Merge remote-tracking branches 'regulator/topic/discharge', 'regulator/topic/fan53555...
[sfrench/cifs-2.6.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio_list *return_bi)
227 {
228         struct bio *bi;
229         while ((bi = bio_list_pop(return_bi)) != NULL) {
230                 bi->bi_iter.bi_size = 0;
231                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232                                          bi, 0);
233                 bio_endio(bi);
234         }
235 }
236
237 static void print_raid5_conf (struct r5conf *conf);
238
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241         return sh->check_state || sh->reconstruct_state ||
242                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248         struct r5conf *conf = sh->raid_conf;
249         struct r5worker_group *group;
250         int thread_cnt;
251         int i, cpu = sh->cpu;
252
253         if (!cpu_online(cpu)) {
254                 cpu = cpumask_any(cpu_online_mask);
255                 sh->cpu = cpu;
256         }
257
258         if (list_empty(&sh->lru)) {
259                 struct r5worker_group *group;
260                 group = conf->worker_groups + cpu_to_group(cpu);
261                 list_add_tail(&sh->lru, &group->handle_list);
262                 group->stripes_cnt++;
263                 sh->group = group;
264         }
265
266         if (conf->worker_cnt_per_group == 0) {
267                 md_wakeup_thread(conf->mddev->thread);
268                 return;
269         }
270
271         group = conf->worker_groups + cpu_to_group(sh->cpu);
272
273         group->workers[0].working = true;
274         /* at least one worker should run to avoid race */
275         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278         /* wakeup more workers */
279         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280                 if (group->workers[i].working == false) {
281                         group->workers[i].working = true;
282                         queue_work_on(sh->cpu, raid5_wq,
283                                       &group->workers[i].work);
284                         thread_cnt--;
285                 }
286         }
287 }
288
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290                               struct list_head *temp_inactive_list)
291 {
292         BUG_ON(!list_empty(&sh->lru));
293         BUG_ON(atomic_read(&conf->active_stripes)==0);
294         if (test_bit(STRIPE_HANDLE, &sh->state)) {
295                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
296                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297                         list_add_tail(&sh->lru, &conf->delayed_list);
298                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299                            sh->bm_seq - conf->seq_write > 0)
300                         list_add_tail(&sh->lru, &conf->bitmap_list);
301                 else {
302                         clear_bit(STRIPE_DELAYED, &sh->state);
303                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
304                         if (conf->worker_cnt_per_group == 0) {
305                                 list_add_tail(&sh->lru, &conf->handle_list);
306                         } else {
307                                 raid5_wakeup_stripe_thread(sh);
308                                 return;
309                         }
310                 }
311                 md_wakeup_thread(conf->mddev->thread);
312         } else {
313                 BUG_ON(stripe_operations_active(sh));
314                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315                         if (atomic_dec_return(&conf->preread_active_stripes)
316                             < IO_THRESHOLD)
317                                 md_wakeup_thread(conf->mddev->thread);
318                 atomic_dec(&conf->active_stripes);
319                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320                         list_add_tail(&sh->lru, temp_inactive_list);
321         }
322 }
323
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325                              struct list_head *temp_inactive_list)
326 {
327         if (atomic_dec_and_test(&sh->count))
328                 do_release_stripe(conf, sh, temp_inactive_list);
329 }
330
331 /*
332  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333  *
334  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335  * given time. Adding stripes only takes device lock, while deleting stripes
336  * only takes hash lock.
337  */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339                                          struct list_head *temp_inactive_list,
340                                          int hash)
341 {
342         int size;
343         unsigned long do_wakeup = 0;
344         int i = 0;
345         unsigned long flags;
346
347         if (hash == NR_STRIPE_HASH_LOCKS) {
348                 size = NR_STRIPE_HASH_LOCKS;
349                 hash = NR_STRIPE_HASH_LOCKS - 1;
350         } else
351                 size = 1;
352         while (size) {
353                 struct list_head *list = &temp_inactive_list[size - 1];
354
355                 /*
356                  * We don't hold any lock here yet, raid5_get_active_stripe() might
357                  * remove stripes from the list
358                  */
359                 if (!list_empty_careful(list)) {
360                         spin_lock_irqsave(conf->hash_locks + hash, flags);
361                         if (list_empty(conf->inactive_list + hash) &&
362                             !list_empty(list))
363                                 atomic_dec(&conf->empty_inactive_list_nr);
364                         list_splice_tail_init(list, conf->inactive_list + hash);
365                         do_wakeup |= 1 << hash;
366                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
367                 }
368                 size--;
369                 hash--;
370         }
371
372         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
373                 if (do_wakeup & (1 << i))
374                         wake_up(&conf->wait_for_stripe[i]);
375         }
376
377         if (do_wakeup) {
378                 if (atomic_read(&conf->active_stripes) == 0)
379                         wake_up(&conf->wait_for_quiescent);
380                 if (conf->retry_read_aligned)
381                         md_wakeup_thread(conf->mddev->thread);
382         }
383 }
384
385 /* should hold conf->device_lock already */
386 static int release_stripe_list(struct r5conf *conf,
387                                struct list_head *temp_inactive_list)
388 {
389         struct stripe_head *sh;
390         int count = 0;
391         struct llist_node *head;
392
393         head = llist_del_all(&conf->released_stripes);
394         head = llist_reverse_order(head);
395         while (head) {
396                 int hash;
397
398                 sh = llist_entry(head, struct stripe_head, release_list);
399                 head = llist_next(head);
400                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
401                 smp_mb();
402                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
403                 /*
404                  * Don't worry the bit is set here, because if the bit is set
405                  * again, the count is always > 1. This is true for
406                  * STRIPE_ON_UNPLUG_LIST bit too.
407                  */
408                 hash = sh->hash_lock_index;
409                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
410                 count++;
411         }
412
413         return count;
414 }
415
416 void raid5_release_stripe(struct stripe_head *sh)
417 {
418         struct r5conf *conf = sh->raid_conf;
419         unsigned long flags;
420         struct list_head list;
421         int hash;
422         bool wakeup;
423
424         /* Avoid release_list until the last reference.
425          */
426         if (atomic_add_unless(&sh->count, -1, 1))
427                 return;
428
429         if (unlikely(!conf->mddev->thread) ||
430                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
431                 goto slow_path;
432         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
433         if (wakeup)
434                 md_wakeup_thread(conf->mddev->thread);
435         return;
436 slow_path:
437         local_irq_save(flags);
438         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
439         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
440                 INIT_LIST_HEAD(&list);
441                 hash = sh->hash_lock_index;
442                 do_release_stripe(conf, sh, &list);
443                 spin_unlock(&conf->device_lock);
444                 release_inactive_stripe_list(conf, &list, hash);
445         }
446         local_irq_restore(flags);
447 }
448
449 static inline void remove_hash(struct stripe_head *sh)
450 {
451         pr_debug("remove_hash(), stripe %llu\n",
452                 (unsigned long long)sh->sector);
453
454         hlist_del_init(&sh->hash);
455 }
456
457 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
458 {
459         struct hlist_head *hp = stripe_hash(conf, sh->sector);
460
461         pr_debug("insert_hash(), stripe %llu\n",
462                 (unsigned long long)sh->sector);
463
464         hlist_add_head(&sh->hash, hp);
465 }
466
467 /* find an idle stripe, make sure it is unhashed, and return it. */
468 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
469 {
470         struct stripe_head *sh = NULL;
471         struct list_head *first;
472
473         if (list_empty(conf->inactive_list + hash))
474                 goto out;
475         first = (conf->inactive_list + hash)->next;
476         sh = list_entry(first, struct stripe_head, lru);
477         list_del_init(first);
478         remove_hash(sh);
479         atomic_inc(&conf->active_stripes);
480         BUG_ON(hash != sh->hash_lock_index);
481         if (list_empty(conf->inactive_list + hash))
482                 atomic_inc(&conf->empty_inactive_list_nr);
483 out:
484         return sh;
485 }
486
487 static void shrink_buffers(struct stripe_head *sh)
488 {
489         struct page *p;
490         int i;
491         int num = sh->raid_conf->pool_size;
492
493         for (i = 0; i < num ; i++) {
494                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
495                 p = sh->dev[i].page;
496                 if (!p)
497                         continue;
498                 sh->dev[i].page = NULL;
499                 put_page(p);
500         }
501 }
502
503 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
504 {
505         int i;
506         int num = sh->raid_conf->pool_size;
507
508         for (i = 0; i < num; i++) {
509                 struct page *page;
510
511                 if (!(page = alloc_page(gfp))) {
512                         return 1;
513                 }
514                 sh->dev[i].page = page;
515                 sh->dev[i].orig_page = page;
516         }
517         return 0;
518 }
519
520 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
521 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
522                             struct stripe_head *sh);
523
524 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
525 {
526         struct r5conf *conf = sh->raid_conf;
527         int i, seq;
528
529         BUG_ON(atomic_read(&sh->count) != 0);
530         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
531         BUG_ON(stripe_operations_active(sh));
532         BUG_ON(sh->batch_head);
533
534         pr_debug("init_stripe called, stripe %llu\n",
535                 (unsigned long long)sector);
536 retry:
537         seq = read_seqcount_begin(&conf->gen_lock);
538         sh->generation = conf->generation - previous;
539         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
540         sh->sector = sector;
541         stripe_set_idx(sector, conf, previous, sh);
542         sh->state = 0;
543
544         for (i = sh->disks; i--; ) {
545                 struct r5dev *dev = &sh->dev[i];
546
547                 if (dev->toread || dev->read || dev->towrite || dev->written ||
548                     test_bit(R5_LOCKED, &dev->flags)) {
549                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
550                                (unsigned long long)sh->sector, i, dev->toread,
551                                dev->read, dev->towrite, dev->written,
552                                test_bit(R5_LOCKED, &dev->flags));
553                         WARN_ON(1);
554                 }
555                 dev->flags = 0;
556                 raid5_build_block(sh, i, previous);
557         }
558         if (read_seqcount_retry(&conf->gen_lock, seq))
559                 goto retry;
560         sh->overwrite_disks = 0;
561         insert_hash(conf, sh);
562         sh->cpu = smp_processor_id();
563         set_bit(STRIPE_BATCH_READY, &sh->state);
564 }
565
566 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
567                                          short generation)
568 {
569         struct stripe_head *sh;
570
571         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
572         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
573                 if (sh->sector == sector && sh->generation == generation)
574                         return sh;
575         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
576         return NULL;
577 }
578
579 /*
580  * Need to check if array has failed when deciding whether to:
581  *  - start an array
582  *  - remove non-faulty devices
583  *  - add a spare
584  *  - allow a reshape
585  * This determination is simple when no reshape is happening.
586  * However if there is a reshape, we need to carefully check
587  * both the before and after sections.
588  * This is because some failed devices may only affect one
589  * of the two sections, and some non-in_sync devices may
590  * be insync in the section most affected by failed devices.
591  */
592 static int calc_degraded(struct r5conf *conf)
593 {
594         int degraded, degraded2;
595         int i;
596
597         rcu_read_lock();
598         degraded = 0;
599         for (i = 0; i < conf->previous_raid_disks; i++) {
600                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
601                 if (rdev && test_bit(Faulty, &rdev->flags))
602                         rdev = rcu_dereference(conf->disks[i].replacement);
603                 if (!rdev || test_bit(Faulty, &rdev->flags))
604                         degraded++;
605                 else if (test_bit(In_sync, &rdev->flags))
606                         ;
607                 else
608                         /* not in-sync or faulty.
609                          * If the reshape increases the number of devices,
610                          * this is being recovered by the reshape, so
611                          * this 'previous' section is not in_sync.
612                          * If the number of devices is being reduced however,
613                          * the device can only be part of the array if
614                          * we are reverting a reshape, so this section will
615                          * be in-sync.
616                          */
617                         if (conf->raid_disks >= conf->previous_raid_disks)
618                                 degraded++;
619         }
620         rcu_read_unlock();
621         if (conf->raid_disks == conf->previous_raid_disks)
622                 return degraded;
623         rcu_read_lock();
624         degraded2 = 0;
625         for (i = 0; i < conf->raid_disks; i++) {
626                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
627                 if (rdev && test_bit(Faulty, &rdev->flags))
628                         rdev = rcu_dereference(conf->disks[i].replacement);
629                 if (!rdev || test_bit(Faulty, &rdev->flags))
630                         degraded2++;
631                 else if (test_bit(In_sync, &rdev->flags))
632                         ;
633                 else
634                         /* not in-sync or faulty.
635                          * If reshape increases the number of devices, this
636                          * section has already been recovered, else it
637                          * almost certainly hasn't.
638                          */
639                         if (conf->raid_disks <= conf->previous_raid_disks)
640                                 degraded2++;
641         }
642         rcu_read_unlock();
643         if (degraded2 > degraded)
644                 return degraded2;
645         return degraded;
646 }
647
648 static int has_failed(struct r5conf *conf)
649 {
650         int degraded;
651
652         if (conf->mddev->reshape_position == MaxSector)
653                 return conf->mddev->degraded > conf->max_degraded;
654
655         degraded = calc_degraded(conf);
656         if (degraded > conf->max_degraded)
657                 return 1;
658         return 0;
659 }
660
661 struct stripe_head *
662 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
663                         int previous, int noblock, int noquiesce)
664 {
665         struct stripe_head *sh;
666         int hash = stripe_hash_locks_hash(sector);
667
668         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
669
670         spin_lock_irq(conf->hash_locks + hash);
671
672         do {
673                 wait_event_lock_irq(conf->wait_for_quiescent,
674                                     conf->quiesce == 0 || noquiesce,
675                                     *(conf->hash_locks + hash));
676                 sh = __find_stripe(conf, sector, conf->generation - previous);
677                 if (!sh) {
678                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
679                                 sh = get_free_stripe(conf, hash);
680                                 if (!sh && !test_bit(R5_DID_ALLOC,
681                                                      &conf->cache_state))
682                                         set_bit(R5_ALLOC_MORE,
683                                                 &conf->cache_state);
684                         }
685                         if (noblock && sh == NULL)
686                                 break;
687                         if (!sh) {
688                                 set_bit(R5_INACTIVE_BLOCKED,
689                                         &conf->cache_state);
690                                 wait_event_exclusive_cmd(
691                                         conf->wait_for_stripe[hash],
692                                         !list_empty(conf->inactive_list + hash) &&
693                                         (atomic_read(&conf->active_stripes)
694                                          < (conf->max_nr_stripes * 3 / 4)
695                                          || !test_bit(R5_INACTIVE_BLOCKED,
696                                                       &conf->cache_state)),
697                                         spin_unlock_irq(conf->hash_locks + hash),
698                                         spin_lock_irq(conf->hash_locks + hash));
699                                 clear_bit(R5_INACTIVE_BLOCKED,
700                                           &conf->cache_state);
701                         } else {
702                                 init_stripe(sh, sector, previous);
703                                 atomic_inc(&sh->count);
704                         }
705                 } else if (!atomic_inc_not_zero(&sh->count)) {
706                         spin_lock(&conf->device_lock);
707                         if (!atomic_read(&sh->count)) {
708                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
709                                         atomic_inc(&conf->active_stripes);
710                                 BUG_ON(list_empty(&sh->lru) &&
711                                        !test_bit(STRIPE_EXPANDING, &sh->state));
712                                 list_del_init(&sh->lru);
713                                 if (sh->group) {
714                                         sh->group->stripes_cnt--;
715                                         sh->group = NULL;
716                                 }
717                         }
718                         atomic_inc(&sh->count);
719                         spin_unlock(&conf->device_lock);
720                 }
721         } while (sh == NULL);
722
723         if (!list_empty(conf->inactive_list + hash))
724                 wake_up(&conf->wait_for_stripe[hash]);
725
726         spin_unlock_irq(conf->hash_locks + hash);
727         return sh;
728 }
729
730 static bool is_full_stripe_write(struct stripe_head *sh)
731 {
732         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
733         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
734 }
735
736 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
737 {
738         local_irq_disable();
739         if (sh1 > sh2) {
740                 spin_lock(&sh2->stripe_lock);
741                 spin_lock_nested(&sh1->stripe_lock, 1);
742         } else {
743                 spin_lock(&sh1->stripe_lock);
744                 spin_lock_nested(&sh2->stripe_lock, 1);
745         }
746 }
747
748 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
749 {
750         spin_unlock(&sh1->stripe_lock);
751         spin_unlock(&sh2->stripe_lock);
752         local_irq_enable();
753 }
754
755 /* Only freshly new full stripe normal write stripe can be added to a batch list */
756 static bool stripe_can_batch(struct stripe_head *sh)
757 {
758         struct r5conf *conf = sh->raid_conf;
759
760         if (conf->log)
761                 return false;
762         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
763                 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
764                 is_full_stripe_write(sh);
765 }
766
767 /* we only do back search */
768 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
769 {
770         struct stripe_head *head;
771         sector_t head_sector, tmp_sec;
772         int hash;
773         int dd_idx;
774
775         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
776         tmp_sec = sh->sector;
777         if (!sector_div(tmp_sec, conf->chunk_sectors))
778                 return;
779         head_sector = sh->sector - STRIPE_SECTORS;
780
781         hash = stripe_hash_locks_hash(head_sector);
782         spin_lock_irq(conf->hash_locks + hash);
783         head = __find_stripe(conf, head_sector, conf->generation);
784         if (head && !atomic_inc_not_zero(&head->count)) {
785                 spin_lock(&conf->device_lock);
786                 if (!atomic_read(&head->count)) {
787                         if (!test_bit(STRIPE_HANDLE, &head->state))
788                                 atomic_inc(&conf->active_stripes);
789                         BUG_ON(list_empty(&head->lru) &&
790                                !test_bit(STRIPE_EXPANDING, &head->state));
791                         list_del_init(&head->lru);
792                         if (head->group) {
793                                 head->group->stripes_cnt--;
794                                 head->group = NULL;
795                         }
796                 }
797                 atomic_inc(&head->count);
798                 spin_unlock(&conf->device_lock);
799         }
800         spin_unlock_irq(conf->hash_locks + hash);
801
802         if (!head)
803                 return;
804         if (!stripe_can_batch(head))
805                 goto out;
806
807         lock_two_stripes(head, sh);
808         /* clear_batch_ready clear the flag */
809         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
810                 goto unlock_out;
811
812         if (sh->batch_head)
813                 goto unlock_out;
814
815         dd_idx = 0;
816         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
817                 dd_idx++;
818         if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
819                 goto unlock_out;
820
821         if (head->batch_head) {
822                 spin_lock(&head->batch_head->batch_lock);
823                 /* This batch list is already running */
824                 if (!stripe_can_batch(head)) {
825                         spin_unlock(&head->batch_head->batch_lock);
826                         goto unlock_out;
827                 }
828
829                 /*
830                  * at this point, head's BATCH_READY could be cleared, but we
831                  * can still add the stripe to batch list
832                  */
833                 list_add(&sh->batch_list, &head->batch_list);
834                 spin_unlock(&head->batch_head->batch_lock);
835
836                 sh->batch_head = head->batch_head;
837         } else {
838                 head->batch_head = head;
839                 sh->batch_head = head->batch_head;
840                 spin_lock(&head->batch_lock);
841                 list_add_tail(&sh->batch_list, &head->batch_list);
842                 spin_unlock(&head->batch_lock);
843         }
844
845         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
846                 if (atomic_dec_return(&conf->preread_active_stripes)
847                     < IO_THRESHOLD)
848                         md_wakeup_thread(conf->mddev->thread);
849
850         if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
851                 int seq = sh->bm_seq;
852                 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
853                     sh->batch_head->bm_seq > seq)
854                         seq = sh->batch_head->bm_seq;
855                 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
856                 sh->batch_head->bm_seq = seq;
857         }
858
859         atomic_inc(&sh->count);
860 unlock_out:
861         unlock_two_stripes(head, sh);
862 out:
863         raid5_release_stripe(head);
864 }
865
866 /* Determine if 'data_offset' or 'new_data_offset' should be used
867  * in this stripe_head.
868  */
869 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
870 {
871         sector_t progress = conf->reshape_progress;
872         /* Need a memory barrier to make sure we see the value
873          * of conf->generation, or ->data_offset that was set before
874          * reshape_progress was updated.
875          */
876         smp_rmb();
877         if (progress == MaxSector)
878                 return 0;
879         if (sh->generation == conf->generation - 1)
880                 return 0;
881         /* We are in a reshape, and this is a new-generation stripe,
882          * so use new_data_offset.
883          */
884         return 1;
885 }
886
887 static void
888 raid5_end_read_request(struct bio *bi);
889 static void
890 raid5_end_write_request(struct bio *bi);
891
892 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
893 {
894         struct r5conf *conf = sh->raid_conf;
895         int i, disks = sh->disks;
896         struct stripe_head *head_sh = sh;
897
898         might_sleep();
899
900         if (r5l_write_stripe(conf->log, sh) == 0)
901                 return;
902         for (i = disks; i--; ) {
903                 int rw;
904                 int replace_only = 0;
905                 struct bio *bi, *rbi;
906                 struct md_rdev *rdev, *rrdev = NULL;
907
908                 sh = head_sh;
909                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
910                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
911                                 rw = WRITE_FUA;
912                         else
913                                 rw = WRITE;
914                         if (test_bit(R5_Discard, &sh->dev[i].flags))
915                                 rw |= REQ_DISCARD;
916                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
917                         rw = READ;
918                 else if (test_and_clear_bit(R5_WantReplace,
919                                             &sh->dev[i].flags)) {
920                         rw = WRITE;
921                         replace_only = 1;
922                 } else
923                         continue;
924                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
925                         rw |= REQ_SYNC;
926
927 again:
928                 bi = &sh->dev[i].req;
929                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
930
931                 rcu_read_lock();
932                 rrdev = rcu_dereference(conf->disks[i].replacement);
933                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
934                 rdev = rcu_dereference(conf->disks[i].rdev);
935                 if (!rdev) {
936                         rdev = rrdev;
937                         rrdev = NULL;
938                 }
939                 if (rw & WRITE) {
940                         if (replace_only)
941                                 rdev = NULL;
942                         if (rdev == rrdev)
943                                 /* We raced and saw duplicates */
944                                 rrdev = NULL;
945                 } else {
946                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
947                                 rdev = rrdev;
948                         rrdev = NULL;
949                 }
950
951                 if (rdev && test_bit(Faulty, &rdev->flags))
952                         rdev = NULL;
953                 if (rdev)
954                         atomic_inc(&rdev->nr_pending);
955                 if (rrdev && test_bit(Faulty, &rrdev->flags))
956                         rrdev = NULL;
957                 if (rrdev)
958                         atomic_inc(&rrdev->nr_pending);
959                 rcu_read_unlock();
960
961                 /* We have already checked bad blocks for reads.  Now
962                  * need to check for writes.  We never accept write errors
963                  * on the replacement, so we don't to check rrdev.
964                  */
965                 while ((rw & WRITE) && rdev &&
966                        test_bit(WriteErrorSeen, &rdev->flags)) {
967                         sector_t first_bad;
968                         int bad_sectors;
969                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
970                                               &first_bad, &bad_sectors);
971                         if (!bad)
972                                 break;
973
974                         if (bad < 0) {
975                                 set_bit(BlockedBadBlocks, &rdev->flags);
976                                 if (!conf->mddev->external &&
977                                     conf->mddev->flags) {
978                                         /* It is very unlikely, but we might
979                                          * still need to write out the
980                                          * bad block log - better give it
981                                          * a chance*/
982                                         md_check_recovery(conf->mddev);
983                                 }
984                                 /*
985                                  * Because md_wait_for_blocked_rdev
986                                  * will dec nr_pending, we must
987                                  * increment it first.
988                                  */
989                                 atomic_inc(&rdev->nr_pending);
990                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
991                         } else {
992                                 /* Acknowledged bad block - skip the write */
993                                 rdev_dec_pending(rdev, conf->mddev);
994                                 rdev = NULL;
995                         }
996                 }
997
998                 if (rdev) {
999                         if (s->syncing || s->expanding || s->expanded
1000                             || s->replacing)
1001                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1002
1003                         set_bit(STRIPE_IO_STARTED, &sh->state);
1004
1005                         bio_reset(bi);
1006                         bi->bi_bdev = rdev->bdev;
1007                         bi->bi_rw = rw;
1008                         bi->bi_end_io = (rw & WRITE)
1009                                 ? raid5_end_write_request
1010                                 : raid5_end_read_request;
1011                         bi->bi_private = sh;
1012
1013                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1014                                 __func__, (unsigned long long)sh->sector,
1015                                 bi->bi_rw, i);
1016                         atomic_inc(&sh->count);
1017                         if (sh != head_sh)
1018                                 atomic_inc(&head_sh->count);
1019                         if (use_new_offset(conf, sh))
1020                                 bi->bi_iter.bi_sector = (sh->sector
1021                                                  + rdev->new_data_offset);
1022                         else
1023                                 bi->bi_iter.bi_sector = (sh->sector
1024                                                  + rdev->data_offset);
1025                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1026                                 bi->bi_rw |= REQ_NOMERGE;
1027
1028                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1029                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1030                         sh->dev[i].vec.bv_page = sh->dev[i].page;
1031                         bi->bi_vcnt = 1;
1032                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1033                         bi->bi_io_vec[0].bv_offset = 0;
1034                         bi->bi_iter.bi_size = STRIPE_SIZE;
1035                         /*
1036                          * If this is discard request, set bi_vcnt 0. We don't
1037                          * want to confuse SCSI because SCSI will replace payload
1038                          */
1039                         if (rw & REQ_DISCARD)
1040                                 bi->bi_vcnt = 0;
1041                         if (rrdev)
1042                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1043
1044                         if (conf->mddev->gendisk)
1045                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1046                                                       bi, disk_devt(conf->mddev->gendisk),
1047                                                       sh->dev[i].sector);
1048                         generic_make_request(bi);
1049                 }
1050                 if (rrdev) {
1051                         if (s->syncing || s->expanding || s->expanded
1052                             || s->replacing)
1053                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1054
1055                         set_bit(STRIPE_IO_STARTED, &sh->state);
1056
1057                         bio_reset(rbi);
1058                         rbi->bi_bdev = rrdev->bdev;
1059                         rbi->bi_rw = rw;
1060                         BUG_ON(!(rw & WRITE));
1061                         rbi->bi_end_io = raid5_end_write_request;
1062                         rbi->bi_private = sh;
1063
1064                         pr_debug("%s: for %llu schedule op %ld on "
1065                                  "replacement disc %d\n",
1066                                 __func__, (unsigned long long)sh->sector,
1067                                 rbi->bi_rw, i);
1068                         atomic_inc(&sh->count);
1069                         if (sh != head_sh)
1070                                 atomic_inc(&head_sh->count);
1071                         if (use_new_offset(conf, sh))
1072                                 rbi->bi_iter.bi_sector = (sh->sector
1073                                                   + rrdev->new_data_offset);
1074                         else
1075                                 rbi->bi_iter.bi_sector = (sh->sector
1076                                                   + rrdev->data_offset);
1077                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1078                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1079                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1080                         rbi->bi_vcnt = 1;
1081                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1082                         rbi->bi_io_vec[0].bv_offset = 0;
1083                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1084                         /*
1085                          * If this is discard request, set bi_vcnt 0. We don't
1086                          * want to confuse SCSI because SCSI will replace payload
1087                          */
1088                         if (rw & REQ_DISCARD)
1089                                 rbi->bi_vcnt = 0;
1090                         if (conf->mddev->gendisk)
1091                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1092                                                       rbi, disk_devt(conf->mddev->gendisk),
1093                                                       sh->dev[i].sector);
1094                         generic_make_request(rbi);
1095                 }
1096                 if (!rdev && !rrdev) {
1097                         if (rw & WRITE)
1098                                 set_bit(STRIPE_DEGRADED, &sh->state);
1099                         pr_debug("skip op %ld on disc %d for sector %llu\n",
1100                                 bi->bi_rw, i, (unsigned long long)sh->sector);
1101                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1102                         set_bit(STRIPE_HANDLE, &sh->state);
1103                 }
1104
1105                 if (!head_sh->batch_head)
1106                         continue;
1107                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1108                                       batch_list);
1109                 if (sh != head_sh)
1110                         goto again;
1111         }
1112 }
1113
1114 static struct dma_async_tx_descriptor *
1115 async_copy_data(int frombio, struct bio *bio, struct page **page,
1116         sector_t sector, struct dma_async_tx_descriptor *tx,
1117         struct stripe_head *sh)
1118 {
1119         struct bio_vec bvl;
1120         struct bvec_iter iter;
1121         struct page *bio_page;
1122         int page_offset;
1123         struct async_submit_ctl submit;
1124         enum async_tx_flags flags = 0;
1125
1126         if (bio->bi_iter.bi_sector >= sector)
1127                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1128         else
1129                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1130
1131         if (frombio)
1132                 flags |= ASYNC_TX_FENCE;
1133         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1134
1135         bio_for_each_segment(bvl, bio, iter) {
1136                 int len = bvl.bv_len;
1137                 int clen;
1138                 int b_offset = 0;
1139
1140                 if (page_offset < 0) {
1141                         b_offset = -page_offset;
1142                         page_offset += b_offset;
1143                         len -= b_offset;
1144                 }
1145
1146                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1147                         clen = STRIPE_SIZE - page_offset;
1148                 else
1149                         clen = len;
1150
1151                 if (clen > 0) {
1152                         b_offset += bvl.bv_offset;
1153                         bio_page = bvl.bv_page;
1154                         if (frombio) {
1155                                 if (sh->raid_conf->skip_copy &&
1156                                     b_offset == 0 && page_offset == 0 &&
1157                                     clen == STRIPE_SIZE)
1158                                         *page = bio_page;
1159                                 else
1160                                         tx = async_memcpy(*page, bio_page, page_offset,
1161                                                   b_offset, clen, &submit);
1162                         } else
1163                                 tx = async_memcpy(bio_page, *page, b_offset,
1164                                                   page_offset, clen, &submit);
1165                 }
1166                 /* chain the operations */
1167                 submit.depend_tx = tx;
1168
1169                 if (clen < len) /* hit end of page */
1170                         break;
1171                 page_offset +=  len;
1172         }
1173
1174         return tx;
1175 }
1176
1177 static void ops_complete_biofill(void *stripe_head_ref)
1178 {
1179         struct stripe_head *sh = stripe_head_ref;
1180         struct bio_list return_bi = BIO_EMPTY_LIST;
1181         int i;
1182
1183         pr_debug("%s: stripe %llu\n", __func__,
1184                 (unsigned long long)sh->sector);
1185
1186         /* clear completed biofills */
1187         for (i = sh->disks; i--; ) {
1188                 struct r5dev *dev = &sh->dev[i];
1189
1190                 /* acknowledge completion of a biofill operation */
1191                 /* and check if we need to reply to a read request,
1192                  * new R5_Wantfill requests are held off until
1193                  * !STRIPE_BIOFILL_RUN
1194                  */
1195                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1196                         struct bio *rbi, *rbi2;
1197
1198                         BUG_ON(!dev->read);
1199                         rbi = dev->read;
1200                         dev->read = NULL;
1201                         while (rbi && rbi->bi_iter.bi_sector <
1202                                 dev->sector + STRIPE_SECTORS) {
1203                                 rbi2 = r5_next_bio(rbi, dev->sector);
1204                                 if (!raid5_dec_bi_active_stripes(rbi))
1205                                         bio_list_add(&return_bi, rbi);
1206                                 rbi = rbi2;
1207                         }
1208                 }
1209         }
1210         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1211
1212         return_io(&return_bi);
1213
1214         set_bit(STRIPE_HANDLE, &sh->state);
1215         raid5_release_stripe(sh);
1216 }
1217
1218 static void ops_run_biofill(struct stripe_head *sh)
1219 {
1220         struct dma_async_tx_descriptor *tx = NULL;
1221         struct async_submit_ctl submit;
1222         int i;
1223
1224         BUG_ON(sh->batch_head);
1225         pr_debug("%s: stripe %llu\n", __func__,
1226                 (unsigned long long)sh->sector);
1227
1228         for (i = sh->disks; i--; ) {
1229                 struct r5dev *dev = &sh->dev[i];
1230                 if (test_bit(R5_Wantfill, &dev->flags)) {
1231                         struct bio *rbi;
1232                         spin_lock_irq(&sh->stripe_lock);
1233                         dev->read = rbi = dev->toread;
1234                         dev->toread = NULL;
1235                         spin_unlock_irq(&sh->stripe_lock);
1236                         while (rbi && rbi->bi_iter.bi_sector <
1237                                 dev->sector + STRIPE_SECTORS) {
1238                                 tx = async_copy_data(0, rbi, &dev->page,
1239                                         dev->sector, tx, sh);
1240                                 rbi = r5_next_bio(rbi, dev->sector);
1241                         }
1242                 }
1243         }
1244
1245         atomic_inc(&sh->count);
1246         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1247         async_trigger_callback(&submit);
1248 }
1249
1250 static void mark_target_uptodate(struct stripe_head *sh, int target)
1251 {
1252         struct r5dev *tgt;
1253
1254         if (target < 0)
1255                 return;
1256
1257         tgt = &sh->dev[target];
1258         set_bit(R5_UPTODATE, &tgt->flags);
1259         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1260         clear_bit(R5_Wantcompute, &tgt->flags);
1261 }
1262
1263 static void ops_complete_compute(void *stripe_head_ref)
1264 {
1265         struct stripe_head *sh = stripe_head_ref;
1266
1267         pr_debug("%s: stripe %llu\n", __func__,
1268                 (unsigned long long)sh->sector);
1269
1270         /* mark the computed target(s) as uptodate */
1271         mark_target_uptodate(sh, sh->ops.target);
1272         mark_target_uptodate(sh, sh->ops.target2);
1273
1274         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1275         if (sh->check_state == check_state_compute_run)
1276                 sh->check_state = check_state_compute_result;
1277         set_bit(STRIPE_HANDLE, &sh->state);
1278         raid5_release_stripe(sh);
1279 }
1280
1281 /* return a pointer to the address conversion region of the scribble buffer */
1282 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1283                                  struct raid5_percpu *percpu, int i)
1284 {
1285         void *addr;
1286
1287         addr = flex_array_get(percpu->scribble, i);
1288         return addr + sizeof(struct page *) * (sh->disks + 2);
1289 }
1290
1291 /* return a pointer to the address conversion region of the scribble buffer */
1292 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1293 {
1294         void *addr;
1295
1296         addr = flex_array_get(percpu->scribble, i);
1297         return addr;
1298 }
1299
1300 static struct dma_async_tx_descriptor *
1301 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1302 {
1303         int disks = sh->disks;
1304         struct page **xor_srcs = to_addr_page(percpu, 0);
1305         int target = sh->ops.target;
1306         struct r5dev *tgt = &sh->dev[target];
1307         struct page *xor_dest = tgt->page;
1308         int count = 0;
1309         struct dma_async_tx_descriptor *tx;
1310         struct async_submit_ctl submit;
1311         int i;
1312
1313         BUG_ON(sh->batch_head);
1314
1315         pr_debug("%s: stripe %llu block: %d\n",
1316                 __func__, (unsigned long long)sh->sector, target);
1317         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1318
1319         for (i = disks; i--; )
1320                 if (i != target)
1321                         xor_srcs[count++] = sh->dev[i].page;
1322
1323         atomic_inc(&sh->count);
1324
1325         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1326                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1327         if (unlikely(count == 1))
1328                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1329         else
1330                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1331
1332         return tx;
1333 }
1334
1335 /* set_syndrome_sources - populate source buffers for gen_syndrome
1336  * @srcs - (struct page *) array of size sh->disks
1337  * @sh - stripe_head to parse
1338  *
1339  * Populates srcs in proper layout order for the stripe and returns the
1340  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1341  * destination buffer is recorded in srcs[count] and the Q destination
1342  * is recorded in srcs[count+1]].
