Merge remote-tracking branches 'spi/topic/imx', 'spi/topic/loopback', 'spi/topic...
[sfrench/cifs-2.6.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <linux/sched/signal.h>
59
60 #include <trace/events/block.h>
61 #include <linux/list_sort.h>
62
63 #include "md.h"
64 #include "raid5.h"
65 #include "raid0.h"
66 #include "bitmap.h"
67 #include "raid5-log.h"
68
69 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
70
71 #define cpu_to_group(cpu) cpu_to_node(cpu)
72 #define ANY_GROUP NUMA_NO_NODE
73
74 static bool devices_handle_discard_safely = false;
75 module_param(devices_handle_discard_safely, bool, 0644);
76 MODULE_PARM_DESC(devices_handle_discard_safely,
77                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
78 static struct workqueue_struct *raid5_wq;
79
80 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
81 {
82         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
83         return &conf->stripe_hashtbl[hash];
84 }
85
86 static inline int stripe_hash_locks_hash(sector_t sect)
87 {
88         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
89 }
90
91 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
92 {
93         spin_lock_irq(conf->hash_locks + hash);
94         spin_lock(&conf->device_lock);
95 }
96
97 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
98 {
99         spin_unlock(&conf->device_lock);
100         spin_unlock_irq(conf->hash_locks + hash);
101 }
102
103 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
104 {
105         int i;
106         spin_lock_irq(conf->hash_locks);
107         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
108                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
109         spin_lock(&conf->device_lock);
110 }
111
112 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
113 {
114         int i;
115         spin_unlock(&conf->device_lock);
116         for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
117                 spin_unlock(conf->hash_locks + i);
118         spin_unlock_irq(conf->hash_locks);
119 }
120
121 /* Find first data disk in a raid6 stripe */
122 static inline int raid6_d0(struct stripe_head *sh)
123 {
124         if (sh->ddf_layout)
125                 /* ddf always start from first device */
126                 return 0;
127         /* md starts just after Q block */
128         if (sh->qd_idx == sh->disks - 1)
129                 return 0;
130         else
131                 return sh->qd_idx + 1;
132 }
133 static inline int raid6_next_disk(int disk, int raid_disks)
134 {
135         disk++;
136         return (disk < raid_disks) ? disk : 0;
137 }
138
139 /* When walking through the disks in a raid5, starting at raid6_d0,
140  * We need to map each disk to a 'slot', where the data disks are slot
141  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
142  * is raid_disks-1.  This help does that mapping.
143  */
144 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
145                              int *count, int syndrome_disks)
146 {
147         int slot = *count;
148
149         if (sh->ddf_layout)
150                 (*count)++;
151         if (idx == sh->pd_idx)
152                 return syndrome_disks;
153         if (idx == sh->qd_idx)
154                 return syndrome_disks + 1;
155         if (!sh->ddf_layout)
156                 (*count)++;
157         return slot;
158 }
159
160 static void print_raid5_conf (struct r5conf *conf);
161
162 static int stripe_operations_active(struct stripe_head *sh)
163 {
164         return sh->check_state || sh->reconstruct_state ||
165                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
166                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
167 }
168
169 static bool stripe_is_lowprio(struct stripe_head *sh)
170 {
171         return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
172                 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
173                !test_bit(STRIPE_R5C_CACHING, &sh->state);
174 }
175
176 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
177 {
178         struct r5conf *conf = sh->raid_conf;
179         struct r5worker_group *group;
180         int thread_cnt;
181         int i, cpu = sh->cpu;
182
183         if (!cpu_online(cpu)) {
184                 cpu = cpumask_any(cpu_online_mask);
185                 sh->cpu = cpu;
186         }
187
188         if (list_empty(&sh->lru)) {
189                 struct r5worker_group *group;
190                 group = conf->worker_groups + cpu_to_group(cpu);
191                 if (stripe_is_lowprio(sh))
192                         list_add_tail(&sh->lru, &group->loprio_list);
193                 else
194                         list_add_tail(&sh->lru, &group->handle_list);
195                 group->stripes_cnt++;
196                 sh->group = group;
197         }
198
199         if (conf->worker_cnt_per_group == 0) {
200                 md_wakeup_thread(conf->mddev->thread);
201                 return;
202         }
203
204         group = conf->worker_groups + cpu_to_group(sh->cpu);
205
206         group->workers[0].working = true;
207         /* at least one worker should run to avoid race */
208         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
209
210         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
211         /* wakeup more workers */
212         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
213                 if (group->workers[i].working == false) {
214                         group->workers[i].working = true;
215                         queue_work_on(sh->cpu, raid5_wq,
216                                       &group->workers[i].work);
217                         thread_cnt--;
218                 }
219         }
220 }
221
222 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
223                               struct list_head *temp_inactive_list)
224 {
225         int i;
226         int injournal = 0;      /* number of date pages with R5_InJournal */
227
228         BUG_ON(!list_empty(&sh->lru));
229         BUG_ON(atomic_read(&conf->active_stripes)==0);
230
231         if (r5c_is_writeback(conf->log))
232                 for (i = sh->disks; i--; )
233                         if (test_bit(R5_InJournal, &sh->dev[i].flags))
234                                 injournal++;
235         /*
236          * In the following cases, the stripe cannot be released to cached
237          * lists. Therefore, we make the stripe write out and set
238          * STRIPE_HANDLE:
239          *   1. when quiesce in r5c write back;
240          *   2. when resync is requested fot the stripe.
241          */
242         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
243             (conf->quiesce && r5c_is_writeback(conf->log) &&
244              !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
245                 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
246                         r5c_make_stripe_write_out(sh);
247                 set_bit(STRIPE_HANDLE, &sh->state);
248         }
249
250         if (test_bit(STRIPE_HANDLE, &sh->state)) {
251                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
252                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
253                         list_add_tail(&sh->lru, &conf->delayed_list);
254                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
255                            sh->bm_seq - conf->seq_write > 0)
256                         list_add_tail(&sh->lru, &conf->bitmap_list);
257                 else {
258                         clear_bit(STRIPE_DELAYED, &sh->state);
259                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
260                         if (conf->worker_cnt_per_group == 0) {
261                                 if (stripe_is_lowprio(sh))
262                                         list_add_tail(&sh->lru,
263                                                         &conf->loprio_list);
264                                 else
265                                         list_add_tail(&sh->lru,
266                                                         &conf->handle_list);
267                         } else {
268                                 raid5_wakeup_stripe_thread(sh);
269                                 return;
270                         }
271                 }
272                 md_wakeup_thread(conf->mddev->thread);
273         } else {
274                 BUG_ON(stripe_operations_active(sh));
275                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
276                         if (atomic_dec_return(&conf->preread_active_stripes)
277                             < IO_THRESHOLD)
278                                 md_wakeup_thread(conf->mddev->thread);
279                 atomic_dec(&conf->active_stripes);
280                 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
281                         if (!r5c_is_writeback(conf->log))
282                                 list_add_tail(&sh->lru, temp_inactive_list);
283                         else {
284                                 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
285                                 if (injournal == 0)
286                                         list_add_tail(&sh->lru, temp_inactive_list);
287                                 else if (injournal == conf->raid_disks - conf->max_degraded) {
288                                         /* full stripe */
289                                         if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
290                                                 atomic_inc(&conf->r5c_cached_full_stripes);
291                                         if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
292                                                 atomic_dec(&conf->r5c_cached_partial_stripes);
293                                         list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
294                                         r5c_check_cached_full_stripe(conf);
295                                 } else
296                                         /*
297                                          * STRIPE_R5C_PARTIAL_STRIPE is set in
298                                          * r5c_try_caching_write(). No need to
299                                          * set it again.
300                                          */
301                                         list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
302                         }
303                 }
304         }
305 }
306
307 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
308                              struct list_head *temp_inactive_list)
309 {
310         if (atomic_dec_and_test(&sh->count))
311                 do_release_stripe(conf, sh, temp_inactive_list);
312 }
313
314 /*
315  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
316  *
317  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
318  * given time. Adding stripes only takes device lock, while deleting stripes
319  * only takes hash lock.
320  */
321 static void release_inactive_stripe_list(struct r5conf *conf,
322                                          struct list_head *temp_inactive_list,
323                                          int hash)
324 {
325         int size;
326         bool do_wakeup = false;
327         unsigned long flags;
328
329         if (hash == NR_STRIPE_HASH_LOCKS) {
330                 size = NR_STRIPE_HASH_LOCKS;
331                 hash = NR_STRIPE_HASH_LOCKS - 1;
332         } else
333                 size = 1;
334         while (size) {
335                 struct list_head *list = &temp_inactive_list[size - 1];
336
337                 /*
338                  * We don't hold any lock here yet, raid5_get_active_stripe() might
339                  * remove stripes from the list
340                  */
341                 if (!list_empty_careful(list)) {
342                         spin_lock_irqsave(conf->hash_locks + hash, flags);
343                         if (list_empty(conf->inactive_list + hash) &&
344                             !list_empty(list))
345                                 atomic_dec(&conf->empty_inactive_list_nr);
346                         list_splice_tail_init(list, conf->inactive_list + hash);
347                         do_wakeup = true;
348                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
349                 }
350                 size--;
351                 hash--;
352         }
353
354         if (do_wakeup) {
355                 wake_up(&conf->wait_for_stripe);
356                 if (atomic_read(&conf->active_stripes) == 0)
357                         wake_up(&conf->wait_for_quiescent);
358                 if (conf->retry_read_aligned)
359                         md_wakeup_thread(conf->mddev->thread);
360         }
361 }
362
363 /* should hold conf->device_lock already */
364 static int release_stripe_list(struct r5conf *conf,
365                                struct list_head *temp_inactive_list)
366 {
367         struct stripe_head *sh, *t;
368         int count = 0;
369         struct llist_node *head;
370
371         head = llist_del_all(&conf->released_stripes);
372         head = llist_reverse_order(head);
373         llist_for_each_entry_safe(sh, t, head, release_list) {
374                 int hash;
375
376                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
377                 smp_mb();
378                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
379                 /*
380                  * Don't worry the bit is set here, because if the bit is set
381                  * again, the count is always > 1. This is true for
382                  * STRIPE_ON_UNPLUG_LIST bit too.
383                  */
384                 hash = sh->hash_lock_index;
385                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
386                 count++;
387         }
388
389         return count;
390 }
391
392 void raid5_release_stripe(struct stripe_head *sh)
393 {
394         struct r5conf *conf = sh->raid_conf;
395         unsigned long flags;
396         struct list_head list;
397         int hash;
398         bool wakeup;
399
400         /* Avoid release_list until the last reference.
401          */
402         if (atomic_add_unless(&sh->count, -1, 1))
403                 return;
404
405         if (unlikely(!conf->mddev->thread) ||
406                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
407                 goto slow_path;
408         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
409         if (wakeup)
410                 md_wakeup_thread(conf->mddev->thread);
411         return;
412 slow_path:
413         local_irq_save(flags);
414         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
415         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
416                 INIT_LIST_HEAD(&list);
417                 hash = sh->hash_lock_index;
418                 do_release_stripe(conf, sh, &list);
419                 spin_unlock(&conf->device_lock);
420                 release_inactive_stripe_list(conf, &list, hash);
421         }
422         local_irq_restore(flags);
423 }
424
425 static inline void remove_hash(struct stripe_head *sh)
426 {
427         pr_debug("remove_hash(), stripe %llu\n",
428                 (unsigned long long)sh->sector);
429
430         hlist_del_init(&sh->hash);
431 }
432
433 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
434 {
435         struct hlist_head *hp = stripe_hash(conf, sh->sector);
436
437         pr_debug("insert_hash(), stripe %llu\n",
438                 (unsigned long long)sh->sector);
439
440         hlist_add_head(&sh->hash, hp);
441 }
442
443 /* find an idle stripe, make sure it is unhashed, and return it. */
444 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
445 {
446         struct stripe_head *sh = NULL;
447         struct list_head *first;
448
449         if (list_empty(conf->inactive_list + hash))
450                 goto out;
451         first = (conf->inactive_list + hash)->next;
452         sh = list_entry(first, struct stripe_head, lru);
453         list_del_init(first);
454         remove_hash(sh);
455         atomic_inc(&conf->active_stripes);
456         BUG_ON(hash != sh->hash_lock_index);
457         if (list_empty(conf->inactive_list + hash))
458                 atomic_inc(&conf->empty_inactive_list_nr);
459 out:
460         return sh;
461 }
462
463 static void shrink_buffers(struct stripe_head *sh)
464 {
465         struct page *p;
466         int i;
467         int num = sh->raid_conf->pool_size;
468
469         for (i = 0; i < num ; i++) {
470                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
471                 p = sh->dev[i].page;
472                 if (!p)
473                         continue;
474                 sh->dev[i].page = NULL;
475                 put_page(p);
476         }
477 }
478
479 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
480 {
481         int i;
482         int num = sh->raid_conf->pool_size;
483
484         for (i = 0; i < num; i++) {
485                 struct page *page;
486
487                 if (!(page = alloc_page(gfp))) {
488                         return 1;
489                 }
490                 sh->dev[i].page = page;
491                 sh->dev[i].orig_page = page;
492         }
493
494         return 0;
495 }
496
497 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
498 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
499                             struct stripe_head *sh);
500
501 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
502 {
503         struct r5conf *conf = sh->raid_conf;
504         int i, seq;
505
506         BUG_ON(atomic_read(&sh->count) != 0);
507         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
508         BUG_ON(stripe_operations_active(sh));
509         BUG_ON(sh->batch_head);
510
511         pr_debug("init_stripe called, stripe %llu\n",
512                 (unsigned long long)sector);
513 retry:
514         seq = read_seqcount_begin(&conf->gen_lock);
515         sh->generation = conf->generation - previous;
516         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
517         sh->sector = sector;
518         stripe_set_idx(sector, conf, previous, sh);
519         sh->state = 0;
520
521         for (i = sh->disks; i--; ) {
522                 struct r5dev *dev = &sh->dev[i];
523
524                 if (dev->toread || dev->read || dev->towrite || dev->written ||
525                     test_bit(R5_LOCKED, &dev->flags)) {
526                         pr_err("sector=%llx i=%d %p %p %p %p %d\n",
527                                (unsigned long long)sh->sector, i, dev->toread,
528                                dev->read, dev->towrite, dev->written,
529                                test_bit(R5_LOCKED, &dev->flags));
530                         WARN_ON(1);
531                 }
532                 dev->flags = 0;
533                 raid5_build_block(sh, i, previous);
534         }
535         if (read_seqcount_retry(&conf->gen_lock, seq))
536                 goto retry;
537         sh->overwrite_disks = 0;
538         insert_hash(conf, sh);
539         sh->cpu = smp_processor_id();
540         set_bit(STRIPE_BATCH_READY, &sh->state);
541 }
542
543 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
544                                          short generation)
545 {
546         struct stripe_head *sh;
547
548         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
549         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
550                 if (sh->sector == sector && sh->generation == generation)
551                         return sh;
552         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
553         return NULL;
554 }
555
556 /*
557  * Need to check if array has failed when deciding whether to:
558  *  - start an array
559  *  - remove non-faulty devices
560  *  - add a spare
561  *  - allow a reshape
562  * This determination is simple when no reshape is happening.
563  * However if there is a reshape, we need to carefully check
564  * both the before and after sections.
565  * This is because some failed devices may only affect one
566  * of the two sections, and some non-in_sync devices may
567  * be insync in the section most affected by failed devices.
568  */
569 int raid5_calc_degraded(struct r5conf *conf)
570 {
571         int degraded, degraded2;
572         int i;
573
574         rcu_read_lock();
575         degraded = 0;
576         for (i = 0; i < conf->previous_raid_disks; i++) {
577                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
578                 if (rdev && test_bit(Faulty, &rdev->flags))
579                         rdev = rcu_dereference(conf->disks[i].replacement);
580                 if (!rdev || test_bit(Faulty, &rdev->flags))
581                         degraded++;
582                 else if (test_bit(In_sync, &rdev->flags))
583                         ;
584                 else
585                         /* not in-sync or faulty.
586                          * If the reshape increases the number of devices,
587                          * this is being recovered by the reshape, so
588                          * this 'previous' section is not in_sync.
589                          * If the number of devices is being reduced however,
590                          * the device can only be part of the array if
591                          * we are reverting a reshape, so this section will
592                          * be in-sync.
593                          */
594                         if (conf->raid_disks >= conf->previous_raid_disks)
595                                 degraded++;
596         }
597         rcu_read_unlock();
598         if (conf->raid_disks == conf->previous_raid_disks)
599                 return degraded;
600         rcu_read_lock();
601         degraded2 = 0;
602         for (i = 0; i < conf->raid_disks; i++) {
603                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
604                 if (rdev && test_bit(Faulty, &rdev->flags))
605                         rdev = rcu_dereference(conf->disks[i].replacement);
606                 if (!rdev || test_bit(Faulty, &rdev->flags))
607                         degraded2++;
608                 else if (test_bit(In_sync, &rdev->flags))
609                         ;
610                 else
611                         /* not in-sync or faulty.
612                          * If reshape increases the number of devices, this
613                          * section has already been recovered, else it
614                          * almost certainly hasn't.
615                          */
616                         if (conf->raid_disks <= conf->previous_raid_disks)
617                                 degraded2++;
618         }
619         rcu_read_unlock();
620         if (degraded2 > degraded)
621                 return degraded2;
622         return degraded;
623 }
624
625 static int has_failed(struct r5conf *conf)
626 {
627         int degraded;
628
629         if (conf->mddev->reshape_position == MaxSector)
630                 return conf->mddev->degraded > conf->max_degraded;
631
632         degraded = raid5_calc_degraded(conf);
633         if (degraded > conf->max_degraded)
634                 return 1;
635         return 0;
636 }
637
638 struct stripe_head *
639 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
640                         int previous, int noblock, int noquiesce)
641 {
642         struct stripe_head *sh;
643         int hash = stripe_hash_locks_hash(sector);
644         int inc_empty_inactive_list_flag;
645
646         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
647
648         spin_lock_irq(conf->hash_locks + hash);
649
650         do {
651                 wait_event_lock_irq(conf->wait_for_quiescent,
652                                     conf->quiesce == 0 || noquiesce,
653                                     *(conf->hash_locks + hash));
654                 sh = __find_stripe(conf, sector, conf->generation - previous);
655                 if (!sh) {
656                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
657                                 sh = get_free_stripe(conf, hash);
658                                 if (!sh && !test_bit(R5_DID_ALLOC,
659                                                      &conf->cache_state))
660                                         set_bit(R5_ALLOC_MORE,
661                                                 &conf->cache_state);
662                         }
663                         if (noblock && sh == NULL)
664                                 break;
665
666                         r5c_check_stripe_cache_usage(conf);
667                         if (!sh) {
668                                 set_bit(R5_INACTIVE_BLOCKED,
669                                         &conf->cache_state);
670                                 r5l_wake_reclaim(conf->log, 0);
671                                 wait_event_lock_irq(
672                                         conf->wait_for_stripe,
673                                         !list_empty(conf->inactive_list + hash) &&
674                                         (atomic_read(&conf->active_stripes)
675                                          < (conf->max_nr_stripes * 3 / 4)
676                                          || !test_bit(R5_INACTIVE_BLOCKED,
677                                                       &conf->cache_state)),
678                                         *(conf->hash_locks + hash));
679                                 clear_bit(R5_INACTIVE_BLOCKED,
680                                           &conf->cache_state);
681                         } else {
682                                 init_stripe(sh, sector, previous);
683                                 atomic_inc(&sh->count);
684                         }
685                 } else if (!atomic_inc_not_zero(&sh->count)) {
686                         spin_lock(&conf->device_lock);
687                         if (!atomic_read(&sh->count)) {
688                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
689                                         atomic_inc(&conf->active_stripes);
690                                 BUG_ON(list_empty(&sh->lru) &&
691                                        !test_bit(STRIPE_EXPANDING, &sh->state));
692                                 inc_empty_inactive_list_flag = 0;
693                                 if (!list_empty(conf->inactive_list + hash))
694                                         inc_empty_inactive_list_flag = 1;
695                                 list_del_init(&sh->lru);
696                                 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
697                                         atomic_inc(&conf->empty_inactive_list_nr);
698                                 if (sh->group) {
699                                         sh->group->stripes_cnt--;
700                                         sh->group = NULL;
701                                 }
702                         }
703                         atomic_inc(&sh->count);
704                         spin_unlock(&conf->device_lock);
705                 }
706         } while (sh == NULL);
707
708         spin_unlock_irq(conf->hash_locks + hash);
709         return sh;
710 }
711
712 static bool is_full_stripe_write(struct stripe_head *sh)
713 {
714         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
715         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
716 }
717
718 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
719 {
720         if (sh1 > sh2) {
721                 spin_lock_irq(&sh2->stripe_lock);
722                 spin_lock_nested(&sh1->stripe_lock, 1);
723         } else {
724                 spin_lock_irq(&sh1->stripe_lock);
725                 spin_lock_nested(&sh2->stripe_lock, 1);
726         }
727 }
728
729 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
730 {
731         spin_unlock(&sh1->stripe_lock);
732         spin_unlock_irq(&sh2->stripe_lock);
733 }
734
735 /* Only freshly new full stripe normal write stripe can be added to a batch list */
736 static bool stripe_can_batch(struct stripe_head *sh)
737 {
738         struct r5conf *conf = sh->raid_conf;
739
740         if (conf->log || raid5_has_ppl(conf))
741                 return false;
742         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
743                 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
744                 is_full_stripe_write(sh);
745 }
746
747 /* we only do back search */
748 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
749 {
750         struct stripe_head *head;
751         sector_t head_sector, tmp_sec;
752         int hash;
753         int dd_idx;
754         int inc_empty_inactive_list_flag;
755
756         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
757         tmp_sec = sh->sector;
758         if (!sector_div(tmp_sec, conf->chunk_sectors))
759                 return;
760         head_sector = sh->sector - STRIPE_SECTORS;
761
762         hash = stripe_hash_locks_hash(head_sector);
763         spin_lock_irq(conf->hash_locks + hash);
764         head = __find_stripe(conf, head_sector, conf->generation);
765         if (head && !atomic_inc_not_zero(&head->count)) {
766                 spin_lock(&conf->device_lock);
767                 if (!atomic_read(&head->count)) {
768                         if (!test_bit(STRIPE_HANDLE, &head->state))
769                                 atomic_inc(&conf->active_stripes);
770                         BUG_ON(list_empty(&head->lru) &&
771                                !test_bit(STRIPE_EXPANDING, &head->state));
772                         inc_empty_inactive_list_flag = 0;
773                         if (!list_empty(conf->inactive_list + hash))
774                                 inc_empty_inactive_list_flag = 1;
775                         list_del_init(&head->lru);
776                         if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
777                                 atomic_inc(&conf->empty_inactive_list_nr);
778                         if (head->group) {
779                                 head->group->stripes_cnt--;
780                                 head->group = NULL;
781                         }
782                 }
783                 atomic_inc(&head->count);
784                 spin_unlock(&conf->device_lock);
785         }
786         spin_unlock_irq(conf->hash_locks + hash);
787
788         if (!head)
789                 return;
790         if (!stripe_can_batch(head))
791                 goto out;
792
793         lock_two_stripes(head, sh);
794         /* clear_batch_ready clear the flag */
795         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
796                 goto unlock_out;
797
798         if (sh->batch_head)
799                 goto unlock_out;
800
801         dd_idx = 0;
802         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
803                 dd_idx++;
804         if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
805             bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
806                 goto unlock_out;
807
808         if (head->batch_head) {
809                 spin_lock(&head->batch_head->batch_lock);
810                 /* This batch list is already running */
811                 if (!stripe_can_batch(head)) {
812                         spin_unlock(&head->batch_head->batch_lock);
813                         goto unlock_out;
814                 }
815
816                 /*
817                  * at this point, head's BATCH_READY could be cleared, but we
818                  * can still add the stripe to batch list
819                  */
820                 list_add(&sh->batch_list, &head->batch_list);
821                 spin_unlock(&head->batch_head->batch_lock);
822
823                 sh->batch_head = head->batch_head;
824         } else {
825                 head->batch_head = head;
826                 sh->batch_head = head->batch_head;
827                 spin_lock(&head->batch_lock);
828                 list_add_tail(&sh->batch_list, &head->batch_list);
829                 spin_unlock(&head->batch_lock);
830         }
831
832         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
833                 if (atomic_dec_return(&conf->preread_active_stripes)
834                     < IO_THRESHOLD)
835                         md_wakeup_thread(conf->mddev->thread);
836
837         if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
838                 int seq = sh->bm_seq;
839                 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
840                     sh->batch_head->bm_seq > seq)
841                         seq = sh->batch_head->bm_seq;
842                 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
843                 sh->batch_head->bm_seq = seq;
844         }
845
846         atomic_inc(&sh->count);
847 unlock_out:
848         unlock_two_stripes(head, sh);
849 out:
850         raid5_release_stripe(head);
851 }
852
853 /* Determine if 'data_offset' or 'new_data_offset' should be used
854  * in this stripe_head.
855  */
856 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
857 {
858         sector_t progress = conf->reshape_progress;
859         /* Need a memory barrier to make sure we see the value
860          * of conf->generation, or ->data_offset that was set before
861          * reshape_progress was updated.
862          */
863         smp_rmb();
864         if (progress == MaxSector)
865                 return 0;
866         if (sh->generation == conf->generation - 1)
867                 return 0;
868         /* We are in a reshape, and this is a new-generation stripe,
869          * so use new_data_offset.
870          */
871         return 1;
872 }
873
874 static void dispatch_bio_list(struct bio_list *tmp)
875 {
876         struct bio *bio;
877
878         while ((bio = bio_list_pop(tmp)))
879                 generic_make_request(bio);
880 }
881
882 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
883 {
884         const struct r5pending_data *da = list_entry(a,
885                                 struct r5pending_data, sibling);
886         const struct r5pending_data *db = list_entry(b,
887                                 struct r5pending_data, sibling);
888         if (da->sector > db->sector)
889                 return 1;
890         if (da->sector < db->sector)
891                 return -1;
892         return 0;
893 }
894
895 static void dispatch_defer_bios(struct r5conf *conf, int target,
896                                 struct bio_list *list)
897 {
898         struct r5pending_data *data;
899         struct list_head *first, *next = NULL;
900         int cnt = 0;
901
902         if (conf->pending_data_cnt == 0)
903                 return;
904
905         list_sort(NULL, &conf->pending_list, cmp_stripe);
906
907         first = conf->pending_list.next;
908
909         /* temporarily move the head */
910         if (conf->next_pending_data)
911                 list_move_tail(&conf->pending_list,
912                                 &conf->next_pending_data->sibling);
913
914         while (!list_empty(&conf->pending_list)) {
915                 data = list_first_entry(&conf->pending_list,
916                         struct r5pending_data, sibling);
917                 if (&data->sibling == first)
918                         first = data->sibling.next;
919                 next = data->sibling.next;
920
921                 bio_list_merge(list, &data->bios);
922                 list_move(&data->sibling, &conf->free_list);
923                 cnt++;
924                 if (cnt >= target)
925                         break;
926         }
927         conf->pending_data_cnt -= cnt;
928         BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
929
930         if (next != &conf->pending_list)
931                 conf->next_pending_data = list_entry(next,
932                                 struct r5pending_data, sibling);
933         else
934                 conf->next_pending_data = NULL;
935         /* list isn't empty */
936         if (first != &conf->pending_list)
937                 list_move_tail(&conf->pending_list, first);
938 }
939
940 static void flush_deferred_bios(struct r5conf *conf)
941 {
942         struct bio_list tmp = BIO_EMPTY_LIST;
943
944         if (conf->pending_data_cnt == 0)
945                 return;
946
947         spin_lock(&conf->pending_bios_lock);
948         dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
949         BUG_ON(conf->pending_data_cnt != 0);
950         spin_unlock(&conf->pending_bios_lock);
951
952         dispatch_bio_list(&tmp);
953 }
954
955 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
956                                 struct bio_list *bios)
957 {
958         struct bio_list tmp = BIO_EMPTY_LIST;
959         struct r5pending_data *ent;
960
961         spin_lock(&conf->pending_bios_lock);
962         ent = list_first_entry(&conf->free_list, struct r5pending_data,
963                                                         sibling);
964         list_move_tail(&ent->sibling, &conf->pending_list);
965         ent->sector = sector;
966         bio_list_init(&ent->bios);
967         bio_list_merge(&ent->bios, bios);
968         conf->pending_data_cnt++;
969         if (conf->pending_data_cnt >= PENDING_IO_MAX)
970                 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
971
972         spin_unlock(&conf->pending_bios_lock);
973
974         dispatch_bio_list(&tmp);
975 }
976
977 static void
978 raid5_end_read_request(struct bio *bi);
979 static void
980 raid5_end_write_request(struct bio *bi);
981
982 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
983 {
984         struct r5conf *conf = sh->raid_conf;
985         int i, disks = sh->disks;
986         struct stripe_head *head_sh = sh;
987         struct bio_list pending_bios = BIO_EMPTY_LIST;
988         bool should_defer;
989
990         might_sleep();
991
992         if (log_stripe(sh, s) == 0)
993                 return;
994
995         should_defer = conf->batch_bio_dispatch && conf->group_cnt;
996
997         for (i = disks; i--; ) {
998                 int op, op_flags = 0;
999                 int replace_only = 0;
1000                 struct bio *bi, *rbi;
1001                 struct md_rdev *rdev, *rrdev = NULL;
1002
1003                 sh = head_sh;
1004                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1005                         op = REQ_OP_WRITE;
1006                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1007                                 op_flags = REQ_FUA;
1008                         if (test_bit(R5_Discard, &sh->dev[i].flags))
1009                                 op = REQ_OP_DISCARD;
1010                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1011                         op = REQ_OP_READ;
1012                 else if (test_and_clear_bit(R5_WantReplace,
1013                                             &sh->dev[i].flags)) {
1014                         op = REQ_OP_WRITE;
1015                         replace_only = 1;
1016                 } else
1017                         continue;
1018                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1019                         op_flags |= REQ_SYNC;
1020
1021 again:
1022                 bi = &sh->dev[i].req;
1023                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
1024
1025                 rcu_read_lock();
1026                 rrdev = rcu_dereference(conf->disks[i].replacement);
1027                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1028                 rdev = rcu_dereference(conf->disks[i].rdev);
1029                 if (!rdev) {
1030                         rdev = rrdev;
1031                         rrdev = NULL;
1032                 }
1033                 if (op_is_write(op)) {
1034                         if (replace_only)
1035                                 rdev = NULL;
1036                         if (rdev == rrdev)
1037                                 /* We raced and saw duplicates */
1038                                 rrdev = NULL;
1039                 } else {
1040                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1041                                 rdev = rrdev;
1042                         rrdev = NULL;
1043                 }
1044
1045                 if (rdev && test_bit(Faulty, &rdev->flags))
1046                         rdev = NULL;
1047                 if (rdev)
1048                         atomic_inc(&rdev->nr_pending);
1049                 if (rrdev && test_bit(Faulty, &rrdev->flags))
1050                         rrdev = NULL;
1051                 if (rrdev)
1052                         atomic_inc(&rrdev->nr_pending);
1053                 rcu_read_unlock();
1054
1055                 /* We have already checked bad blocks for reads.  Now
1056                  * need to check for writes.  We never accept write errors
1057                  * on the replacement, so we don't to check rrdev.
1058                  */
1059                 while (op_is_write(op) && rdev &&
1060                        test_bit(WriteErrorSeen, &rdev->flags)) {
1061                         sector_t first_bad;
1062                         int bad_sectors;
1063                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1064                                               &first_bad, &bad_sectors);
1065                         if (!bad)
1066                                 break;
1067
1068                         if (bad < 0) {
1069                                 set_bit(BlockedBadBlocks, &rdev->flags);
1070                                 if (!conf->mddev->external &&
1071                                     conf->mddev->sb_flags) {
1072                                         /* It is very unlikely, but we might
1073                                          * still need to write out the
1074                                          * bad block log - better give it
1075                                          * a chance*/
1076                                         md_check_recovery(conf->mddev);
1077                                 }
1078                                 /*
1079                                  * Because md_wait_for_blocked_rdev
1080                                  * will dec nr_pending, we must
1081                                  * increment it first.
