to test 'failed' directly.
3083  */
3084 static void handle_stripe_clean_event(struct r5conf *conf,
3085         struct stripe_head *sh, int disks, struct bio **return_bi)
3086 {
3087         int i;
3088         struct r5dev *dev;
3089         int discard_pending = 0;
3090
3091         for (i = disks; i--; )
3092                 if (sh->dev[i].written) {
3093                         dev = &sh->dev[i];
3094                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3095                             (test_bit(R5_UPTODATE, &dev->flags) ||
3096                              test_bit(R5_Discard, &dev->flags) ||
3097                              test_bit(R5_SkipCopy, &dev->flags))) {
3098                                 /* We can return any write requests */
3099                                 struct bio *wbi, *wbi2;
3100                                 pr_debug("Return write for disc %d\n", i);
3101                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3102                                         clear_bit(R5_UPTODATE, &dev->flags);
3103                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3104                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3105                                         dev->page = dev->orig_page;
3106                                 }
3107                                 wbi = dev->written;
3108                                 dev->written = NULL;
3109                                 while (wbi && wbi->bi_iter.bi_sector <
3110                                         dev->sector + STRIPE_SECTORS) {
3111                                         wbi2 = r5_next_bio(wbi, dev->sector);
3112                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3113                                                 md_write_end(conf->mddev);
3114                                                 wbi->bi_next = *return_bi;
3115                                                 *return_bi = wbi;
3116                                         }
3117                                         wbi = wbi2;
3118                                 }
3119                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3120                                                 STRIPE_SECTORS,
3121                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3122                                                 0);
3123                         } else if (test_bit(R5_Discard, &dev->flags))
3124                                 discard_pending = 1;
3125                         WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3126                         WARN_ON(dev->page != dev->orig_page);
3127                 }
3128         if (!discard_pending &&
3129             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3130                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3131                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3132                 if (sh->qd_idx >= 0) {
3133                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3134                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3135                 }
3136                 /* now that discard is done we can proceed with any sync */
3137                 clear_bit(STRIPE_DISCARD, &sh->state);
3138                 /*
3139                  * SCSI discard will change some bio fields and the stripe has
3140                  * no updated data, so remove it from hash list and the stripe
3141                  * will be reinitialized
3142                  */
3143                 spin_lock_irq(&conf->device_lock);
3144                 remove_hash(sh);
3145                 spin_unlock_irq(&conf->device_lock);
3146                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3147                         set_bit(STRIPE_HANDLE, &sh->state);
3148
3149         }
3150
3151         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3152                 if (atomic_dec_and_test(&conf->pending_full_writes))
3153                         md_wakeup_thread(conf->mddev->thread);
3154 }
3155
3156 static void handle_stripe_dirtying(struct r5conf *conf,
3157                                    struct stripe_head *sh,
3158                                    struct stripe_head_state *s,
3159                                    int disks)
3160 {
3161         int rmw = 0, rcw = 0, i;
3162         sector_t recovery_cp = conf->mddev->recovery_cp;
3163
3164         /* RAID6 requires 'rcw' in current implementation.
3165          * Otherwise, check whether resync is now happening or should start.
3166          * If yes, then the array is dirty (after unclean shutdown or
3167          * initial creation), so parity in some stripes might be inconsistent.
3168          * In this case, we need to always do reconstruct-write, to ensure
3169          * that in case of drive failure or read-error correction, we
3170          * generate correct data from the parity.
3171          */
3172         if (conf->max_degraded == 2 ||
3173             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3174              s->failed == 0)) {
3175                 /* Calculate the real rcw later - for now make it
3176                  * look like rcw is cheaper
3177                  */
3178                 rcw = 1; rmw = 2;
3179                 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3180                          conf->max_degraded, (unsigned long long)recovery_cp,
3181                          (unsigned long long)sh->sector);
3182         } else for (i = disks; i--; ) {
3183                 /* would I have to read this buffer for read_modify_write */
3184                 struct r5dev *dev = &sh->dev[i];
3185                 if ((dev->towrite || i == sh->pd_idx) &&
3186                     !test_bit(R5_LOCKED, &dev->flags) &&
3187                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3188                       test_bit(R5_Wantcompute, &dev->flags))) {
3189                         if (test_bit(R5_Insync, &dev->flags))
3190                                 rmw++;
3191                         else
3192                                 rmw += 2*disks;  /* cannot read it */
3193                 }
3194                 /* Would I have to read this buffer for reconstruct_write */
3195                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3196                     !test_bit(R5_LOCKED, &dev->flags) &&
3197                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3198                     test_bit(R5_Wantcompute, &dev->flags))) {
3199                         if (test_bit(R5_Insync, &dev->flags))
3200                                 rcw++;
3201                         else
3202                                 rcw += 2*disks;
3203                 }
3204         }
3205         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3206                 (unsigned long long)sh->sector, rmw, rcw);
3207         set_bit(STRIPE_HANDLE, &sh->state);
3208         if (rmw < rcw && rmw > 0) {
3209                 /* prefer read-modify-write, but need to get some data */
3210                 if (conf->mddev->queue)
3211                         blk_add_trace_msg(conf->mddev->queue,
3212                                           "raid5 rmw %llu %d",
3213                                           (unsigned long long)sh->sector, rmw);
3214                 for (i = disks; i--; ) {
3215                         struct r5dev *dev = &sh->dev[i];
3216                         if ((dev->towrite || i == sh->pd_idx) &&
3217                             !test_bit(R5_LOCKED, &dev->flags) &&
3218                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3219                             test_bit(R5_Wantcompute, &dev->flags)) &&
3220                             test_bit(R5_Insync, &dev->flags)) {
3221                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3222                                              &sh->state)) {
3223                                         pr_debug("Read_old block %d for r-m-w\n",
3224                                                  i);
3225                                         set_bit(R5_LOCKED, &dev->flags);
3226                                         set_bit(R5_Wantread, &dev->flags);
3227                                         s->locked++;
3228                                 } else {
3229                                         set_bit(STRIPE_DELAYED, &sh->state);
3230                                         set_bit(STRIPE_HANDLE, &sh->state);
3231                                 }
3232                         }
3233                 }
3234         }
3235         if (rcw <= rmw && rcw > 0) {
3236                 /* want reconstruct write, but need to get some data */
3237                 int qread =0;
3238                 rcw = 0;
3239                 for (i = disks; i--; ) {
3240                         struct r5dev *dev = &sh->dev[i];
3241                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3242                             i != sh->pd_idx && i != sh->qd_idx &&
3243                             !test_bit(R5_LOCKED, &dev->flags) &&
3244                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3245                               test_bit(R5_Wantcompute, &dev->flags))) {
3246                                 rcw++;
3247                                 if (test_bit(R5_Insync, &dev->flags) &&
3248                                     test_bit(STRIPE_PREREAD_ACTIVE,
3249                                              &sh->state)) {
3250                                         pr_debug("Read_old block "
3251                                                 "%d for Reconstruct\n", i);
3252                                         set_bit(R5_LOCKED, &dev->flags);
3253                                         set_bit(R5_Wantread, &dev->flags);
3254                                         s->locked++;
3255                                         qread++;
3256                                 } else {
3257                                         set_bit(STRIPE_DELAYED, &sh->state);
3258                                         set_bit(STRIPE_HANDLE, &sh->state);
3259                                 }
3260                         }
3261                 }
3262                 if (rcw && conf->mddev->queue)
3263                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3264                                           (unsigned long long)sh->sector,
3265                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3266         }
3267
3268         if (rcw > disks && rmw > disks &&
3269             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3270                 set_bit(STRIPE_DELAYED, &sh->state);
3271
3272         /* now if nothing is locked, and if we have enough data,
3273          * we can start a write request
3274          */
3275         /* since handle_stripe can be called at any time we need to handle the
3276          * case where a compute block operation has been submitted and then a
3277          * subsequent call wants to start a write request.  raid_run_ops only
3278          * handles the case where compute block and reconstruct are requested
3279          * simultaneously.  If this is not the case then new writes need to be
3280          * held off until the compute completes.
3281          */
3282         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3283             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3284             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3285                 schedule_reconstruction(sh, s, rcw == 0, 0);
3286 }
3287
3288 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3289                                 struct stripe_head_state *s, int disks)
3290 {
3291         struct r5dev *dev = NULL;
3292
3293         set_bit(STRIPE_HANDLE, &sh->state);
3294
3295         switch (sh->check_state) {
3296         case check_state_idle:
3297                 /* start a new check operation if there are no failures */
3298                 if (s->failed == 0) {
3299                         BUG_ON(s->uptodate != disks);
3300                         sh->check_state = check_state_run;
3301                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3302                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3303                         s->uptodate--;
3304                         break;
3305                 }
3306                 dev = &sh->dev[s->failed_num[0]];
3307                 /* fall through */
3308         case check_state_compute_result:
3309                 sh->check_state = check_state_idle;
3310                 if (!dev)
3311                         dev = &sh->dev[sh->pd_idx];
3312
3313                 /* check that a write has not made the stripe insync */
3314                 if (test_bit(STRIPE_INSYNC, &sh->state))
3315                         break;
3316
3317                 /* either failed parity check, or recovery is happening */
3318                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3319                 BUG_ON(s->uptodate != disks);
3320
3321                 set_bit(R5_LOCKED, &dev->flags);
3322                 s->locked++;
3323                 set_bit(R5_Wantwrite, &dev->flags);
3324
3325                 clear_bit(STRIPE_DEGRADED, &sh->state);
3326                 set_bit(STRIPE_INSYNC, &sh->state);
3327                 break;
3328         case check_state_run:
3329                 break; /* we will be called again upon completion */
3330         case check_state_check_result:
3331                 sh->check_state = check_state_idle;
3332
3333                 /* if a failure occurred during the check operation, leave
3334                  * STRIPE_INSYNC not set and let the stripe be handled again
3335                  */
3336                 if (s->failed)
3337                         break;
3338
3339                 /* handle a successful check operation, if parity is correct
3340                  * we are done.  Otherwise update the mismatch count and repair
3341                  * parity if !MD_RECOVERY_CHECK
3342                  */
3343                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3344                         /* parity is correct (on disc,
3345                          * not in buffer any more)
3346                          */
3347                         set_bit(STRIPE_INSYNC, &sh->state);
3348                 else {
3349                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3350                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3351                                 /* don't try to repair!! */
3352                                 set_bit(STRIPE_INSYNC, &sh->state);
3353                         else {
3354                                 sh->check_state = check_state_compute_run;
3355                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3356                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3357                                 set_bit(R5_Wantcompute,
3358                                         &sh->dev[sh->pd_idx].flags);
3359                                 sh->ops.target = sh->pd_idx;
3360                                 sh->ops.target2 = -1;
3361                                 s->uptodate++;
3362                         }
3363                 }
3364                 break;
3365         case check_state_compute_run:
3366                 break;
3367         default:
3368                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3369                        __func__, sh->check_state,
3370                        (unsigned long long) sh->sector);
3371                 BUG();
3372         }
3373 }
3374
3375 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3376                                   struct stripe_head_state *s,
3377                                   int disks)
3378 {
3379         int pd_idx = sh->pd_idx;
3380         int qd_idx = sh->qd_idx;
3381         struct r5dev *dev;
3382
3383         set_bit(STRIPE_HANDLE, &sh->state);
3384
3385         BUG_ON(s->failed > 2);
3386
3387         /* Want to check and possibly repair P and Q.
3388          * However there could be one 'failed' device, in which
3389          * case we can only check one of them, possibly using the
3390          * other to generate missing data
3391          */
3392
3393         switch (sh->check_state) {
3394         case check_state_idle:
3395                 /* start a new check operation if there are < 2 failures */
3396                 if (s->failed == s->q_failed) {
3397                         /* The only possible failed device holds Q, so it
3398                          * makes sense to check P (If anything else were failed,
3399                          * we would have used P to recreate it).
3400                          */
3401                         sh->check_state = check_state_run;
3402                 }
3403                 if (!s->q_failed && s->failed < 2) {
3404                         /* Q is not failed, and we didn't use it to generate
3405                          * anything, so it makes sense to check it
3406                          */
3407                         if (sh->check_state == check_state_run)
3408                                 sh->check_state = check_state_run_pq;
3409                         else
3410                                 sh->check_state = check_state_run_q;
3411                 }
3412
3413                 /* discard potentially stale zero_sum_result */
3414                 sh->ops.zero_sum_result = 0;
3415
3416                 if (sh->check_state == check_state_run) {
3417                         /* async_xor_zero_sum destroys the contents of P */
3418                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3419                         s->uptodate--;
3420                 }
3421                 if (sh->check_state >= check_state_run &&
3422                     sh->check_state <= check_state_run_pq) {
3423                         /* async_syndrome_zero_sum preserves P and Q, so
3424                          * no need to mark them !uptodate here
3425                          */
3426                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3427                         break;
3428                 }
3429
3430                 /* we have 2-disk failure */
3431                 BUG_ON(s->failed != 2);
3432                 /* fall through */
3433         case check_state_compute_result:
3434                 sh->check_state = check_state_idle;
3435
3436                 /* check that a write has not made the stripe insync */
3437                 if (test_bit(STRIPE_INSYNC, &sh->state))
3438                         break;
3439
3440                 /* now write out any block on a failed drive,
3441                  * or P or Q if they were recomputed
3442                  */
3443                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3444                 if (s->failed == 2) {
3445                         dev = &sh->dev[s->failed_num[1]];
3446                         s->locked++;
3447                         set_bit(R5_LOCKED, &dev->flags);
3448                         set_bit(R5_Wantwrite, &dev->flags);
3449                 }
3450                 if (s->failed >= 1) {
3451                         dev = &sh->dev[s->failed_num[0]];
3452                         s->locked++;
3453                         set_bit(R5_LOCKED, &dev->flags);
3454                         set_bit(R5_Wantwrite, &dev->flags);
3455                 }
3456                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3457                         dev = &sh->dev[pd_idx];
3458                         s->locked++;
3459                         set_bit(R5_LOCKED, &dev->flags);
3460                         set_bit(R5_Wantwrite, &dev->flags);
3461                 }
3462                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3463                         dev = &sh->dev[qd_idx];
3464                         s->locked++;
3465                         set_bit(R5_LOCKED, &dev->flags);
3466                         set_bit(R5_Wantwrite, &dev->flags);
3467                 }
3468                 clear_bit(STRIPE_DEGRADED, &sh->state);
3469
3470                 set_bit(STRIPE_INSYNC, &sh->state);
3471                 break;
3472         case check_state_run:
3473         case check_state_run_q:
3474         case check_state_run_pq:
3475                 break; /* we will be called again upon completion */
3476         case check_state_check_result:
3477                 sh->check_state = check_state_idle;
3478
3479                 /* handle a successful check operation, if parity is correct
3480                  * we are done.  Otherwise update the mismatch count and repair
3481                  * parity if !MD_RECOVERY_CHECK
3482                  */
3483                 if (sh->ops.zero_sum_result == 0) {
3484                         /* both parities are correct */
3485                         if (!s->failed)
3486                                 set_bit(STRIPE_INSYNC, &sh->state);
3487                         else {
3488                                 /* in contrast to the raid5 case we can validate
3489                                  * parity, but still have a failure to write
3490                                  * back
3491                                  */
3492                                 sh->check_state = check_state_compute_result;
3493                                 /* Returning at this point means that we may go
3494                                  * off and bring p and/or q uptodate again so
3495                                  * we make sure to check zero_sum_result again
3496                                  * to verify if p or q need writeback
3497                                  */
3498                         }
3499                 } else {
3500                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3501                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3502                                 /* don't try to repair!! */
3503                                 set_bit(STRIPE_INSYNC, &sh->state);
3504                         else {
3505                                 int *target = &sh->ops.target;
3506
3507                                 sh->ops.target = -1;
3508                                 sh->ops.target2 = -1;
3509                                 sh->check_state = check_state_compute_run;
3510                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3511                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3512                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3513                                         set_bit(R5_Wantcompute,
3514                                                 &sh->dev[pd_idx].flags);
3515                                         *target = pd_idx;
3516                                         target = &sh->ops.target2;
3517                                         s->uptodate++;
3518                                 }
3519                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3520                                         set_bit(R5_Wantcompute,
3521                                                 &sh->dev[qd_idx].flags);
3522                                         *target = qd_idx;
3523                                         s->uptodate++;
3524                                 }
3525                         }
3526                 }
3527                 break;
3528         case check_state_compute_run:
3529                 break;
3530         default:
3531                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3532                        __func__, sh->check_state,
3533                        (unsigned long long) sh->sector);
3534                 BUG();
3535         }
3536 }
3537
3538 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3539 {
3540         int i;
3541
3542         /* We have read all the blocks in this stripe and now we need to
3543          * copy some of them into a target stripe for expand.
3544          */
3545         struct dma_async_tx_descriptor *tx = NULL;
3546         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3547         for (i = 0; i < sh->disks; i++)
3548                 if (i != sh->pd_idx && i != sh->qd_idx) {
3549                         int dd_idx, j;
3550                         struct stripe_head *sh2;
3551                         struct async_submit_ctl submit;
3552
3553                         sector_t bn = compute_blocknr(sh, i, 1);
3554                         sector_t s = raid5_compute_sector(conf, bn, 0,
3555                                                           &dd_idx, NULL);
3556                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3557                         if (sh2 == NULL)
3558                                 /* so far only the early blocks of this stripe
3559                                  * have been requested.  When later blocks
3560                                  * get requested, we will try again
3561                                  */
3562                                 continue;
3563                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3564                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3565                                 /* must have already done this block */
3566                                 release_stripe(sh2);
3567                                 continue;
3568                         }
3569
3570                         /* place all the copies on one channel */
3571                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3572                         tx = async_memcpy(sh2->dev[dd_idx].page,
3573                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3574                                           &submit);
3575
3576                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3577                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3578                         for (j = 0; j < conf->raid_disks; j++)
3579                                 if (j != sh2->pd_idx &&
3580                                     j != sh2->qd_idx &&
3581                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3582                                         break;
3583                         if (j == conf->raid_disks) {
3584                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3585                                 set_bit(STRIPE_HANDLE, &sh2->state);
3586                         }
3587                         release_stripe(sh2);
3588
3589                 }
3590         /* done submitting copies, wait for them to complete */
3591         async_tx_quiesce(&tx);
3592 }
3593
3594 /*
3595  * handle_stripe - do things to a stripe.