1343  */
1344 static int set_syndrome_sources(struct page **srcs,
1345                                 struct stripe_head *sh,
1346                                 int srctype)
1347 {
1348         int disks = sh->disks;
1349         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1350         int d0_idx = raid6_d0(sh);
1351         int count;
1352         int i;
1353
1354         for (i = 0; i < disks; i++)
1355                 srcs[i] = NULL;
1356
1357         count = 0;
1358         i = d0_idx;
1359         do {
1360                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1361                 struct r5dev *dev = &sh->dev[i];
1362
1363                 if (i == sh->qd_idx || i == sh->pd_idx ||
1364                     (srctype == SYNDROME_SRC_ALL) ||
1365                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1366                      test_bit(R5_Wantdrain, &dev->flags)) ||
1367                     (srctype == SYNDROME_SRC_WRITTEN &&
1368                      dev->written))
1369                         srcs[slot] = sh->dev[i].page;
1370                 i = raid6_next_disk(i, disks);
1371         } while (i != d0_idx);
1372
1373         return syndrome_disks;
1374 }
1375
1376 static struct dma_async_tx_descriptor *
1377 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1378 {
1379         int disks = sh->disks;
1380         struct page **blocks = to_addr_page(percpu, 0);
1381         int target;
1382         int qd_idx = sh->qd_idx;
1383         struct dma_async_tx_descriptor *tx;
1384         struct async_submit_ctl submit;
1385         struct r5dev *tgt;
1386         struct page *dest;
1387         int i;
1388         int count;
1389
1390         BUG_ON(sh->batch_head);
1391         if (sh->ops.target < 0)
1392                 target = sh->ops.target2;
1393         else if (sh->ops.target2 < 0)
1394                 target = sh->ops.target;
1395         else
1396                 /* we should only have one valid target */
1397                 BUG();
1398         BUG_ON(target < 0);
1399         pr_debug("%s: stripe %llu block: %d\n",
1400                 __func__, (unsigned long long)sh->sector, target);
1401
1402         tgt = &sh->dev[target];
1403         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1404         dest = tgt->page;
1405
1406         atomic_inc(&sh->count);
1407
1408         if (target == qd_idx) {
1409                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1410                 blocks[count] = NULL; /* regenerating p is not necessary */
1411                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1412                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1413                                   ops_complete_compute, sh,
1414                                   to_addr_conv(sh, percpu, 0));
1415                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1416         } else {
1417                 /* Compute any data- or p-drive using XOR */
1418                 count = 0;
1419                 for (i = disks; i-- ; ) {
1420                         if (i == target || i == qd_idx)
1421                                 continue;
1422                         blocks[count++] = sh->dev[i].page;
1423                 }
1424
1425                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1426                                   NULL, ops_complete_compute, sh,
1427                                   to_addr_conv(sh, percpu, 0));
1428                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1429         }
1430
1431         return tx;
1432 }
1433
1434 static struct dma_async_tx_descriptor *
1435 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1436 {
1437         int i, count, disks = sh->disks;
1438         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1439         int d0_idx = raid6_d0(sh);
1440         int faila = -1, failb = -1;
1441         int target = sh->ops.target;
1442         int target2 = sh->ops.target2;
1443         struct r5dev *tgt = &sh->dev[target];
1444         struct r5dev *tgt2 = &sh->dev[target2];
1445         struct dma_async_tx_descriptor *tx;
1446         struct page **blocks = to_addr_page(percpu, 0);
1447         struct async_submit_ctl submit;
1448
1449         BUG_ON(sh->batch_head);
1450         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1451                  __func__, (unsigned long long)sh->sector, target, target2);
1452         BUG_ON(target < 0 || target2 < 0);
1453         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1454         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1455
1456         /* we need to open-code set_syndrome_sources to handle the
1457          * slot number conversion for 'faila' and 'failb'
1458          */
1459         for (i = 0; i < disks ; i++)
1460                 blocks[i] = NULL;
1461         count = 0;
1462         i = d0_idx;
1463         do {
1464                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1465
1466                 blocks[slot] = sh->dev[i].page;
1467
1468                 if (i == target)
1469                         faila = slot;
1470                 if (i == target2)
1471                         failb = slot;
1472                 i = raid6_next_disk(i, disks);
1473         } while (i != d0_idx);
1474
1475         BUG_ON(faila == failb);
1476         if (failb < faila)
1477                 swap(faila, failb);
1478         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1479                  __func__, (unsigned long long)sh->sector, faila, failb);
1480
1481         atomic_inc(&sh->count);
1482
1483         if (failb == syndrome_disks+1) {
1484                 /* Q disk is one of the missing disks */
1485                 if (faila == syndrome_disks) {
1486                         /* Missing P+Q, just recompute */
1487                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1488                                           ops_complete_compute, sh,
1489                                           to_addr_conv(sh, percpu, 0));
1490                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1491                                                   STRIPE_SIZE, &submit);
1492                 } else {
1493                         struct page *dest;
1494                         int data_target;
1495                         int qd_idx = sh->qd_idx;
1496
1497                         /* Missing D+Q: recompute D from P, then recompute Q */
1498                         if (target == qd_idx)
1499                                 data_target = target2;
1500                         else
1501                                 data_target = target;
1502
1503                         count = 0;
1504                         for (i = disks; i-- ; ) {
1505                                 if (i == data_target || i == qd_idx)
1506                                         continue;
1507                                 blocks[count++] = sh->dev[i].page;
1508                         }
1509                         dest = sh->dev[data_target].page;
1510                         init_async_submit(&submit,
1511                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1512                                           NULL, NULL, NULL,
1513                                           to_addr_conv(sh, percpu, 0));
1514                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1515                                        &submit);
1516
1517                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1518                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1519                                           ops_complete_compute, sh,
1520                                           to_addr_conv(sh, percpu, 0));
1521                         return async_gen_syndrome(blocks, 0, count+2,
1522                                                   STRIPE_SIZE, &submit);
1523                 }
1524         } else {
1525                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1526                                   ops_complete_compute, sh,
1527                                   to_addr_conv(sh, percpu, 0));
1528                 if (failb == syndrome_disks) {
1529                         /* We're missing D+P. */
1530                         return async_raid6_datap_recov(syndrome_disks+2,
1531                                                        STRIPE_SIZE, faila,
1532                                                        blocks, &submit);
1533                 } else {
1534                         /* We're missing D+D. */
1535                         return async_raid6_2data_recov(syndrome_disks+2,
1536                                                        STRIPE_SIZE, faila, failb,
1537                                                        blocks, &submit);
1538                 }
1539         }
1540 }
1541
1542 static void ops_complete_prexor(void *stripe_head_ref)
1543 {
1544         struct stripe_head *sh = stripe_head_ref;
1545
1546         pr_debug("%s: stripe %llu\n", __func__,
1547                 (unsigned long long)sh->sector);
1548 }
1549
1550 static struct dma_async_tx_descriptor *
1551 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1552                 struct dma_async_tx_descriptor *tx)
1553 {
1554         int disks = sh->disks;
1555         struct page **xor_srcs = to_addr_page(percpu, 0);
1556         int count = 0, pd_idx = sh->pd_idx, i;
1557         struct async_submit_ctl submit;
1558
1559         /* existing parity data subtracted */
1560         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1561
1562         BUG_ON(sh->batch_head);
1563         pr_debug("%s: stripe %llu\n", __func__,
1564                 (unsigned long long)sh->sector);
1565
1566         for (i = disks; i--; ) {
1567                 struct r5dev *dev = &sh->dev[i];
1568                 /* Only process blocks that are known to be uptodate */
1569                 if (test_bit(R5_Wantdrain, &dev->flags))
1570                         xor_srcs[count++] = dev->page;
1571         }
1572
1573         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1574                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1575         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1576
1577         return tx;
1578 }
1579
1580 static struct dma_async_tx_descriptor *
1581 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1582                 struct dma_async_tx_descriptor *tx)
1583 {
1584         struct page **blocks = to_addr_page(percpu, 0);
1585         int count;
1586         struct async_submit_ctl submit;
1587
1588         pr_debug("%s: stripe %llu\n", __func__,
1589                 (unsigned long long)sh->sector);
1590
1591         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1592
1593         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1594                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1595         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1596
1597         return tx;
1598 }
1599
1600 static struct dma_async_tx_descriptor *
1601 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1602 {
1603         int disks = sh->disks;
1604         int i;
1605         struct stripe_head *head_sh = sh;
1606
1607         pr_debug("%s: stripe %llu\n", __func__,
1608                 (unsigned long long)sh->sector);
1609
1610         for (i = disks; i--; ) {
1611                 struct r5dev *dev;
1612                 struct bio *chosen;
1613
1614                 sh = head_sh;
1615                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1616                         struct bio *wbi;
1617
1618 again:
1619                         dev = &sh->dev[i];
1620                         spin_lock_irq(&sh->stripe_lock);
1621                         chosen = dev->towrite;
1622                         dev->towrite = NULL;
1623                         sh->overwrite_disks = 0;
1624                         BUG_ON(dev->written);
1625                         wbi = dev->written = chosen;
1626                         spin_unlock_irq(&sh->stripe_lock);
1627                         WARN_ON(dev->page != dev->orig_page);
1628
1629                         while (wbi && wbi->bi_iter.bi_sector <
1630                                 dev->sector + STRIPE_SECTORS) {
1631                                 if (wbi->bi_rw & REQ_FUA)
1632                                         set_bit(R5_WantFUA, &dev->flags);
1633                                 if (wbi->bi_rw & REQ_SYNC)
1634                                         set_bit(R5_SyncIO, &dev->flags);
1635                                 if (wbi->bi_rw & REQ_DISCARD)
1636                                         set_bit(R5_Discard, &dev->flags);
1637                                 else {
1638                                         tx = async_copy_data(1, wbi, &dev->page,
1639                                                 dev->sector, tx, sh);
1640                                         if (dev->page != dev->orig_page) {
1641                                                 set_bit(R5_SkipCopy, &dev->flags);
1642                                                 clear_bit(R5_UPTODATE, &dev->flags);
1643                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1644                                         }
1645                                 }
1646                                 wbi = r5_next_bio(wbi, dev->sector);
1647                         }
1648
1649                         if (head_sh->batch_head) {
1650                                 sh = list_first_entry(&sh->batch_list,
1651                                                       struct stripe_head,
1652                                                       batch_list);
1653                                 if (sh == head_sh)
1654                                         continue;
1655                                 goto again;
1656                         }
1657                 }
1658         }
1659
1660         return tx;
1661 }
1662
1663 static void ops_complete_reconstruct(void *stripe_head_ref)
1664 {
1665         struct stripe_head *sh = stripe_head_ref;
1666         int disks = sh->disks;
1667         int pd_idx = sh->pd_idx;
1668         int qd_idx = sh->qd_idx;
1669         int i;
1670         bool fua = false, sync = false, discard = false;
1671
1672         pr_debug("%s: stripe %llu\n", __func__,
1673                 (unsigned long long)sh->sector);
1674
1675         for (i = disks; i--; ) {
1676                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1677                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1678                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1679         }
1680
1681         for (i = disks; i--; ) {
1682                 struct r5dev *dev = &sh->dev[i];
1683
1684                 if (dev->written || i == pd_idx || i == qd_idx) {
1685                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1686                                 set_bit(R5_UPTODATE, &dev->flags);
1687                         if (fua)
1688                                 set_bit(R5_WantFUA, &dev->flags);
1689                         if (sync)
1690                                 set_bit(R5_SyncIO, &dev->flags);
1691                 }
1692         }
1693
1694         if (sh->reconstruct_state == reconstruct_state_drain_run)
1695                 sh->reconstruct_state = reconstruct_state_drain_result;
1696         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1697                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1698         else {
1699                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1700                 sh->reconstruct_state = reconstruct_state_result;
1701         }
1702
1703         set_bit(STRIPE_HANDLE, &sh->state);
1704         raid5_release_stripe(sh);
1705 }
1706
1707 static void
1708 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1709                      struct dma_async_tx_descriptor *tx)
1710 {
1711         int disks = sh->disks;
1712         struct page **xor_srcs;
1713         struct async_submit_ctl submit;
1714         int count, pd_idx = sh->pd_idx, i;
1715         struct page *xor_dest;
1716         int prexor = 0;
1717         unsigned long flags;
1718         int j = 0;
1719         struct stripe_head *head_sh = sh;
1720         int last_stripe;
1721
1722         pr_debug("%s: stripe %llu\n", __func__,
1723                 (unsigned long long)sh->sector);
1724
1725         for (i = 0; i < sh->disks; i++) {
1726                 if (pd_idx == i)
1727                         continue;
1728                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1729                         break;
1730         }
1731         if (i >= sh->disks) {
1732                 atomic_inc(&sh->count);
1733                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1734                 ops_complete_reconstruct(sh);
1735                 return;
1736         }
1737 again:
1738         count = 0;
1739         xor_srcs = to_addr_page(percpu, j);
1740         /* check if prexor is active which means only process blocks
1741          * that are part of a read-modify-write (written)
1742          */
1743         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1744                 prexor = 1;
1745                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1746                 for (i = disks; i--; ) {
1747                         struct r5dev *dev = &sh->dev[i];
1748                         if (head_sh->dev[i].written)
1749                                 xor_srcs[count++] = dev->page;
1750                 }
1751         } else {
1752                 xor_dest = sh->dev[pd_idx].page;
1753                 for (i = disks; i--; ) {
1754                         struct r5dev *dev = &sh->dev[i];
1755                         if (i != pd_idx)
1756                                 xor_srcs[count++] = dev->page;
1757                 }
1758         }
1759
1760         /* 1/ if we prexor'd then the dest is reused as a source
1761          * 2/ if we did not prexor then we are redoing the parity
1762          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1763          * for the synchronous xor case
1764          */
1765         last_stripe = !head_sh->batch_head ||
1766                 list_first_entry(&sh->batch_list,
1767                                  struct stripe_head, batch_list) == head_sh;
1768         if (last_stripe) {
1769                 flags = ASYNC_TX_ACK |
1770                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1771
1772                 atomic_inc(&head_sh->count);
1773                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1774                                   to_addr_conv(sh, percpu, j));
1775         } else {
1776                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1777                 init_async_submit(&submit, flags, tx, NULL, NULL,
1778                                   to_addr_conv(sh, percpu, j));
1779         }
1780
1781         if (unlikely(count == 1))
1782                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1783         else
1784                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1785         if (!last_stripe) {
1786                 j++;
1787                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1788                                       batch_list);
1789                 goto again;
1790         }
1791 }
1792
1793 static void
1794 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1795                      struct dma_async_tx_descriptor *tx)
1796 {
1797         struct async_submit_ctl submit;
1798         struct page **blocks;
1799         int count, i, j = 0;
1800         struct stripe_head *head_sh = sh;
1801         int last_stripe;
1802         int synflags;
1803         unsigned long txflags;
1804
1805         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1806
1807         for (i = 0; i < sh->disks; i++) {
1808                 if (sh->pd_idx == i || sh->qd_idx == i)
1809                         continue;
1810                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1811                         break;
1812         }
1813         if (i >= sh->disks) {
1814                 atomic_inc(&sh->count);
1815                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1816                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1817                 ops_complete_reconstruct(sh);
1818                 return;
1819         }
1820
1821 again:
1822         blocks = to_addr_page(percpu, j);
1823
1824         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1825                 synflags = SYNDROME_SRC_WRITTEN;
1826                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1827         } else {
1828                 synflags = SYNDROME_SRC_ALL;
1829                 txflags = ASYNC_TX_ACK;
1830         }
1831
1832         count = set_syndrome_sources(blocks, sh, synflags);
1833         last_stripe = !head_sh->batch_head ||
1834                 list_first_entry(&sh->batch_list,
1835                                  struct stripe_head, batch_list) == head_sh;
1836
1837         if (last_stripe) {
1838                 atomic_inc(&head_sh->count);
1839                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1840                                   head_sh, to_addr_conv(sh, percpu, j));
1841         } else
1842                 init_async_submit(&submit, 0, tx, NULL, NULL,
1843                                   to_addr_conv(sh, percpu, j));
1844         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1845         if (!last_stripe) {
1846                 j++;
1847                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1848                                       batch_list);
1849                 goto again;
1850         }
1851 }
1852
1853 static void ops_complete_check(void *stripe_head_ref)
1854 {
1855         struct stripe_head *sh = stripe_head_ref;
1856
1857         pr_debug("%s: stripe %llu\n", __func__,
1858                 (unsigned long long)sh->sector);
1859
1860         sh->check_state = check_state_check_result;
1861         set_bit(STRIPE_HANDLE, &sh->state);
1862         raid5_release_stripe(sh);
1863 }
1864
1865 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1866 {
1867         int disks = sh->disks;
1868         int pd_idx = sh->pd_idx;
1869         int qd_idx = sh->qd_idx;
1870         struct page *xor_dest;
1871         struct page **xor_srcs = to_addr_page(percpu, 0);
1872         struct dma_async_tx_descriptor *tx;
1873         struct async_submit_ctl submit;
1874         int count;
1875         int i;
1876
1877         pr_debug("%s: stripe %llu\n", __func__,
1878                 (unsigned long long)sh->sector);
1879
1880         BUG_ON(sh->batch_head);
1881         count = 0;
1882         xor_dest = sh->dev[pd_idx].page;
1883         xor_srcs[count++] = xor_dest;
1884         for (i = disks; i--; ) {
1885                 if (i == pd_idx || i == qd_idx)
1886                         continue;
1887                 xor_srcs[count++] = sh->dev[i].page;
1888         }
1889
1890         init_async_submit(&submit, 0, NULL, NULL, NULL,
1891                           to_addr_conv(sh, percpu, 0));
1892         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1893                            &sh->ops.zero_sum_result, &submit);
1894
1895         atomic_inc(&sh->count);
1896         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1897         tx = async_trigger_callback(&submit);
1898 }
1899
1900 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1901 {
1902         struct page **srcs = to_addr_page(percpu, 0);
1903         struct async_submit_ctl submit;
1904         int count;
1905
1906         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1907                 (unsigned long long)sh->sector, checkp);
1908
1909         BUG_ON(sh->batch_head);
1910         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1911         if (!checkp)
1912                 srcs[count] = NULL;
1913
1914         atomic_inc(&sh->count);
1915         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1916                           sh, to_addr_conv(sh, percpu, 0));
1917         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1918                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1919 }
1920
1921 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1922 {
1923         int overlap_clear = 0, i, disks = sh->disks;
1924         struct dma_async_tx_descriptor *tx = NULL;
1925         struct r5conf *conf = sh->raid_conf;
1926         int level = conf->level;
1927         struct raid5_percpu *percpu;
1928         unsigned long cpu;
1929
1930         cpu = get_cpu();
1931         percpu = per_cpu_ptr(conf->percpu, cpu);
1932         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1933                 ops_run_biofill(sh);
1934                 overlap_clear++;
1935         }
1936
1937         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1938                 if (level < 6)
1939                         tx = ops_run_compute5(sh, percpu);
1940                 else {
1941                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1942                                 tx = ops_run_compute6_1(sh, percpu);
1943                         else
1944                                 tx = ops_run_compute6_2(sh, percpu);
1945                 }
1946                 /* terminate the chain if reconstruct is not set to be run */
1947                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1948                         async_tx_ack(tx);
1949         }
1950
1951         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1952                 if (level < 6)
1953                         tx = ops_run_prexor5(sh, percpu, tx);
1954                 else
1955                         tx = ops_run_prexor6(sh, percpu, tx);
1956         }
1957
1958         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1959                 tx = ops_run_biodrain(sh, tx);
1960                 overlap_clear++;
1961         }
1962
1963         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1964                 if (level < 6)
1965                         ops_run_reconstruct5(sh, percpu, tx);
1966                 else
1967                         ops_run_reconstruct6(sh, percpu, tx);
1968         }
1969
1970         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1971                 if (sh->check_state == check_state_run)
1972                         ops_run_check_p(sh, percpu);
1973                 else if (sh->check_state == check_state_run_q)
1974                         ops_run_check_pq(sh, percpu, 0);
1975                 else if (sh->check_state == check_state_run_pq)
1976                         ops_run_check_pq(sh, percpu, 1);
1977                 else
1978                         BUG();
1979         }
1980
1981         if (overlap_clear && !sh->batch_head)
1982                 for (i = disks; i--; ) {
1983                         struct r5dev *dev = &sh->dev[i];
1984                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1985                                 wake_up(&sh->raid_conf->wait_for_overlap);
1986                 }
1987         put_cpu();
1988 }
1989
1990 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1991 {
1992         struct stripe_head *sh;
1993
1994         sh = kmem_cache_zalloc(sc, gfp);
1995         if (sh) {
1996                 spin_lock_init(&sh->stripe_lock);
1997                 spin_lock_init(&sh->batch_lock);
1998                 INIT_LIST_HEAD(&sh->batch_list);
1999                 INIT_LIST_HEAD(&sh->lru);
2000                 atomic_set(&sh->count, 1);
2001         }
2002         return sh;
2003 }
2004 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2005 {
2006         struct stripe_head *sh;
2007
2008         sh = alloc_stripe(conf->slab_cache, gfp);
2009         if (!sh)
2010                 return 0;
2011
2012         sh->raid_conf = conf;
2013
2014         if (grow_buffers(sh, gfp)) {
2015                 shrink_buffers(sh);
2016                 kmem_cache_free(conf->slab_cache, sh);
2017                 return 0;
2018         }
2019         sh->hash_lock_index =
2020                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2021         /* we just created an active stripe so... */
2022         atomic_inc(&conf->active_stripes);
2023
2024         raid5_release_stripe(sh);
2025         conf->max_nr_stripes++;
2026         return 1;
2027 }
2028
2029 static int grow_stripes(struct r5conf *conf, int num)
2030 {
2031         struct kmem_cache *sc;
2032         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2033
2034         if (conf->mddev->gendisk)
2035                 sprintf(conf->cache_name[0],
2036                         "raid%d-%s", conf->level, mdname(conf->mddev));
2037         else
2038                 sprintf(conf->cache_name[0],
2039                         "raid%d-%p", conf->level, conf->mddev);
2040         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2041
2042         conf->active_name = 0;
2043         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2044                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2045                                0, 0, NULL);
2046         if (!sc)
2047                 return 1;
2048         conf->slab_cache = sc;
2049         conf->pool_size = devs;
2050         while (num--)
2051                 if (!grow_one_stripe(conf, GFP_KERNEL))
2052                         return 1;
2053
2054         return 0;
2055 }
2056
2057 /**
2058  * scribble_len - return the required size of the scribble region
2059  * @num - total number of disks in the array
2060  *
2061  * The size must be enough to contain:
2062  * 1/ a struct page pointer for each device in the array +2
2063  * 2/ room to convert each entry in (1) to its corresponding dma
2064  *    (dma_map_page()) or page (page_address()) address.
2065  *
2066  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2067  * calculate over all devices (not just the data blocks), using zeros in place
2068  * of the P and Q blocks.
2069  */
2070 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2071 {
2072         struct flex_array *ret;
2073         size_t len;
2074
2075         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2076         ret = flex_array_alloc(len, cnt, flags);
2077         if (!ret)
2078                 return NULL;
2079         /* always prealloc all elements, so no locking is required */
2080         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2081                 flex_array_free(ret);
2082                 return NULL;
2083         }
2084         return ret;
2085 }
2086
2087 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2088 {
2089         unsigned long cpu;
2090         int err = 0;
2091
2092         mddev_suspend(conf->mddev);
2093         get_online_cpus();
2094         for_each_present_cpu(cpu) {
2095                 struct raid5_percpu *percpu;
2096                 struct flex_array *scribble;
2097
2098                 percpu = per_cpu_ptr(conf->percpu, cpu);
2099                 scribble = scribble_alloc(new_disks,
2100                                           new_sectors / STRIPE_SECTORS,
2101                                           GFP_NOIO);
2102
2103                 if (scribble) {
2104                         flex_array_free(percpu->scribble);
2105                         percpu->scribble = scribble;
2106                 } else {
2107                         err = -ENOMEM;
2108                         break;
2109                 }
2110         }
2111         put_online_cpus();
2112         mddev_resume(conf->mddev);
2113         return err;
2114 }
2115
2116 static int resize_stripes(struct r5conf *conf, int newsize)
2117 {
2118         /* Make all the stripes able to hold 'newsize' devices.
2119          * New slots in each stripe get 'page' set to a new page.
2120          *
2121          * This happens in stages:
2122          * 1/ create a new kmem_cache and allocate the required number of
2123          *    stripe_heads.
2124          * 2/ gather all the old stripe_heads and transfer the pages across
2125          *    to the new stripe_heads.  This will have the side effect of
2126          *    freezing the array as once all stripe_heads have been collected,
2127          *    no IO will be possible.  Old stripe heads are freed once their
2128          *    pages have been transferred over, and the old kmem_cache is
2129          *    freed when all stripes are done.
2130          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2131          *    we simple return a failre status - no need to clean anything up.
2132          * 4/ allocate new pages for the new slots in the new stripe_heads.
2133          *    If this fails, we don't bother trying the shrink the
2134          *    stripe_heads down again, we just leave them as they are.
2135          *    As each stripe_head is processed the new one is released into
2136          *    active service.
2137          *
2138          * Once step2 is started, we cannot afford to wait for a write,
2139          * so we use GFP_NOIO allocations.
2140          */
2141         struct stripe_head *osh, *nsh;
2142         LIST_HEAD(newstripes);
2143         struct disk_info *ndisks;
2144         int err;
2145         struct kmem_cache *sc;
2146         int i;
2147         int hash, cnt;
2148
2149         if (newsize <= conf->pool_size)
2150                 return 0; /* never bother to shrink */
2151
2152         err = md_allow_write(conf->mddev);
2153         if (err)
2154                 return err;
2155
2156         /* Step 1 */
2157         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2158                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2159                                0, 0, NULL);
2160         if (!sc)
2161                 return -ENOMEM;
2162
2163         /* Need to ensure auto-resizing doesn't interfere */
2164         mutex_lock(&conf->cache_size_mutex);
2165
2166         for (i = conf->max_nr_stripes; i; i--) {
2167                 nsh = alloc_stripe(sc, GFP_KERNEL);
2168                 if (!nsh)
2169                         break;
2170
2171                 nsh->raid_conf = conf;
2172                 list_add(&nsh->lru, &newstripes);
2173         }
2174         if (i) {
2175                 /* didn't get enough, give up */
2176                 while (!list_empty(&newstripes)) {
2177                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2178                         list_del(&nsh->lru);
2179                         kmem_cache_free(sc, nsh);
2180                 }
2181                 kmem_cache_destroy(sc);
2182                 mutex_unlock(&conf->cache_size_mutex);
2183                 return -ENOMEM;
2184         }
2185         /* Step 2 - Must use GFP_NOIO now.
2186          * OK, we have enough stripes, start collecting inactive
2187          * stripes and copying them over
2188          */
2189         hash = 0;
2190         cnt = 0;
2191         list_for_each_entry(nsh, &newstripes, lru) {
2192                 lock_device_hash_lock(conf, hash);
2193                 wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
2194                                     !list_empty(conf->inactive_list + hash),
2195                                     unlock_device_hash_lock(conf, hash),
2196                                     lock_device_hash_lock(conf, hash));
2197                 osh = get_free_stripe(conf, hash);
2198                 unlock_device_hash_lock(conf, hash);
2199
2200                 for(i=0; i<conf->pool_size; i++) {
2201                         nsh->dev[i].page = osh->dev[i].page;
2202                         nsh->dev[i].orig_page = osh->dev[i].page;
2203                 }
2204                 nsh->hash_lock_index = hash;
2205                 kmem_cache_free(conf->slab_cache, osh);
2206                 cnt++;
2207                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2208                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2209                         hash++;
2210                         cnt = 0;
2211                 }
2212         }
2213         kmem_cache_destroy(conf->slab_cache);
2214
2215         /* Step 3.