1082                                  */
1083                                 atomic_inc(&rdev->nr_pending);
1084                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
1085                         } else {
1086                                 /* Acknowledged bad block - skip the write */
1087                                 rdev_dec_pending(rdev, conf->mddev);
1088                                 rdev = NULL;
1089                         }
1090                 }
1091
1092                 if (rdev) {
1093                         if (s->syncing || s->expanding || s->expanded
1094                             || s->replacing)
1095                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1096
1097                         set_bit(STRIPE_IO_STARTED, &sh->state);
1098
1099                         bi->bi_bdev = rdev->bdev;
1100                         bio_set_op_attrs(bi, op, op_flags);
1101                         bi->bi_end_io = op_is_write(op)
1102                                 ? raid5_end_write_request
1103                                 : raid5_end_read_request;
1104                         bi->bi_private = sh;
1105
1106                         pr_debug("%s: for %llu schedule op %d on disc %d\n",
1107                                 __func__, (unsigned long long)sh->sector,
1108                                 bi->bi_opf, i);
1109                         atomic_inc(&sh->count);
1110                         if (sh != head_sh)
1111                                 atomic_inc(&head_sh->count);
1112                         if (use_new_offset(conf, sh))
1113                                 bi->bi_iter.bi_sector = (sh->sector
1114                                                  + rdev->new_data_offset);
1115                         else
1116                                 bi->bi_iter.bi_sector = (sh->sector
1117                                                  + rdev->data_offset);
1118                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1119                                 bi->bi_opf |= REQ_NOMERGE;
1120
1121                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1122                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1123
1124                         if (!op_is_write(op) &&
1125                             test_bit(R5_InJournal, &sh->dev[i].flags))
1126                                 /*
1127                                  * issuing read for a page in journal, this
1128                                  * must be preparing for prexor in rmw; read
1129                                  * the data into orig_page
1130                                  */
1131                                 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1132                         else
1133                                 sh->dev[i].vec.bv_page = sh->dev[i].page;
1134                         bi->bi_vcnt = 1;
1135                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1136                         bi->bi_io_vec[0].bv_offset = 0;
1137                         bi->bi_iter.bi_size = STRIPE_SIZE;
1138                         /*
1139                          * If this is discard request, set bi_vcnt 0. We don't
1140                          * want to confuse SCSI because SCSI will replace payload
1141                          */
1142                         if (op == REQ_OP_DISCARD)
1143                                 bi->bi_vcnt = 0;
1144                         if (rrdev)
1145                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1146
1147                         if (conf->mddev->gendisk)
1148                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1149                                                       bi, disk_devt(conf->mddev->gendisk),
1150                                                       sh->dev[i].sector);
1151                         if (should_defer && op_is_write(op))
1152                                 bio_list_add(&pending_bios, bi);
1153                         else
1154                                 generic_make_request(bi);
1155                 }
1156                 if (rrdev) {
1157                         if (s->syncing || s->expanding || s->expanded
1158                             || s->replacing)
1159                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1160
1161                         set_bit(STRIPE_IO_STARTED, &sh->state);
1162
1163                         rbi->bi_bdev = rrdev->bdev;
1164                         bio_set_op_attrs(rbi, op, op_flags);
1165                         BUG_ON(!op_is_write(op));
1166                         rbi->bi_end_io = raid5_end_write_request;
1167                         rbi->bi_private = sh;
1168
1169                         pr_debug("%s: for %llu schedule op %d on "
1170                                  "replacement disc %d\n",
1171                                 __func__, (unsigned long long)sh->sector,
1172                                 rbi->bi_opf, i);
1173                         atomic_inc(&sh->count);
1174                         if (sh != head_sh)
1175                                 atomic_inc(&head_sh->count);
1176                         if (use_new_offset(conf, sh))
1177                                 rbi->bi_iter.bi_sector = (sh->sector
1178                                                   + rrdev->new_data_offset);
1179                         else
1180                                 rbi->bi_iter.bi_sector = (sh->sector
1181                                                   + rrdev->data_offset);
1182                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1183                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1184                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1185                         rbi->bi_vcnt = 1;
1186                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1187                         rbi->bi_io_vec[0].bv_offset = 0;
1188                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1189                         /*
1190                          * If this is discard request, set bi_vcnt 0. We don't
1191                          * want to confuse SCSI because SCSI will replace payload
1192                          */
1193                         if (op == REQ_OP_DISCARD)
1194                                 rbi->bi_vcnt = 0;
1195                         if (conf->mddev->gendisk)
1196                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1197                                                       rbi, disk_devt(conf->mddev->gendisk),
1198                                                       sh->dev[i].sector);
1199                         if (should_defer && op_is_write(op))
1200                                 bio_list_add(&pending_bios, rbi);
1201                         else
1202                                 generic_make_request(rbi);
1203                 }
1204                 if (!rdev && !rrdev) {
1205                         if (op_is_write(op))
1206                                 set_bit(STRIPE_DEGRADED, &sh->state);
1207                         pr_debug("skip op %d on disc %d for sector %llu\n",
1208                                 bi->bi_opf, i, (unsigned long long)sh->sector);
1209                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1210                         set_bit(STRIPE_HANDLE, &sh->state);
1211                 }
1212
1213                 if (!head_sh->batch_head)
1214                         continue;
1215                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1216                                       batch_list);
1217                 if (sh != head_sh)
1218                         goto again;
1219         }
1220
1221         if (should_defer && !bio_list_empty(&pending_bios))
1222                 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1223 }
1224
1225 static struct dma_async_tx_descriptor *
1226 async_copy_data(int frombio, struct bio *bio, struct page **page,
1227         sector_t sector, struct dma_async_tx_descriptor *tx,
1228         struct stripe_head *sh, int no_skipcopy)
1229 {
1230         struct bio_vec bvl;
1231         struct bvec_iter iter;
1232         struct page *bio_page;
1233         int page_offset;
1234         struct async_submit_ctl submit;
1235         enum async_tx_flags flags = 0;
1236
1237         if (bio->bi_iter.bi_sector >= sector)
1238                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1239         else
1240                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1241
1242         if (frombio)
1243                 flags |= ASYNC_TX_FENCE;
1244         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1245
1246         bio_for_each_segment(bvl, bio, iter) {
1247                 int len = bvl.bv_len;
1248                 int clen;
1249                 int b_offset = 0;
1250
1251                 if (page_offset < 0) {
1252                         b_offset = -page_offset;
1253                         page_offset += b_offset;
1254                         len -= b_offset;
1255                 }
1256
1257                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1258                         clen = STRIPE_SIZE - page_offset;
1259                 else
1260                         clen = len;
1261
1262                 if (clen > 0) {
1263                         b_offset += bvl.bv_offset;
1264                         bio_page = bvl.bv_page;
1265                         if (frombio) {
1266                                 if (sh->raid_conf->skip_copy &&
1267                                     b_offset == 0 && page_offset == 0 &&
1268                                     clen == STRIPE_SIZE &&
1269                                     !no_skipcopy)
1270                                         *page = bio_page;
1271                                 else
1272                                         tx = async_memcpy(*page, bio_page, page_offset,
1273                                                   b_offset, clen, &submit);
1274                         } else
1275                                 tx = async_memcpy(bio_page, *page, b_offset,
1276                                                   page_offset, clen, &submit);
1277                 }
1278                 /* chain the operations */
1279                 submit.depend_tx = tx;
1280
1281                 if (clen < len) /* hit end of page */
1282                         break;
1283                 page_offset +=  len;
1284         }
1285
1286         return tx;
1287 }
1288
1289 static void ops_complete_biofill(void *stripe_head_ref)
1290 {
1291         struct stripe_head *sh = stripe_head_ref;
1292         int i;
1293
1294         pr_debug("%s: stripe %llu\n", __func__,
1295                 (unsigned long long)sh->sector);
1296
1297         /* clear completed biofills */
1298         for (i = sh->disks; i--; ) {
1299                 struct r5dev *dev = &sh->dev[i];
1300
1301                 /* acknowledge completion of a biofill operation */
1302                 /* and check if we need to reply to a read request,
1303                  * new R5_Wantfill requests are held off until
1304                  * !STRIPE_BIOFILL_RUN
1305                  */
1306                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1307                         struct bio *rbi, *rbi2;
1308
1309                         BUG_ON(!dev->read);
1310                         rbi = dev->read;
1311                         dev->read = NULL;
1312                         while (rbi && rbi->bi_iter.bi_sector <
1313                                 dev->sector + STRIPE_SECTORS) {
1314                                 rbi2 = r5_next_bio(rbi, dev->sector);
1315                                 bio_endio(rbi);
1316                                 rbi = rbi2;
1317                         }
1318                 }
1319         }
1320         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1321
1322         set_bit(STRIPE_HANDLE, &sh->state);
1323         raid5_release_stripe(sh);
1324 }
1325
1326 static void ops_run_biofill(struct stripe_head *sh)
1327 {
1328         struct dma_async_tx_descriptor *tx = NULL;
1329         struct async_submit_ctl submit;
1330         int i;
1331
1332         BUG_ON(sh->batch_head);
1333         pr_debug("%s: stripe %llu\n", __func__,
1334                 (unsigned long long)sh->sector);
1335
1336         for (i = sh->disks; i--; ) {
1337                 struct r5dev *dev = &sh->dev[i];
1338                 if (test_bit(R5_Wantfill, &dev->flags)) {
1339                         struct bio *rbi;
1340                         spin_lock_irq(&sh->stripe_lock);
1341                         dev->read = rbi = dev->toread;
1342                         dev->toread = NULL;
1343                         spin_unlock_irq(&sh->stripe_lock);
1344                         while (rbi && rbi->bi_iter.bi_sector <
1345                                 dev->sector + STRIPE_SECTORS) {
1346                                 tx = async_copy_data(0, rbi, &dev->page,
1347                                                      dev->sector, tx, sh, 0);
1348                                 rbi = r5_next_bio(rbi, dev->sector);
1349                         }
1350                 }
1351         }
1352
1353         atomic_inc(&sh->count);
1354         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1355         async_trigger_callback(&submit);
1356 }
1357
1358 static void mark_target_uptodate(struct stripe_head *sh, int target)
1359 {
1360         struct r5dev *tgt;
1361
1362         if (target < 0)
1363                 return;
1364
1365         tgt = &sh->dev[target];
1366         set_bit(R5_UPTODATE, &tgt->flags);
1367         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1368         clear_bit(R5_Wantcompute, &tgt->flags);
1369 }
1370
1371 static void ops_complete_compute(void *stripe_head_ref)
1372 {
1373         struct stripe_head *sh = stripe_head_ref;
1374
1375         pr_debug("%s: stripe %llu\n", __func__,
1376                 (unsigned long long)sh->sector);
1377
1378         /* mark the computed target(s) as uptodate */
1379         mark_target_uptodate(sh, sh->ops.target);
1380         mark_target_uptodate(sh, sh->ops.target2);
1381
1382         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1383         if (sh->check_state == check_state_compute_run)
1384                 sh->check_state = check_state_compute_result;
1385         set_bit(STRIPE_HANDLE, &sh->state);
1386         raid5_release_stripe(sh);
1387 }
1388
1389 /* return a pointer to the address conversion region of the scribble buffer */
1390 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1391                                  struct raid5_percpu *percpu, int i)
1392 {
1393         void *addr;
1394
1395         addr = flex_array_get(percpu->scribble, i);
1396         return addr + sizeof(struct page *) * (sh->disks + 2);
1397 }
1398
1399 /* return a pointer to the address conversion region of the scribble buffer */
1400 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1401 {
1402         void *addr;
1403
1404         addr = flex_array_get(percpu->scribble, i);
1405         return addr;
1406 }
1407
1408 static struct dma_async_tx_descriptor *
1409 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1410 {
1411         int disks = sh->disks;
1412         struct page **xor_srcs = to_addr_page(percpu, 0);
1413         int target = sh->ops.target;
1414         struct r5dev *tgt = &sh->dev[target];
1415         struct page *xor_dest = tgt->page;
1416         int count = 0;
1417         struct dma_async_tx_descriptor *tx;
1418         struct async_submit_ctl submit;
1419         int i;
1420
1421         BUG_ON(sh->batch_head);
1422
1423         pr_debug("%s: stripe %llu block: %d\n",
1424                 __func__, (unsigned long long)sh->sector, target);
1425         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1426
1427         for (i = disks; i--; )
1428                 if (i != target)
1429                         xor_srcs[count++] = sh->dev[i].page;
1430
1431         atomic_inc(&sh->count);
1432
1433         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1434                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1435         if (unlikely(count == 1))
1436                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1437         else
1438                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1439
1440         return tx;
1441 }
1442
1443 /* set_syndrome_sources - populate source buffers for gen_syndrome
1444  * @srcs - (struct page *) array of size sh->disks
1445  * @sh - stripe_head to parse
1446  *
1447  * Populates srcs in proper layout order for the stripe and returns the
1448  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1449  * destination buffer is recorded in srcs[count] and the Q destination
1450  * is recorded in srcs[count+1]].
1451  */
1452 static int set_syndrome_sources(struct page **srcs,
1453                                 struct stripe_head *sh,
1454                                 int srctype)
1455 {
1456         int disks = sh->disks;
1457         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1458         int d0_idx = raid6_d0(sh);
1459         int count;
1460         int i;
1461
1462         for (i = 0; i < disks; i++)
1463                 srcs[i] = NULL;
1464
1465         count = 0;
1466         i = d0_idx;
1467         do {
1468                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1469                 struct r5dev *dev = &sh->dev[i];
1470
1471                 if (i == sh->qd_idx || i == sh->pd_idx ||
1472                     (srctype == SYNDROME_SRC_ALL) ||
1473                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1474                      (test_bit(R5_Wantdrain, &dev->flags) ||
1475                       test_bit(R5_InJournal, &dev->flags))) ||
1476                     (srctype == SYNDROME_SRC_WRITTEN &&
1477                      (dev->written ||
1478                       test_bit(R5_InJournal, &dev->flags)))) {
1479                         if (test_bit(R5_InJournal, &dev->flags))
1480                                 srcs[slot] = sh->dev[i].orig_page;
1481                         else
1482                                 srcs[slot] = sh->dev[i].page;
1483                 }
1484                 i = raid6_next_disk(i, disks);
1485         } while (i != d0_idx);
1486
1487         return syndrome_disks;
1488 }
1489
1490 static struct dma_async_tx_descriptor *
1491 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1492 {
1493         int disks = sh->disks;
1494         struct page **blocks = to_addr_page(percpu, 0);
1495         int target;
1496         int qd_idx = sh->qd_idx;
1497         struct dma_async_tx_descriptor *tx;
1498         struct async_submit_ctl submit;
1499         struct r5dev *tgt;
1500         struct page *dest;
1501         int i;
1502         int count;
1503
1504         BUG_ON(sh->batch_head);
1505         if (sh->ops.target < 0)
1506                 target = sh->ops.target2;
1507         else if (sh->ops.target2 < 0)
1508                 target = sh->ops.target;
1509         else
1510                 /* we should only have one valid target */
1511                 BUG();
1512         BUG_ON(target < 0);
1513         pr_debug("%s: stripe %llu block: %d\n",
1514                 __func__, (unsigned long long)sh->sector, target);
1515
1516         tgt = &sh->dev[target];
1517         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1518         dest = tgt->page;
1519
1520         atomic_inc(&sh->count);
1521
1522         if (target == qd_idx) {
1523                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1524                 blocks[count] = NULL; /* regenerating p is not necessary */
1525                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1526                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1527                                   ops_complete_compute, sh,
1528                                   to_addr_conv(sh, percpu, 0));
1529                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1530         } else {
1531                 /* Compute any data- or p-drive using XOR */
1532                 count = 0;
1533                 for (i = disks; i-- ; ) {
1534                         if (i == target || i == qd_idx)
1535                                 continue;
1536                         blocks[count++] = sh->dev[i].page;
1537                 }
1538
1539                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1540                                   NULL, ops_complete_compute, sh,
1541                                   to_addr_conv(sh, percpu, 0));
1542                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1543         }
1544
1545         return tx;
1546 }
1547
1548 static struct dma_async_tx_descriptor *
1549 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1550 {
1551         int i, count, disks = sh->disks;
1552         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1553         int d0_idx = raid6_d0(sh);
1554         int faila = -1, failb = -1;
1555         int target = sh->ops.target;
1556         int target2 = sh->ops.target2;
1557         struct r5dev *tgt = &sh->dev[target];
1558         struct r5dev *tgt2 = &sh->dev[target2];
1559         struct dma_async_tx_descriptor *tx;
1560         struct page **blocks = to_addr_page(percpu, 0);
1561         struct async_submit_ctl submit;
1562
1563         BUG_ON(sh->batch_head);
1564         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1565                  __func__, (unsigned long long)sh->sector, target, target2);
1566         BUG_ON(target < 0 || target2 < 0);
1567         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1568         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1569
1570         /* we need to open-code set_syndrome_sources to handle the
1571          * slot number conversion for 'faila' and 'failb'
1572          */
1573         for (i = 0; i < disks ; i++)
1574                 blocks[i] = NULL;
1575         count = 0;
1576         i = d0_idx;
1577         do {
1578                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1579
1580                 blocks[slot] = sh->dev[i].page;
1581
1582                 if (i == target)
1583                         faila = slot;
1584                 if (i == target2)
1585                         failb = slot;
1586                 i = raid6_next_disk(i, disks);
1587         } while (i != d0_idx);
1588
1589         BUG_ON(faila == failb);
1590         if (failb < faila)
1591                 swap(faila, failb);
1592         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1593                  __func__, (unsigned long long)sh->sector, faila, failb);
1594
1595         atomic_inc(&sh->count);
1596
1597         if (failb == syndrome_disks+1) {
1598                 /* Q disk is one of the missing disks */
1599                 if (faila == syndrome_disks) {
1600                         /* Missing P+Q, just recompute */
1601                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1602                                           ops_complete_compute, sh,
1603                                           to_addr_conv(sh, percpu, 0));
1604                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1605                                                   STRIPE_SIZE, &submit);
1606                 } else {
1607                         struct page *dest;
1608                         int data_target;
1609                         int qd_idx = sh->qd_idx;
1610
1611                         /* Missing D+Q: recompute D from P, then recompute Q */
1612                         if (target == qd_idx)
1613                                 data_target = target2;
1614                         else
1615                                 data_target = target;
1616
1617                         count = 0;
1618                         for (i = disks; i-- ; ) {
1619                                 if (i == data_target || i == qd_idx)
1620                                         continue;
1621                                 blocks[count++] = sh->dev[i].page;
1622                         }
1623                         dest = sh->dev[data_target].page;
1624                         init_async_submit(&submit,
1625                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1626                                           NULL, NULL, NULL,
1627                                           to_addr_conv(sh, percpu, 0));
1628                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1629                                        &submit);
1630
1631                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1632                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1633                                           ops_complete_compute, sh,
1634                                           to_addr_conv(sh, percpu, 0));
1635                         return async_gen_syndrome(blocks, 0, count+2,
1636                                                   STRIPE_SIZE, &submit);
1637                 }
1638         } else {
1639                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1640                                   ops_complete_compute, sh,
1641                                   to_addr_conv(sh, percpu, 0));
1642                 if (failb == syndrome_disks) {
1643                         /* We're missing D+P. */
1644                         return async_raid6_datap_recov(syndrome_disks+2,
1645                                                        STRIPE_SIZE, faila,
1646                                                        blocks, &submit);
1647                 } else {
1648                         /* We're missing D+D. */
1649                         return async_raid6_2data_recov(syndrome_disks+2,
1650                                                        STRIPE_SIZE, faila, failb,
1651                                                        blocks, &submit);
1652                 }
1653         }
1654 }
1655
1656 static void ops_complete_prexor(void *stripe_head_ref)
1657 {
1658         struct stripe_head *sh = stripe_head_ref;
1659
1660         pr_debug("%s: stripe %llu\n", __func__,
1661                 (unsigned long long)sh->sector);
1662
1663         if (r5c_is_writeback(sh->raid_conf->log))
1664                 /*
1665                  * raid5-cache write back uses orig_page during prexor.
1666                  * After prexor, it is time to free orig_page
1667                  */
1668                 r5c_release_extra_page(sh);
1669 }
1670
1671 static struct dma_async_tx_descriptor *
1672 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1673                 struct dma_async_tx_descriptor *tx)
1674 {
1675         int disks = sh->disks;
1676         struct page **xor_srcs = to_addr_page(percpu, 0);
1677         int count = 0, pd_idx = sh->pd_idx, i;
1678         struct async_submit_ctl submit;
1679
1680         /* existing parity data subtracted */
1681         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1682
1683         BUG_ON(sh->batch_head);
1684         pr_debug("%s: stripe %llu\n", __func__,
1685                 (unsigned long long)sh->sector);
1686
1687         for (i = disks; i--; ) {
1688                 struct r5dev *dev = &sh->dev[i];
1689                 /* Only process blocks that are known to be uptodate */
1690                 if (test_bit(R5_InJournal, &dev->flags))
1691                         xor_srcs[count++] = dev->orig_page;
1692                 else if (test_bit(R5_Wantdrain, &dev->flags))
1693                         xor_srcs[count++] = dev->page;
1694         }
1695
1696         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1697                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1698         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1699
1700         return tx;
1701 }
1702
1703 static struct dma_async_tx_descriptor *
1704 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1705                 struct dma_async_tx_descriptor *tx)
1706 {
1707         struct page **blocks = to_addr_page(percpu, 0);
1708         int count;
1709         struct async_submit_ctl submit;
1710
1711         pr_debug("%s: stripe %llu\n", __func__,
1712                 (unsigned long long)sh->sector);
1713
1714         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1715
1716         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1717                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1718         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1719
1720         return tx;
1721 }
1722
1723 static struct dma_async_tx_descriptor *
1724 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1725 {
1726         struct r5conf *conf = sh->raid_conf;
1727         int disks = sh->disks;
1728         int i;
1729         struct stripe_head *head_sh = sh;
1730
1731         pr_debug("%s: stripe %llu\n", __func__,
1732                 (unsigned long long)sh->sector);
1733
1734         for (i = disks; i--; ) {
1735                 struct r5dev *dev;
1736                 struct bio *chosen;
1737
1738                 sh = head_sh;
1739                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1740                         struct bio *wbi;
1741
1742 again:
1743                         dev = &sh->dev[i];
1744                         /*
1745                          * clear R5_InJournal, so when rewriting a page in
1746                          * journal, it is not skipped by r5l_log_stripe()
1747                          */
1748                         clear_bit(R5_InJournal, &dev->flags);
1749                         spin_lock_irq(&sh->stripe_lock);
1750                         chosen = dev->towrite;
1751                         dev->towrite = NULL;
1752                         sh->overwrite_disks = 0;
1753                         BUG_ON(dev->written);
1754                         wbi = dev->written = chosen;
1755                         spin_unlock_irq(&sh->stripe_lock);
1756                         WARN_ON(dev->page != dev->orig_page);
1757
1758                         while (wbi && wbi->bi_iter.bi_sector <
1759                                 dev->sector + STRIPE_SECTORS) {
1760                                 if (wbi->bi_opf & REQ_FUA)
1761                                         set_bit(R5_WantFUA, &dev->flags);
1762                                 if (wbi->bi_opf & REQ_SYNC)
1763                                         set_bit(R5_SyncIO, &dev->flags);
1764                                 if (bio_op(wbi) == REQ_OP_DISCARD)
1765                                         set_bit(R5_Discard, &dev->flags);
1766                                 else {
1767                                         tx = async_copy_data(1, wbi, &dev->page,
1768                                                              dev->sector, tx, sh,
1769                                                              r5c_is_writeback(conf->log));
1770                                         if (dev->page != dev->orig_page &&
1771                                             !r5c_is_writeback(conf->log)) {
1772                                                 set_bit(R5_SkipCopy, &dev->flags);
1773                                                 clear_bit(R5_UPTODATE, &dev->flags);
1774                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1775                                         }
1776                                 }
1777                                 wbi = r5_next_bio(wbi, dev->sector);
1778                         }
1779
1780                         if (head_sh->batch_head) {
1781                                 sh = list_first_entry(&sh->batch_list,
1782                                                       struct stripe_head,
1783                                                       batch_list);
1784                                 if (sh == head_sh)
1785                                         continue;
1786                                 goto again;
1787                         }
1788                 }
1789         }
1790
1791         return tx;
1792 }
1793
1794 static void ops_complete_reconstruct(void *stripe_head_ref)
1795 {
1796         struct stripe_head *sh = stripe_head_ref;
1797         int disks = sh->disks;
1798         int pd_idx = sh->pd_idx;
1799         int qd_idx = sh->qd_idx;
1800         int i;
1801         bool fua = false, sync = false, discard = false;
1802
1803         pr_debug("%s: stripe %llu\n", __func__,
1804                 (unsigned long long)sh->sector);
1805
1806         for (i = disks; i--; ) {
1807                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1808                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1809                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1810         }
1811
1812         for (i = disks; i--; ) {
1813                 struct r5dev *dev = &sh->dev[i];
1814
1815                 if (dev->written || i == pd_idx || i == qd_idx) {
1816                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1817                                 set_bit(R5_UPTODATE, &dev->flags);
1818                         if (fua)
1819                                 set_bit(R5_WantFUA, &dev->flags);
1820                         if (sync)
1821                                 set_bit(R5_SyncIO, &dev->flags);
1822                 }
1823         }
1824
1825         if (sh->reconstruct_state == reconstruct_state_drain_run)
1826                 sh->reconstruct_state = reconstruct_state_drain_result;
1827         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1828                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1829         else {
1830                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1831                 sh->reconstruct_state = reconstruct_state_result;
1832         }
1833
1834         set_bit(STRIPE_HANDLE, &sh->state);
1835         raid5_release_stripe(sh);
1836 }
1837
1838 static void
1839 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1840                      struct dma_async_tx_descriptor *tx)
1841 {
1842         int disks = sh->disks;
1843         struct page **xor_srcs;
1844         struct async_submit_ctl submit;
1845         int count, pd_idx = sh->pd_idx, i;
1846         struct page *xor_dest;
1847         int prexor = 0;
1848         unsigned long flags;
1849         int j = 0;
1850         struct stripe_head *head_sh = sh;
1851         int last_stripe;
1852
1853         pr_debug("%s: stripe %llu\n", __func__,
1854                 (unsigned long long)sh->sector);
1855
1856         for (i = 0; i < sh->disks; i++) {
1857                 if (pd_idx == i)
1858                         continue;
1859                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1860                         break;
1861         }
1862         if (i >= sh->disks) {
1863                 atomic_inc(&sh->count);
1864                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1865                 ops_complete_reconstruct(sh);
1866                 return;
1867         }
1868 again:
1869         count = 0;
1870         xor_srcs = to_addr_page(percpu, j);
1871         /* check if prexor is active which means only process blocks
1872          * that are part of a read-modify-write (written)
1873          */
1874         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1875                 prexor = 1;
1876                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1877                 for (i = disks; i--; ) {
1878                         struct r5dev *dev = &sh->dev[i];
1879                         if (head_sh->dev[i].written ||
1880                             test_bit(R5_InJournal, &head_sh->dev[i].flags))
1881                                 xor_srcs[count++] = dev->page;
1882                 }
1883         } else {
1884                 xor_dest = sh->dev[pd_idx].page;
1885                 for (i = disks; i--; ) {
1886                         struct r5dev *dev = &sh->dev[i];
1887                         if (i != pd_idx)
1888                                 xor_srcs[count++] = dev->page;
1889                 }
1890         }
1891
1892         /* 1/ if we prexor'd then the dest is reused as a source
1893          * 2/ if we did not prexor then we are redoing the parity
1894          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1895          * for the synchronous xor case
1896          */
1897         last_stripe = !head_sh->batch_head ||
1898                 list_first_entry(&sh->batch_list,
1899                                  struct stripe_head, batch_list) == head_sh;
1900         if (last_stripe) {
1901                 flags = ASYNC_TX_ACK |
1902                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1903
1904                 atomic_inc(&head_sh->count);
1905                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1906                                   to_addr_conv(sh, percpu, j));
1907         } else {
1908                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1909                 init_async_submit(&submit, flags, tx, NULL, NULL,
1910                                   to_addr_conv(sh, percpu, j));
1911         }
1912
1913         if (unlikely(count == 1))
1914                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1915         else
1916                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1917         if (!last_stripe) {
1918                 j++;
1919                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1920                                       batch_list);
1921                 goto again;
1922         }
1923 }
1924
1925 static void
1926 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1927                      struct dma_async_tx_descriptor *tx)
1928 {
1929         struct async_submit_ctl submit;
1930         struct page **blocks;
1931         int count, i, j = 0;
1932         struct stripe_head *head_sh = sh;
1933         int last_stripe;
1934         int synflags;
1935         unsigned long txflags;
1936
1937         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1938
1939         for (i = 0; i < sh->disks; i++) {
1940                 if (sh->pd_idx == i || sh->qd_idx == i)
1941                         continue;
1942                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1943                         break;
1944         }
1945         if (i >= sh->disks) {
1946                 atomic_inc(&sh->count);
1947                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1948                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1949                 ops_complete_reconstruct(sh);
1950                 return;
1951         }
1952
1953 again:
1954         blocks = to_addr_page(percpu, j);
1955
1956         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1957                 synflags = SYNDROME_SRC_WRITTEN;
1958                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1959         } else {
1960                 synflags = SYNDROME_SRC_ALL;
1961                 txflags = ASYNC_TX_ACK;
1962         }
1963
1964         count = set_syndrome_sources(blocks, sh, synflags);
1965         last_stripe = !head_sh->batch_head ||
1966                 list_first_entry(&sh->batch_list,
1967                                  struct stripe_head, batch_list) == head_sh;
1968
1969         if (last_stripe) {
1970                 atomic_inc(&head_sh->count);
1971                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1972                                   head_sh, to_addr_conv(sh, percpu, j));
1973         } else
1974                 init_async_submit(&submit, 0, tx, NULL, NULL,
1975                                   to_addr_conv(sh, percpu, j));
1976         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1977         if (!last_stripe) {
1978                 j++;
1979                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1980                                       batch_list);
1981                 goto again;
1982         }
1983 }
1984
1985 static void ops_complete_check(void *stripe_head_ref)
1986 {
1987         struct stripe_head *sh = stripe_head_ref;
1988
1989         pr_debug("%s: stripe %llu\n", __func__,
1990                 (unsigned long long)sh->sector);
1991
1992         sh->check_state = check_state_check_result;
1993         set_bit(STRIPE_HANDLE, &sh->state);
1994         raid5_release_stripe(sh);
1995 }
1996
1997 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1998 {
1999         int disks = sh->disks;
2000         int pd_idx = sh->pd_idx;
2001         int qd_idx = sh->qd_idx;
2002         struct page *xor_dest;
2003         struct page **xor_srcs = to_addr_page(percpu, 0);
2004         struct dma_async_tx_descriptor *tx;
2005         struct async_submit_ctl submit;
2006         int count;
2007         int i;
2008
2009         pr_debug("%s: stripe %llu\n", __func__,
2010                 (unsigned long long)sh->sector);
2011
2012         BUG_ON(sh->batch_head);
2013         count = 0;
2014         xor_dest = sh->dev[pd_idx].page;
2015         xor_srcs[count++] = xor_dest;
2016         for (i = disks; i--; ) {
2017                 if (i == pd_idx || i == qd_idx)
2018                         continue;
2019                 xor_srcs[count++] = sh->dev[i].page;
2020         }
2021
2022         init_async_submit(&submit, 0, NULL, NULL, NULL,
2023                           to_addr_conv(sh, percpu, 0));
2024         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2025                            &sh->ops.zero_sum_result, &submit);
2026
2027         atomic_inc(&sh->count);
2028         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2029         tx = async_trigger_callback(&submit);
2030 }
2031
2032 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2033 {
2034         struct page **srcs = to_addr_page(percpu, 0);
2035         struct async_submit_ctl submit;
2036         int count;
2037
2038         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2039                 (unsigned long long)sh->sector, checkp);
2040
2041         BUG_ON(sh->batch_head);
2042         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2043         if (!checkp)
2044                 srcs[count] = NULL;
2045
2046         atomic_inc(&sh->count);
2047         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2048                           sh, to_addr_conv(sh, percpu, 0));
2049         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2050                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2051 }
2052
2053 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2054 {
2055         int overlap_clear = 0, i, disks = sh->disks;
2056         struct dma_async_tx_descriptor *tx = NULL;
2057         struct r5conf *conf = sh->raid_conf;
2058         int level = conf->level;
2059         struct raid5_percpu *percpu;
2060         unsigned long cpu;
2061
2062         cpu = get_cpu();
2063         percpu = per_cpu_ptr(conf->percpu, cpu);
2064         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2065                 ops_run_biofill(sh);
2066                 overlap_clear++;
2067         }
2068
2069         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2070                 if (level < 6)
2071                         tx = ops_run_compute5(sh, percpu);
2072                 else {
2073                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
2074                                 tx = ops_run_compute6_1(sh, percpu);
2075                         else
2076                                 tx = ops_run_compute6_2(sh, percpu);
2077                 }
2078                 /* terminate the chain if reconstruct is not set to be run */
2079                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2080                         async_tx_ack(tx);
2081         }
2082
2083         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2084                 if (level < 6)
2085                         tx = ops_run_prexor5(sh, percpu, tx);
2086                 else
2087                         tx = ops_run_prexor6(sh, percpu, tx);
2088         }
2089
2090         if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2091                 tx = ops_run_partial_parity(sh, percpu, tx);
2092
2093         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2094                 tx = ops_run_biodrain(sh, tx);
2095                 overlap_clear++;
2096         }
2097
2098         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2099                 if (level < 6)
2100                         ops_run_reconstruct5(sh, percpu, tx);
2101                 else
2102                         ops_run_reconstruct6(sh, percpu, tx);
2103         }
2104
2105         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2106                 if (sh->check_state == check_state_run)
2107                         ops_run_check_p(sh, percpu);
2108                 else if (sh->check_state == check_state_run_q)
2109                         ops_run_check_pq(sh, percpu, 0);
2110                 else if (sh->check_state == check_state_run_pq)
2111                         ops_run_check_pq(sh, percpu, 1);
2112                 else
2113                         BUG();
2114         }
2115
2116         if (overlap_clear && !sh->batch_head)
2117                 for (i = disks; i--; ) {
2118                         struct r5dev *dev = &sh->dev[i];
2119                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
2120                                 wake_up(&sh->raid_conf->wait_for_overlap);
2121                 }
2122         put_cpu();
2123 }
2124
2125 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2126 {
2127         if (sh->ppl_page)
2128                 __free_page(sh->ppl_page);
2129         kmem_cache_free(sc, sh);
2130 }
2131
2132 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2133         int disks, struct r5conf *conf)
2134 {
2135         struct stripe_head *sh;
2136         int i;
2137
2138         sh = kmem_cache_zalloc(sc, gfp);
2139         if (sh) {
2140                 spin_lock_init(&sh->stripe_lock);
2141                 spin_lock_init(&sh->batch_lock);
2142                 INIT_LIST_HEAD(&sh->batch_list);
2143                 INIT_LIST_HEAD(&sh->lru);
2144                 INIT_LIST_HEAD(&sh->r5c);
2145                 INIT_LIST_HEAD(&sh->log_list);
2146                 atomic_set(&sh->count, 1);
2147                 sh->raid_conf = conf;
2148                 sh->log_start = MaxSector;
2149                 for (i = 0; i < disks; i++) {
2150                         struct r5dev *dev = &sh->dev[i];
2151
2152                         bio_init(&dev->req, &dev->vec, 1);
2153                         bio_init(&dev->rreq, &dev->rvec, 1);
2154                 }
2155
2156                 if (raid5_has_ppl(conf)) {
2157                         sh->ppl_page = alloc_page(gfp);
2158                         if (!sh->ppl_page) {
2159                                 free_stripe(sc, sh);
2160                                 sh = NULL;
2161                         }
2162                 }
2163         }
2164         return sh;
2165 }
2166 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2167 {
2168         struct stripe_head *sh;
2169
2170         sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2171         if (!sh)
2172                 return 0;
2173
2174         if (grow_buffers(sh, gfp)) {
2175                 shrink_buffers(sh);
2176                 free_stripe(conf->slab_cache, sh);
2177                 return 0;
2178         }
2179         sh->hash_lock_index =
2180                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2181         /* we just created an active stripe so... */
2182         atomic_inc(&conf->active_stripes);
2183
2184         raid5_release_stripe(sh);
2185         conf->max_nr_stripes++;
2186         return 1;
2187 }
2188
2189 static int grow_stripes(struct r5conf *conf, int num)
2190 {
2191         struct kmem_cache *sc;
2192         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2193
2194         if (conf->mddev->gendisk)
2195                 sprintf(conf->cache_name[0],
2196                         "raid%d-%s", conf->level, mdname(conf->mddev));
2197         else
2198                 sprintf(conf->cache_name[0],
2199                         "raid%d-%p", conf->level, conf->mddev);
2200         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2201
2202         conf->active_name = 0;
2203         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2204                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2205                                0, 0, NULL);
2206         if (!sc)
2207                 return 1;
2208         conf->slab_cache = sc;
2209         conf->pool_size = devs;
2210         while (num--)
2211                 if (!grow_one_stripe(conf, GFP_KERNEL))
2212                         return 1;
2213
2214         return 0;
2215 }
2216
2217 /**
2218  * scribble_len - return the required size of the scribble region
2219  * @num - total number of disks in the array
2220  *
2221  * The size must be enough to contain:
2222  * 1/ a struct page pointer for each device in the array +2
2223  * 2/ room to convert each entry in (1) to its corresponding dma
2224  *    (dma_map_page()) or page (page_address()) address.