3596  *
3597  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3598  * state of various bits to see what needs to be done.
3599  * Possible results:
3600  *    return some read requests which now have data
3601  *    return some write requests which are safely on storage
3602  *    schedule a read on some buffers
3603  *    schedule a write of some buffers
3604  *    return confirmation of parity correctness
3605  *
3606  */
3607
3608 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3609 {
3610         struct r5conf *conf = sh->raid_conf;
3611         int disks = sh->disks;
3612         struct r5dev *dev;
3613         int i;
3614         int do_recovery = 0;
3615
3616         memset(s, 0, sizeof(*s));
3617
3618         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3619         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3620         s->failed_num[0] = -1;
3621         s->failed_num[1] = -1;
3622
3623         /* Now to look around and see what can be done */
3624         rcu_read_lock();
3625         for (i=disks; i--; ) {
3626                 struct md_rdev *rdev;
3627                 sector_t first_bad;
3628                 int bad_sectors;
3629                 int is_bad = 0;
3630
3631                 dev = &sh->dev[i];
3632
3633                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3634                          i, dev->flags,
3635                          dev->toread, dev->towrite, dev->written);
3636                 /* maybe we can reply to a read
3637                  *
3638                  * new wantfill requests are only permitted while
3639                  * ops_complete_biofill is guaranteed to be inactive
3640                  */
3641                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3642                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3643                         set_bit(R5_Wantfill, &dev->flags);
3644
3645                 /* now count some things */
3646                 if (test_bit(R5_LOCKED, &dev->flags))
3647                         s->locked++;
3648                 if (test_bit(R5_UPTODATE, &dev->flags))
3649                         s->uptodate++;
3650                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3651                         s->compute++;
3652                         BUG_ON(s->compute > 2);
3653                 }
3654
3655                 if (test_bit(R5_Wantfill, &dev->flags))
3656                         s->to_fill++;
3657                 else if (dev->toread)
3658                         s->to_read++;
3659                 if (dev->towrite) {
3660                         s->to_write++;
3661                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3662                                 s->non_overwrite++;
3663                 }
3664                 if (dev->written)
3665                         s->written++;
3666                 /* Prefer to use the replacement for reads, but only
3667                  * if it is recovered enough and has no bad blocks.
3668                  */
3669                 rdev = rcu_dereference(conf->disks[i].replacement);
3670                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3671                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3672                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3673                                  &first_bad, &bad_sectors))
3674                         set_bit(R5_ReadRepl, &dev->flags);
3675                 else {
3676                         if (rdev)
3677                                 set_bit(R5_NeedReplace, &dev->flags);
3678                         rdev = rcu_dereference(conf->disks[i].rdev);
3679                         clear_bit(R5_ReadRepl, &dev->flags);
3680                 }
3681                 if (rdev && test_bit(Faulty, &rdev->flags))
3682                         rdev = NULL;
3683                 if (rdev) {
3684                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3685                                              &first_bad, &bad_sectors);
3686                         if (s->blocked_rdev == NULL
3687                             && (test_bit(Blocked, &rdev->flags)
3688                                 || is_bad < 0)) {
3689                                 if (is_bad < 0)
3690                                         set_bit(BlockedBadBlocks,
3691                                                 &rdev->flags);
3692                                 s->blocked_rdev = rdev;
3693                                 atomic_inc(&rdev->nr_pending);
3694                         }
3695                 }
3696                 clear_bit(R5_Insync, &dev->flags);
3697                 if (!rdev)
3698                         /* Not in-sync */;
3699                 else if (is_bad) {
3700                         /* also not in-sync */
3701                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3702                             test_bit(R5_UPTODATE, &dev->flags)) {
3703                                 /* treat as in-sync, but with a read error
3704                                  * which we can now try to correct
3705                                  */
3706                                 set_bit(R5_Insync, &dev->flags);
3707                                 set_bit(R5_ReadError, &dev->flags);
3708                         }
3709                 } else if (test_bit(In_sync, &rdev->flags))
3710                         set_bit(R5_Insync, &dev->flags);
3711                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3712                         /* in sync if before recovery_offset */
3713                         set_bit(R5_Insync, &dev->flags);
3714                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3715                          test_bit(R5_Expanded, &dev->flags))
3716                         /* If we've reshaped into here, we assume it is Insync.
3717                          * We will shortly update recovery_offset to make
3718                          * it official.
3719                          */
3720                         set_bit(R5_Insync, &dev->flags);
3721
3722                 if (test_bit(R5_WriteError, &dev->flags)) {
3723                         /* This flag does not apply to '.replacement'
3724                          * only to .rdev, so make sure to check that*/
3725                         struct md_rdev *rdev2 = rcu_dereference(
3726                                 conf->disks[i].rdev);
3727                         if (rdev2 == rdev)
3728                                 clear_bit(R5_Insync, &dev->flags);
3729                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3730                                 s->handle_bad_blocks = 1;
3731                                 atomic_inc(&rdev2->nr_pending);
3732                         } else
3733                                 clear_bit(R5_WriteError, &dev->flags);
3734                 }
3735                 if (test_bit(R5_MadeGood, &dev->flags)) {
3736                         /* This flag does not apply to '.replacement'
3737                          * only to .rdev, so make sure to check that*/
3738                         struct md_rdev *rdev2 = rcu_dereference(
3739                                 conf->disks[i].rdev);
3740                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3741                                 s->handle_bad_blocks = 1;
3742                                 atomic_inc(&rdev2->nr_pending);
3743                         } else
3744                                 clear_bit(R5_MadeGood, &dev->flags);
3745                 }
3746                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3747                         struct md_rdev *rdev2 = rcu_dereference(
3748                                 conf->disks[i].replacement);
3749                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3750                                 s->handle_bad_blocks = 1;
3751                                 atomic_inc(&rdev2->nr_pending);
3752                         } else
3753                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3754                 }
3755                 if (!test_bit(R5_Insync, &dev->flags)) {
3756                         /* The ReadError flag will just be confusing now */
3757                         clear_bit(R5_ReadError, &dev->flags);
3758                         clear_bit(R5_ReWrite, &dev->flags);
3759                 }
3760                 if (test_bit(R5_ReadError, &dev->flags))
3761                         clear_bit(R5_Insync, &dev->flags);
3762                 if (!test_bit(R5_Insync, &dev->flags)) {
3763                         if (s->failed < 2)
3764                                 s->failed_num[s->failed] = i;
3765                         s->failed++;
3766                         if (rdev && !test_bit(Faulty, &rdev->flags))
3767                                 do_recovery = 1;
3768                 }
3769         }
3770         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3771                 /* If there is a failed device being replaced,
3772                  *     we must be recovering.
3773                  * else if we are after recovery_cp, we must be syncing
3774                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3775                  * else we can only be replacing
3776                  * sync and recovery both need to read all devices, and so
3777                  * use the same flag.
3778                  */
3779                 if (do_recovery ||
3780                     sh->sector >= conf->mddev->recovery_cp ||
3781                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3782                         s->syncing = 1;
3783                 else
3784                         s->replacing = 1;
3785         }
3786         rcu_read_unlock();
3787 }
3788
3789 static void handle_stripe(struct stripe_head *sh)
3790 {
3791         struct stripe_head_state s;
3792         struct r5conf *conf = sh->raid_conf;
3793         int i;
3794         int prexor;
3795         int disks = sh->disks;
3796         struct r5dev *pdev, *qdev;
3797
3798         clear_bit(STRIPE_HANDLE, &sh->state);
3799         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3800                 /* already being handled, ensure it gets handled
3801                  * again when current action finishes */
3802                 set_bit(STRIPE_HANDLE, &sh->state);
3803                 return;
3804         }
3805
3806         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3807                 spin_lock(&sh->stripe_lock);
3808                 /* Cannot process 'sync' concurrently with 'discard' */
3809                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3810                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3811                         set_bit(STRIPE_SYNCING, &sh->state);
3812                         clear_bit(STRIPE_INSYNC, &sh->state);
3813                         clear_bit(STRIPE_REPLACED, &sh->state);
3814                 }
3815                 spin_unlock(&sh->stripe_lock);
3816         }
3817         clear_bit(STRIPE_DELAYED, &sh->state);
3818
3819         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3820                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3821                (unsigned long long)sh->sector, sh->state,
3822                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3823                sh->check_state, sh->reconstruct_state);
3824
3825         analyse_stripe(sh, &s);
3826
3827         if (s.handle_bad_blocks) {
3828                 set_bit(STRIPE_HANDLE, &sh->state);
3829                 goto finish;
3830         }
3831
3832         if (unlikely(s.blocked_rdev)) {
3833                 if (s.syncing || s.expanding || s.expanded ||
3834                     s.replacing || s.to_write || s.written) {
3835                         set_bit(STRIPE_HANDLE, &sh->state);
3836                         goto finish;
3837                 }
3838                 /* There is nothing for the blocked_rdev to block */
3839                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3840                 s.blocked_rdev = NULL;
3841         }
3842
3843         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3844                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3845                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3846         }
3847
3848         pr_debug("locked=%d uptodate=%d to_read=%d"
3849                " to_write=%d failed=%d failed_num=%d,%d\n",
3850                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3851                s.failed_num[0], s.failed_num[1]);
3852         /* check if the array has lost more than max_degraded devices and,
3853          * if so, some requests might need to be failed.
3854          */
3855         if (s.failed > conf->max_degraded) {
3856                 sh->check_state = 0;
3857                 sh->reconstruct_state = 0;
3858                 if (s.to_read+s.to_write+s.written)
3859                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3860                 if (s.syncing + s.replacing)
3861                         handle_failed_sync(conf, sh, &s);
3862         }
3863
3864         /* Now we check to see if any write operations have recently
3865          * completed
3866          */
3867         prexor = 0;
3868         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3869                 prexor = 1;
3870         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3871             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3872                 sh->reconstruct_state = reconstruct_state_idle;
3873
3874                 /* All the 'written' buffers and the parity block are ready to
3875                  * be written back to disk
3876                  */
3877                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3878                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3879                 BUG_ON(sh->qd_idx >= 0 &&
3880                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3881                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3882                 for (i = disks; i--; ) {
3883                         struct r5dev *dev = &sh->dev[i];
3884                         if (test_bit(R5_LOCKED, &dev->flags) &&
3885                                 (i == sh->pd_idx || i == sh->qd_idx ||
3886                                  dev->written)) {
3887                                 pr_debug("Writing block %d\n", i);
3888                                 set_bit(R5_Wantwrite, &dev->flags);
3889                                 if (prexor)
3890                                         continue;
3891                                 if (s.failed > 1)
3892                                         continue;
3893                                 if (!test_bit(R5_Insync, &dev->flags) ||
3894                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3895                                      s.failed == 0))
3896                                         set_bit(STRIPE_INSYNC, &sh->state);
3897                         }
3898                 }
3899                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3900                         s.dec_preread_active = 1;
3901         }
3902
3903         /*
3904          * might be able to return some write requests if the parity blocks
3905          * are safe, or on a failed drive
3906          */
3907         pdev = &sh->dev[sh->pd_idx];
3908         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3909                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3910         qdev = &sh->dev[sh->qd_idx];
3911         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3912                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3913                 || conf->level < 6;
3914
3915         if (s.written &&
3916             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3917                              && !test_bit(R5_LOCKED, &pdev->flags)
3918                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
3919                                  test_bit(R5_Discard, &pdev->flags))))) &&
3920             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3921                              && !test_bit(R5_LOCKED, &qdev->flags)
3922                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
3923                                  test_bit(R5_Discard, &qdev->flags))))))
3924                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3925
3926         /* Now we might consider reading some blocks, either to check/generate
3927          * parity, or to satisfy requests
3928          * or to load a block that is being partially written.
3929          */
3930         if (s.to_read || s.non_overwrite
3931             || (conf->level == 6 && s.to_write && s.failed)
3932             || (s.syncing && (s.uptodate + s.compute < disks))
3933             || s.replacing
3934             || s.expanding)
3935                 handle_stripe_fill(sh, &s, disks);
3936
3937         /* Now to consider new write requests and what else, if anything
3938          * should be read.  We do not handle new writes when:
3939          * 1/ A 'write' operation (copy+xor) is already in flight.
3940          * 2/ A 'check' operation is in flight, as it may clobber the parity
3941          *    block.
3942          */
3943         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3944                 handle_stripe_dirtying(conf, sh, &s, disks);
3945
3946         /* maybe we need to check and possibly fix the parity for this stripe
3947          * Any reads will already have been scheduled, so we just see if enough
3948          * data is available.  The parity check is held off while parity
3949          * dependent operations are in flight.
3950          */
3951         if (sh->check_state ||
3952             (s.syncing && s.locked == 0 &&
3953              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3954              !test_bit(STRIPE_INSYNC, &sh->state))) {
3955                 if (conf->level == 6)
3956                         handle_parity_checks6(conf, sh, &s, disks);
3957                 else
3958                         handle_parity_checks5(conf, sh, &s, disks);
3959         }
3960
3961         if ((s.replacing || s.syncing) && s.locked == 0
3962             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3963             && !test_bit(STRIPE_REPLACED, &sh->state)) {
3964                 /* Write out to replacement devices where possible */
3965                 for (i = 0; i < conf->raid_disks; i++)
3966                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3967                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3968                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3969                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3970                                 s.locked++;
3971                         }
3972                 if (s.replacing)
3973                         set_bit(STRIPE_INSYNC, &sh->state);
3974                 set_bit(STRIPE_REPLACED, &sh->state);
3975         }
3976         if ((s.syncing || s.replacing) && s.locked == 0 &&
3977             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3978             test_bit(STRIPE_INSYNC, &sh->state)) {
3979                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3980                 clear_bit(STRIPE_SYNCING, &sh->state);
3981                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3982                         wake_up(&conf->wait_for_overlap);
3983         }
3984
3985         /* If the failed drives are just a ReadError, then we might need
3986          * to progress the repair/check process
3987          */
3988         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3989                 for (i = 0; i < s.failed; i++) {
3990                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3991                         if (test_bit(R5_ReadError, &dev->flags)
3992                             && !test_bit(R5_LOCKED, &dev->flags)
3993                             && test_bit(R5_UPTODATE, &dev->flags)
3994                                 ) {
3995                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3996                                         set_bit(R5_Wantwrite, &dev->flags);
3997                                         set_bit(R5_ReWrite, &dev->flags);
3998                                         set_bit(R5_LOCKED, &dev->flags);
3999                                         s.locked++;
4000                                 } else {
4001                                         /* let's read it back */
4002                                         set_bit(R5_Wantread, &dev->flags);
4003                                         set_bit(R5_LOCKED, &dev->flags);
4004                                         s.locked++;
4005                                 }
4006                         }
4007                 }
4008
4009         /* Finish reconstruct operations initiated by the expansion process */
4010         if (sh->reconstruct_state == reconstruct_state_result) {
4011                 struct stripe_head *sh_src
4012                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
4013                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4014                         /* sh cannot be written until sh_src has been read.
4015                          * so arrange for sh to be delayed a little
4016                          */
4017                         set_bit(STRIPE_DELAYED, &sh->state);
4018                         set_bit(STRIPE_HANDLE, &sh->state);
4019                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4020                                               &sh_src->state))
4021                                 atomic_inc(&conf->preread_active_stripes);
4022                         release_stripe(sh_src);
4023                         goto finish;
4024                 }
4025                 if (sh_src)
4026                         release_stripe(sh_src);
4027
4028                 sh->reconstruct_state = reconstruct_state_idle;
4029                 clear_bit(STRIPE_EXPANDING, &sh->state);
4030                 for (i = conf->raid_disks; i--; ) {
4031                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4032                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4033                         s.locked++;
4034                 }
4035         }
4036
4037         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4038             !sh->reconstruct_state) {
4039                 /* Need to write out all blocks after computing parity */
4040                 sh->disks = conf->raid_disks;
4041                 stripe_set_idx(sh->sector, conf, 0, sh);
4042                 schedule_reconstruction(sh, &s, 1, 1);
4043         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4044                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4045                 atomic_dec(&conf->reshape_stripes);
4046                 wake_up(&conf->wait_for_overlap);
4047                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4048         }
4049
4050         if (s.expanding && s.locked == 0 &&
4051             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4052                 handle_stripe_expansion(conf, sh);
4053
4054 finish:
4055         /* wait for this device to become unblocked */
4056         if (unlikely(s.blocked_rdev)) {
4057                 if (conf->mddev->external)
4058                         md_wait_for_blocked_rdev(s.blocked_rdev,
4059                                                  conf->mddev);
4060                 else
4061                         /* Internal metadata will immediately
4062                          * be written by raid5d, so we don't
4063                          * need to wait here.