2216          * At this point, we are holding all the stripes so the array
2217          * is completely stalled, so now is a good time to resize
2218          * conf->disks and the scribble region
2219          */
2220         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2221         if (ndisks) {
2222                 for (i=0; i<conf->raid_disks; i++)
2223                         ndisks[i] = conf->disks[i];
2224                 kfree(conf->disks);
2225                 conf->disks = ndisks;
2226         } else
2227                 err = -ENOMEM;
2228
2229         mutex_unlock(&conf->cache_size_mutex);
2230         /* Step 4, return new stripes to service */
2231         while(!list_empty(&newstripes)) {
2232                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2233                 list_del_init(&nsh->lru);
2234
2235                 for (i=conf->raid_disks; i < newsize; i++)
2236                         if (nsh->dev[i].page == NULL) {
2237                                 struct page *p = alloc_page(GFP_NOIO);
2238                                 nsh->dev[i].page = p;
2239                                 nsh->dev[i].orig_page = p;
2240                                 if (!p)
2241                                         err = -ENOMEM;
2242                         }
2243                 raid5_release_stripe(nsh);
2244         }
2245         /* critical section pass, GFP_NOIO no longer needed */
2246
2247         conf->slab_cache = sc;
2248         conf->active_name = 1-conf->active_name;
2249         if (!err)
2250                 conf->pool_size = newsize;
2251         return err;
2252 }
2253
2254 static int drop_one_stripe(struct r5conf *conf)
2255 {
2256         struct stripe_head *sh;
2257         int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2258
2259         spin_lock_irq(conf->hash_locks + hash);
2260         sh = get_free_stripe(conf, hash);
2261         spin_unlock_irq(conf->hash_locks + hash);
2262         if (!sh)
2263                 return 0;
2264         BUG_ON(atomic_read(&sh->count));
2265         shrink_buffers(sh);
2266         kmem_cache_free(conf->slab_cache, sh);
2267         atomic_dec(&conf->active_stripes);
2268         conf->max_nr_stripes--;
2269         return 1;
2270 }
2271
2272 static void shrink_stripes(struct r5conf *conf)
2273 {
2274         while (conf->max_nr_stripes &&
2275                drop_one_stripe(conf))
2276                 ;
2277
2278         kmem_cache_destroy(conf->slab_cache);
2279         conf->slab_cache = NULL;
2280 }
2281
2282 static void raid5_end_read_request(struct bio * bi)
2283 {
2284         struct stripe_head *sh = bi->bi_private;
2285         struct r5conf *conf = sh->raid_conf;
2286         int disks = sh->disks, i;
2287         char b[BDEVNAME_SIZE];
2288         struct md_rdev *rdev = NULL;
2289         sector_t s;
2290
2291         for (i=0 ; i<disks; i++)
2292                 if (bi == &sh->dev[i].req)
2293                         break;
2294
2295         pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2296                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2297                 bi->bi_error);
2298         if (i == disks) {
2299                 BUG();
2300                 return;
2301         }
2302         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2303                 /* If replacement finished while this request was outstanding,
2304                  * 'replacement' might be NULL already.
2305                  * In that case it moved down to 'rdev'.
2306                  * rdev is not removed until all requests are finished.
2307                  */
2308                 rdev = conf->disks[i].replacement;
2309         if (!rdev)
2310                 rdev = conf->disks[i].rdev;
2311
2312         if (use_new_offset(conf, sh))
2313                 s = sh->sector + rdev->new_data_offset;
2314         else
2315                 s = sh->sector + rdev->data_offset;
2316         if (!bi->bi_error) {
2317                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2318                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2319                         /* Note that this cannot happen on a
2320                          * replacement device.  We just fail those on
2321                          * any error
2322                          */
2323                         printk_ratelimited(
2324                                 KERN_INFO
2325                                 "md/raid:%s: read error corrected"
2326                                 " (%lu sectors at %llu on %s)\n",
2327                                 mdname(conf->mddev), STRIPE_SECTORS,
2328                                 (unsigned long long)s,
2329                                 bdevname(rdev->bdev, b));
2330                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2331                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2332                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2333                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2334                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2335
2336                 if (atomic_read(&rdev->read_errors))
2337                         atomic_set(&rdev->read_errors, 0);
2338         } else {
2339                 const char *bdn = bdevname(rdev->bdev, b);
2340                 int retry = 0;
2341                 int set_bad = 0;
2342
2343                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2344                 atomic_inc(&rdev->read_errors);
2345                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2346                         printk_ratelimited(
2347                                 KERN_WARNING
2348                                 "md/raid:%s: read error on replacement device "
2349                                 "(sector %llu on %s).\n",
2350                                 mdname(conf->mddev),
2351                                 (unsigned long long)s,
2352                                 bdn);
2353                 else if (conf->mddev->degraded >= conf->max_degraded) {
2354                         set_bad = 1;
2355                         printk_ratelimited(
2356                                 KERN_WARNING
2357                                 "md/raid:%s: read error not correctable "
2358                                 "(sector %llu on %s).\n",
2359                                 mdname(conf->mddev),
2360                                 (unsigned long long)s,
2361                                 bdn);
2362                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2363                         /* Oh, no!!! */
2364                         set_bad = 1;
2365                         printk_ratelimited(
2366                                 KERN_WARNING
2367                                 "md/raid:%s: read error NOT corrected!! "
2368                                 "(sector %llu on %s).\n",
2369                                 mdname(conf->mddev),
2370                                 (unsigned long long)s,
2371                                 bdn);
2372                 } else if (atomic_read(&rdev->read_errors)
2373                          > conf->max_nr_stripes)
2374                         printk(KERN_WARNING
2375                                "md/raid:%s: Too many read errors, failing device %s.\n",
2376                                mdname(conf->mddev), bdn);
2377                 else
2378                         retry = 1;
2379                 if (set_bad && test_bit(In_sync, &rdev->flags)
2380                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2381                         retry = 1;
2382                 if (retry)
2383                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2384                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2385                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2386                         } else
2387                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2388                 else {
2389                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2390                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2391                         if (!(set_bad
2392                               && test_bit(In_sync, &rdev->flags)
2393                               && rdev_set_badblocks(
2394                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2395                                 md_error(conf->mddev, rdev);
2396                 }
2397         }
2398         rdev_dec_pending(rdev, conf->mddev);
2399         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2400         set_bit(STRIPE_HANDLE, &sh->state);
2401         raid5_release_stripe(sh);
2402 }
2403
2404 static void raid5_end_write_request(struct bio *bi)
2405 {
2406         struct stripe_head *sh = bi->bi_private;
2407         struct r5conf *conf = sh->raid_conf;
2408         int disks = sh->disks, i;
2409         struct md_rdev *uninitialized_var(rdev);
2410         sector_t first_bad;
2411         int bad_sectors;
2412         int replacement = 0;
2413
2414         for (i = 0 ; i < disks; i++) {
2415                 if (bi == &sh->dev[i].req) {
2416                         rdev = conf->disks[i].rdev;
2417                         break;
2418                 }
2419                 if (bi == &sh->dev[i].rreq) {
2420                         rdev = conf->disks[i].replacement;
2421                         if (rdev)
2422                                 replacement = 1;
2423                         else
2424                                 /* rdev was removed and 'replacement'
2425                                  * replaced it.  rdev is not removed
2426                                  * until all requests are finished.
2427                                  */
2428                                 rdev = conf->disks[i].rdev;
2429                         break;
2430                 }
2431         }
2432         pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2433                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2434                 bi->bi_error);
2435         if (i == disks) {
2436                 BUG();
2437                 return;
2438         }
2439
2440         if (replacement) {
2441                 if (bi->bi_error)
2442                         md_error(conf->mddev, rdev);
2443                 else if (is_badblock(rdev, sh->sector,
2444                                      STRIPE_SECTORS,
2445                                      &first_bad, &bad_sectors))
2446                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2447         } else {
2448                 if (bi->bi_error) {
2449                         set_bit(STRIPE_DEGRADED, &sh->state);
2450                         set_bit(WriteErrorSeen, &rdev->flags);
2451                         set_bit(R5_WriteError, &sh->dev[i].flags);
2452                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2453                                 set_bit(MD_RECOVERY_NEEDED,
2454                                         &rdev->mddev->recovery);
2455                 } else if (is_badblock(rdev, sh->sector,
2456                                        STRIPE_SECTORS,
2457                                        &first_bad, &bad_sectors)) {
2458                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2459                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2460                                 /* That was a successful write so make
2461                                  * sure it looks like we already did
2462                                  * a re-write.
2463                                  */
2464                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2465                 }
2466         }
2467         rdev_dec_pending(rdev, conf->mddev);
2468
2469         if (sh->batch_head && bi->bi_error && !replacement)
2470                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2471
2472         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2473                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2474         set_bit(STRIPE_HANDLE, &sh->state);
2475         raid5_release_stripe(sh);
2476
2477         if (sh->batch_head && sh != sh->batch_head)
2478                 raid5_release_stripe(sh->batch_head);
2479 }
2480
2481 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2482 {
2483         struct r5dev *dev = &sh->dev[i];
2484
2485         bio_init(&dev->req);
2486         dev->req.bi_io_vec = &dev->vec;
2487         dev->req.bi_max_vecs = 1;
2488         dev->req.bi_private = sh;
2489
2490         bio_init(&dev->rreq);
2491         dev->rreq.bi_io_vec = &dev->rvec;
2492         dev->rreq.bi_max_vecs = 1;
2493         dev->rreq.bi_private = sh;
2494
2495         dev->flags = 0;
2496         dev->sector = raid5_compute_blocknr(sh, i, previous);
2497 }
2498
2499 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2500 {
2501         char b[BDEVNAME_SIZE];
2502         struct r5conf *conf = mddev->private;
2503         unsigned long flags;
2504         pr_debug("raid456: error called\n");
2505
2506         spin_lock_irqsave(&conf->device_lock, flags);
2507         clear_bit(In_sync, &rdev->flags);
2508         mddev->degraded = calc_degraded(conf);
2509         spin_unlock_irqrestore(&conf->device_lock, flags);
2510         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2511
2512         set_bit(Blocked, &rdev->flags);
2513         set_bit(Faulty, &rdev->flags);
2514         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2515         set_bit(MD_CHANGE_PENDING, &mddev->flags);
2516         printk(KERN_ALERT
2517                "md/raid:%s: Disk failure on %s, disabling device.\n"
2518                "md/raid:%s: Operation continuing on %d devices.\n",
2519                mdname(mddev),
2520                bdevname(rdev->bdev, b),
2521                mdname(mddev),
2522                conf->raid_disks - mddev->degraded);
2523 }
2524
2525 /*
2526  * Input: a 'big' sector number,
2527  * Output: index of the data and parity disk, and the sector # in them.
2528  */
2529 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2530                               int previous, int *dd_idx,
2531                               struct stripe_head *sh)
2532 {
2533         sector_t stripe, stripe2;
2534         sector_t chunk_number;
2535         unsigned int chunk_offset;
2536         int pd_idx, qd_idx;
2537         int ddf_layout = 0;
2538         sector_t new_sector;
2539         int algorithm = previous ? conf->prev_algo
2540                                  : conf->algorithm;
2541         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2542                                          : conf->chunk_sectors;
2543         int raid_disks = previous ? conf->previous_raid_disks
2544                                   : conf->raid_disks;
2545         int data_disks = raid_disks - conf->max_degraded;
2546
2547         /* First compute the information on this sector */
2548
2549         /*
2550          * Compute the chunk number and the sector offset inside the chunk
2551          */
2552         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2553         chunk_number = r_sector;
2554
2555         /*
2556          * Compute the stripe number
2557          */
2558         stripe = chunk_number;
2559         *dd_idx = sector_div(stripe, data_disks);
2560         stripe2 = stripe;
2561         /*
2562          * Select the parity disk based on the user selected algorithm.
2563          */
2564         pd_idx = qd_idx = -1;
2565         switch(conf->level) {
2566         case 4:
2567                 pd_idx = data_disks;
2568                 break;
2569         case 5:
2570                 switch (algorithm) {
2571                 case ALGORITHM_LEFT_ASYMMETRIC:
2572                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2573                         if (*dd_idx >= pd_idx)
2574                                 (*dd_idx)++;
2575                         break;
2576                 case ALGORITHM_RIGHT_ASYMMETRIC:
2577                         pd_idx = sector_div(stripe2, raid_disks);
2578                         if (*dd_idx >= pd_idx)
2579                                 (*dd_idx)++;
2580                         break;
2581                 case ALGORITHM_LEFT_SYMMETRIC:
2582                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2583                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2584                         break;
2585                 case ALGORITHM_RIGHT_SYMMETRIC:
2586                         pd_idx = sector_div(stripe2, raid_disks);
2587                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2588                         break;
2589                 case ALGORITHM_PARITY_0:
2590                         pd_idx = 0;
2591                         (*dd_idx)++;
2592                         break;
2593                 case ALGORITHM_PARITY_N:
2594                         pd_idx = data_disks;
2595                         break;
2596                 default:
2597                         BUG();
2598                 }
2599                 break;
2600         case 6:
2601
2602                 switch (algorithm) {
2603                 case ALGORITHM_LEFT_ASYMMETRIC:
2604                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2605                         qd_idx = pd_idx + 1;
2606                         if (pd_idx == raid_disks-1) {
2607                                 (*dd_idx)++;    /* Q D D D P */
2608                                 qd_idx = 0;
2609                         } else if (*dd_idx >= pd_idx)
2610                                 (*dd_idx) += 2; /* D D P Q D */
2611                         break;
2612                 case ALGORITHM_RIGHT_ASYMMETRIC:
2613                         pd_idx = sector_div(stripe2, raid_disks);
2614                         qd_idx = pd_idx + 1;
2615                         if (pd_idx == raid_disks-1) {
2616                                 (*dd_idx)++;    /* Q D D D P */
2617                                 qd_idx = 0;
2618                         } else if (*dd_idx >= pd_idx)
2619                                 (*dd_idx) += 2; /* D D P Q D */
2620                         break;
2621                 case ALGORITHM_LEFT_SYMMETRIC:
2622                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2623                         qd_idx = (pd_idx + 1) % raid_disks;
2624                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2625                         break;
2626                 case ALGORITHM_RIGHT_SYMMETRIC:
2627                         pd_idx = sector_div(stripe2, raid_disks);
2628                         qd_idx = (pd_idx + 1) % raid_disks;
2629                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2630                         break;
2631
2632                 case ALGORITHM_PARITY_0:
2633                         pd_idx = 0;
2634                         qd_idx = 1;
2635                         (*dd_idx) += 2;
2636                         break;
2637                 case ALGORITHM_PARITY_N:
2638                         pd_idx = data_disks;
2639                         qd_idx = data_disks + 1;
2640                         break;
2641
2642                 case ALGORITHM_ROTATING_ZERO_RESTART:
2643                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2644                          * of blocks for computing Q is different.
2645                          */
2646                         pd_idx = sector_div(stripe2, raid_disks);
2647                         qd_idx = pd_idx + 1;
2648                         if (pd_idx == raid_disks-1) {
2649                                 (*dd_idx)++;    /* Q D D D P */
2650                                 qd_idx = 0;
2651                         } else if (*dd_idx >= pd_idx)
2652                                 (*dd_idx) += 2; /* D D P Q D */
2653                         ddf_layout = 1;
2654                         break;
2655
2656                 case ALGORITHM_ROTATING_N_RESTART:
2657                         /* Same a left_asymmetric, by first stripe is
2658                          * D D D P Q  rather than
2659                          * Q D D D P
2660                          */
2661                         stripe2 += 1;
2662                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2663                         qd_idx = pd_idx + 1;
2664                         if (pd_idx == raid_disks-1) {
2665                                 (*dd_idx)++;    /* Q D D D P */
2666                                 qd_idx = 0;
2667                         } else if (*dd_idx >= pd_idx)
2668                                 (*dd_idx) += 2; /* D D P Q D */
2669                         ddf_layout = 1;
2670                         break;
2671
2672                 case ALGORITHM_ROTATING_N_CONTINUE:
2673                         /* Same as left_symmetric but Q is before P */
2674                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2675                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2676                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2677                         ddf_layout = 1;
2678                         break;
2679
2680                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2681                         /* RAID5 left_asymmetric, with Q on last device */
2682                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2683                         if (*dd_idx >= pd_idx)
2684                                 (*dd_idx)++;
2685                         qd_idx = raid_disks - 1;
2686                         break;
2687
2688                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2689                         pd_idx = sector_div(stripe2, raid_disks-1);
2690                         if (*dd_idx >= pd_idx)
2691                                 (*dd_idx)++;
2692                         qd_idx = raid_disks - 1;
2693                         break;
2694
2695                 case ALGORITHM_LEFT_SYMMETRIC_6:
2696                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2697                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2698                         qd_idx = raid_disks - 1;
2699                         break;
2700
2701                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2702                         pd_idx = sector_div(stripe2, raid_disks-1);
2703                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2704                         qd_idx = raid_disks - 1;
2705                         break;
2706
2707                 case ALGORITHM_PARITY_0_6:
2708                         pd_idx = 0;
2709                         (*dd_idx)++;
2710                         qd_idx = raid_disks - 1;
2711                         break;
2712
2713                 default:
2714                         BUG();
2715                 }
2716                 break;
2717         }
2718
2719         if (sh) {
2720                 sh->pd_idx = pd_idx;
2721                 sh->qd_idx = qd_idx;
2722                 sh->ddf_layout = ddf_layout;
2723         }
2724         /*
2725          * Finally, compute the new sector number
2726          */
2727         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2728         return new_sector;
2729 }
2730
2731 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2732 {
2733         struct r5conf *conf = sh->raid_conf;
2734         int raid_disks = sh->disks;
2735         int data_disks = raid_disks - conf->max_degraded;
2736         sector_t new_sector = sh->sector, check;
2737         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2738                                          : conf->chunk_sectors;
2739         int algorithm = previous ? conf->prev_algo
2740                                  : conf->algorithm;
2741         sector_t stripe;
2742         int chunk_offset;
2743         sector_t chunk_number;
2744         int dummy1, dd_idx = i;
2745         sector_t r_sector;
2746         struct stripe_head sh2;
2747
2748         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2749         stripe = new_sector;
2750
2751         if (i == sh->pd_idx)
2752                 return 0;
2753         switch(conf->level) {
2754         case 4: break;
2755         case 5:
2756                 switch (algorithm) {
2757                 case ALGORITHM_LEFT_ASYMMETRIC:
2758                 case ALGORITHM_RIGHT_ASYMMETRIC:
2759                         if (i > sh->pd_idx)
2760                                 i--;
2761                         break;
2762                 case ALGORITHM_LEFT_SYMMETRIC:
2763                 case ALGORITHM_RIGHT_SYMMETRIC:
2764                         if (i < sh->pd_idx)
2765                                 i += raid_disks;
2766                         i -= (sh->pd_idx + 1);
2767                         break;
2768                 case ALGORITHM_PARITY_0:
2769                         i -= 1;
2770                         break;
2771                 case ALGORITHM_PARITY_N:
2772                         break;
2773                 default:
2774                         BUG();
2775                 }
2776                 break;
2777         case 6:
2778                 if (i == sh->qd_idx)
2779                         return 0; /* It is the Q disk */
2780                 switch (algorithm) {
2781                 case ALGORITHM_LEFT_ASYMMETRIC:
2782                 case ALGORITHM_RIGHT_ASYMMETRIC:
2783                 case ALGORITHM_ROTATING_ZERO_RESTART:
2784                 case ALGORITHM_ROTATING_N_RESTART:
2785                         if (sh->pd_idx == raid_disks-1)
2786                                 i--;    /* Q D D D P */
2787                         else if (i > sh->pd_idx)
2788                                 i -= 2; /* D D P Q D */
2789                         break;
2790                 case ALGORITHM_LEFT_SYMMETRIC:
2791                 case ALGORITHM_RIGHT_SYMMETRIC:
2792                         if (sh->pd_idx == raid_disks-1)
2793                                 i--; /* Q D D D P */
2794                         else {
2795                                 /* D D P Q D */
2796                                 if (i < sh->pd_idx)
2797                                         i += raid_disks;
2798                                 i -= (sh->pd_idx + 2);
2799                         }
2800                         break;
2801                 case ALGORITHM_PARITY_0:
2802                         i -= 2;
2803                         break;
2804                 case ALGORITHM_PARITY_N:
2805                         break;
2806                 case ALGORITHM_ROTATING_N_CONTINUE:
2807                         /* Like left_symmetric, but P is before Q */
2808                         if (sh->pd_idx == 0)
2809                                 i--;    /* P D D D Q */
2810                         else {
2811                                 /* D D Q P D */
2812                                 if (i < sh->pd_idx)
2813                                         i += raid_disks;
2814                                 i -= (sh->pd_idx + 1);
2815                         }
2816                         break;
2817                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2818                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2819                         if (i > sh->pd_idx)
2820                                 i--;
2821                         break;
2822                 case ALGORITHM_LEFT_SYMMETRIC_6:
2823                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2824                         if (i < sh->pd_idx)
2825                                 i += data_disks + 1;
2826                         i -= (sh->pd_idx + 1);
2827                         break;
2828                 case ALGORITHM_PARITY_0_6:
2829                         i -= 1;
2830                         break;
2831                 default:
2832                         BUG();
2833                 }
2834                 break;
2835         }
2836
2837         chunk_number = stripe * data_disks + i;
2838         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2839
2840         check = raid5_compute_sector(conf, r_sector,
2841                                      previous, &dummy1, &sh2);
2842         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2843                 || sh2.qd_idx != sh->qd_idx) {
2844                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2845                        mdname(conf->mddev));
2846                 return 0;
2847         }
2848         return r_sector;
2849 }
2850
2851 static void
2852 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2853                          int rcw, int expand)
2854 {
2855         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2856         struct r5conf *conf = sh->raid_conf;
2857         int level = conf->level;
2858
2859         if (rcw) {
2860
2861                 for (i = disks; i--; ) {
2862                         struct r5dev *dev = &sh->dev[i];
2863
2864                         if (dev->towrite) {
2865                                 set_bit(R5_LOCKED, &dev->flags);
2866                                 set_bit(R5_Wantdrain, &dev->flags);
2867                                 if (!expand)
2868                                         clear_bit(R5_UPTODATE, &dev->flags);
2869                                 s->locked++;
2870                         }
2871                 }
2872                 /* if we are not expanding this is a proper write request, and
2873                  * there will be bios with new data to be drained into the
2874                  * stripe cache
2875                  */
2876                 if (!expand) {
2877                         if (!s->locked)
2878                                 /* False alarm, nothing to do */
2879                                 return;
2880                         sh->reconstruct_state = reconstruct_state_drain_run;
2881                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2882                 } else
2883                         sh->reconstruct_state = reconstruct_state_run;
2884
2885                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2886
2887                 if (s->locked + conf->max_degraded == disks)
2888                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2889                                 atomic_inc(&conf->pending_full_writes);
2890         } else {
2891                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2892                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2893                 BUG_ON(level == 6 &&
2894                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2895                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2896
2897                 for (i = disks; i--; ) {
2898                         struct r5dev *dev = &sh->dev[i];
2899                         if (i == pd_idx || i == qd_idx)
2900                                 continue;
2901
2902                         if (dev->towrite &&
2903                             (test_bit(R5_UPTODATE, &dev->flags) ||
2904                              test_bit(R5_Wantcompute, &dev->flags))) {
2905                                 set_bit(R5_Wantdrain, &dev->flags);
2906                                 set_bit(R5_LOCKED, &dev->flags);
2907                                 clear_bit(R5_UPTODATE, &dev->flags);
2908                                 s->locked++;
2909                         }
2910                 }
2911                 if (!s->locked)
2912                         /* False alarm - nothing to do */
2913                         return;
2914                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2915                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2916                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2917                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2918         }
2919
2920         /* keep the parity disk(s) locked while asynchronous operations
2921          * are in flight
2922          */
2923         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2924         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2925         s->locked++;
2926
2927         if (level == 6) {
2928                 int qd_idx = sh->qd_idx;
2929                 struct r5dev *dev = &sh->dev[qd_idx];
2930
2931                 set_bit(R5_LOCKED, &dev->flags);
2932                 clear_bit(R5_UPTODATE, &dev->flags);
2933                 s->locked++;
2934         }
2935
2936         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2937                 __func__, (unsigned long long)sh->sector,
2938                 s->locked, s->ops_request);
2939 }
2940
2941 /*
2942  * Each stripe/dev can have one or more bion attached.
2943  * toread/towrite point to the first in a chain.
2944  * The bi_next chain must be in order.
2945  */
2946 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2947                           int forwrite, int previous)
2948 {
2949         struct bio **bip;
2950         struct r5conf *conf = sh->raid_conf;
2951         int firstwrite=0;
2952
2953         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2954                 (unsigned long long)bi->bi_iter.bi_sector,
2955                 (unsigned long long)sh->sector);
2956
2957         /*
2958          * If several bio share a stripe. The bio bi_phys_segments acts as a
2959          * reference count to avoid race. The reference count should already be
2960          * increased before this function is called (for example, in
2961          * raid5_make_request()), so other bio sharing this stripe will not free the
2962          * stripe. If a stripe is owned by one stripe, the stripe lock will
2963          * protect it.
2964          */
2965         spin_lock_irq(&sh->stripe_lock);
2966         /* Don't allow new IO added to stripes in batch list */
2967         if (sh->batch_head)
2968                 goto overlap;
2969         if (forwrite) {
2970                 bip = &sh->dev[dd_idx].towrite;
2971                 if (*bip == NULL)
2972                         firstwrite = 1;
2973         } else
2974                 bip = &sh->dev[dd_idx].toread;
2975         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2976                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2977                         goto overlap;
2978                 bip = & (*bip)->bi_next;
2979         }
2980         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2981                 goto overlap;
2982
2983         if (!forwrite || previous)
2984                 clear_bit(STRIPE_BATCH_READY, &sh->state);
2985
2986         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2987         if (*bip)
2988                 bi->bi_next = *bip;
2989         *bip = bi;
2990         raid5_inc_bi_active_stripes(bi);
2991
2992         if (forwrite) {
2993                 /* check if page is covered */
2994                 sector_t sector = sh->dev[dd_idx].sector;
2995                 for (bi=sh->dev[dd_idx].towrite;
2996                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2997                              bi && bi->bi_iter.bi_sector <= sector;
2998                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2999                         if (bio_end_sector(bi) >= sector)
3000                                 sector = bio_end_sector(bi);
3001                 }
3002                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3003                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3004                                 sh->overwrite_disks++;
3005         }
3006
3007         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3008                 (unsigned long long)(*bip)->bi_iter.bi_sector,
3009                 (unsigned long long)sh->sector, dd_idx);
3010
3011         if (conf->mddev->bitmap && firstwrite) {
3012                 /* Cannot hold spinlock over bitmap_startwrite,
3013                  * but must ensure this isn't added to a batch until
3014                  * we have added to the bitmap and set bm_seq.
3015                  * So set STRIPE_BITMAP_PENDING to prevent
3016                  * batching.
3017                  * If multiple add_stripe_bio() calls race here they
3018                  * much all set STRIPE_BITMAP_PENDING.  So only the first one
3019                  * to complete "bitmap_startwrite" gets to set
3020                  * STRIPE_BIT_DELAY.  This is important as once a stripe
3021                  * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3022                  * any more.
3023                  */
3024                 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3025                 spin_unlock_irq(&sh->stripe_lock);
3026                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3027                                   STRIPE_SECTORS, 0);
3028                 spin_lock_irq(&sh->stripe_lock);
3029                 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3030                 if (!sh->batch_head) {
3031                         sh->bm_seq = conf->seq_flush+1;
3032                         set_bit(STRIPE_BIT_DELAY, &sh->state);
3033                 }
3034         }
3035         spin_unlock_irq(&sh->stripe_lock);
3036
3037         if (stripe_can_batch(sh))
3038                 stripe_add_to_batch_list(conf, sh);
3039         return 1;
3040
3041  overlap:
3042         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3043         spin_unlock_irq(&sh->stripe_lock);
3044         return 0;
3045 }
3046
3047 static void end_reshape(struct r5conf *conf);
3048
3049 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3050                             struct stripe_head *sh)
3051 {
3052         int sectors_per_chunk =
3053                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3054         int dd_idx;
3055         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3056         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3057
3058         raid5_compute_sector(conf,
3059                              stripe * (disks - conf->max_degraded)
3060                              *sectors_per_chunk + chunk_offset,
3061                              previous,
3062                              &dd_idx, sh);
3063 }
3064
3065 static void
3066 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3067                                 struct stripe_head_state *s, int disks,
3068                                 struct bio_list *return_bi)
3069 {
3070         int i;
3071         BUG_ON(sh->batch_head);
3072         for (i = disks; i--; ) {
3073                 struct bio *bi;
3074                 int bitmap_end = 0;
3075
3076                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3077                         struct md_rdev *rdev;
3078                         rcu_read_lock();
3079                         rdev = rcu_dereference(conf->disks[i].rdev);
3080                         if (rdev && test_bit(In_sync, &rdev->flags))
3081                                 atomic_inc(&rdev->nr_pending);
3082                         else
3083                                 rdev = NULL;
3084                         rcu_read_unlock();
3085                         if (rdev) {
3086                                 if (!rdev_set_badblocks(
3087                                             rdev,
3088                                             sh->sector,
3089                                             STRIPE_SECTORS, 0))
3090                                         md_error(conf->mddev, rdev);
3091                                 rdev_dec_pending(rdev, conf->mddev);
3092                         }
3093                 }
3094                 spin_lock_irq(&sh->stripe_lock);
3095                 /* fail all writes first */
3096                 bi = sh->dev[i].towrite;
3097                 sh->dev[i].towrite = NULL;
3098                 sh->overwrite_disks = 0;
3099                 spin_unlock_irq(&sh->stripe_lock);
3100                 if (bi)
3101                         bitmap_end = 1;
3102
3103                 r5l_stripe_write_finished(sh);
3104
3105                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3106                         wake_up(&conf->wait_for_overlap);
3107
3108                 while (bi && bi->bi_iter.bi_sector <
3109                         sh->dev[i].sector + STRIPE_SECTORS) {
3110                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3111
3112                         bi->bi_error = -EIO;
3113                         if (!raid5_dec_bi_active_stripes(bi)) {
3114                                 md_write_end(conf->mddev);
3115                                 bio_list_add(return_bi, bi);
3116                         }
3117                         bi = nextbi;
3118                 }
3119                 if (bitmap_end)
3120                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3121                                 STRIPE_SECTORS, 0, 0);
3122                 bitmap_end = 0;
3123                 /* and fail all 'written' */
3124                 bi = sh->dev[i].written;
3125                 sh->dev[i].written = NULL;
3126                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3127                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3128                         sh->dev[i].page = sh->dev[i].orig_page;
3129                 }
3130
3131                 if (bi) bitmap_end = 1;
3132                 while (bi && bi->bi_iter.bi_sector <
3133                        sh->dev[i].sector + STRIPE_SECTORS) {
3134                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3135
3136                         bi->bi_error = -EIO;
3137                         if (!raid5_dec_bi_active_stripes(bi)) {
3138                                 md_write_end(conf->mddev);
3139                                 bio_list_add(return_bi, bi);
3140                         }
3141                         bi = bi2;
3142                 }
3143
3144                 /* fail any reads if this device is non-operational and
3145                  * the data has not reached the cache yet.
3146                  */
3147                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3148                     s->failed > conf->max_degraded &&
3149                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3150                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3151                         spin_lock_irq(&sh->stripe_lock);
3152                         bi = sh->dev[i].toread;
3153                         sh->dev[i].toread = NULL;
3154                         spin_unlock_irq(&sh->stripe_lock);
3155                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3156                                 wake_up(&conf->wait_for_overlap);
3157                         if (bi)
3158                                 s->to_read--;
3159                         while (bi && bi->bi_iter.bi_sector <
3160                                sh->dev[i].sector + STRIPE_SECTORS) {
3161                                 struct bio *nextbi =
3162                                         r5_next_bio(bi, sh->dev[i].sector);
3163
3164                                 bi->bi_error = -EIO;
3165                                 if (!raid5_dec_bi_active_stripes(bi))
3166                                         bio_list_add(return_bi, bi);
3167                                 bi = nextbi;
3168                         }
3169                 }
3170                 if (bitmap_end)
3171                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3172                                         STRIPE_SECTORS, 0, 0);
3173                 /* If we were in the middle of a write the parity block might
3174                  * still be locked - so just clear all R5_LOCKED flags
3175                  */
3176                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3177         }
3178         s->to_write = 0;
3179         s->written = 0;
3180
3181         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3182                 if (atomic_dec_and_test(&conf->pending_full_writes))
3183                         md_wakeup_thread(conf->mddev->thread);
3184 }
3185
3186 static void
3187 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3188                    struct stripe_head_state *s)
3189 {
3190         int abort = 0;
3191         int i;
3192
3193         BUG_ON(sh->batch_head);
3194         clear_bit(STRIPE_SYNCING, &sh->state);
3195         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3196                 wake_up(&conf->wait_for_overlap);
3197         s->syncing = 0;
3198         s->replacing = 0;
3199         /* There is nothing more to do for sync/check/repair.
3200          * Don't even need to abort as that is handled elsewhere
3201          * if needed, and not always wanted e.g. if there is a known
3202          * bad block here.