2225  *
2226  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2227  * calculate over all devices (not just the data blocks), using zeros in place
2228  * of the P and Q blocks.
2229  */
2230 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2231 {
2232         struct flex_array *ret;
2233         size_t len;
2234
2235         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2236         ret = flex_array_alloc(len, cnt, flags);
2237         if (!ret)
2238                 return NULL;
2239         /* always prealloc all elements, so no locking is required */
2240         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2241                 flex_array_free(ret);
2242                 return NULL;
2243         }
2244         return ret;
2245 }
2246
2247 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2248 {
2249         unsigned long cpu;
2250         int err = 0;
2251
2252         /*
2253          * Never shrink. And mddev_suspend() could deadlock if this is called
2254          * from raid5d. In that case, scribble_disks and scribble_sectors
2255          * should equal to new_disks and new_sectors
2256          */
2257         if (conf->scribble_disks >= new_disks &&
2258             conf->scribble_sectors >= new_sectors)
2259                 return 0;
2260         mddev_suspend(conf->mddev);
2261         get_online_cpus();
2262         for_each_present_cpu(cpu) {
2263                 struct raid5_percpu *percpu;
2264                 struct flex_array *scribble;
2265
2266                 percpu = per_cpu_ptr(conf->percpu, cpu);
2267                 scribble = scribble_alloc(new_disks,
2268                                           new_sectors / STRIPE_SECTORS,
2269                                           GFP_NOIO);
2270
2271                 if (scribble) {
2272                         flex_array_free(percpu->scribble);
2273                         percpu->scribble = scribble;
2274                 } else {
2275                         err = -ENOMEM;
2276                         break;
2277                 }
2278         }
2279         put_online_cpus();
2280         mddev_resume(conf->mddev);
2281         if (!err) {
2282                 conf->scribble_disks = new_disks;
2283                 conf->scribble_sectors = new_sectors;
2284         }
2285         return err;
2286 }
2287
2288 static int resize_stripes(struct r5conf *conf, int newsize)
2289 {
2290         /* Make all the stripes able to hold 'newsize' devices.
2291          * New slots in each stripe get 'page' set to a new page.
2292          *
2293          * This happens in stages:
2294          * 1/ create a new kmem_cache and allocate the required number of
2295          *    stripe_heads.
2296          * 2/ gather all the old stripe_heads and transfer the pages across
2297          *    to the new stripe_heads.  This will have the side effect of
2298          *    freezing the array as once all stripe_heads have been collected,
2299          *    no IO will be possible.  Old stripe heads are freed once their
2300          *    pages have been transferred over, and the old kmem_cache is
2301          *    freed when all stripes are done.
2302          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2303          *    we simple return a failure status - no need to clean anything up.
2304          * 4/ allocate new pages for the new slots in the new stripe_heads.
2305          *    If this fails, we don't bother trying the shrink the
2306          *    stripe_heads down again, we just leave them as they are.
2307          *    As each stripe_head is processed the new one is released into
2308          *    active service.
2309          *
2310          * Once step2 is started, we cannot afford to wait for a write,
2311          * so we use GFP_NOIO allocations.
2312          */
2313         struct stripe_head *osh, *nsh;
2314         LIST_HEAD(newstripes);
2315         struct disk_info *ndisks;
2316         int err = 0;
2317         struct kmem_cache *sc;
2318         int i;
2319         int hash, cnt;
2320
2321         md_allow_write(conf->mddev);
2322
2323         /* Step 1 */
2324         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2325                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2326                                0, 0, NULL);
2327         if (!sc)
2328                 return -ENOMEM;
2329
2330         /* Need to ensure auto-resizing doesn't interfere */
2331         mutex_lock(&conf->cache_size_mutex);
2332
2333         for (i = conf->max_nr_stripes; i; i--) {
2334                 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2335                 if (!nsh)
2336                         break;
2337
2338                 list_add(&nsh->lru, &newstripes);
2339         }
2340         if (i) {
2341                 /* didn't get enough, give up */
2342                 while (!list_empty(&newstripes)) {
2343                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2344                         list_del(&nsh->lru);
2345                         free_stripe(sc, nsh);
2346                 }
2347                 kmem_cache_destroy(sc);
2348                 mutex_unlock(&conf->cache_size_mutex);
2349                 return -ENOMEM;
2350         }
2351         /* Step 2 - Must use GFP_NOIO now.
2352          * OK, we have enough stripes, start collecting inactive
2353          * stripes and copying them over
2354          */
2355         hash = 0;
2356         cnt = 0;
2357         list_for_each_entry(nsh, &newstripes, lru) {
2358                 lock_device_hash_lock(conf, hash);
2359                 wait_event_cmd(conf->wait_for_stripe,
2360                                     !list_empty(conf->inactive_list + hash),
2361                                     unlock_device_hash_lock(conf, hash),
2362                                     lock_device_hash_lock(conf, hash));
2363                 osh = get_free_stripe(conf, hash);
2364                 unlock_device_hash_lock(conf, hash);
2365
2366                 for(i=0; i<conf->pool_size; i++) {
2367                         nsh->dev[i].page = osh->dev[i].page;
2368                         nsh->dev[i].orig_page = osh->dev[i].page;
2369                 }
2370                 nsh->hash_lock_index = hash;
2371                 free_stripe(conf->slab_cache, osh);
2372                 cnt++;
2373                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2374                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2375                         hash++;
2376                         cnt = 0;
2377                 }
2378         }
2379         kmem_cache_destroy(conf->slab_cache);
2380
2381         /* Step 3.
2382          * At this point, we are holding all the stripes so the array
2383          * is completely stalled, so now is a good time to resize
2384          * conf->disks and the scribble region
2385          */
2386         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2387         if (ndisks) {
2388                 for (i = 0; i < conf->pool_size; i++)
2389                         ndisks[i] = conf->disks[i];
2390
2391                 for (i = conf->pool_size; i < newsize; i++) {
2392                         ndisks[i].extra_page = alloc_page(GFP_NOIO);
2393                         if (!ndisks[i].extra_page)
2394                                 err = -ENOMEM;
2395                 }
2396
2397                 if (err) {
2398                         for (i = conf->pool_size; i < newsize; i++)
2399                                 if (ndisks[i].extra_page)
2400                                         put_page(ndisks[i].extra_page);
2401                         kfree(ndisks);
2402                 } else {
2403                         kfree(conf->disks);
2404                         conf->disks = ndisks;
2405                 }
2406         } else
2407                 err = -ENOMEM;
2408
2409         mutex_unlock(&conf->cache_size_mutex);
2410
2411         conf->slab_cache = sc;
2412         conf->active_name = 1-conf->active_name;
2413
2414         /* Step 4, return new stripes to service */
2415         while(!list_empty(&newstripes)) {
2416                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2417                 list_del_init(&nsh->lru);
2418
2419                 for (i=conf->raid_disks; i < newsize; i++)
2420                         if (nsh->dev[i].page == NULL) {
2421                                 struct page *p = alloc_page(GFP_NOIO);
2422                                 nsh->dev[i].page = p;
2423                                 nsh->dev[i].orig_page = p;
2424                                 if (!p)
2425                                         err = -ENOMEM;
2426                         }
2427                 raid5_release_stripe(nsh);
2428         }
2429         /* critical section pass, GFP_NOIO no longer needed */
2430
2431         if (!err)
2432                 conf->pool_size = newsize;
2433         return err;
2434 }
2435
2436 static int drop_one_stripe(struct r5conf *conf)
2437 {
2438         struct stripe_head *sh;
2439         int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2440
2441         spin_lock_irq(conf->hash_locks + hash);
2442         sh = get_free_stripe(conf, hash);
2443         spin_unlock_irq(conf->hash_locks + hash);
2444         if (!sh)
2445                 return 0;
2446         BUG_ON(atomic_read(&sh->count));
2447         shrink_buffers(sh);
2448         free_stripe(conf->slab_cache, sh);
2449         atomic_dec(&conf->active_stripes);
2450         conf->max_nr_stripes--;
2451         return 1;
2452 }
2453
2454 static void shrink_stripes(struct r5conf *conf)
2455 {
2456         while (conf->max_nr_stripes &&
2457                drop_one_stripe(conf))
2458                 ;
2459
2460         kmem_cache_destroy(conf->slab_cache);
2461         conf->slab_cache = NULL;
2462 }
2463
2464 static void raid5_end_read_request(struct bio * bi)
2465 {
2466         struct stripe_head *sh = bi->bi_private;
2467         struct r5conf *conf = sh->raid_conf;
2468         int disks = sh->disks, i;
2469         char b[BDEVNAME_SIZE];
2470         struct md_rdev *rdev = NULL;
2471         sector_t s;
2472
2473         for (i=0 ; i<disks; i++)
2474                 if (bi == &sh->dev[i].req)
2475                         break;
2476
2477         pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2478                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2479                 bi->bi_status);
2480         if (i == disks) {
2481                 bio_reset(bi);
2482                 BUG();
2483                 return;
2484         }
2485         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2486                 /* If replacement finished while this request was outstanding,
2487                  * 'replacement' might be NULL already.
2488                  * In that case it moved down to 'rdev'.
2489                  * rdev is not removed until all requests are finished.
2490                  */
2491                 rdev = conf->disks[i].replacement;
2492         if (!rdev)
2493                 rdev = conf->disks[i].rdev;
2494
2495         if (use_new_offset(conf, sh))
2496                 s = sh->sector + rdev->new_data_offset;
2497         else
2498                 s = sh->sector + rdev->data_offset;
2499         if (!bi->bi_status) {
2500                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2501                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2502                         /* Note that this cannot happen on a
2503                          * replacement device.  We just fail those on
2504                          * any error
2505                          */
2506                         pr_info_ratelimited(
2507                                 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2508                                 mdname(conf->mddev), STRIPE_SECTORS,
2509                                 (unsigned long long)s,
2510                                 bdevname(rdev->bdev, b));
2511                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2512                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2513                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2514                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2515                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2516
2517                 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2518                         /*
2519                          * end read for a page in journal, this
2520                          * must be preparing for prexor in rmw
2521                          */
2522                         set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2523
2524                 if (atomic_read(&rdev->read_errors))
2525                         atomic_set(&rdev->read_errors, 0);
2526         } else {
2527                 const char *bdn = bdevname(rdev->bdev, b);
2528                 int retry = 0;
2529                 int set_bad = 0;
2530
2531                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2532                 atomic_inc(&rdev->read_errors);
2533                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2534                         pr_warn_ratelimited(
2535                                 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2536                                 mdname(conf->mddev),
2537                                 (unsigned long long)s,
2538                                 bdn);
2539                 else if (conf->mddev->degraded >= conf->max_degraded) {
2540                         set_bad = 1;
2541                         pr_warn_ratelimited(
2542                                 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2543                                 mdname(conf->mddev),
2544                                 (unsigned long long)s,
2545                                 bdn);
2546                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2547                         /* Oh, no!!! */
2548                         set_bad = 1;
2549                         pr_warn_ratelimited(
2550                                 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2551                                 mdname(conf->mddev),
2552                                 (unsigned long long)s,
2553                                 bdn);
2554                 } else if (atomic_read(&rdev->read_errors)
2555                          > conf->max_nr_stripes)
2556                         pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2557                                mdname(conf->mddev), bdn);
2558                 else
2559                         retry = 1;
2560                 if (set_bad && test_bit(In_sync, &rdev->flags)
2561                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2562                         retry = 1;
2563                 if (retry)
2564                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2565                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2566                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2567                         } else
2568                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2569                 else {
2570                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2571                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2572                         if (!(set_bad
2573                               && test_bit(In_sync, &rdev->flags)
2574                               && rdev_set_badblocks(
2575                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2576                                 md_error(conf->mddev, rdev);
2577                 }
2578         }
2579         rdev_dec_pending(rdev, conf->mddev);
2580         bio_reset(bi);
2581         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2582         set_bit(STRIPE_HANDLE, &sh->state);
2583         raid5_release_stripe(sh);
2584 }
2585
2586 static void raid5_end_write_request(struct bio *bi)
2587 {
2588         struct stripe_head *sh = bi->bi_private;
2589         struct r5conf *conf = sh->raid_conf;
2590         int disks = sh->disks, i;
2591         struct md_rdev *uninitialized_var(rdev);
2592         sector_t first_bad;
2593         int bad_sectors;
2594         int replacement = 0;
2595
2596         for (i = 0 ; i < disks; i++) {
2597                 if (bi == &sh->dev[i].req) {
2598                         rdev = conf->disks[i].rdev;
2599                         break;
2600                 }
2601                 if (bi == &sh->dev[i].rreq) {
2602                         rdev = conf->disks[i].replacement;
2603                         if (rdev)
2604                                 replacement = 1;
2605                         else
2606                                 /* rdev was removed and 'replacement'
2607                                  * replaced it.  rdev is not removed
2608                                  * until all requests are finished.
2609                                  */
2610                                 rdev = conf->disks[i].rdev;
2611                         break;
2612                 }
2613         }
2614         pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2615                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2616                 bi->bi_status);
2617         if (i == disks) {
2618                 bio_reset(bi);
2619                 BUG();
2620                 return;
2621         }
2622
2623         if (replacement) {
2624                 if (bi->bi_status)
2625                         md_error(conf->mddev, rdev);
2626                 else if (is_badblock(rdev, sh->sector,
2627                                      STRIPE_SECTORS,
2628                                      &first_bad, &bad_sectors))
2629                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2630         } else {
2631                 if (bi->bi_status) {
2632                         set_bit(STRIPE_DEGRADED, &sh->state);
2633                         set_bit(WriteErrorSeen, &rdev->flags);
2634                         set_bit(R5_WriteError, &sh->dev[i].flags);
2635                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2636                                 set_bit(MD_RECOVERY_NEEDED,
2637                                         &rdev->mddev->recovery);
2638                 } else if (is_badblock(rdev, sh->sector,
2639                                        STRIPE_SECTORS,
2640                                        &first_bad, &bad_sectors)) {
2641                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2642                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2643                                 /* That was a successful write so make
2644                                  * sure it looks like we already did
2645                                  * a re-write.
2646                                  */
2647                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2648                 }
2649         }
2650         rdev_dec_pending(rdev, conf->mddev);
2651
2652         if (sh->batch_head && bi->bi_status && !replacement)
2653                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2654
2655         bio_reset(bi);
2656         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2657                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2658         set_bit(STRIPE_HANDLE, &sh->state);
2659         raid5_release_stripe(sh);
2660
2661         if (sh->batch_head && sh != sh->batch_head)
2662                 raid5_release_stripe(sh->batch_head);
2663 }
2664
2665 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2666 {
2667         struct r5dev *dev = &sh->dev[i];
2668
2669         dev->flags = 0;
2670         dev->sector = raid5_compute_blocknr(sh, i, previous);
2671 }
2672
2673 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2674 {
2675         char b[BDEVNAME_SIZE];
2676         struct r5conf *conf = mddev->private;
2677         unsigned long flags;
2678         pr_debug("raid456: error called\n");
2679
2680         spin_lock_irqsave(&conf->device_lock, flags);
2681         clear_bit(In_sync, &rdev->flags);
2682         mddev->degraded = raid5_calc_degraded(conf);
2683         spin_unlock_irqrestore(&conf->device_lock, flags);
2684         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2685
2686         set_bit(Blocked, &rdev->flags);
2687         set_bit(Faulty, &rdev->flags);
2688         set_mask_bits(&mddev->sb_flags, 0,
2689                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2690         pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2691                 "md/raid:%s: Operation continuing on %d devices.\n",
2692                 mdname(mddev),
2693                 bdevname(rdev->bdev, b),
2694                 mdname(mddev),
2695                 conf->raid_disks - mddev->degraded);
2696         r5c_update_on_rdev_error(mddev, rdev);
2697 }
2698
2699 /*
2700  * Input: a 'big' sector number,
2701  * Output: index of the data and parity disk, and the sector # in them.
2702  */
2703 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2704                               int previous, int *dd_idx,
2705                               struct stripe_head *sh)
2706 {
2707         sector_t stripe, stripe2;
2708         sector_t chunk_number;
2709         unsigned int chunk_offset;
2710         int pd_idx, qd_idx;
2711         int ddf_layout = 0;
2712         sector_t new_sector;
2713         int algorithm = previous ? conf->prev_algo
2714                                  : conf->algorithm;
2715         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2716                                          : conf->chunk_sectors;
2717         int raid_disks = previous ? conf->previous_raid_disks
2718                                   : conf->raid_disks;
2719         int data_disks = raid_disks - conf->max_degraded;
2720
2721         /* First compute the information on this sector */
2722
2723         /*
2724          * Compute the chunk number and the sector offset inside the chunk
2725          */
2726         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2727         chunk_number = r_sector;
2728
2729         /*
2730          * Compute the stripe number
2731          */
2732         stripe = chunk_number;
2733         *dd_idx = sector_div(stripe, data_disks);
2734         stripe2 = stripe;
2735         /*
2736          * Select the parity disk based on the user selected algorithm.
2737          */
2738         pd_idx = qd_idx = -1;
2739         switch(conf->level) {
2740         case 4:
2741                 pd_idx = data_disks;
2742                 break;
2743         case 5:
2744                 switch (algorithm) {
2745                 case ALGORITHM_LEFT_ASYMMETRIC:
2746                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2747                         if (*dd_idx >= pd_idx)
2748                                 (*dd_idx)++;
2749                         break;
2750                 case ALGORITHM_RIGHT_ASYMMETRIC:
2751                         pd_idx = sector_div(stripe2, raid_disks);
2752                         if (*dd_idx >= pd_idx)
2753                                 (*dd_idx)++;
2754                         break;
2755                 case ALGORITHM_LEFT_SYMMETRIC:
2756                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2757                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2758                         break;
2759                 case ALGORITHM_RIGHT_SYMMETRIC:
2760                         pd_idx = sector_div(stripe2, raid_disks);
2761                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2762                         break;
2763                 case ALGORITHM_PARITY_0:
2764                         pd_idx = 0;
2765                         (*dd_idx)++;
2766                         break;
2767                 case ALGORITHM_PARITY_N:
2768                         pd_idx = data_disks;
2769                         break;
2770                 default:
2771                         BUG();
2772                 }
2773                 break;
2774         case 6:
2775
2776                 switch (algorithm) {
2777                 case ALGORITHM_LEFT_ASYMMETRIC:
2778                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2779                         qd_idx = pd_idx + 1;
2780                         if (pd_idx == raid_disks-1) {
2781                                 (*dd_idx)++;    /* Q D D D P */
2782                                 qd_idx = 0;
2783                         } else if (*dd_idx >= pd_idx)
2784                                 (*dd_idx) += 2; /* D D P Q D */
2785                         break;
2786                 case ALGORITHM_RIGHT_ASYMMETRIC:
2787                         pd_idx = sector_div(stripe2, raid_disks);
2788                         qd_idx = pd_idx + 1;
2789                         if (pd_idx == raid_disks-1) {
2790                                 (*dd_idx)++;    /* Q D D D P */
2791                                 qd_idx = 0;
2792                         } else if (*dd_idx >= pd_idx)
2793                                 (*dd_idx) += 2; /* D D P Q D */
2794                         break;
2795                 case ALGORITHM_LEFT_SYMMETRIC:
2796                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2797                         qd_idx = (pd_idx + 1) % raid_disks;
2798                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2799                         break;
2800                 case ALGORITHM_RIGHT_SYMMETRIC:
2801                         pd_idx = sector_div(stripe2, raid_disks);
2802                         qd_idx = (pd_idx + 1) % raid_disks;
2803                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2804                         break;
2805
2806                 case ALGORITHM_PARITY_0:
2807                         pd_idx = 0;
2808                         qd_idx = 1;
2809                         (*dd_idx) += 2;
2810                         break;
2811                 case ALGORITHM_PARITY_N:
2812                         pd_idx = data_disks;
2813                         qd_idx = data_disks + 1;
2814                         break;
2815
2816                 case ALGORITHM_ROTATING_ZERO_RESTART:
2817                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2818                          * of blocks for computing Q is different.
2819                          */
2820                         pd_idx = sector_div(stripe2, raid_disks);
2821                         qd_idx = pd_idx + 1;
2822                         if (pd_idx == raid_disks-1) {
2823                                 (*dd_idx)++;    /* Q D D D P */
2824                                 qd_idx = 0;
2825                         } else if (*dd_idx >= pd_idx)
2826                                 (*dd_idx) += 2; /* D D P Q D */
2827                         ddf_layout = 1;
2828                         break;
2829
2830                 case ALGORITHM_ROTATING_N_RESTART:
2831                         /* Same a left_asymmetric, by first stripe is
2832                          * D D D P Q  rather than
2833                          * Q D D D P
2834                          */
2835                         stripe2 += 1;
2836                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2837                         qd_idx = pd_idx + 1;
2838                         if (pd_idx == raid_disks-1) {
2839                                 (*dd_idx)++;    /* Q D D D P */
2840                                 qd_idx = 0;
2841                         } else if (*dd_idx >= pd_idx)
2842                                 (*dd_idx) += 2; /* D D P Q D */
2843                         ddf_layout = 1;
2844                         break;
2845
2846                 case ALGORITHM_ROTATING_N_CONTINUE:
2847                         /* Same as left_symmetric but Q is before P */
2848                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2849                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2850                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2851                         ddf_layout = 1;
2852                         break;
2853
2854                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2855                         /* RAID5 left_asymmetric, with Q on last device */
2856                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2857                         if (*dd_idx >= pd_idx)
2858                                 (*dd_idx)++;
2859                         qd_idx = raid_disks - 1;
2860                         break;
2861
2862                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2863                         pd_idx = sector_div(stripe2, raid_disks-1);
2864                         if (*dd_idx >= pd_idx)
2865                                 (*dd_idx)++;
2866                         qd_idx = raid_disks - 1;
2867                         break;
2868
2869                 case ALGORITHM_LEFT_SYMMETRIC_6:
2870                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2871                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2872                         qd_idx = raid_disks - 1;
2873                         break;
2874
2875                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2876                         pd_idx = sector_div(stripe2, raid_disks-1);
2877                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2878                         qd_idx = raid_disks - 1;
2879                         break;
2880
2881                 case ALGORITHM_PARITY_0_6:
2882                         pd_idx = 0;
2883                         (*dd_idx)++;
2884                         qd_idx = raid_disks - 1;
2885                         break;
2886
2887                 default:
2888                         BUG();
2889                 }
2890                 break;
2891         }
2892
2893         if (sh) {
2894                 sh->pd_idx = pd_idx;
2895                 sh->qd_idx = qd_idx;
2896                 sh->ddf_layout = ddf_layout;
2897         }
2898         /*
2899          * Finally, compute the new sector number
2900          */
2901         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2902         return new_sector;
2903 }
2904
2905 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2906 {
2907         struct r5conf *conf = sh->raid_conf;
2908         int raid_disks = sh->disks;
2909         int data_disks = raid_disks - conf->max_degraded;
2910         sector_t new_sector = sh->sector, check;
2911         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2912                                          : conf->chunk_sectors;
2913         int algorithm = previous ? conf->prev_algo
2914                                  : conf->algorithm;
2915         sector_t stripe;
2916         int chunk_offset;
2917         sector_t chunk_number;
2918         int dummy1, dd_idx = i;
2919         sector_t r_sector;
2920         struct stripe_head sh2;
2921
2922         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2923         stripe = new_sector;
2924
2925         if (i == sh->pd_idx)
2926                 return 0;
2927         switch(conf->level) {
2928         case 4: break;
2929         case 5:
2930                 switch (algorithm) {
2931                 case ALGORITHM_LEFT_ASYMMETRIC:
2932                 case ALGORITHM_RIGHT_ASYMMETRIC:
2933                         if (i > sh->pd_idx)
2934                                 i--;
2935                         break;
2936                 case ALGORITHM_LEFT_SYMMETRIC:
2937                 case ALGORITHM_RIGHT_SYMMETRIC:
2938                         if (i < sh->pd_idx)
2939                                 i += raid_disks;
2940                         i -= (sh->pd_idx + 1);
2941                         break;
2942                 case ALGORITHM_PARITY_0:
2943                         i -= 1;
2944                         break;
2945                 case ALGORITHM_PARITY_N:
2946                         break;
2947                 default:
2948                         BUG();
2949                 }
2950                 break;
2951         case 6:
2952                 if (i == sh->qd_idx)
2953                         return 0; /* It is the Q disk */
2954                 switch (algorithm) {
2955                 case ALGORITHM_LEFT_ASYMMETRIC:
2956                 case ALGORITHM_RIGHT_ASYMMETRIC:
2957                 case ALGORITHM_ROTATING_ZERO_RESTART:
2958                 case ALGORITHM_ROTATING_N_RESTART:
2959                         if (sh->pd_idx == raid_disks-1)
2960                                 i--;    /* Q D D D P */
2961                         else if (i > sh->pd_idx)
2962                                 i -= 2; /* D D P Q D */
2963                         break;
2964                 case ALGORITHM_LEFT_SYMMETRIC:
2965                 case ALGORITHM_RIGHT_SYMMETRIC:
2966                         if (sh->pd_idx == raid_disks-1)
2967                                 i--; /* Q D D D P */
2968                         else {
2969                                 /* D D P Q D */
2970                                 if (i < sh->pd_idx)
2971                                         i += raid_disks;
2972                                 i -= (sh->pd_idx + 2);
2973                         }
2974                         break;
2975                 case ALGORITHM_PARITY_0:
2976                         i -= 2;
2977                         break;
2978                 case ALGORITHM_PARITY_N:
2979                         break;
2980                 case ALGORITHM_ROTATING_N_CONTINUE:
2981                         /* Like left_symmetric, but P is before Q */
2982                         if (sh->pd_idx == 0)
2983                                 i--;    /* P D D D Q */
2984                         else {
2985                                 /* D D Q P D */
2986                                 if (i < sh->pd_idx)
2987                                         i += raid_disks;
2988                                 i -= (sh->pd_idx + 1);
2989                         }
2990                         break;
2991                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2992                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2993                         if (i > sh->pd_idx)
2994                                 i--;
2995                         break;
2996                 case ALGORITHM_LEFT_SYMMETRIC_6:
2997                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2998                         if (i < sh->pd_idx)
2999                                 i += data_disks + 1;
3000                         i -= (sh->pd_idx + 1);
3001                         break;
3002                 case ALGORITHM_PARITY_0_6:
3003                         i -= 1;
3004                         break;
3005                 default:
3006                         BUG();
3007                 }
3008                 break;
3009         }
3010
3011         chunk_number = stripe * data_disks + i;
3012         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3013
3014         check = raid5_compute_sector(conf, r_sector,
3015                                      previous, &dummy1, &sh2);
3016         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3017                 || sh2.qd_idx != sh->qd_idx) {
3018                 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3019                         mdname(conf->mddev));
3020                 return 0;
3021         }
3022         return r_sector;
3023 }
3024
3025 /*
3026  * There are cases where we want handle_stripe_dirtying() and
3027  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3028  *
3029  * This function checks whether we want to delay the towrite. Specifically,
3030  * we delay the towrite when:
3031  *
3032  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3033  *      stripe has data in journal (for other devices).
3034  *
3035  *      In this case, when reading data for the non-overwrite dev, it is
3036  *      necessary to handle complex rmw of write back cache (prexor with
3037  *      orig_page, and xor with page). To keep read path simple, we would
3038  *      like to flush data in journal to RAID disks first, so complex rmw
3039  *      is handled in the write patch (handle_stripe_dirtying).
3040  *
3041  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3042  *
3043  *      It is important to be able to flush all stripes in raid5-cache.
3044  *      Therefore, we need reserve some space on the journal device for
3045  *      these flushes. If flush operation includes pending writes to the
3046  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3047  *      for the flush out. If we exclude these pending writes from flush
3048  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3049  *      Therefore, excluding pending writes in these cases enables more
3050  *      efficient use of the journal device.
3051  *
3052  *      Note: To make sure the stripe makes progress, we only delay
3053  *      towrite for stripes with data already in journal (injournal > 0).
3054  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3055  *      no_space_stripes list.
3056  *
3057  *   3. during journal failure
3058  *      In journal failure, we try to flush all cached data to raid disks
3059  *      based on data in stripe cache. The array is read-only to upper
3060  *      layers, so we would skip all pending writes.
3061  *
3062  */
3063 static inline bool delay_towrite(struct r5conf *conf,
3064                                  struct r5dev *dev,
3065                                  struct stripe_head_state *s)
3066 {
3067         /* case 1 above */
3068         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3069             !test_bit(R5_Insync, &dev->flags) && s->injournal)
3070                 return true;
3071         /* case 2 above */
3072         if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3073             s->injournal > 0)
3074                 return true;
3075         /* case 3 above */
3076         if (s->log_failed && s->injournal)
3077                 return true;
3078         return false;
3079 }
3080
3081 static void
3082 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3083                          int rcw, int expand)
3084 {
3085         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3086         struct r5conf *conf = sh->raid_conf;
3087         int level = conf->level;
3088
3089         if (rcw) {
3090                 /*
3091                  * In some cases, handle_stripe_dirtying initially decided to
3092                  * run rmw and allocates extra page for prexor. However, rcw is
3093                  * cheaper later on. We need to free the extra page now,
3094                  * because we won't be able to do that in ops_complete_prexor().
3095                  */
3096                 r5c_release_extra_page(sh);
3097
3098                 for (i = disks; i--; ) {
3099                         struct r5dev *dev = &sh->dev[i];
3100
3101                         if (dev->towrite && !delay_towrite(conf, dev, s)) {
3102                                 set_bit(R5_LOCKED, &dev->flags);
3103                                 set_bit(R5_Wantdrain, &dev->flags);
3104                                 if (!expand)
3105                                         clear_bit(R5_UPTODATE, &dev->flags);
3106                                 s->locked++;
3107                         } else if (test_bit(R5_InJournal, &dev->flags)) {
3108                                 set_bit(R5_LOCKED, &dev->flags);
3109                                 s->locked++;
3110                         }
3111                 }
3112                 /* if we are not expanding this is a proper write request, and
3113                  * there will be bios with new data to be drained into the
3114                  * stripe cache
3115                  */
3116                 if (!expand) {
3117                         if (!s->locked)
3118                                 /* False alarm, nothing to do */
3119                                 return;
3120                         sh->reconstruct_state = reconstruct_state_drain_run;
3121                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3122                 } else
3123                         sh->reconstruct_state = reconstruct_state_run;
3124
3125                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3126
3127                 if (s->locked + conf->max_degraded == disks)
3128                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3129                                 atomic_inc(&conf->pending_full_writes);
3130         } else {
3131                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3132                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3133                 BUG_ON(level == 6 &&
3134                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3135                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3136
3137                 for (i = disks; i--; ) {
3138                         struct r5dev *dev = &sh->dev[i];
3139                         if (i == pd_idx || i == qd_idx)
3140                                 continue;
3141
3142                         if (dev->towrite &&
3143                             (test_bit(R5_UPTODATE, &dev->flags) ||
3144                              test_bit(R5_Wantcompute, &dev->flags))) {
3145                                 set_bit(R5_Wantdrain, &dev->flags);
3146                                 set_bit(R5_LOCKED, &dev->flags);
3147                                 clear_bit(R5_UPTODATE, &dev->flags);
3148                                 s->locked++;
3149                         } else if (test_bit(R5_InJournal, &dev->flags)) {
3150                                 set_bit(R5_LOCKED, &dev->flags);
3151                                 s->locked++;
3152                         }
3153                 }
3154                 if (!s->locked)
3155                         /* False alarm - nothing to do */
3156                         return;
3157                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3158                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3159                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3160                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3161         }
3162
3163         /* keep the parity disk(s) locked while asynchronous operations
3164          * are in flight
3165          */
3166         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3167         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3168         s->locked++;
3169
3170         if (level == 6) {
3171                 int qd_idx = sh->qd_idx;
3172                 struct r5dev *dev = &sh->dev[qd_idx];
3173
3174                 set_bit(R5_LOCKED, &dev->flags);
3175                 clear_bit(R5_UPTODATE, &dev->flags);
3176                 s->locked++;
3177         }
3178
3179         if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3180             test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3181             !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3182             test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3183                 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3184
3185         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3186                 __func__, (unsigned long long)sh->sector,
3187                 s->locked, s->ops_request);
3188 }
3189
3190 /*
3191  * Each stripe/dev can have one or more bion attached.
3192  * toread/towrite point to the first in a chain.
3193  * The bi_next chain must be in order.
3194  */
3195 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3196                           int forwrite, int previous)
3197 {
3198         struct bio **bip;
3199         struct r5conf *conf = sh->raid_conf;
3200         int firstwrite=0;
3201
3202         pr_debug("adding bi b#%llu to stripe s#%llu\n",
3203                 (unsigned long long)bi->bi_iter.bi_sector,
3204                 (unsigned long long)sh->sector);
3205
3206         spin_lock_irq(&sh->stripe_lock);
3207         /* Don't allow new IO added to stripes in batch list */
3208         if (sh->batch_head)
3209                 goto overlap;
3210         if (forwrite) {
3211                 bip = &sh->dev[dd_idx].towrite;
3212                 if (*bip == NULL)
3213                         firstwrite = 1;
3214         } else
3215                 bip = &sh->dev[dd_idx].toread;
3216         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3217                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3218                         goto overlap;
3219                 bip = & (*bip)->bi_next;
3220         }
3221         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3222                 goto overlap;
3223
3224         if (forwrite && raid5_has_ppl(conf)) {
3225                 /*
3226                  * With PPL only writes to consecutive data chunks within a
3227                  * stripe are allowed because for a single stripe_head we can
3228                  * only have one PPL entry at a time, which describes one data
3229                  * range. Not really an overlap, but wait_for_overlap can be
3230                  * used to handle this.
3231                  */
3232                 sector_t sector;
3233                 sector_t first = 0;
3234                 sector_t last = 0;
3235                 int count = 0;
3236                 int i;
3237
3238                 for (i = 0; i < sh->disks; i++) {
3239                         if (i != sh->pd_idx &&
3240                             (i == dd_idx || sh->dev[i].towrite)) {
3241                                 sector = sh->dev[i].sector;
3242                                 if (count == 0 || sector < first)
3243                                         first = sector;
3244                                 if (sector > last)
3245                                         last = sector;
3246                                 count++;
3247                         }
3248                 }
3249
3250                 if (first + conf->chunk_sectors * (count - 1) != last)
3251                         goto overlap;
3252         }
3253
3254         if (!forwrite || previous)
3255                 clear_bit(STRIPE_BATCH_READY, &sh->state);
3256
3257         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3258         if (*bip)
3259                 bi->bi_next = *bip;
3260         *bip = bi;
3261         bio_inc_remaining(bi);
3262         md_write_inc(conf->mddev, bi);
3263
3264         if (forwrite) {
3265                 /* check if page is covered */
3266                 sector_t sector = sh->dev[dd_idx].sector;
3267                 for (bi=sh->dev[dd_idx].towrite;
3268                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3269                              bi && bi->bi_iter.bi_sector <= sector;
3270                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3271                         if (bio_end_sector(bi) >= sector)
3272                                 sector = bio_end_sector(bi);
3273                 }
3274                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3275                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3276                                 sh->overwrite_disks++;
3277         }
3278
3279         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3280                 (unsigned long long)(*bip)->bi_iter.bi_sector,
3281                 (unsigned long long)sh->sector, dd_idx);
3282
3283         if (conf->mddev->bitmap && firstwrite) {
3284                 /* Cannot hold spinlock over bitmap_startwrite,
3285                  * but must ensure this isn't added to a batch until
3286                  * we have added to the bitmap and set bm_seq.