4064                          */
4065                         rdev_dec_pending(s.blocked_rdev,
4066                                          conf->mddev);
4067         }
4068
4069         if (s.handle_bad_blocks)
4070                 for (i = disks; i--; ) {
4071                         struct md_rdev *rdev;
4072                         struct r5dev *dev = &sh->dev[i];
4073                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4074                                 /* We own a safe reference to the rdev */
4075                                 rdev = conf->disks[i].rdev;
4076                                 if (!rdev_set_badblocks(rdev, sh->sector,
4077                                                         STRIPE_SECTORS, 0))
4078                                         md_error(conf->mddev, rdev);
4079                                 rdev_dec_pending(rdev, conf->mddev);
4080                         }
4081                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4082                                 rdev = conf->disks[i].rdev;
4083                                 rdev_clear_badblocks(rdev, sh->sector,
4084                                                      STRIPE_SECTORS, 0);
4085                                 rdev_dec_pending(rdev, conf->mddev);
4086                         }
4087                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4088                                 rdev = conf->disks[i].replacement;
4089                                 if (!rdev)
4090                                         /* rdev have been moved down */
4091                                         rdev = conf->disks[i].rdev;
4092                                 rdev_clear_badblocks(rdev, sh->sector,
4093                                                      STRIPE_SECTORS, 0);
4094                                 rdev_dec_pending(rdev, conf->mddev);
4095                         }
4096                 }
4097
4098         if (s.ops_request)
4099                 raid_run_ops(sh, s.ops_request);
4100
4101         ops_run_io(sh, &s);
4102
4103         if (s.dec_preread_active) {
4104                 /* We delay this until after ops_run_io so that if make_request
4105                  * is waiting on a flush, it won't continue until the writes
4106                  * have actually been submitted.
4107                  */
4108                 atomic_dec(&conf->preread_active_stripes);
4109                 if (atomic_read(&conf->preread_active_stripes) <
4110                     IO_THRESHOLD)
4111                         md_wakeup_thread(conf->mddev->thread);
4112         }
4113
4114         return_io(s.return_bi);
4115
4116         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4117 }
4118
4119 static void raid5_activate_delayed(struct r5conf *conf)
4120 {
4121         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4122                 while (!list_empty(&conf->delayed_list)) {
4123                         struct list_head *l = conf->delayed_list.next;
4124                         struct stripe_head *sh;
4125                         sh = list_entry(l, struct stripe_head, lru);
4126                         list_del_init(l);
4127                         clear_bit(STRIPE_DELAYED, &sh->state);
4128                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4129                                 atomic_inc(&conf->preread_active_stripes);
4130                         list_add_tail(&sh->lru, &conf->hold_list);
4131                         raid5_wakeup_stripe_thread(sh);
4132                 }
4133         }
4134 }
4135
4136 static void activate_bit_delay(struct r5conf *conf,
4137         struct list_head *temp_inactive_list)
4138 {
4139         /* device_lock is held */
4140         struct list_head head;
4141         list_add(&head, &conf->bitmap_list);
4142         list_del_init(&conf->bitmap_list);
4143         while (!list_empty(&head)) {
4144                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4145                 int hash;
4146                 list_del_init(&sh->lru);
4147                 atomic_inc(&sh->count);
4148                 hash = sh->hash_lock_index;
4149                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4150         }
4151 }
4152
4153 static int raid5_congested(struct mddev *mddev, int bits)
4154 {
4155         struct r5conf *conf = mddev->private;
4156
4157         /* No difference between reads and writes.  Just check
4158          * how busy the stripe_cache is
4159          */
4160
4161         if (conf->inactive_blocked)
4162                 return 1;
4163         if (conf->quiesce)
4164                 return 1;
4165         if (atomic_read(&conf->empty_inactive_list_nr))
4166                 return 1;
4167
4168         return 0;
4169 }
4170
4171 /* We want read requests to align with chunks where possible,
4172  * but write requests don't need to.
4173  */
4174 static int raid5_mergeable_bvec(struct mddev *mddev,
4175                                 struct bvec_merge_data *bvm,
4176                                 struct bio_vec *biovec)
4177 {
4178         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4179         int max;
4180         unsigned int chunk_sectors = mddev->chunk_sectors;
4181         unsigned int bio_sectors = bvm->bi_size >> 9;
4182
4183         if ((bvm->bi_rw & 1) == WRITE)
4184                 return biovec->bv_len; /* always allow writes to be mergeable */
4185
4186         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4187                 chunk_sectors = mddev->new_chunk_sectors;
4188         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4189         if (max < 0) max = 0;
4190         if (max <= biovec->bv_len && bio_sectors == 0)
4191                 return biovec->bv_len;
4192         else
4193                 return max;
4194 }
4195
4196 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4197 {
4198         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4199         unsigned int chunk_sectors = mddev->chunk_sectors;
4200         unsigned int bio_sectors = bio_sectors(bio);
4201
4202         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4203                 chunk_sectors = mddev->new_chunk_sectors;
4204         return  chunk_sectors >=
4205                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4206 }
4207
4208 /*
4209  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4210  *  later sampled by raid5d.
4211  */
4212 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4213 {
4214         unsigned long flags;
4215
4216         spin_lock_irqsave(&conf->device_lock, flags);
4217
4218         bi->bi_next = conf->retry_read_aligned_list;
4219         conf->retry_read_aligned_list = bi;
4220
4221         spin_unlock_irqrestore(&conf->device_lock, flags);
4222         md_wakeup_thread(conf->mddev->thread);
4223 }
4224
4225 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4226 {
4227         struct bio *bi;
4228
4229         bi = conf->retry_read_aligned;
4230         if (bi) {
4231                 conf->retry_read_aligned = NULL;
4232                 return bi;
4233         }
4234         bi = conf->retry_read_aligned_list;
4235         if(bi) {
4236                 conf->retry_read_aligned_list = bi->bi_next;
4237                 bi->bi_next = NULL;
4238                 /*
4239                  * this sets the active strip count to 1 and the processed
4240                  * strip count to zero (upper 8 bits)
4241                  */
4242                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4243         }
4244
4245         return bi;
4246 }
4247
4248 /*
4249  *  The "raid5_align_endio" should check if the read succeeded and if it
4250  *  did, call bio_endio on the original bio (having bio_put the new bio
4251  *  first).
4252  *  If the read failed..
4253  */
4254 static void raid5_align_endio(struct bio *bi, int error)
4255 {
4256         struct bio* raid_bi  = bi->bi_private;
4257         struct mddev *mddev;
4258         struct r5conf *conf;
4259         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4260         struct md_rdev *rdev;
4261
4262         bio_put(bi);
4263
4264         rdev = (void*)raid_bi->bi_next;
4265         raid_bi->bi_next = NULL;
4266         mddev = rdev->mddev;
4267         conf = mddev->private;
4268
4269         rdev_dec_pending(rdev, conf->mddev);
4270
4271         if (!error && uptodate) {
4272                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4273                                          raid_bi, 0);
4274                 bio_endio(raid_bi, 0);
4275                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4276                         wake_up(&conf->wait_for_stripe);
4277                 return;
4278         }
4279
4280         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4281
4282         add_bio_to_retry(raid_bi, conf);
4283 }
4284
4285 static int bio_fits_rdev(struct bio *bi)
4286 {
4287         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4288
4289         if (bio_sectors(bi) > queue_max_sectors(q))
4290                 return 0;
4291         blk_recount_segments(q, bi);
4292         if (bi->bi_phys_segments > queue_max_segments(q))
4293                 return 0;
4294
4295         if (q->merge_bvec_fn)
4296                 /* it's too hard to apply the merge_bvec_fn at this stage,
4297                  * just just give up
4298                  */
4299                 return 0;
4300
4301         return 1;
4302 }
4303
4304 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4305 {
4306         struct r5conf *conf = mddev->private;
4307         int dd_idx;
4308         struct bio* align_bi;
4309         struct md_rdev *rdev;
4310         sector_t end_sector;
4311
4312         if (!in_chunk_boundary(mddev, raid_bio)) {
4313                 pr_debug("chunk_aligned_read : non aligned\n");
4314                 return 0;
4315         }
4316         /*
4317          * use bio_clone_mddev to make a copy of the bio
4318          */
4319         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4320         if (!align_bi)
4321                 return 0;
4322         /*
4323          *   set bi_end_io to a new function, and set bi_private to the
4324          *     original bio.
4325          */
4326         align_bi->bi_end_io  = raid5_align_endio;
4327         align_bi->bi_private = raid_bio;
4328         /*
4329          *      compute position
4330          */
4331         align_bi->bi_iter.bi_sector =
4332                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4333                                      0, &dd_idx, NULL);
4334
4335         end_sector = bio_end_sector(align_bi);
4336         rcu_read_lock();
4337         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4338         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4339             rdev->recovery_offset < end_sector) {
4340                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4341                 if (rdev &&
4342                     (test_bit(Faulty, &rdev->flags) ||
4343                     !(test_bit(In_sync, &rdev->flags) ||
4344                       rdev->recovery_offset >= end_sector)))
4345                         rdev = NULL;
4346         }
4347         if (rdev) {
4348                 sector_t first_bad;
4349                 int bad_sectors;
4350
4351                 atomic_inc(&rdev->nr_pending);
4352                 rcu_read_unlock();
4353                 raid_bio->bi_next = (void*)rdev;
4354                 align_bi->bi_bdev =  rdev->bdev;
4355                 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4356
4357                 if (!bio_fits_rdev(align_bi) ||
4358                     is_badblock(rdev, align_bi->bi_iter.bi_sector,
4359                                 bio_sectors(align_bi),
4360                                 &first_bad, &bad_sectors)) {
4361                         /* too big in some way, or has a known bad block */
4362                         bio_put(align_bi);
4363                         rdev_dec_pending(rdev, mddev);
4364                         return 0;
4365                 }
4366
4367                 /* No reshape active, so we can trust rdev->data_offset */
4368                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4369
4370                 spin_lock_irq(&conf->device_lock);
4371                 wait_event_lock_irq(conf->wait_for_stripe,
4372                                     conf->quiesce == 0,
4373                                     conf->device_lock);
4374                 atomic_inc(&conf->active_aligned_reads);
4375                 spin_unlock_irq(&conf->device_lock);
4376
4377                 if (mddev->gendisk)
4378                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4379                                               align_bi, disk_devt(mddev->gendisk),
4380                                               raid_bio->bi_iter.bi_sector);
4381                 generic_make_request(align_bi);
4382                 return 1;
4383         } else {
4384                 rcu_read_unlock();
4385                 bio_put(align_bi);
4386                 return 0;
4387         }
4388 }
4389
4390 /* __get_priority_stripe - get the next stripe to process
4391  *
4392  * Full stripe writes are allowed to pass preread active stripes up until
4393  * the bypass_threshold is exceeded.  In general the bypass_count
4394  * increments when the handle_list is handled before the hold_list; however, it
4395  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4396  * stripe with in flight i/o.  The bypass_count will be reset when the
4397  * head of the hold_list has changed, i.e. the head was promoted to the
4398  * handle_list.
4399  */
4400 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4401 {
4402         struct stripe_head *sh = NULL, *tmp;
4403         struct list_head *handle_list = NULL;
4404         struct r5worker_group *wg = NULL;
4405
4406         if (conf->worker_cnt_per_group == 0) {
4407                 handle_list = &conf->handle_list;
4408         } else if (group != ANY_GROUP) {
4409                 handle_list = &conf->worker_groups[group].handle_list;
4410                 wg = &conf->worker_groups[group];
4411         } else {
4412                 int i;
4413                 for (i = 0; i < conf->group_cnt; i++) {
4414                         handle_list = &conf->worker_groups[i].handle_list;
4415                         wg = &conf->worker_groups[i];
4416                         if (!list_empty(handle_list))
4417                                 break;
4418                 }
4419         }
4420
4421         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4422                   __func__,
4423                   list_empty(handle_list) ? "empty" : "busy",
4424                   list_empty(&conf->hold_list) ? "empty" : "busy",
4425                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4426
4427         if (!list_empty(handle_list)) {
4428                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4429
4430                 if (list_empty(&conf->hold_list))
4431                         conf->bypass_count = 0;
4432                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4433                         if (conf->hold_list.next == conf->last_hold)
4434                                 conf->bypass_count++;
4435                         else {
4436                                 conf->last_hold = conf->hold_list.next;
4437                                 conf->bypass_count -= conf->bypass_threshold;
4438                                 if (conf->bypass_count < 0)
4439                                         conf->bypass_count = 0;
4440                         }
4441                 }
4442         } else if (!list_empty(&conf->hold_list) &&
4443                    ((conf->bypass_threshold &&
4444                      conf->bypass_count > conf->bypass_threshold) ||
4445                     atomic_read(&conf->pending_full_writes) == 0)) {
4446
4447                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4448                         if (conf->worker_cnt_per_group == 0 ||
4449                             group == ANY_GROUP ||
4450                             !cpu_online(tmp->cpu) ||
4451                             cpu_to_group(tmp->cpu) == group) {
4452                                 sh = tmp;
4453                                 break;
4454                         }
4455                 }
4456
4457                 if (sh) {
4458                         conf->bypass_count -= conf->bypass_threshold;
4459                         if (conf->bypass_count < 0)
4460                                 conf->bypass_count = 0;
4461                 }
4462                 wg = NULL;
4463         }
4464
4465         if (!sh)
4466                 return NULL;
4467
4468         if (wg) {
4469                 wg->stripes_cnt--;
4470                 sh->group = NULL;
4471         }
4472         list_del_init(&sh->lru);
4473         BUG_ON(atomic_inc_return(&sh->count) != 1);
4474         return sh;
4475 }
4476
4477 struct raid5_plug_cb {
4478         struct blk_plug_cb      cb;
4479         struct list_head        list;
4480         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4481 };
4482
4483 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4484 {
4485         struct raid5_plug_cb *cb = container_of(
4486                 blk_cb, struct raid5_plug_cb, cb);
4487         struct stripe_head *sh;
4488         struct mddev *mddev = cb->cb.data;
4489         struct r5conf *conf = mddev->private;
4490         int cnt = 0;
4491         int hash;
4492
4493         if (cb->list.next && !list_empty(&cb->list)) {
4494                 spin_lock_irq(&conf->device_lock);
4495                 while (!list_empty(&cb->list)) {
4496                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4497                         list_del_init(&sh->lru);
4498                         /*
4499                          * avoid race release_stripe_plug() sees
4500                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4501                          * is still in our list
4502                          */
4503                         smp_mb__before_atomic();
4504                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4505                         /*
4506                          * STRIPE_ON_RELEASE_LIST could be set here. In that
4507                          * case, the count is always > 1 here
4508                          */
4509                         hash = sh->hash_lock_index;
4510                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4511                         cnt++;
4512                 }
4513                 spin_unlock_irq(&conf->device_lock);
4514         }
4515         release_inactive_stripe_list(conf, cb->temp_inactive_list,
4516                                      NR_STRIPE_HASH_LOCKS);
4517         if (mddev->queue)
4518                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4519         kfree(cb);
4520 }
4521
4522 static void release_stripe_plug(struct mddev *mddev,
4523                                 struct stripe_head *sh)
4524 {
4525         struct blk_plug_cb *blk_cb = blk_check_plugged(
4526                 raid5_unplug, mddev,
4527                 sizeof(struct raid5_plug_cb));
4528         struct raid5_plug_cb *cb;
4529
4530         if (!blk_cb) {
4531                 release_stripe(sh);
4532                 return;
4533         }
4534
4535         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4536
4537         if (cb->list.next == NULL) {
4538                 int i;
4539                 INIT_LIST_HEAD(&cb->list);
4540                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4541                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
4542         }
4543
4544         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4545                 list_add_tail(&sh->lru, &cb->list);
4546         else
4547                 release_stripe(sh);
4548 }
4549
4550 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4551 {
4552         struct r5conf *conf = mddev->private;
4553         sector_t logical_sector, last_sector;
4554         struct stripe_head *sh;
4555         int remaining;
4556         int stripe_sectors;
4557
4558         if (mddev->reshape_position != MaxSector)
4559                 /* Skip discard while reshape is happening */
4560                 return;
4561
4562         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4563         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4564
4565         bi->bi_next = NULL;
4566         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4567
4568         stripe_sectors = conf->chunk_sectors *
4569                 (conf->raid_disks - conf->max_degraded);
4570         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4571                                                stripe_sectors);
4572         sector_div(last_sector, stripe_sectors);
4573
4574         logical_sector *= conf->chunk_sectors;
4575         last_sector *= conf->chunk_sectors;
4576
4577         for (; logical_sector < last_sector;
4578              logical_sector += STRIPE_SECTORS) {
4579                 DEFINE_WAIT(w);
4580                 int d;
4581         again:
4582                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4583                 prepare_to_wait(&conf->wait_for_overlap, &w,
4584                                 TASK_UNINTERRUPTIBLE);
4585                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4586                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4587                         release_stripe(sh);
4588                         schedule();
4589                         goto again;
4590                 }
4591                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4592                 spin_lock_irq(&sh->stripe_lock);
4593                 for (d = 0; d < conf->raid_disks; d++) {
4594                         if (d == sh->pd_idx || d == sh->qd_idx)
4595                                 continue;
4596                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4597                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4598                                 spin_unlock_irq(&sh->stripe_lock);
4599                                 release_stripe(sh);
4600                                 schedule();
4601                                 goto again;
4602                         }
4603                 }
4604                 set_bit(STRIPE_DISCARD, &sh->state);
4605                 finish_wait(&conf->wait_for_overlap, &w);
4606                 for (d = 0; d < conf->raid_disks; d++) {
4607                         if (d == sh->pd_idx || d == sh->qd_idx)
4608                                 continue;
4609                         sh->dev[d].towrite = bi;
4610                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4611                         raid5_inc_bi_active_stripes(bi);
4612                 }
4613                 spin_unlock_irq(&sh->stripe_lock);
4614                 if (conf->mddev->bitmap) {
4615                         for (d = 0;
4616                              d < conf->raid_disks - conf->max_degraded;
4617                              d++)
4618                                 bitmap_startwrite(mddev->bitmap,
4619                                                   sh->sector,
4620                                                   STRIPE_SECTORS,
4621                                                   0);
4622                         sh->bm_seq = conf->seq_flush + 1;
4623                         set_bit(STRIPE_BIT_DELAY, &sh->state);
4624                 }
4625
4626                 set_bit(STRIPE_HANDLE, &sh->state);
4627                 clear_bit(STRIPE_DELAYED, &sh->state);
4628                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4629                         atomic_inc(&conf->preread_active_stripes);
4630                 release_stripe_plug(mddev, sh);
4631         }
4632
4633         remaining = raid5_dec_bi_active_stripes(bi);
4634         if (remaining == 0) {
4635                 md_write_end(mddev);
4636                 bio_endio(bi, 0);
4637         }
4638 }
4639
4640 static void make_request(struct mddev *mddev, struct bio * bi)
4641 {
4642         struct r5conf *conf = mddev->private;
4643         int dd_idx;
4644         sector_t new_sector;
4645         sector_t logical_sector, last_sector;
4646         struct stripe_head *sh;
4647         const int rw = bio_data_dir(bi);
4648         int remaining;
4649         DEFINE_WAIT(w);
4650         bool do_prepare;
4651
4652         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4653                 md_flush_request(mddev, bi);
4654                 return;
4655         }
4656
4657         md_write_start(mddev, bi);
4658
4659         if (rw == READ &&
4660              mddev->reshape_position == MaxSector &&
4661              chunk_aligned_read(mddev,bi))
4662                 return;
4663
4664         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4665                 make_discard_request(mddev, bi);
4666                 return;
4667         }
4668
4669         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4670         last_sector = bio_end_sector(bi);
4671         bi->bi_next = NULL;
4672         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4673
4674         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4675         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4676                 int previous;
4677                 int seq;
4678
4679                 do_prepare = false;
4680         retry:
4681                 seq = read_seqcount_begin(&conf->gen_lock);
4682                 previous = 0;
4683                 if (do_prepare)
4684                         prepare_to_wait(&conf->wait_for_overlap, &w,
4685                                 TASK_UNINTERRUPTIBLE);
4686                 if (unlikely(conf->reshape_progress != MaxSector)) {
4687                         /* spinlock is needed as reshape_progress may be
4688                          * 64bit on a 32bit platform, and so it might be
4689                          * possible to see a half-updated value
4690                          * Of course reshape_progress could change after
4691                          * the lock is dropped, so once we get a reference
4692                          * to the stripe that we think it is, we will have
4693                          * to check again.