3203          * For recover/replace we need to record a bad block on all
3204          * non-sync devices, or abort the recovery
3205          */
3206         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3207                 /* During recovery devices cannot be removed, so
3208                  * locking and refcounting of rdevs is not needed
3209                  */
3210                 for (i = 0; i < conf->raid_disks; i++) {
3211                         struct md_rdev *rdev = conf->disks[i].rdev;
3212                         if (rdev
3213                             && !test_bit(Faulty, &rdev->flags)
3214                             && !test_bit(In_sync, &rdev->flags)
3215                             && !rdev_set_badblocks(rdev, sh->sector,
3216                                                    STRIPE_SECTORS, 0))
3217                                 abort = 1;
3218                         rdev = conf->disks[i].replacement;
3219                         if (rdev
3220                             && !test_bit(Faulty, &rdev->flags)
3221                             && !test_bit(In_sync, &rdev->flags)
3222                             && !rdev_set_badblocks(rdev, sh->sector,
3223                                                    STRIPE_SECTORS, 0))
3224                                 abort = 1;
3225                 }
3226                 if (abort)
3227                         conf->recovery_disabled =
3228                                 conf->mddev->recovery_disabled;
3229         }
3230         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3231 }
3232
3233 static int want_replace(struct stripe_head *sh, int disk_idx)
3234 {
3235         struct md_rdev *rdev;
3236         int rv = 0;
3237         /* Doing recovery so rcu locking not required */
3238         rdev = sh->raid_conf->disks[disk_idx].replacement;
3239         if (rdev
3240             && !test_bit(Faulty, &rdev->flags)
3241             && !test_bit(In_sync, &rdev->flags)
3242             && (rdev->recovery_offset <= sh->sector
3243                 || rdev->mddev->recovery_cp <= sh->sector))
3244                 rv = 1;
3245
3246         return rv;
3247 }
3248
3249 /* fetch_block - checks the given member device to see if its data needs
3250  * to be read or computed to satisfy a request.
3251  *
3252  * Returns 1 when no more member devices need to be checked, otherwise returns
3253  * 0 to tell the loop in handle_stripe_fill to continue
3254  */
3255
3256 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3257                            int disk_idx, int disks)
3258 {
3259         struct r5dev *dev = &sh->dev[disk_idx];
3260         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3261                                   &sh->dev[s->failed_num[1]] };
3262         int i;
3263
3264
3265         if (test_bit(R5_LOCKED, &dev->flags) ||
3266             test_bit(R5_UPTODATE, &dev->flags))
3267                 /* No point reading this as we already have it or have
3268                  * decided to get it.
3269                  */
3270                 return 0;
3271
3272         if (dev->toread ||
3273             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3274                 /* We need this block to directly satisfy a request */
3275                 return 1;
3276
3277         if (s->syncing || s->expanding ||
3278             (s->replacing && want_replace(sh, disk_idx)))
3279                 /* When syncing, or expanding we read everything.
3280                  * When replacing, we need the replaced block.
3281                  */
3282                 return 1;
3283
3284         if ((s->failed >= 1 && fdev[0]->toread) ||
3285             (s->failed >= 2 && fdev[1]->toread))
3286                 /* If we want to read from a failed device, then
3287                  * we need to actually read every other device.
3288                  */
3289                 return 1;
3290
3291         /* Sometimes neither read-modify-write nor reconstruct-write
3292          * cycles can work.  In those cases we read every block we
3293          * can.  Then the parity-update is certain to have enough to
3294          * work with.
3295          * This can only be a problem when we need to write something,
3296          * and some device has failed.  If either of those tests
3297          * fail we need look no further.
3298          */
3299         if (!s->failed || !s->to_write)
3300                 return 0;
3301
3302         if (test_bit(R5_Insync, &dev->flags) &&
3303             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3304                 /* Pre-reads at not permitted until after short delay
3305                  * to gather multiple requests.  However if this
3306                  * device is no Insync, the block could only be be computed
3307                  * and there is no need to delay that.
3308                  */
3309                 return 0;
3310
3311         for (i = 0; i < s->failed && i < 2; i++) {
3312                 if (fdev[i]->towrite &&
3313                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3314                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3315                         /* If we have a partial write to a failed
3316                          * device, then we will need to reconstruct
3317                          * the content of that device, so all other
3318                          * devices must be read.
3319                          */
3320                         return 1;
3321         }
3322
3323         /* If we are forced to do a reconstruct-write, either because
3324          * the current RAID6 implementation only supports that, or
3325          * or because parity cannot be trusted and we are currently
3326          * recovering it, there is extra need to be careful.
3327          * If one of the devices that we would need to read, because
3328          * it is not being overwritten (and maybe not written at all)
3329          * is missing/faulty, then we need to read everything we can.
3330          */
3331         if (sh->raid_conf->level != 6 &&
3332             sh->sector < sh->raid_conf->mddev->recovery_cp)
3333                 /* reconstruct-write isn't being forced */
3334                 return 0;
3335         for (i = 0; i < s->failed && i < 2; i++) {
3336                 if (s->failed_num[i] != sh->pd_idx &&
3337                     s->failed_num[i] != sh->qd_idx &&
3338                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3339                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3340                         return 1;
3341         }
3342
3343         return 0;
3344 }
3345
3346 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3347                        int disk_idx, int disks)
3348 {
3349         struct r5dev *dev = &sh->dev[disk_idx];
3350
3351         /* is the data in this block needed, and can we get it? */
3352         if (need_this_block(sh, s, disk_idx, disks)) {
3353                 /* we would like to get this block, possibly by computing it,
3354                  * otherwise read it if the backing disk is insync
3355                  */
3356                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3357                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3358                 BUG_ON(sh->batch_head);
3359                 if ((s->uptodate == disks - 1) &&
3360                     (s->failed && (disk_idx == s->failed_num[0] ||
3361                                    disk_idx == s->failed_num[1]))) {
3362                         /* have disk failed, and we're requested to fetch it;
3363                          * do compute it
3364                          */
3365                         pr_debug("Computing stripe %llu block %d\n",
3366                                (unsigned long long)sh->sector, disk_idx);
3367                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3368                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3369                         set_bit(R5_Wantcompute, &dev->flags);
3370                         sh->ops.target = disk_idx;
3371                         sh->ops.target2 = -1; /* no 2nd target */
3372                         s->req_compute = 1;
3373                         /* Careful: from this point on 'uptodate' is in the eye
3374                          * of raid_run_ops which services 'compute' operations
3375                          * before writes. R5_Wantcompute flags a block that will
3376                          * be R5_UPTODATE by the time it is needed for a
3377                          * subsequent operation.
3378                          */
3379                         s->uptodate++;
3380                         return 1;
3381                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3382                         /* Computing 2-failure is *very* expensive; only
3383                          * do it if failed >= 2
3384                          */
3385                         int other;
3386                         for (other = disks; other--; ) {
3387                                 if (other == disk_idx)
3388                                         continue;
3389                                 if (!test_bit(R5_UPTODATE,
3390                                       &sh->dev[other].flags))
3391                                         break;
3392                         }
3393                         BUG_ON(other < 0);
3394                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3395                                (unsigned long long)sh->sector,
3396                                disk_idx, other);
3397                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3398                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3399                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3400                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3401                         sh->ops.target = disk_idx;
3402                         sh->ops.target2 = other;
3403                         s->uptodate += 2;
3404                         s->req_compute = 1;
3405                         return 1;
3406                 } else if (test_bit(R5_Insync, &dev->flags)) {
3407                         set_bit(R5_LOCKED, &dev->flags);
3408                         set_bit(R5_Wantread, &dev->flags);
3409                         s->locked++;
3410                         pr_debug("Reading block %d (sync=%d)\n",
3411                                 disk_idx, s->syncing);
3412                 }
3413         }
3414
3415         return 0;
3416 }
3417
3418 /**
3419  * handle_stripe_fill - read or compute data to satisfy pending requests.
3420  */
3421 static void handle_stripe_fill(struct stripe_head *sh,
3422                                struct stripe_head_state *s,
3423                                int disks)
3424 {
3425         int i;
3426
3427         /* look for blocks to read/compute, skip this if a compute
3428          * is already in flight, or if the stripe contents are in the
3429          * midst of changing due to a write
3430          */
3431         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3432             !sh->reconstruct_state)
3433                 for (i = disks; i--; )
3434                         if (fetch_block(sh, s, i, disks))
3435                                 break;
3436         set_bit(STRIPE_HANDLE, &sh->state);
3437 }
3438
3439 static void break_stripe_batch_list(struct stripe_head *head_sh,
3440                                     unsigned long handle_flags);
3441 /* handle_stripe_clean_event
3442  * any written block on an uptodate or failed drive can be returned.
3443  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3444  * never LOCKED, so we don't need to test 'failed' directly.
3445  */
3446 static void handle_stripe_clean_event(struct r5conf *conf,
3447         struct stripe_head *sh, int disks, struct bio_list *return_bi)
3448 {
3449         int i;
3450         struct r5dev *dev;
3451         int discard_pending = 0;
3452         struct stripe_head *head_sh = sh;
3453         bool do_endio = false;
3454
3455         for (i = disks; i--; )
3456                 if (sh->dev[i].written) {
3457                         dev = &sh->dev[i];
3458                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3459                             (test_bit(R5_UPTODATE, &dev->flags) ||
3460                              test_bit(R5_Discard, &dev->flags) ||
3461                              test_bit(R5_SkipCopy, &dev->flags))) {
3462                                 /* We can return any write requests */
3463                                 struct bio *wbi, *wbi2;
3464                                 pr_debug("Return write for disc %d\n", i);
3465                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3466                                         clear_bit(R5_UPTODATE, &dev->flags);
3467                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3468                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3469                                 }
3470                                 do_endio = true;
3471
3472 returnbi:
3473                                 dev->page = dev->orig_page;
3474                                 wbi = dev->written;
3475                                 dev->written = NULL;
3476                                 while (wbi && wbi->bi_iter.bi_sector <
3477                                         dev->sector + STRIPE_SECTORS) {
3478                                         wbi2 = r5_next_bio(wbi, dev->sector);
3479                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3480                                                 md_write_end(conf->mddev);
3481                                                 bio_list_add(return_bi, wbi);
3482                                         }
3483                                         wbi = wbi2;
3484                                 }
3485                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3486                                                 STRIPE_SECTORS,
3487                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3488                                                 0);
3489                                 if (head_sh->batch_head) {
3490                                         sh = list_first_entry(&sh->batch_list,
3491                                                               struct stripe_head,
3492                                                               batch_list);
3493                                         if (sh != head_sh) {
3494                                                 dev = &sh->dev[i];
3495                                                 goto returnbi;
3496                                         }
3497                                 }
3498                                 sh = head_sh;
3499                                 dev = &sh->dev[i];
3500                         } else if (test_bit(R5_Discard, &dev->flags))
3501                                 discard_pending = 1;
3502                         WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3503                         WARN_ON(dev->page != dev->orig_page);
3504                 }
3505
3506         r5l_stripe_write_finished(sh);
3507
3508         if (!discard_pending &&
3509             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3510                 int hash;
3511                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3512                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3513                 if (sh->qd_idx >= 0) {
3514                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3515                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3516                 }
3517                 /* now that discard is done we can proceed with any sync */
3518                 clear_bit(STRIPE_DISCARD, &sh->state);
3519                 /*
3520                  * SCSI discard will change some bio fields and the stripe has
3521                  * no updated data, so remove it from hash list and the stripe
3522                  * will be reinitialized
3523                  */
3524 unhash:
3525                 hash = sh->hash_lock_index;
3526                 spin_lock_irq(conf->hash_locks + hash);
3527                 remove_hash(sh);
3528                 spin_unlock_irq(conf->hash_locks + hash);
3529                 if (head_sh->batch_head) {
3530                         sh = list_first_entry(&sh->batch_list,
3531                                               struct stripe_head, batch_list);
3532                         if (sh != head_sh)
3533                                         goto unhash;
3534                 }
3535                 sh = head_sh;
3536
3537                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3538                         set_bit(STRIPE_HANDLE, &sh->state);
3539
3540         }
3541
3542         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3543                 if (atomic_dec_and_test(&conf->pending_full_writes))
3544                         md_wakeup_thread(conf->mddev->thread);
3545
3546         if (head_sh->batch_head && do_endio)
3547                 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3548 }
3549
3550 static void handle_stripe_dirtying(struct r5conf *conf,
3551                                    struct stripe_head *sh,
3552                                    struct stripe_head_state *s,
3553                                    int disks)
3554 {
3555         int rmw = 0, rcw = 0, i;
3556         sector_t recovery_cp = conf->mddev->recovery_cp;
3557
3558         /* Check whether resync is now happening or should start.
3559          * If yes, then the array is dirty (after unclean shutdown or
3560          * initial creation), so parity in some stripes might be inconsistent.
3561          * In this case, we need to always do reconstruct-write, to ensure
3562          * that in case of drive failure or read-error correction, we
3563          * generate correct data from the parity.
3564          */
3565         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3566             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3567              s->failed == 0)) {
3568                 /* Calculate the real rcw later - for now make it
3569                  * look like rcw is cheaper
3570                  */
3571                 rcw = 1; rmw = 2;
3572                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3573                          conf->rmw_level, (unsigned long long)recovery_cp,
3574                          (unsigned long long)sh->sector);
3575         } else for (i = disks; i--; ) {
3576                 /* would I have to read this buffer for read_modify_write */
3577                 struct r5dev *dev = &sh->dev[i];
3578                 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3579                     !test_bit(R5_LOCKED, &dev->flags) &&
3580                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3581                       test_bit(R5_Wantcompute, &dev->flags))) {
3582                         if (test_bit(R5_Insync, &dev->flags))
3583                                 rmw++;
3584                         else
3585                                 rmw += 2*disks;  /* cannot read it */
3586                 }
3587                 /* Would I have to read this buffer for reconstruct_write */
3588                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3589                     i != sh->pd_idx && i != sh->qd_idx &&
3590                     !test_bit(R5_LOCKED, &dev->flags) &&
3591                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3592                     test_bit(R5_Wantcompute, &dev->flags))) {
3593                         if (test_bit(R5_Insync, &dev->flags))
3594                                 rcw++;
3595                         else
3596                                 rcw += 2*disks;
3597                 }
3598         }
3599         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3600                 (unsigned long long)sh->sector, rmw, rcw);
3601         set_bit(STRIPE_HANDLE, &sh->state);
3602         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3603                 /* prefer read-modify-write, but need to get some data */
3604                 if (conf->mddev->queue)
3605                         blk_add_trace_msg(conf->mddev->queue,
3606                                           "raid5 rmw %llu %d",
3607                                           (unsigned long long)sh->sector, rmw);
3608                 for (i = disks; i--; ) {
3609                         struct r5dev *dev = &sh->dev[i];
3610                         if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3611                             !test_bit(R5_LOCKED, &dev->flags) &&
3612                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3613                             test_bit(R5_Wantcompute, &dev->flags)) &&
3614                             test_bit(R5_Insync, &dev->flags)) {
3615                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3616                                              &sh->state)) {
3617                                         pr_debug("Read_old block %d for r-m-w\n",
3618                                                  i);
3619                                         set_bit(R5_LOCKED, &dev->flags);
3620                                         set_bit(R5_Wantread, &dev->flags);
3621                                         s->locked++;
3622                                 } else {
3623                                         set_bit(STRIPE_DELAYED, &sh->state);
3624                                         set_bit(STRIPE_HANDLE, &sh->state);
3625                                 }
3626                         }
3627                 }
3628         }
3629         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3630                 /* want reconstruct write, but need to get some data */
3631                 int qread =0;
3632                 rcw = 0;
3633                 for (i = disks; i--; ) {
3634                         struct r5dev *dev = &sh->dev[i];
3635                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3636                             i != sh->pd_idx && i != sh->qd_idx &&
3637                             !test_bit(R5_LOCKED, &dev->flags) &&
3638                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3639                               test_bit(R5_Wantcompute, &dev->flags))) {
3640                                 rcw++;
3641                                 if (test_bit(R5_Insync, &dev->flags) &&
3642                                     test_bit(STRIPE_PREREAD_ACTIVE,
3643                                              &sh->state)) {
3644                                         pr_debug("Read_old block "
3645                                                 "%d for Reconstruct\n", i);
3646                                         set_bit(R5_LOCKED, &dev->flags);
3647                                         set_bit(R5_Wantread, &dev->flags);
3648                                         s->locked++;
3649                                         qread++;
3650                                 } else {
3651                                         set_bit(STRIPE_DELAYED, &sh->state);
3652                                         set_bit(STRIPE_HANDLE, &sh->state);
3653                                 }
3654                         }
3655                 }
3656                 if (rcw && conf->mddev->queue)
3657                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3658                                           (unsigned long long)sh->sector,
3659                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3660         }
3661
3662         if (rcw > disks && rmw > disks &&
3663             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3664                 set_bit(STRIPE_DELAYED, &sh->state);
3665
3666         /* now if nothing is locked, and if we have enough data,
3667          * we can start a write request
3668          */
3669         /* since handle_stripe can be called at any time we need to handle the
3670          * case where a compute block operation has been submitted and then a
3671          * subsequent call wants to start a write request.  raid_run_ops only
3672          * handles the case where compute block and reconstruct are requested
3673          * simultaneously.  If this is not the case then new writes need to be
3674          * held off until the compute completes.
3675          */
3676         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3677             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3678             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3679                 schedule_reconstruction(sh, s, rcw == 0, 0);
3680 }
3681
3682 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3683                                 struct stripe_head_state *s, int disks)
3684 {
3685         struct r5dev *dev = NULL;
3686
3687         BUG_ON(sh->batch_head);
3688         set_bit(STRIPE_HANDLE, &sh->state);
3689
3690         switch (sh->check_state) {
3691         case check_state_idle:
3692                 /* start a new check operation if there are no failures */
3693                 if (s->failed == 0) {
3694                         BUG_ON(s->uptodate != disks);
3695                         sh->check_state = check_state_run;
3696                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3697                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3698                         s->uptodate--;
3699                         break;
3700                 }
3701                 dev = &sh->dev[s->failed_num[0]];
3702                 /* fall through */
3703         case check_state_compute_result:
3704                 sh->check_state = check_state_idle;
3705                 if (!dev)
3706                         dev = &sh->dev[sh->pd_idx];
3707
3708                 /* check that a write has not made the stripe insync */
3709                 if (test_bit(STRIPE_INSYNC, &sh->state))
3710                         break;
3711
3712                 /* either failed parity check, or recovery is happening */
3713                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3714                 BUG_ON(s->uptodate != disks);
3715
3716                 set_bit(R5_LOCKED, &dev->flags);
3717                 s->locked++;
3718                 set_bit(R5_Wantwrite, &dev->flags);
3719
3720                 clear_bit(STRIPE_DEGRADED, &sh->state);
3721                 set_bit(STRIPE_INSYNC, &sh->state);
3722                 break;
3723         case check_state_run:
3724                 break; /* we will be called again upon completion */
3725         case check_state_check_result:
3726                 sh->check_state = check_state_idle;
3727
3728                 /* if a failure occurred during the check operation, leave
3729                  * STRIPE_INSYNC not set and let the stripe be handled again
3730                  */
3731                 if (s->failed)
3732                         break;
3733
3734                 /* handle a successful check operation, if parity is correct
3735                  * we are done.  Otherwise update the mismatch count and repair
3736                  * parity if !MD_RECOVERY_CHECK
3737                  */
3738                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3739                         /* parity is correct (on disc,
3740                          * not in buffer any more)
3741                          */
3742                         set_bit(STRIPE_INSYNC, &sh->state);
3743                 else {
3744                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3745                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3746                                 /* don't try to repair!! */
3747                                 set_bit(STRIPE_INSYNC, &sh->state);
3748                         else {
3749                                 sh->check_state = check_state_compute_run;
3750                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3751                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3752                                 set_bit(R5_Wantcompute,
3753                                         &sh->dev[sh->pd_idx].flags);
3754                                 sh->ops.target = sh->pd_idx;
3755                                 sh->ops.target2 = -1;
3756                                 s->uptodate++;
3757                         }
3758                 }
3759                 break;
3760         case check_state_compute_run:
3761                 break;
3762         default:
3763                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3764                        __func__, sh->check_state,
3765                        (unsigned long long) sh->sector);
3766                 BUG();
3767         }
3768 }
3769
3770 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3771                                   struct stripe_head_state *s,
3772                                   int disks)
3773 {
3774         int pd_idx = sh->pd_idx;
3775         int qd_idx = sh->qd_idx;
3776         struct r5dev *dev;
3777
3778         BUG_ON(sh->batch_head);
3779         set_bit(STRIPE_HANDLE, &sh->state);
3780
3781         BUG_ON(s->failed > 2);
3782
3783         /* Want to check and possibly repair P and Q.
3784          * However there could be one 'failed' device, in which
3785          * case we can only check one of them, possibly using the
3786          * other to generate missing data
3787          */
3788
3789         switch (sh->check_state) {
3790         case check_state_idle:
3791                 /* start a new check operation if there are < 2 failures */
3792                 if (s->failed == s->q_failed) {
3793                         /* The only possible failed device holds Q, so it
3794                          * makes sense to check P (If anything else were failed,
3795                          * we would have used P to recreate it).
3796                          */
3797                         sh->check_state = check_state_run;
3798                 }
3799                 if (!s->q_failed && s->failed < 2) {
3800                         /* Q is not failed, and we didn't use it to generate
3801                          * anything, so it makes sense to check it
3802                          */
3803                         if (sh->check_state == check_state_run)
3804                                 sh->check_state = check_state_run_pq;
3805                         else
3806                                 sh->check_state = check_state_run_q;
3807                 }
3808
3809                 /* discard potentially stale zero_sum_result */
3810                 sh->ops.zero_sum_result = 0;
3811
3812                 if (sh->check_state == check_state_run) {
3813                         /* async_xor_zero_sum destroys the contents of P */
3814                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3815                         s->uptodate--;
3816                 }
3817                 if (sh->check_state >= check_state_run &&
3818                     sh->check_state <= check_state_run_pq) {
3819                         /* async_syndrome_zero_sum preserves P and Q, so
3820                          * no need to mark them !uptodate here
3821                          */
3822                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3823                         break;
3824                 }
3825
3826                 /* we have 2-disk failure */
3827                 BUG_ON(s->failed != 2);
3828                 /* fall through */
3829         case check_state_compute_result:
3830                 sh->check_state = check_state_idle;
3831
3832                 /* check that a write has not made the stripe insync */
3833                 if (test_bit(STRIPE_INSYNC, &sh->state))
3834                         break;
3835
3836                 /* now write out any block on a failed drive,
3837                  * or P or Q if they were recomputed
3838                  */
3839                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3840                 if (s->failed == 2) {
3841                         dev = &sh->dev[s->failed_num[1]];
3842                         s->locked++;
3843                         set_bit(R5_LOCKED, &dev->flags);
3844                         set_bit(R5_Wantwrite, &dev->flags);
3845                 }
3846                 if (s->failed >= 1) {
3847                         dev = &sh->dev[s->failed_num[0]];
3848                         s->locked++;
3849                         set_bit(R5_LOCKED, &dev->flags);
3850                         set_bit(R5_Wantwrite, &dev->flags);
3851                 }
3852                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3853                         dev = &sh->dev[pd_idx];
3854                         s->locked++;
3855                         set_bit(R5_LOCKED, &dev->flags);
3856                         set_bit(R5_Wantwrite, &dev->flags);
3857                 }
3858                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3859                         dev = &sh->dev[qd_idx];
3860                         s->locked++;
3861                         set_bit(R5_LOCKED, &dev->flags);
3862                         set_bit(R5_Wantwrite, &dev->flags);
3863                 }
3864                 clear_bit(STRIPE_DEGRADED, &sh->state);
3865
3866                 set_bit(STRIPE_INSYNC, &sh->state);
3867                 break;
3868         case check_state_run:
3869         case check_state_run_q:
3870         case check_state_run_pq:
3871                 break; /* we will be called again upon completion */
3872         case check_state_check_result:
3873                 sh->check_state = check_state_idle;
3874
3875                 /* handle a successful check operation, if parity is correct
3876                  * we are done.  Otherwise update the mismatch count and repair
3877                  * parity if !MD_RECOVERY_CHECK
3878                  */
3879                 if (sh->ops.zero_sum_result == 0) {
3880                         /* both parities are correct */
3881                         if (!s->failed)
3882                                 set_bit(STRIPE_INSYNC, &sh->state);
3883                         else {
3884                                 /* in contrast to the raid5 case we can validate
3885                                  * parity, but still have a failure to write
3886                                  * back
3887                                  */
3888                                 sh->check_state = check_state_compute_result;
3889                                 /* Returning at this point means that we may go
3890                                  * off and bring p and/or q uptodate again so
3891                                  * we make sure to check zero_sum_result again
3892                                  * to verify if p or q need writeback
3893                                  */
3894                         }
3895                 } else {
3896                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3897                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3898                                 /* don't try to repair!! */
3899                                 set_bit(STRIPE_INSYNC, &sh->state);
3900                         else {
3901                                 int *target = &sh->ops.target;
3902
3903                                 sh->ops.target = -1;
3904                                 sh->ops.target2 = -1;
3905                                 sh->check_state = check_state_compute_run;
3906                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3907                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3908                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3909                                         set_bit(R5_Wantcompute,
3910                                                 &sh->dev[pd_idx].flags);
3911                                         *target = pd_idx;
3912                                         target = &sh->ops.target2;
3913                                         s->uptodate++;
3914                                 }
3915                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3916                                         set_bit(R5_Wantcompute,
3917                                                 &sh->dev[qd_idx].flags);
3918                                         *target = qd_idx;
3919                                         s->uptodate++;
3920                                 }
3921                         }
3922                 }
3923                 break;
3924         case check_state_compute_run:
3925                 break;
3926         default:
3927                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3928                        __func__, sh->check_state,
3929                        (unsigned long long) sh->sector);
3930                 BUG();
3931         }
3932 }
3933
3934 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3935 {
3936         int i;
3937
3938         /* We have read all the blocks in this stripe and now we need to
3939          * copy some of them into a target stripe for expand.
3940          */
3941         struct dma_async_tx_descriptor *tx = NULL;
3942         BUG_ON(sh->batch_head);
3943         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3944         for (i = 0; i < sh->disks; i++)
3945                 if (i != sh->pd_idx && i != sh->qd_idx) {
3946                         int dd_idx, j;
3947                         struct stripe_head *sh2;
3948                         struct async_submit_ctl submit;
3949
3950                         sector_t bn = raid5_compute_blocknr(sh, i, 1);
3951                         sector_t s = raid5_compute_sector(conf, bn, 0,
3952                                                           &dd_idx, NULL);
3953                         sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
3954                         if (sh2 == NULL)
3955                                 /* so far only the early blocks of this stripe
3956                                  * have been requested.  When later blocks
3957                                  * get requested, we will try again
3958                                  */
3959                                 continue;
3960                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3961                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3962                                 /* must have already done this block */
3963                                 raid5_release_stripe(sh2);
3964                                 continue;
3965                         }
3966
3967                         /* place all the copies on one channel */
3968                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3969                         tx = async_memcpy(sh2->dev[dd_idx].page,
3970                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3971                                           &submit);
3972
3973                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3974                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3975                         for (j = 0; j < conf->raid_disks; j++)
3976                                 if (j != sh2->pd_idx &&
3977                                     j != sh2->qd_idx &&
3978                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3979                                         break;
3980                         if (j == conf->raid_disks) {
3981                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3982                                 set_bit(STRIPE_HANDLE, &sh2->state);
3983                         }
3984                         raid5_release_stripe(sh2);
3985
3986                 }
3987         /* done submitting copies, wait for them to complete */
3988         async_tx_quiesce(&tx);
3989 }
3990
3991 /*
3992  * handle_stripe - do things to a stripe.
3993  *
3994  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3995  * state of various bits to see what needs to be done.
3996  * Possible results:
3997  *    return some read requests which now have data
3998  *    return some write requests which are safely on storage
3999  *    schedule a read on some buffers
4000  *    schedule a write of some buffers
4001  *    return confirmation of parity correctness
4002  *
4003  */
4004
4005 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4006 {
4007         struct r5conf *conf = sh->raid_conf;
4008         int disks = sh->disks;
4009         struct r5dev *dev;
4010         int i;
4011         int do_recovery = 0;
4012
4013         memset(s, 0, sizeof(*s));
4014
4015         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4016         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4017         s->failed_num[0] = -1;
4018         s->failed_num[1] = -1;
4019         s->log_failed = r5l_log_disk_error(conf);
4020
4021         /* Now to look around and see what can be done */
4022         rcu_read_lock();
4023         for (i=disks; i--; ) {
4024                 struct md_rdev *rdev;
4025                 sector_t first_bad;
4026                 int bad_sectors;
4027                 int is_bad = 0;
4028
4029                 dev = &sh->dev[i];
4030
4031                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4032                          i, dev->flags,
4033                          dev->toread, dev->towrite, dev->written);
4034                 /* maybe we can reply to a read
4035                  *
4036                  * new wantfill requests are only permitted while
4037                  * ops_complete_biofill is guaranteed to be inactive
4038                  */
4039                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4040                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4041                         set_bit(R5_Wantfill, &dev->flags);
4042
4043                 /* now count some things */
4044                 if (test_bit(R5_LOCKED, &dev->flags))
4045                         s->locked++;
4046                 if (test_bit(R5_UPTODATE, &dev->flags))
4047                         s->uptodate++;
4048                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4049                         s->compute++;
4050                         BUG_ON(s->compute > 2);
4051                 }
4052
4053                 if (test_bit(R5_Wantfill, &dev->flags))
4054                         s->to_fill++;
4055                 else if (dev->toread)
4056                         s->to_read++;
4057                 if (dev->towrite) {
4058                         s->to_write++;
4059                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4060                                 s->non_overwrite++;
4061                 }
4062                 if (dev->written)
4063                         s->written++;
4064                 /* Prefer to use the replacement for reads, but only
4065                  * if it is recovered enough and has no bad blocks.
4066                  */
4067                 rdev = rcu_dereference(conf->disks[i].replacement);
4068                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4069                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4070                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4071                                  &first_bad, &bad_sectors))
4072                         set_bit(R5_ReadRepl, &dev->flags);
4073                 else {
4074                         if (rdev && !test_bit(Faulty, &rdev->flags))
4075                                 set_bit(R5_NeedReplace, &dev->flags);
4076                         else
4077                                 clear_bit(R5_NeedReplace, &dev->flags);
4078                         rdev = rcu_dereference(conf->disks[i].rdev);
4079                         clear_bit(R5_ReadRepl, &dev->flags);
4080                 }
4081                 if (rdev && test_bit(Faulty, &rdev->flags))
4082                         rdev = NULL;
4083                 if (rdev) {
4084                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4085                                              &first_bad, &bad_sectors);
4086                         if (s->blocked_rdev == NULL
4087                             && (test_bit(Blocked, &rdev->flags)
4088                                 || is_bad < 0)) {
4089                                 if (is_bad < 0)
4090                                         set_bit(BlockedBadBlocks,
4091                                                 &rdev->flags);
4092                                 s->blocked_rdev = rdev;
4093                                 atomic_inc(&rdev->nr_pending);
4094                         }
4095                 }
4096                 clear_bit(R5_Insync, &dev->flags);
4097                 if (!rdev)
4098                         /* Not in-sync */;
4099                 else if (is_bad) {
4100                         /* also not in-sync */
4101                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4102                             test_bit(R5_UPTODATE, &dev->flags)) {
4103                                 /* treat as in-sync, but with a read error
4104                                  * which we can now try to correct
4105                                  */
4106                                 set_bit(R5_Insync, &dev->flags);
4107                                 set_bit(R5_ReadError, &dev->flags);
4108                         }
4109                 } else if (test_bit(In_sync, &rdev->flags))
4110                         set_bit(R5_Insync, &dev->flags);
4111                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4112                         /* in sync if before recovery_offset */
4113                         set_bit(R5_Insync, &dev->flags);
4114                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4115                          test_bit(R5_Expanded, &dev->flags))
4116                         /* If we've reshaped into here, we assume it is Insync.
4117                          * We will shortly update recovery_offset to make
4118                          * it official.