3287                  * So set STRIPE_BITMAP_PENDING to prevent
3288                  * batching.
3289                  * If multiple add_stripe_bio() calls race here they
3290                  * much all set STRIPE_BITMAP_PENDING.  So only the first one
3291                  * to complete "bitmap_startwrite" gets to set
3292                  * STRIPE_BIT_DELAY.  This is important as once a stripe
3293                  * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3294                  * any more.
3295                  */
3296                 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3297                 spin_unlock_irq(&sh->stripe_lock);
3298                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3299                                   STRIPE_SECTORS, 0);
3300                 spin_lock_irq(&sh->stripe_lock);
3301                 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3302                 if (!sh->batch_head) {
3303                         sh->bm_seq = conf->seq_flush+1;
3304                         set_bit(STRIPE_BIT_DELAY, &sh->state);
3305                 }
3306         }
3307         spin_unlock_irq(&sh->stripe_lock);
3308
3309         if (stripe_can_batch(sh))
3310                 stripe_add_to_batch_list(conf, sh);
3311         return 1;
3312
3313  overlap:
3314         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3315         spin_unlock_irq(&sh->stripe_lock);
3316         return 0;
3317 }
3318
3319 static void end_reshape(struct r5conf *conf);
3320
3321 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3322                             struct stripe_head *sh)
3323 {
3324         int sectors_per_chunk =
3325                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3326         int dd_idx;
3327         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3328         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3329
3330         raid5_compute_sector(conf,
3331                              stripe * (disks - conf->max_degraded)
3332                              *sectors_per_chunk + chunk_offset,
3333                              previous,
3334                              &dd_idx, sh);
3335 }
3336
3337 static void
3338 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3339                      struct stripe_head_state *s, int disks)
3340 {
3341         int i;
3342         BUG_ON(sh->batch_head);
3343         for (i = disks; i--; ) {
3344                 struct bio *bi;
3345                 int bitmap_end = 0;
3346
3347                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3348                         struct md_rdev *rdev;
3349                         rcu_read_lock();
3350                         rdev = rcu_dereference(conf->disks[i].rdev);
3351                         if (rdev && test_bit(In_sync, &rdev->flags) &&
3352                             !test_bit(Faulty, &rdev->flags))
3353                                 atomic_inc(&rdev->nr_pending);
3354                         else
3355                                 rdev = NULL;
3356                         rcu_read_unlock();
3357                         if (rdev) {
3358                                 if (!rdev_set_badblocks(
3359                                             rdev,
3360                                             sh->sector,
3361                                             STRIPE_SECTORS, 0))
3362                                         md_error(conf->mddev, rdev);
3363                                 rdev_dec_pending(rdev, conf->mddev);
3364                         }
3365                 }
3366                 spin_lock_irq(&sh->stripe_lock);
3367                 /* fail all writes first */
3368                 bi = sh->dev[i].towrite;
3369                 sh->dev[i].towrite = NULL;
3370                 sh->overwrite_disks = 0;
3371                 spin_unlock_irq(&sh->stripe_lock);
3372                 if (bi)
3373                         bitmap_end = 1;
3374
3375                 log_stripe_write_finished(sh);
3376
3377                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3378                         wake_up(&conf->wait_for_overlap);
3379
3380                 while (bi && bi->bi_iter.bi_sector <
3381                         sh->dev[i].sector + STRIPE_SECTORS) {
3382                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3383
3384                         md_write_end(conf->mddev);
3385                         bio_io_error(bi);
3386                         bi = nextbi;
3387                 }
3388                 if (bitmap_end)
3389                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3390                                 STRIPE_SECTORS, 0, 0);
3391                 bitmap_end = 0;
3392                 /* and fail all 'written' */
3393                 bi = sh->dev[i].written;
3394                 sh->dev[i].written = NULL;
3395                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3396                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3397                         sh->dev[i].page = sh->dev[i].orig_page;
3398                 }
3399
3400                 if (bi) bitmap_end = 1;
3401                 while (bi && bi->bi_iter.bi_sector <
3402                        sh->dev[i].sector + STRIPE_SECTORS) {
3403                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3404
3405                         md_write_end(conf->mddev);
3406                         bio_io_error(bi);
3407                         bi = bi2;
3408                 }
3409
3410                 /* fail any reads if this device is non-operational and
3411                  * the data has not reached the cache yet.
3412                  */
3413                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3414                     s->failed > conf->max_degraded &&
3415                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3416                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3417                         spin_lock_irq(&sh->stripe_lock);
3418                         bi = sh->dev[i].toread;
3419                         sh->dev[i].toread = NULL;
3420                         spin_unlock_irq(&sh->stripe_lock);
3421                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3422                                 wake_up(&conf->wait_for_overlap);
3423                         if (bi)
3424                                 s->to_read--;
3425                         while (bi && bi->bi_iter.bi_sector <
3426                                sh->dev[i].sector + STRIPE_SECTORS) {
3427                                 struct bio *nextbi =
3428                                         r5_next_bio(bi, sh->dev[i].sector);
3429
3430                                 bio_io_error(bi);
3431                                 bi = nextbi;
3432                         }
3433                 }
3434                 if (bitmap_end)
3435                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3436                                         STRIPE_SECTORS, 0, 0);
3437                 /* If we were in the middle of a write the parity block might
3438                  * still be locked - so just clear all R5_LOCKED flags
3439                  */
3440                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3441         }
3442         s->to_write = 0;
3443         s->written = 0;
3444
3445         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3446                 if (atomic_dec_and_test(&conf->pending_full_writes))
3447                         md_wakeup_thread(conf->mddev->thread);
3448 }
3449
3450 static void
3451 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3452                    struct stripe_head_state *s)
3453 {
3454         int abort = 0;
3455         int i;
3456
3457         BUG_ON(sh->batch_head);
3458         clear_bit(STRIPE_SYNCING, &sh->state);
3459         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3460                 wake_up(&conf->wait_for_overlap);
3461         s->syncing = 0;
3462         s->replacing = 0;
3463         /* There is nothing more to do for sync/check/repair.
3464          * Don't even need to abort as that is handled elsewhere
3465          * if needed, and not always wanted e.g. if there is a known
3466          * bad block here.
3467          * For recover/replace we need to record a bad block on all
3468          * non-sync devices, or abort the recovery
3469          */
3470         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3471                 /* During recovery devices cannot be removed, so
3472                  * locking and refcounting of rdevs is not needed
3473                  */
3474                 rcu_read_lock();
3475                 for (i = 0; i < conf->raid_disks; i++) {
3476                         struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3477                         if (rdev
3478                             && !test_bit(Faulty, &rdev->flags)
3479                             && !test_bit(In_sync, &rdev->flags)
3480                             && !rdev_set_badblocks(rdev, sh->sector,
3481                                                    STRIPE_SECTORS, 0))
3482                                 abort = 1;
3483                         rdev = rcu_dereference(conf->disks[i].replacement);
3484                         if (rdev
3485                             && !test_bit(Faulty, &rdev->flags)
3486                             && !test_bit(In_sync, &rdev->flags)
3487                             && !rdev_set_badblocks(rdev, sh->sector,
3488                                                    STRIPE_SECTORS, 0))
3489                                 abort = 1;
3490                 }
3491                 rcu_read_unlock();
3492                 if (abort)
3493                         conf->recovery_disabled =
3494                                 conf->mddev->recovery_disabled;
3495         }
3496         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3497 }
3498
3499 static int want_replace(struct stripe_head *sh, int disk_idx)
3500 {
3501         struct md_rdev *rdev;
3502         int rv = 0;
3503
3504         rcu_read_lock();
3505         rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3506         if (rdev
3507             && !test_bit(Faulty, &rdev->flags)
3508             && !test_bit(In_sync, &rdev->flags)
3509             && (rdev->recovery_offset <= sh->sector
3510                 || rdev->mddev->recovery_cp <= sh->sector))
3511                 rv = 1;
3512         rcu_read_unlock();
3513         return rv;
3514 }
3515
3516 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3517                            int disk_idx, int disks)
3518 {
3519         struct r5dev *dev = &sh->dev[disk_idx];
3520         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3521                                   &sh->dev[s->failed_num[1]] };
3522         int i;
3523
3524
3525         if (test_bit(R5_LOCKED, &dev->flags) ||
3526             test_bit(R5_UPTODATE, &dev->flags))
3527                 /* No point reading this as we already have it or have
3528                  * decided to get it.
3529                  */
3530                 return 0;
3531
3532         if (dev->toread ||
3533             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3534                 /* We need this block to directly satisfy a request */
3535                 return 1;
3536
3537         if (s->syncing || s->expanding ||
3538             (s->replacing && want_replace(sh, disk_idx)))
3539                 /* When syncing, or expanding we read everything.
3540                  * When replacing, we need the replaced block.
3541                  */
3542                 return 1;
3543
3544         if ((s->failed >= 1 && fdev[0]->toread) ||
3545             (s->failed >= 2 && fdev[1]->toread))
3546                 /* If we want to read from a failed device, then
3547                  * we need to actually read every other device.
3548                  */
3549                 return 1;
3550
3551         /* Sometimes neither read-modify-write nor reconstruct-write
3552          * cycles can work.  In those cases we read every block we
3553          * can.  Then the parity-update is certain to have enough to
3554          * work with.
3555          * This can only be a problem when we need to write something,
3556          * and some device has failed.  If either of those tests
3557          * fail we need look no further.
3558          */
3559         if (!s->failed || !s->to_write)
3560                 return 0;
3561
3562         if (test_bit(R5_Insync, &dev->flags) &&
3563             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3564                 /* Pre-reads at not permitted until after short delay
3565                  * to gather multiple requests.  However if this
3566                  * device is no Insync, the block could only be computed
3567                  * and there is no need to delay that.
3568                  */
3569                 return 0;
3570
3571         for (i = 0; i < s->failed && i < 2; i++) {
3572                 if (fdev[i]->towrite &&
3573                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3574                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3575                         /* If we have a partial write to a failed
3576                          * device, then we will need to reconstruct
3577                          * the content of that device, so all other
3578                          * devices must be read.
3579                          */
3580                         return 1;
3581         }
3582
3583         /* If we are forced to do a reconstruct-write, either because
3584          * the current RAID6 implementation only supports that, or
3585          * because parity cannot be trusted and we are currently
3586          * recovering it, there is extra need to be careful.
3587          * If one of the devices that we would need to read, because
3588          * it is not being overwritten (and maybe not written at all)
3589          * is missing/faulty, then we need to read everything we can.
3590          */
3591         if (sh->raid_conf->level != 6 &&
3592             sh->sector < sh->raid_conf->mddev->recovery_cp)
3593                 /* reconstruct-write isn't being forced */
3594                 return 0;
3595         for (i = 0; i < s->failed && i < 2; i++) {
3596                 if (s->failed_num[i] != sh->pd_idx &&
3597                     s->failed_num[i] != sh->qd_idx &&
3598                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3599                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3600                         return 1;
3601         }
3602
3603         return 0;
3604 }
3605
3606 /* fetch_block - checks the given member device to see if its data needs
3607  * to be read or computed to satisfy a request.
3608  *
3609  * Returns 1 when no more member devices need to be checked, otherwise returns
3610  * 0 to tell the loop in handle_stripe_fill to continue
3611  */
3612 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3613                        int disk_idx, int disks)
3614 {
3615         struct r5dev *dev = &sh->dev[disk_idx];
3616
3617         /* is the data in this block needed, and can we get it? */
3618         if (need_this_block(sh, s, disk_idx, disks)) {
3619                 /* we would like to get this block, possibly by computing it,
3620                  * otherwise read it if the backing disk is insync
3621                  */
3622                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3623                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3624                 BUG_ON(sh->batch_head);
3625
3626                 /*
3627                  * In the raid6 case if the only non-uptodate disk is P
3628                  * then we already trusted P to compute the other failed
3629                  * drives. It is safe to compute rather than re-read P.
3630                  * In other cases we only compute blocks from failed
3631                  * devices, otherwise check/repair might fail to detect
3632                  * a real inconsistency.
3633                  */
3634
3635                 if ((s->uptodate == disks - 1) &&
3636                     ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3637                     (s->failed && (disk_idx == s->failed_num[0] ||
3638                                    disk_idx == s->failed_num[1])))) {
3639                         /* have disk failed, and we're requested to fetch it;
3640                          * do compute it
3641                          */
3642                         pr_debug("Computing stripe %llu block %d\n",
3643                                (unsigned long long)sh->sector, disk_idx);
3644                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3645                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3646                         set_bit(R5_Wantcompute, &dev->flags);
3647                         sh->ops.target = disk_idx;
3648                         sh->ops.target2 = -1; /* no 2nd target */
3649                         s->req_compute = 1;
3650                         /* Careful: from this point on 'uptodate' is in the eye
3651                          * of raid_run_ops which services 'compute' operations
3652                          * before writes. R5_Wantcompute flags a block that will
3653                          * be R5_UPTODATE by the time it is needed for a
3654                          * subsequent operation.
3655                          */
3656                         s->uptodate++;
3657                         return 1;
3658                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3659                         /* Computing 2-failure is *very* expensive; only
3660                          * do it if failed >= 2
3661                          */
3662                         int other;
3663                         for (other = disks; other--; ) {
3664                                 if (other == disk_idx)
3665                                         continue;
3666                                 if (!test_bit(R5_UPTODATE,
3667                                       &sh->dev[other].flags))
3668                                         break;
3669                         }
3670                         BUG_ON(other < 0);
3671                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3672                                (unsigned long long)sh->sector,
3673                                disk_idx, other);
3674                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3675                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3676                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3677                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3678                         sh->ops.target = disk_idx;
3679                         sh->ops.target2 = other;
3680                         s->uptodate += 2;
3681                         s->req_compute = 1;
3682                         return 1;
3683                 } else if (test_bit(R5_Insync, &dev->flags)) {
3684                         set_bit(R5_LOCKED, &dev->flags);
3685                         set_bit(R5_Wantread, &dev->flags);
3686                         s->locked++;
3687                         pr_debug("Reading block %d (sync=%d)\n",
3688                                 disk_idx, s->syncing);
3689                 }
3690         }
3691
3692         return 0;
3693 }
3694
3695 /**
3696  * handle_stripe_fill - read or compute data to satisfy pending requests.
3697  */
3698 static void handle_stripe_fill(struct stripe_head *sh,
3699                                struct stripe_head_state *s,
3700                                int disks)
3701 {
3702         int i;
3703
3704         /* look for blocks to read/compute, skip this if a compute
3705          * is already in flight, or if the stripe contents are in the
3706          * midst of changing due to a write
3707          */
3708         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3709             !sh->reconstruct_state) {
3710
3711                 /*
3712                  * For degraded stripe with data in journal, do not handle
3713                  * read requests yet, instead, flush the stripe to raid
3714                  * disks first, this avoids handling complex rmw of write
3715                  * back cache (prexor with orig_page, and then xor with
3716                  * page) in the read path
3717                  */
3718                 if (s->injournal && s->failed) {
3719                         if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3720                                 r5c_make_stripe_write_out(sh);
3721                         goto out;
3722                 }
3723
3724                 for (i = disks; i--; )
3725                         if (fetch_block(sh, s, i, disks))
3726                                 break;
3727         }
3728 out:
3729         set_bit(STRIPE_HANDLE, &sh->state);
3730 }
3731
3732 static void break_stripe_batch_list(struct stripe_head *head_sh,
3733                                     unsigned long handle_flags);
3734 /* handle_stripe_clean_event
3735  * any written block on an uptodate or failed drive can be returned.
3736  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3737  * never LOCKED, so we don't need to test 'failed' directly.
3738  */
3739 static void handle_stripe_clean_event(struct r5conf *conf,
3740         struct stripe_head *sh, int disks)
3741 {
3742         int i;
3743         struct r5dev *dev;
3744         int discard_pending = 0;
3745         struct stripe_head *head_sh = sh;
3746         bool do_endio = false;
3747
3748         for (i = disks; i--; )
3749                 if (sh->dev[i].written) {
3750                         dev = &sh->dev[i];
3751                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3752                             (test_bit(R5_UPTODATE, &dev->flags) ||
3753                              test_bit(R5_Discard, &dev->flags) ||
3754                              test_bit(R5_SkipCopy, &dev->flags))) {
3755                                 /* We can return any write requests */
3756                                 struct bio *wbi, *wbi2;
3757                                 pr_debug("Return write for disc %d\n", i);
3758                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3759                                         clear_bit(R5_UPTODATE, &dev->flags);
3760                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3761                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3762                                 }
3763                                 do_endio = true;
3764
3765 returnbi:
3766                                 dev->page = dev->orig_page;
3767                                 wbi = dev->written;
3768                                 dev->written = NULL;
3769                                 while (wbi && wbi->bi_iter.bi_sector <
3770                                         dev->sector + STRIPE_SECTORS) {
3771                                         wbi2 = r5_next_bio(wbi, dev->sector);
3772                                         md_write_end(conf->mddev);
3773                                         bio_endio(wbi);
3774                                         wbi = wbi2;
3775                                 }
3776                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3777                                                 STRIPE_SECTORS,
3778                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3779                                                 0);
3780                                 if (head_sh->batch_head) {
3781                                         sh = list_first_entry(&sh->batch_list,
3782                                                               struct stripe_head,
3783                                                               batch_list);
3784                                         if (sh != head_sh) {
3785                                                 dev = &sh->dev[i];
3786                                                 goto returnbi;
3787                                         }
3788                                 }
3789                                 sh = head_sh;
3790                                 dev = &sh->dev[i];
3791                         } else if (test_bit(R5_Discard, &dev->flags))
3792                                 discard_pending = 1;
3793                 }
3794
3795         log_stripe_write_finished(sh);
3796
3797         if (!discard_pending &&
3798             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3799                 int hash;
3800                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3801                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3802                 if (sh->qd_idx >= 0) {
3803                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3804                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3805                 }
3806                 /* now that discard is done we can proceed with any sync */
3807                 clear_bit(STRIPE_DISCARD, &sh->state);
3808                 /*
3809                  * SCSI discard will change some bio fields and the stripe has
3810                  * no updated data, so remove it from hash list and the stripe
3811                  * will be reinitialized
3812                  */
3813 unhash:
3814                 hash = sh->hash_lock_index;
3815                 spin_lock_irq(conf->hash_locks + hash);
3816                 remove_hash(sh);
3817                 spin_unlock_irq(conf->hash_locks + hash);
3818                 if (head_sh->batch_head) {
3819                         sh = list_first_entry(&sh->batch_list,
3820                                               struct stripe_head, batch_list);
3821                         if (sh != head_sh)
3822                                         goto unhash;
3823                 }
3824                 sh = head_sh;
3825
3826                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3827                         set_bit(STRIPE_HANDLE, &sh->state);
3828
3829         }
3830
3831         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3832                 if (atomic_dec_and_test(&conf->pending_full_writes))
3833                         md_wakeup_thread(conf->mddev->thread);
3834
3835         if (head_sh->batch_head && do_endio)
3836                 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3837 }
3838
3839 /*
3840  * For RMW in write back cache, we need extra page in prexor to store the
3841  * old data. This page is stored in dev->orig_page.
3842  *
3843  * This function checks whether we have data for prexor. The exact logic
3844  * is:
3845  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3846  */
3847 static inline bool uptodate_for_rmw(struct r5dev *dev)
3848 {
3849         return (test_bit(R5_UPTODATE, &dev->flags)) &&
3850                 (!test_bit(R5_InJournal, &dev->flags) ||
3851                  test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3852 }
3853
3854 static int handle_stripe_dirtying(struct r5conf *conf,
3855                                   struct stripe_head *sh,
3856                                   struct stripe_head_state *s,
3857                                   int disks)
3858 {
3859         int rmw = 0, rcw = 0, i;
3860         sector_t recovery_cp = conf->mddev->recovery_cp;
3861
3862         /* Check whether resync is now happening or should start.
3863          * If yes, then the array is dirty (after unclean shutdown or
3864          * initial creation), so parity in some stripes might be inconsistent.
3865          * In this case, we need to always do reconstruct-write, to ensure
3866          * that in case of drive failure or read-error correction, we
3867          * generate correct data from the parity.
3868          */
3869         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3870             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3871              s->failed == 0)) {
3872                 /* Calculate the real rcw later - for now make it
3873                  * look like rcw is cheaper
3874                  */
3875                 rcw = 1; rmw = 2;
3876                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3877                          conf->rmw_level, (unsigned long long)recovery_cp,
3878                          (unsigned long long)sh->sector);
3879         } else for (i = disks; i--; ) {
3880                 /* would I have to read this buffer for read_modify_write */
3881                 struct r5dev *dev = &sh->dev[i];
3882                 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3883                      i == sh->pd_idx || i == sh->qd_idx ||
3884                      test_bit(R5_InJournal, &dev->flags)) &&
3885                     !test_bit(R5_LOCKED, &dev->flags) &&
3886                     !(uptodate_for_rmw(dev) ||
3887                       test_bit(R5_Wantcompute, &dev->flags))) {
3888                         if (test_bit(R5_Insync, &dev->flags))
3889                                 rmw++;
3890                         else
3891                                 rmw += 2*disks;  /* cannot read it */
3892                 }
3893                 /* Would I have to read this buffer for reconstruct_write */
3894                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3895                     i != sh->pd_idx && i != sh->qd_idx &&
3896                     !test_bit(R5_LOCKED, &dev->flags) &&
3897                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3898                       test_bit(R5_Wantcompute, &dev->flags))) {
3899                         if (test_bit(R5_Insync, &dev->flags))
3900                                 rcw++;
3901                         else
3902                                 rcw += 2*disks;
3903                 }
3904         }
3905
3906         pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3907                  (unsigned long long)sh->sector, sh->state, rmw, rcw);
3908         set_bit(STRIPE_HANDLE, &sh->state);
3909         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3910                 /* prefer read-modify-write, but need to get some data */
3911                 if (conf->mddev->queue)
3912                         blk_add_trace_msg(conf->mddev->queue,
3913                                           "raid5 rmw %llu %d",
3914                                           (unsigned long long)sh->sector, rmw);
3915                 for (i = disks; i--; ) {
3916                         struct r5dev *dev = &sh->dev[i];
3917                         if (test_bit(R5_InJournal, &dev->flags) &&
3918                             dev->page == dev->orig_page &&
3919                             !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3920                                 /* alloc page for prexor */
3921                                 struct page *p = alloc_page(GFP_NOIO);
3922
3923                                 if (p) {
3924                                         dev->orig_page = p;
3925                                         continue;
3926                                 }
3927
3928                                 /*
3929                                  * alloc_page() failed, try use
3930                                  * disk_info->extra_page
3931                                  */
3932                                 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3933                                                       &conf->cache_state)) {
3934                                         r5c_use_extra_page(sh);
3935                                         break;
3936                                 }
3937
3938                                 /* extra_page in use, add to delayed_list */
3939                                 set_bit(STRIPE_DELAYED, &sh->state);
3940                                 s->waiting_extra_page = 1;
3941                                 return -EAGAIN;
3942                         }
3943                 }
3944
3945                 for (i = disks; i--; ) {
3946                         struct r5dev *dev = &sh->dev[i];
3947                         if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3948                              i == sh->pd_idx || i == sh->qd_idx ||
3949                              test_bit(R5_InJournal, &dev->flags)) &&
3950                             !test_bit(R5_LOCKED, &dev->flags) &&
3951                             !(uptodate_for_rmw(dev) ||
3952                               test_bit(R5_Wantcompute, &dev->flags)) &&
3953                             test_bit(R5_Insync, &dev->flags)) {
3954                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3955                                              &sh->state)) {
3956                                         pr_debug("Read_old block %d for r-m-w\n",
3957                                                  i);
3958                                         set_bit(R5_LOCKED, &dev->flags);
3959                                         set_bit(R5_Wantread, &dev->flags);
3960                                         s->locked++;
3961                                 } else {
3962                                         set_bit(STRIPE_DELAYED, &sh->state);
3963                                         set_bit(STRIPE_HANDLE, &sh->state);
3964                                 }
3965                         }
3966                 }
3967         }
3968         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3969                 /* want reconstruct write, but need to get some data */
3970                 int qread =0;
3971                 rcw = 0;
3972                 for (i = disks; i--; ) {
3973                         struct r5dev *dev = &sh->dev[i];
3974                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3975                             i != sh->pd_idx && i != sh->qd_idx &&
3976                             !test_bit(R5_LOCKED, &dev->flags) &&
3977                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3978                               test_bit(R5_Wantcompute, &dev->flags))) {
3979                                 rcw++;
3980                                 if (test_bit(R5_Insync, &dev->flags) &&
3981                                     test_bit(STRIPE_PREREAD_ACTIVE,
3982                                              &sh->state)) {
3983                                         pr_debug("Read_old block "
3984                                                 "%d for Reconstruct\n", i);
3985                                         set_bit(R5_LOCKED, &dev->flags);
3986                                         set_bit(R5_Wantread, &dev->flags);
3987                                         s->locked++;
3988                                         qread++;
3989                                 } else {
3990                                         set_bit(STRIPE_DELAYED, &sh->state);
3991                                         set_bit(STRIPE_HANDLE, &sh->state);
3992                                 }
3993                         }
3994                 }
3995                 if (rcw && conf->mddev->queue)
3996                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3997                                           (unsigned long long)sh->sector,
3998                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3999         }
4000
4001         if (rcw > disks && rmw > disks &&
4002             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4003                 set_bit(STRIPE_DELAYED, &sh->state);
4004
4005         /* now if nothing is locked, and if we have enough data,
4006          * we can start a write request
4007          */
4008         /* since handle_stripe can be called at any time we need to handle the
4009          * case where a compute block operation has been submitted and then a
4010          * subsequent call wants to start a write request.  raid_run_ops only
4011          * handles the case where compute block and reconstruct are requested
4012          * simultaneously.  If this is not the case then new writes need to be
4013          * held off until the compute completes.
4014          */
4015         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4016             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4017              !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4018                 schedule_reconstruction(sh, s, rcw == 0, 0);
4019         return 0;
4020 }
4021
4022 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4023                                 struct stripe_head_state *s, int disks)
4024 {
4025         struct r5dev *dev = NULL;
4026
4027         BUG_ON(sh->batch_head);
4028         set_bit(STRIPE_HANDLE, &sh->state);
4029
4030         switch (sh->check_state) {
4031         case check_state_idle:
4032                 /* start a new check operation if there are no failures */
4033                 if (s->failed == 0) {
4034                         BUG_ON(s->uptodate != disks);
4035                         sh->check_state = check_state_run;
4036                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
4037                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4038                         s->uptodate--;
4039                         break;
4040                 }
4041                 dev = &sh->dev[s->failed_num[0]];
4042                 /* fall through */
4043         case check_state_compute_result:
4044                 sh->check_state = check_state_idle;
4045                 if (!dev)
4046                         dev = &sh->dev[sh->pd_idx];
4047
4048                 /* check that a write has not made the stripe insync */
4049                 if (test_bit(STRIPE_INSYNC, &sh->state))
4050                         break;
4051
4052                 /* either failed parity check, or recovery is happening */
4053                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4054                 BUG_ON(s->uptodate != disks);
4055
4056                 set_bit(R5_LOCKED, &dev->flags);
4057                 s->locked++;
4058                 set_bit(R5_Wantwrite, &dev->flags);
4059
4060                 clear_bit(STRIPE_DEGRADED, &sh->state);
4061                 set_bit(STRIPE_INSYNC, &sh->state);
4062                 break;
4063         case check_state_run:
4064                 break; /* we will be called again upon completion */
4065         case check_state_check_result:
4066                 sh->check_state = check_state_idle;
4067
4068                 /* if a failure occurred during the check operation, leave
4069                  * STRIPE_INSYNC not set and let the stripe be handled again
4070                  */
4071                 if (s->failed)
4072                         break;
4073
4074                 /* handle a successful check operation, if parity is correct
4075                  * we are done.  Otherwise update the mismatch count and repair
4076                  * parity if !MD_RECOVERY_CHECK
4077                  */
4078                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4079                         /* parity is correct (on disc,
4080                          * not in buffer any more)
4081                          */
4082                         set_bit(STRIPE_INSYNC, &sh->state);
4083                 else {
4084                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4085                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4086                                 /* don't try to repair!! */
4087                                 set_bit(STRIPE_INSYNC, &sh->state);
4088                                 pr_warn_ratelimited("%s: mismatch sector in range "
4089                                                     "%llu-%llu\n", mdname(conf->mddev),
4090                                                     (unsigned long long) sh->sector,
4091                                                     (unsigned long long) sh->sector +
4092                                                     STRIPE_SECTORS);
4093                         } else {
4094                                 sh->check_state = check_state_compute_run;
4095                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4096                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4097                                 set_bit(R5_Wantcompute,
4098                                         &sh->dev[sh->pd_idx].flags);
4099                                 sh->ops.target = sh->pd_idx;
4100                                 sh->ops.target2 = -1;
4101                                 s->uptodate++;
4102                         }
4103                 }
4104                 break;
4105         case check_state_compute_run:
4106                 break;
4107         default:
4108                 pr_err("%s: unknown check_state: %d sector: %llu\n",
4109                        __func__, sh->check_state,
4110                        (unsigned long long) sh->sector);
4111                 BUG();
4112         }
4113 }
4114
4115 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4116                                   struct stripe_head_state *s,
4117                                   int disks)
4118 {
4119         int pd_idx = sh->pd_idx;
4120         int qd_idx = sh->qd_idx;
4121         struct r5dev *dev;
4122
4123         BUG_ON(sh->batch_head);
4124         set_bit(STRIPE_HANDLE, &sh->state);
4125
4126         BUG_ON(s->failed > 2);
4127
4128         /* Want to check and possibly repair P and Q.
4129          * However there could be one 'failed' device, in which
4130          * case we can only check one of them, possibly using the
4131          * other to generate missing data
4132          */
4133
4134         switch (sh->check_state) {
4135         case check_state_idle:
4136                 /* start a new check operation if there are < 2 failures */
4137                 if (s->failed == s->q_failed) {
4138                         /* The only possible failed device holds Q, so it
4139                          * makes sense to check P (If anything else were failed,
4140                          * we would have used P to recreate it).
4141                          */
4142                         sh->check_state = check_state_run;
4143                 }
4144                 if (!s->q_failed && s->failed < 2) {
4145                         /* Q is not failed, and we didn't use it to generate
4146                          * anything, so it makes sense to check it
4147                          */
4148                         if (sh->check_state == check_state_run)
4149                                 sh->check_state = check_state_run_pq;
4150                         else
4151                                 sh->check_state = check_state_run_q;
4152                 }
4153
4154                 /* discard potentially stale zero_sum_result */
4155                 sh->ops.zero_sum_result = 0;
4156
4157                 if (sh->check_state == check_state_run) {
4158                         /* async_xor_zero_sum destroys the contents of P */
4159                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4160                         s->uptodate--;
4161                 }
4162                 if (sh->check_state >= check_state_run &&
4163                     sh->check_state <= check_state_run_pq) {
4164                         /* async_syndrome_zero_sum preserves P and Q, so
4165                          * no need to mark them !uptodate here
4166                          */
4167                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
4168                         break;
4169                 }
4170
4171                 /* we have 2-disk failure */
4172                 BUG_ON(s->failed != 2);
4173                 /* fall through */
4174         case check_state_compute_result:
4175                 sh->check_state = check_state_idle;
4176
4177                 /* check that a write has not made the stripe insync */
4178                 if (test_bit(STRIPE_INSYNC, &sh->state))
4179                         break;
4180
4181                 /* now write out any block on a failed drive,
4182                  * or P or Q if they were recomputed
4183                  */
4184                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4185                 if (s->failed == 2) {
4186                         dev = &sh->dev[s->failed_num[1]];
4187                         s->locked++;
4188                         set_bit(R5_LOCKED, &dev->flags);
4189                         set_bit(R5_Wantwrite, &dev->flags);
4190                 }
4191                 if (s->failed >= 1) {
4192                         dev = &sh->dev[s->failed_num[0]];
4193                         s->locked++;
4194                         set_bit(R5_LOCKED, &dev->flags);
4195                         set_bit(R5_Wantwrite, &dev->flags);
4196                 }
4197                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4198                         dev = &sh->dev[pd_idx];
4199                         s->locked++;
4200                         set_bit(R5_LOCKED, &dev->flags);
4201                         set_bit(R5_Wantwrite, &dev->flags);
4202                 }
4203                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4204                         dev = &sh->dev[qd_idx];
4205                         s->locked++;
4206                         set_bit(R5_LOCKED, &dev->flags);
4207                         set_bit(R5_Wantwrite, &dev->flags);
4208                 }
4209                 clear_bit(STRIPE_DEGRADED, &sh->state);
4210
4211                 set_bit(STRIPE_INSYNC, &sh->state);
4212                 break;
4213         case check_state_run:
4214         case check_state_run_q:
4215         case check_state_run_pq:
4216                 break; /* we will be called again upon completion */
4217         case check_state_check_result:
4218                 sh->check_state = check_state_idle;
4219
4220                 /* handle a successful check operation, if parity is correct
4221                  * we are done.  Otherwise update the mismatch count and repair
4222                  * parity if !MD_RECOVERY_CHECK
4223                  */
4224                 if (sh->ops.zero_sum_result == 0) {
4225                         /* both parities are correct */
4226                         if (!s->failed)
4227                                 set_bit(STRIPE_INSYNC, &sh->state);
4228                         else {
4229                                 /* in contrast to the raid5 case we can validate
4230                                  * parity, but still have a failure to write
4231                                  * back
4232                                  */
4233                                 sh->check_state = check_state_compute_result;
4234                                 /* Returning at this point means that we may go
4235                                  * off and bring p and/or q uptodate again so
4236                                  * we make sure to check zero_sum_result again
4237                                  * to verify if p or q need writeback
4238                                  */
4239                         }
4240                 } else {
4241                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4242                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4243                                 /* don't try to repair!! */
4244                                 set_bit(STRIPE_INSYNC, &sh->state);
4245                                 pr_warn_ratelimited("%s: mismatch sector in range "
4246                                                     "%llu-%llu\n", mdname(conf->mddev),
4247                                                     (unsigned long long) sh->sector,
4248                                                     (unsigned long long) sh->sector +
4249                                                     STRIPE_SECTORS);
4250                         } else {
4251                                 int *target = &sh->ops.target;
4252
4253                                 sh->ops.target = -1;
4254                                 sh->ops.target2 = -1;
4255                                 sh->check_state = check_state_compute_run;
4256                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4257                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4258                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4259                                         set_bit(R5_Wantcompute,
4260                                                 &sh->dev[pd_idx].flags);
4261                                         *target = pd_idx;
4262                                         target = &sh->ops.target2;
4263                                         s->uptodate++;
4264                                 }
4265                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4266                                         set_bit(R5_Wantcompute,
4267                                                 &sh->dev[qd_idx].flags);
4268                                         *target = qd_idx;
4269                                         s->uptodate++;
4270                                 }
4271                         }
4272                 }
4273                 break;
4274         case check_state_compute_run:
4275                 break;
4276         default:
4277                 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4278                         __func__, sh->check_state,
4279                         (unsigned long long) sh->sector);
4280                 BUG();
4281         }
4282 }
4283
4284 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4285 {
4286         int i;
4287
4288         /* We have read all the blocks in this stripe and now we need to
4289          * copy some of them into a target stripe for expand.