4694                          */
4695                         spin_lock_irq(&conf->device_lock);
4696                         if (mddev->reshape_backwards
4697                             ? logical_sector < conf->reshape_progress
4698                             : logical_sector >= conf->reshape_progress) {
4699                                 previous = 1;
4700                         } else {
4701                                 if (mddev->reshape_backwards
4702                                     ? logical_sector < conf->reshape_safe
4703                                     : logical_sector >= conf->reshape_safe) {
4704                                         spin_unlock_irq(&conf->device_lock);
4705                                         schedule();
4706                                         do_prepare = true;
4707                                         goto retry;
4708                                 }
4709                         }
4710                         spin_unlock_irq(&conf->device_lock);
4711                 }
4712
4713                 new_sector = raid5_compute_sector(conf, logical_sector,
4714                                                   previous,
4715                                                   &dd_idx, NULL);
4716                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4717                         (unsigned long long)new_sector,
4718                         (unsigned long long)logical_sector);
4719
4720                 sh = get_active_stripe(conf, new_sector, previous,
4721                                        (bi->bi_rw&RWA_MASK), 0);
4722                 if (sh) {
4723                         if (unlikely(previous)) {
4724                                 /* expansion might have moved on while waiting for a
4725                                  * stripe, so we must do the range check again.
4726                                  * Expansion could still move past after this
4727                                  * test, but as we are holding a reference to
4728                                  * 'sh', we know that if that happens,
4729                                  *  STRIPE_EXPANDING will get set and the expansion
4730                                  * won't proceed until we finish with the stripe.
4731                                  */
4732                                 int must_retry = 0;
4733                                 spin_lock_irq(&conf->device_lock);
4734                                 if (mddev->reshape_backwards
4735                                     ? logical_sector >= conf->reshape_progress
4736                                     : logical_sector < conf->reshape_progress)
4737                                         /* mismatch, need to try again */
4738                                         must_retry = 1;
4739                                 spin_unlock_irq(&conf->device_lock);
4740                                 if (must_retry) {
4741                                         release_stripe(sh);
4742                                         schedule();
4743                                         do_prepare = true;
4744                                         goto retry;
4745                                 }
4746                         }
4747                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
4748                                 /* Might have got the wrong stripe_head
4749                                  * by accident
4750                                  */
4751                                 release_stripe(sh);
4752                                 goto retry;
4753                         }
4754
4755                         if (rw == WRITE &&
4756                             logical_sector >= mddev->suspend_lo &&
4757                             logical_sector < mddev->suspend_hi) {
4758                                 release_stripe(sh);
4759                                 /* As the suspend_* range is controlled by
4760                                  * userspace, we want an interruptible
4761                                  * wait.
4762                                  */
4763                                 flush_signals(current);
4764                                 prepare_to_wait(&conf->wait_for_overlap,
4765                                                 &w, TASK_INTERRUPTIBLE);
4766                                 if (logical_sector >= mddev->suspend_lo &&
4767                                     logical_sector < mddev->suspend_hi) {
4768                                         schedule();
4769                                         do_prepare = true;
4770                                 }
4771                                 goto retry;
4772                         }
4773
4774                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4775                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4776                                 /* Stripe is busy expanding or
4777                                  * add failed due to overlap.  Flush everything
4778                                  * and wait a while
4779                                  */
4780                                 md_wakeup_thread(mddev->thread);
4781                                 release_stripe(sh);
4782                                 schedule();
4783                                 do_prepare = true;
4784                                 goto retry;
4785                         }
4786                         set_bit(STRIPE_HANDLE, &sh->state);
4787                         clear_bit(STRIPE_DELAYED, &sh->state);
4788                         if ((bi->bi_rw & REQ_SYNC) &&
4789                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4790                                 atomic_inc(&conf->preread_active_stripes);
4791                         release_stripe_plug(mddev, sh);
4792                 } else {
4793                         /* cannot get stripe for read-ahead, just give-up */
4794                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4795                         break;
4796                 }
4797         }
4798         finish_wait(&conf->wait_for_overlap, &w);
4799
4800         remaining = raid5_dec_bi_active_stripes(bi);
4801         if (remaining == 0) {
4802
4803                 if ( rw == WRITE )
4804                         md_write_end(mddev);
4805
4806                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4807                                          bi, 0);
4808                 bio_endio(bi, 0);
4809         }
4810 }
4811
4812 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4813
4814 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4815 {
4816         /* reshaping is quite different to recovery/resync so it is
4817          * handled quite separately ... here.
4818          *
4819          * On each call to sync_request, we gather one chunk worth of
4820          * destination stripes and flag them as expanding.
4821          * Then we find all the source stripes and request reads.
4822          * As the reads complete, handle_stripe will copy the data
4823          * into the destination stripe and release that stripe.
4824          */
4825         struct r5conf *conf = mddev->private;
4826         struct stripe_head *sh;
4827         sector_t first_sector, last_sector;
4828         int raid_disks = conf->previous_raid_disks;
4829         int data_disks = raid_disks - conf->max_degraded;
4830         int new_data_disks = conf->raid_disks - conf->max_degraded;
4831         int i;
4832         int dd_idx;
4833         sector_t writepos, readpos, safepos;
4834         sector_t stripe_addr;
4835         int reshape_sectors;
4836         struct list_head stripes;
4837
4838         if (sector_nr == 0) {
4839                 /* If restarting in the middle, skip the initial sectors */
4840                 if (mddev->reshape_backwards &&
4841                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4842                         sector_nr = raid5_size(mddev, 0, 0)
4843                                 - conf->reshape_progress;
4844                 } else if (!mddev->reshape_backwards &&
4845                            conf->reshape_progress > 0)
4846                         sector_nr = conf->reshape_progress;
4847                 sector_div(sector_nr, new_data_disks);
4848                 if (sector_nr) {
4849                         mddev->curr_resync_completed = sector_nr;
4850                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4851                         *skipped = 1;
4852                         return sector_nr;
4853                 }
4854         }
4855
4856         /* We need to process a full chunk at a time.
4857          * If old and new chunk sizes differ, we need to process the
4858          * largest of these
4859          */
4860         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4861                 reshape_sectors = mddev->new_chunk_sectors;
4862         else
4863                 reshape_sectors = mddev->chunk_sectors;
4864
4865         /* We update the metadata at least every 10 seconds, or when
4866          * the data about to be copied would over-write the source of
4867          * the data at the front of the range.  i.e. one new_stripe
4868          * along from reshape_progress new_maps to after where
4869          * reshape_safe old_maps to
4870          */
4871         writepos = conf->reshape_progress;
4872         sector_div(writepos, new_data_disks);
4873         readpos = conf->reshape_progress;
4874         sector_div(readpos, data_disks);
4875         safepos = conf->reshape_safe;
4876         sector_div(safepos, data_disks);
4877         if (mddev->reshape_backwards) {
4878                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4879                 readpos += reshape_sectors;
4880                 safepos += reshape_sectors;
4881         } else {
4882                 writepos += reshape_sectors;
4883                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4884                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4885         }
4886
4887         /* Having calculated the 'writepos' possibly use it
4888          * to set 'stripe_addr' which is where we will write to.
4889          */
4890         if (mddev->reshape_backwards) {
4891                 BUG_ON(conf->reshape_progress == 0);
4892                 stripe_addr = writepos;
4893                 BUG_ON((mddev->dev_sectors &
4894                         ~((sector_t)reshape_sectors - 1))
4895                        - reshape_sectors - stripe_addr
4896                        != sector_nr);
4897         } else {
4898                 BUG_ON(writepos != sector_nr + reshape_sectors);
4899                 stripe_addr = sector_nr;
4900         }
4901
4902         /* 'writepos' is the most advanced device address we might write.
4903          * 'readpos' is the least advanced device address we might read.
4904          * 'safepos' is the least address recorded in the metadata as having
4905          *     been reshaped.
4906          * If there is a min_offset_diff, these are adjusted either by
4907          * increasing the safepos/readpos if diff is negative, or
4908          * increasing writepos if diff is positive.
4909          * If 'readpos' is then behind 'writepos', there is no way that we can
4910          * ensure safety in the face of a crash - that must be done by userspace
4911          * making a backup of the data.  So in that case there is no particular
4912          * rush to update metadata.
4913          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4914          * update the metadata to advance 'safepos' to match 'readpos' so that
4915          * we can be safe in the event of a crash.
4916          * So we insist on updating metadata if safepos is behind writepos and
4917          * readpos is beyond writepos.
4918          * In any case, update the metadata every 10 seconds.
4919          * Maybe that number should be configurable, but I'm not sure it is
4920          * worth it.... maybe it could be a multiple of safemode_delay???
4921          */
4922         if (conf->min_offset_diff < 0) {
4923                 safepos += -conf->min_offset_diff;
4924                 readpos += -conf->min_offset_diff;
4925         } else
4926                 writepos += conf->min_offset_diff;
4927
4928         if ((mddev->reshape_backwards
4929              ? (safepos > writepos && readpos < writepos)
4930              : (safepos < writepos && readpos > writepos)) ||
4931             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4932                 /* Cannot proceed until we've updated the superblock... */
4933                 wait_event(conf->wait_for_overlap,
4934                            atomic_read(&conf->reshape_stripes)==0
4935                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4936                 if (atomic_read(&conf->reshape_stripes) != 0)
4937                         return 0;
4938                 mddev->reshape_position = conf->reshape_progress;
4939                 mddev->curr_resync_completed = sector_nr;
4940                 conf->reshape_checkpoint = jiffies;
4941                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4942                 md_wakeup_thread(mddev->thread);
4943                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4944                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4945                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4946                         return 0;
4947                 spin_lock_irq(&conf->device_lock);
4948                 conf->reshape_safe = mddev->reshape_position;
4949                 spin_unlock_irq(&conf->device_lock);
4950                 wake_up(&conf->wait_for_overlap);
4951                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4952         }
4953
4954         INIT_LIST_HEAD(&stripes);
4955         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4956                 int j;
4957                 int skipped_disk = 0;
4958                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4959                 set_bit(STRIPE_EXPANDING, &sh->state);
4960                 atomic_inc(&conf->reshape_stripes);
4961                 /* If any of this stripe is beyond the end of the old
4962                  * array, then we need to zero those blocks
4963                  */
4964                 for (j=sh->disks; j--;) {
4965                         sector_t s;
4966                         if (j == sh->pd_idx)
4967                                 continue;
4968                         if (conf->level == 6 &&
4969                             j == sh->qd_idx)
4970                                 continue;
4971                         s = compute_blocknr(sh, j, 0);
4972                         if (s < raid5_size(mddev, 0, 0)) {
4973                                 skipped_disk = 1;
4974                                 continue;
4975                         }
4976                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4977                         set_bit(R5_Expanded, &sh->dev[j].flags);
4978                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4979                 }
4980                 if (!skipped_disk) {
4981                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4982                         set_bit(STRIPE_HANDLE, &sh->state);
4983                 }
4984                 list_add(&sh->lru, &stripes);
4985         }
4986         spin_lock_irq(&conf->device_lock);
4987         if (mddev->reshape_backwards)
4988                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4989         else
4990                 conf->reshape_progress += reshape_sectors * new_data_disks;
4991         spin_unlock_irq(&conf->device_lock);
4992         /* Ok, those stripe are ready. We can start scheduling
4993          * reads on the source stripes.
4994          * The source stripes are determined by mapping the first and last
4995          * block on the destination stripes.
4996          */
4997         first_sector =
4998                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4999                                      1, &dd_idx, NULL);
5000         last_sector =
5001                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5002                                             * new_data_disks - 1),
5003                                      1, &dd_idx, NULL);
5004         if (last_sector >= mddev->dev_sectors)
5005                 last_sector = mddev->dev_sectors - 1;
5006         while (first_sector <= last_sector) {
5007                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5008                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5009                 set_bit(STRIPE_HANDLE, &sh->state);
5010                 release_stripe(sh);
5011                 first_sector += STRIPE_SECTORS;
5012         }
5013         /* Now that the sources are clearly marked, we can release
5014          * the destination stripes
5015          */
5016         while (!list_empty(&stripes)) {
5017                 sh = list_entry(stripes.next, struct stripe_head, lru);
5018                 list_del_init(&sh->lru);
5019                 release_stripe(sh);
5020         }
5021         /* If this takes us to the resync_max point where we have to pause,
5022          * then we need to write out the superblock.
5023          */
5024         sector_nr += reshape_sectors;
5025         if ((sector_nr - mddev->curr_resync_completed) * 2
5026             >= mddev->resync_max - mddev->curr_resync_completed) {
5027                 /* Cannot proceed until we've updated the superblock... */
5028                 wait_event(conf->wait_for_overlap,
5029                            atomic_read(&conf->reshape_stripes) == 0
5030                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5031                 if (atomic_read(&conf->reshape_stripes) != 0)
5032                         goto ret;
5033                 mddev->reshape_position = conf->reshape_progress;
5034                 mddev->curr_resync_completed = sector_nr;
5035                 conf->reshape_checkpoint = jiffies;
5036                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5037                 md_wakeup_thread(mddev->thread);
5038                 wait_event(mddev->sb_wait,
5039                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5040                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5041                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5042                         goto ret;
5043                 spin_lock_irq(&conf->device_lock);
5044                 conf->reshape_safe = mddev->reshape_position;
5045                 spin_unlock_irq(&conf->device_lock);
5046                 wake_up(&conf->wait_for_overlap);
5047                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5048         }
5049 ret:
5050         return reshape_sectors;
5051 }
5052
5053 /* FIXME go_faster isn't used */
5054 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
5055 {
5056         struct r5conf *conf = mddev->private;
5057         struct stripe_head *sh;
5058         sector_t max_sector = mddev->dev_sectors;
5059         sector_t sync_blocks;
5060         int still_degraded = 0;
5061         int i;
5062
5063         if (sector_nr >= max_sector) {
5064                 /* just being told to finish up .. nothing much to do */
5065
5066                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5067                         end_reshape(conf);
5068                         return 0;
5069                 }
5070
5071                 if (mddev->curr_resync < max_sector) /* aborted */
5072                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5073                                         &sync_blocks, 1);
5074                 else /* completed sync */
5075                         conf->fullsync = 0;
5076                 bitmap_close_sync(mddev->bitmap);
5077
5078                 return 0;
5079         }
5080
5081         /* Allow raid5_quiesce to complete */
5082         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5083
5084         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5085                 return reshape_request(mddev, sector_nr, skipped);
5086
5087         /* No need to check resync_max as we never do more than one
5088          * stripe, and as resync_max will always be on a chunk boundary,
5089          * if the check in md_do_sync didn't fire, there is no chance
5090          * of overstepping resync_max here
5091          */
5092
5093         /* if there is too many failed drives and we are trying
5094          * to resync, then assert that we are finished, because there is
5095          * nothing we can do.
5096          */
5097         if (mddev->degraded >= conf->max_degraded &&
5098             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5099                 sector_t rv = mddev->dev_sectors - sector_nr;
5100                 *skipped = 1;
5101                 return rv;
5102         }
5103         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5104             !conf->fullsync &&
5105             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5106             sync_blocks >= STRIPE_SECTORS) {
5107                 /* we can skip this block, and probably more */
5108                 sync_blocks /= STRIPE_SECTORS;
5109                 *skipped = 1;
5110                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5111         }
5112
5113         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5114
5115         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5116         if (sh == NULL) {
5117                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5118                 /* make sure we don't swamp the stripe cache if someone else
5119                  * is trying to get access
5120                  */
5121                 schedule_timeout_uninterruptible(1);
5122         }
5123         /* Need to check if array will still be degraded after recovery/resync
5124          * Note in case of > 1 drive failures it's possible we're rebuilding
5125          * one drive while leaving another faulty drive in array.