4119                          */
4120                         set_bit(R5_Insync, &dev->flags);
4121
4122                 if (test_bit(R5_WriteError, &dev->flags)) {
4123                         /* This flag does not apply to '.replacement'
4124                          * only to .rdev, so make sure to check that*/
4125                         struct md_rdev *rdev2 = rcu_dereference(
4126                                 conf->disks[i].rdev);
4127                         if (rdev2 == rdev)
4128                                 clear_bit(R5_Insync, &dev->flags);
4129                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4130                                 s->handle_bad_blocks = 1;
4131                                 atomic_inc(&rdev2->nr_pending);
4132                         } else
4133                                 clear_bit(R5_WriteError, &dev->flags);
4134                 }
4135                 if (test_bit(R5_MadeGood, &dev->flags)) {
4136                         /* This flag does not apply to '.replacement'
4137                          * only to .rdev, so make sure to check that*/
4138                         struct md_rdev *rdev2 = rcu_dereference(
4139                                 conf->disks[i].rdev);
4140                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4141                                 s->handle_bad_blocks = 1;
4142                                 atomic_inc(&rdev2->nr_pending);
4143                         } else
4144                                 clear_bit(R5_MadeGood, &dev->flags);
4145                 }
4146                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4147                         struct md_rdev *rdev2 = rcu_dereference(
4148                                 conf->disks[i].replacement);
4149                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4150                                 s->handle_bad_blocks = 1;
4151                                 atomic_inc(&rdev2->nr_pending);
4152                         } else
4153                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4154                 }
4155                 if (!test_bit(R5_Insync, &dev->flags)) {
4156                         /* The ReadError flag will just be confusing now */
4157                         clear_bit(R5_ReadError, &dev->flags);
4158                         clear_bit(R5_ReWrite, &dev->flags);
4159                 }
4160                 if (test_bit(R5_ReadError, &dev->flags))
4161                         clear_bit(R5_Insync, &dev->flags);
4162                 if (!test_bit(R5_Insync, &dev->flags)) {
4163                         if (s->failed < 2)
4164                                 s->failed_num[s->failed] = i;
4165                         s->failed++;
4166                         if (rdev && !test_bit(Faulty, &rdev->flags))
4167                                 do_recovery = 1;
4168                 }
4169         }
4170         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4171                 /* If there is a failed device being replaced,
4172                  *     we must be recovering.
4173                  * else if we are after recovery_cp, we must be syncing
4174                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4175                  * else we can only be replacing
4176                  * sync and recovery both need to read all devices, and so
4177                  * use the same flag.
4178                  */
4179                 if (do_recovery ||
4180                     sh->sector >= conf->mddev->recovery_cp ||
4181                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4182                         s->syncing = 1;
4183                 else
4184                         s->replacing = 1;
4185         }
4186         rcu_read_unlock();
4187 }
4188
4189 static int clear_batch_ready(struct stripe_head *sh)
4190 {
4191         /* Return '1' if this is a member of batch, or
4192          * '0' if it is a lone stripe or a head which can now be
4193          * handled.
4194          */
4195         struct stripe_head *tmp;
4196         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4197                 return (sh->batch_head && sh->batch_head != sh);
4198         spin_lock(&sh->stripe_lock);
4199         if (!sh->batch_head) {
4200                 spin_unlock(&sh->stripe_lock);
4201                 return 0;
4202         }
4203
4204         /*
4205          * this stripe could be added to a batch list before we check
4206          * BATCH_READY, skips it
4207          */
4208         if (sh->batch_head != sh) {
4209                 spin_unlock(&sh->stripe_lock);
4210                 return 1;
4211         }
4212         spin_lock(&sh->batch_lock);
4213         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4214                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4215         spin_unlock(&sh->batch_lock);
4216         spin_unlock(&sh->stripe_lock);
4217
4218         /*
4219          * BATCH_READY is cleared, no new stripes can be added.
4220          * batch_list can be accessed without lock
4221          */
4222         return 0;
4223 }
4224
4225 static void break_stripe_batch_list(struct stripe_head *head_sh,
4226                                     unsigned long handle_flags)
4227 {
4228         struct stripe_head *sh, *next;
4229         int i;
4230         int do_wakeup = 0;
4231
4232         list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4233
4234                 list_del_init(&sh->batch_list);
4235
4236                 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4237                                           (1 << STRIPE_SYNCING) |
4238                                           (1 << STRIPE_REPLACED) |
4239                                           (1 << STRIPE_PREREAD_ACTIVE) |
4240                                           (1 << STRIPE_DELAYED) |
4241                                           (1 << STRIPE_BIT_DELAY) |
4242                                           (1 << STRIPE_FULL_WRITE) |
4243                                           (1 << STRIPE_BIOFILL_RUN) |
4244                                           (1 << STRIPE_COMPUTE_RUN)  |
4245                                           (1 << STRIPE_OPS_REQ_PENDING) |
4246                                           (1 << STRIPE_DISCARD) |
4247                                           (1 << STRIPE_BATCH_READY) |
4248                                           (1 << STRIPE_BATCH_ERR) |
4249                                           (1 << STRIPE_BITMAP_PENDING)));
4250                 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4251                                               (1 << STRIPE_REPLACED)));
4252
4253                 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4254                                             (1 << STRIPE_DEGRADED)),
4255                               head_sh->state & (1 << STRIPE_INSYNC));
4256
4257                 sh->check_state = head_sh->check_state;
4258                 sh->reconstruct_state = head_sh->reconstruct_state;
4259                 for (i = 0; i < sh->disks; i++) {
4260                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4261                                 do_wakeup = 1;
4262                         sh->dev[i].flags = head_sh->dev[i].flags &
4263                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4264                 }
4265                 spin_lock_irq(&sh->stripe_lock);
4266                 sh->batch_head = NULL;
4267                 spin_unlock_irq(&sh->stripe_lock);
4268                 if (handle_flags == 0 ||
4269                     sh->state & handle_flags)
4270                         set_bit(STRIPE_HANDLE, &sh->state);
4271                 raid5_release_stripe(sh);
4272         }
4273         spin_lock_irq(&head_sh->stripe_lock);
4274         head_sh->batch_head = NULL;
4275         spin_unlock_irq(&head_sh->stripe_lock);
4276         for (i = 0; i < head_sh->disks; i++)
4277                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4278                         do_wakeup = 1;
4279         if (head_sh->state & handle_flags)
4280                 set_bit(STRIPE_HANDLE, &head_sh->state);
4281
4282         if (do_wakeup)
4283                 wake_up(&head_sh->raid_conf->wait_for_overlap);
4284 }
4285
4286 static void handle_stripe(struct stripe_head *sh)
4287 {
4288         struct stripe_head_state s;
4289         struct r5conf *conf = sh->raid_conf;
4290         int i;
4291         int prexor;
4292         int disks = sh->disks;
4293         struct r5dev *pdev, *qdev;
4294
4295         clear_bit(STRIPE_HANDLE, &sh->state);
4296         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4297                 /* already being handled, ensure it gets handled
4298                  * again when current action finishes */
4299                 set_bit(STRIPE_HANDLE, &sh->state);
4300                 return;
4301         }
4302
4303         if (clear_batch_ready(sh) ) {
4304                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4305                 return;
4306         }
4307
4308         if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4309                 break_stripe_batch_list(sh, 0);
4310
4311         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4312                 spin_lock(&sh->stripe_lock);
4313                 /* Cannot process 'sync' concurrently with 'discard' */
4314                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4315                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4316                         set_bit(STRIPE_SYNCING, &sh->state);
4317                         clear_bit(STRIPE_INSYNC, &sh->state);
4318                         clear_bit(STRIPE_REPLACED, &sh->state);
4319                 }
4320                 spin_unlock(&sh->stripe_lock);
4321         }
4322         clear_bit(STRIPE_DELAYED, &sh->state);
4323
4324         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4325                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4326                (unsigned long long)sh->sector, sh->state,
4327                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4328                sh->check_state, sh->reconstruct_state);
4329
4330         analyse_stripe(sh, &s);
4331
4332         if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4333                 goto finish;
4334
4335         if (s.handle_bad_blocks) {
4336                 set_bit(STRIPE_HANDLE, &sh->state);
4337                 goto finish;
4338         }
4339
4340         if (unlikely(s.blocked_rdev)) {
4341                 if (s.syncing || s.expanding || s.expanded ||
4342                     s.replacing || s.to_write || s.written) {
4343                         set_bit(STRIPE_HANDLE, &sh->state);
4344                         goto finish;
4345                 }
4346                 /* There is nothing for the blocked_rdev to block */
4347                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4348                 s.blocked_rdev = NULL;
4349         }
4350
4351         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4352                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4353                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4354         }
4355
4356         pr_debug("locked=%d uptodate=%d to_read=%d"
4357                " to_write=%d failed=%d failed_num=%d,%d\n",
4358                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4359                s.failed_num[0], s.failed_num[1]);
4360         /* check if the array has lost more than max_degraded devices and,
4361          * if so, some requests might need to be failed.
4362          */
4363         if (s.failed > conf->max_degraded || s.log_failed) {
4364                 sh->check_state = 0;
4365                 sh->reconstruct_state = 0;
4366                 break_stripe_batch_list(sh, 0);
4367                 if (s.to_read+s.to_write+s.written)
4368                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4369                 if (s.syncing + s.replacing)
4370                         handle_failed_sync(conf, sh, &s);
4371         }
4372
4373         /* Now we check to see if any write operations have recently
4374          * completed
4375          */
4376         prexor = 0;
4377         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4378                 prexor = 1;
4379         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4380             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4381                 sh->reconstruct_state = reconstruct_state_idle;
4382
4383                 /* All the 'written' buffers and the parity block are ready to
4384                  * be written back to disk
4385                  */
4386                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4387                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4388                 BUG_ON(sh->qd_idx >= 0 &&
4389                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4390                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4391                 for (i = disks; i--; ) {
4392                         struct r5dev *dev = &sh->dev[i];
4393                         if (test_bit(R5_LOCKED, &dev->flags) &&
4394                                 (i == sh->pd_idx || i == sh->qd_idx ||
4395                                  dev->written)) {
4396                                 pr_debug("Writing block %d\n", i);
4397                                 set_bit(R5_Wantwrite, &dev->flags);
4398                                 if (prexor)
4399                                         continue;
4400                                 if (s.failed > 1)
4401                                         continue;
4402                                 if (!test_bit(R5_Insync, &dev->flags) ||
4403                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4404                                      s.failed == 0))
4405                                         set_bit(STRIPE_INSYNC, &sh->state);
4406                         }
4407                 }
4408                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4409                         s.dec_preread_active = 1;
4410         }
4411
4412         /*
4413          * might be able to return some write requests if the parity blocks
4414          * are safe, or on a failed drive
4415          */
4416         pdev = &sh->dev[sh->pd_idx];
4417         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4418                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4419         qdev = &sh->dev[sh->qd_idx];
4420         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4421                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4422                 || conf->level < 6;
4423
4424         if (s.written &&
4425             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4426                              && !test_bit(R5_LOCKED, &pdev->flags)
4427                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4428                                  test_bit(R5_Discard, &pdev->flags))))) &&
4429             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4430                              && !test_bit(R5_LOCKED, &qdev->flags)
4431                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4432                                  test_bit(R5_Discard, &qdev->flags))))))
4433                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4434
4435         /* Now we might consider reading some blocks, either to check/generate
4436          * parity, or to satisfy requests
4437          * or to load a block that is being partially written.
4438          */
4439         if (s.to_read || s.non_overwrite
4440             || (conf->level == 6 && s.to_write && s.failed)
4441             || (s.syncing && (s.uptodate + s.compute < disks))
4442             || s.replacing
4443             || s.expanding)
4444                 handle_stripe_fill(sh, &s, disks);
4445
4446         /* Now to consider new write requests and what else, if anything
4447          * should be read.  We do not handle new writes when:
4448          * 1/ A 'write' operation (copy+xor) is already in flight.
4449          * 2/ A 'check' operation is in flight, as it may clobber the parity
4450          *    block.
4451          */
4452         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4453                 handle_stripe_dirtying(conf, sh, &s, disks);
4454
4455         /* maybe we need to check and possibly fix the parity for this stripe
4456          * Any reads will already have been scheduled, so we just see if enough
4457          * data is available.  The parity check is held off while parity
4458          * dependent operations are in flight.
4459          */
4460         if (sh->check_state ||
4461             (s.syncing && s.locked == 0 &&
4462              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4463              !test_bit(STRIPE_INSYNC, &sh->state))) {
4464                 if (conf->level == 6)
4465                         handle_parity_checks6(conf, sh, &s, disks);
4466                 else
4467                         handle_parity_checks5(conf, sh, &s, disks);
4468         }
4469
4470         if ((s.replacing || s.syncing) && s.locked == 0
4471             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4472             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4473                 /* Write out to replacement devices where possible */
4474                 for (i = 0; i < conf->raid_disks; i++)
4475                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4476                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4477                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4478                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4479                                 s.locked++;
4480                         }
4481                 if (s.replacing)
4482                         set_bit(STRIPE_INSYNC, &sh->state);
4483                 set_bit(STRIPE_REPLACED, &sh->state);
4484         }
4485         if ((s.syncing || s.replacing) && s.locked == 0 &&
4486             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4487             test_bit(STRIPE_INSYNC, &sh->state)) {
4488                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4489                 clear_bit(STRIPE_SYNCING, &sh->state);
4490                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4491                         wake_up(&conf->wait_for_overlap);
4492         }
4493
4494         /* If the failed drives are just a ReadError, then we might need
4495          * to progress the repair/check process
4496          */
4497         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4498                 for (i = 0; i < s.failed; i++) {
4499                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4500                         if (test_bit(R5_ReadError, &dev->flags)
4501                             && !test_bit(R5_LOCKED, &dev->flags)
4502                             && test_bit(R5_UPTODATE, &dev->flags)
4503                                 ) {
4504                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4505                                         set_bit(R5_Wantwrite, &dev->flags);
4506                                         set_bit(R5_ReWrite, &dev->flags);
4507                                         set_bit(R5_LOCKED, &dev->flags);
4508                                         s.locked++;
4509                                 } else {
4510                                         /* let's read it back */
4511                                         set_bit(R5_Wantread, &dev->flags);
4512                                         set_bit(R5_LOCKED, &dev->flags);
4513                                         s.locked++;
4514                                 }
4515                         }
4516                 }
4517
4518         /* Finish reconstruct operations initiated by the expansion process */
4519         if (sh->reconstruct_state == reconstruct_state_result) {
4520                 struct stripe_head *sh_src
4521                         = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4522                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4523                         /* sh cannot be written until sh_src has been read.
4524                          * so arrange for sh to be delayed a little
4525                          */
4526                         set_bit(STRIPE_DELAYED, &sh->state);
4527                         set_bit(STRIPE_HANDLE, &sh->state);
4528                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4529                                               &sh_src->state))
4530                                 atomic_inc(&conf->preread_active_stripes);
4531                         raid5_release_stripe(sh_src);
4532                         goto finish;
4533                 }
4534                 if (sh_src)
4535                         raid5_release_stripe(sh_src);
4536
4537                 sh->reconstruct_state = reconstruct_state_idle;
4538                 clear_bit(STRIPE_EXPANDING, &sh->state);
4539                 for (i = conf->raid_disks; i--; ) {
4540                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4541                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4542                         s.locked++;
4543                 }
4544         }
4545
4546         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4547             !sh->reconstruct_state) {
4548                 /* Need to write out all blocks after computing parity */
4549                 sh->disks = conf->raid_disks;
4550                 stripe_set_idx(sh->sector, conf, 0, sh);
4551                 schedule_reconstruction(sh, &s, 1, 1);
4552         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4553                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4554                 atomic_dec(&conf->reshape_stripes);
4555                 wake_up(&conf->wait_for_overlap);
4556                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4557         }
4558
4559         if (s.expanding && s.locked == 0 &&
4560             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4561                 handle_stripe_expansion(conf, sh);
4562
4563 finish:
4564         /* wait for this device to become unblocked */
4565         if (unlikely(s.blocked_rdev)) {
4566                 if (conf->mddev->external)
4567                         md_wait_for_blocked_rdev(s.blocked_rdev,
4568                                                  conf->mddev);
4569                 else
4570                         /* Internal metadata will immediately
4571                          * be written by raid5d, so we don't
4572                          * need to wait here.
4573                          */
4574                         rdev_dec_pending(s.blocked_rdev,
4575                                          conf->mddev);
4576         }
4577
4578         if (s.handle_bad_blocks)
4579                 for (i = disks; i--; ) {
4580                         struct md_rdev *rdev;
4581                         struct r5dev *dev = &sh->dev[i];
4582                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4583                                 /* We own a safe reference to the rdev */
4584                                 rdev = conf->disks[i].rdev;
4585                                 if (!rdev_set_badblocks(rdev, sh->sector,
4586                                                         STRIPE_SECTORS, 0))
4587                                         md_error(conf->mddev, rdev);
4588                                 rdev_dec_pending(rdev, conf->mddev);
4589                         }
4590                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4591                                 rdev = conf->disks[i].rdev;
4592                                 rdev_clear_badblocks(rdev, sh->sector,
4593                                                      STRIPE_SECTORS, 0);
4594                                 rdev_dec_pending(rdev, conf->mddev);
4595                         }
4596                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4597                                 rdev = conf->disks[i].replacement;
4598                                 if (!rdev)
4599                                         /* rdev have been moved down */
4600                                         rdev = conf->disks[i].rdev;
4601                                 rdev_clear_badblocks(rdev, sh->sector,
4602                                                      STRIPE_SECTORS, 0);
4603                                 rdev_dec_pending(rdev, conf->mddev);
4604                         }
4605                 }
4606
4607         if (s.ops_request)
4608                 raid_run_ops(sh, s.ops_request);
4609
4610         ops_run_io(sh, &s);
4611
4612         if (s.dec_preread_active) {
4613                 /* We delay this until after ops_run_io so that if make_request
4614                  * is waiting on a flush, it won't continue until the writes
4615                  * have actually been submitted.
4616                  */
4617                 atomic_dec(&conf->preread_active_stripes);
4618                 if (atomic_read(&conf->preread_active_stripes) <
4619                     IO_THRESHOLD)
4620                         md_wakeup_thread(conf->mddev->thread);
4621         }
4622
4623         if (!bio_list_empty(&s.return_bi)) {
4624                 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4625                         spin_lock_irq(&conf->device_lock);
4626                         bio_list_merge(&conf->return_bi, &s.return_bi);
4627                         spin_unlock_irq(&conf->device_lock);
4628                         md_wakeup_thread(conf->mddev->thread);
4629                 } else
4630                         return_io(&s.return_bi);
4631         }
4632
4633         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4634 }
4635
4636 static void raid5_activate_delayed(struct r5conf *conf)
4637 {
4638         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4639                 while (!list_empty(&conf->delayed_list)) {
4640                         struct list_head *l = conf->delayed_list.next;
4641                         struct stripe_head *sh;
4642                         sh = list_entry(l, struct stripe_head, lru);
4643                         list_del_init(l);
4644                         clear_bit(STRIPE_DELAYED, &sh->state);
4645                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4646                                 atomic_inc(&conf->preread_active_stripes);
4647                         list_add_tail(&sh->lru, &conf->hold_list);
4648                         raid5_wakeup_stripe_thread(sh);
4649                 }
4650         }
4651 }
4652
4653 static void activate_bit_delay(struct r5conf *conf,
4654         struct list_head *temp_inactive_list)
4655 {
4656         /* device_lock is held */
4657         struct list_head head;
4658         list_add(&head, &conf->bitmap_list);
4659         list_del_init(&conf->bitmap_list);
4660         while (!list_empty(&head)) {
4661                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4662                 int hash;
4663                 list_del_init(&sh->lru);
4664                 atomic_inc(&sh->count);
4665                 hash = sh->hash_lock_index;
4666                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4667         }
4668 }
4669
4670 static int raid5_congested(struct mddev *mddev, int bits)
4671 {
4672         struct r5conf *conf = mddev->private;
4673
4674         /* No difference between reads and writes.  Just check
4675          * how busy the stripe_cache is
4676          */
4677
4678         if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4679                 return 1;
4680         if (conf->quiesce)
4681                 return 1;
4682         if (atomic_read(&conf->empty_inactive_list_nr))
4683                 return 1;
4684
4685         return 0;
4686 }
4687
4688 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4689 {
4690         struct r5conf *conf = mddev->private;
4691         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4692         unsigned int chunk_sectors;
4693         unsigned int bio_sectors = bio_sectors(bio);
4694
4695         chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4696         return  chunk_sectors >=
4697                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4698 }
4699
4700 /*
4701  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4702  *  later sampled by raid5d.
4703  */
4704 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4705 {
4706         unsigned long flags;
4707
4708         spin_lock_irqsave(&conf->device_lock, flags);
4709
4710         bi->bi_next = conf->retry_read_aligned_list;
4711         conf->retry_read_aligned_list = bi;
4712
4713         spin_unlock_irqrestore(&conf->device_lock, flags);
4714         md_wakeup_thread(conf->mddev->thread);
4715 }
4716
4717 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4718 {
4719         struct bio *bi;
4720
4721         bi = conf->retry_read_aligned;
4722         if (bi) {
4723                 conf->retry_read_aligned = NULL;
4724                 return bi;
4725         }
4726         bi = conf->retry_read_aligned_list;
4727         if(bi) {
4728                 conf->retry_read_aligned_list = bi->bi_next;
4729                 bi->bi_next = NULL;
4730                 /*
4731                  * this sets the active strip count to 1 and the processed
4732                  * strip count to zero (upper 8 bits)
4733                  */
4734                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4735         }
4736
4737         return bi;
4738 }
4739
4740 /*
4741  *  The "raid5_align_endio" should check if the read succeeded and if it
4742  *  did, call bio_endio on the original bio (having bio_put the new bio
4743  *  first).
4744  *  If the read failed..
4745  */
4746 static void raid5_align_endio(struct bio *bi)
4747 {
4748         struct bio* raid_bi  = bi->bi_private;
4749         struct mddev *mddev;
4750         struct r5conf *conf;
4751         struct md_rdev *rdev;
4752         int error = bi->bi_error;
4753
4754         bio_put(bi);
4755
4756         rdev = (void*)raid_bi->bi_next;
4757         raid_bi->bi_next = NULL;
4758         mddev = rdev->mddev;
4759         conf = mddev->private;
4760
4761         rdev_dec_pending(rdev, conf->mddev);
4762
4763         if (!error) {
4764                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4765                                          raid_bi, 0);
4766                 bio_endio(raid_bi);
4767                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4768                         wake_up(&conf->wait_for_quiescent);
4769                 return;
4770         }
4771
4772         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4773
4774         add_bio_to_retry(raid_bi, conf);
4775 }
4776
4777 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4778 {
4779         struct r5conf *conf = mddev->private;
4780         int dd_idx;
4781         struct bio* align_bi;
4782         struct md_rdev *rdev;
4783         sector_t end_sector;
4784
4785         if (!in_chunk_boundary(mddev, raid_bio)) {
4786                 pr_debug("%s: non aligned\n", __func__);
4787                 return 0;
4788         }
4789         /*
4790          * use bio_clone_mddev to make a copy of the bio
4791          */
4792         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4793         if (!align_bi)
4794                 return 0;
4795         /*
4796          *   set bi_end_io to a new function, and set bi_private to the
4797          *     original bio.
4798          */
4799         align_bi->bi_end_io  = raid5_align_endio;
4800         align_bi->bi_private = raid_bio;
4801         /*
4802          *      compute position
4803          */
4804         align_bi->bi_iter.bi_sector =
4805                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4806                                      0, &dd_idx, NULL);
4807
4808         end_sector = bio_end_sector(align_bi);
4809         rcu_read_lock();
4810         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4811         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4812             rdev->recovery_offset < end_sector) {
4813                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4814                 if (rdev &&
4815                     (test_bit(Faulty, &rdev->flags) ||
4816                     !(test_bit(In_sync, &rdev->flags) ||
4817                       rdev->recovery_offset >= end_sector)))
4818                         rdev = NULL;
4819         }
4820         if (rdev) {
4821                 sector_t first_bad;
4822                 int bad_sectors;
4823
4824                 atomic_inc(&rdev->nr_pending);
4825                 rcu_read_unlock();
4826                 raid_bio->bi_next = (void*)rdev;
4827                 align_bi->bi_bdev =  rdev->bdev;
4828                 bio_clear_flag(align_bi, BIO_SEG_VALID);
4829
4830                 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4831                                 bio_sectors(align_bi),
4832                                 &first_bad, &bad_sectors)) {
4833                         bio_put(align_bi);
4834                         rdev_dec_pending(rdev, mddev);
4835                         return 0;
4836                 }
4837
4838                 /* No reshape active, so we can trust rdev->data_offset */
4839                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4840
4841                 spin_lock_irq(&conf->device_lock);
4842                 wait_event_lock_irq(conf->wait_for_quiescent,
4843                                     conf->quiesce == 0,
4844                                     conf->device_lock);
4845                 atomic_inc(&conf->active_aligned_reads);
4846                 spin_unlock_irq(&conf->device_lock);
4847
4848                 if (mddev->gendisk)
4849                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4850                                               align_bi, disk_devt(mddev->gendisk),
4851                                               raid_bio->bi_iter.bi_sector);
4852                 generic_make_request(align_bi);
4853                 return 1;
4854         } else {
4855                 rcu_read_unlock();
4856                 bio_put(align_bi);
4857                 return 0;
4858         }
4859 }
4860
4861 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4862 {
4863         struct bio *split;
4864
4865         do {
4866                 sector_t sector = raid_bio->bi_iter.bi_sector;
4867                 unsigned chunk_sects = mddev->chunk_sectors;
4868                 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4869
4870                 if (sectors < bio_sectors(raid_bio)) {
4871                         split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4872                         bio_chain(split, raid_bio);
4873                 } else
4874                         split = raid_bio;
4875
4876                 if (!raid5_read_one_chunk(mddev, split)) {
4877                         if (split != raid_bio)
4878                                 generic_make_request(raid_bio);
4879                         return split;
4880                 }
4881         } while (split != raid_bio);
4882
4883         return NULL;
4884 }
4885
4886 /* __get_priority_stripe - get the next stripe to process
4887  *
4888  * Full stripe writes are allowed to pass preread active stripes up until
4889  * the bypass_threshold is exceeded.  In general the bypass_count
4890  * increments when the handle_list is handled before the hold_list; however, it
4891  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4892  * stripe with in flight i/o.  The bypass_count will be reset when the
4893  * head of the hold_list has changed, i.e. the head was promoted to the
4894  * handle_list.
4895  */
4896 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4897 {
4898         struct stripe_head *sh = NULL, *tmp;
4899         struct list_head *handle_list = NULL;
4900         struct r5worker_group *wg = NULL;
4901
4902         if (conf->worker_cnt_per_group == 0) {
4903                 handle_list = &conf->handle_list;
4904         } else if (group != ANY_GROUP) {
4905                 handle_list = &conf->worker_groups[group].handle_list;
4906                 wg = &conf->worker_groups[group];
4907         } else {
4908                 int i;
4909                 for (i = 0; i < conf->group_cnt; i++) {
4910                         handle_list = &conf->worker_groups[i].handle_list;
4911                         wg = &conf->worker_groups[i];
4912                         if (!list_empty(handle_list))
4913                                 break;
4914                 }
4915         }
4916
4917         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4918                   __func__,
4919                   list_empty(handle_list) ? "empty" : "busy",
4920                   list_empty(&conf->hold_list) ? "empty" : "busy",
4921                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4922
4923         if (!list_empty(handle_list)) {
4924                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4925
4926                 if (list_empty(&conf->hold_list))
4927                         conf->bypass_count = 0;
4928                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4929                         if (conf->hold_list.next == conf->last_hold)
4930                                 conf->bypass_count++;
4931                         else {
4932                                 conf->last_hold = conf->hold_list.next;
4933                                 conf->bypass_count -= conf->bypass_threshold;
4934                                 if (conf->bypass_count < 0)
4935                                         conf->bypass_count = 0;
4936                         }
4937                 }
4938         } else if (!list_empty(&conf->hold_list) &&
4939                    ((conf->bypass_threshold &&
4940                      conf->bypass_count > conf->bypass_threshold) ||
4941                     atomic_read(&conf->pending_full_writes) == 0)) {
4942
4943                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4944                         if (conf->worker_cnt_per_group == 0 ||
4945                             group == ANY_GROUP ||
4946                             !cpu_online(tmp->cpu) ||
4947                             cpu_to_group(tmp->cpu) == group) {
4948                                 sh = tmp;
4949                                 break;
4950                         }
4951                 }
4952
4953                 if (sh) {
4954                         conf->bypass_count -= conf->bypass_threshold;
4955                         if (conf->bypass_count < 0)
4956                                 conf->bypass_count = 0;
4957                 }
4958                 wg = NULL;
4959         }
4960
4961         if (!sh)
4962                 return NULL;
4963
4964         if (wg) {
4965                 wg->stripes_cnt--;
4966                 sh->group = NULL;
4967         }
4968         list_del_init(&sh->lru);
4969         BUG_ON(atomic_inc_return(&sh->count) != 1);
4970         return sh;
4971 }
4972
4973 struct raid5_plug_cb {
4974         struct blk_plug_cb      cb;
4975         struct list_head        list;
4976         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4977 };
4978
4979 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4980 {
4981         struct raid5_plug_cb *cb = container_of(
4982                 blk_cb, struct raid5_plug_cb, cb);
4983         struct stripe_head *sh;
4984         struct mddev *mddev = cb->cb.data;
4985         struct r5conf *conf = mddev->private;
4986         int cnt = 0;
4987         int hash;
4988
4989         if (cb->list.next && !list_empty(&cb->list)) {
4990                 spin_lock_irq(&conf->device_lock);
4991                 while (!list_empty(&cb->list)) {
4992                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4993                         list_del_init(&sh->lru);
4994                         /*
4995                          * avoid race release_stripe_plug() sees
4996                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4997                          * is still in our list
4998                          */
4999                         smp_mb__before_atomic();
5000                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5001                         /*
5002                          * STRIPE_ON_RELEASE_LIST could be set here. In that
5003                          * case, the count is always > 1 here
5004                          */
5005                         hash = sh->hash_lock_index;
5006                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5007                         cnt++;
5008                 }
5009                 spin_unlock_irq(&conf->device_lock);
5010         }
5011         release_inactive_stripe_list(conf, cb->temp_inactive_list,
5012                                      NR_STRIPE_HASH_LOCKS);
5013         if (mddev->queue)
5014                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5015         kfree(cb);
5016 }
5017
5018 static void release_stripe_plug(struct mddev *mddev,
5019                                 struct stripe_head *sh)
5020 {
5021         struct blk_plug_cb *blk_cb = blk_check_plugged(
5022                 raid5_unplug, mddev,
5023                 sizeof(struct raid5_plug_cb));
5024         struct raid5_plug_cb *cb;
5025
5026         if (!blk_cb) {
5027                 raid5_release_stripe(sh);
5028                 return;
5029         }
5030
5031         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5032
5033         if (cb->list.next == NULL) {
5034                 int i;
5035                 INIT_LIST_HEAD(&cb->list);
5036                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5037                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
5038         }
5039
5040         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5041                 list_add_tail(&sh->lru, &cb->list);
5042         else
5043                 raid5_release_stripe(sh);
5044 }
5045
5046 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5047 {
5048         struct r5conf *conf = mddev->private;
5049         sector_t logical_sector, last_sector;
5050         struct stripe_head *sh;
5051         int remaining;
5052         int stripe_sectors;
5053
5054         if (mddev->reshape_position != MaxSector)
5055                 /* Skip discard while reshape is happening */
5056                 return;
5057
5058         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5059         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5060
5061         bi->bi_next = NULL;
5062         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5063
5064         stripe_sectors = conf->chunk_sectors *
5065                 (conf->raid_disks - conf->max_degraded);
5066         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5067                                                stripe_sectors);
5068         sector_div(last_sector, stripe_sectors);
5069
5070         logical_sector *= conf->chunk_sectors;
5071         last_sector *= conf->chunk_sectors;
5072
5073         for (; logical_sector < last_sector;
5074              logical_sector += STRIPE_SECTORS) {
5075                 DEFINE_WAIT(w);
5076                 int d;
5077         again:
5078                 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5079                 prepare_to_wait(&conf->wait_for_overlap, &w,
5080                                 TASK_UNINTERRUPTIBLE);
5081                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5082                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5083                         raid5_release_stripe(sh);
5084                         schedule();
5085                         goto again;
5086                 }
5087                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5088                 spin_lock_irq(&sh->stripe_lock);
5089                 for (d = 0; d < conf->raid_disks; d++) {
5090                         if (d == sh->pd_idx || d == sh->qd_idx)
5091                                 continue;
5092                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5093                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5094                                 spin_unlock_irq(&sh->stripe_lock);
5095                                 raid5_release_stripe(sh);
5096                                 schedule();
5097                                 goto again;
5098                         }
5099                 }
5100                 set_bit(STRIPE_DISCARD, &sh->state);
5101                 finish_wait(&conf->wait_for_overlap, &w);
5102                 sh->overwrite_disks = 0;
5103                 for (d = 0; d < conf->raid_disks; d++) {
5104                         if (d == sh->pd_idx || d == sh->qd_idx)
5105                                 continue;
5106                         sh->dev[d].towrite = bi;
5107                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5108                         raid5_inc_bi_active_stripes(bi);
5109                         sh->overwrite_disks++;
5110                 }
5111                 spin_unlock_irq(&sh->stripe_lock);
5112                 if (conf->mddev->bitmap) {
5113                         for (d = 0;
5114                              d < conf->raid_disks - conf->max_degraded;
5115                              d++)
5116                                 bitmap_startwrite(mddev->bitmap,
5117                                                   sh->sector,
5118                                                   STRIPE_SECTORS,
5119                                                   0);
5120                         sh->bm_seq = conf->seq_flush + 1;
5121                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5122                 }
5123
5124                 set_bit(STRIPE_HANDLE, &sh->state);
5125                 clear_bit(STRIPE_DELAYED, &sh->state);
5126                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5127                         atomic_inc(&conf->preread_active_stripes);
5128                 release_stripe_plug(mddev, sh);
5129         }
5130
5131         remaining = raid5_dec_bi_active_stripes(bi);
5132         if (remaining == 0) {
5133                 md_write_end(mddev);
5134                 bio_endio(bi);
5135         }
5136 }
5137
5138 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5139 {
5140         struct r5conf *conf = mddev->private;
5141         int dd_idx;
5142         sector_t new_sector;
5143         sector_t logical_sector, last_sector;
5144         struct stripe_head *sh;
5145         const int rw = bio_data_dir(bi);
5146         int remaining;
5147         DEFINE_WAIT(w);
5148         bool do_prepare;
5149
5150         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5151                 int ret = r5l_handle_flush_request(conf->log, bi);
5152
5153                 if (ret == 0)
5154                         return;
5155                 if (ret == -ENODEV) {
5156                         md_flush_request(mddev, bi);
5157                         return;
5158                 }
5159                 /* ret == -EAGAIN, fallback */
5160         }
5161
5162         md_write_start(mddev, bi);
5163
5164         /*
5165          * If array is degraded, better not do chunk aligned read because
5166          * later we might have to read it again in order to reconstruct
5167          * data on failed drives.