4290          */
4291         struct dma_async_tx_descriptor *tx = NULL;
4292         BUG_ON(sh->batch_head);
4293         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4294         for (i = 0; i < sh->disks; i++)
4295                 if (i != sh->pd_idx && i != sh->qd_idx) {
4296                         int dd_idx, j;
4297                         struct stripe_head *sh2;
4298                         struct async_submit_ctl submit;
4299
4300                         sector_t bn = raid5_compute_blocknr(sh, i, 1);
4301                         sector_t s = raid5_compute_sector(conf, bn, 0,
4302                                                           &dd_idx, NULL);
4303                         sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4304                         if (sh2 == NULL)
4305                                 /* so far only the early blocks of this stripe
4306                                  * have been requested.  When later blocks
4307                                  * get requested, we will try again
4308                                  */
4309                                 continue;
4310                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4311                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4312                                 /* must have already done this block */
4313                                 raid5_release_stripe(sh2);
4314                                 continue;
4315                         }
4316
4317                         /* place all the copies on one channel */
4318                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4319                         tx = async_memcpy(sh2->dev[dd_idx].page,
4320                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
4321                                           &submit);
4322
4323                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4324                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4325                         for (j = 0; j < conf->raid_disks; j++)
4326                                 if (j != sh2->pd_idx &&
4327                                     j != sh2->qd_idx &&
4328                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
4329                                         break;
4330                         if (j == conf->raid_disks) {
4331                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4332                                 set_bit(STRIPE_HANDLE, &sh2->state);
4333                         }
4334                         raid5_release_stripe(sh2);
4335
4336                 }
4337         /* done submitting copies, wait for them to complete */
4338         async_tx_quiesce(&tx);
4339 }
4340
4341 /*
4342  * handle_stripe - do things to a stripe.
4343  *
4344  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4345  * state of various bits to see what needs to be done.
4346  * Possible results:
4347  *    return some read requests which now have data
4348  *    return some write requests which are safely on storage
4349  *    schedule a read on some buffers
4350  *    schedule a write of some buffers
4351  *    return confirmation of parity correctness
4352  *
4353  */
4354
4355 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4356 {
4357         struct r5conf *conf = sh->raid_conf;
4358         int disks = sh->disks;
4359         struct r5dev *dev;
4360         int i;
4361         int do_recovery = 0;
4362
4363         memset(s, 0, sizeof(*s));
4364
4365         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4366         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4367         s->failed_num[0] = -1;
4368         s->failed_num[1] = -1;
4369         s->log_failed = r5l_log_disk_error(conf);
4370
4371         /* Now to look around and see what can be done */
4372         rcu_read_lock();
4373         for (i=disks; i--; ) {
4374                 struct md_rdev *rdev;
4375                 sector_t first_bad;
4376                 int bad_sectors;
4377                 int is_bad = 0;
4378
4379                 dev = &sh->dev[i];
4380
4381                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4382                          i, dev->flags,
4383                          dev->toread, dev->towrite, dev->written);
4384                 /* maybe we can reply to a read
4385                  *
4386                  * new wantfill requests are only permitted while
4387                  * ops_complete_biofill is guaranteed to be inactive
4388                  */
4389                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4390                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4391                         set_bit(R5_Wantfill, &dev->flags);
4392
4393                 /* now count some things */
4394                 if (test_bit(R5_LOCKED, &dev->flags))
4395                         s->locked++;
4396                 if (test_bit(R5_UPTODATE, &dev->flags))
4397                         s->uptodate++;
4398                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4399                         s->compute++;
4400                         BUG_ON(s->compute > 2);
4401                 }
4402
4403                 if (test_bit(R5_Wantfill, &dev->flags))
4404                         s->to_fill++;
4405                 else if (dev->toread)
4406                         s->to_read++;
4407                 if (dev->towrite) {
4408                         s->to_write++;
4409                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4410                                 s->non_overwrite++;
4411                 }
4412                 if (dev->written)
4413                         s->written++;
4414                 /* Prefer to use the replacement for reads, but only
4415                  * if it is recovered enough and has no bad blocks.
4416                  */
4417                 rdev = rcu_dereference(conf->disks[i].replacement);
4418                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4419                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4420                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4421                                  &first_bad, &bad_sectors))
4422                         set_bit(R5_ReadRepl, &dev->flags);
4423                 else {
4424                         if (rdev && !test_bit(Faulty, &rdev->flags))
4425                                 set_bit(R5_NeedReplace, &dev->flags);
4426                         else
4427                                 clear_bit(R5_NeedReplace, &dev->flags);
4428                         rdev = rcu_dereference(conf->disks[i].rdev);
4429                         clear_bit(R5_ReadRepl, &dev->flags);
4430                 }
4431                 if (rdev && test_bit(Faulty, &rdev->flags))
4432                         rdev = NULL;
4433                 if (rdev) {
4434                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4435                                              &first_bad, &bad_sectors);
4436                         if (s->blocked_rdev == NULL
4437                             && (test_bit(Blocked, &rdev->flags)
4438                                 || is_bad < 0)) {
4439                                 if (is_bad < 0)
4440                                         set_bit(BlockedBadBlocks,
4441                                                 &rdev->flags);
4442                                 s->blocked_rdev = rdev;
4443                                 atomic_inc(&rdev->nr_pending);
4444                         }
4445                 }
4446                 clear_bit(R5_Insync, &dev->flags);
4447                 if (!rdev)
4448                         /* Not in-sync */;
4449                 else if (is_bad) {
4450                         /* also not in-sync */
4451                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4452                             test_bit(R5_UPTODATE, &dev->flags)) {
4453                                 /* treat as in-sync, but with a read error
4454                                  * which we can now try to correct
4455                                  */
4456                                 set_bit(R5_Insync, &dev->flags);
4457                                 set_bit(R5_ReadError, &dev->flags);
4458                         }
4459                 } else if (test_bit(In_sync, &rdev->flags))
4460                         set_bit(R5_Insync, &dev->flags);
4461                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4462                         /* in sync if before recovery_offset */
4463                         set_bit(R5_Insync, &dev->flags);
4464                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4465                          test_bit(R5_Expanded, &dev->flags))
4466                         /* If we've reshaped into here, we assume it is Insync.
4467                          * We will shortly update recovery_offset to make
4468                          * it official.
4469                          */
4470                         set_bit(R5_Insync, &dev->flags);
4471
4472                 if (test_bit(R5_WriteError, &dev->flags)) {
4473                         /* This flag does not apply to '.replacement'
4474                          * only to .rdev, so make sure to check that*/
4475                         struct md_rdev *rdev2 = rcu_dereference(
4476                                 conf->disks[i].rdev);
4477                         if (rdev2 == rdev)
4478                                 clear_bit(R5_Insync, &dev->flags);
4479                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4480                                 s->handle_bad_blocks = 1;
4481                                 atomic_inc(&rdev2->nr_pending);
4482                         } else
4483                                 clear_bit(R5_WriteError, &dev->flags);
4484                 }
4485                 if (test_bit(R5_MadeGood, &dev->flags)) {
4486                         /* This flag does not apply to '.replacement'
4487                          * only to .rdev, so make sure to check that*/
4488                         struct md_rdev *rdev2 = rcu_dereference(
4489                                 conf->disks[i].rdev);
4490                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4491                                 s->handle_bad_blocks = 1;
4492                                 atomic_inc(&rdev2->nr_pending);
4493                         } else
4494                                 clear_bit(R5_MadeGood, &dev->flags);
4495                 }
4496                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4497                         struct md_rdev *rdev2 = rcu_dereference(
4498                                 conf->disks[i].replacement);
4499                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4500                                 s->handle_bad_blocks = 1;
4501                                 atomic_inc(&rdev2->nr_pending);
4502                         } else
4503                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4504                 }
4505                 if (!test_bit(R5_Insync, &dev->flags)) {
4506                         /* The ReadError flag will just be confusing now */
4507                         clear_bit(R5_ReadError, &dev->flags);
4508                         clear_bit(R5_ReWrite, &dev->flags);
4509                 }
4510                 if (test_bit(R5_ReadError, &dev->flags))
4511                         clear_bit(R5_Insync, &dev->flags);
4512                 if (!test_bit(R5_Insync, &dev->flags)) {
4513                         if (s->failed < 2)
4514                                 s->failed_num[s->failed] = i;
4515                         s->failed++;
4516                         if (rdev && !test_bit(Faulty, &rdev->flags))
4517                                 do_recovery = 1;
4518                 }
4519
4520                 if (test_bit(R5_InJournal, &dev->flags))
4521                         s->injournal++;
4522                 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4523                         s->just_cached++;
4524         }
4525         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4526                 /* If there is a failed device being replaced,
4527                  *     we must be recovering.
4528                  * else if we are after recovery_cp, we must be syncing
4529                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4530                  * else we can only be replacing
4531                  * sync and recovery both need to read all devices, and so
4532                  * use the same flag.
4533                  */
4534                 if (do_recovery ||
4535                     sh->sector >= conf->mddev->recovery_cp ||
4536                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4537                         s->syncing = 1;
4538                 else
4539                         s->replacing = 1;
4540         }
4541         rcu_read_unlock();
4542 }
4543
4544 static int clear_batch_ready(struct stripe_head *sh)
4545 {
4546         /* Return '1' if this is a member of batch, or
4547          * '0' if it is a lone stripe or a head which can now be
4548          * handled.
4549          */
4550         struct stripe_head *tmp;
4551         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4552                 return (sh->batch_head && sh->batch_head != sh);
4553         spin_lock(&sh->stripe_lock);
4554         if (!sh->batch_head) {
4555                 spin_unlock(&sh->stripe_lock);
4556                 return 0;
4557         }
4558
4559         /*
4560          * this stripe could be added to a batch list before we check
4561          * BATCH_READY, skips it
4562          */
4563         if (sh->batch_head != sh) {
4564                 spin_unlock(&sh->stripe_lock);
4565                 return 1;
4566         }
4567         spin_lock(&sh->batch_lock);
4568         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4569                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4570         spin_unlock(&sh->batch_lock);
4571         spin_unlock(&sh->stripe_lock);
4572
4573         /*
4574          * BATCH_READY is cleared, no new stripes can be added.
4575          * batch_list can be accessed without lock
4576          */
4577         return 0;
4578 }
4579
4580 static void break_stripe_batch_list(struct stripe_head *head_sh,
4581                                     unsigned long handle_flags)
4582 {
4583         struct stripe_head *sh, *next;
4584         int i;
4585         int do_wakeup = 0;
4586
4587         list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4588
4589                 list_del_init(&sh->batch_list);
4590
4591                 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4592                                           (1 << STRIPE_SYNCING) |
4593                                           (1 << STRIPE_REPLACED) |
4594                                           (1 << STRIPE_DELAYED) |
4595                                           (1 << STRIPE_BIT_DELAY) |
4596                                           (1 << STRIPE_FULL_WRITE) |
4597                                           (1 << STRIPE_BIOFILL_RUN) |
4598                                           (1 << STRIPE_COMPUTE_RUN)  |
4599                                           (1 << STRIPE_OPS_REQ_PENDING) |
4600                                           (1 << STRIPE_DISCARD) |
4601                                           (1 << STRIPE_BATCH_READY) |
4602                                           (1 << STRIPE_BATCH_ERR) |
4603                                           (1 << STRIPE_BITMAP_PENDING)),
4604                         "stripe state: %lx\n", sh->state);
4605                 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4606                                               (1 << STRIPE_REPLACED)),
4607                         "head stripe state: %lx\n", head_sh->state);
4608
4609                 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4610                                             (1 << STRIPE_PREREAD_ACTIVE) |
4611                                             (1 << STRIPE_DEGRADED)),
4612                               head_sh->state & (1 << STRIPE_INSYNC));
4613
4614                 sh->check_state = head_sh->check_state;
4615                 sh->reconstruct_state = head_sh->reconstruct_state;
4616                 for (i = 0; i < sh->disks; i++) {
4617                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4618                                 do_wakeup = 1;
4619                         sh->dev[i].flags = head_sh->dev[i].flags &
4620                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4621                 }
4622                 spin_lock_irq(&sh->stripe_lock);
4623                 sh->batch_head = NULL;
4624                 spin_unlock_irq(&sh->stripe_lock);
4625                 if (handle_flags == 0 ||
4626                     sh->state & handle_flags)
4627                         set_bit(STRIPE_HANDLE, &sh->state);
4628                 raid5_release_stripe(sh);
4629         }
4630         spin_lock_irq(&head_sh->stripe_lock);
4631         head_sh->batch_head = NULL;
4632         spin_unlock_irq(&head_sh->stripe_lock);
4633         for (i = 0; i < head_sh->disks; i++)
4634                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4635                         do_wakeup = 1;
4636         if (head_sh->state & handle_flags)
4637                 set_bit(STRIPE_HANDLE, &head_sh->state);
4638
4639         if (do_wakeup)
4640                 wake_up(&head_sh->raid_conf->wait_for_overlap);
4641 }
4642
4643 static void handle_stripe(struct stripe_head *sh)
4644 {
4645         struct stripe_head_state s;
4646         struct r5conf *conf = sh->raid_conf;
4647         int i;
4648         int prexor;
4649         int disks = sh->disks;
4650         struct r5dev *pdev, *qdev;
4651
4652         clear_bit(STRIPE_HANDLE, &sh->state);
4653         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4654                 /* already being handled, ensure it gets handled
4655                  * again when current action finishes */
4656                 set_bit(STRIPE_HANDLE, &sh->state);
4657                 return;
4658         }
4659
4660         if (clear_batch_ready(sh) ) {
4661                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4662                 return;
4663         }
4664
4665         if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4666                 break_stripe_batch_list(sh, 0);
4667
4668         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4669                 spin_lock(&sh->stripe_lock);
4670                 /*
4671                  * Cannot process 'sync' concurrently with 'discard'.
4672                  * Flush data in r5cache before 'sync'.
4673                  */
4674                 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4675                     !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4676                     !test_bit(STRIPE_DISCARD, &sh->state) &&
4677                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4678                         set_bit(STRIPE_SYNCING, &sh->state);
4679                         clear_bit(STRIPE_INSYNC, &sh->state);
4680                         clear_bit(STRIPE_REPLACED, &sh->state);
4681                 }
4682                 spin_unlock(&sh->stripe_lock);
4683         }
4684         clear_bit(STRIPE_DELAYED, &sh->state);
4685
4686         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4687                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4688                (unsigned long long)sh->sector, sh->state,
4689                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4690                sh->check_state, sh->reconstruct_state);
4691
4692         analyse_stripe(sh, &s);
4693
4694         if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4695                 goto finish;
4696
4697         if (s.handle_bad_blocks ||
4698             test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4699                 set_bit(STRIPE_HANDLE, &sh->state);
4700                 goto finish;
4701         }
4702
4703         if (unlikely(s.blocked_rdev)) {
4704                 if (s.syncing || s.expanding || s.expanded ||
4705                     s.replacing || s.to_write || s.written) {
4706                         set_bit(STRIPE_HANDLE, &sh->state);
4707                         goto finish;
4708                 }
4709                 /* There is nothing for the blocked_rdev to block */
4710                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4711                 s.blocked_rdev = NULL;
4712         }
4713
4714         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4715                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4716                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4717         }
4718
4719         pr_debug("locked=%d uptodate=%d to_read=%d"
4720                " to_write=%d failed=%d failed_num=%d,%d\n",
4721                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4722                s.failed_num[0], s.failed_num[1]);
4723         /*
4724          * check if the array has lost more than max_degraded devices and,
4725          * if so, some requests might need to be failed.
4726          *
4727          * When journal device failed (log_failed), we will only process
4728          * the stripe if there is data need write to raid disks
4729          */
4730         if (s.failed > conf->max_degraded ||
4731             (s.log_failed && s.injournal == 0)) {
4732                 sh->check_state = 0;
4733                 sh->reconstruct_state = 0;
4734                 break_stripe_batch_list(sh, 0);
4735                 if (s.to_read+s.to_write+s.written)
4736                         handle_failed_stripe(conf, sh, &s, disks);
4737                 if (s.syncing + s.replacing)
4738                         handle_failed_sync(conf, sh, &s);
4739         }
4740
4741         /* Now we check to see if any write operations have recently
4742          * completed
4743          */
4744         prexor = 0;
4745         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4746                 prexor = 1;
4747         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4748             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4749                 sh->reconstruct_state = reconstruct_state_idle;
4750
4751                 /* All the 'written' buffers and the parity block are ready to
4752                  * be written back to disk
4753                  */
4754                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4755                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4756                 BUG_ON(sh->qd_idx >= 0 &&
4757                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4758                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4759                 for (i = disks; i--; ) {
4760                         struct r5dev *dev = &sh->dev[i];
4761                         if (test_bit(R5_LOCKED, &dev->flags) &&
4762                                 (i == sh->pd_idx || i == sh->qd_idx ||
4763                                  dev->written || test_bit(R5_InJournal,
4764                                                           &dev->flags))) {
4765                                 pr_debug("Writing block %d\n", i);
4766                                 set_bit(R5_Wantwrite, &dev->flags);
4767                                 if (prexor)
4768                                         continue;
4769                                 if (s.failed > 1)
4770                                         continue;
4771                                 if (!test_bit(R5_Insync, &dev->flags) ||
4772                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4773                                      s.failed == 0))
4774                                         set_bit(STRIPE_INSYNC, &sh->state);
4775                         }
4776                 }
4777                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4778                         s.dec_preread_active = 1;
4779         }
4780
4781         /*
4782          * might be able to return some write requests if the parity blocks
4783          * are safe, or on a failed drive
4784          */
4785         pdev = &sh->dev[sh->pd_idx];
4786         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4787                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4788         qdev = &sh->dev[sh->qd_idx];
4789         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4790                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4791                 || conf->level < 6;
4792
4793         if (s.written &&
4794             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4795                              && !test_bit(R5_LOCKED, &pdev->flags)
4796                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4797                                  test_bit(R5_Discard, &pdev->flags))))) &&
4798             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4799                              && !test_bit(R5_LOCKED, &qdev->flags)
4800                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4801                                  test_bit(R5_Discard, &qdev->flags))))))
4802                 handle_stripe_clean_event(conf, sh, disks);
4803
4804         if (s.just_cached)
4805                 r5c_handle_cached_data_endio(conf, sh, disks);
4806         log_stripe_write_finished(sh);
4807
4808         /* Now we might consider reading some blocks, either to check/generate
4809          * parity, or to satisfy requests
4810          * or to load a block that is being partially written.
4811          */
4812         if (s.to_read || s.non_overwrite
4813             || (conf->level == 6 && s.to_write && s.failed)
4814             || (s.syncing && (s.uptodate + s.compute < disks))
4815             || s.replacing
4816             || s.expanding)
4817                 handle_stripe_fill(sh, &s, disks);
4818
4819         /*
4820          * When the stripe finishes full journal write cycle (write to journal
4821          * and raid disk), this is the clean up procedure so it is ready for
4822          * next operation.
4823          */
4824         r5c_finish_stripe_write_out(conf, sh, &s);
4825
4826         /*
4827          * Now to consider new write requests, cache write back and what else,
4828          * if anything should be read.  We do not handle new writes when:
4829          * 1/ A 'write' operation (copy+xor) is already in flight.
4830          * 2/ A 'check' operation is in flight, as it may clobber the parity
4831          *    block.
4832          * 3/ A r5c cache log write is in flight.
4833          */
4834
4835         if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4836                 if (!r5c_is_writeback(conf->log)) {
4837                         if (s.to_write)
4838                                 handle_stripe_dirtying(conf, sh, &s, disks);
4839                 } else { /* write back cache */
4840                         int ret = 0;
4841
4842                         /* First, try handle writes in caching phase */
4843                         if (s.to_write)
4844                                 ret = r5c_try_caching_write(conf, sh, &s,
4845                                                             disks);
4846                         /*
4847                          * If caching phase failed: ret == -EAGAIN
4848                          *    OR
4849                          * stripe under reclaim: !caching && injournal
4850                          *
4851                          * fall back to handle_stripe_dirtying()
4852                          */
4853                         if (ret == -EAGAIN ||
4854                             /* stripe under reclaim: !caching && injournal */
4855                             (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4856                              s.injournal > 0)) {
4857                                 ret = handle_stripe_dirtying(conf, sh, &s,
4858                                                              disks);
4859                                 if (ret == -EAGAIN)
4860                                         goto finish;
4861                         }
4862                 }
4863         }
4864
4865         /* maybe we need to check and possibly fix the parity for this stripe
4866          * Any reads will already have been scheduled, so we just see if enough
4867          * data is available.  The parity check is held off while parity
4868          * dependent operations are in flight.
4869          */
4870         if (sh->check_state ||
4871             (s.syncing && s.locked == 0 &&
4872              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4873              !test_bit(STRIPE_INSYNC, &sh->state))) {
4874                 if (conf->level == 6)
4875                         handle_parity_checks6(conf, sh, &s, disks);
4876                 else
4877                         handle_parity_checks5(conf, sh, &s, disks);
4878         }
4879
4880         if ((s.replacing || s.syncing) && s.locked == 0
4881             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4882             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4883                 /* Write out to replacement devices where possible */
4884                 for (i = 0; i < conf->raid_disks; i++)
4885                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4886                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4887                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4888                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4889                                 s.locked++;
4890                         }
4891                 if (s.replacing)
4892                         set_bit(STRIPE_INSYNC, &sh->state);
4893                 set_bit(STRIPE_REPLACED, &sh->state);
4894         }
4895         if ((s.syncing || s.replacing) && s.locked == 0 &&
4896             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4897             test_bit(STRIPE_INSYNC, &sh->state)) {
4898                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4899                 clear_bit(STRIPE_SYNCING, &sh->state);
4900                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4901                         wake_up(&conf->wait_for_overlap);
4902         }
4903
4904         /* If the failed drives are just a ReadError, then we might need
4905          * to progress the repair/check process
4906          */
4907         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4908                 for (i = 0; i < s.failed; i++) {
4909                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4910                         if (test_bit(R5_ReadError, &dev->flags)
4911                             && !test_bit(R5_LOCKED, &dev->flags)
4912                             && test_bit(R5_UPTODATE, &dev->flags)
4913                                 ) {
4914                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4915                                         set_bit(R5_Wantwrite, &dev->flags);
4916                                         set_bit(R5_ReWrite, &dev->flags);
4917                                         set_bit(R5_LOCKED, &dev->flags);
4918                                         s.locked++;
4919                                 } else {
4920                                         /* let's read it back */
4921                                         set_bit(R5_Wantread, &dev->flags);
4922                                         set_bit(R5_LOCKED, &dev->flags);
4923                                         s.locked++;
4924                                 }
4925                         }
4926                 }
4927
4928         /* Finish reconstruct operations initiated by the expansion process */
4929         if (sh->reconstruct_state == reconstruct_state_result) {
4930                 struct stripe_head *sh_src
4931                         = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4932                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4933                         /* sh cannot be written until sh_src has been read.
4934                          * so arrange for sh to be delayed a little
4935                          */
4936                         set_bit(STRIPE_DELAYED, &sh->state);
4937                         set_bit(STRIPE_HANDLE, &sh->state);
4938                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4939                                               &sh_src->state))
4940                                 atomic_inc(&conf->preread_active_stripes);
4941                         raid5_release_stripe(sh_src);
4942                         goto finish;
4943                 }
4944                 if (sh_src)
4945                         raid5_release_stripe(sh_src);
4946
4947                 sh->reconstruct_state = reconstruct_state_idle;
4948                 clear_bit(STRIPE_EXPANDING, &sh->state);
4949                 for (i = conf->raid_disks; i--; ) {
4950                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4951                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4952                         s.locked++;
4953                 }
4954         }
4955
4956         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4957             !sh->reconstruct_state) {
4958                 /* Need to write out all blocks after computing parity */
4959                 sh->disks = conf->raid_disks;
4960                 stripe_set_idx(sh->sector, conf, 0, sh);
4961                 schedule_reconstruction(sh, &s, 1, 1);
4962         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4963                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4964                 atomic_dec(&conf->reshape_stripes);
4965                 wake_up(&conf->wait_for_overlap);
4966                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4967         }
4968
4969         if (s.expanding && s.locked == 0 &&
4970             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4971                 handle_stripe_expansion(conf, sh);
4972
4973 finish:
4974         /* wait for this device to become unblocked */
4975         if (unlikely(s.blocked_rdev)) {
4976                 if (conf->mddev->external)
4977                         md_wait_for_blocked_rdev(s.blocked_rdev,
4978                                                  conf->mddev);
4979                 else
4980                         /* Internal metadata will immediately
4981                          * be written by raid5d, so we don't
4982                          * need to wait here.
4983                          */
4984                         rdev_dec_pending(s.blocked_rdev,
4985                                          conf->mddev);
4986         }
4987
4988         if (s.handle_bad_blocks)
4989                 for (i = disks; i--; ) {
4990                         struct md_rdev *rdev;
4991                         struct r5dev *dev = &sh->dev[i];
4992                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4993                                 /* We own a safe reference to the rdev */
4994                                 rdev = conf->disks[i].rdev;
4995                                 if (!rdev_set_badblocks(rdev, sh->sector,
4996                                                         STRIPE_SECTORS, 0))
4997                                         md_error(conf->mddev, rdev);
4998                                 rdev_dec_pending(rdev, conf->mddev);
4999                         }
5000                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5001                                 rdev = conf->disks[i].rdev;
5002                                 rdev_clear_badblocks(rdev, sh->sector,
5003                                                      STRIPE_SECTORS, 0);
5004                                 rdev_dec_pending(rdev, conf->mddev);
5005                         }
5006                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5007                                 rdev = conf->disks[i].replacement;
5008                                 if (!rdev)
5009                                         /* rdev have been moved down */
5010                                         rdev = conf->disks[i].rdev;
5011                                 rdev_clear_badblocks(rdev, sh->sector,
5012                                                      STRIPE_SECTORS, 0);
5013                                 rdev_dec_pending(rdev, conf->mddev);
5014                         }
5015                 }
5016
5017         if (s.ops_request)
5018                 raid_run_ops(sh, s.ops_request);
5019
5020         ops_run_io(sh, &s);
5021
5022         if (s.dec_preread_active) {
5023                 /* We delay this until after ops_run_io so that if make_request
5024                  * is waiting on a flush, it won't continue until the writes
5025                  * have actually been submitted.
5026                  */
5027                 atomic_dec(&conf->preread_active_stripes);
5028                 if (atomic_read(&conf->preread_active_stripes) <
5029                     IO_THRESHOLD)
5030                         md_wakeup_thread(conf->mddev->thread);
5031         }
5032
5033         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5034 }
5035
5036 static void raid5_activate_delayed(struct r5conf *conf)
5037 {
5038         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5039                 while (!list_empty(&conf->delayed_list)) {
5040                         struct list_head *l = conf->delayed_list.next;
5041                         struct stripe_head *sh;
5042                         sh = list_entry(l, struct stripe_head, lru);
5043                         list_del_init(l);
5044                         clear_bit(STRIPE_DELAYED, &sh->state);
5045                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5046                                 atomic_inc(&conf->preread_active_stripes);
5047                         list_add_tail(&sh->lru, &conf->hold_list);
5048                         raid5_wakeup_stripe_thread(sh);
5049                 }
5050         }
5051 }
5052
5053 static void activate_bit_delay(struct r5conf *conf,
5054         struct list_head *temp_inactive_list)
5055 {
5056         /* device_lock is held */
5057         struct list_head head;
5058         list_add(&head, &conf->bitmap_list);
5059         list_del_init(&conf->bitmap_list);
5060         while (!list_empty(&head)) {
5061                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5062                 int hash;
5063                 list_del_init(&sh->lru);
5064                 atomic_inc(&sh->count);
5065                 hash = sh->hash_lock_index;
5066                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5067         }
5068 }
5069
5070 static int raid5_congested(struct mddev *mddev, int bits)
5071 {
5072         struct r5conf *conf = mddev->private;
5073
5074         /* No difference between reads and writes.  Just check
5075          * how busy the stripe_cache is
5076          */
5077
5078         if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5079                 return 1;
5080
5081         /* Also checks whether there is pressure on r5cache log space */
5082         if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5083                 return 1;
5084         if (conf->quiesce)
5085                 return 1;
5086         if (atomic_read(&conf->empty_inactive_list_nr))
5087                 return 1;
5088
5089         return 0;
5090 }
5091
5092 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5093 {
5094         struct r5conf *conf = mddev->private;
5095         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
5096         unsigned int chunk_sectors;
5097         unsigned int bio_sectors = bio_sectors(bio);
5098
5099         chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5100         return  chunk_sectors >=
5101                 ((sector & (chunk_sectors - 1)) + bio_sectors);
5102 }
5103
5104 /*
5105  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5106  *  later sampled by raid5d.
5107  */
5108 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5109 {
5110         unsigned long flags;
5111
5112         spin_lock_irqsave(&conf->device_lock, flags);
5113
5114         bi->bi_next = conf->retry_read_aligned_list;
5115         conf->retry_read_aligned_list = bi;
5116
5117         spin_unlock_irqrestore(&conf->device_lock, flags);
5118         md_wakeup_thread(conf->mddev->thread);
5119 }
5120
5121 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5122                                          unsigned int *offset)
5123 {
5124         struct bio *bi;
5125
5126         bi = conf->retry_read_aligned;
5127         if (bi) {
5128                 *offset = conf->retry_read_offset;
5129                 conf->retry_read_aligned = NULL;
5130                 return bi;
5131         }
5132         bi = conf->retry_read_aligned_list;
5133         if(bi) {
5134                 conf->retry_read_aligned_list = bi->bi_next;
5135                 bi->bi_next = NULL;
5136                 *offset = 0;
5137         }
5138
5139         return bi;
5140 }
5141
5142 /*
5143  *  The "raid5_align_endio" should check if the read succeeded and if it
5144  *  did, call bio_endio on the original bio (having bio_put the new bio
5145  *  first).
5146  *  If the read failed..
5147  */
5148 static void raid5_align_endio(struct bio *bi)
5149 {
5150         struct bio* raid_bi  = bi->bi_private;
5151         struct mddev *mddev;
5152         struct r5conf *conf;
5153         struct md_rdev *rdev;
5154         blk_status_t error = bi->bi_status;
5155
5156         bio_put(bi);
5157
5158         rdev = (void*)raid_bi->bi_next;
5159         raid_bi->bi_next = NULL;
5160         mddev = rdev->mddev;
5161         conf = mddev->private;
5162
5163         rdev_dec_pending(rdev, conf->mddev);
5164
5165         if (!error) {
5166                 bio_endio(raid_bi);
5167                 if (atomic_dec_and_test(&conf->active_aligned_reads))
5168                         wake_up(&conf->wait_for_quiescent);
5169                 return;
5170         }
5171
5172         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5173
5174         add_bio_to_retry(raid_bi, conf);
5175 }
5176
5177 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5178 {
5179         struct r5conf *conf = mddev->private;
5180         int dd_idx;
5181         struct bio* align_bi;
5182         struct md_rdev *rdev;
5183         sector_t end_sector;
5184
5185         if (!in_chunk_boundary(mddev, raid_bio)) {
5186                 pr_debug("%s: non aligned\n", __func__);
5187                 return 0;
5188         }
5189         /*
5190          * use bio_clone_fast to make a copy of the bio
5191          */
5192         align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
5193         if (!align_bi)
5194                 return 0;
5195         /*
5196          *   set bi_end_io to a new function, and set bi_private to the
5197          *     original bio.
5198          */
5199         align_bi->bi_end_io  = raid5_align_endio;
5200         align_bi->bi_private = raid_bio;
5201         /*
5202          *      compute position
5203          */
5204         align_bi->bi_iter.bi_sector =
5205                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5206                                      0, &dd_idx, NULL);
5207
5208         end_sector = bio_end_sector(align_bi);
5209         rcu_read_lock();
5210         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5211         if (!rdev || test_bit(Faulty, &rdev->flags) ||
5212             rdev->recovery_offset < end_sector) {
5213                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5214                 if (rdev &&
5215                     (test_bit(Faulty, &rdev->flags) ||
5216                     !(test_bit(In_sync, &rdev->flags) ||
5217                       rdev->recovery_offset >= end_sector)))
5218                         rdev = NULL;
5219         }
5220
5221         if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5222                 rcu_read_unlock();
5223                 bio_put(align_bi);
5224                 return 0;
5225         }
5226
5227         if (rdev) {
5228                 sector_t first_bad;
5229                 int bad_sectors;
5230
5231                 atomic_inc(&rdev->nr_pending);
5232                 rcu_read_unlock();
5233                 raid_bio->bi_next = (void*)rdev;
5234                 align_bi->bi_bdev =  rdev->bdev;
5235                 bio_clear_flag(align_bi, BIO_SEG_VALID);
5236
5237                 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5238                                 bio_sectors(align_bi),
5239                                 &first_bad, &bad_sectors)) {
5240                         bio_put(align_bi);
5241                         rdev_dec_pending(rdev, mddev);
5242                         return 0;
5243                 }
5244
5245                 /* No reshape active, so we can trust rdev->data_offset */
5246                 align_bi->bi_iter.bi_sector += rdev->data_offset;
5247
5248                 spin_lock_irq(&conf->device_lock);
5249                 wait_event_lock_irq(conf->wait_for_quiescent,
5250                                     conf->quiesce == 0,
5251                                     conf->device_lock);
5252                 atomic_inc(&conf->active_aligned_reads);
5253                 spin_unlock_irq(&conf->device_lock);
5254
5255                 if (mddev->gendisk)
5256                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
5257                                               align_bi, disk_devt(mddev->gendisk),
5258                                               raid_bio->bi_iter.bi_sector);
5259                 generic_make_request(align_bi);
5260                 return 1;
5261         } else {
5262                 rcu_read_unlock();
5263                 bio_put(align_bi);
5264                 return 0;
5265         }
5266 }
5267
5268 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5269 {
5270         struct bio *split;
5271         sector_t sector = raid_bio->bi_iter.bi_sector;
5272         unsigned chunk_sects = mddev->chunk_sectors;
5273         unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5274
5275         if (sectors < bio_sectors(raid_bio)) {
5276                 struct r5conf *conf = mddev->private;
5277                 split = bio_split(raid_bio, sectors, GFP_NOIO, conf->bio_split);
5278                 bio_chain(split, raid_bio);
5279                 generic_make_request(raid_bio);
5280                 raid_bio = split;
5281         }
5282
5283         if (!raid5_read_one_chunk(mddev, raid_bio))
5284                 return raid_bio;
5285
5286         return NULL;
5287 }
5288
5289 /* __get_priority_stripe - get the next stripe to process
5290  *
5291  * Full stripe writes are allowed to pass preread active stripes up until
5292  * the bypass_threshold is exceeded.  In general the bypass_count
5293  * increments when the handle_list is handled before the hold_list; however, it
5294  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5295  * stripe with in flight i/o.  The bypass_count will be reset when the
5296  * head of the hold_list has changed, i.e. the head was promoted to the
5297  * handle_list.