5126          */
5127         rcu_read_lock();
5128         for (i = 0; i < conf->raid_disks; i++) {
5129                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5130
5131                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5132                         still_degraded = 1;
5133         }
5134         rcu_read_unlock();
5135
5136         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5137
5138         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5139         set_bit(STRIPE_HANDLE, &sh->state);
5140
5141         release_stripe(sh);
5142
5143         return STRIPE_SECTORS;
5144 }
5145
5146 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5147 {
5148         /* We may not be able to submit a whole bio at once as there
5149          * may not be enough stripe_heads available.
5150          * We cannot pre-allocate enough stripe_heads as we may need
5151          * more than exist in the cache (if we allow ever large chunks).
5152          * So we do one stripe head at a time and record in
5153          * ->bi_hw_segments how many have been done.
5154          *
5155          * We *know* that this entire raid_bio is in one chunk, so
5156          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5157          */
5158         struct stripe_head *sh;
5159         int dd_idx;
5160         sector_t sector, logical_sector, last_sector;
5161         int scnt = 0;
5162         int remaining;
5163         int handled = 0;
5164
5165         logical_sector = raid_bio->bi_iter.bi_sector &
5166                 ~((sector_t)STRIPE_SECTORS-1);
5167         sector = raid5_compute_sector(conf, logical_sector,
5168                                       0, &dd_idx, NULL);
5169         last_sector = bio_end_sector(raid_bio);
5170
5171         for (; logical_sector < last_sector;
5172              logical_sector += STRIPE_SECTORS,
5173                      sector += STRIPE_SECTORS,
5174                      scnt++) {
5175
5176                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5177                         /* already done this stripe */
5178                         continue;
5179
5180                 sh = get_active_stripe(conf, sector, 0, 1, 1);
5181
5182                 if (!sh) {
5183                         /* failed to get a stripe - must wait */
5184                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5185                         conf->retry_read_aligned = raid_bio;
5186                         return handled;
5187                 }
5188
5189                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5190                         release_stripe(sh);
5191                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5192                         conf->retry_read_aligned = raid_bio;
5193                         return handled;
5194                 }
5195
5196                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5197                 handle_stripe(sh);
5198                 release_stripe(sh);
5199                 handled++;
5200         }
5201         remaining = raid5_dec_bi_active_stripes(raid_bio);
5202         if (remaining == 0) {
5203                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5204                                          raid_bio, 0);
5205                 bio_endio(raid_bio, 0);
5206         }
5207         if (atomic_dec_and_test(&conf->active_aligned_reads))
5208                 wake_up(&conf->wait_for_stripe);
5209         return handled;
5210 }
5211
5212 static int handle_active_stripes(struct r5conf *conf, int group,
5213                                  struct r5worker *worker,
5214                                  struct list_head *temp_inactive_list)
5215 {
5216         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5217         int i, batch_size = 0, hash;
5218         bool release_inactive = false;
5219
5220         while (batch_size < MAX_STRIPE_BATCH &&
5221                         (sh = __get_priority_stripe(conf, group)) != NULL)
5222                 batch[batch_size++] = sh;
5223
5224         if (batch_size == 0) {
5225                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5226                         if (!list_empty(temp_inactive_list + i))
5227                                 break;
5228                 if (i == NR_STRIPE_HASH_LOCKS)
5229                         return batch_size;
5230                 release_inactive = true;
5231         }
5232         spin_unlock_irq(&conf->device_lock);
5233
5234         release_inactive_stripe_list(conf, temp_inactive_list,
5235                                      NR_STRIPE_HASH_LOCKS);
5236
5237         if (release_inactive) {
5238                 spin_lock_irq(&conf->device_lock);
5239                 return 0;
5240         }
5241
5242         for (i = 0; i < batch_size; i++)
5243                 handle_stripe(batch[i]);
5244
5245         cond_resched();
5246
5247         spin_lock_irq(&conf->device_lock);
5248         for (i = 0; i < batch_size; i++) {
5249                 hash = batch[i]->hash_lock_index;
5250                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5251         }
5252         return batch_size;
5253 }
5254
5255 static void raid5_do_work(struct work_struct *work)
5256 {
5257         struct r5worker *worker = container_of(work, struct r5worker, work);
5258         struct r5worker_group *group = worker->group;
5259         struct r5conf *conf = group->conf;
5260         int group_id = group - conf->worker_groups;
5261         int handled;
5262         struct blk_plug plug;
5263
5264         pr_debug("+++ raid5worker active\n");
5265
5266         blk_start_plug(&plug);
5267         handled = 0;
5268         spin_lock_irq(&conf->device_lock);
5269         while (1) {
5270                 int batch_size, released;
5271
5272                 released = release_stripe_list(conf, worker->temp_inactive_list);
5273
5274                 batch_size = handle_active_stripes(conf, group_id, worker,
5275                                                    worker->temp_inactive_list);
5276                 worker->working = false;
5277                 if (!batch_size && !released)
5278                         break;
5279                 handled += batch_size;
5280         }
5281         pr_debug("%d stripes handled\n", handled);
5282
5283         spin_unlock_irq(&conf->device_lock);
5284         blk_finish_plug(&plug);
5285
5286         pr_debug("--- raid5worker inactive\n");
5287 }
5288
5289 /*
5290  * This is our raid5 kernel thread.
5291  *
5292  * We scan the hash table for stripes which can be handled now.
5293  * During the scan, completed stripes are saved for us by the interrupt
5294  * handler, so that they will not have to wait for our next wakeup.
5295  */
5296 static void raid5d(struct md_thread *thread)
5297 {
5298         struct mddev *mddev = thread->mddev;
5299         struct r5conf *conf = mddev->private;
5300         int handled;
5301         struct blk_plug plug;
5302
5303         pr_debug("+++ raid5d active\n");
5304
5305         md_check_recovery(mddev);
5306
5307         blk_start_plug(&plug);
5308         handled = 0;
5309         spin_lock_irq(&conf->device_lock);
5310         while (1) {
5311                 struct bio *bio;
5312                 int batch_size, released;
5313
5314                 released = release_stripe_list(conf, conf->temp_inactive_list);
5315
5316                 if (
5317                     !list_empty(&conf->bitmap_list)) {
5318                         /* Now is a good time to flush some bitmap updates */
5319                         conf->seq_flush++;
5320                         spin_unlock_irq(&conf->device_lock);
5321                         bitmap_unplug(mddev->bitmap);
5322                         spin_lock_irq(&conf->device_lock);
5323                         conf->seq_write = conf->seq_flush;
5324                         activate_bit_delay(conf, conf->temp_inactive_list);
5325                 }
5326                 raid5_activate_delayed(conf);
5327
5328                 while ((bio = remove_bio_from_retry(conf))) {
5329                         int ok;
5330                         spin_unlock_irq(&conf->device_lock);
5331                         ok = retry_aligned_read(conf, bio);
5332                         spin_lock_irq(&conf->device_lock);
5333                         if (!ok)
5334                                 break;
5335                         handled++;
5336                 }
5337
5338                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5339                                                    conf->temp_inactive_list);
5340                 if (!batch_size && !released)
5341                         break;
5342                 handled += batch_size;
5343
5344                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5345                         spin_unlock_irq(&conf->device_lock);
5346                         md_check_recovery(mddev);
5347                         spin_lock_irq(&conf->device_lock);
5348                 }
5349         }
5350         pr_debug("%d stripes handled\n", handled);
5351
5352         spin_unlock_irq(&conf->device_lock);
5353
5354         async_tx_issue_pending_all();
5355         blk_finish_plug(&plug);
5356
5357         pr_debug("--- raid5d inactive\n");
5358 }
5359
5360 static ssize_t
5361 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5362 {
5363         struct r5conf *conf;
5364         int ret = 0;
5365         spin_lock(&mddev->lock);
5366         conf = mddev->private;
5367         if (conf)
5368                 ret = sprintf(page, "%d\n", conf->max_nr_stripes);
5369         spin_unlock(&mddev->lock);
5370         return ret;
5371 }
5372
5373 int
5374 raid5_set_cache_size(struct mddev *mddev, int size)
5375 {
5376         struct r5conf *conf = mddev->private;
5377         int err;
5378         int hash;
5379
5380         if (size <= 16 || size > 32768)
5381                 return -EINVAL;
5382         hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5383         while (size < conf->max_nr_stripes) {
5384                 if (drop_one_stripe(conf, hash))
5385                         conf->max_nr_stripes--;
5386                 else
5387                         break;
5388                 hash--;
5389                 if (hash < 0)
5390                         hash = NR_STRIPE_HASH_LOCKS - 1;
5391         }
5392         err = md_allow_write(mddev);
5393         if (err)
5394                 return err;
5395         hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5396         while (size > conf->max_nr_stripes) {
5397                 if (grow_one_stripe(conf, hash))
5398                         conf->max_nr_stripes++;
5399                 else break;
5400                 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5401         }
5402         return 0;
5403 }
5404 EXPORT_SYMBOL(raid5_set_cache_size);
5405
5406 static ssize_t
5407 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5408 {
5409         struct r5conf *conf;
5410         unsigned long new;
5411         int err;
5412
5413         if (len >= PAGE_SIZE)
5414                 return -EINVAL;
5415         if (kstrtoul(page, 10, &new))
5416                 return -EINVAL;
5417         err = mddev_lock(mddev);
5418         if (err)
5419                 return err;
5420         conf = mddev->private;
5421         if (!conf)
5422                 err = -ENODEV;
5423         else
5424                 err = raid5_set_cache_size(mddev, new);
5425         mddev_unlock(mddev);
5426
5427         return err ?: len;
5428 }
5429
5430 static struct md_sysfs_entry
5431 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5432                                 raid5_show_stripe_cache_size,
5433                                 raid5_store_stripe_cache_size);
5434
5435 static ssize_t
5436 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5437 {
5438         struct r5conf *conf;
5439         int ret = 0;
5440         spin_lock(&mddev->lock);
5441         conf = mddev->private;
5442         if (conf)
5443                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
5444         spin_unlock(&mddev->lock);
5445         return ret;
5446 }
5447
5448 static ssize_t
5449 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5450 {
5451         struct r5conf *conf;
5452         unsigned long new;
5453         int err;
5454
5455         if (len >= PAGE_SIZE)
5456                 return -EINVAL;
5457         if (kstrtoul(page, 10, &new))
5458                 return -EINVAL;
5459
5460         err = mddev_lock(mddev);
5461         if (err)
5462                 return err;
5463         conf = mddev->private;
5464         if (!conf)
5465                 err = -ENODEV;
5466         else if (new > conf->max_nr_stripes)
5467                 err = -EINVAL;
5468         else
5469                 conf->bypass_threshold = new;
5470         mddev_unlock(mddev);
5471         return err ?: len;
5472 }
5473
5474 static struct md_sysfs_entry
5475 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5476                                         S_IRUGO | S_IWUSR,
5477                                         raid5_show_preread_threshold,
5478                                         raid5_store_preread_threshold);
5479
5480 static ssize_t
5481 raid5_show_skip_copy(struct mddev *mddev, char *page)
5482 {
5483         struct r5conf *conf;
5484         int ret = 0;
5485         spin_lock(&mddev->lock);
5486         conf = mddev->private;
5487         if (conf)
5488                 ret = sprintf(page, "%d\n", conf->skip_copy);
5489         spin_unlock(&mddev->lock);
5490         return ret;
5491 }
5492
5493 static ssize_t
5494 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
5495 {
5496         struct r5conf *conf;
5497         unsigned long new;
5498         int err;
5499
5500         if (len >= PAGE_SIZE)
5501                 return -EINVAL;
5502         if (kstrtoul(page, 10, &new))
5503                 return -EINVAL;
5504         new = !!new;
5505
5506         err = mddev_lock(mddev);
5507         if (err)
5508                 return err;
5509         conf = mddev->private;
5510         if (!conf)
5511                 err = -ENODEV;
5512         else if (new != conf->skip_copy) {
5513                 mddev_suspend(mddev);
5514                 conf->skip_copy = new;
5515                 if (new)
5516                         mddev->queue->backing_dev_info.capabilities |=
5517                                 BDI_CAP_STABLE_WRITES;
5518                 else
5519                         mddev->queue->backing_dev_info.capabilities &=
5520                                 ~BDI_CAP_STABLE_WRITES;
5521                 mddev_resume(mddev);
5522         }
5523         mddev_unlock(mddev);
5524         return err ?: len;
5525 }
5526
5527 static struct md_sysfs_entry
5528 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
5529                                         raid5_show_skip_copy,
5530                                         raid5_store_skip_copy);
5531
5532 static ssize_t
5533 stripe_cache_active_show(struct mddev *mddev, char *page)
5534 {
5535         struct r5conf *conf = mddev->private;
5536         if (conf)
5537                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5538         else
5539                 return 0;
5540 }
5541
5542 static struct md_sysfs_entry
5543 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5544
5545 static ssize_t
5546 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5547 {
5548         struct r5conf *conf;
5549         int ret = 0;
5550         spin_lock(&mddev->lock);
5551         conf = mddev->private;
5552         if (conf)
5553                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
5554         spin_unlock(&mddev->lock);
5555         return ret;
5556 }
5557
5558 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5559                                int *group_cnt,
5560                                int *worker_cnt_per_group,
5561                                struct r5worker_group **worker_groups);
5562 static ssize_t
5563 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5564 {
5565         struct r5conf *conf;
5566         unsigned long new;
5567         int err;
5568         struct r5worker_group *new_groups, *old_groups;
5569         int group_cnt, worker_cnt_per_group;
5570
5571         if (len >= PAGE_SIZE)
5572                 return -EINVAL;
5573         if (kstrtoul(page, 10, &new))
5574                 return -EINVAL;
5575
5576         err = mddev_lock(mddev);
5577         if (err)
5578                 return err;
5579         conf = mddev->private;
5580         if (!conf)
5581                 err = -ENODEV;
5582         else if (new != conf->worker_cnt_per_group) {
5583                 mddev_suspend(mddev);
5584
5585                 old_groups = conf->worker_groups;
5586                 if (old_groups)
5587                         flush_workqueue(raid5_wq);
5588
5589                 err = alloc_thread_groups(conf, new,
5590                                           &group_cnt, &worker_cnt_per_group,
5591                                           &new_groups);
5592                 if (!err) {
5593                         spin_lock_irq(&conf->device_lock);
5594                         conf->group_cnt = group_cnt;
5595                         conf->worker_cnt_per_group = worker_cnt_per_group;
5596                         conf->worker_groups = new_groups;
5597                         spin_unlock_irq(&conf->device_lock);
5598
5599                         if (old_groups)
5600                                 kfree(old_groups[0].workers);
5601                         kfree(old_groups);
5602                 }
5603                 mddev_resume(mddev);
5604         }
5605         mddev_unlock(mddev);
5606
5607         return err ?: len;
5608 }
5609
5610 static struct md_sysfs_entry
5611 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5612                                 raid5_show_group_thread_cnt,
5613                                 raid5_store_group_thread_cnt);
5614
5615 static struct attribute *raid5_attrs[] =  {
5616         &raid5_stripecache_size.attr,
5617         &raid5_stripecache_active.attr,
5618         &raid5_preread_bypass_threshold.attr,
5619         &raid5_group_thread_cnt.attr,
5620         &raid5_skip_copy.attr,
5621         NULL,
5622 };
5623 static struct attribute_group raid5_attrs_group = {
5624         .name = NULL,
5625         .attrs = raid5_attrs,
5626 };
5627
5628 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5629                                int *group_cnt,
5630                                int *worker_cnt_per_group,
5631                                struct r5worker_group **worker_groups)
5632 {
5633         int i, j, k;
5634         ssize_t size;
5635         struct r5worker *workers;
5636
5637         *worker_cnt_per_group = cnt;
5638         if (cnt == 0) {
5639                 *group_cnt = 0;
5640                 *worker_groups = NULL;
5641                 return 0;
5642         }
5643         *group_cnt = num_possible_nodes();
5644         size = sizeof(struct r5worker) * cnt;
5645         workers = kzalloc(size * *group_cnt, GFP_NOIO);
5646         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
5647                                 *group_cnt, GFP_NOIO);
5648         if (!*worker_groups || !workers) {
5649                 kfree(workers);
5650                 kfree(*worker_groups);
5651                 return -ENOMEM;
5652         }
5653
5654         for (i = 0; i < *group_cnt; i++) {
5655                 struct r5worker_group *group;
5656
5657                 group = &(*worker_groups)[i];
5658                 INIT_LIST_HEAD(&group->handle_list);
5659                 group->conf = conf;
5660                 group->workers = workers + i * cnt;
5661
5662                 for (j = 0; j < cnt; j++) {
5663                         struct r5worker *worker = group->workers + j;
5664                         worker->group = group;
5665                         INIT_WORK(&worker->work, raid5_do_work);
5666
5667                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5668                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
5669                 }
5670         }
5671
5672         return 0;
5673 }
5674
5675 static void free_thread_groups(struct r5conf *conf)
5676 {
5677         if (conf->worker_groups)
5678                 kfree(conf->worker_groups[0].workers);
5679         kfree(conf->worker_groups);
5680         conf->worker_groups = NULL;
5681 }
5682
5683 static sector_t
5684 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5685 {
5686         struct r5conf *conf = mddev->private;
5687
5688         if (!sectors)
5689                 sectors = mddev->dev_sectors;
5690         if (!raid_disks)
5691                 /* size is defined by the smallest of previous and new size */
5692                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5693
5694         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5695         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5696         return sectors * (raid_disks - conf->max_degraded);
5697 }
5698
5699 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5700 {
5701         safe_put_page(percpu->spare_page);
5702         kfree(percpu->scribble);
5703         percpu->spare_page = NULL;
5704         percpu->scribble = NULL;
5705 }
5706
5707 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5708 {
5709         if (conf->level == 6 && !percpu->spare_page)