5168          */
5169         if (rw == READ && mddev->degraded == 0 &&
5170             mddev->reshape_position == MaxSector) {
5171                 bi = chunk_aligned_read(mddev, bi);
5172                 if (!bi)
5173                         return;
5174         }
5175
5176         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5177                 make_discard_request(mddev, bi);
5178                 return;
5179         }
5180
5181         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5182         last_sector = bio_end_sector(bi);
5183         bi->bi_next = NULL;
5184         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5185
5186         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5187         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5188                 int previous;
5189                 int seq;
5190
5191                 do_prepare = false;
5192         retry:
5193                 seq = read_seqcount_begin(&conf->gen_lock);
5194                 previous = 0;
5195                 if (do_prepare)
5196                         prepare_to_wait(&conf->wait_for_overlap, &w,
5197                                 TASK_UNINTERRUPTIBLE);
5198                 if (unlikely(conf->reshape_progress != MaxSector)) {
5199                         /* spinlock is needed as reshape_progress may be
5200                          * 64bit on a 32bit platform, and so it might be
5201                          * possible to see a half-updated value
5202                          * Of course reshape_progress could change after
5203                          * the lock is dropped, so once we get a reference
5204                          * to the stripe that we think it is, we will have
5205                          * to check again.
5206                          */
5207                         spin_lock_irq(&conf->device_lock);
5208                         if (mddev->reshape_backwards
5209                             ? logical_sector < conf->reshape_progress
5210                             : logical_sector >= conf->reshape_progress) {
5211                                 previous = 1;
5212                         } else {
5213                                 if (mddev->reshape_backwards
5214                                     ? logical_sector < conf->reshape_safe
5215                                     : logical_sector >= conf->reshape_safe) {
5216                                         spin_unlock_irq(&conf->device_lock);
5217                                         schedule();
5218                                         do_prepare = true;
5219                                         goto retry;
5220                                 }
5221                         }
5222                         spin_unlock_irq(&conf->device_lock);
5223                 }
5224
5225                 new_sector = raid5_compute_sector(conf, logical_sector,
5226                                                   previous,
5227                                                   &dd_idx, NULL);
5228                 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5229                         (unsigned long long)new_sector,
5230                         (unsigned long long)logical_sector);
5231
5232                 sh = raid5_get_active_stripe(conf, new_sector, previous,
5233                                        (bi->bi_rw&RWA_MASK), 0);
5234                 if (sh) {
5235                         if (unlikely(previous)) {
5236                                 /* expansion might have moved on while waiting for a
5237                                  * stripe, so we must do the range check again.
5238                                  * Expansion could still move past after this
5239                                  * test, but as we are holding a reference to
5240                                  * 'sh', we know that if that happens,
5241                                  *  STRIPE_EXPANDING will get set and the expansion
5242                                  * won't proceed until we finish with the stripe.
5243                                  */
5244                                 int must_retry = 0;
5245                                 spin_lock_irq(&conf->device_lock);
5246                                 if (mddev->reshape_backwards
5247                                     ? logical_sector >= conf->reshape_progress
5248                                     : logical_sector < conf->reshape_progress)
5249                                         /* mismatch, need to try again */
5250                                         must_retry = 1;
5251                                 spin_unlock_irq(&conf->device_lock);
5252                                 if (must_retry) {
5253                                         raid5_release_stripe(sh);
5254                                         schedule();
5255                                         do_prepare = true;
5256                                         goto retry;
5257                                 }
5258                         }
5259                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5260                                 /* Might have got the wrong stripe_head
5261                                  * by accident
5262                                  */
5263                                 raid5_release_stripe(sh);
5264                                 goto retry;
5265                         }
5266
5267                         if (rw == WRITE &&
5268                             logical_sector >= mddev->suspend_lo &&
5269                             logical_sector < mddev->suspend_hi) {
5270                                 raid5_release_stripe(sh);
5271                                 /* As the suspend_* range is controlled by
5272                                  * userspace, we want an interruptible
5273                                  * wait.
5274                                  */
5275                                 flush_signals(current);
5276                                 prepare_to_wait(&conf->wait_for_overlap,
5277                                                 &w, TASK_INTERRUPTIBLE);
5278                                 if (logical_sector >= mddev->suspend_lo &&
5279                                     logical_sector < mddev->suspend_hi) {
5280                                         schedule();
5281                                         do_prepare = true;
5282                                 }
5283                                 goto retry;
5284                         }
5285
5286                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5287                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5288                                 /* Stripe is busy expanding or
5289                                  * add failed due to overlap.  Flush everything
5290                                  * and wait a while
5291                                  */
5292                                 md_wakeup_thread(mddev->thread);
5293                                 raid5_release_stripe(sh);
5294                                 schedule();
5295                                 do_prepare = true;
5296                                 goto retry;
5297                         }
5298                         set_bit(STRIPE_HANDLE, &sh->state);
5299                         clear_bit(STRIPE_DELAYED, &sh->state);
5300                         if ((!sh->batch_head || sh == sh->batch_head) &&
5301                             (bi->bi_rw & REQ_SYNC) &&
5302                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5303                                 atomic_inc(&conf->preread_active_stripes);
5304                         release_stripe_plug(mddev, sh);
5305                 } else {
5306                         /* cannot get stripe for read-ahead, just give-up */
5307                         bi->bi_error = -EIO;
5308                         break;
5309                 }
5310         }
5311         finish_wait(&conf->wait_for_overlap, &w);
5312
5313         remaining = raid5_dec_bi_active_stripes(bi);
5314         if (remaining == 0) {
5315
5316                 if ( rw == WRITE )
5317                         md_write_end(mddev);
5318
5319                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5320                                          bi, 0);
5321                 bio_endio(bi);
5322         }
5323 }
5324
5325 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5326
5327 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5328 {
5329         /* reshaping is quite different to recovery/resync so it is
5330          * handled quite separately ... here.
5331          *
5332          * On each call to sync_request, we gather one chunk worth of
5333          * destination stripes and flag them as expanding.
5334          * Then we find all the source stripes and request reads.
5335          * As the reads complete, handle_stripe will copy the data
5336          * into the destination stripe and release that stripe.
5337          */
5338         struct r5conf *conf = mddev->private;
5339         struct stripe_head *sh;
5340         sector_t first_sector, last_sector;
5341         int raid_disks = conf->previous_raid_disks;
5342         int data_disks = raid_disks - conf->max_degraded;
5343         int new_data_disks = conf->raid_disks - conf->max_degraded;
5344         int i;
5345         int dd_idx;
5346         sector_t writepos, readpos, safepos;
5347         sector_t stripe_addr;
5348         int reshape_sectors;
5349         struct list_head stripes;
5350         sector_t retn;
5351
5352         if (sector_nr == 0) {
5353                 /* If restarting in the middle, skip the initial sectors */
5354                 if (mddev->reshape_backwards &&
5355                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5356                         sector_nr = raid5_size(mddev, 0, 0)
5357                                 - conf->reshape_progress;
5358                 } else if (mddev->reshape_backwards &&
5359                            conf->reshape_progress == MaxSector) {
5360                         /* shouldn't happen, but just in case, finish up.*/
5361                         sector_nr = MaxSector;
5362                 } else if (!mddev->reshape_backwards &&
5363                            conf->reshape_progress > 0)
5364                         sector_nr = conf->reshape_progress;
5365                 sector_div(sector_nr, new_data_disks);
5366                 if (sector_nr) {
5367                         mddev->curr_resync_completed = sector_nr;
5368                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5369                         *skipped = 1;
5370                         retn = sector_nr;
5371                         goto finish;
5372                 }
5373         }
5374
5375         /* We need to process a full chunk at a time.
5376          * If old and new chunk sizes differ, we need to process the
5377          * largest of these
5378          */
5379
5380         reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5381
5382         /* We update the metadata at least every 10 seconds, or when
5383          * the data about to be copied would over-write the source of
5384          * the data at the front of the range.  i.e. one new_stripe
5385          * along from reshape_progress new_maps to after where
5386          * reshape_safe old_maps to
5387          */
5388         writepos = conf->reshape_progress;
5389         sector_div(writepos, new_data_disks);
5390         readpos = conf->reshape_progress;
5391         sector_div(readpos, data_disks);
5392         safepos = conf->reshape_safe;
5393         sector_div(safepos, data_disks);
5394         if (mddev->reshape_backwards) {
5395                 BUG_ON(writepos < reshape_sectors);
5396                 writepos -= reshape_sectors;
5397                 readpos += reshape_sectors;
5398                 safepos += reshape_sectors;
5399         } else {
5400                 writepos += reshape_sectors;
5401                 /* readpos and safepos are worst-case calculations.
5402                  * A negative number is overly pessimistic, and causes
5403                  * obvious problems for unsigned storage.  So clip to 0.
5404                  */
5405                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5406                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5407         }
5408
5409         /* Having calculated the 'writepos' possibly use it
5410          * to set 'stripe_addr' which is where we will write to.
5411          */
5412         if (mddev->reshape_backwards) {
5413                 BUG_ON(conf->reshape_progress == 0);
5414                 stripe_addr = writepos;
5415                 BUG_ON((mddev->dev_sectors &
5416                         ~((sector_t)reshape_sectors - 1))
5417                        - reshape_sectors - stripe_addr
5418                        != sector_nr);
5419         } else {
5420                 BUG_ON(writepos != sector_nr + reshape_sectors);
5421                 stripe_addr = sector_nr;
5422         }
5423
5424         /* 'writepos' is the most advanced device address we might write.
5425          * 'readpos' is the least advanced device address we might read.
5426          * 'safepos' is the least address recorded in the metadata as having
5427          *     been reshaped.
5428          * If there is a min_offset_diff, these are adjusted either by
5429          * increasing the safepos/readpos if diff is negative, or
5430          * increasing writepos if diff is positive.
5431          * If 'readpos' is then behind 'writepos', there is no way that we can
5432          * ensure safety in the face of a crash - that must be done by userspace
5433          * making a backup of the data.  So in that case there is no particular
5434          * rush to update metadata.
5435          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5436          * update the metadata to advance 'safepos' to match 'readpos' so that
5437          * we can be safe in the event of a crash.
5438          * So we insist on updating metadata if safepos is behind writepos and
5439          * readpos is beyond writepos.
5440          * In any case, update the metadata every 10 seconds.
5441          * Maybe that number should be configurable, but I'm not sure it is
5442          * worth it.... maybe it could be a multiple of safemode_delay???
5443          */
5444         if (conf->min_offset_diff < 0) {
5445                 safepos += -conf->min_offset_diff;
5446                 readpos += -conf->min_offset_diff;
5447         } else
5448                 writepos += conf->min_offset_diff;
5449
5450         if ((mddev->reshape_backwards
5451              ? (safepos > writepos && readpos < writepos)
5452              : (safepos < writepos && readpos > writepos)) ||
5453             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5454                 /* Cannot proceed until we've updated the superblock... */
5455                 wait_event(conf->wait_for_overlap,
5456                            atomic_read(&conf->reshape_stripes)==0
5457                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5458                 if (atomic_read(&conf->reshape_stripes) != 0)
5459                         return 0;
5460                 mddev->reshape_position = conf->reshape_progress;
5461                 mddev->curr_resync_completed = sector_nr;
5462                 conf->reshape_checkpoint = jiffies;
5463                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5464                 md_wakeup_thread(mddev->thread);
5465                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5466                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5467                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5468                         return 0;
5469                 spin_lock_irq(&conf->device_lock);
5470                 conf->reshape_safe = mddev->reshape_position;
5471                 spin_unlock_irq(&conf->device_lock);
5472                 wake_up(&conf->wait_for_overlap);
5473                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5474         }
5475
5476         INIT_LIST_HEAD(&stripes);
5477         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5478                 int j;
5479                 int skipped_disk = 0;
5480                 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5481                 set_bit(STRIPE_EXPANDING, &sh->state);
5482                 atomic_inc(&conf->reshape_stripes);
5483                 /* If any of this stripe is beyond the end of the old
5484                  * array, then we need to zero those blocks
5485                  */
5486                 for (j=sh->disks; j--;) {
5487                         sector_t s;
5488                         if (j == sh->pd_idx)
5489                                 continue;
5490                         if (conf->level == 6 &&
5491                             j == sh->qd_idx)
5492                                 continue;
5493                         s = raid5_compute_blocknr(sh, j, 0);
5494                         if (s < raid5_size(mddev, 0, 0)) {
5495                                 skipped_disk = 1;
5496                                 continue;
5497                         }
5498                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5499                         set_bit(R5_Expanded, &sh->dev[j].flags);
5500                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5501                 }
5502                 if (!skipped_disk) {
5503                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5504                         set_bit(STRIPE_HANDLE, &sh->state);
5505                 }
5506                 list_add(&sh->lru, &stripes);
5507         }
5508         spin_lock_irq(&conf->device_lock);
5509         if (mddev->reshape_backwards)
5510                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5511         else
5512                 conf->reshape_progress += reshape_sectors * new_data_disks;
5513         spin_unlock_irq(&conf->device_lock);
5514         /* Ok, those stripe are ready. We can start scheduling
5515          * reads on the source stripes.
5516          * The source stripes are determined by mapping the first and last
5517          * block on the destination stripes.
5518          */
5519         first_sector =
5520                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5521                                      1, &dd_idx, NULL);
5522         last_sector =
5523                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5524                                             * new_data_disks - 1),
5525                                      1, &dd_idx, NULL);
5526         if (last_sector >= mddev->dev_sectors)
5527                 last_sector = mddev->dev_sectors - 1;
5528         while (first_sector <= last_sector) {
5529                 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5530                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5531                 set_bit(STRIPE_HANDLE, &sh->state);
5532                 raid5_release_stripe(sh);
5533                 first_sector += STRIPE_SECTORS;
5534         }
5535         /* Now that the sources are clearly marked, we can release
5536          * the destination stripes
5537          */
5538         while (!list_empty(&stripes)) {
5539                 sh = list_entry(stripes.next, struct stripe_head, lru);
5540                 list_del_init(&sh->lru);
5541                 raid5_release_stripe(sh);
5542         }
5543         /* If this takes us to the resync_max point where we have to pause,
5544          * then we need to write out the superblock.
5545          */
5546         sector_nr += reshape_sectors;
5547         retn = reshape_sectors;
5548 finish:
5549         if (mddev->curr_resync_completed > mddev->resync_max ||
5550             (sector_nr - mddev->curr_resync_completed) * 2
5551             >= mddev->resync_max - mddev->curr_resync_completed) {
5552                 /* Cannot proceed until we've updated the superblock... */
5553                 wait_event(conf->wait_for_overlap,
5554                            atomic_read(&conf->reshape_stripes) == 0
5555                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5556                 if (atomic_read(&conf->reshape_stripes) != 0)
5557                         goto ret;
5558                 mddev->reshape_position = conf->reshape_progress;
5559                 mddev->curr_resync_completed = sector_nr;
5560                 conf->reshape_checkpoint = jiffies;
5561                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5562                 md_wakeup_thread(mddev->thread);
5563                 wait_event(mddev->sb_wait,
5564                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5565                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5566                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5567                         goto ret;
5568                 spin_lock_irq(&conf->device_lock);
5569                 conf->reshape_safe = mddev->reshape_position;
5570                 spin_unlock_irq(&conf->device_lock);
5571                 wake_up(&conf->wait_for_overlap);
5572                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5573         }
5574 ret:
5575         return retn;
5576 }
5577
5578 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5579                                           int *skipped)
5580 {
5581         struct r5conf *conf = mddev->private;
5582         struct stripe_head *sh;
5583         sector_t max_sector = mddev->dev_sectors;
5584         sector_t sync_blocks;
5585         int still_degraded = 0;
5586         int i;
5587
5588         if (sector_nr >= max_sector) {
5589                 /* just being told to finish up .. nothing much to do */
5590
5591                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5592                         end_reshape(conf);
5593                         return 0;
5594                 }
5595
5596                 if (mddev->curr_resync < max_sector) /* aborted */
5597                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5598                                         &sync_blocks, 1);
5599                 else /* completed sync */
5600                         conf->fullsync = 0;
5601                 bitmap_close_sync(mddev->bitmap);
5602
5603                 return 0;
5604         }
5605
5606         /* Allow raid5_quiesce to complete */
5607         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5608
5609         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5610                 return reshape_request(mddev, sector_nr, skipped);
5611
5612         /* No need to check resync_max as we never do more than one
5613          * stripe, and as resync_max will always be on a chunk boundary,
5614          * if the check in md_do_sync didn't fire, there is no chance
5615          * of overstepping resync_max here
5616          */
5617
5618         /* if there is too many failed drives and we are trying
5619          * to resync, then assert that we are finished, because there is
5620          * nothing we can do.
5621          */
5622         if (mddev->degraded >= conf->max_degraded &&
5623             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5624                 sector_t rv = mddev->dev_sectors - sector_nr;
5625                 *skipped = 1;
5626                 return rv;
5627         }
5628         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5629             !conf->fullsync &&
5630             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5631             sync_blocks >= STRIPE_SECTORS) {
5632                 /* we can skip this block, and probably more */
5633                 sync_blocks /= STRIPE_SECTORS;
5634                 *skipped = 1;
5635                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5636         }
5637
5638         bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5639
5640         sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5641         if (sh == NULL) {
5642                 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5643                 /* make sure we don't swamp the stripe cache if someone else
5644                  * is trying to get access
5645                  */
5646                 schedule_timeout_uninterruptible(1);
5647         }
5648         /* Need to check if array will still be degraded after recovery/resync
5649          * Note in case of > 1 drive failures it's possible we're rebuilding
5650          * one drive while leaving another faulty drive in array.
5651          */
5652         rcu_read_lock();
5653         for (i = 0; i < conf->raid_disks; i++) {
5654                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5655
5656                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5657                         still_degraded = 1;
5658         }
5659         rcu_read_unlock();
5660
5661         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5662
5663         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5664         set_bit(STRIPE_HANDLE, &sh->state);
5665
5666         raid5_release_stripe(sh);
5667
5668         return STRIPE_SECTORS;
5669 }
5670
5671 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5672 {
5673         /* We may not be able to submit a whole bio at once as there
5674          * may not be enough stripe_heads available.
5675          * We cannot pre-allocate enough stripe_heads as we may need
5676          * more than exist in the cache (if we allow ever large chunks).
5677          * So we do one stripe head at a time and record in
5678          * ->bi_hw_segments how many have been done.
5679          *
5680          * We *know* that this entire raid_bio is in one chunk, so
5681          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5682          */
5683         struct stripe_head *sh;
5684         int dd_idx;
5685         sector_t sector, logical_sector, last_sector;
5686         int scnt = 0;
5687         int remaining;
5688         int handled = 0;
5689
5690         logical_sector = raid_bio->bi_iter.bi_sector &
5691                 ~((sector_t)STRIPE_SECTORS-1);
5692         sector = raid5_compute_sector(conf, logical_sector,
5693                                       0, &dd_idx, NULL);
5694         last_sector = bio_end_sector(raid_bio);
5695
5696         for (; logical_sector < last_sector;
5697              logical_sector += STRIPE_SECTORS,
5698                      sector += STRIPE_SECTORS,
5699                      scnt++) {
5700
5701                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5702                         /* already done this stripe */
5703                         continue;
5704
5705                 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5706
5707                 if (!sh) {
5708                         /* failed to get a stripe - must wait */
5709                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5710                         conf->retry_read_aligned = raid_bio;
5711                         return handled;
5712                 }
5713
5714                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5715                         raid5_release_stripe(sh);
5716                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5717                         conf->retry_read_aligned = raid_bio;
5718                         return handled;
5719                 }
5720
5721                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5722                 handle_stripe(sh);
5723                 raid5_release_stripe(sh);
5724                 handled++;
5725         }
5726         remaining = raid5_dec_bi_active_stripes(raid_bio);
5727         if (remaining == 0) {
5728                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5729                                          raid_bio, 0);
5730                 bio_endio(raid_bio);
5731         }
5732         if (atomic_dec_and_test(&conf->active_aligned_reads))
5733                 wake_up(&conf->wait_for_quiescent);
5734         return handled;
5735 }
5736
5737 static int handle_active_stripes(struct r5conf *conf, int group,
5738                                  struct r5worker *worker,
5739                                  struct list_head *temp_inactive_list)
5740 {
5741         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5742         int i, batch_size = 0, hash;
5743         bool release_inactive = false;
5744
5745         while (batch_size < MAX_STRIPE_BATCH &&
5746                         (sh = __get_priority_stripe(conf, group)) != NULL)
5747                 batch[batch_size++] = sh;
5748
5749         if (batch_size == 0) {
5750                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5751                         if (!list_empty(temp_inactive_list + i))
5752                                 break;
5753                 if (i == NR_STRIPE_HASH_LOCKS) {
5754                         spin_unlock_irq(&conf->device_lock);
5755                         r5l_flush_stripe_to_raid(conf->log);
5756                         spin_lock_irq(&conf->device_lock);
5757                         return batch_size;
5758                 }
5759                 release_inactive = true;
5760         }
5761         spin_unlock_irq(&conf->device_lock);
5762
5763         release_inactive_stripe_list(conf, temp_inactive_list,
5764                                      NR_STRIPE_HASH_LOCKS);
5765
5766         r5l_flush_stripe_to_raid(conf->log);
5767         if (release_inactive) {
5768                 spin_lock_irq(&conf->device_lock);
5769                 return 0;
5770         }
5771
5772         for (i = 0; i < batch_size; i++)
5773                 handle_stripe(batch[i]);
5774         r5l_write_stripe_run(conf->log);
5775
5776         cond_resched();
5777
5778         spin_lock_irq(&conf->device_lock);
5779         for (i = 0; i < batch_size; i++) {
5780                 hash = batch[i]->hash_lock_index;
5781                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5782         }
5783         return batch_size;
5784 }
5785
5786 static void raid5_do_work(struct work_struct *work)
5787 {
5788         struct r5worker *worker = container_of(work, struct r5worker, work);
5789         struct r5worker_group *group = worker->group;
5790         struct r5conf *conf = group->conf;
5791         int group_id = group - conf->worker_groups;
5792         int handled;
5793         struct blk_plug plug;
5794
5795         pr_debug("+++ raid5worker active\n");
5796
5797         blk_start_plug(&plug);
5798         handled = 0;
5799         spin_lock_irq(&conf->device_lock);
5800         while (1) {
5801                 int batch_size, released;
5802
5803                 released = release_stripe_list(conf, worker->temp_inactive_list);
5804
5805                 batch_size = handle_active_stripes(conf, group_id, worker,
5806                                                    worker->temp_inactive_list);
5807                 worker->working = false;
5808                 if (!batch_size && !released)
5809                         break;
5810                 handled += batch_size;
5811         }
5812         pr_debug("%d stripes handled\n", handled);
5813
5814         spin_unlock_irq(&conf->device_lock);
5815         blk_finish_plug(&plug);
5816
5817         pr_debug("--- raid5worker inactive\n");
5818 }
5819
5820 /*
5821  * This is our raid5 kernel thread.
5822  *
5823  * We scan the hash table for stripes which can be handled now.
5824  * During the scan, completed stripes are saved for us by the interrupt
5825  * handler, so that they will not have to wait for our next wakeup.