5298  */
5299 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5300 {
5301         struct stripe_head *sh, *tmp;
5302         struct list_head *handle_list = NULL;
5303         struct r5worker_group *wg;
5304         bool second_try = !r5c_is_writeback(conf->log) &&
5305                 !r5l_log_disk_error(conf);
5306         bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5307                 r5l_log_disk_error(conf);
5308
5309 again:
5310         wg = NULL;
5311         sh = NULL;
5312         if (conf->worker_cnt_per_group == 0) {
5313                 handle_list = try_loprio ? &conf->loprio_list :
5314                                         &conf->handle_list;
5315         } else if (group != ANY_GROUP) {
5316                 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5317                                 &conf->worker_groups[group].handle_list;
5318                 wg = &conf->worker_groups[group];
5319         } else {
5320                 int i;
5321                 for (i = 0; i < conf->group_cnt; i++) {
5322                         handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5323                                 &conf->worker_groups[i].handle_list;
5324                         wg = &conf->worker_groups[i];
5325                         if (!list_empty(handle_list))
5326                                 break;
5327                 }
5328         }
5329
5330         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5331                   __func__,
5332                   list_empty(handle_list) ? "empty" : "busy",
5333                   list_empty(&conf->hold_list) ? "empty" : "busy",
5334                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
5335
5336         if (!list_empty(handle_list)) {
5337                 sh = list_entry(handle_list->next, typeof(*sh), lru);
5338
5339                 if (list_empty(&conf->hold_list))
5340                         conf->bypass_count = 0;
5341                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5342                         if (conf->hold_list.next == conf->last_hold)
5343                                 conf->bypass_count++;
5344                         else {
5345                                 conf->last_hold = conf->hold_list.next;
5346                                 conf->bypass_count -= conf->bypass_threshold;
5347                                 if (conf->bypass_count < 0)
5348                                         conf->bypass_count = 0;
5349                         }
5350                 }
5351         } else if (!list_empty(&conf->hold_list) &&
5352                    ((conf->bypass_threshold &&
5353                      conf->bypass_count > conf->bypass_threshold) ||
5354                     atomic_read(&conf->pending_full_writes) == 0)) {
5355
5356                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
5357                         if (conf->worker_cnt_per_group == 0 ||
5358                             group == ANY_GROUP ||
5359                             !cpu_online(tmp->cpu) ||
5360                             cpu_to_group(tmp->cpu) == group) {
5361                                 sh = tmp;
5362                                 break;
5363                         }
5364                 }
5365
5366                 if (sh) {
5367                         conf->bypass_count -= conf->bypass_threshold;
5368                         if (conf->bypass_count < 0)
5369                                 conf->bypass_count = 0;
5370                 }
5371                 wg = NULL;
5372         }
5373
5374         if (!sh) {
5375                 if (second_try)
5376                         return NULL;
5377                 second_try = true;
5378                 try_loprio = !try_loprio;
5379                 goto again;
5380         }
5381
5382         if (wg) {
5383                 wg->stripes_cnt--;
5384                 sh->group = NULL;
5385         }
5386         list_del_init(&sh->lru);
5387         BUG_ON(atomic_inc_return(&sh->count) != 1);
5388         return sh;
5389 }
5390
5391 struct raid5_plug_cb {
5392         struct blk_plug_cb      cb;
5393         struct list_head        list;
5394         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5395 };
5396
5397 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5398 {
5399         struct raid5_plug_cb *cb = container_of(
5400                 blk_cb, struct raid5_plug_cb, cb);
5401         struct stripe_head *sh;
5402         struct mddev *mddev = cb->cb.data;
5403         struct r5conf *conf = mddev->private;
5404         int cnt = 0;
5405         int hash;
5406
5407         if (cb->list.next && !list_empty(&cb->list)) {
5408                 spin_lock_irq(&conf->device_lock);
5409                 while (!list_empty(&cb->list)) {
5410                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
5411                         list_del_init(&sh->lru);
5412                         /*
5413                          * avoid race release_stripe_plug() sees
5414                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
5415                          * is still in our list
5416                          */
5417                         smp_mb__before_atomic();
5418                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5419                         /*
5420                          * STRIPE_ON_RELEASE_LIST could be set here. In that
5421                          * case, the count is always > 1 here
5422                          */
5423                         hash = sh->hash_lock_index;
5424                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5425                         cnt++;
5426                 }
5427                 spin_unlock_irq(&conf->device_lock);
5428         }
5429         release_inactive_stripe_list(conf, cb->temp_inactive_list,
5430                                      NR_STRIPE_HASH_LOCKS);
5431         if (mddev->queue)
5432                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5433         kfree(cb);
5434 }
5435
5436 static void release_stripe_plug(struct mddev *mddev,
5437                                 struct stripe_head *sh)
5438 {
5439         struct blk_plug_cb *blk_cb = blk_check_plugged(
5440                 raid5_unplug, mddev,
5441                 sizeof(struct raid5_plug_cb));
5442         struct raid5_plug_cb *cb;
5443
5444         if (!blk_cb) {
5445                 raid5_release_stripe(sh);
5446                 return;
5447         }
5448
5449         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5450
5451         if (cb->list.next == NULL) {
5452                 int i;
5453                 INIT_LIST_HEAD(&cb->list);
5454                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5455                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
5456         }
5457
5458         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5459                 list_add_tail(&sh->lru, &cb->list);
5460         else
5461                 raid5_release_stripe(sh);
5462 }
5463
5464 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5465 {
5466         struct r5conf *conf = mddev->private;
5467         sector_t logical_sector, last_sector;
5468         struct stripe_head *sh;
5469         int stripe_sectors;
5470
5471         if (mddev->reshape_position != MaxSector)
5472                 /* Skip discard while reshape is happening */
5473                 return;
5474
5475         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5476         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5477
5478         bi->bi_next = NULL;
5479
5480         stripe_sectors = conf->chunk_sectors *
5481                 (conf->raid_disks - conf->max_degraded);
5482         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5483                                                stripe_sectors);
5484         sector_div(last_sector, stripe_sectors);
5485
5486         logical_sector *= conf->chunk_sectors;
5487         last_sector *= conf->chunk_sectors;
5488
5489         for (; logical_sector < last_sector;
5490              logical_sector += STRIPE_SECTORS) {
5491                 DEFINE_WAIT(w);
5492                 int d;
5493         again:
5494                 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5495                 prepare_to_wait(&conf->wait_for_overlap, &w,
5496                                 TASK_UNINTERRUPTIBLE);
5497                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5498                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5499                         raid5_release_stripe(sh);
5500                         schedule();
5501                         goto again;
5502                 }
5503                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5504                 spin_lock_irq(&sh->stripe_lock);
5505                 for (d = 0; d < conf->raid_disks; d++) {
5506                         if (d == sh->pd_idx || d == sh->qd_idx)
5507                                 continue;
5508                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5509                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5510                                 spin_unlock_irq(&sh->stripe_lock);
5511                                 raid5_release_stripe(sh);
5512                                 schedule();
5513                                 goto again;
5514                         }
5515                 }
5516                 set_bit(STRIPE_DISCARD, &sh->state);
5517                 finish_wait(&conf->wait_for_overlap, &w);
5518                 sh->overwrite_disks = 0;
5519                 for (d = 0; d < conf->raid_disks; d++) {
5520                         if (d == sh->pd_idx || d == sh->qd_idx)
5521                                 continue;
5522                         sh->dev[d].towrite = bi;
5523                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5524                         bio_inc_remaining(bi);
5525                         md_write_inc(mddev, bi);
5526                         sh->overwrite_disks++;
5527                 }
5528                 spin_unlock_irq(&sh->stripe_lock);
5529                 if (conf->mddev->bitmap) {
5530                         for (d = 0;
5531                              d < conf->raid_disks - conf->max_degraded;
5532                              d++)
5533                                 bitmap_startwrite(mddev->bitmap,
5534                                                   sh->sector,
5535                                                   STRIPE_SECTORS,
5536                                                   0);
5537                         sh->bm_seq = conf->seq_flush + 1;
5538                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5539                 }
5540
5541                 set_bit(STRIPE_HANDLE, &sh->state);
5542                 clear_bit(STRIPE_DELAYED, &sh->state);
5543                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5544                         atomic_inc(&conf->preread_active_stripes);
5545                 release_stripe_plug(mddev, sh);
5546         }
5547
5548         bio_endio(bi);
5549 }
5550
5551 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5552 {
5553         struct r5conf *conf = mddev->private;
5554         int dd_idx;
5555         sector_t new_sector;
5556         sector_t logical_sector, last_sector;
5557         struct stripe_head *sh;
5558         const int rw = bio_data_dir(bi);
5559         DEFINE_WAIT(w);
5560         bool do_prepare;
5561         bool do_flush = false;
5562
5563         if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5564                 int ret = r5l_handle_flush_request(conf->log, bi);
5565
5566                 if (ret == 0)
5567                         return true;
5568                 if (ret == -ENODEV) {
5569                         md_flush_request(mddev, bi);
5570                         return true;
5571                 }
5572                 /* ret == -EAGAIN, fallback */
5573                 /*
5574                  * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5575                  * we need to flush journal device
5576                  */
5577                 do_flush = bi->bi_opf & REQ_PREFLUSH;
5578         }
5579
5580         if (!md_write_start(mddev, bi))
5581                 return false;
5582         /*
5583          * If array is degraded, better not do chunk aligned read because
5584          * later we might have to read it again in order to reconstruct
5585          * data on failed drives.
5586          */
5587         if (rw == READ && mddev->degraded == 0 &&
5588             mddev->reshape_position == MaxSector) {
5589                 bi = chunk_aligned_read(mddev, bi);
5590                 if (!bi)
5591                         return true;
5592         }
5593
5594         if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5595                 make_discard_request(mddev, bi);
5596                 md_write_end(mddev);
5597                 return true;
5598         }
5599
5600         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5601         last_sector = bio_end_sector(bi);
5602         bi->bi_next = NULL;
5603
5604         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5605         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5606                 int previous;
5607                 int seq;
5608
5609                 do_prepare = false;
5610         retry:
5611                 seq = read_seqcount_begin(&conf->gen_lock);
5612                 previous = 0;
5613                 if (do_prepare)
5614                         prepare_to_wait(&conf->wait_for_overlap, &w,
5615                                 TASK_UNINTERRUPTIBLE);
5616                 if (unlikely(conf->reshape_progress != MaxSector)) {
5617                         /* spinlock is needed as reshape_progress may be
5618                          * 64bit on a 32bit platform, and so it might be
5619                          * possible to see a half-updated value
5620                          * Of course reshape_progress could change after
5621                          * the lock is dropped, so once we get a reference
5622                          * to the stripe that we think it is, we will have
5623                          * to check again.
5624                          */
5625                         spin_lock_irq(&conf->device_lock);
5626                         if (mddev->reshape_backwards
5627                             ? logical_sector < conf->reshape_progress
5628                             : logical_sector >= conf->reshape_progress) {
5629                                 previous = 1;
5630                         } else {
5631                                 if (mddev->reshape_backwards
5632                                     ? logical_sector < conf->reshape_safe
5633                                     : logical_sector >= conf->reshape_safe) {
5634                                         spin_unlock_irq(&conf->device_lock);
5635                                         schedule();
5636                                         do_prepare = true;
5637                                         goto retry;
5638                                 }
5639                         }
5640                         spin_unlock_irq(&conf->device_lock);
5641                 }
5642
5643                 new_sector = raid5_compute_sector(conf, logical_sector,
5644                                                   previous,
5645                                                   &dd_idx, NULL);
5646                 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5647                         (unsigned long long)new_sector,
5648                         (unsigned long long)logical_sector);
5649
5650                 sh = raid5_get_active_stripe(conf, new_sector, previous,
5651                                        (bi->bi_opf & REQ_RAHEAD), 0);
5652                 if (sh) {
5653                         if (unlikely(previous)) {
5654                                 /* expansion might have moved on while waiting for a
5655                                  * stripe, so we must do the range check again.
5656                                  * Expansion could still move past after this
5657                                  * test, but as we are holding a reference to
5658                                  * 'sh', we know that if that happens,
5659                                  *  STRIPE_EXPANDING will get set and the expansion
5660                                  * won't proceed until we finish with the stripe.
5661                                  */
5662                                 int must_retry = 0;
5663                                 spin_lock_irq(&conf->device_lock);
5664                                 if (mddev->reshape_backwards
5665                                     ? logical_sector >= conf->reshape_progress
5666                                     : logical_sector < conf->reshape_progress)
5667                                         /* mismatch, need to try again */
5668                                         must_retry = 1;
5669                                 spin_unlock_irq(&conf->device_lock);
5670                                 if (must_retry) {
5671                                         raid5_release_stripe(sh);
5672                                         schedule();
5673                                         do_prepare = true;
5674                                         goto retry;
5675                                 }
5676                         }
5677                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5678                                 /* Might have got the wrong stripe_head
5679                                  * by accident
5680                                  */
5681                                 raid5_release_stripe(sh);
5682                                 goto retry;
5683                         }
5684
5685                         if (rw == WRITE &&
5686                             logical_sector >= mddev->suspend_lo &&
5687                             logical_sector < mddev->suspend_hi) {
5688                                 raid5_release_stripe(sh);
5689                                 /* As the suspend_* range is controlled by
5690                                  * userspace, we want an interruptible
5691                                  * wait.
5692                                  */
5693                                 prepare_to_wait(&conf->wait_for_overlap,
5694                                                 &w, TASK_INTERRUPTIBLE);
5695                                 if (logical_sector >= mddev->suspend_lo &&
5696                                     logical_sector < mddev->suspend_hi) {
5697                                         sigset_t full, old;
5698                                         sigfillset(&full);
5699                                         sigprocmask(SIG_BLOCK, &full, &old);
5700                                         schedule();
5701                                         sigprocmask(SIG_SETMASK, &old, NULL);
5702                                         do_prepare = true;
5703                                 }
5704                                 goto retry;
5705                         }
5706
5707                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5708                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5709                                 /* Stripe is busy expanding or
5710                                  * add failed due to overlap.  Flush everything
5711                                  * and wait a while
5712                                  */
5713                                 md_wakeup_thread(mddev->thread);
5714                                 raid5_release_stripe(sh);
5715                                 schedule();
5716                                 do_prepare = true;
5717                                 goto retry;
5718                         }
5719                         if (do_flush) {
5720                                 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5721                                 /* we only need flush for one stripe */
5722                                 do_flush = false;
5723                         }
5724
5725                         set_bit(STRIPE_HANDLE, &sh->state);
5726                         clear_bit(STRIPE_DELAYED, &sh->state);
5727                         if ((!sh->batch_head || sh == sh->batch_head) &&
5728                             (bi->bi_opf & REQ_SYNC) &&
5729                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5730                                 atomic_inc(&conf->preread_active_stripes);
5731                         release_stripe_plug(mddev, sh);
5732                 } else {
5733                         /* cannot get stripe for read-ahead, just give-up */
5734                         bi->bi_status = BLK_STS_IOERR;
5735                         break;
5736                 }
5737         }
5738         finish_wait(&conf->wait_for_overlap, &w);
5739
5740         if (rw == WRITE)
5741                 md_write_end(mddev);
5742         bio_endio(bi);
5743         return true;
5744 }
5745
5746 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5747
5748 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5749 {
5750         /* reshaping is quite different to recovery/resync so it is
5751          * handled quite separately ... here.
5752          *
5753          * On each call to sync_request, we gather one chunk worth of
5754          * destination stripes and flag them as expanding.
5755          * Then we find all the source stripes and request reads.
5756          * As the reads complete, handle_stripe will copy the data
5757          * into the destination stripe and release that stripe.
5758          */
5759         struct r5conf *conf = mddev->private;
5760         struct stripe_head *sh;
5761         sector_t first_sector, last_sector;
5762         int raid_disks = conf->previous_raid_disks;
5763         int data_disks = raid_disks - conf->max_degraded;
5764         int new_data_disks = conf->raid_disks - conf->max_degraded;
5765         int i;
5766         int dd_idx;
5767         sector_t writepos, readpos, safepos;
5768         sector_t stripe_addr;
5769         int reshape_sectors;
5770         struct list_head stripes;
5771         sector_t retn;
5772
5773         if (sector_nr == 0) {
5774                 /* If restarting in the middle, skip the initial sectors */
5775                 if (mddev->reshape_backwards &&
5776                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5777                         sector_nr = raid5_size(mddev, 0, 0)
5778                                 - conf->reshape_progress;
5779                 } else if (mddev->reshape_backwards &&
5780                            conf->reshape_progress == MaxSector) {
5781                         /* shouldn't happen, but just in case, finish up.*/
5782                         sector_nr = MaxSector;
5783                 } else if (!mddev->reshape_backwards &&
5784                            conf->reshape_progress > 0)
5785                         sector_nr = conf->reshape_progress;
5786                 sector_div(sector_nr, new_data_disks);
5787                 if (sector_nr) {
5788                         mddev->curr_resync_completed = sector_nr;
5789                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5790                         *skipped = 1;
5791                         retn = sector_nr;
5792                         goto finish;
5793                 }
5794         }
5795
5796         /* We need to process a full chunk at a time.
5797          * If old and new chunk sizes differ, we need to process the
5798          * largest of these
5799          */
5800
5801         reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5802
5803         /* We update the metadata at least every 10 seconds, or when
5804          * the data about to be copied would over-write the source of
5805          * the data at the front of the range.  i.e. one new_stripe
5806          * along from reshape_progress new_maps to after where
5807          * reshape_safe old_maps to
5808          */
5809         writepos = conf->reshape_progress;
5810         sector_div(writepos, new_data_disks);
5811         readpos = conf->reshape_progress;
5812         sector_div(readpos, data_disks);
5813         safepos = conf->reshape_safe;
5814         sector_div(safepos, data_disks);
5815         if (mddev->reshape_backwards) {
5816                 BUG_ON(writepos < reshape_sectors);
5817                 writepos -= reshape_sectors;
5818                 readpos += reshape_sectors;
5819                 safepos += reshape_sectors;
5820         } else {
5821                 writepos += reshape_sectors;
5822                 /* readpos and safepos are worst-case calculations.
5823                  * A negative number is overly pessimistic, and causes
5824                  * obvious problems for unsigned storage.  So clip to 0.
5825                  */
5826                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5827                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5828         }
5829
5830         /* Having calculated the 'writepos' possibly use it
5831          * to set 'stripe_addr' which is where we will write to.
5832          */
5833         if (mddev->reshape_backwards) {
5834                 BUG_ON(conf->reshape_progress == 0);
5835                 stripe_addr = writepos;
5836                 BUG_ON((mddev->dev_sectors &
5837                         ~((sector_t)reshape_sectors - 1))
5838                        - reshape_sectors - stripe_addr
5839                        != sector_nr);
5840         } else {
5841                 BUG_ON(writepos != sector_nr + reshape_sectors);
5842                 stripe_addr = sector_nr;
5843         }
5844
5845         /* 'writepos' is the most advanced device address we might write.
5846          * 'readpos' is the least advanced device address we might read.
5847          * 'safepos' is the least address recorded in the metadata as having
5848          *     been reshaped.
5849          * If there is a min_offset_diff, these are adjusted either by
5850          * increasing the safepos/readpos if diff is negative, or
5851          * increasing writepos if diff is positive.
5852          * If 'readpos' is then behind 'writepos', there is no way that we can
5853          * ensure safety in the face of a crash - that must be done by userspace
5854          * making a backup of the data.  So in that case there is no particular
5855          * rush to update metadata.
5856          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5857          * update the metadata to advance 'safepos' to match 'readpos' so that
5858          * we can be safe in the event of a crash.
5859          * So we insist on updating metadata if safepos is behind writepos and
5860          * readpos is beyond writepos.
5861          * In any case, update the metadata every 10 seconds.
5862          * Maybe that number should be configurable, but I'm not sure it is
5863          * worth it.... maybe it could be a multiple of safemode_delay???
5864          */
5865         if (conf->min_offset_diff < 0) {
5866                 safepos += -conf->min_offset_diff;
5867                 readpos += -conf->min_offset_diff;
5868         } else
5869                 writepos += conf->min_offset_diff;
5870
5871         if ((mddev->reshape_backwards
5872              ? (safepos > writepos && readpos < writepos)
5873              : (safepos < writepos && readpos > writepos)) ||
5874             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5875                 /* Cannot proceed until we've updated the superblock... */
5876                 wait_event(conf->wait_for_overlap,
5877                            atomic_read(&conf->reshape_stripes)==0
5878                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5879                 if (atomic_read(&conf->reshape_stripes) != 0)
5880                         return 0;
5881                 mddev->reshape_position = conf->reshape_progress;
5882                 mddev->curr_resync_completed = sector_nr;
5883                 conf->reshape_checkpoint = jiffies;
5884                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5885                 md_wakeup_thread(mddev->thread);
5886                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5887                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5888                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5889                         return 0;
5890                 spin_lock_irq(&conf->device_lock);
5891                 conf->reshape_safe = mddev->reshape_position;
5892                 spin_unlock_irq(&conf->device_lock);
5893                 wake_up(&conf->wait_for_overlap);
5894                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5895         }
5896
5897         INIT_LIST_HEAD(&stripes);
5898         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5899                 int j;
5900                 int skipped_disk = 0;
5901                 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5902                 set_bit(STRIPE_EXPANDING, &sh->state);
5903                 atomic_inc(&conf->reshape_stripes);
5904                 /* If any of this stripe is beyond the end of the old
5905                  * array, then we need to zero those blocks
5906                  */
5907                 for (j=sh->disks; j--;) {
5908                         sector_t s;
5909                         if (j == sh->pd_idx)
5910                                 continue;
5911                         if (conf->level == 6 &&
5912                             j == sh->qd_idx)
5913                                 continue;
5914                         s = raid5_compute_blocknr(sh, j, 0);
5915                         if (s < raid5_size(mddev, 0, 0)) {
5916                                 skipped_disk = 1;
5917                                 continue;
5918                         }
5919                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5920                         set_bit(R5_Expanded, &sh->dev[j].flags);
5921                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5922                 }
5923                 if (!skipped_disk) {
5924                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5925                         set_bit(STRIPE_HANDLE, &sh->state);
5926                 }
5927                 list_add(&sh->lru, &stripes);
5928         }
5929         spin_lock_irq(&conf->device_lock);
5930         if (mddev->reshape_backwards)
5931                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5932         else
5933                 conf->reshape_progress += reshape_sectors * new_data_disks;
5934         spin_unlock_irq(&conf->device_lock);
5935         /* Ok, those stripe are ready. We can start scheduling
5936          * reads on the source stripes.
5937          * The source stripes are determined by mapping the first and last
5938          * block on the destination stripes.
5939          */
5940         first_sector =
5941                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5942                                      1, &dd_idx, NULL);
5943         last_sector =
5944                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5945                                             * new_data_disks - 1),
5946                                      1, &dd_idx, NULL);
5947         if (last_sector >= mddev->dev_sectors)
5948                 last_sector = mddev->dev_sectors - 1;
5949         while (first_sector <= last_sector) {
5950                 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5951                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5952                 set_bit(STRIPE_HANDLE, &sh->state);
5953                 raid5_release_stripe(sh);
5954                 first_sector += STRIPE_SECTORS;
5955         }
5956         /* Now that the sources are clearly marked, we can release
5957          * the destination stripes
5958          */
5959         while (!list_empty(&stripes)) {
5960                 sh = list_entry(stripes.next, struct stripe_head, lru);
5961                 list_del_init(&sh->lru);
5962                 raid5_release_stripe(sh);
5963         }
5964         /* If this takes us to the resync_max point where we have to pause,
5965          * then we need to write out the superblock.
5966          */
5967         sector_nr += reshape_sectors;
5968         retn = reshape_sectors;
5969 finish:
5970         if (mddev->curr_resync_completed > mddev->resync_max ||
5971             (sector_nr - mddev->curr_resync_completed) * 2
5972             >= mddev->resync_max - mddev->curr_resync_completed) {
5973                 /* Cannot proceed until we've updated the superblock... */
5974                 wait_event(conf->wait_for_overlap,
5975                            atomic_read(&conf->reshape_stripes) == 0
5976                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5977                 if (atomic_read(&conf->reshape_stripes) != 0)
5978                         goto ret;
5979                 mddev->reshape_position = conf->reshape_progress;
5980                 mddev->curr_resync_completed = sector_nr;
5981                 conf->reshape_checkpoint = jiffies;
5982                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5983                 md_wakeup_thread(mddev->thread);
5984                 wait_event(mddev->sb_wait,
5985                            !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5986                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5987                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5988                         goto ret;
5989                 spin_lock_irq(&conf->device_lock);
5990                 conf->reshape_safe = mddev->reshape_position;
5991                 spin_unlock_irq(&conf->device_lock);
5992                 wake_up(&conf->wait_for_overlap);
5993                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5994         }
5995 ret:
5996         return retn;
5997 }
5998
5999 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6000                                           int *skipped)
6001 {
6002         struct r5conf *conf = mddev->private;
6003         struct stripe_head *sh;
6004         sector_t max_sector = mddev->dev_sectors;
6005         sector_t sync_blocks;
6006         int still_degraded = 0;
6007         int i;
6008
6009         if (sector_nr >= max_sector) {
6010                 /* just being told to finish up .. nothing much to do */
6011
6012                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6013                         end_reshape(conf);
6014                         return 0;
6015                 }
6016
6017                 if (mddev->curr_resync < max_sector) /* aborted */
6018                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6019                                         &sync_blocks, 1);
6020                 else /* completed sync */
6021                         conf->fullsync = 0;
6022                 bitmap_close_sync(mddev->bitmap);
6023
6024                 return 0;
6025         }
6026
6027         /* Allow raid5_quiesce to complete */
6028         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6029
6030         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6031                 return reshape_request(mddev, sector_nr, skipped);
6032
6033         /* No need to check resync_max as we never do more than one
6034          * stripe, and as resync_max will always be on a chunk boundary,
6035          * if the check in md_do_sync didn't fire, there is no chance
6036          * of overstepping resync_max here
6037          */
6038
6039         /* if there is too many failed drives and we are trying
6040          * to resync, then assert that we are finished, because there is
6041          * nothing we can do.
6042          */
6043         if (mddev->degraded >= conf->max_degraded &&
6044             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6045                 sector_t rv = mddev->dev_sectors - sector_nr;
6046                 *skipped = 1;
6047                 return rv;
6048         }
6049         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6050             !conf->fullsync &&
6051             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6052             sync_blocks >= STRIPE_SECTORS) {
6053                 /* we can skip this block, and probably more */
6054                 sync_blocks /= STRIPE_SECTORS;
6055                 *skipped = 1;
6056                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6057         }
6058
6059         bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6060
6061         sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6062         if (sh == NULL) {
6063                 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6064                 /* make sure we don't swamp the stripe cache if someone else
6065                  * is trying to get access
6066                  */
6067                 schedule_timeout_uninterruptible(1);
6068         }
6069         /* Need to check if array will still be degraded after recovery/resync
6070          * Note in case of > 1 drive failures it's possible we're rebuilding
6071          * one drive while leaving another faulty drive in array.
6072          */
6073         rcu_read_lock();
6074         for (i = 0; i < conf->raid_disks; i++) {
6075                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
6076
6077                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6078                         still_degraded = 1;
6079         }
6080         rcu_read_unlock();
6081
6082         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6083
6084         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6085         set_bit(STRIPE_HANDLE, &sh->state);
6086
6087         raid5_release_stripe(sh);
6088
6089         return STRIPE_SECTORS;
6090 }
6091
6092 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6093                                unsigned int offset)
6094 {
6095         /* We may not be able to submit a whole bio at once as there
6096          * may not be enough stripe_heads available.
6097          * We cannot pre-allocate enough stripe_heads as we may need
6098          * more than exist in the cache (if we allow ever large chunks).
6099          * So we do one stripe head at a time and record in
6100          * ->bi_hw_segments how many have been done.
6101          *
6102          * We *know* that this entire raid_bio is in one chunk, so
6103          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6104          */
6105         struct stripe_head *sh;
6106         int dd_idx;
6107         sector_t sector, logical_sector, last_sector;
6108         int scnt = 0;
6109         int handled = 0;
6110
6111         logical_sector = raid_bio->bi_iter.bi_sector &
6112                 ~((sector_t)STRIPE_SECTORS-1);
6113         sector = raid5_compute_sector(conf, logical_sector,
6114                                       0, &dd_idx, NULL);
6115         last_sector = bio_end_sector(raid_bio);
6116
6117         for (; logical_sector < last_sector;
6118              logical_sector += STRIPE_SECTORS,
6119                      sector += STRIPE_SECTORS,
6120                      scnt++) {
6121
6122                 if (scnt < offset)
6123                         /* already done this stripe */
6124                         continue;
6125
6126                 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6127
6128                 if (!sh) {
6129                         /* failed to get a stripe - must wait */
6130                         conf->retry_read_aligned = raid_bio;
6131                         conf->retry_read_offset = scnt;
6132                         return handled;
6133                 }
6134
6135                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6136                         raid5_release_stripe(sh);
6137                         conf->retry_read_aligned = raid_bio;
6138                         conf->retry_read_offset = scnt;
6139                         return handled;
6140                 }
6141
6142                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6143                 handle_stripe(sh);
6144                 raid5_release_stripe(sh);
6145                 handled++;
6146         }
6147
6148         bio_endio(raid_bio);
6149
6150         if (atomic_dec_and_test(&conf->active_aligned_reads))
6151                 wake_up(&conf->wait_for_quiescent);
6152         return handled;
6153 }
6154
6155 static int handle_active_stripes(struct r5conf *conf, int group,
6156                                  struct r5worker *worker,
6157                                  struct list_head *temp_inactive_list)
6158 {
6159         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6160         int i, batch_size = 0, hash;
6161         bool release_inactive = false;
6162
6163         while (batch_size < MAX_STRIPE_BATCH &&
6164                         (sh = __get_priority_stripe(conf, group)) != NULL)
6165                 batch[batch_size++] = sh;
6166
6167         if (batch_size == 0) {
6168                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6169                         if (!list_empty(temp_inactive_list + i))
6170                                 break;
6171                 if (i == NR_STRIPE_HASH_LOCKS) {
6172                         spin_unlock_irq(&conf->device_lock);
6173                         r5l_flush_stripe_to_raid(conf->log);
6174                         spin_lock_irq(&conf->device_lock);
6175                         return batch_size;
6176                 }
6177                 release_inactive = true;
6178         }
6179         spin_unlock_irq(&conf->device_lock);
6180
6181         release_inactive_stripe_list(conf, temp_inactive_list,
6182                                      NR_STRIPE_HASH_LOCKS);
6183
6184         r5l_flush_stripe_to_raid(conf->log);
6185         if (release_inactive) {
6186                 spin_lock_irq(&conf->device_lock);
6187                 return 0;
6188         }
6189
6190         for (i = 0; i < batch_size; i++)
6191                 handle_stripe(batch[i]);
6192         log_write_stripe_run(conf);
6193
6194         cond_resched();
6195
6196         spin_lock_irq(&conf->device_lock);
6197         for (i = 0; i < batch_size; i++) {
6198                 hash = batch[i]->hash_lock_index;
6199                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6200         }
6201         return batch_size;
6202 }
6203
6204 static void raid5_do_work(struct work_struct *work)
6205 {
6206         struct r5worker *worker = container_of(work, struct r5worker, work);
6207         struct r5worker_group *group = worker->group;
6208         struct r5conf *conf = group->conf;
6209         struct mddev *mddev = conf->mddev;
6210         int group_id = group - conf->worker_groups;
6211         int handled;
6212         struct blk_plug plug;
6213
6214         pr_debug("+++ raid5worker active\n");
6215
6216         blk_start_plug(&plug);
6217         handled = 0;
6218         spin_lock_irq(&conf->device_lock);
6219         while (1) {
6220                 int batch_size, released;
6221
6222                 released = release_stripe_list(conf, worker->temp_inactive_list);
6223
6224                 batch_size = handle_active_stripes(conf, group_id, worker,
6225                                                    worker->temp_inactive_list);
6226                 worker->working = false;
6227                 if (!batch_size && !released)
6228                         break;
6229                 handled += batch_size;
6230                 wait_event_lock_irq(mddev->sb_wait,
6231                         !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6232                         conf->device_lock);
6233         }
6234         pr_debug("%d stripes handled\n", handled);
6235
6236         spin_unlock_irq(&conf->device_lock);
6237
6238         async_tx_issue_pending_all();
6239         blk_finish_plug(&plug);
6240
6241         pr_debug("--- raid5worker inactive\n");
6242 }
6243
6244 /*
6245  * This is our raid5 kernel thread.
6246  *
6247  * We scan the hash table for stripes which can be handled now.
6248  * During the scan, completed stripes are saved for us by the interrupt
6249  * handler, so that they will not have to wait for our next wakeup.