5710                 percpu->spare_page = alloc_page(GFP_KERNEL);
5711         if (!percpu->scribble)
5712                 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5713
5714         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5715                 free_scratch_buffer(conf, percpu);
5716                 return -ENOMEM;
5717         }
5718
5719         return 0;
5720 }
5721
5722 static void raid5_free_percpu(struct r5conf *conf)
5723 {
5724         unsigned long cpu;
5725
5726         if (!conf->percpu)
5727                 return;
5728
5729 #ifdef CONFIG_HOTPLUG_CPU
5730         unregister_cpu_notifier(&conf->cpu_notify);
5731 #endif
5732
5733         get_online_cpus();
5734         for_each_possible_cpu(cpu)
5735                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5736         put_online_cpus();
5737
5738         free_percpu(conf->percpu);
5739 }
5740
5741 static void free_conf(struct r5conf *conf)
5742 {
5743         free_thread_groups(conf);
5744         shrink_stripes(conf);
5745         raid5_free_percpu(conf);
5746         kfree(conf->disks);
5747         kfree(conf->stripe_hashtbl);
5748         kfree(conf);
5749 }
5750
5751 #ifdef CONFIG_HOTPLUG_CPU
5752 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5753                               void *hcpu)
5754 {
5755         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5756         long cpu = (long)hcpu;
5757         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5758
5759         switch (action) {
5760         case CPU_UP_PREPARE:
5761         case CPU_UP_PREPARE_FROZEN:
5762                 if (alloc_scratch_buffer(conf, percpu)) {
5763                         pr_err("%s: failed memory allocation for cpu%ld\n",
5764                                __func__, cpu);
5765                         return notifier_from_errno(-ENOMEM);
5766                 }
5767                 break;
5768         case CPU_DEAD:
5769         case CPU_DEAD_FROZEN:
5770                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5771                 break;
5772         default:
5773                 break;
5774         }
5775         return NOTIFY_OK;
5776 }
5777 #endif
5778
5779 static int raid5_alloc_percpu(struct r5conf *conf)
5780 {
5781         unsigned long cpu;
5782         int err = 0;
5783
5784         conf->percpu = alloc_percpu(struct raid5_percpu);
5785         if (!conf->percpu)
5786                 return -ENOMEM;
5787
5788 #ifdef CONFIG_HOTPLUG_CPU
5789         conf->cpu_notify.notifier_call = raid456_cpu_notify;
5790         conf->cpu_notify.priority = 0;
5791         err = register_cpu_notifier(&conf->cpu_notify);
5792         if (err)
5793                 return err;
5794 #endif
5795
5796         get_online_cpus();
5797         for_each_present_cpu(cpu) {
5798                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5799                 if (err) {
5800                         pr_err("%s: failed memory allocation for cpu%ld\n",
5801                                __func__, cpu);
5802                         break;
5803                 }
5804         }
5805         put_online_cpus();
5806
5807         return err;
5808 }
5809
5810 static struct r5conf *setup_conf(struct mddev *mddev)
5811 {
5812         struct r5conf *conf;
5813         int raid_disk, memory, max_disks;
5814         struct md_rdev *rdev;
5815         struct disk_info *disk;
5816         char pers_name[6];
5817         int i;
5818         int group_cnt, worker_cnt_per_group;
5819         struct r5worker_group *new_group;
5820
5821         if (mddev->new_level != 5
5822             && mddev->new_level != 4
5823             && mddev->new_level != 6) {
5824                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5825                        mdname(mddev), mddev->new_level);
5826                 return ERR_PTR(-EIO);
5827         }
5828         if ((mddev->new_level == 5
5829              && !algorithm_valid_raid5(mddev->new_layout)) ||
5830             (mddev->new_level == 6
5831              && !algorithm_valid_raid6(mddev->new_layout))) {
5832                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5833                        mdname(mddev), mddev->new_layout);
5834                 return ERR_PTR(-EIO);
5835         }
5836         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5837                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5838                        mdname(mddev), mddev->raid_disks);
5839                 return ERR_PTR(-EINVAL);
5840         }
5841
5842         if (!mddev->new_chunk_sectors ||
5843             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5844             !is_power_of_2(mddev->new_chunk_sectors)) {
5845                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5846                        mdname(mddev), mddev->new_chunk_sectors << 9);
5847                 return ERR_PTR(-EINVAL);
5848         }
5849
5850         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5851         if (conf == NULL)
5852                 goto abort;
5853         /* Don't enable multi-threading by default*/
5854         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5855                                  &new_group)) {
5856                 conf->group_cnt = group_cnt;
5857                 conf->worker_cnt_per_group = worker_cnt_per_group;
5858                 conf->worker_groups = new_group;
5859         } else
5860                 goto abort;
5861         spin_lock_init(&conf->device_lock);
5862         seqcount_init(&conf->gen_lock);
5863         init_waitqueue_head(&conf->wait_for_stripe);
5864         init_waitqueue_head(&conf->wait_for_overlap);
5865         INIT_LIST_HEAD(&conf->handle_list);
5866         INIT_LIST_HEAD(&conf->hold_list);
5867         INIT_LIST_HEAD(&conf->delayed_list);
5868         INIT_LIST_HEAD(&conf->bitmap_list);
5869         init_llist_head(&conf->released_stripes);
5870         atomic_set(&conf->active_stripes, 0);
5871         atomic_set(&conf->preread_active_stripes, 0);
5872         atomic_set(&conf->active_aligned_reads, 0);
5873         conf->bypass_threshold = BYPASS_THRESHOLD;
5874         conf->recovery_disabled = mddev->recovery_disabled - 1;
5875
5876         conf->raid_disks = mddev->raid_disks;
5877         if (mddev->reshape_position == MaxSector)
5878                 conf->previous_raid_disks = mddev->raid_disks;
5879         else
5880                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5881         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5882         conf->scribble_len = scribble_len(max_disks);
5883
5884         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5885                               GFP_KERNEL);
5886         if (!conf->disks)
5887                 goto abort;
5888
5889         conf->mddev = mddev;
5890
5891         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5892                 goto abort;
5893
5894         /* We init hash_locks[0] separately to that it can be used
5895          * as the reference lock in the spin_lock_nest_lock() call
5896          * in lock_all_device_hash_locks_irq in order to convince
5897          * lockdep that we know what we are doing.
5898          */
5899         spin_lock_init(conf->hash_locks);
5900         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5901                 spin_lock_init(conf->hash_locks + i);
5902
5903         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5904                 INIT_LIST_HEAD(conf->inactive_list + i);
5905
5906         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5907                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
5908
5909         conf->level = mddev->new_level;
5910         if (raid5_alloc_percpu(conf) != 0)
5911                 goto abort;
5912
5913         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5914
5915         rdev_for_each(rdev, mddev) {
5916                 raid_disk = rdev->raid_disk;
5917                 if (raid_disk >= max_disks
5918                     || raid_disk < 0)
5919                         continue;
5920                 disk = conf->disks + raid_disk;
5921
5922                 if (test_bit(Replacement, &rdev->flags)) {
5923                         if (disk->replacement)
5924                                 goto abort;
5925                         disk->replacement = rdev;
5926                 } else {
5927                         if (disk->rdev)
5928                                 goto abort;
5929                         disk->rdev = rdev;
5930                 }
5931
5932                 if (test_bit(In_sync, &rdev->flags)) {
5933                         char b[BDEVNAME_SIZE];
5934                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5935                                " disk %d\n",
5936                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5937                 } else if (rdev->saved_raid_disk != raid_disk)
5938                         /* Cannot rely on bitmap to complete recovery */
5939                         conf->fullsync = 1;
5940         }
5941
5942         conf->chunk_sectors = mddev->new_chunk_sectors;
5943         conf->level = mddev->new_level;
5944         if (conf->level == 6)
5945                 conf->max_degraded = 2;
5946         else
5947                 conf->max_degraded = 1;
5948         conf->algorithm = mddev->new_layout;
5949         conf->reshape_progress = mddev->reshape_position;
5950         if (conf->reshape_progress != MaxSector) {
5951                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5952                 conf->prev_algo = mddev->layout;
5953         }
5954
5955         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5956                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5957         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5958         if (grow_stripes(conf, NR_STRIPES)) {
5959                 printk(KERN_ERR
5960                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5961                        mdname(mddev), memory);
5962                 goto abort;
5963         } else
5964                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5965                        mdname(mddev), memory);
5966
5967         sprintf(pers_name, "raid%d", mddev->new_level);
5968         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5969         if (!conf->thread) {
5970                 printk(KERN_ERR
5971                        "md/raid:%s: couldn't allocate thread.\n",
5972                        mdname(mddev));
5973                 goto abort;
5974         }
5975
5976         return conf;
5977
5978  abort:
5979         if (conf) {
5980                 free_conf(conf);
5981                 return ERR_PTR(-EIO);
5982         } else
5983                 return ERR_PTR(-ENOMEM);
5984 }
5985
5986 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5987 {
5988         switch (algo) {
5989         case ALGORITHM_PARITY_0:
5990                 if (raid_disk < max_degraded)
5991                         return 1;
5992                 break;
5993         case ALGORITHM_PARITY_N:
5994                 if (raid_disk >= raid_disks - max_degraded)
5995                         return 1;
5996                 break;
5997         case ALGORITHM_PARITY_0_6:
5998                 if (raid_disk == 0 ||
5999                     raid_disk == raid_disks - 1)
6000                         return 1;
6001                 break;
6002         case ALGORITHM_LEFT_ASYMMETRIC_6:
6003         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6004         case ALGORITHM_LEFT_SYMMETRIC_6:
6005         case ALGORITHM_RIGHT_SYMMETRIC_6:
6006                 if (raid_disk == raid_disks - 1)
6007                         return 1;
6008         }
6009         return 0;
6010 }
6011
6012 static int run(struct mddev *mddev)
6013 {
6014         struct r5conf *conf;
6015         int working_disks = 0;
6016         int dirty_parity_disks = 0;
6017         struct md_rdev *rdev;
6018         sector_t reshape_offset = 0;
6019         int i;
6020         long long min_offset_diff = 0;
6021         int first = 1;
6022
6023         if (mddev->recovery_cp != MaxSector)
6024                 printk(KERN_NOTICE "md/raid:%s: not clean"
6025                        " -- starting background reconstruction\n",
6026                        mdname(mddev));
6027
6028         rdev_for_each(rdev, mddev) {
6029                 long long diff;
6030                 if (rdev->raid_disk < 0)
6031                         continue;
6032                 diff = (rdev->new_data_offset - rdev->data_offset);
6033                 if (first) {
6034                         min_offset_diff = diff;
6035                         first = 0;
6036                 } else if (mddev->reshape_backwards &&
6037                          diff < min_offset_diff)
6038                         min_offset_diff = diff;
6039                 else if (!mddev->reshape_backwards &&
6040                          diff > min_offset_diff)
6041                         min_offset_diff = diff;
6042         }
6043
6044         if (mddev->reshape_position != MaxSector) {
6045                 /* Check that we can continue the reshape.
6046                  * Difficulties arise if the stripe we would write to
6047                  * next is at or after the stripe we would read from next.
6048                  * For a reshape that changes the number of devices, this
6049                  * is only possible for a very short time, and mdadm makes
6050                  * sure that time appears to have past before assembling
6051                  * the array.  So we fail if that time hasn't passed.
6052                  * For a reshape that keeps the number of devices the same
6053                  * mdadm must be monitoring the reshape can keeping the
6054                  * critical areas read-only and backed up.  It will start
6055                  * the array in read-only mode, so we check for that.
6056                  */
6057                 sector_t here_new, here_old;
6058                 int old_disks;
6059                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6060
6061                 if (mddev->new_level != mddev->level) {
6062                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6063                                "required - aborting.\n",
6064                                mdname(mddev));
6065                         return -EINVAL;
6066                 }
6067                 old_disks = mddev->raid_disks - mddev->delta_disks;
6068                 /* reshape_position must be on a new-stripe boundary, and one
6069                  * further up in new geometry must map after here in old
6070                  * geometry.
6071                  */
6072                 here_new = mddev->reshape_position;
6073                 if (sector_div(here_new, mddev->new_chunk_sectors *
6074                                (mddev->raid_disks - max_degraded))) {
6075                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6076                                "on a stripe boundary\n", mdname(mddev));
6077                         return -EINVAL;
6078                 }
6079                 reshape_offset = here_new * mddev->new_chunk_sectors;
6080                 /* here_new is the stripe we will write to */
6081                 here_old = mddev->reshape_position;
6082                 sector_div(here_old, mddev->chunk_sectors *
6083                            (old_disks-max_degraded));
6084                 /* here_old is the first stripe that we might need to read
6085                  * from */
6086                 if (mddev->delta_disks == 0) {
6087                         if ((here_new * mddev->new_chunk_sectors !=
6088                              here_old * mddev->chunk_sectors)) {
6089                                 printk(KERN_ERR "md/raid:%s: reshape position is"
6090                                        " confused - aborting\n", mdname(mddev));
6091                                 return -EINVAL;
6092                         }
6093                         /* We cannot be sure it is safe to start an in-place
6094                          * reshape.  It is only safe if user-space is monitoring
6095                          * and taking constant backups.
6096                          * mdadm always starts a situation like this in
6097                          * readonly mode so it can take control before
6098                          * allowing any writes.  So just check for that.
6099                          */
6100                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6101                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6102                                 /* not really in-place - so OK */;
6103                         else if (mddev->ro == 0) {
6104                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6105                                        "must be started in read-only mode "
6106                                        "- aborting\n",
6107                                        mdname(mddev));
6108                                 return -EINVAL;
6109                         }
6110                 } else if (mddev->reshape_backwards
6111                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6112                        here_old * mddev->chunk_sectors)
6113                     : (here_new * mddev->new_chunk_sectors >=
6114                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6115                         /* Reading from the same stripe as writing to - bad */
6116                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6117                                "auto-recovery - aborting.\n",
6118                                mdname(mddev));
6119                         return -EINVAL;
6120                 }
6121                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6122                        mdname(mddev));
6123                 /* OK, we should be able to continue; */
6124         } else {
6125                 BUG_ON(mddev->level != mddev->new_level);
6126                 BUG_ON(mddev->layout != mddev->new_layout);
6127                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6128                 BUG_ON(mddev->delta_disks != 0);
6129         }
6130
6131         if (mddev->private == NULL)
6132                 conf = setup_conf(mddev);
6133         else
6134                 conf = mddev->private;
6135
6136         if (IS_ERR(conf))
6137                 return PTR_ERR(conf);
6138
6139         conf->min_offset_diff = min_offset_diff;
6140         mddev->thread = conf->thread;
6141         conf->thread = NULL;
6142         mddev->private = conf;
6143
6144         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6145              i++) {
6146                 rdev = conf->disks[i].rdev;
6147                 if (!rdev && conf->disks[i].replacement) {
6148                         /* The replacement is all we have yet */
6149                         rdev = conf->disks[i].replacement;
6150                         conf->disks[i].replacement = NULL;
6151                         clear_bit(Replacement, &rdev->flags);
6152                         conf->disks[i].rdev = rdev;
6153                 }
6154                 if (!rdev)
6155                         continue;
6156                 if (conf->disks[i].replacement &&
6157                     conf->reshape_progress != MaxSector) {
6158                         /* replacements and reshape simply do not mix. */
6159                         printk(KERN_ERR "md: cannot handle concurrent "
6160                                "replacement and reshape.\n");
6161                         goto abort;
6162                 }
6163                 if (test_bit(In_sync, &rdev->flags)) {
6164                         working_disks++;
6165                         continue;
6166                 }
6167                 /* This disc is not fully in-sync.  However if it
6168                  * just stored parity (beyond the recovery_offset),
6169                  * when we don't need to be concerned about the
6170                  * array being dirty.
6171                  * When reshape goes 'backwards', we never have
6172                  * partially completed devices, so we only need
6173                  * to worry about reshape going forwards.
6174                  */
6175                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6176                 if (mddev->major_version == 0 &&
6177                     mddev->minor_version > 90)
6178                         rdev->recovery_offset = reshape_offset;
6179
6180                 if (rdev->recovery_offset < reshape_offset) {
6181                         /* We need to check old and new layout */
6182                         if (!only_parity(rdev->raid_disk,
6183                                          conf->algorithm,
6184                                          conf->raid_disks,
6185                                          conf->max_degraded))
6186                                 continue;
6187                 }
6188                 if (!only_parity(rdev->raid_disk,
6189                                  conf->prev_algo,
6190                                  conf->previous_raid_disks,
6191                                  conf->max_degraded))
6192                         continue;
6193                 dirty_parity_disks++;
6194         }
6195
6196         /*
6197          * 0 for a fully functional array, 1 or 2 for a degraded array.