5826  */
5827 static void raid5d(struct md_thread *thread)
5828 {
5829         struct mddev *mddev = thread->mddev;
5830         struct r5conf *conf = mddev->private;
5831         int handled;
5832         struct blk_plug plug;
5833
5834         pr_debug("+++ raid5d active\n");
5835
5836         md_check_recovery(mddev);
5837
5838         if (!bio_list_empty(&conf->return_bi) &&
5839             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5840                 struct bio_list tmp = BIO_EMPTY_LIST;
5841                 spin_lock_irq(&conf->device_lock);
5842                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5843                         bio_list_merge(&tmp, &conf->return_bi);
5844                         bio_list_init(&conf->return_bi);
5845                 }
5846                 spin_unlock_irq(&conf->device_lock);
5847                 return_io(&tmp);
5848         }
5849
5850         blk_start_plug(&plug);
5851         handled = 0;
5852         spin_lock_irq(&conf->device_lock);
5853         while (1) {
5854                 struct bio *bio;
5855                 int batch_size, released;
5856
5857                 released = release_stripe_list(conf, conf->temp_inactive_list);
5858                 if (released)
5859                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
5860
5861                 if (
5862                     !list_empty(&conf->bitmap_list)) {
5863                         /* Now is a good time to flush some bitmap updates */
5864                         conf->seq_flush++;
5865                         spin_unlock_irq(&conf->device_lock);
5866                         bitmap_unplug(mddev->bitmap);
5867                         spin_lock_irq(&conf->device_lock);
5868                         conf->seq_write = conf->seq_flush;
5869                         activate_bit_delay(conf, conf->temp_inactive_list);
5870                 }
5871                 raid5_activate_delayed(conf);
5872
5873                 while ((bio = remove_bio_from_retry(conf))) {
5874                         int ok;
5875                         spin_unlock_irq(&conf->device_lock);
5876                         ok = retry_aligned_read(conf, bio);
5877                         spin_lock_irq(&conf->device_lock);
5878                         if (!ok)
5879                                 break;
5880                         handled++;
5881                 }
5882
5883                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5884                                                    conf->temp_inactive_list);
5885                 if (!batch_size && !released)
5886                         break;
5887                 handled += batch_size;
5888
5889                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5890                         spin_unlock_irq(&conf->device_lock);
5891                         md_check_recovery(mddev);
5892                         spin_lock_irq(&conf->device_lock);
5893                 }
5894         }
5895         pr_debug("%d stripes handled\n", handled);
5896
5897         spin_unlock_irq(&conf->device_lock);
5898         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5899             mutex_trylock(&conf->cache_size_mutex)) {
5900                 grow_one_stripe(conf, __GFP_NOWARN);
5901                 /* Set flag even if allocation failed.  This helps
5902                  * slow down allocation requests when mem is short
5903                  */
5904                 set_bit(R5_DID_ALLOC, &conf->cache_state);
5905                 mutex_unlock(&conf->cache_size_mutex);
5906         }
5907
5908         r5l_flush_stripe_to_raid(conf->log);
5909
5910         async_tx_issue_pending_all();
5911         blk_finish_plug(&plug);
5912
5913         pr_debug("--- raid5d inactive\n");
5914 }
5915
5916 static ssize_t
5917 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5918 {
5919         struct r5conf *conf;
5920         int ret = 0;
5921         spin_lock(&mddev->lock);
5922         conf = mddev->private;
5923         if (conf)
5924                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5925         spin_unlock(&mddev->lock);
5926         return ret;
5927 }
5928
5929 int
5930 raid5_set_cache_size(struct mddev *mddev, int size)
5931 {
5932         struct r5conf *conf = mddev->private;
5933         int err;
5934
5935         if (size <= 16 || size > 32768)
5936                 return -EINVAL;
5937
5938         conf->min_nr_stripes = size;
5939         mutex_lock(&conf->cache_size_mutex);
5940         while (size < conf->max_nr_stripes &&
5941                drop_one_stripe(conf))
5942                 ;
5943         mutex_unlock(&conf->cache_size_mutex);
5944
5945
5946         err = md_allow_write(mddev);
5947         if (err)
5948                 return err;
5949
5950         mutex_lock(&conf->cache_size_mutex);
5951         while (size > conf->max_nr_stripes)
5952                 if (!grow_one_stripe(conf, GFP_KERNEL))
5953                         break;
5954         mutex_unlock(&conf->cache_size_mutex);
5955
5956         return 0;
5957 }
5958 EXPORT_SYMBOL(raid5_set_cache_size);
5959
5960 static ssize_t
5961 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5962 {
5963         struct r5conf *conf;
5964         unsigned long new;
5965         int err;
5966
5967         if (len >= PAGE_SIZE)
5968                 return -EINVAL;
5969         if (kstrtoul(page, 10, &new))
5970                 return -EINVAL;
5971         err = mddev_lock(mddev);
5972         if (err)
5973                 return err;
5974         conf = mddev->private;
5975         if (!conf)
5976                 err = -ENODEV;
5977         else
5978                 err = raid5_set_cache_size(mddev, new);
5979         mddev_unlock(mddev);
5980
5981         return err ?: len;
5982 }
5983
5984 static struct md_sysfs_entry
5985 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5986                                 raid5_show_stripe_cache_size,
5987                                 raid5_store_stripe_cache_size);
5988
5989 static ssize_t
5990 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5991 {
5992         struct r5conf *conf = mddev->private;
5993         if (conf)
5994                 return sprintf(page, "%d\n", conf->rmw_level);
5995         else
5996                 return 0;
5997 }
5998
5999 static ssize_t
6000 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6001 {
6002         struct r5conf *conf = mddev->private;
6003         unsigned long new;
6004
6005         if (!conf)
6006                 return -ENODEV;
6007
6008         if (len >= PAGE_SIZE)
6009                 return -EINVAL;
6010
6011         if (kstrtoul(page, 10, &new))
6012                 return -EINVAL;
6013
6014         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6015                 return -EINVAL;
6016
6017         if (new != PARITY_DISABLE_RMW &&
6018             new != PARITY_ENABLE_RMW &&
6019             new != PARITY_PREFER_RMW)
6020                 return -EINVAL;
6021
6022         conf->rmw_level = new;
6023         return len;
6024 }
6025
6026 static struct md_sysfs_entry
6027 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6028                          raid5_show_rmw_level,
6029                          raid5_store_rmw_level);
6030
6031
6032 static ssize_t
6033 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6034 {
6035         struct r5conf *conf;
6036         int ret = 0;
6037         spin_lock(&mddev->lock);
6038         conf = mddev->private;
6039         if (conf)
6040                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6041         spin_unlock(&mddev->lock);
6042         return ret;
6043 }
6044
6045 static ssize_t
6046 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6047 {
6048         struct r5conf *conf;
6049         unsigned long new;
6050         int err;
6051
6052         if (len >= PAGE_SIZE)
6053                 return -EINVAL;
6054         if (kstrtoul(page, 10, &new))
6055                 return -EINVAL;
6056
6057         err = mddev_lock(mddev);
6058         if (err)
6059                 return err;
6060         conf = mddev->private;
6061         if (!conf)
6062                 err = -ENODEV;
6063         else if (new > conf->min_nr_stripes)
6064                 err = -EINVAL;
6065         else
6066                 conf->bypass_threshold = new;
6067         mddev_unlock(mddev);
6068         return err ?: len;
6069 }
6070
6071 static struct md_sysfs_entry
6072 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6073                                         S_IRUGO | S_IWUSR,
6074                                         raid5_show_preread_threshold,
6075                                         raid5_store_preread_threshold);
6076
6077 static ssize_t
6078 raid5_show_skip_copy(struct mddev *mddev, char *page)
6079 {
6080         struct r5conf *conf;
6081         int ret = 0;
6082         spin_lock(&mddev->lock);
6083         conf = mddev->private;
6084         if (conf)
6085                 ret = sprintf(page, "%d\n", conf->skip_copy);
6086         spin_unlock(&mddev->lock);
6087         return ret;
6088 }
6089
6090 static ssize_t
6091 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6092 {
6093         struct r5conf *conf;
6094         unsigned long new;
6095         int err;
6096
6097         if (len >= PAGE_SIZE)
6098                 return -EINVAL;
6099         if (kstrtoul(page, 10, &new))
6100                 return -EINVAL;
6101         new = !!new;
6102
6103         err = mddev_lock(mddev);
6104         if (err)
6105                 return err;
6106         conf = mddev->private;
6107         if (!conf)
6108                 err = -ENODEV;
6109         else if (new != conf->skip_copy) {
6110                 mddev_suspend(mddev);
6111                 conf->skip_copy = new;
6112                 if (new)
6113                         mddev->queue->backing_dev_info.capabilities |=
6114                                 BDI_CAP_STABLE_WRITES;
6115                 else
6116                         mddev->queue->backing_dev_info.capabilities &=
6117                                 ~BDI_CAP_STABLE_WRITES;
6118                 mddev_resume(mddev);
6119         }
6120         mddev_unlock(mddev);
6121         return err ?: len;
6122 }
6123
6124 static struct md_sysfs_entry
6125 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6126                                         raid5_show_skip_copy,
6127                                         raid5_store_skip_copy);
6128
6129 static ssize_t
6130 stripe_cache_active_show(struct mddev *mddev, char *page)
6131 {
6132         struct r5conf *conf = mddev->private;
6133         if (conf)
6134                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6135         else
6136                 return 0;
6137 }
6138
6139 static struct md_sysfs_entry
6140 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6141
6142 static ssize_t
6143 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6144 {
6145         struct r5conf *conf;
6146         int ret = 0;
6147         spin_lock(&mddev->lock);
6148         conf = mddev->private;
6149         if (conf)
6150                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6151         spin_unlock(&mddev->lock);
6152         return ret;
6153 }
6154
6155 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6156                                int *group_cnt,
6157                                int *worker_cnt_per_group,
6158                                struct r5worker_group **worker_groups);
6159 static ssize_t
6160 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6161 {
6162         struct r5conf *conf;
6163         unsigned long new;
6164         int err;
6165         struct r5worker_group *new_groups, *old_groups;
6166         int group_cnt, worker_cnt_per_group;
6167
6168         if (len >= PAGE_SIZE)
6169                 return -EINVAL;
6170         if (kstrtoul(page, 10, &new))
6171                 return -EINVAL;
6172
6173         err = mddev_lock(mddev);
6174         if (err)
6175                 return err;
6176         conf = mddev->private;
6177         if (!conf)
6178                 err = -ENODEV;
6179         else if (new != conf->worker_cnt_per_group) {
6180                 mddev_suspend(mddev);
6181
6182                 old_groups = conf->worker_groups;
6183                 if (old_groups)
6184                         flush_workqueue(raid5_wq);
6185
6186                 err = alloc_thread_groups(conf, new,
6187                                           &group_cnt, &worker_cnt_per_group,
6188                                           &new_groups);
6189                 if (!err) {
6190                         spin_lock_irq(&conf->device_lock);
6191                         conf->group_cnt = group_cnt;
6192                         conf->worker_cnt_per_group = worker_cnt_per_group;
6193                         conf->worker_groups = new_groups;
6194                         spin_unlock_irq(&conf->device_lock);
6195
6196                         if (old_groups)
6197                                 kfree(old_groups[0].workers);
6198                         kfree(old_groups);
6199                 }
6200                 mddev_resume(mddev);
6201         }
6202         mddev_unlock(mddev);
6203
6204         return err ?: len;
6205 }
6206
6207 static struct md_sysfs_entry
6208 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6209                                 raid5_show_group_thread_cnt,
6210                                 raid5_store_group_thread_cnt);
6211
6212 static struct attribute *raid5_attrs[] =  {
6213         &raid5_stripecache_size.attr,
6214         &raid5_stripecache_active.attr,
6215         &raid5_preread_bypass_threshold.attr,
6216         &raid5_group_thread_cnt.attr,
6217         &raid5_skip_copy.attr,
6218         &raid5_rmw_level.attr,
6219         NULL,
6220 };
6221 static struct attribute_group raid5_attrs_group = {
6222         .name = NULL,
6223         .attrs = raid5_attrs,
6224 };
6225
6226 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6227                                int *group_cnt,
6228                                int *worker_cnt_per_group,
6229                                struct r5worker_group **worker_groups)
6230 {
6231         int i, j, k;
6232         ssize_t size;
6233         struct r5worker *workers;
6234
6235         *worker_cnt_per_group = cnt;
6236         if (cnt == 0) {
6237                 *group_cnt = 0;
6238                 *worker_groups = NULL;
6239                 return 0;
6240         }
6241         *group_cnt = num_possible_nodes();
6242         size = sizeof(struct r5worker) * cnt;
6243         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6244         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6245                                 *group_cnt, GFP_NOIO);
6246         if (!*worker_groups || !workers) {
6247                 kfree(workers);
6248                 kfree(*worker_groups);
6249                 return -ENOMEM;
6250         }
6251
6252         for (i = 0; i < *group_cnt; i++) {
6253                 struct r5worker_group *group;
6254
6255                 group = &(*worker_groups)[i];
6256                 INIT_LIST_HEAD(&group->handle_list);
6257                 group->conf = conf;
6258                 group->workers = workers + i * cnt;
6259
6260                 for (j = 0; j < cnt; j++) {
6261                         struct r5worker *worker = group->workers + j;
6262                         worker->group = group;
6263                         INIT_WORK(&worker->work, raid5_do_work);
6264
6265                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6266                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6267                 }
6268         }
6269
6270         return 0;
6271 }
6272
6273 static void free_thread_groups(struct r5conf *conf)
6274 {
6275         if (conf->worker_groups)
6276                 kfree(conf->worker_groups[0].workers);
6277         kfree(conf->worker_groups);
6278         conf->worker_groups = NULL;
6279 }
6280
6281 static sector_t
6282 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6283 {
6284         struct r5conf *conf = mddev->private;
6285
6286         if (!sectors)
6287                 sectors = mddev->dev_sectors;
6288         if (!raid_disks)
6289                 /* size is defined by the smallest of previous and new size */
6290                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6291
6292         sectors &= ~((sector_t)conf->chunk_sectors - 1);
6293         sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6294         return sectors * (raid_disks - conf->max_degraded);
6295 }
6296
6297 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6298 {
6299         safe_put_page(percpu->spare_page);
6300         if (percpu->scribble)
6301                 flex_array_free(percpu->scribble);
6302         percpu->spare_page = NULL;
6303         percpu->scribble = NULL;
6304 }
6305
6306 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6307 {
6308         if (conf->level == 6 && !percpu->spare_page)
6309                 percpu->spare_page = alloc_page(GFP_KERNEL);
6310         if (!percpu->scribble)
6311                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6312                                                       conf->previous_raid_disks),
6313                                                   max(conf->chunk_sectors,
6314                                                       conf->prev_chunk_sectors)
6315                                                    / STRIPE_SECTORS,
6316                                                   GFP_KERNEL);
6317
6318         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6319                 free_scratch_buffer(conf, percpu);
6320                 return -ENOMEM;
6321         }
6322
6323         return 0;
6324 }
6325
6326 static void raid5_free_percpu(struct r5conf *conf)
6327 {
6328         unsigned long cpu;
6329
6330         if (!conf->percpu)
6331                 return;
6332
6333 #ifdef CONFIG_HOTPLUG_CPU
6334         unregister_cpu_notifier(&conf->cpu_notify);
6335 #endif
6336
6337         get_online_cpus();
6338         for_each_possible_cpu(cpu)
6339                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6340         put_online_cpus();
6341
6342         free_percpu(conf->percpu);
6343 }
6344
6345 static void free_conf(struct r5conf *conf)
6346 {
6347         if (conf->log)
6348                 r5l_exit_log(conf->log);
6349         if (conf->shrinker.seeks)
6350                 unregister_shrinker(&conf->shrinker);
6351
6352         free_thread_groups(conf);
6353         shrink_stripes(conf);
6354         raid5_free_percpu(conf);
6355         kfree(conf->disks);
6356         kfree(conf->stripe_hashtbl);
6357         kfree(conf);
6358 }
6359
6360 #ifdef CONFIG_HOTPLUG_CPU
6361 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6362                               void *hcpu)
6363 {
6364         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6365         long cpu = (long)hcpu;
6366         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6367
6368         switch (action) {
6369         case CPU_UP_PREPARE:
6370         case CPU_UP_PREPARE_FROZEN:
6371                 if (alloc_scratch_buffer(conf, percpu)) {
6372                         pr_err("%s: failed memory allocation for cpu%ld\n",
6373                                __func__, cpu);
6374                         return notifier_from_errno(-ENOMEM);
6375                 }
6376                 break;
6377         case CPU_DEAD:
6378         case CPU_DEAD_FROZEN:
6379                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6380                 break;
6381         default:
6382                 break;
6383         }
6384         return NOTIFY_OK;
6385 }
6386 #endif
6387
6388 static int raid5_alloc_percpu(struct r5conf *conf)
6389 {
6390         unsigned long cpu;
6391         int err = 0;
6392
6393         conf->percpu = alloc_percpu(struct raid5_percpu);
6394         if (!conf->percpu)
6395                 return -ENOMEM;
6396
6397 #ifdef CONFIG_HOTPLUG_CPU
6398         conf->cpu_notify.notifier_call = raid456_cpu_notify;
6399         conf->cpu_notify.priority = 0;
6400         err = register_cpu_notifier(&conf->cpu_notify);
6401         if (err)
6402                 return err;
6403 #endif
6404
6405         get_online_cpus();
6406         for_each_present_cpu(cpu) {
6407                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6408                 if (err) {
6409                         pr_err("%s: failed memory allocation for cpu%ld\n",
6410                                __func__, cpu);
6411                         break;
6412                 }
6413         }
6414         put_online_cpus();
6415
6416         return err;
6417 }
6418
6419 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6420                                       struct shrink_control *sc)
6421 {
6422         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6423         unsigned long ret = SHRINK_STOP;
6424
6425         if (mutex_trylock(&conf->cache_size_mutex)) {
6426                 ret= 0;
6427                 while (ret < sc->nr_to_scan &&
6428                        conf->max_nr_stripes > conf->min_nr_stripes) {
6429                         if (drop_one_stripe(conf) == 0) {
6430                                 ret = SHRINK_STOP;
6431                                 break;
6432                         }
6433                         ret++;
6434                 }
6435                 mutex_unlock(&conf->cache_size_mutex);
6436         }
6437         return ret;
6438 }
6439
6440 static unsigned long raid5_cache_count(struct shrinker *shrink,
6441                                        struct shrink_control *sc)
6442 {
6443         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6444
6445         if (conf->max_nr_stripes < conf->min_nr_stripes)
6446                 /* unlikely, but not impossible */
6447                 return 0;
6448         return conf->max_nr_stripes - conf->min_nr_stripes;
6449 }
6450
6451 static struct r5conf *setup_conf(struct mddev *mddev)
6452 {
6453         struct r5conf *conf;
6454         int raid_disk, memory, max_disks;
6455         struct md_rdev *rdev;
6456         struct disk_info *disk;
6457         char pers_name[6];
6458         int i;
6459         int group_cnt, worker_cnt_per_group;
6460         struct r5worker_group *new_group;
6461
6462         if (mddev->new_level != 5
6463             && mddev->new_level != 4
6464             && mddev->new_level != 6) {
6465                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6466                        mdname(mddev), mddev->new_level);
6467                 return ERR_PTR(-EIO);
6468         }
6469         if ((mddev->new_level == 5
6470              && !algorithm_valid_raid5(mddev->new_layout)) ||
6471             (mddev->new_level == 6
6472              && !algorithm_valid_raid6(mddev->new_layout))) {
6473                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6474                        mdname(mddev), mddev->new_layout);
6475                 return ERR_PTR(-EIO);
6476         }
6477         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6478                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6479                        mdname(mddev), mddev->raid_disks);
6480                 return ERR_PTR(-EINVAL);
6481         }
6482
6483         if (!mddev->new_chunk_sectors ||
6484             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6485             !is_power_of_2(mddev->new_chunk_sectors)) {
6486                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6487                        mdname(mddev), mddev->new_chunk_sectors << 9);
6488                 return ERR_PTR(-EINVAL);
6489         }
6490
6491         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6492         if (conf == NULL)
6493                 goto abort;
6494         /* Don't enable multi-threading by default*/
6495         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6496                                  &new_group)) {
6497                 conf->group_cnt = group_cnt;
6498                 conf->worker_cnt_per_group = worker_cnt_per_group;
6499                 conf->worker_groups = new_group;
6500         } else
6501                 goto abort;
6502         spin_lock_init(&conf->device_lock);
6503         seqcount_init(&conf->gen_lock);
6504         mutex_init(&conf->cache_size_mutex);
6505         init_waitqueue_head(&conf->wait_for_quiescent);
6506         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6507                 init_waitqueue_head(&conf->wait_for_stripe[i]);
6508         }
6509         init_waitqueue_head(&conf->wait_for_overlap);
6510         INIT_LIST_HEAD(&conf->handle_list);
6511         INIT_LIST_HEAD(&conf->hold_list);
6512         INIT_LIST_HEAD(&conf->delayed_list);
6513         INIT_LIST_HEAD(&conf->bitmap_list);
6514         bio_list_init(&conf->return_bi);
6515         init_llist_head(&conf->released_stripes);
6516         atomic_set(&conf->active_stripes, 0);
6517         atomic_set(&conf->preread_active_stripes, 0);
6518         atomic_set(&conf->active_aligned_reads, 0);
6519         conf->bypass_threshold = BYPASS_THRESHOLD;
6520         conf->recovery_disabled = mddev->recovery_disabled - 1;
6521
6522         conf->raid_disks = mddev->raid_disks;
6523         if (mddev->reshape_position == MaxSector)
6524                 conf->previous_raid_disks = mddev->raid_disks;
6525         else
6526                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6527         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6528
6529         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6530                               GFP_KERNEL);
6531         if (!conf->disks)
6532                 goto abort;
6533
6534         conf->mddev = mddev;
6535
6536         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6537                 goto abort;
6538
6539         /* We init hash_locks[0] separately to that it can be used
6540          * as the reference lock in the spin_lock_nest_lock() call
6541          * in lock_all_device_hash_locks_irq in order to convince
6542          * lockdep that we know what we are doing.
6543          */
6544         spin_lock_init(conf->hash_locks);
6545         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6546                 spin_lock_init(conf->hash_locks + i);
6547
6548         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6549                 INIT_LIST_HEAD(conf->inactive_list + i);
6550
6551         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6552                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6553
6554         conf->level = mddev->new_level;
6555         conf->chunk_sectors = mddev->new_chunk_sectors;
6556         if (raid5_alloc_percpu(conf) != 0)
6557                 goto abort;
6558
6559         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6560
6561         rdev_for_each(rdev, mddev) {
6562                 raid_disk = rdev->raid_disk;
6563                 if (raid_disk >= max_disks
6564                     || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6565                         continue;
6566                 disk = conf->disks + raid_disk;
6567
6568                 if (test_bit(Replacement, &rdev->flags)) {
6569                         if (disk->replacement)
6570                                 goto abort;
6571                         disk->replacement = rdev;
6572                 } else {
6573                         if (disk->rdev)
6574                                 goto abort;
6575                         disk->rdev = rdev;
6576                 }
6577
6578                 if (test_bit(In_sync, &rdev->flags)) {
6579                         char b[BDEVNAME_SIZE];
6580                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6581                                " disk %d\n",
6582                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6583                 } else if (rdev->saved_raid_disk != raid_disk)
6584                         /* Cannot rely on bitmap to complete recovery */
6585                         conf->fullsync = 1;
6586         }
6587
6588         conf->level = mddev->new_level;
6589         if (conf->level == 6) {
6590                 conf->max_degraded = 2;
6591                 if (raid6_call.xor_syndrome)
6592                         conf->rmw_level = PARITY_ENABLE_RMW;
6593                 else
6594                         conf->rmw_level = PARITY_DISABLE_RMW;
6595         } else {
6596                 conf->max_degraded = 1;
6597                 conf->rmw_level = PARITY_ENABLE_RMW;
6598         }
6599         conf->algorithm = mddev->new_layout;
6600         conf->reshape_progress = mddev->reshape_position;
6601         if (conf->reshape_progress != MaxSector) {
6602                 conf->prev_chunk_sectors = mddev->chunk_sectors;
6603                 conf->prev_algo = mddev->layout;
6604         } else {
6605                 conf->prev_chunk_sectors = conf->chunk_sectors;
6606                 conf->prev_algo = conf->algorithm;
6607         }
6608
6609         conf->min_nr_stripes = NR_STRIPES;
6610         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6611                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6612         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6613         if (grow_stripes(conf, conf->min_nr_stripes)) {
6614                 printk(KERN_ERR
6615                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
6616                        mdname(mddev), memory);
6617                 goto abort;
6618         } else
6619                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6620                        mdname(mddev), memory);
6621         /*
6622          * Losing a stripe head costs more than the time to refill it,
6623          * it reduces the queue depth and so can hurt throughput.
6624          * So set it rather large, scaled by number of devices.
6625          */
6626         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6627         conf->shrinker.scan_objects = raid5_cache_scan;
6628         conf->shrinker.count_objects = raid5_cache_count;
6629         conf->shrinker.batch = 128;
6630         conf->shrinker.flags = 0;
6631         register_shrinker(&conf->shrinker);
6632
6633         sprintf(pers_name, "raid%d", mddev->new_level);
6634         conf->thread = md_register_thread(raid5d, mddev, pers_name);
6635         if (!conf->thread) {
6636                 printk(KERN_ERR
6637                        "md/raid:%s: couldn't allocate thread.\n",
6638                        mdname(mddev));
6639                 goto abort;
6640         }
6641
6642         return conf;
6643
6644  abort:
6645         if (conf) {
6646                 free_conf(conf);
6647                 return ERR_PTR(-EIO);
6648         } else
6649                 return ERR_PTR(-ENOMEM);
6650 }
6651
6652 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6653 {
6654         switch (algo) {
6655         case ALGORITHM_PARITY_0:
6656                 if (raid_disk < max_degraded)
6657                         return 1;
6658                 break;
6659         case ALGORITHM_PARITY_N:
6660                 if (raid_disk >= raid_disks - max_degraded)
6661                         return 1;
6662                 break;
6663         case ALGORITHM_PARITY_0_6:
6664                 if (raid_disk == 0 ||
6665                     raid_disk == raid_disks - 1)
6666                         return 1;
6667                 break;
6668         case ALGORITHM_LEFT_ASYMMETRIC_6:
6669         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6670         case ALGORITHM_LEFT_SYMMETRIC_6:
6671         case ALGORITHM_RIGHT_SYMMETRIC_6:
6672                 if (raid_disk == raid_disks - 1)
6673                         return 1;
6674         }
6675         return 0;
6676 }
6677
6678 static int raid5_run(struct mddev *mddev)
6679 {
6680         struct r5conf *conf;
6681         int working_disks = 0;
6682         int dirty_parity_disks = 0;
6683         struct md_rdev *rdev;
6684         struct md_rdev *journal_dev = NULL;
6685         sector_t reshape_offset = 0;
6686         int i;
6687         long long min_offset_diff = 0;
6688         int first = 1;
6689
6690         if (mddev->recovery_cp != MaxSector)
6691                 printk(KERN_NOTICE "md/raid:%s: not clean"
6692                        " -- starting background reconstruction\n",
6693                        mdname(mddev));
6694
6695         rdev_for_each(rdev, mddev) {
6696                 long long diff;
6697
6698                 if (test_bit(Journal, &rdev->flags)) {
6699                         journal_dev = rdev;
6700                         continue;
6701                 }
6702                 if (rdev->raid_disk < 0)
6703                         continue;
6704                 diff = (rdev->new_data_offset - rdev->data_offset);
6705                 if (first) {
6706                         min_offset_diff = diff;
6707                         first = 0;
6708                 } else if (mddev->reshape_backwards &&
6709                          diff < min_offset_diff)
6710                         min_offset_diff = diff;
6711                 else if (!mddev->reshape_backwards &&
6712                          diff > min_offset_diff)
6713                         min_offset_diff = diff;
6714         }
6715
6716         if (mddev->reshape_position != MaxSector) {
6717                 /* Check that we can continue the reshape.
6718                  * Difficulties arise if the stripe we would write to
6719                  * next is at or after the stripe we would read from next.
6720                  * For a reshape that changes the number of devices, this
6721                  * is only possible for a very short time, and mdadm makes
6722                  * sure that time appears to have past before assembling
6723                  * the array.  So we fail if that time hasn't passed.
6724                  * For a reshape that keeps the number of devices the same
6725                  * mdadm must be monitoring the reshape can keeping the
6726                  * critical areas read-only and backed up.  It will start
6727                  * the array in read-only mode, so we check for that.
6728                  */
6729                 sector_t here_new, here_old;
6730                 int old_disks;
6731                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6732                 int chunk_sectors;
6733                 int new_data_disks;
6734
6735                 if (journal_dev) {
6736                         printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6737                                mdname(mddev));
6738                         return -EINVAL;
6739                 }
6740
6741                 if (mddev->new_level != mddev->level) {
6742                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6743                                "required - aborting.\n",
6744                                mdname(mddev));
6745                         return -EINVAL;
6746                 }
6747                 old_disks = mddev->raid_disks - mddev->delta_disks;
6748                 /* reshape_position must be on a new-stripe boundary, and one
6749                  * further up in new geometry must map after here in old
6750                  * geometry.
6751                  * If the chunk sizes are different, then as we perform reshape
6752                  * in units of the largest of the two, reshape_position needs
6753                  * be a multiple of the largest chunk size times new data disks.
6754                  */
6755                 here_new = mddev->reshape_position;
6756                 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6757                 new_data_disks = mddev->raid_disks - max_degraded;
6758                 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6759                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6760                                "on a stripe boundary\n", mdname(mddev));
6761                         return -EINVAL;
6762                 }
6763                 reshape_offset = here_new * chunk_sectors;
6764                 /* here_new is the stripe we will write to */
6765                 here_old = mddev->reshape_position;
6766                 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6767                 /* here_old is the first stripe that we might need to read
6768                  * from */
6769                 if (mddev->delta_disks == 0) {
6770                         /* We cannot be sure it is safe to start an in-place
6771                          * reshape.  It is only safe if user-space is monitoring
6772                          * and taking constant backups.
6773                          * mdadm always starts a situation like this in
6774                          * readonly mode so it can take control before
6775                          * allowing any writes.  So just check for that.
6776                          */
6777                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6778                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6779                                 /* not really in-place - so OK */;
6780                         else if (mddev->ro == 0) {
6781                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6782                                        "must be started in read-only mode "
6783                                        "- aborting\n",
6784                                        mdname(mddev));
6785                                 return -EINVAL;
6786                         }
6787                 } else if (mddev->reshape_backwards
6788                     ? (here_new * chunk_sectors + min_offset_diff <=
6789                        here_old * chunk_sectors)
6790                     : (here_new * chunk_sectors >=
6791                        here_old * chunk_sectors + (-min_offset_diff))) {
6792                         /* Reading from the same stripe as writing to - bad */
6793                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6794                                "auto-recovery - aborting.\n",
6795                                mdname(mddev));
6796                         return -EINVAL;
6797                 }
6798                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6799                        mdname(mddev));
6800                 /* OK, we should be able to continue; */
6801         } else {
6802                 BUG_ON(mddev->level != mddev->new_level);
6803                 BUG_ON(mddev->layout != mddev->new_layout);
6804                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6805                 BUG_ON(mddev->delta_disks != 0);
6806         }
6807
6808         if (mddev->private == NULL)
6809                 conf = setup_conf(mddev);
6810         else
6811                 conf = mddev->private;
6812
6813         if (IS_ERR(conf))
6814                 return PTR_ERR(conf);
6815
6816         if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !journal_dev) {
6817                 printk(KERN_ERR "md/raid:%s: journal disk is missing, force array readonly\n",
6818                        mdname(mddev));
6819                 mddev->ro = 1;
6820                 set_disk_ro(mddev->gendisk, 1);
6821         }
6822
6823         conf->min_offset_diff = min_offset_diff;
6824         mddev->thread = conf->thread;
6825         conf->thread = NULL;
6826         mddev->private = conf;
6827
6828         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6829              i++) {
6830                 rdev = conf->disks[i].rdev;
6831                 if (!rdev && conf->disks[i].replacement) {
6832                         /* The replacement is all we have yet */
6833                         rdev = conf->disks[i].replacement;
6834                         conf->disks[i].replacement = NULL;
6835                         clear_bit(Replacement, &rdev->flags);
6836                         conf->disks[i].rdev = rdev;
6837                 }
6838                 if (!rdev)
6839                         continue;
6840                 if (conf->disks[i].replacement &&
6841                     conf->reshape_progress != MaxSector) {
6842                         /* replacements and reshape simply do not mix. */
6843                         printk(KERN_ERR "md: cannot handle concurrent "
6844                                "replacement and reshape.\n");
6845                         goto abort;
6846                 }
6847                 if (test_bit(In_sync, &rdev->flags)) {
6848                         working_disks++;
6849                         continue;
6850                 }
6851                 /* This disc is not fully in-sync.  However if it
6852                  * just stored parity (beyond the recovery_offset),
6853                  * when we don't need to be concerned about the
6854                  * array being dirty.
6855                  * When reshape goes 'backwards', we never have
6856                  * partially completed devices, so we only need
6857                  * to worry about reshape going forwards.
6858                  */
6859                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6860                 if (mddev->major_version == 0 &&
6861                     mddev->minor_version > 90)
6862                         rdev->recovery_offset = reshape_offset;
6863
6864                 if (rdev->recovery_offset < reshape_offset) {
6865                         /* We need to check old and new layout */
6866                         if (!only_parity(rdev->raid_disk,
6867                                          conf->algorithm,
6868                                          conf->raid_disks,
6869                                          conf->max_degraded))
6870                                 continue;
6871                 }
6872                 if (!only_parity(rdev->raid_disk,
6873                                  conf->prev_algo,
6874                                  conf->previous_raid_disks,
6875                                  conf->max_degraded))
6876                         continue;
6877                 dirty_parity_disks++;
6878         }
6879
6880         /*
6881          * 0 for a fully functional array, 1 or 2 for a degraded array.
6882          */
6883         mddev->degraded = calc_degraded(conf);
6884
6885         if (has_failed(conf)) {
6886                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6887                         " (%d/%d failed)\n",
6888                         mdname(mddev), mddev->degraded, conf->raid_disks);
6889                 goto abort;
6890         }
6891
6892         /* device size must be a multiple of chunk size */
6893         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6894         mddev->resync_max_sectors = mddev->dev_sectors;
6895
6896         if (mddev->degraded > dirty_parity_disks &&
6897             mddev->recovery_cp != MaxSector) {
6898                 if (mddev->ok_start_degraded)
6899                         printk(KERN_WARNING
6900                                "md/raid:%s: starting dirty degraded array"
6901                                " - data corruption possible.\n",
6902                                mdname(mddev));
6903                 else {
6904                         printk(KERN_ERR
6905                                "md/raid:%s: cannot start dirty degraded array.\n",
6906                                mdname(mddev));
6907                         goto abort;
6908                 }
6909         }
6910
6911         if (mddev->degraded == 0)
6912                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6913                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6914                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6915                        mddev->new_layout);
6916         else
6917                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6918                        " out of %d devices, algorithm %d\n",
6919                        mdname(mddev), conf->level,
6920                        mddev->raid_disks - mddev->degraded,
6921                        mddev->raid_disks, mddev->new_layout);
6922
6923         print_raid5_conf(conf);
6924
6925         if (conf->reshape_progress != MaxSector) {
6926                 conf->reshape_safe = conf->reshape_progress;
6927                 atomic_set(&conf->reshape_stripes, 0);
6928                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6929                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6930                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6931                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6932                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6933                                                         "reshape");
6934         }
6935
6936         /* Ok, everything is just fine now */
6937         if (mddev->to_remove == &raid5_attrs_group)
6938                 mddev->to_remove = NULL;
6939         else if (mddev->kobj.sd &&
6940             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6941                 printk(KERN_WARNING
6942                        "raid5: failed to create sysfs attributes for %s\n",
6943                        mdname(mddev));
6944         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6945
6946         if (mddev->queue) {
6947                 int chunk_size;
6948                 bool discard_supported = true;
6949                 /* read-ahead size must cover two whole stripes, which
6950                  * is 2 * (datadisks) * chunksize where 'n' is the
6951                  * number of raid devices
6952                  */
6953                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6954                 int stripe = data_disks *
6955                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6956                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6957                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6958
6959                 chunk_size = mddev->chunk_sectors << 9;
6960                 blk_queue_io_min(mddev->queue, chunk_size);
6961                 blk_queue_io_opt(mddev->queue, chunk_size *
6962                                  (conf->raid_disks - conf->max_degraded));
6963                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6964                 /*
6965                  * We can only discard a whole stripe. It doesn't make sense to
6966                  * discard data disk but write parity disk
6967                  */
6968                 stripe = stripe * PAGE_SIZE;
6969                 /* Round up to power of 2, as discard handling
6970                  * currently assumes that */
6971                 while ((stripe-1) & stripe)
6972                         stripe = (stripe | (stripe-1)) + 1;
6973                 mddev->queue->limits.discard_alignment = stripe;
6974                 mddev->queue->limits.discard_granularity = stripe;
6975                 /*
6976                  * unaligned part of discard request will be ignored, so can't
6977                  * guarantee discard_zeroes_data
6978                  */
6979                 mddev->queue->limits.discard_zeroes_data = 0;
6980
6981                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6982
6983                 rdev_for_each(rdev, mddev) {
6984                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6985                                           rdev->data_offset << 9);
6986                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6987                                           rdev->new_data_offset << 9);
6988                         /*
6989                          * discard_zeroes_data is required, otherwise data
6990                          * could be lost. Consider a scenario: discard a stripe
6991                          * (the stripe could be inconsistent if
6992                          * discard_zeroes_data is 0); write one disk of the
6993                          * stripe (the stripe could be inconsistent again
6994                          * depending on which disks are used to calculate
6995                          * parity); the disk is broken; The stripe data of this
6996                          * disk is lost.
6997                          */
6998                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6999                             !bdev_get_queue(rdev->bdev)->
7000                                                 limits.discard_zeroes_data)
7001                                 discard_supported = false;
7002                         /* Unfortunately, discard_zeroes_data is not currently
7003                          * a guarantee - just a hint.  So we only allow DISCARD
7004                          * if the sysadmin has confirmed that only safe devices
7005                          * are in use by setting a module parameter.