6250  */
6251 static void raid5d(struct md_thread *thread)
6252 {
6253         struct mddev *mddev = thread->mddev;
6254         struct r5conf *conf = mddev->private;
6255         int handled;
6256         struct blk_plug plug;
6257
6258         pr_debug("+++ raid5d active\n");
6259
6260         md_check_recovery(mddev);
6261
6262         blk_start_plug(&plug);
6263         handled = 0;
6264         spin_lock_irq(&conf->device_lock);
6265         while (1) {
6266                 struct bio *bio;
6267                 int batch_size, released;
6268                 unsigned int offset;
6269
6270                 released = release_stripe_list(conf, conf->temp_inactive_list);
6271                 if (released)
6272                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
6273
6274                 if (
6275                     !list_empty(&conf->bitmap_list)) {
6276                         /* Now is a good time to flush some bitmap updates */
6277                         conf->seq_flush++;
6278                         spin_unlock_irq(&conf->device_lock);
6279                         bitmap_unplug(mddev->bitmap);
6280                         spin_lock_irq(&conf->device_lock);
6281                         conf->seq_write = conf->seq_flush;
6282                         activate_bit_delay(conf, conf->temp_inactive_list);
6283                 }
6284                 raid5_activate_delayed(conf);
6285
6286                 while ((bio = remove_bio_from_retry(conf, &offset))) {
6287                         int ok;
6288                         spin_unlock_irq(&conf->device_lock);
6289                         ok = retry_aligned_read(conf, bio, offset);
6290                         spin_lock_irq(&conf->device_lock);
6291                         if (!ok)
6292                                 break;
6293                         handled++;
6294                 }
6295
6296                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6297                                                    conf->temp_inactive_list);
6298                 if (!batch_size && !released)
6299                         break;
6300                 handled += batch_size;
6301
6302                 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6303                         spin_unlock_irq(&conf->device_lock);
6304                         md_check_recovery(mddev);
6305                         spin_lock_irq(&conf->device_lock);
6306                 }
6307         }
6308         pr_debug("%d stripes handled\n", handled);
6309
6310         spin_unlock_irq(&conf->device_lock);
6311         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6312             mutex_trylock(&conf->cache_size_mutex)) {
6313                 grow_one_stripe(conf, __GFP_NOWARN);
6314                 /* Set flag even if allocation failed.  This helps
6315                  * slow down allocation requests when mem is short
6316                  */
6317                 set_bit(R5_DID_ALLOC, &conf->cache_state);
6318                 mutex_unlock(&conf->cache_size_mutex);
6319         }
6320
6321         flush_deferred_bios(conf);
6322
6323         r5l_flush_stripe_to_raid(conf->log);
6324
6325         async_tx_issue_pending_all();
6326         blk_finish_plug(&plug);
6327
6328         pr_debug("--- raid5d inactive\n");
6329 }
6330
6331 static ssize_t
6332 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6333 {
6334         struct r5conf *conf;
6335         int ret = 0;
6336         spin_lock(&mddev->lock);
6337         conf = mddev->private;
6338         if (conf)
6339                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6340         spin_unlock(&mddev->lock);
6341         return ret;
6342 }
6343
6344 int
6345 raid5_set_cache_size(struct mddev *mddev, int size)
6346 {
6347         struct r5conf *conf = mddev->private;
6348
6349         if (size <= 16 || size > 32768)
6350                 return -EINVAL;
6351
6352         conf->min_nr_stripes = size;
6353         mutex_lock(&conf->cache_size_mutex);
6354         while (size < conf->max_nr_stripes &&
6355                drop_one_stripe(conf))
6356                 ;
6357         mutex_unlock(&conf->cache_size_mutex);
6358
6359         md_allow_write(mddev);
6360
6361         mutex_lock(&conf->cache_size_mutex);
6362         while (size > conf->max_nr_stripes)
6363                 if (!grow_one_stripe(conf, GFP_KERNEL))
6364                         break;
6365         mutex_unlock(&conf->cache_size_mutex);
6366
6367         return 0;
6368 }
6369 EXPORT_SYMBOL(raid5_set_cache_size);
6370
6371 static ssize_t
6372 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6373 {
6374         struct r5conf *conf;
6375         unsigned long new;
6376         int err;
6377
6378         if (len >= PAGE_SIZE)
6379                 return -EINVAL;
6380         if (kstrtoul(page, 10, &new))
6381                 return -EINVAL;
6382         err = mddev_lock(mddev);
6383         if (err)
6384                 return err;
6385         conf = mddev->private;
6386         if (!conf)
6387                 err = -ENODEV;
6388         else
6389                 err = raid5_set_cache_size(mddev, new);
6390         mddev_unlock(mddev);
6391
6392         return err ?: len;
6393 }
6394
6395 static struct md_sysfs_entry
6396 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6397                                 raid5_show_stripe_cache_size,
6398                                 raid5_store_stripe_cache_size);
6399
6400 static ssize_t
6401 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6402 {
6403         struct r5conf *conf = mddev->private;
6404         if (conf)
6405                 return sprintf(page, "%d\n", conf->rmw_level);
6406         else
6407                 return 0;
6408 }
6409
6410 static ssize_t
6411 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6412 {
6413         struct r5conf *conf = mddev->private;
6414         unsigned long new;
6415
6416         if (!conf)
6417                 return -ENODEV;
6418
6419         if (len >= PAGE_SIZE)
6420                 return -EINVAL;
6421
6422         if (kstrtoul(page, 10, &new))
6423                 return -EINVAL;
6424
6425         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6426                 return -EINVAL;
6427
6428         if (new != PARITY_DISABLE_RMW &&
6429             new != PARITY_ENABLE_RMW &&
6430             new != PARITY_PREFER_RMW)
6431                 return -EINVAL;
6432
6433         conf->rmw_level = new;
6434         return len;
6435 }
6436
6437 static struct md_sysfs_entry
6438 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6439                          raid5_show_rmw_level,
6440                          raid5_store_rmw_level);
6441
6442
6443 static ssize_t
6444 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6445 {
6446         struct r5conf *conf;
6447         int ret = 0;
6448         spin_lock(&mddev->lock);
6449         conf = mddev->private;
6450         if (conf)
6451                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6452         spin_unlock(&mddev->lock);
6453         return ret;
6454 }
6455
6456 static ssize_t
6457 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6458 {
6459         struct r5conf *conf;
6460         unsigned long new;
6461         int err;
6462
6463         if (len >= PAGE_SIZE)
6464                 return -EINVAL;
6465         if (kstrtoul(page, 10, &new))
6466                 return -EINVAL;
6467
6468         err = mddev_lock(mddev);
6469         if (err)
6470                 return err;
6471         conf = mddev->private;
6472         if (!conf)
6473                 err = -ENODEV;
6474         else if (new > conf->min_nr_stripes)
6475                 err = -EINVAL;
6476         else
6477                 conf->bypass_threshold = new;
6478         mddev_unlock(mddev);
6479         return err ?: len;
6480 }
6481
6482 static struct md_sysfs_entry
6483 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6484                                         S_IRUGO | S_IWUSR,
6485                                         raid5_show_preread_threshold,
6486                                         raid5_store_preread_threshold);
6487
6488 static ssize_t
6489 raid5_show_skip_copy(struct mddev *mddev, char *page)
6490 {
6491         struct r5conf *conf;
6492         int ret = 0;
6493         spin_lock(&mddev->lock);
6494         conf = mddev->private;
6495         if (conf)
6496                 ret = sprintf(page, "%d\n", conf->skip_copy);
6497         spin_unlock(&mddev->lock);
6498         return ret;
6499 }
6500
6501 static ssize_t
6502 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6503 {
6504         struct r5conf *conf;
6505         unsigned long new;
6506         int err;
6507
6508         if (len >= PAGE_SIZE)
6509                 return -EINVAL;
6510         if (kstrtoul(page, 10, &new))
6511                 return -EINVAL;
6512         new = !!new;
6513
6514         err = mddev_lock(mddev);
6515         if (err)
6516                 return err;
6517         conf = mddev->private;
6518         if (!conf)
6519                 err = -ENODEV;
6520         else if (new != conf->skip_copy) {
6521                 mddev_suspend(mddev);
6522                 conf->skip_copy = new;
6523                 if (new)
6524                         mddev->queue->backing_dev_info->capabilities |=
6525                                 BDI_CAP_STABLE_WRITES;
6526                 else
6527                         mddev->queue->backing_dev_info->capabilities &=
6528                                 ~BDI_CAP_STABLE_WRITES;
6529                 mddev_resume(mddev);
6530         }
6531         mddev_unlock(mddev);
6532         return err ?: len;
6533 }
6534
6535 static struct md_sysfs_entry
6536 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6537                                         raid5_show_skip_copy,
6538                                         raid5_store_skip_copy);
6539
6540 static ssize_t
6541 stripe_cache_active_show(struct mddev *mddev, char *page)
6542 {
6543         struct r5conf *conf = mddev->private;
6544         if (conf)
6545                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6546         else
6547                 return 0;
6548 }
6549
6550 static struct md_sysfs_entry
6551 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6552
6553 static ssize_t
6554 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6555 {
6556         struct r5conf *conf;
6557         int ret = 0;
6558         spin_lock(&mddev->lock);
6559         conf = mddev->private;
6560         if (conf)
6561                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6562         spin_unlock(&mddev->lock);
6563         return ret;
6564 }
6565
6566 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6567                                int *group_cnt,
6568                                int *worker_cnt_per_group,
6569                                struct r5worker_group **worker_groups);
6570 static ssize_t
6571 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6572 {
6573         struct r5conf *conf;
6574         unsigned long new;
6575         int err;
6576         struct r5worker_group *new_groups, *old_groups;
6577         int group_cnt, worker_cnt_per_group;
6578
6579         if (len >= PAGE_SIZE)
6580                 return -EINVAL;
6581         if (kstrtoul(page, 10, &new))
6582                 return -EINVAL;
6583
6584         err = mddev_lock(mddev);
6585         if (err)
6586                 return err;
6587         conf = mddev->private;
6588         if (!conf)
6589                 err = -ENODEV;
6590         else if (new != conf->worker_cnt_per_group) {
6591                 mddev_suspend(mddev);
6592
6593                 old_groups = conf->worker_groups;
6594                 if (old_groups)
6595                         flush_workqueue(raid5_wq);
6596
6597                 err = alloc_thread_groups(conf, new,
6598                                           &group_cnt, &worker_cnt_per_group,
6599                                           &new_groups);
6600                 if (!err) {
6601                         spin_lock_irq(&conf->device_lock);
6602                         conf->group_cnt = group_cnt;
6603                         conf->worker_cnt_per_group = worker_cnt_per_group;
6604                         conf->worker_groups = new_groups;
6605                         spin_unlock_irq(&conf->device_lock);
6606
6607                         if (old_groups)
6608                                 kfree(old_groups[0].workers);
6609                         kfree(old_groups);
6610                 }
6611                 mddev_resume(mddev);
6612         }
6613         mddev_unlock(mddev);
6614
6615         return err ?: len;
6616 }
6617
6618 static struct md_sysfs_entry
6619 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6620                                 raid5_show_group_thread_cnt,
6621                                 raid5_store_group_thread_cnt);
6622
6623 static struct attribute *raid5_attrs[] =  {
6624         &raid5_stripecache_size.attr,
6625         &raid5_stripecache_active.attr,
6626         &raid5_preread_bypass_threshold.attr,
6627         &raid5_group_thread_cnt.attr,
6628         &raid5_skip_copy.attr,
6629         &raid5_rmw_level.attr,
6630         &r5c_journal_mode.attr,
6631         NULL,
6632 };
6633 static struct attribute_group raid5_attrs_group = {
6634         .name = NULL,
6635         .attrs = raid5_attrs,
6636 };
6637
6638 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6639                                int *group_cnt,
6640                                int *worker_cnt_per_group,
6641                                struct r5worker_group **worker_groups)
6642 {
6643         int i, j, k;
6644         ssize_t size;
6645         struct r5worker *workers;
6646
6647         *worker_cnt_per_group = cnt;
6648         if (cnt == 0) {
6649                 *group_cnt = 0;
6650                 *worker_groups = NULL;
6651                 return 0;
6652         }
6653         *group_cnt = num_possible_nodes();
6654         size = sizeof(struct r5worker) * cnt;
6655         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6656         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6657                                 *group_cnt, GFP_NOIO);
6658         if (!*worker_groups || !workers) {
6659                 kfree(workers);
6660                 kfree(*worker_groups);
6661                 return -ENOMEM;
6662         }
6663
6664         for (i = 0; i < *group_cnt; i++) {
6665                 struct r5worker_group *group;
6666
6667                 group = &(*worker_groups)[i];
6668                 INIT_LIST_HEAD(&group->handle_list);
6669                 INIT_LIST_HEAD(&group->loprio_list);
6670                 group->conf = conf;
6671                 group->workers = workers + i * cnt;
6672
6673                 for (j = 0; j < cnt; j++) {
6674                         struct r5worker *worker = group->workers + j;
6675                         worker->group = group;
6676                         INIT_WORK(&worker->work, raid5_do_work);
6677
6678                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6679                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6680                 }
6681         }
6682
6683         return 0;
6684 }
6685
6686 static void free_thread_groups(struct r5conf *conf)
6687 {
6688         if (conf->worker_groups)
6689                 kfree(conf->worker_groups[0].workers);
6690         kfree(conf->worker_groups);
6691         conf->worker_groups = NULL;
6692 }
6693
6694 static sector_t
6695 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6696 {
6697         struct r5conf *conf = mddev->private;
6698
6699         if (!sectors)
6700                 sectors = mddev->dev_sectors;
6701         if (!raid_disks)
6702                 /* size is defined by the smallest of previous and new size */
6703                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6704
6705         sectors &= ~((sector_t)conf->chunk_sectors - 1);
6706         sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6707         return sectors * (raid_disks - conf->max_degraded);
6708 }
6709
6710 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6711 {
6712         safe_put_page(percpu->spare_page);
6713         if (percpu->scribble)
6714                 flex_array_free(percpu->scribble);
6715         percpu->spare_page = NULL;
6716         percpu->scribble = NULL;
6717 }
6718
6719 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6720 {
6721         if (conf->level == 6 && !percpu->spare_page)
6722                 percpu->spare_page = alloc_page(GFP_KERNEL);
6723         if (!percpu->scribble)
6724                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6725                                                       conf->previous_raid_disks),
6726                                                   max(conf->chunk_sectors,
6727                                                       conf->prev_chunk_sectors)
6728                                                    / STRIPE_SECTORS,
6729                                                   GFP_KERNEL);
6730
6731         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6732                 free_scratch_buffer(conf, percpu);
6733                 return -ENOMEM;
6734         }
6735
6736         return 0;
6737 }
6738
6739 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6740 {
6741         struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6742
6743         free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6744         return 0;
6745 }
6746
6747 static void raid5_free_percpu(struct r5conf *conf)
6748 {
6749         if (!conf->percpu)
6750                 return;
6751
6752         cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6753         free_percpu(conf->percpu);
6754 }
6755
6756 static void free_conf(struct r5conf *conf)
6757 {
6758         int i;
6759
6760         log_exit(conf);
6761
6762         if (conf->shrinker.nr_deferred)
6763                 unregister_shrinker(&conf->shrinker);
6764
6765         free_thread_groups(conf);
6766         shrink_stripes(conf);
6767         raid5_free_percpu(conf);
6768         for (i = 0; i < conf->pool_size; i++)
6769                 if (conf->disks[i].extra_page)
6770                         put_page(conf->disks[i].extra_page);
6771         kfree(conf->disks);
6772         if (conf->bio_split)
6773                 bioset_free(conf->bio_split);
6774         kfree(conf->stripe_hashtbl);
6775         kfree(conf->pending_data);
6776         kfree(conf);
6777 }
6778
6779 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6780 {
6781         struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6782         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6783
6784         if (alloc_scratch_buffer(conf, percpu)) {
6785                 pr_warn("%s: failed memory allocation for cpu%u\n",
6786                         __func__, cpu);
6787                 return -ENOMEM;
6788         }
6789         return 0;
6790 }
6791
6792 static int raid5_alloc_percpu(struct r5conf *conf)
6793 {
6794         int err = 0;
6795
6796         conf->percpu = alloc_percpu(struct raid5_percpu);
6797         if (!conf->percpu)
6798                 return -ENOMEM;
6799
6800         err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6801         if (!err) {
6802                 conf->scribble_disks = max(conf->raid_disks,
6803                         conf->previous_raid_disks);
6804                 conf->scribble_sectors = max(conf->chunk_sectors,
6805                         conf->prev_chunk_sectors);
6806         }
6807         return err;
6808 }
6809
6810 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6811                                       struct shrink_control *sc)
6812 {
6813         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6814         unsigned long ret = SHRINK_STOP;
6815
6816         if (mutex_trylock(&conf->cache_size_mutex)) {
6817                 ret= 0;
6818                 while (ret < sc->nr_to_scan &&
6819                        conf->max_nr_stripes > conf->min_nr_stripes) {
6820                         if (drop_one_stripe(conf) == 0) {
6821                                 ret = SHRINK_STOP;
6822                                 break;
6823                         }
6824                         ret++;
6825                 }
6826                 mutex_unlock(&conf->cache_size_mutex);
6827         }
6828         return ret;
6829 }
6830
6831 static unsigned long raid5_cache_count(struct shrinker *shrink,
6832                                        struct shrink_control *sc)
6833 {
6834         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6835
6836         if (conf->max_nr_stripes < conf->min_nr_stripes)
6837                 /* unlikely, but not impossible */
6838                 return 0;
6839         return conf->max_nr_stripes - conf->min_nr_stripes;
6840 }
6841
6842 static struct r5conf *setup_conf(struct mddev *mddev)
6843 {
6844         struct r5conf *conf;
6845         int raid_disk, memory, max_disks;
6846         struct md_rdev *rdev;
6847         struct disk_info *disk;
6848         char pers_name[6];
6849         int i;
6850         int group_cnt, worker_cnt_per_group;
6851         struct r5worker_group *new_group;
6852
6853         if (mddev->new_level != 5
6854             && mddev->new_level != 4
6855             && mddev->new_level != 6) {
6856                 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6857                         mdname(mddev), mddev->new_level);
6858                 return ERR_PTR(-EIO);
6859         }
6860         if ((mddev->new_level == 5
6861              && !algorithm_valid_raid5(mddev->new_layout)) ||
6862             (mddev->new_level == 6
6863              && !algorithm_valid_raid6(mddev->new_layout))) {
6864                 pr_warn("md/raid:%s: layout %d not supported\n",
6865                         mdname(mddev), mddev->new_layout);
6866                 return ERR_PTR(-EIO);
6867         }
6868         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6869                 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6870                         mdname(mddev), mddev->raid_disks);
6871                 return ERR_PTR(-EINVAL);
6872         }
6873
6874         if (!mddev->new_chunk_sectors ||
6875             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6876             !is_power_of_2(mddev->new_chunk_sectors)) {
6877                 pr_warn("md/raid:%s: invalid chunk size %d\n",
6878                         mdname(mddev), mddev->new_chunk_sectors << 9);
6879                 return ERR_PTR(-EINVAL);
6880         }
6881
6882         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6883         if (conf == NULL)
6884                 goto abort;
6885         INIT_LIST_HEAD(&conf->free_list);
6886         INIT_LIST_HEAD(&conf->pending_list);
6887         conf->pending_data = kzalloc(sizeof(struct r5pending_data) *
6888                 PENDING_IO_MAX, GFP_KERNEL);
6889         if (!conf->pending_data)
6890                 goto abort;
6891         for (i = 0; i < PENDING_IO_MAX; i++)
6892                 list_add(&conf->pending_data[i].sibling, &conf->free_list);
6893         /* Don't enable multi-threading by default*/
6894         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6895                                  &new_group)) {
6896                 conf->group_cnt = group_cnt;
6897                 conf->worker_cnt_per_group = worker_cnt_per_group;
6898                 conf->worker_groups = new_group;
6899         } else
6900                 goto abort;
6901         spin_lock_init(&conf->device_lock);
6902         seqcount_init(&conf->gen_lock);
6903         mutex_init(&conf->cache_size_mutex);
6904         init_waitqueue_head(&conf->wait_for_quiescent);
6905         init_waitqueue_head(&conf->wait_for_stripe);
6906         init_waitqueue_head(&conf->wait_for_overlap);
6907         INIT_LIST_HEAD(&conf->handle_list);
6908         INIT_LIST_HEAD(&conf->loprio_list);
6909         INIT_LIST_HEAD(&conf->hold_list);
6910         INIT_LIST_HEAD(&conf->delayed_list);
6911         INIT_LIST_HEAD(&conf->bitmap_list);
6912         init_llist_head(&conf->released_stripes);
6913         atomic_set(&conf->active_stripes, 0);
6914         atomic_set(&conf->preread_active_stripes, 0);
6915         atomic_set(&conf->active_aligned_reads, 0);
6916         spin_lock_init(&conf->pending_bios_lock);
6917         conf->batch_bio_dispatch = true;
6918         rdev_for_each(rdev, mddev) {
6919                 if (test_bit(Journal, &rdev->flags))
6920                         continue;
6921                 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6922                         conf->batch_bio_dispatch = false;
6923                         break;
6924                 }
6925         }
6926
6927         conf->bypass_threshold = BYPASS_THRESHOLD;
6928         conf->recovery_disabled = mddev->recovery_disabled - 1;
6929
6930         conf->raid_disks = mddev->raid_disks;
6931         if (mddev->reshape_position == MaxSector)
6932                 conf->previous_raid_disks = mddev->raid_disks;
6933         else
6934                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6935         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6936
6937         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6938                               GFP_KERNEL);
6939
6940         if (!conf->disks)
6941                 goto abort;
6942
6943         for (i = 0; i < max_disks; i++) {
6944                 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6945                 if (!conf->disks[i].extra_page)
6946                         goto abort;
6947         }
6948
6949         conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
6950         if (!conf->bio_split)
6951                 goto abort;
6952         conf->mddev = mddev;
6953
6954         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6955                 goto abort;
6956
6957         /* We init hash_locks[0] separately to that it can be used
6958          * as the reference lock in the spin_lock_nest_lock() call
6959          * in lock_all_device_hash_locks_irq in order to convince
6960          * lockdep that we know what we are doing.
6961          */
6962         spin_lock_init(conf->hash_locks);
6963         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6964                 spin_lock_init(conf->hash_locks + i);
6965
6966         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6967                 INIT_LIST_HEAD(conf->inactive_list + i);
6968
6969         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6970                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6971
6972         atomic_set(&conf->r5c_cached_full_stripes, 0);
6973         INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6974         atomic_set(&conf->r5c_cached_partial_stripes, 0);
6975         INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6976         atomic_set(&conf->r5c_flushing_full_stripes, 0);
6977         atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6978
6979         conf->level = mddev->new_level;
6980         conf->chunk_sectors = mddev->new_chunk_sectors;
6981         if (raid5_alloc_percpu(conf) != 0)
6982                 goto abort;
6983
6984         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6985
6986         rdev_for_each(rdev, mddev) {
6987                 raid_disk = rdev->raid_disk;
6988                 if (raid_disk >= max_disks
6989                     || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6990                         continue;
6991                 disk = conf->disks + raid_disk;
6992
6993                 if (test_bit(Replacement, &rdev->flags)) {
6994                         if (disk->replacement)
6995                                 goto abort;
6996                         disk->replacement = rdev;
6997                 } else {
6998                         if (disk->rdev)
6999                                 goto abort;
7000                         disk->rdev = rdev;
7001                 }
7002
7003                 if (test_bit(In_sync, &rdev->flags)) {
7004                         char b[BDEVNAME_SIZE];
7005                         pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7006                                 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7007                 } else if (rdev->saved_raid_disk != raid_disk)
7008                         /* Cannot rely on bitmap to complete recovery */
7009                         conf->fullsync = 1;
7010         }
7011
7012         conf->level = mddev->new_level;
7013         if (conf->level == 6) {
7014                 conf->max_degraded = 2;
7015                 if (raid6_call.xor_syndrome)
7016                         conf->rmw_level = PARITY_ENABLE_RMW;
7017                 else
7018                         conf->rmw_level = PARITY_DISABLE_RMW;
7019         } else {
7020                 conf->max_degraded = 1;
7021                 conf->rmw_level = PARITY_ENABLE_RMW;
7022         }
7023         conf->algorithm = mddev->new_layout;
7024         conf->reshape_progress = mddev->reshape_position;
7025         if (conf->reshape_progress != MaxSector) {
7026                 conf->prev_chunk_sectors = mddev->chunk_sectors;
7027                 conf->prev_algo = mddev->layout;
7028         } else {
7029                 conf->prev_chunk_sectors = conf->chunk_sectors;
7030                 conf->prev_algo = conf->algorithm;
7031         }
7032
7033         conf->min_nr_stripes = NR_STRIPES;
7034         if (mddev->reshape_position != MaxSector) {
7035                 int stripes = max_t(int,
7036                         ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7037                         ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7038                 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7039                 if (conf->min_nr_stripes != NR_STRIPES)
7040                         pr_info("md/raid:%s: force stripe size %d for reshape\n",
7041                                 mdname(mddev), conf->min_nr_stripes);
7042         }
7043         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7044                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7045         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7046         if (grow_stripes(conf, conf->min_nr_stripes)) {
7047                 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7048                         mdname(mddev), memory);
7049                 goto abort;
7050         } else
7051                 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7052         /*
7053          * Losing a stripe head costs more than the time to refill it,
7054          * it reduces the queue depth and so can hurt throughput.
7055          * So set it rather large, scaled by number of devices.
7056          */
7057         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7058         conf->shrinker.scan_objects = raid5_cache_scan;
7059         conf->shrinker.count_objects = raid5_cache_count;
7060         conf->shrinker.batch = 128;
7061         conf->shrinker.flags = 0;
7062         if (register_shrinker(&conf->shrinker)) {
7063                 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7064                         mdname(mddev));
7065                 goto abort;
7066         }
7067
7068         sprintf(pers_name, "raid%d", mddev->new_level);
7069         conf->thread = md_register_thread(raid5d, mddev, pers_name);
7070         if (!conf->thread) {
7071                 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7072                         mdname(mddev));
7073                 goto abort;
7074         }
7075
7076         return conf;
7077
7078  abort:
7079         if (conf) {
7080                 free_conf(conf);
7081                 return ERR_PTR(-EIO);
7082         } else
7083                 return ERR_PTR(-ENOMEM);
7084 }
7085
7086 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7087 {
7088         switch (algo) {
7089         case ALGORITHM_PARITY_0:
7090                 if (raid_disk < max_degraded)
7091                         return 1;
7092                 break;
7093         case ALGORITHM_PARITY_N:
7094                 if (raid_disk >= raid_disks - max_degraded)
7095                         return 1;
7096                 break;
7097         case ALGORITHM_PARITY_0_6:
7098                 if (raid_disk == 0 ||
7099                     raid_disk == raid_disks - 1)
7100                         return 1;
7101                 break;
7102         case ALGORITHM_LEFT_ASYMMETRIC_6:
7103         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7104         case ALGORITHM_LEFT_SYMMETRIC_6:
7105         case ALGORITHM_RIGHT_SYMMETRIC_6:
7106                 if (raid_disk == raid_disks - 1)
7107                         return 1;
7108         }
7109         return 0;
7110 }
7111
7112 static int raid5_run(struct mddev *mddev)
7113 {
7114         struct r5conf *conf;
7115         int working_disks = 0;
7116         int dirty_parity_disks = 0;
7117         struct md_rdev *rdev;
7118         struct md_rdev *journal_dev = NULL;
7119         sector_t reshape_offset = 0;
7120         int i;
7121         long long min_offset_diff = 0;
7122         int first = 1;
7123
7124         if (mddev_init_writes_pending(mddev) < 0)
7125                 return -ENOMEM;
7126
7127         if (mddev->recovery_cp != MaxSector)
7128                 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7129                           mdname(mddev));
7130
7131         rdev_for_each(rdev, mddev) {
7132                 long long diff;
7133
7134                 if (test_bit(Journal, &rdev->flags)) {
7135                         journal_dev = rdev;
7136                         continue;
7137                 }
7138                 if (rdev->raid_disk < 0)
7139                         continue;
7140                 diff = (rdev->new_data_offset - rdev->data_offset);
7141                 if (first) {
7142                         min_offset_diff = diff;
7143                         first = 0;
7144                 } else if (mddev->reshape_backwards &&
7145                          diff < min_offset_diff)
7146                         min_offset_diff = diff;
7147                 else if (!mddev->reshape_backwards &&
7148                          diff > min_offset_diff)
7149                         min_offset_diff = diff;
7150         }
7151
7152         if (mddev->reshape_position != MaxSector) {
7153                 /* Check that we can continue the reshape.
7154                  * Difficulties arise if the stripe we would write to
7155                  * next is at or after the stripe we would read from next.
7156                  * For a reshape that changes the number of devices, this
7157                  * is only possible for a very short time, and mdadm makes
7158                  * sure that time appears to have past before assembling
7159                  * the array.  So we fail if that time hasn't passed.
7160                  * For a reshape that keeps the number of devices the same
7161                  * mdadm must be monitoring the reshape can keeping the
7162                  * critical areas read-only and backed up.  It will start
7163                  * the array in read-only mode, so we check for that.
7164                  */
7165                 sector_t here_new, here_old;
7166                 int old_disks;
7167                 int max_degraded = (mddev->level == 6 ? 2 : 1);
7168                 int chunk_sectors;
7169                 int new_data_disks;
7170
7171                 if (journal_dev) {
7172                         pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7173                                 mdname(mddev));
7174                         return -EINVAL;
7175                 }
7176
7177                 if (mddev->new_level != mddev->level) {
7178                         pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7179                                 mdname(mddev));
7180                         return -EINVAL;
7181                 }
7182                 old_disks = mddev->raid_disks - mddev->delta_disks;
7183                 /* reshape_position must be on a new-stripe boundary, and one
7184                  * further up in new geometry must map after here in old
7185                  * geometry.
7186                  * If the chunk sizes are different, then as we perform reshape
7187                  * in units of the largest of the two, reshape_position needs
7188                  * be a multiple of the largest chunk size times new data disks.
7189                  */
7190                 here_new = mddev->reshape_position;
7191                 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7192                 new_data_disks = mddev->raid_disks - max_degraded;
7193                 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7194                         pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7195                                 mdname(mddev));
7196                         return -EINVAL;
7197                 }
7198                 reshape_offset = here_new * chunk_sectors;
7199                 /* here_new is the stripe we will write to */
7200                 here_old = mddev->reshape_position;
7201                 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7202                 /* here_old is the first stripe that we might need to read
7203                  * from */
7204                 if (mddev->delta_disks == 0) {
7205                         /* We cannot be sure it is safe to start an in-place
7206                          * reshape.  It is only safe if user-space is monitoring
7207                          * and taking constant backups.
7208                          * mdadm always starts a situation like this in
7209                          * readonly mode so it can take control before
7210                          * allowing any writes.  So just check for that.
7211                          */
7212                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7213                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
7214                                 /* not really in-place - so OK */;
7215                         else if (mddev->ro == 0) {
7216                                 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7217                                         mdname(mddev));
7218                                 return -EINVAL;
7219                         }
7220                 } else if (mddev->reshape_backwards
7221                     ? (here_new * chunk_sectors + min_offset_diff <=
7222                        here_old * chunk_sectors)
7223                     : (here_new * chunk_sectors >=
7224                        here_old * chunk_sectors + (-min_offset_diff))) {
7225                         /* Reading from the same stripe as writing to - bad */
7226                         pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7227                                 mdname(mddev));
7228                         return -EINVAL;
7229                 }
7230                 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7231                 /* OK, we should be able to continue; */
7232         } else {
7233                 BUG_ON(mddev->level != mddev->new_level);
7234                 BUG_ON(mddev->layout != mddev->new_layout);
7235                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7236                 BUG_ON(mddev->delta_disks != 0);
7237         }
7238
7239         if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7240             test_bit(MD_HAS_PPL, &mddev->flags)) {
7241                 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7242                         mdname(mddev));
7243                 clear_bit(MD_HAS_PPL, &mddev->flags);
7244         }
7245
7246         if (mddev->private == NULL)
7247                 conf = setup_conf(mddev);
7248         else
7249                 conf = mddev->private;
7250
7251         if (IS_ERR(conf))
7252                 return PTR_ERR(conf);
7253
7254         if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7255                 if (!journal_dev) {
7256                         pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7257                                 mdname(mddev));
7258                         mddev->ro = 1;
7259                         set_disk_ro(mddev->gendisk, 1);
7260                 } else if (mddev->recovery_cp == MaxSector)
7261                         set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7262         }
7263
7264         conf->min_offset_diff = min_offset_diff;
7265         mddev->thread = conf->thread;
7266         conf->thread = NULL;
7267         mddev->private = conf;
7268
7269         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7270              i++) {
7271                 rdev = conf->disks[i].rdev;
7272                 if (!rdev && conf->disks[i].replacement) {
7273                         /* The replacement is all we have yet */
7274                         rdev = conf->disks[i].replacement;
7275                         conf->disks[i].replacement = NULL;
7276                         clear_bit(Replacement, &rdev->flags);
7277                         conf->disks[i].rdev = rdev;
7278                 }
7279                 if (!rdev)
7280                         continue;
7281                 if (conf->disks[i].replacement &&
7282                     conf->reshape_progress != MaxSector) {
7283                         /* replacements and reshape simply do not mix. */
7284                         pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7285                         goto abort;
7286                 }
7287                 if (test_bit(In_sync, &rdev->flags)) {
7288                         working_disks++;
7289                         continue;
7290                 }
7291                 /* This disc is not fully in-sync.  However if it
7292                  * just stored parity (beyond the recovery_offset),
7293                  * when we don't need to be concerned about the
7294                  * array being dirty.
7295                  * When reshape goes 'backwards', we never have
7296                  * partially completed devices, so we only need
7297                  * to worry about reshape going forwards.
7298                  */
7299                 /* Hack because v0.91 doesn't store recovery_offset properly. */
7300                 if (mddev->major_version == 0 &&
7301                     mddev->minor_version > 90)
7302                         rdev->recovery_offset = reshape_offset;
7303
7304                 if (rdev->recovery_offset < reshape_offset) {
7305                         /* We need to check old and new layout */
7306                         if (!only_parity(rdev->raid_disk,
7307                                          conf->algorithm,
7308                                          conf->raid_disks,
7309                                          conf->max_degraded))
7310                                 continue;
7311                 }
7312                 if (!only_parity(rdev->raid_disk,
7313                                  conf->prev_algo,
7314                                  conf->previous_raid_disks,
7315                                  conf->max_degraded))
7316                         continue;
7317                 dirty_parity_disks++;
7318         }
7319
7320         /*
7321          * 0 for a fully functional array, 1 or 2 for a degraded array.