6198          */
6199         mddev->degraded = calc_degraded(conf);
6200
6201         if (has_failed(conf)) {
6202                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6203                         " (%d/%d failed)\n",
6204                         mdname(mddev), mddev->degraded, conf->raid_disks);
6205                 goto abort;
6206         }
6207
6208         /* device size must be a multiple of chunk size */
6209         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6210         mddev->resync_max_sectors = mddev->dev_sectors;
6211
6212         if (mddev->degraded > dirty_parity_disks &&
6213             mddev->recovery_cp != MaxSector) {
6214                 if (mddev->ok_start_degraded)
6215                         printk(KERN_WARNING
6216                                "md/raid:%s: starting dirty degraded array"
6217                                " - data corruption possible.\n",
6218                                mdname(mddev));
6219                 else {
6220                         printk(KERN_ERR
6221                                "md/raid:%s: cannot start dirty degraded array.\n",
6222                                mdname(mddev));
6223                         goto abort;
6224                 }
6225         }
6226
6227         if (mddev->degraded == 0)
6228                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6229                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6230                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6231                        mddev->new_layout);
6232         else
6233                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6234                        " out of %d devices, algorithm %d\n",
6235                        mdname(mddev), conf->level,
6236                        mddev->raid_disks - mddev->degraded,
6237                        mddev->raid_disks, mddev->new_layout);
6238
6239         print_raid5_conf(conf);
6240
6241         if (conf->reshape_progress != MaxSector) {
6242                 conf->reshape_safe = conf->reshape_progress;
6243                 atomic_set(&conf->reshape_stripes, 0);
6244                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6245                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6246                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6247                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6248                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6249                                                         "reshape");
6250         }
6251
6252         /* Ok, everything is just fine now */
6253         if (mddev->to_remove == &raid5_attrs_group)
6254                 mddev->to_remove = NULL;
6255         else if (mddev->kobj.sd &&
6256             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6257                 printk(KERN_WARNING
6258                        "raid5: failed to create sysfs attributes for %s\n",
6259                        mdname(mddev));
6260         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6261
6262         if (mddev->queue) {
6263                 int chunk_size;
6264                 bool discard_supported = true;
6265                 /* read-ahead size must cover two whole stripes, which
6266                  * is 2 * (datadisks) * chunksize where 'n' is the
6267                  * number of raid devices
6268                  */
6269                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6270                 int stripe = data_disks *
6271                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6272                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6273                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6274
6275                 chunk_size = mddev->chunk_sectors << 9;
6276                 blk_queue_io_min(mddev->queue, chunk_size);
6277                 blk_queue_io_opt(mddev->queue, chunk_size *
6278                                  (conf->raid_disks - conf->max_degraded));
6279                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6280                 /*
6281                  * We can only discard a whole stripe. It doesn't make sense to
6282                  * discard data disk but write parity disk
6283                  */
6284                 stripe = stripe * PAGE_SIZE;
6285                 /* Round up to power of 2, as discard handling
6286                  * currently assumes that */
6287                 while ((stripe-1) & stripe)
6288                         stripe = (stripe | (stripe-1)) + 1;
6289                 mddev->queue->limits.discard_alignment = stripe;
6290                 mddev->queue->limits.discard_granularity = stripe;
6291                 /*
6292                  * unaligned part of discard request will be ignored, so can't
6293                  * guarantee discard_zeroes_data
6294                  */
6295                 mddev->queue->limits.discard_zeroes_data = 0;
6296
6297                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6298
6299                 rdev_for_each(rdev, mddev) {
6300                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6301                                           rdev->data_offset << 9);
6302                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6303                                           rdev->new_data_offset << 9);
6304                         /*
6305                          * discard_zeroes_data is required, otherwise data
6306                          * could be lost. Consider a scenario: discard a stripe
6307                          * (the stripe could be inconsistent if
6308                          * discard_zeroes_data is 0); write one disk of the
6309                          * stripe (the stripe could be inconsistent again
6310                          * depending on which disks are used to calculate
6311                          * parity); the disk is broken; The stripe data of this
6312                          * disk is lost.
6313                          */
6314                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6315                             !bdev_get_queue(rdev->bdev)->
6316                                                 limits.discard_zeroes_data)
6317                                 discard_supported = false;
6318                         /* Unfortunately, discard_zeroes_data is not currently
6319                          * a guarantee - just a hint.  So we only allow DISCARD
6320                          * if the sysadmin has confirmed that only safe devices
6321                          * are in use by setting a module parameter.
6322                          */
6323                         if (!devices_handle_discard_safely) {
6324                                 if (discard_supported) {
6325                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6326                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6327                                 }
6328                                 discard_supported = false;
6329                         }
6330                 }
6331
6332                 if (discard_supported &&
6333                    mddev->queue->limits.max_discard_sectors >= stripe &&
6334                    mddev->queue->limits.discard_granularity >= stripe)
6335                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6336                                                 mddev->queue);
6337                 else
6338                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6339                                                 mddev->queue);
6340         }
6341
6342         return 0;
6343 abort:
6344         md_unregister_thread(&mddev->thread);
6345         print_raid5_conf(conf);
6346         free_conf(conf);
6347         mddev->private = NULL;
6348         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6349         return -EIO;
6350 }
6351
6352 static void raid5_free(struct mddev *mddev, void *priv)
6353 {
6354         struct r5conf *conf = priv;
6355
6356         free_conf(conf);
6357         mddev->to_remove = &raid5_attrs_group;
6358 }
6359
6360 static void status(struct seq_file *seq, struct mddev *mddev)
6361 {
6362         struct r5conf *conf = mddev->private;
6363         int i;
6364
6365         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6366                 mddev->chunk_sectors / 2, mddev->layout);
6367         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6368         for (i = 0; i < conf->raid_disks; i++)
6369                 seq_printf (seq, "%s",
6370                                conf->disks[i].rdev &&
6371                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6372         seq_printf (seq, "]");
6373 }
6374
6375 static void print_raid5_conf (struct r5conf *conf)
6376 {
6377         int i;
6378         struct disk_info *tmp;
6379
6380         printk(KERN_DEBUG "RAID conf printout:\n");
6381         if (!conf) {
6382                 printk("(conf==NULL)\n");
6383                 return;
6384         }
6385         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6386                conf->raid_disks,
6387                conf->raid_disks - conf->mddev->degraded);
6388
6389         for (i = 0; i < conf->raid_disks; i++) {
6390                 char b[BDEVNAME_SIZE];
6391                 tmp = conf->disks + i;
6392                 if (tmp->rdev)
6393                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6394                                i, !test_bit(Faulty, &tmp->rdev->flags),
6395                                bdevname(tmp->rdev->bdev, b));
6396         }
6397 }
6398
6399 static int raid5_spare_active(struct mddev *mddev)
6400 {
6401         int i;
6402         struct r5conf *conf = mddev->private;
6403         struct disk_info *tmp;
6404         int count = 0;
6405         unsigned long flags;
6406
6407         for (i = 0; i < conf->raid_disks; i++) {
6408                 tmp = conf->disks + i;
6409                 if (tmp->replacement
6410                     && tmp->replacement->recovery_offset == MaxSector
6411                     && !test_bit(Faulty, &tmp->replacement->flags)
6412                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6413                         /* Replacement has just become active. */
6414                         if (!tmp->rdev
6415                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6416                                 count++;
6417                         if (tmp->rdev) {
6418                                 /* Replaced device not technically faulty,
6419                                  * but we need to be sure it gets removed
6420                                  * and never re-added.
6421                                  */
6422                                 set_bit(Faulty, &tmp->rdev->flags);
6423                                 sysfs_notify_dirent_safe(
6424                                         tmp->rdev->sysfs_state);
6425                         }
6426                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6427                 } else if (tmp->rdev
6428                     && tmp->rdev->recovery_offset == MaxSector
6429                     && !test_bit(Faulty, &tmp->rdev->flags)
6430                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6431                         count++;
6432                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6433                 }
6434         }
6435         spin_lock_irqsave(&conf->device_lock, flags);
6436         mddev->degraded = calc_degraded(conf);
6437         spin_unlock_irqrestore(&conf->device_lock, flags);
6438         print_raid5_conf(conf);
6439         return count;
6440 }
6441
6442 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6443 {
6444         struct r5conf *conf = mddev->private;
6445         int err = 0;
6446         int number = rdev->raid_disk;
6447         struct md_rdev **rdevp;
6448         struct disk_info *p = conf->disks + number;
6449
6450         print_raid5_conf(conf);
6451         if (rdev == p->rdev)
6452                 rdevp = &p->rdev;
6453         else if (rdev == p->replacement)
6454                 rdevp = &p->replacement;
6455         else
6456                 return 0;
6457
6458         if (number >= conf->raid_disks &&
6459             conf->reshape_progress == MaxSector)
6460                 clear_bit(In_sync, &rdev->flags);
6461
6462         if (test_bit(In_sync, &rdev->flags) ||
6463             atomic_read(&rdev->nr_pending)) {
6464                 err = -EBUSY;
6465                 goto abort;
6466         }
6467         /* Only remove non-faulty devices if recovery
6468          * isn't possible.
6469          */
6470         if (!test_bit(Faulty, &rdev->flags) &&
6471             mddev->recovery_disabled != conf->recovery_disabled &&
6472             !has_failed(conf) &&
6473             (!p->replacement || p->replacement == rdev) &&
6474             number < conf->raid_disks) {
6475                 err = -EBUSY;
6476                 goto abort;
6477         }
6478         *rdevp = NULL;
6479         synchronize_rcu();
6480         if (atomic_read(&rdev->nr_pending)) {
6481                 /* lost the race, try later */
6482                 err = -EBUSY;
6483                 *rdevp = rdev;
6484         } else if (p->replacement) {
6485                 /* We must have just cleared 'rdev' */
6486                 p->rdev = p->replacement;
6487                 clear_bit(Replacement, &p->replacement->flags);
6488                 smp_mb(); /* Make sure other CPUs may see both as identical
6489                            * but will never see neither - if they are careful
6490                            */
6491                 p->replacement = NULL;
6492                 clear_bit(WantReplacement, &rdev->flags);
6493         } else
6494                 /* We might have just removed the Replacement as faulty-
6495                  * clear the bit just in case
6496                  */
6497                 clear_bit(WantReplacement, &rdev->flags);
6498 abort:
6499
6500         print_raid5_conf(conf);
6501         return err;
6502 }
6503
6504 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6505 {
6506         struct r5conf *conf = mddev->private;
6507         int err = -EEXIST;
6508         int disk;
6509         struct disk_info *p;
6510         int first = 0;
6511         int last = conf->raid_disks - 1;
6512
6513         if (mddev->recovery_disabled == conf->recovery_disabled)
6514                 return -EBUSY;
6515
6516         if (rdev->saved_raid_disk < 0 && has_failed(conf))
6517                 /* no point adding a device */
6518                 return -EINVAL;
6519
6520         if (rdev->raid_disk >= 0)
6521                 first = last = rdev->raid_disk;
6522
6523         /*
6524          * find the disk ... but prefer rdev->saved_raid_disk
6525          * if possible.
6526          */
6527         if (rdev->saved_raid_disk >= 0 &&
6528             rdev->saved_raid_disk >= first &&
6529             conf->disks[rdev->saved_raid_disk].rdev == NULL)
6530                 first = rdev->saved_raid_disk;
6531
6532         for (disk = first; disk <= last; disk++) {
6533                 p = conf->disks + disk;
6534                 if (p->rdev == NULL) {
6535                         clear_bit(In_sync, &rdev->flags);
6536                         rdev->raid_disk = disk;
6537                         err = 0;
6538                         if (rdev->saved_raid_disk != disk)
6539                                 conf->fullsync = 1;
6540                         rcu_assign_pointer(p->rdev, rdev);
6541                         goto out;
6542                 }
6543         }
6544         for (disk = first; disk <= last; disk++) {
6545                 p = conf->disks + disk;
6546                 if (test_bit(WantReplacement, &p->rdev->flags) &&
6547                     p->replacement == NULL) {
6548                         clear_bit(In_sync, &rdev->flags);
6549                         set_bit(Replacement, &rdev->flags);
6550                         rdev->raid_disk = disk;
6551                         err = 0;
6552                         conf->fullsync = 1;
6553                         rcu_assign_pointer(p->replacement, rdev);
6554                         break;
6555                 }
6556         }
6557 out:
6558         print_raid5_conf(conf);
6559         return err;
6560 }
6561
6562 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6563 {
6564         /* no resync is happening, and there is enough space
6565          * on all devices, so we can resize.
6566          * We need to make sure resync covers any new space.
6567          * If the array is shrinking we should possibly wait until
6568          * any io in the removed space completes, but it hardly seems
6569          * worth it.
6570          */
6571         sector_t newsize;
6572         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6573         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6574         if (mddev->external_size &&
6575             mddev->array_sectors > newsize)
6576                 return -EINVAL;
6577         if (mddev->bitmap) {
6578                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6579                 if (ret)
6580                         return ret;
6581         }
6582         md_set_array_sectors(mddev, newsize);
6583         set_capacity(mddev->gendisk, mddev->array_sectors);
6584         revalidate_disk(mddev->gendisk);
6585         if (sectors > mddev->dev_sectors &&
6586             mddev->recovery_cp > mddev->dev_sectors) {
6587                 mddev->recovery_cp = mddev->dev_sectors;
6588                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6589         }
6590         mddev->dev_sectors = sectors;
6591         mddev->resync_max_sectors = sectors;
6592         return 0;
6593 }
6594
6595 static int check_stripe_cache(struct mddev *mddev)
6596 {
6597         /* Can only proceed if there are plenty of stripe_heads.
6598          * We need a minimum of one full stripe,, and for sensible progress
6599          * it is best to have about 4 times that.
6600          * If we require 4 times, then the default 256 4K stripe_heads will
6601          * allow for chunk sizes up to 256K, which is probably OK.
6602          * If the chunk size is greater, user-space should request more
6603          * stripe_heads first.
6604          */
6605         struct r5conf *conf = mddev->private;
6606         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6607             > conf->max_nr_stripes ||
6608             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6609             > conf->max_nr_stripes) {
6610                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6611                        mdname(mddev),
6612                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6613                         / STRIPE_SIZE)*4);
6614                 return 0;
6615         }
6616         return 1;
6617 }
6618
6619 static int check_reshape(struct mddev *mddev)
6620 {
6621         struct r5conf *conf = mddev->private;
6622
6623         if (mddev->delta_disks == 0 &&
6624             mddev->new_layout == mddev->layout &&
6625             mddev->new_chunk_sectors == mddev->chunk_sectors)
6626                 return 0; /* nothing to do */
6627         if (has_failed(conf))
6628                 return -EINVAL;
6629         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6630                 /* We might be able to shrink, but the devices must
6631                  * be made bigger first.
6632                  * For raid6, 4 is the minimum size.
6633                  * Otherwise 2 is the minimum
6634                  */
6635                 int min = 2;
6636                 if (mddev->level == 6)
6637                         min = 4;
6638                 if (mddev->raid_disks + mddev->delta_disks < min)
6639                         return -EINVAL;
6640         }
6641
6642         if (!check_stripe_cache(mddev))
6643                 return -ENOSPC;
6644
6645         return resize_stripes(conf, (conf->previous_raid_disks
6646                                      + mddev->delta_disks));
6647 }
6648
6649 static int raid5_start_reshape(struct mddev *mddev)
6650 {
6651         struct r5conf *conf = mddev->private;
6652         struct md_rdev *rdev;
6653         int spares = 0;
6654         unsigned long flags;
6655
6656         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6657                 return -EBUSY;
6658
6659         if (!check_stripe_cache(mddev))
6660                 return -ENOSPC;
6661
6662         if (has_failed(conf))
6663                 return -EINVAL;
6664
6665         rdev_for_each(rdev, mddev) {
6666                 if (!test_bit(In_sync, &rdev->flags)
6667                     && !test_bit(Faulty, &rdev->flags))
6668                         spares++;
6669         }
6670
6671         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6672                 /* Not enough devices even to make a degraded array
6673                  * of that size
6674                  */
6675                 return -EINVAL;
6676
6677         /* Refuse to reduce size of the array.  Any reductions in
6678          * array size must be through explicit setting of array_size
6679          * attribute.
6680          */
6681         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6682             < mddev->array_sectors) {
6683                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
6684                        "before number of disks\n", mdname(mddev));
6685                 return -EINVAL;
6686         }
6687
6688         atomic_set(&conf->reshape_stripes, 0);
6689         spin_lock_irq(&conf->device_lock);
6690         write_seqcount_begin(&conf->gen_lock);
6691         conf->previous_raid_disks = conf->raid_disks;
6692         conf->raid_disks += mddev->delta_disks;
6693         conf->prev_chunk_sectors = conf->chunk_sectors;
6694         conf->chunk_sectors = mddev->new_chunk_sectors;
6695         conf->prev_algo = conf->algorithm;
6696         conf->algorithm = mddev->new_layout;
6697         conf->generation++;
6698         /* Code that selects data_offset needs to see the generation update
6699          * if reshape_progress has been set - so a memory barrier needed.
6700          */
6701         smp_mb();
6702         if (mddev->reshape_backwards)
6703                 conf->reshape_progress = raid5_size(mddev, 0, 0);
6704         else
6705                 conf->reshape_progress = 0;
6706         conf->reshape_safe = conf->reshape_progress;
6707         write_seqcount_end(&conf->gen_lock);
6708         spin_unlock_irq(&conf->device_lock);
6709
6710         /* Now make sure any requests that proceeded on the assumption
6711          * the reshape wasn't running - like Discard or Read - have
6712          * completed.
6713          */
6714         mddev_suspend(mddev);
6715         mddev_resume(mddev);
6716
6717         /* Add some new drives, as many as will fit.
6718          * We know there are enough to make the newly sized array work.
6719          * Don't add devices if we are reducing the number of
6720          * devices in the array.  This is because it is not possible
6721          * to correctly record the "partially reconstructed" state of
6722          * such devices during the reshape and confusion could result.
6723          */
6724         if (mddev->delta_disks >= 0) {
6725                 rdev_for_each(rdev, mddev)
6726                         if (rdev->raid_disk < 0 &&
6727                             !test_bit(Faulty, &rdev->flags)) {
6728                                 if (raid5_add_disk(mddev, rdev) == 0) {
6729                                         if (rdev->raid_disk
6730                                             >= conf->previous_raid_disks)
6731                                                 set_bit(In_sync, &rdev->flags);
6732                                         else
6733                                                 rdev->recovery_offset = 0;
6734
6735                                         if (sysfs_link_rdev(mddev, rdev))
6736                                                 /* Failure here is OK */;
6737                                 }
6738                         } else if (rdev->raid_disk >= conf->previous_raid_disks
6739                                    && !test_bit(Faulty, &rdev->flags)) {
6740                                 /* This is a spare that was manually added */
6741                                 set_bit(In_sync, &rdev->flags);
6742                         }
6743
6744                 /* When a reshape changes the number of devices,
6745                  * ->degraded is measured against the larger of the
6746                  * pre and post number of devices.