7006                          */
7007                         if (!devices_handle_discard_safely) {
7008                                 if (discard_supported) {
7009                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7010                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7011                                 }
7012                                 discard_supported = false;
7013                         }
7014                 }
7015
7016                 if (discard_supported &&
7017                    mddev->queue->limits.max_discard_sectors >= stripe &&
7018                    mddev->queue->limits.discard_granularity >= stripe)
7019                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7020                                                 mddev->queue);
7021                 else
7022                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7023                                                 mddev->queue);
7024         }
7025
7026         if (journal_dev) {
7027                 char b[BDEVNAME_SIZE];
7028
7029                 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7030                        mdname(mddev), bdevname(journal_dev->bdev, b));
7031                 r5l_init_log(conf, journal_dev);
7032         }
7033
7034         return 0;
7035 abort:
7036         md_unregister_thread(&mddev->thread);
7037         print_raid5_conf(conf);
7038         free_conf(conf);
7039         mddev->private = NULL;
7040         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
7041         return -EIO;
7042 }
7043
7044 static void raid5_free(struct mddev *mddev, void *priv)
7045 {
7046         struct r5conf *conf = priv;
7047
7048         free_conf(conf);
7049         mddev->to_remove = &raid5_attrs_group;
7050 }
7051
7052 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7053 {
7054         struct r5conf *conf = mddev->private;
7055         int i;
7056
7057         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7058                 conf->chunk_sectors / 2, mddev->layout);
7059         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7060         for (i = 0; i < conf->raid_disks; i++)
7061                 seq_printf (seq, "%s",
7062                                conf->disks[i].rdev &&
7063                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
7064         seq_printf (seq, "]");
7065 }
7066
7067 static void print_raid5_conf (struct r5conf *conf)
7068 {
7069         int i;
7070         struct disk_info *tmp;
7071
7072         printk(KERN_DEBUG "RAID conf printout:\n");
7073         if (!conf) {
7074                 printk("(conf==NULL)\n");
7075                 return;
7076         }
7077         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7078                conf->raid_disks,
7079                conf->raid_disks - conf->mddev->degraded);
7080
7081         for (i = 0; i < conf->raid_disks; i++) {
7082                 char b[BDEVNAME_SIZE];
7083                 tmp = conf->disks + i;
7084                 if (tmp->rdev)
7085                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7086                                i, !test_bit(Faulty, &tmp->rdev->flags),
7087                                bdevname(tmp->rdev->bdev, b));
7088         }
7089 }
7090
7091 static int raid5_spare_active(struct mddev *mddev)
7092 {
7093         int i;
7094         struct r5conf *conf = mddev->private;
7095         struct disk_info *tmp;
7096         int count = 0;
7097         unsigned long flags;
7098
7099         for (i = 0; i < conf->raid_disks; i++) {
7100                 tmp = conf->disks + i;
7101                 if (tmp->replacement
7102                     && tmp->replacement->recovery_offset == MaxSector
7103                     && !test_bit(Faulty, &tmp->replacement->flags)
7104                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7105                         /* Replacement has just become active. */
7106                         if (!tmp->rdev
7107                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7108                                 count++;
7109                         if (tmp->rdev) {
7110                                 /* Replaced device not technically faulty,
7111                                  * but we need to be sure it gets removed
7112                                  * and never re-added.
7113                                  */
7114                                 set_bit(Faulty, &tmp->rdev->flags);
7115                                 sysfs_notify_dirent_safe(
7116                                         tmp->rdev->sysfs_state);
7117                         }
7118                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7119                 } else if (tmp->rdev
7120                     && tmp->rdev->recovery_offset == MaxSector
7121                     && !test_bit(Faulty, &tmp->rdev->flags)
7122                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7123                         count++;
7124                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7125                 }
7126         }
7127         spin_lock_irqsave(&conf->device_lock, flags);
7128         mddev->degraded = calc_degraded(conf);
7129         spin_unlock_irqrestore(&conf->device_lock, flags);
7130         print_raid5_conf(conf);
7131         return count;
7132 }
7133
7134 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7135 {
7136         struct r5conf *conf = mddev->private;
7137         int err = 0;
7138         int number = rdev->raid_disk;
7139         struct md_rdev **rdevp;
7140         struct disk_info *p = conf->disks + number;
7141
7142         print_raid5_conf(conf);
7143         if (test_bit(Journal, &rdev->flags) && conf->log) {
7144                 struct r5l_log *log;
7145                 /*
7146                  * we can't wait pending write here, as this is called in
7147                  * raid5d, wait will deadlock.
7148                  */
7149                 if (atomic_read(&mddev->writes_pending))
7150                         return -EBUSY;
7151                 log = conf->log;
7152                 conf->log = NULL;
7153                 synchronize_rcu();
7154                 r5l_exit_log(log);
7155                 return 0;
7156         }
7157         if (rdev == p->rdev)
7158                 rdevp = &p->rdev;
7159         else if (rdev == p->replacement)
7160                 rdevp = &p->replacement;
7161         else
7162                 return 0;
7163
7164         if (number >= conf->raid_disks &&
7165             conf->reshape_progress == MaxSector)
7166                 clear_bit(In_sync, &rdev->flags);
7167
7168         if (test_bit(In_sync, &rdev->flags) ||
7169             atomic_read(&rdev->nr_pending)) {
7170                 err = -EBUSY;
7171                 goto abort;
7172         }
7173         /* Only remove non-faulty devices if recovery
7174          * isn't possible.
7175          */
7176         if (!test_bit(Faulty, &rdev->flags) &&
7177             mddev->recovery_disabled != conf->recovery_disabled &&
7178             !has_failed(conf) &&
7179             (!p->replacement || p->replacement == rdev) &&
7180             number < conf->raid_disks) {
7181                 err = -EBUSY;
7182                 goto abort;
7183         }
7184         *rdevp = NULL;
7185         synchronize_rcu();
7186         if (atomic_read(&rdev->nr_pending)) {
7187                 /* lost the race, try later */
7188                 err = -EBUSY;
7189                 *rdevp = rdev;
7190         } else if (p->replacement) {
7191                 /* We must have just cleared 'rdev' */
7192                 p->rdev = p->replacement;
7193                 clear_bit(Replacement, &p->replacement->flags);
7194                 smp_mb(); /* Make sure other CPUs may see both as identical
7195                            * but will never see neither - if they are careful
7196                            */
7197                 p->replacement = NULL;
7198                 clear_bit(WantReplacement, &rdev->flags);
7199         } else
7200                 /* We might have just removed the Replacement as faulty-
7201                  * clear the bit just in case
7202                  */
7203                 clear_bit(WantReplacement, &rdev->flags);
7204 abort:
7205
7206         print_raid5_conf(conf);
7207         return err;
7208 }
7209
7210 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7211 {
7212         struct r5conf *conf = mddev->private;
7213         int err = -EEXIST;
7214         int disk;
7215         struct disk_info *p;
7216         int first = 0;
7217         int last = conf->raid_disks - 1;
7218
7219         if (test_bit(Journal, &rdev->flags)) {
7220                 char b[BDEVNAME_SIZE];
7221                 if (conf->log)
7222                         return -EBUSY;
7223
7224                 rdev->raid_disk = 0;
7225                 /*
7226                  * The array is in readonly mode if journal is missing, so no
7227                  * write requests running. We should be safe
7228                  */
7229                 r5l_init_log(conf, rdev);
7230                 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7231                        mdname(mddev), bdevname(rdev->bdev, b));
7232                 return 0;
7233         }
7234         if (mddev->recovery_disabled == conf->recovery_disabled)
7235                 return -EBUSY;
7236
7237         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7238                 /* no point adding a device */
7239                 return -EINVAL;
7240
7241         if (rdev->raid_disk >= 0)
7242                 first = last = rdev->raid_disk;
7243
7244         /*
7245          * find the disk ... but prefer rdev->saved_raid_disk
7246          * if possible.
7247          */
7248         if (rdev->saved_raid_disk >= 0 &&
7249             rdev->saved_raid_disk >= first &&
7250             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7251                 first = rdev->saved_raid_disk;
7252
7253         for (disk = first; disk <= last; disk++) {
7254                 p = conf->disks + disk;
7255                 if (p->rdev == NULL) {
7256                         clear_bit(In_sync, &rdev->flags);
7257                         rdev->raid_disk = disk;
7258                         err = 0;
7259                         if (rdev->saved_raid_disk != disk)
7260                                 conf->fullsync = 1;
7261                         rcu_assign_pointer(p->rdev, rdev);
7262                         goto out;
7263                 }
7264         }
7265         for (disk = first; disk <= last; disk++) {
7266                 p = conf->disks + disk;
7267                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7268                     p->replacement == NULL) {
7269                         clear_bit(In_sync, &rdev->flags);
7270                         set_bit(Replacement, &rdev->flags);
7271                         rdev->raid_disk = disk;
7272                         err = 0;
7273                         conf->fullsync = 1;
7274                         rcu_assign_pointer(p->replacement, rdev);
7275                         break;
7276                 }
7277         }
7278 out:
7279         print_raid5_conf(conf);
7280         return err;
7281 }
7282
7283 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7284 {
7285         /* no resync is happening, and there is enough space
7286          * on all devices, so we can resize.
7287          * We need to make sure resync covers any new space.
7288          * If the array is shrinking we should possibly wait until
7289          * any io in the removed space completes, but it hardly seems
7290          * worth it.
7291          */
7292         sector_t newsize;
7293         struct r5conf *conf = mddev->private;
7294
7295         if (conf->log)
7296                 return -EINVAL;
7297         sectors &= ~((sector_t)conf->chunk_sectors - 1);
7298         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7299         if (mddev->external_size &&
7300             mddev->array_sectors > newsize)
7301                 return -EINVAL;
7302         if (mddev->bitmap) {
7303                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7304                 if (ret)
7305                         return ret;
7306         }
7307         md_set_array_sectors(mddev, newsize);
7308         set_capacity(mddev->gendisk, mddev->array_sectors);
7309         revalidate_disk(mddev->gendisk);
7310         if (sectors > mddev->dev_sectors &&
7311             mddev->recovery_cp > mddev->dev_sectors) {
7312                 mddev->recovery_cp = mddev->dev_sectors;
7313                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7314         }
7315         mddev->dev_sectors = sectors;
7316         mddev->resync_max_sectors = sectors;
7317         return 0;
7318 }
7319
7320 static int check_stripe_cache(struct mddev *mddev)
7321 {
7322         /* Can only proceed if there are plenty of stripe_heads.
7323          * We need a minimum of one full stripe,, and for sensible progress
7324          * it is best to have about 4 times that.
7325          * If we require 4 times, then the default 256 4K stripe_heads will
7326          * allow for chunk sizes up to 256K, which is probably OK.
7327          * If the chunk size is greater, user-space should request more
7328          * stripe_heads first.
7329          */
7330         struct r5conf *conf = mddev->private;
7331         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7332             > conf->min_nr_stripes ||
7333             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7334             > conf->min_nr_stripes) {
7335                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7336                        mdname(mddev),
7337                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7338                         / STRIPE_SIZE)*4);
7339                 return 0;
7340         }
7341         return 1;
7342 }
7343
7344 static int check_reshape(struct mddev *mddev)
7345 {
7346         struct r5conf *conf = mddev->private;
7347
7348         if (conf->log)
7349                 return -EINVAL;
7350         if (mddev->delta_disks == 0 &&
7351             mddev->new_layout == mddev->layout &&
7352             mddev->new_chunk_sectors == mddev->chunk_sectors)
7353                 return 0; /* nothing to do */
7354         if (has_failed(conf))
7355                 return -EINVAL;
7356         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7357                 /* We might be able to shrink, but the devices must
7358                  * be made bigger first.
7359                  * For raid6, 4 is the minimum size.
7360                  * Otherwise 2 is the minimum
7361                  */
7362                 int min = 2;
7363                 if (mddev->level == 6)
7364                         min = 4;
7365                 if (mddev->raid_disks + mddev->delta_disks < min)
7366                         return -EINVAL;
7367         }
7368
7369         if (!check_stripe_cache(mddev))
7370                 return -ENOSPC;
7371
7372         if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7373             mddev->delta_disks > 0)
7374                 if (resize_chunks(conf,
7375                                   conf->previous_raid_disks
7376                                   + max(0, mddev->delta_disks),
7377                                   max(mddev->new_chunk_sectors,
7378                                       mddev->chunk_sectors)
7379                             ) < 0)
7380                         return -ENOMEM;
7381         return resize_stripes(conf, (conf->previous_raid_disks
7382                                      + mddev->delta_disks));
7383 }
7384
7385 static int raid5_start_reshape(struct mddev *mddev)
7386 {
7387         struct r5conf *conf = mddev->private;
7388         struct md_rdev *rdev;
7389         int spares = 0;
7390         unsigned long flags;
7391
7392         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7393                 return -EBUSY;
7394
7395         if (!check_stripe_cache(mddev))
7396                 return -ENOSPC;
7397
7398         if (has_failed(conf))
7399                 return -EINVAL;
7400
7401         rdev_for_each(rdev, mddev) {
7402                 if (!test_bit(In_sync, &rdev->flags)
7403                     && !test_bit(Faulty, &rdev->flags))
7404                         spares++;
7405         }
7406
7407         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7408                 /* Not enough devices even to make a degraded array
7409                  * of that size
7410                  */
7411                 return -EINVAL;
7412
7413         /* Refuse to reduce size of the array.  Any reductions in
7414          * array size must be through explicit setting of array_size
7415          * attribute.
7416          */
7417         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7418             < mddev->array_sectors) {
7419                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7420                        "before number of disks\n", mdname(mddev));
7421                 return -EINVAL;
7422         }
7423
7424         atomic_set(&conf->reshape_stripes, 0);
7425         spin_lock_irq(&conf->device_lock);
7426         write_seqcount_begin(&conf->gen_lock);
7427         conf->previous_raid_disks = conf->raid_disks;
7428         conf->raid_disks += mddev->delta_disks;
7429         conf->prev_chunk_sectors = conf->chunk_sectors;
7430         conf->chunk_sectors = mddev->new_chunk_sectors;
7431         conf->prev_algo = conf->algorithm;
7432         conf->algorithm = mddev->new_layout;
7433         conf->generation++;
7434         /* Code that selects data_offset needs to see the generation update
7435          * if reshape_progress has been set - so a memory barrier needed.
7436          */
7437         smp_mb();
7438         if (mddev->reshape_backwards)
7439                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7440         else
7441                 conf->reshape_progress = 0;
7442         conf->reshape_safe = conf->reshape_progress;
7443         write_seqcount_end(&conf->gen_lock);
7444         spin_unlock_irq(&conf->device_lock);
7445
7446         /* Now make sure any requests that proceeded on the assumption
7447          * the reshape wasn't running - like Discard or Read - have
7448          * completed.
7449          */
7450         mddev_suspend(mddev);
7451         mddev_resume(mddev);
7452
7453         /* Add some new drives, as many as will fit.
7454          * We know there are enough to make the newly sized array work.
7455          * Don't add devices if we are reducing the number of
7456          * devices in the array.  This is because it is not possible
7457          * to correctly record the "partially reconstructed" state of
7458          * such devices during the reshape and confusion could result.
7459          */
7460         if (mddev->delta_disks >= 0) {
7461                 rdev_for_each(rdev, mddev)
7462                         if (rdev->raid_disk < 0 &&
7463                             !test_bit(Faulty, &rdev->flags)) {
7464                                 if (raid5_add_disk(mddev, rdev) == 0) {
7465                                         if (rdev->raid_disk
7466                                             >= conf->previous_raid_disks)
7467                                                 set_bit(In_sync, &rdev->flags);
7468                                         else
7469                                                 rdev->recovery_offset = 0;
7470
7471                                         if (sysfs_link_rdev(mddev, rdev))
7472                                                 /* Failure here is OK */;
7473                                 }
7474                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7475                                    && !test_bit(Faulty, &rdev->flags)) {
7476                                 /* This is a spare that was manually added */
7477                                 set_bit(In_sync, &rdev->flags);
7478                         }
7479
7480                 /* When a reshape changes the number of devices,
7481                  * ->degraded is measured against the larger of the
7482                  * pre and post number of devices.
7483                  */
7484                 spin_lock_irqsave(&conf->device_lock, flags);
7485                 mddev->degraded = calc_degraded(conf);
7486                 spin_unlock_irqrestore(&conf->device_lock, flags);
7487         }
7488         mddev->raid_disks = conf->raid_disks;
7489         mddev->reshape_position = conf->reshape_progress;
7490         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7491
7492         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7493         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7494         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7495         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7496         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7497         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7498                                                 "reshape");
7499         if (!mddev->sync_thread) {
7500                 mddev->recovery = 0;
7501                 spin_lock_irq(&conf->device_lock);
7502                 write_seqcount_begin(&conf->gen_lock);
7503                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7504                 mddev->new_chunk_sectors =
7505                         conf->chunk_sectors = conf->prev_chunk_sectors;
7506                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7507                 rdev_for_each(rdev, mddev)
7508                         rdev->new_data_offset = rdev->data_offset;
7509                 smp_wmb();
7510                 conf->generation --;
7511                 conf->reshape_progress = MaxSector;
7512                 mddev->reshape_position = MaxSector;
7513                 write_seqcount_end(&conf->gen_lock);
7514                 spin_unlock_irq(&conf->device_lock);
7515                 return -EAGAIN;
7516         }
7517         conf->reshape_checkpoint = jiffies;
7518         md_wakeup_thread(mddev->sync_thread);
7519         md_new_event(mddev);
7520         return 0;
7521 }
7522
7523 /* This is called from the reshape thread and should make any
7524  * changes needed in 'conf'
7525  */
7526 static void end_reshape(struct r5conf *conf)
7527 {
7528
7529         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7530                 struct md_rdev *rdev;
7531
7532                 spin_lock_irq(&conf->device_lock);
7533                 conf->previous_raid_disks = conf->raid_disks;
7534                 rdev_for_each(rdev, conf->mddev)
7535                         rdev->data_offset = rdev->new_data_offset;
7536                 smp_wmb();
7537                 conf->reshape_progress = MaxSector;
7538                 conf->mddev->reshape_position = MaxSector;
7539                 spin_unlock_irq(&conf->device_lock);
7540                 wake_up(&conf->wait_for_overlap);
7541
7542                 /* read-ahead size must cover two whole stripes, which is
7543                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7544                  */
7545                 if (conf->mddev->queue) {
7546                         int data_disks = conf->raid_disks - conf->max_degraded;
7547                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7548                                                    / PAGE_SIZE);
7549                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7550                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7551                 }
7552         }
7553 }
7554
7555 /* This is called from the raid5d thread with mddev_lock held.
7556  * It makes config changes to the device.
7557  */
7558 static void raid5_finish_reshape(struct mddev *mddev)
7559 {
7560         struct r5conf *conf = mddev->private;
7561
7562         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7563
7564                 if (mddev->delta_disks > 0) {
7565                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7566                         set_capacity(mddev->gendisk, mddev->array_sectors);
7567                         revalidate_disk(mddev->gendisk);
7568                 } else {
7569                         int d;
7570                         spin_lock_irq(&conf->device_lock);
7571                         mddev->degraded = calc_degraded(conf);
7572                         spin_unlock_irq(&conf->device_lock);
7573                         for (d = conf->raid_disks ;
7574                              d < conf->raid_disks - mddev->delta_disks;
7575                              d++) {
7576                                 struct md_rdev *rdev = conf->disks[d].rdev;
7577                                 if (rdev)
7578                                         clear_bit(In_sync, &rdev->flags);
7579                                 rdev = conf->disks[d].replacement;
7580                                 if (rdev)
7581                                         clear_bit(In_sync, &rdev->flags);
7582                         }
7583                 }
7584                 mddev->layout = conf->algorithm;
7585                 mddev->chunk_sectors = conf->chunk_sectors;
7586                 mddev->reshape_position = MaxSector;
7587                 mddev->delta_disks = 0;
7588                 mddev->reshape_backwards = 0;
7589         }
7590 }
7591
7592 static void raid5_quiesce(struct mddev *mddev, int state)
7593 {
7594         struct r5conf *conf = mddev->private;
7595
7596         switch(state) {
7597         case 2: /* resume for a suspend */
7598                 wake_up(&conf->wait_for_overlap);
7599                 break;
7600
7601         case 1: /* stop all writes */
7602                 lock_all_device_hash_locks_irq(conf);
7603                 /* '2' tells resync/reshape to pause so that all
7604                  * active stripes can drain
7605                  */
7606                 conf->quiesce = 2;
7607                 wait_event_cmd(conf->wait_for_quiescent,
7608                                     atomic_read(&conf->active_stripes) == 0 &&
7609                                     atomic_read(&conf->active_aligned_reads) == 0,
7610                                     unlock_all_device_hash_locks_irq(conf),
7611                                     lock_all_device_hash_locks_irq(conf));
7612                 conf->quiesce = 1;
7613                 unlock_all_device_hash_locks_irq(conf);
7614                 /* allow reshape to continue */
7615                 wake_up(&conf->wait_for_overlap);
7616                 break;
7617
7618         case 0: /* re-enable writes */
7619                 lock_all_device_hash_locks_irq(conf);
7620                 conf->quiesce = 0;
7621                 wake_up(&conf->wait_for_quiescent);
7622                 wake_up(&conf->wait_for_overlap);
7623                 unlock_all_device_hash_locks_irq(conf);
7624                 break;
7625         }
7626         r5l_quiesce(conf->log, state);
7627 }
7628
7629 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7630 {
7631         struct r0conf *raid0_conf = mddev->private;
7632         sector_t sectors;
7633
7634         /* for raid0 takeover only one zone is supported */
7635         if (raid0_conf->nr_strip_zones > 1) {
7636                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7637                        mdname(mddev));
7638                 return ERR_PTR(-EINVAL);
7639         }
7640
7641         sectors = raid0_conf->strip_zone[0].zone_end;
7642         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7643         mddev->dev_sectors = sectors;
7644         mddev->new_level = level;
7645         mddev->new_layout = ALGORITHM_PARITY_N;
7646         mddev->new_chunk_sectors = mddev->chunk_sectors;
7647         mddev->raid_disks += 1;
7648         mddev->delta_disks = 1;
7649         /* make sure it will be not marked as dirty */
7650         mddev->recovery_cp = MaxSector;
7651
7652         return setup_conf(mddev);
7653 }
7654
7655 static void *raid5_takeover_raid1(struct mddev *mddev)
7656 {
7657         int chunksect;
7658
7659         if (mddev->raid_disks != 2 ||
7660             mddev->degraded > 1)
7661                 return ERR_PTR(-EINVAL);
7662
7663         /* Should check if there are write-behind devices? */
7664
7665         chunksect = 64*2; /* 64K by default */
7666
7667         /* The array must be an exact multiple of chunksize */
7668         while (chunksect && (mddev->array_sectors & (chunksect-1)))
7669                 chunksect >>= 1;
7670
7671         if ((chunksect<<9) < STRIPE_SIZE)
7672                 /* array size does not allow a suitable chunk size */
7673                 return ERR_PTR(-EINVAL);
7674
7675         mddev->new_level = 5;
7676         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7677         mddev->new_chunk_sectors = chunksect;
7678
7679         return setup_conf(mddev);
7680 }
7681
7682 static void *raid5_takeover_raid6(struct mddev *mddev)
7683 {
7684         int new_layout;
7685
7686         switch (mddev->layout) {
7687         case ALGORITHM_LEFT_ASYMMETRIC_6:
7688                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7689                 break;
7690         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7691                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7692                 break;
7693         case ALGORITHM_LEFT_SYMMETRIC_6:
7694                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7695                 break;
7696         case ALGORITHM_RIGHT_SYMMETRIC_6:
7697                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7698                 break;
7699         case ALGORITHM_PARITY_0_6:
7700                 new_layout = ALGORITHM_PARITY_0;
7701                 break;
7702         case ALGORITHM_PARITY_N:
7703                 new_layout = ALGORITHM_PARITY_N;
7704                 break;
7705         default:
7706                 return ERR_PTR(-EINVAL);
7707         }
7708         mddev->new_level = 5;
7709         mddev->new_layout = new_layout;
7710         mddev->delta_disks = -1;
7711         mddev->raid_disks -= 1;
7712         return setup_conf(mddev);
7713 }
7714
7715 static int raid5_check_reshape(struct mddev *mddev)
7716 {
7717         /* For a 2-drive array, the layout and chunk size can be changed
7718          * immediately as not restriping is needed.
7719          * For larger arrays we record the new value - after validation
7720          * to be used by a reshape pass.
7721          */
7722         struct r5conf *conf = mddev->private;
7723         int new_chunk = mddev->new_chunk_sectors;
7724
7725         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7726                 return -EINVAL;
7727         if (new_chunk > 0) {
7728                 if (!is_power_of_2(new_chunk))
7729                         return -EINVAL;
7730                 if (new_chunk < (PAGE_SIZE>>9))
7731                         return -EINVAL;
7732                 if (mddev->array_sectors & (new_chunk-1))
7733                         /* not factor of array size */
7734                         return -EINVAL;
7735         }
7736
7737         /* They look valid */
7738
7739         if (mddev->raid_disks == 2) {
7740                 /* can make the change immediately */
7741                 if (mddev->new_layout >= 0) {
7742                         conf->algorithm = mddev->new_layout;
7743                         mddev->layout = mddev->new_layout;
7744                 }
7745                 if (new_chunk > 0) {
7746                         conf->chunk_sectors = new_chunk ;
7747                         mddev->chunk_sectors = new_chunk;
7748                 }
7749                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7750                 md_wakeup_thread(mddev->thread);
7751         }
7752         return check_reshape(mddev);
7753 }
7754
7755 static int raid6_check_reshape(struct mddev *mddev)
7756 {
7757         int new_chunk = mddev->new_chunk_sectors;
7758
7759         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7760                 return -EINVAL;
7761         if (new_chunk > 0) {
7762                 if (!is_power_of_2(new_chunk))
7763                         return -EINVAL;
7764                 if (new_chunk < (PAGE_SIZE >> 9))
7765                         return -EINVAL;
7766                 if (mddev->array_sectors & (new_chunk-1))
7767                         /* not factor of array size */
7768                         return -EINVAL;
7769         }
7770
7771         /* They look valid */
7772         return check_reshape(mddev);
7773 }
7774
7775 static void *raid5_takeover(struct mddev *mddev)
7776 {
7777         /* raid5 can take over:
7778          *  raid0 - if there is only one strip zone - make it a raid4 layout
7779          *  raid1 - if there are two drives.  We need to know the chunk size
7780          *  raid4 - trivial - just use a raid4 layout.
7781          *  raid6 - Providing it is a *_6 layout
7782          */
7783         if (mddev->level == 0)
7784                 return raid45_takeover_raid0(mddev, 5);
7785         if (mddev->level == 1)
7786                 return raid5_takeover_raid1(mddev);
7787         if (mddev->level == 4) {
7788                 mddev->new_layout = ALGORITHM_PARITY_N;
7789                 mddev->new_level = 5;
7790                 return setup_conf(mddev);
7791         }
7792         if (mddev->level == 6)
7793                 return raid5_takeover_raid6(mddev);
7794
7795         return ERR_PTR(-EINVAL);
7796 }
7797
7798 static void *raid4_takeover(struct mddev *mddev)
7799 {
7800         /* raid4 can take over:
7801          *  raid0 - if there is only one strip zone
7802          *  raid5 - if layout is right
7803          */
7804         if (mddev->level == 0)
7805                 return raid45_takeover_raid0(mddev, 4);
7806         if (mddev->level == 5 &&
7807             mddev->layout == ALGORITHM_PARITY_N) {
7808                 mddev->new_layout = 0;
7809                 mddev->new_level = 4;
7810                 return setup_conf(mddev);
7811         }
7812         return ERR_PTR(-EINVAL);
7813 }
7814
7815 static struct md_personality raid5_personality;
7816
7817 static void *raid6_takeover(struct mddev *mddev)
7818 {
7819         /* Currently can only take over a raid5.  We map the
7820          * personality to an equivalent raid6 personality
7821          * with the Q block at the end.
7822          */
7823         int new_layout;
7824
7825         if (mddev->pers != &raid5_personality)
7826                 return ERR_PTR(-EINVAL);
7827         if (mddev->degraded > 1)
7828                 return ERR_PTR(-EINVAL);
7829         if (mddev->raid_disks > 253)
7830                 return ERR_PTR(-EINVAL);
7831         if (mddev->raid_disks < 3)
7832                 return ERR_PTR(-EINVAL);
7833
7834         switch (mddev->layout) {
7835         case ALGORITHM_LEFT_ASYMMETRIC:
7836                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7837                 break;
7838         case ALGORITHM_RIGHT_ASYMMETRIC:
7839                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7840                 break;
7841         case ALGORITHM_LEFT_SYMMETRIC:
7842                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7843                 break;
7844         case ALGORITHM_RIGHT_SYMMETRIC:
7845                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7846                 break;
7847         case ALGORITHM_PARITY_0:
7848                 new_layout = ALGORITHM_PARITY_0_6;
7849                 break;
7850         case ALGORITHM_PARITY_N:
7851                 new_layout = ALGORITHM_PARITY_N;
7852                 break;
7853         default:
7854                 return ERR_PTR(-EINVAL);
7855         }
7856         mddev->new_level = 6;
7857         mddev->new_layout = new_layout;
7858         mddev->delta_disks = 1;
7859         mddev->raid_disks += 1;
7860         return setup_conf(mddev);
7861 }
7862
7863 static struct md_personality raid6_personality =
7864 {
7865         .name           = "raid6",
7866         .level          = 6,
7867         .owner          = THIS_MODULE,
7868         .make_request   = raid5_make_request,
7869         .run            = raid5_run,
7870         .free           = raid5_free,
7871         .status         = raid5_status,
7872         .error_handler  = raid5_error,
7873         .hot_add_disk   = raid5_add_disk,
7874         .hot_remove_disk= raid5_remove_disk,
7875         .spare_active   = raid5_spare_active,
7876         .sync_request   = raid5_sync_request,
7877         .resize         = raid5_resize,
7878         .size           = raid5_size,
7879         .check_reshape  = raid6_check_reshape,
7880         .start_reshape  = raid5_start_reshape,
7881         .finish_reshape = raid5_finish_reshape,
7882         .quiesce        = raid5_quiesce,
7883         .takeover       = raid6_takeover,
7884         .congested      = raid5_congested,
7885 };
7886 static struct md_personality raid5_personality =
7887 {
7888         .name           = "raid5",
7889         .level          = 5,
7890         .owner          = THIS_MODULE,
7891         .make_request   = raid5_make_request,
7892         .run            = raid5_run,
7893         .free           = raid5_free,
7894         .status         = raid5_status,
7895         .error_handler  = raid5_error,
7896         .hot_add_disk   = raid5_add_disk,
7897         .hot_remove_disk= raid5_remove_disk,
7898         .spare_active   = raid5_spare_active,
7899         .sync_request   = raid5_sync_request,
7900         .resize         = raid5_resize,
7901         .size           = raid5_size,
7902         .check_reshape  = raid5_check_reshape,
7903         .start_reshape  = raid5_start_reshape,
7904         .finish_reshape = raid5_finish_reshape,
7905         .quiesce        = raid5_quiesce,
7906         .takeover       = raid5_takeover,
7907         .congested      = raid5_congested,
7908 };
7909
7910 static struct md_personality raid4_personality =
7911 {
7912         .name           = "raid4",
7913         .level          = 4,
7914         .owner          = THIS_MODULE,
7915         .make_request   = raid5_make_request,
7916         .run            = raid5_run,
7917         .free           = raid5_free,
7918         .status         = raid5_status,
7919         .error_handler  = raid5_error,
7920         .hot_add_disk   = raid5_add_disk,
7921         .hot_remove_disk= raid5_remove_disk,
7922         .spare_active   = raid5_spare_active,
7923         .sync_request   = raid5_sync_request,
7924         .resize         = raid5_resize,
7925         .size           = raid5_size,
7926         .check_reshape  = raid5_check_reshape,
7927         .start_reshape  = raid5_start_reshape,
7928         .finish_reshape = raid5_finish_reshape,
7929         .quiesce        = raid5_quiesce,
7930         .takeover       = raid4_takeover,
7931         .congested      = raid5_congested,
7932 };
7933
7934 static int __init raid5_init(void)
7935 {
7936         raid5_wq = alloc_workqueue("raid5wq",
7937                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7938         if (!raid5_wq)
7939                 return -ENOMEM;
7940         register_md_personality(&raid6_personality);
7941         register_md_personality(&raid5_personality);
7942         register_md_personality(&raid4_personality);
7943         return 0;
7944 }
7945
7946 static void raid5_exit(void)
7947 {
7948         unregister_md_personality(&raid6_personality);
7949         unregister_md_personality(&raid5_personality);
7950         unregister_md_personality(&raid4_personality);
7951         destroy_workqueue(raid5_wq);
7952 }
7953
7954 module_init(raid5_init);
7955 module_exit(raid5_exit);
7956 MODULE_LICENSE("GPL");
7957 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7958 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7959 MODULE_ALIAS("md-raid5");
7960 MODULE_ALIAS("md-raid4");
7961 MODULE_ALIAS("md-level-5");
7962 MODULE_ALIAS("md-level-4");
7963 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7964 MODULE_ALIAS("md-raid6");
7965 MODULE_ALIAS("md-level-6");
7966
7967 /* This used to be two separate modules, they were: */
7968 MODULE_ALIAS("raid5");
7969 MODULE_ALIAS("raid6");