6747                  */
6748                 spin_lock_irqsave(&conf->device_lock, flags);
6749                 mddev->degraded = calc_degraded(conf);
6750                 spin_unlock_irqrestore(&conf->device_lock, flags);
6751         }
6752         mddev->raid_disks = conf->raid_disks;
6753         mddev->reshape_position = conf->reshape_progress;
6754         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6755
6756         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6757         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6758         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6759         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6760         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6761                                                 "reshape");
6762         if (!mddev->sync_thread) {
6763                 mddev->recovery = 0;
6764                 spin_lock_irq(&conf->device_lock);
6765                 write_seqcount_begin(&conf->gen_lock);
6766                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6767                 mddev->new_chunk_sectors =
6768                         conf->chunk_sectors = conf->prev_chunk_sectors;
6769                 mddev->new_layout = conf->algorithm = conf->prev_algo;
6770                 rdev_for_each(rdev, mddev)
6771                         rdev->new_data_offset = rdev->data_offset;
6772                 smp_wmb();
6773                 conf->generation --;
6774                 conf->reshape_progress = MaxSector;
6775                 mddev->reshape_position = MaxSector;
6776                 write_seqcount_end(&conf->gen_lock);
6777                 spin_unlock_irq(&conf->device_lock);
6778                 return -EAGAIN;
6779         }
6780         conf->reshape_checkpoint = jiffies;
6781         md_wakeup_thread(mddev->sync_thread);
6782         md_new_event(mddev);
6783         return 0;
6784 }
6785
6786 /* This is called from the reshape thread and should make any
6787  * changes needed in 'conf'
6788  */
6789 static void end_reshape(struct r5conf *conf)
6790 {
6791
6792         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6793                 struct md_rdev *rdev;
6794
6795                 spin_lock_irq(&conf->device_lock);
6796                 conf->previous_raid_disks = conf->raid_disks;
6797                 rdev_for_each(rdev, conf->mddev)
6798                         rdev->data_offset = rdev->new_data_offset;
6799                 smp_wmb();
6800                 conf->reshape_progress = MaxSector;
6801                 spin_unlock_irq(&conf->device_lock);
6802                 wake_up(&conf->wait_for_overlap);
6803
6804                 /* read-ahead size must cover two whole stripes, which is
6805                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6806                  */
6807                 if (conf->mddev->queue) {
6808                         int data_disks = conf->raid_disks - conf->max_degraded;
6809                         int stripe = data_disks * ((conf->chunk_sectors << 9)
6810                                                    / PAGE_SIZE);
6811                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6812                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6813                 }
6814         }
6815 }
6816
6817 /* This is called from the raid5d thread with mddev_lock held.
6818  * It makes config changes to the device.
6819  */
6820 static void raid5_finish_reshape(struct mddev *mddev)
6821 {
6822         struct r5conf *conf = mddev->private;
6823
6824         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6825
6826                 if (mddev->delta_disks > 0) {
6827                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6828                         set_capacity(mddev->gendisk, mddev->array_sectors);
6829                         revalidate_disk(mddev->gendisk);
6830                 } else {
6831                         int d;
6832                         spin_lock_irq(&conf->device_lock);
6833                         mddev->degraded = calc_degraded(conf);
6834                         spin_unlock_irq(&conf->device_lock);
6835                         for (d = conf->raid_disks ;
6836                              d < conf->raid_disks - mddev->delta_disks;
6837                              d++) {
6838                                 struct md_rdev *rdev = conf->disks[d].rdev;
6839                                 if (rdev)
6840                                         clear_bit(In_sync, &rdev->flags);
6841                                 rdev = conf->disks[d].replacement;
6842                                 if (rdev)
6843                                         clear_bit(In_sync, &rdev->flags);
6844                         }
6845                 }
6846                 mddev->layout = conf->algorithm;
6847                 mddev->chunk_sectors = conf->chunk_sectors;
6848                 mddev->reshape_position = MaxSector;
6849                 mddev->delta_disks = 0;
6850                 mddev->reshape_backwards = 0;
6851         }
6852 }
6853
6854 static void raid5_quiesce(struct mddev *mddev, int state)
6855 {
6856         struct r5conf *conf = mddev->private;
6857
6858         switch(state) {
6859         case 2: /* resume for a suspend */
6860                 wake_up(&conf->wait_for_overlap);
6861                 break;
6862
6863         case 1: /* stop all writes */
6864                 lock_all_device_hash_locks_irq(conf);
6865                 /* '2' tells resync/reshape to pause so that all
6866                  * active stripes can drain
6867                  */
6868                 conf->quiesce = 2;
6869                 wait_event_cmd(conf->wait_for_stripe,
6870                                     atomic_read(&conf->active_stripes) == 0 &&
6871                                     atomic_read(&conf->active_aligned_reads) == 0,
6872                                     unlock_all_device_hash_locks_irq(conf),
6873                                     lock_all_device_hash_locks_irq(conf));
6874                 conf->quiesce = 1;
6875                 unlock_all_device_hash_locks_irq(conf);
6876                 /* allow reshape to continue */
6877                 wake_up(&conf->wait_for_overlap);
6878                 break;
6879
6880         case 0: /* re-enable writes */
6881                 lock_all_device_hash_locks_irq(conf);
6882                 conf->quiesce = 0;
6883                 wake_up(&conf->wait_for_stripe);
6884                 wake_up(&conf->wait_for_overlap);
6885                 unlock_all_device_hash_locks_irq(conf);
6886                 break;
6887         }
6888 }
6889
6890 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6891 {
6892         struct r0conf *raid0_conf = mddev->private;
6893         sector_t sectors;
6894
6895         /* for raid0 takeover only one zone is supported */
6896         if (raid0_conf->nr_strip_zones > 1) {
6897                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6898                        mdname(mddev));
6899                 return ERR_PTR(-EINVAL);
6900         }
6901
6902         sectors = raid0_conf->strip_zone[0].zone_end;
6903         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6904         mddev->dev_sectors = sectors;
6905         mddev->new_level = level;
6906         mddev->new_layout = ALGORITHM_PARITY_N;
6907         mddev->new_chunk_sectors = mddev->chunk_sectors;
6908         mddev->raid_disks += 1;
6909         mddev->delta_disks = 1;
6910         /* make sure it will be not marked as dirty */
6911         mddev->recovery_cp = MaxSector;
6912
6913         return setup_conf(mddev);
6914 }
6915
6916 static void *raid5_takeover_raid1(struct mddev *mddev)
6917 {
6918         int chunksect;
6919
6920         if (mddev->raid_disks != 2 ||
6921             mddev->degraded > 1)
6922                 return ERR_PTR(-EINVAL);
6923
6924         /* Should check if there are write-behind devices? */
6925
6926         chunksect = 64*2; /* 64K by default */
6927
6928         /* The array must be an exact multiple of chunksize */
6929         while (chunksect && (mddev->array_sectors & (chunksect-1)))
6930                 chunksect >>= 1;
6931
6932         if ((chunksect<<9) < STRIPE_SIZE)
6933                 /* array size does not allow a suitable chunk size */
6934                 return ERR_PTR(-EINVAL);
6935
6936         mddev->new_level = 5;
6937         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6938         mddev->new_chunk_sectors = chunksect;
6939
6940         return setup_conf(mddev);
6941 }
6942
6943 static void *raid5_takeover_raid6(struct mddev *mddev)
6944 {
6945         int new_layout;
6946
6947         switch (mddev->layout) {
6948         case ALGORITHM_LEFT_ASYMMETRIC_6:
6949                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6950                 break;
6951         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6952                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6953                 break;
6954         case ALGORITHM_LEFT_SYMMETRIC_6:
6955                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6956                 break;
6957         case ALGORITHM_RIGHT_SYMMETRIC_6:
6958                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6959                 break;
6960         case ALGORITHM_PARITY_0_6:
6961                 new_layout = ALGORITHM_PARITY_0;
6962                 break;
6963         case ALGORITHM_PARITY_N:
6964                 new_layout = ALGORITHM_PARITY_N;
6965                 break;
6966         default:
6967                 return ERR_PTR(-EINVAL);
6968         }
6969         mddev->new_level = 5;
6970         mddev->new_layout = new_layout;
6971         mddev->delta_disks = -1;
6972         mddev->raid_disks -= 1;
6973         return setup_conf(mddev);
6974 }
6975
6976 static int raid5_check_reshape(struct mddev *mddev)
6977 {
6978         /* For a 2-drive array, the layout and chunk size can be changed
6979          * immediately as not restriping is needed.
6980          * For larger arrays we record the new value - after validation
6981          * to be used by a reshape pass.
6982          */
6983         struct r5conf *conf = mddev->private;
6984         int new_chunk = mddev->new_chunk_sectors;
6985
6986         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6987                 return -EINVAL;
6988         if (new_chunk > 0) {
6989                 if (!is_power_of_2(new_chunk))
6990                         return -EINVAL;
6991                 if (new_chunk < (PAGE_SIZE>>9))
6992                         return -EINVAL;
6993                 if (mddev->array_sectors & (new_chunk-1))
6994                         /* not factor of array size */
6995                         return -EINVAL;
6996         }
6997
6998         /* They look valid */
6999
7000         if (mddev->raid_disks == 2) {
7001                 /* can make the change immediately */
7002                 if (mddev->new_layout >= 0) {
7003                         conf->algorithm = mddev->new_layout;
7004                         mddev->layout = mddev->new_layout;
7005                 }
7006                 if (new_chunk > 0) {
7007                         conf->chunk_sectors = new_chunk ;
7008                         mddev->chunk_sectors = new_chunk;
7009                 }
7010                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7011                 md_wakeup_thread(mddev->thread);
7012         }
7013         return check_reshape(mddev);
7014 }
7015
7016 static int raid6_check_reshape(struct mddev *mddev)
7017 {
7018         int new_chunk = mddev->new_chunk_sectors;
7019
7020         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7021                 return -EINVAL;
7022         if (new_chunk > 0) {
7023                 if (!is_power_of_2(new_chunk))
7024                         return -EINVAL;
7025                 if (new_chunk < (PAGE_SIZE >> 9))
7026                         return -EINVAL;
7027                 if (mddev->array_sectors & (new_chunk-1))
7028                         /* not factor of array size */
7029                         return -EINVAL;
7030         }
7031
7032         /* They look valid */
7033         return check_reshape(mddev);
7034 }
7035
7036 static void *raid5_takeover(struct mddev *mddev)
7037 {
7038         /* raid5 can take over:
7039          *  raid0 - if there is only one strip zone - make it a raid4 layout
7040          *  raid1 - if there are two drives.  We need to know the chunk size
7041          *  raid4 - trivial - just use a raid4 layout.
7042          *  raid6 - Providing it is a *_6 layout
7043          */
7044         if (mddev->level == 0)
7045                 return raid45_takeover_raid0(mddev, 5);
7046         if (mddev->level == 1)
7047                 return raid5_takeover_raid1(mddev);
7048         if (mddev->level == 4) {
7049                 mddev->new_layout = ALGORITHM_PARITY_N;
7050                 mddev->new_level = 5;
7051                 return setup_conf(mddev);
7052         }
7053         if (mddev->level == 6)
7054                 return raid5_takeover_raid6(mddev);
7055
7056         return ERR_PTR(-EINVAL);
7057 }
7058
7059 static void *raid4_takeover(struct mddev *mddev)
7060 {
7061         /* raid4 can take over:
7062          *  raid0 - if there is only one strip zone
7063          *  raid5 - if layout is right
7064          */
7065         if (mddev->level == 0)
7066                 return raid45_takeover_raid0(mddev, 4);
7067         if (mddev->level == 5 &&
7068             mddev->layout == ALGORITHM_PARITY_N) {
7069                 mddev->new_layout = 0;
7070                 mddev->new_level = 4;
7071                 return setup_conf(mddev);
7072         }
7073         return ERR_PTR(-EINVAL);
7074 }
7075
7076 static struct md_personality raid5_personality;
7077
7078 static void *raid6_takeover(struct mddev *mddev)
7079 {
7080         /* Currently can only take over a raid5.  We map the
7081          * personality to an equivalent raid6 personality
7082          * with the Q block at the end.
7083          */
7084         int new_layout;
7085
7086         if (mddev->pers != &raid5_personality)
7087                 return ERR_PTR(-EINVAL);
7088         if (mddev->degraded > 1)
7089                 return ERR_PTR(-EINVAL);
7090         if (mddev->raid_disks > 253)
7091                 return ERR_PTR(-EINVAL);
7092         if (mddev->raid_disks < 3)
7093                 return ERR_PTR(-EINVAL);
7094
7095         switch (mddev->layout) {
7096         case ALGORITHM_LEFT_ASYMMETRIC:
7097                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7098                 break;
7099         case ALGORITHM_RIGHT_ASYMMETRIC:
7100                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7101                 break;
7102         case ALGORITHM_LEFT_SYMMETRIC:
7103                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7104                 break;
7105         case ALGORITHM_RIGHT_SYMMETRIC:
7106                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7107                 break;
7108         case ALGORITHM_PARITY_0:
7109                 new_layout = ALGORITHM_PARITY_0_6;
7110                 break;
7111         case ALGORITHM_PARITY_N:
7112                 new_layout = ALGORITHM_PARITY_N;
7113                 break;
7114         default:
7115                 return ERR_PTR(-EINVAL);
7116         }
7117         mddev->new_level = 6;
7118         mddev->new_layout = new_layout;
7119         mddev->delta_disks = 1;
7120         mddev->raid_disks += 1;
7121         return setup_conf(mddev);
7122 }
7123
7124 static struct md_personality raid6_personality =
7125 {
7126         .name           = "raid6",
7127         .level          = 6,
7128         .owner          = THIS_MODULE,
7129         .make_request   = make_request,
7130         .run            = run,
7131         .free           = raid5_free,
7132         .status         = status,
7133         .error_handler  = error,
7134         .hot_add_disk   = raid5_add_disk,
7135         .hot_remove_disk= raid5_remove_disk,
7136         .spare_active   = raid5_spare_active,
7137         .sync_request   = sync_request,
7138         .resize         = raid5_resize,
7139         .size           = raid5_size,
7140         .check_reshape  = raid6_check_reshape,
7141         .start_reshape  = raid5_start_reshape,
7142         .finish_reshape = raid5_finish_reshape,
7143         .quiesce        = raid5_quiesce,
7144         .takeover       = raid6_takeover,
7145         .congested      = raid5_congested,
7146         .mergeable_bvec = raid5_mergeable_bvec,
7147 };
7148 static struct md_personality raid5_personality =
7149 {
7150         .name           = "raid5",
7151         .level          = 5,
7152         .owner          = THIS_MODULE,
7153         .make_request   = make_request,
7154         .run            = run,
7155         .free           = raid5_free,
7156         .status         = status,
7157         .error_handler  = error,
7158         .hot_add_disk   = raid5_add_disk,
7159         .hot_remove_disk= raid5_remove_disk,
7160         .spare_active   = raid5_spare_active,
7161         .sync_request   = sync_request,
7162         .resize         = raid5_resize,
7163         .size           = raid5_size,
7164         .check_reshape  = raid5_check_reshape,
7165         .start_reshape  = raid5_start_reshape,
7166         .finish_reshape = raid5_finish_reshape,
7167         .quiesce        = raid5_quiesce,
7168         .takeover       = raid5_takeover,
7169         .congested      = raid5_congested,
7170         .mergeable_bvec = raid5_mergeable_bvec,
7171 };
7172
7173 static struct md_personality raid4_personality =
7174 {
7175         .name           = "raid4",
7176         .level          = 4,
7177         .owner          = THIS_MODULE,
7178         .make_request   = make_request,
7179         .run            = run,
7180         .free           = raid5_free,
7181         .status         = status,
7182         .error_handler  = error,
7183         .hot_add_disk   = raid5_add_disk,
7184         .hot_remove_disk= raid5_remove_disk,
7185         .spare_active   = raid5_spare_active,
7186         .sync_request   = sync_request,
7187         .resize         = raid5_resize,
7188         .size           = raid5_size,
7189         .check_reshape  = raid5_check_reshape,
7190         .start_reshape  = raid5_start_reshape,
7191         .finish_reshape = raid5_finish_reshape,
7192         .quiesce        = raid5_quiesce,
7193         .takeover       = raid4_takeover,
7194         .congested      = raid5_congested,
7195         .mergeable_bvec = raid5_mergeable_bvec,
7196 };
7197
7198 static int __init raid5_init(void)
7199 {
7200         raid5_wq = alloc_workqueue("raid5wq",
7201                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7202         if (!raid5_wq)
7203                 return -ENOMEM;
7204         register_md_personality(&raid6_personality);
7205         register_md_personality(&raid5_personality);
7206         register_md_personality(&raid4_personality);
7207         return 0;
7208 }
7209
7210 static void raid5_exit(void)
7211 {
7212         unregister_md_personality(&raid6_personality);
7213         unregister_md_personality(&raid5_personality);
7214         unregister_md_personality(&raid4_personality);
7215         destroy_workqueue(raid5_wq);
7216 }
7217
7218 module_init(raid5_init);
7219 module_exit(raid5_exit);
7220 MODULE_LICENSE("GPL");
7221 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7222 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7223 MODULE_ALIAS("md-raid5");
7224 MODULE_ALIAS("md-raid4");
7225 MODULE_ALIAS("md-level-5");
7226 MODULE_ALIAS("md-level-4");
7227 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7228 MODULE_ALIAS("md-raid6");
7229 MODULE_ALIAS("md-level-6");
7230
7231 /* This used to be two separate modules, they were: */
7232 MODULE_ALIAS("raid5");
7233 MODULE_ALIAS("raid6");