7322          */
7323         mddev->degraded = raid5_calc_degraded(conf);
7324
7325         if (has_failed(conf)) {
7326                 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7327                         mdname(mddev), mddev->degraded, conf->raid_disks);
7328                 goto abort;
7329         }
7330
7331         /* device size must be a multiple of chunk size */
7332         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7333         mddev->resync_max_sectors = mddev->dev_sectors;
7334
7335         if (mddev->degraded > dirty_parity_disks &&
7336             mddev->recovery_cp != MaxSector) {
7337                 if (test_bit(MD_HAS_PPL, &mddev->flags))
7338                         pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7339                                 mdname(mddev));
7340                 else if (mddev->ok_start_degraded)
7341                         pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7342                                 mdname(mddev));
7343                 else {
7344                         pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7345                                 mdname(mddev));
7346                         goto abort;
7347                 }
7348         }
7349
7350         pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7351                 mdname(mddev), conf->level,
7352                 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7353                 mddev->new_layout);
7354
7355         print_raid5_conf(conf);
7356
7357         if (conf->reshape_progress != MaxSector) {
7358                 conf->reshape_safe = conf->reshape_progress;
7359                 atomic_set(&conf->reshape_stripes, 0);
7360                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7361                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7362                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7363                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7364                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7365                                                         "reshape");
7366         }
7367
7368         /* Ok, everything is just fine now */
7369         if (mddev->to_remove == &raid5_attrs_group)
7370                 mddev->to_remove = NULL;
7371         else if (mddev->kobj.sd &&
7372             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7373                 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7374                         mdname(mddev));
7375         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7376
7377         if (mddev->queue) {
7378                 int chunk_size;
7379                 /* read-ahead size must cover two whole stripes, which
7380                  * is 2 * (datadisks) * chunksize where 'n' is the
7381                  * number of raid devices
7382                  */
7383                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7384                 int stripe = data_disks *
7385                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7386                 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7387                         mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7388
7389                 chunk_size = mddev->chunk_sectors << 9;
7390                 blk_queue_io_min(mddev->queue, chunk_size);
7391                 blk_queue_io_opt(mddev->queue, chunk_size *
7392                                  (conf->raid_disks - conf->max_degraded));
7393                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7394                 /*
7395                  * We can only discard a whole stripe. It doesn't make sense to
7396                  * discard data disk but write parity disk
7397                  */
7398                 stripe = stripe * PAGE_SIZE;
7399                 /* Round up to power of 2, as discard handling
7400                  * currently assumes that */
7401                 while ((stripe-1) & stripe)
7402                         stripe = (stripe | (stripe-1)) + 1;
7403                 mddev->queue->limits.discard_alignment = stripe;
7404                 mddev->queue->limits.discard_granularity = stripe;
7405
7406                 blk_queue_max_write_same_sectors(mddev->queue, 0);
7407                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7408
7409                 rdev_for_each(rdev, mddev) {
7410                         disk_stack_limits(mddev->gendisk, rdev->bdev,
7411                                           rdev->data_offset << 9);
7412                         disk_stack_limits(mddev->gendisk, rdev->bdev,
7413                                           rdev->new_data_offset << 9);
7414                 }
7415
7416                 /*
7417                  * zeroing is required, otherwise data
7418                  * could be lost. Consider a scenario: discard a stripe
7419                  * (the stripe could be inconsistent if
7420                  * discard_zeroes_data is 0); write one disk of the
7421                  * stripe (the stripe could be inconsistent again
7422                  * depending on which disks are used to calculate
7423                  * parity); the disk is broken; The stripe data of this
7424                  * disk is lost.
7425                  *
7426                  * We only allow DISCARD if the sysadmin has confirmed that
7427                  * only safe devices are in use by setting a module parameter.
7428                  * A better idea might be to turn DISCARD into WRITE_ZEROES
7429                  * requests, as that is required to be safe.
7430                  */
7431                 if (devices_handle_discard_safely &&
7432                     mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7433                     mddev->queue->limits.discard_granularity >= stripe)
7434                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7435                                                 mddev->queue);
7436                 else
7437                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7438                                                 mddev->queue);
7439
7440                 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7441         }
7442
7443         if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7444                 goto abort;
7445
7446         return 0;
7447 abort:
7448         md_unregister_thread(&mddev->thread);
7449         print_raid5_conf(conf);
7450         free_conf(conf);
7451         mddev->private = NULL;
7452         pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7453         return -EIO;
7454 }
7455
7456 static void raid5_free(struct mddev *mddev, void *priv)
7457 {
7458         struct r5conf *conf = priv;
7459
7460         free_conf(conf);
7461         mddev->to_remove = &raid5_attrs_group;
7462 }
7463
7464 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7465 {
7466         struct r5conf *conf = mddev->private;
7467         int i;
7468
7469         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7470                 conf->chunk_sectors / 2, mddev->layout);
7471         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7472         rcu_read_lock();
7473         for (i = 0; i < conf->raid_disks; i++) {
7474                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7475                 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7476         }
7477         rcu_read_unlock();
7478         seq_printf (seq, "]");
7479 }
7480
7481 static void print_raid5_conf (struct r5conf *conf)
7482 {
7483         int i;
7484         struct disk_info *tmp;
7485
7486         pr_debug("RAID conf printout:\n");
7487         if (!conf) {
7488                 pr_debug("(conf==NULL)\n");
7489                 return;
7490         }
7491         pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7492                conf->raid_disks,
7493                conf->raid_disks - conf->mddev->degraded);
7494
7495         for (i = 0; i < conf->raid_disks; i++) {
7496                 char b[BDEVNAME_SIZE];
7497                 tmp = conf->disks + i;
7498                 if (tmp->rdev)
7499                         pr_debug(" disk %d, o:%d, dev:%s\n",
7500                                i, !test_bit(Faulty, &tmp->rdev->flags),
7501                                bdevname(tmp->rdev->bdev, b));
7502         }
7503 }
7504
7505 static int raid5_spare_active(struct mddev *mddev)
7506 {
7507         int i;
7508         struct r5conf *conf = mddev->private;
7509         struct disk_info *tmp;
7510         int count = 0;
7511         unsigned long flags;
7512
7513         for (i = 0; i < conf->raid_disks; i++) {
7514                 tmp = conf->disks + i;
7515                 if (tmp->replacement
7516                     && tmp->replacement->recovery_offset == MaxSector
7517                     && !test_bit(Faulty, &tmp->replacement->flags)
7518                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7519                         /* Replacement has just become active. */
7520                         if (!tmp->rdev
7521                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7522                                 count++;
7523                         if (tmp->rdev) {
7524                                 /* Replaced device not technically faulty,
7525                                  * but we need to be sure it gets removed
7526                                  * and never re-added.
7527                                  */
7528                                 set_bit(Faulty, &tmp->rdev->flags);
7529                                 sysfs_notify_dirent_safe(
7530                                         tmp->rdev->sysfs_state);
7531                         }
7532                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7533                 } else if (tmp->rdev
7534                     && tmp->rdev->recovery_offset == MaxSector
7535                     && !test_bit(Faulty, &tmp->rdev->flags)
7536                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7537                         count++;
7538                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7539                 }
7540         }
7541         spin_lock_irqsave(&conf->device_lock, flags);
7542         mddev->degraded = raid5_calc_degraded(conf);
7543         spin_unlock_irqrestore(&conf->device_lock, flags);
7544         print_raid5_conf(conf);
7545         return count;
7546 }
7547
7548 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7549 {
7550         struct r5conf *conf = mddev->private;
7551         int err = 0;
7552         int number = rdev->raid_disk;
7553         struct md_rdev **rdevp;
7554         struct disk_info *p = conf->disks + number;
7555
7556         print_raid5_conf(conf);
7557         if (test_bit(Journal, &rdev->flags) && conf->log) {
7558                 /*
7559                  * we can't wait pending write here, as this is called in
7560                  * raid5d, wait will deadlock.
7561                  * neilb: there is no locking about new writes here,
7562                  * so this cannot be safe.
7563                  */
7564                 if (atomic_read(&conf->active_stripes) ||
7565                     atomic_read(&conf->r5c_cached_full_stripes) ||
7566                     atomic_read(&conf->r5c_cached_partial_stripes)) {
7567                         return -EBUSY;
7568                 }
7569                 log_exit(conf);
7570                 return 0;
7571         }
7572         if (rdev == p->rdev)
7573                 rdevp = &p->rdev;
7574         else if (rdev == p->replacement)
7575                 rdevp = &p->replacement;
7576         else
7577                 return 0;
7578
7579         if (number >= conf->raid_disks &&
7580             conf->reshape_progress == MaxSector)
7581                 clear_bit(In_sync, &rdev->flags);
7582
7583         if (test_bit(In_sync, &rdev->flags) ||
7584             atomic_read(&rdev->nr_pending)) {
7585                 err = -EBUSY;
7586                 goto abort;
7587         }
7588         /* Only remove non-faulty devices if recovery
7589          * isn't possible.
7590          */
7591         if (!test_bit(Faulty, &rdev->flags) &&
7592             mddev->recovery_disabled != conf->recovery_disabled &&
7593             !has_failed(conf) &&
7594             (!p->replacement || p->replacement == rdev) &&
7595             number < conf->raid_disks) {
7596                 err = -EBUSY;
7597                 goto abort;
7598         }
7599         *rdevp = NULL;
7600         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7601                 synchronize_rcu();
7602                 if (atomic_read(&rdev->nr_pending)) {
7603                         /* lost the race, try later */
7604                         err = -EBUSY;
7605                         *rdevp = rdev;
7606                 }
7607         }
7608         if (!err) {
7609                 err = log_modify(conf, rdev, false);
7610                 if (err)
7611                         goto abort;
7612         }
7613         if (p->replacement) {
7614                 /* We must have just cleared 'rdev' */
7615                 p->rdev = p->replacement;
7616                 clear_bit(Replacement, &p->replacement->flags);
7617                 smp_mb(); /* Make sure other CPUs may see both as identical
7618                            * but will never see neither - if they are careful
7619                            */
7620                 p->replacement = NULL;
7621
7622                 if (!err)
7623                         err = log_modify(conf, p->rdev, true);
7624         }
7625
7626         clear_bit(WantReplacement, &rdev->flags);
7627 abort:
7628
7629         print_raid5_conf(conf);
7630         return err;
7631 }
7632
7633 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7634 {
7635         struct r5conf *conf = mddev->private;
7636         int err = -EEXIST;
7637         int disk;
7638         struct disk_info *p;
7639         int first = 0;
7640         int last = conf->raid_disks - 1;
7641
7642         if (test_bit(Journal, &rdev->flags)) {
7643                 if (conf->log)
7644                         return -EBUSY;
7645
7646                 rdev->raid_disk = 0;
7647                 /*
7648                  * The array is in readonly mode if journal is missing, so no
7649                  * write requests running. We should be safe
7650                  */
7651                 log_init(conf, rdev, false);
7652                 return 0;
7653         }
7654         if (mddev->recovery_disabled == conf->recovery_disabled)
7655                 return -EBUSY;
7656
7657         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7658                 /* no point adding a device */
7659                 return -EINVAL;
7660
7661         if (rdev->raid_disk >= 0)
7662                 first = last = rdev->raid_disk;
7663
7664         /*
7665          * find the disk ... but prefer rdev->saved_raid_disk
7666          * if possible.
7667          */
7668         if (rdev->saved_raid_disk >= 0 &&
7669             rdev->saved_raid_disk >= first &&
7670             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7671                 first = rdev->saved_raid_disk;
7672
7673         for (disk = first; disk <= last; disk++) {
7674                 p = conf->disks + disk;
7675                 if (p->rdev == NULL) {
7676                         clear_bit(In_sync, &rdev->flags);
7677                         rdev->raid_disk = disk;
7678                         if (rdev->saved_raid_disk != disk)
7679                                 conf->fullsync = 1;
7680                         rcu_assign_pointer(p->rdev, rdev);
7681
7682                         err = log_modify(conf, rdev, true);
7683
7684                         goto out;
7685                 }
7686         }
7687         for (disk = first; disk <= last; disk++) {
7688                 p = conf->disks + disk;
7689                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7690                     p->replacement == NULL) {
7691                         clear_bit(In_sync, &rdev->flags);
7692                         set_bit(Replacement, &rdev->flags);
7693                         rdev->raid_disk = disk;
7694                         err = 0;
7695                         conf->fullsync = 1;
7696                         rcu_assign_pointer(p->replacement, rdev);
7697                         break;
7698                 }
7699         }
7700 out:
7701         print_raid5_conf(conf);
7702         return err;
7703 }
7704
7705 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7706 {
7707         /* no resync is happening, and there is enough space
7708          * on all devices, so we can resize.
7709          * We need to make sure resync covers any new space.
7710          * If the array is shrinking we should possibly wait until
7711          * any io in the removed space completes, but it hardly seems
7712          * worth it.
7713          */
7714         sector_t newsize;
7715         struct r5conf *conf = mddev->private;
7716
7717         if (conf->log || raid5_has_ppl(conf))
7718                 return -EINVAL;
7719         sectors &= ~((sector_t)conf->chunk_sectors - 1);
7720         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7721         if (mddev->external_size &&
7722             mddev->array_sectors > newsize)
7723                 return -EINVAL;
7724         if (mddev->bitmap) {
7725                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7726                 if (ret)
7727                         return ret;
7728         }
7729         md_set_array_sectors(mddev, newsize);
7730         if (sectors > mddev->dev_sectors &&
7731             mddev->recovery_cp > mddev->dev_sectors) {
7732                 mddev->recovery_cp = mddev->dev_sectors;
7733                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7734         }
7735         mddev->dev_sectors = sectors;
7736         mddev->resync_max_sectors = sectors;
7737         return 0;
7738 }
7739
7740 static int check_stripe_cache(struct mddev *mddev)
7741 {
7742         /* Can only proceed if there are plenty of stripe_heads.
7743          * We need a minimum of one full stripe,, and for sensible progress
7744          * it is best to have about 4 times that.
7745          * If we require 4 times, then the default 256 4K stripe_heads will
7746          * allow for chunk sizes up to 256K, which is probably OK.
7747          * If the chunk size is greater, user-space should request more
7748          * stripe_heads first.
7749          */
7750         struct r5conf *conf = mddev->private;
7751         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7752             > conf->min_nr_stripes ||
7753             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7754             > conf->min_nr_stripes) {
7755                 pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7756                         mdname(mddev),
7757                         ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7758                          / STRIPE_SIZE)*4);
7759                 return 0;
7760         }
7761         return 1;
7762 }
7763
7764 static int check_reshape(struct mddev *mddev)
7765 {
7766         struct r5conf *conf = mddev->private;
7767
7768         if (conf->log || raid5_has_ppl(conf))
7769                 return -EINVAL;
7770         if (mddev->delta_disks == 0 &&
7771             mddev->new_layout == mddev->layout &&
7772             mddev->new_chunk_sectors == mddev->chunk_sectors)
7773                 return 0; /* nothing to do */
7774         if (has_failed(conf))
7775                 return -EINVAL;
7776         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7777                 /* We might be able to shrink, but the devices must
7778                  * be made bigger first.
7779                  * For raid6, 4 is the minimum size.
7780                  * Otherwise 2 is the minimum
7781                  */
7782                 int min = 2;
7783                 if (mddev->level == 6)
7784                         min = 4;
7785                 if (mddev->raid_disks + mddev->delta_disks < min)
7786                         return -EINVAL;
7787         }
7788
7789         if (!check_stripe_cache(mddev))
7790                 return -ENOSPC;
7791
7792         if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7793             mddev->delta_disks > 0)
7794                 if (resize_chunks(conf,
7795                                   conf->previous_raid_disks
7796                                   + max(0, mddev->delta_disks),
7797                                   max(mddev->new_chunk_sectors,
7798                                       mddev->chunk_sectors)
7799                             ) < 0)
7800                         return -ENOMEM;
7801
7802         if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7803                 return 0; /* never bother to shrink */
7804         return resize_stripes(conf, (conf->previous_raid_disks
7805                                      + mddev->delta_disks));
7806 }
7807
7808 static int raid5_start_reshape(struct mddev *mddev)
7809 {
7810         struct r5conf *conf = mddev->private;
7811         struct md_rdev *rdev;
7812         int spares = 0;
7813         unsigned long flags;
7814
7815         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7816                 return -EBUSY;
7817
7818         if (!check_stripe_cache(mddev))
7819                 return -ENOSPC;
7820
7821         if (has_failed(conf))
7822                 return -EINVAL;
7823
7824         rdev_for_each(rdev, mddev) {
7825                 if (!test_bit(In_sync, &rdev->flags)
7826                     && !test_bit(Faulty, &rdev->flags))
7827                         spares++;
7828         }
7829
7830         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7831                 /* Not enough devices even to make a degraded array
7832                  * of that size
7833                  */
7834                 return -EINVAL;
7835
7836         /* Refuse to reduce size of the array.  Any reductions in
7837          * array size must be through explicit setting of array_size
7838          * attribute.
7839          */
7840         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7841             < mddev->array_sectors) {
7842                 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7843                         mdname(mddev));
7844                 return -EINVAL;
7845         }
7846
7847         atomic_set(&conf->reshape_stripes, 0);
7848         spin_lock_irq(&conf->device_lock);
7849         write_seqcount_begin(&conf->gen_lock);
7850         conf->previous_raid_disks = conf->raid_disks;
7851         conf->raid_disks += mddev->delta_disks;
7852         conf->prev_chunk_sectors = conf->chunk_sectors;
7853         conf->chunk_sectors = mddev->new_chunk_sectors;
7854         conf->prev_algo = conf->algorithm;
7855         conf->algorithm = mddev->new_layout;
7856         conf->generation++;
7857         /* Code that selects data_offset needs to see the generation update
7858          * if reshape_progress has been set - so a memory barrier needed.
7859          */
7860         smp_mb();
7861         if (mddev->reshape_backwards)
7862                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7863         else
7864                 conf->reshape_progress = 0;
7865         conf->reshape_safe = conf->reshape_progress;
7866         write_seqcount_end(&conf->gen_lock);
7867         spin_unlock_irq(&conf->device_lock);
7868
7869         /* Now make sure any requests that proceeded on the assumption
7870          * the reshape wasn't running - like Discard or Read - have
7871          * completed.
7872          */
7873         mddev_suspend(mddev);
7874         mddev_resume(mddev);
7875
7876         /* Add some new drives, as many as will fit.
7877          * We know there are enough to make the newly sized array work.
7878          * Don't add devices if we are reducing the number of
7879          * devices in the array.  This is because it is not possible
7880          * to correctly record the "partially reconstructed" state of
7881          * such devices during the reshape and confusion could result.
7882          */
7883         if (mddev->delta_disks >= 0) {
7884                 rdev_for_each(rdev, mddev)
7885                         if (rdev->raid_disk < 0 &&
7886                             !test_bit(Faulty, &rdev->flags)) {
7887                                 if (raid5_add_disk(mddev, rdev) == 0) {
7888                                         if (rdev->raid_disk
7889                                             >= conf->previous_raid_disks)
7890                                                 set_bit(In_sync, &rdev->flags);
7891                                         else
7892                                                 rdev->recovery_offset = 0;
7893
7894                                         if (sysfs_link_rdev(mddev, rdev))
7895                                                 /* Failure here is OK */;
7896                                 }
7897                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7898                                    && !test_bit(Faulty, &rdev->flags)) {
7899                                 /* This is a spare that was manually added */
7900                                 set_bit(In_sync, &rdev->flags);
7901                         }
7902
7903                 /* When a reshape changes the number of devices,
7904                  * ->degraded is measured against the larger of the
7905                  * pre and post number of devices.
7906                  */
7907                 spin_lock_irqsave(&conf->device_lock, flags);
7908                 mddev->degraded = raid5_calc_degraded(conf);
7909                 spin_unlock_irqrestore(&conf->device_lock, flags);
7910         }
7911         mddev->raid_disks = conf->raid_disks;
7912         mddev->reshape_position = conf->reshape_progress;
7913         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7914
7915         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7916         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7917         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7918         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7919         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7920         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7921                                                 "reshape");
7922         if (!mddev->sync_thread) {
7923                 mddev->recovery = 0;
7924                 spin_lock_irq(&conf->device_lock);
7925                 write_seqcount_begin(&conf->gen_lock);
7926                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7927                 mddev->new_chunk_sectors =
7928                         conf->chunk_sectors = conf->prev_chunk_sectors;
7929                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7930                 rdev_for_each(rdev, mddev)
7931                         rdev->new_data_offset = rdev->data_offset;
7932                 smp_wmb();
7933                 conf->generation --;
7934                 conf->reshape_progress = MaxSector;
7935                 mddev->reshape_position = MaxSector;
7936                 write_seqcount_end(&conf->gen_lock);
7937                 spin_unlock_irq(&conf->device_lock);
7938                 return -EAGAIN;
7939         }
7940         conf->reshape_checkpoint = jiffies;
7941         md_wakeup_thread(mddev->sync_thread);
7942         md_new_event(mddev);
7943         return 0;
7944 }
7945
7946 /* This is called from the reshape thread and should make any
7947  * changes needed in 'conf'
7948  */
7949 static void end_reshape(struct r5conf *conf)
7950 {
7951
7952         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7953
7954                 spin_lock_irq(&conf->device_lock);
7955                 conf->previous_raid_disks = conf->raid_disks;
7956                 md_finish_reshape(conf->mddev);
7957                 smp_wmb();
7958                 conf->reshape_progress = MaxSector;
7959                 conf->mddev->reshape_position = MaxSector;
7960                 spin_unlock_irq(&conf->device_lock);
7961                 wake_up(&conf->wait_for_overlap);
7962
7963                 /* read-ahead size must cover two whole stripes, which is
7964                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7965                  */
7966                 if (conf->mddev->queue) {
7967                         int data_disks = conf->raid_disks - conf->max_degraded;
7968                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7969                                                    / PAGE_SIZE);
7970                         if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7971                                 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7972                 }
7973         }
7974 }
7975
7976 /* This is called from the raid5d thread with mddev_lock held.
7977  * It makes config changes to the device.
7978  */
7979 static void raid5_finish_reshape(struct mddev *mddev)
7980 {
7981         struct r5conf *conf = mddev->private;
7982
7983         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7984
7985                 if (mddev->delta_disks > 0) {
7986                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7987                         if (mddev->queue) {
7988                                 set_capacity(mddev->gendisk, mddev->array_sectors);
7989                                 revalidate_disk(mddev->gendisk);
7990                         }
7991                 } else {
7992                         int d;
7993                         spin_lock_irq(&conf->device_lock);
7994                         mddev->degraded = raid5_calc_degraded(conf);
7995                         spin_unlock_irq(&conf->device_lock);
7996                         for (d = conf->raid_disks ;
7997                              d < conf->raid_disks - mddev->delta_disks;
7998                              d++) {
7999                                 struct md_rdev *rdev = conf->disks[d].rdev;
8000                                 if (rdev)
8001                                         clear_bit(In_sync, &rdev->flags);
8002                                 rdev = conf->disks[d].replacement;
8003                                 if (rdev)
8004                                         clear_bit(In_sync, &rdev->flags);
8005                         }
8006                 }
8007                 mddev->layout = conf->algorithm;
8008                 mddev->chunk_sectors = conf->chunk_sectors;
8009                 mddev->reshape_position = MaxSector;
8010                 mddev->delta_disks = 0;
8011                 mddev->reshape_backwards = 0;
8012         }
8013 }
8014
8015 static void raid5_quiesce(struct mddev *mddev, int state)
8016 {
8017         struct r5conf *conf = mddev->private;
8018
8019         switch(state) {
8020         case 2: /* resume for a suspend */
8021                 wake_up(&conf->wait_for_overlap);
8022                 break;
8023
8024         case 1: /* stop all writes */
8025                 lock_all_device_hash_locks_irq(conf);
8026                 /* '2' tells resync/reshape to pause so that all
8027                  * active stripes can drain
8028                  */
8029                 r5c_flush_cache(conf, INT_MAX);
8030                 conf->quiesce = 2;
8031                 wait_event_cmd(conf->wait_for_quiescent,
8032                                     atomic_read(&conf->active_stripes) == 0 &&
8033                                     atomic_read(&conf->active_aligned_reads) == 0,
8034                                     unlock_all_device_hash_locks_irq(conf),
8035                                     lock_all_device_hash_locks_irq(conf));
8036                 conf->quiesce = 1;
8037                 unlock_all_device_hash_locks_irq(conf);
8038                 /* allow reshape to continue */
8039                 wake_up(&conf->wait_for_overlap);
8040                 break;
8041
8042         case 0: /* re-enable writes */
8043                 lock_all_device_hash_locks_irq(conf);
8044                 conf->quiesce = 0;
8045                 wake_up(&conf->wait_for_quiescent);
8046                 wake_up(&conf->wait_for_overlap);
8047                 unlock_all_device_hash_locks_irq(conf);
8048                 break;
8049         }
8050         r5l_quiesce(conf->log, state);
8051 }
8052
8053 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8054 {
8055         struct r0conf *raid0_conf = mddev->private;
8056         sector_t sectors;
8057
8058         /* for raid0 takeover only one zone is supported */
8059         if (raid0_conf->nr_strip_zones > 1) {
8060                 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8061                         mdname(mddev));
8062                 return ERR_PTR(-EINVAL);
8063         }
8064
8065         sectors = raid0_conf->strip_zone[0].zone_end;
8066         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8067         mddev->dev_sectors = sectors;
8068         mddev->new_level = level;
8069         mddev->new_layout = ALGORITHM_PARITY_N;
8070         mddev->new_chunk_sectors = mddev->chunk_sectors;
8071         mddev->raid_disks += 1;
8072         mddev->delta_disks = 1;
8073         /* make sure it will be not marked as dirty */
8074         mddev->recovery_cp = MaxSector;
8075
8076         return setup_conf(mddev);
8077 }
8078
8079 static void *raid5_takeover_raid1(struct mddev *mddev)
8080 {
8081         int chunksect;
8082         void *ret;
8083
8084         if (mddev->raid_disks != 2 ||
8085             mddev->degraded > 1)
8086                 return ERR_PTR(-EINVAL);
8087
8088         /* Should check if there are write-behind devices? */
8089
8090         chunksect = 64*2; /* 64K by default */
8091
8092         /* The array must be an exact multiple of chunksize */
8093         while (chunksect && (mddev->array_sectors & (chunksect-1)))
8094                 chunksect >>= 1;
8095
8096         if ((chunksect<<9) < STRIPE_SIZE)
8097                 /* array size does not allow a suitable chunk size */
8098                 return ERR_PTR(-EINVAL);
8099
8100         mddev->new_level = 5;
8101         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8102         mddev->new_chunk_sectors = chunksect;
8103
8104         ret = setup_conf(mddev);
8105         if (!IS_ERR(ret))
8106                 mddev_clear_unsupported_flags(mddev,
8107                         UNSUPPORTED_MDDEV_FLAGS);
8108         return ret;
8109 }
8110
8111 static void *raid5_takeover_raid6(struct mddev *mddev)
8112 {
8113         int new_layout;
8114
8115         switch (mddev->layout) {
8116         case ALGORITHM_LEFT_ASYMMETRIC_6:
8117                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8118                 break;
8119         case ALGORITHM_RIGHT_ASYMMETRIC_6:
8120                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8121                 break;
8122         case ALGORITHM_LEFT_SYMMETRIC_6:
8123                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8124                 break;
8125         case ALGORITHM_RIGHT_SYMMETRIC_6:
8126                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8127                 break;
8128         case ALGORITHM_PARITY_0_6:
8129                 new_layout = ALGORITHM_PARITY_0;
8130                 break;
8131         case ALGORITHM_PARITY_N:
8132                 new_layout = ALGORITHM_PARITY_N;
8133                 break;
8134         default:
8135                 return ERR_PTR(-EINVAL);
8136         }
8137         mddev->new_level = 5;
8138         mddev->new_layout = new_layout;
8139         mddev->delta_disks = -1;
8140         mddev->raid_disks -= 1;
8141         return setup_conf(mddev);
8142 }
8143
8144 static int raid5_check_reshape(struct mddev *mddev)
8145 {
8146         /* For a 2-drive array, the layout and chunk size can be changed
8147          * immediately as not restriping is needed.
8148          * For larger arrays we record the new value - after validation
8149          * to be used by a reshape pass.
8150          */
8151         struct r5conf *conf = mddev->private;
8152         int new_chunk = mddev->new_chunk_sectors;
8153
8154         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8155                 return -EINVAL;
8156         if (new_chunk > 0) {
8157                 if (!is_power_of_2(new_chunk))
8158                         return -EINVAL;
8159                 if (new_chunk < (PAGE_SIZE>>9))
8160                         return -EINVAL;
8161                 if (mddev->array_sectors & (new_chunk-1))
8162                         /* not factor of array size */
8163                         return -EINVAL;
8164         }
8165
8166         /* They look valid */
8167
8168         if (mddev->raid_disks == 2) {
8169                 /* can make the change immediately */
8170                 if (mddev->new_layout >= 0) {
8171                         conf->algorithm = mddev->new_layout;
8172                         mddev->layout = mddev->new_layout;
8173                 }
8174                 if (new_chunk > 0) {
8175                         conf->chunk_sectors = new_chunk ;
8176                         mddev->chunk_sectors = new_chunk;
8177                 }
8178                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8179                 md_wakeup_thread(mddev->thread);
8180         }
8181         return check_reshape(mddev);
8182 }
8183
8184 static int raid6_check_reshape(struct mddev *mddev)
8185 {
8186         int new_chunk = mddev->new_chunk_sectors;
8187
8188         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8189                 return -EINVAL;
8190         if (new_chunk > 0) {
8191                 if (!is_power_of_2(new_chunk))
8192                         return -EINVAL;
8193                 if (new_chunk < (PAGE_SIZE >> 9))
8194                         return -EINVAL;
8195                 if (mddev->array_sectors & (new_chunk-1))
8196                         /* not factor of array size */
8197                         return -EINVAL;
8198         }
8199
8200         /* They look valid */
8201         return check_reshape(mddev);
8202 }
8203
8204 static void *raid5_takeover(struct mddev *mddev)
8205 {
8206         /* raid5 can take over:
8207          *  raid0 - if there is only one strip zone - make it a raid4 layout
8208          *  raid1 - if there are two drives.  We need to know the chunk size
8209          *  raid4 - trivial - just use a raid4 layout.
8210          *  raid6 - Providing it is a *_6 layout
8211          */
8212         if (mddev->level == 0)
8213                 return raid45_takeover_raid0(mddev, 5);
8214         if (mddev->level == 1)
8215                 return raid5_takeover_raid1(mddev);
8216         if (mddev->level == 4) {
8217                 mddev->new_layout = ALGORITHM_PARITY_N;
8218                 mddev->new_level = 5;
8219                 return setup_conf(mddev);
8220         }
8221         if (mddev->level == 6)
8222                 return raid5_takeover_raid6(mddev);
8223
8224         return ERR_PTR(-EINVAL);
8225 }
8226
8227 static void *raid4_takeover(struct mddev *mddev)
8228 {
8229         /* raid4 can take over:
8230          *  raid0 - if there is only one strip zone
8231          *  raid5 - if layout is right
8232          */
8233         if (mddev->level == 0)
8234                 return raid45_takeover_raid0(mddev, 4);
8235         if (mddev->level == 5 &&
8236             mddev->layout == ALGORITHM_PARITY_N) {
8237                 mddev->new_layout = 0;
8238                 mddev->new_level = 4;
8239                 return setup_conf(mddev);
8240         }
8241         return ERR_PTR(-EINVAL);
8242 }
8243
8244 static struct md_personality raid5_personality;
8245
8246 static void *raid6_takeover(struct mddev *mddev)
8247 {
8248         /* Currently can only take over a raid5.  We map the
8249          * personality to an equivalent raid6 personality
8250          * with the Q block at the end.
8251          */
8252         int new_layout;
8253
8254         if (mddev->pers != &raid5_personality)
8255                 return ERR_PTR(-EINVAL);
8256         if (mddev->degraded > 1)
8257                 return ERR_PTR(-EINVAL);
8258         if (mddev->raid_disks > 253)
8259                 return ERR_PTR(-EINVAL);
8260         if (mddev->raid_disks < 3)
8261                 return ERR_PTR(-EINVAL);
8262
8263         switch (mddev->layout) {
8264         case ALGORITHM_LEFT_ASYMMETRIC:
8265                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8266                 break;
8267         case ALGORITHM_RIGHT_ASYMMETRIC:
8268                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8269                 break;
8270         case ALGORITHM_LEFT_SYMMETRIC:
8271                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8272                 break;
8273         case ALGORITHM_RIGHT_SYMMETRIC:
8274                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8275                 break;
8276         case ALGORITHM_PARITY_0:
8277                 new_layout = ALGORITHM_PARITY_0_6;
8278                 break;
8279         case ALGORITHM_PARITY_N:
8280                 new_layout = ALGORITHM_PARITY_N;
8281                 break;
8282         default:
8283                 return ERR_PTR(-EINVAL);
8284         }
8285         mddev->new_level = 6;
8286         mddev->new_layout = new_layout;
8287         mddev->delta_disks = 1;
8288         mddev->raid_disks += 1;
8289         return setup_conf(mddev);
8290 }
8291
8292 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8293 {
8294         struct r5conf *conf;
8295         int err;
8296
8297         err = mddev_lock(mddev);
8298         if (err)
8299                 return err;
8300         conf = mddev->private;
8301         if (!conf) {
8302                 mddev_unlock(mddev);
8303                 return -ENODEV;
8304         }
8305
8306         if (strncmp(buf, "ppl", 3) == 0) {
8307                 /* ppl only works with RAID 5 */
8308                 if (!raid5_has_ppl(conf) && conf->level == 5) {
8309                         err = log_init(conf, NULL, true);
8310                         if (!err) {
8311                                 err = resize_stripes(conf, conf->pool_size);
8312                                 if (err)
8313                                         log_exit(conf);
8314                         }
8315                 } else
8316                         err = -EINVAL;
8317         } else if (strncmp(buf, "resync", 6) == 0) {
8318                 if (raid5_has_ppl(conf)) {
8319                         mddev_suspend(mddev);
8320                         log_exit(conf);
8321                         mddev_resume(mddev);
8322                         err = resize_stripes(conf, conf->pool_size);
8323                 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8324                            r5l_log_disk_error(conf)) {
8325                         bool journal_dev_exists = false;
8326                         struct md_rdev *rdev;
8327
8328                         rdev_for_each(rdev, mddev)
8329                                 if (test_bit(Journal, &rdev->flags)) {
8330                                         journal_dev_exists = true;
8331                                         break;
8332                                 }
8333
8334                         if (!journal_dev_exists) {
8335                                 mddev_suspend(mddev);
8336                                 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8337                                 mddev_resume(mddev);
8338                         } else  /* need remove journal device first */
8339                                 err = -EBUSY;
8340                 } else
8341                         err = -EINVAL;
8342         } else {
8343                 err = -EINVAL;
8344         }
8345
8346         if (!err)
8347                 md_update_sb(mddev, 1);
8348
8349         mddev_unlock(mddev);
8350
8351         return err;
8352 }
8353
8354 static struct md_personality raid6_personality =
8355 {
8356         .name           = "raid6",
8357         .level          = 6,
8358         .owner          = THIS_MODULE,
8359         .make_request   = raid5_make_request,
8360         .run            = raid5_run,
8361         .free           = raid5_free,
8362         .status         = raid5_status,
8363         .error_handler  = raid5_error,
8364         .hot_add_disk   = raid5_add_disk,
8365         .hot_remove_disk= raid5_remove_disk,
8366         .spare_active   = raid5_spare_active,
8367         .sync_request   = raid5_sync_request,
8368         .resize         = raid5_resize,
8369         .size           = raid5_size,
8370         .check_reshape  = raid6_check_reshape,
8371         .start_reshape  = raid5_start_reshape,
8372         .finish_reshape = raid5_finish_reshape,
8373         .quiesce        = raid5_quiesce,
8374         .takeover       = raid6_takeover,
8375         .congested      = raid5_congested,
8376         .change_consistency_policy = raid5_change_consistency_policy,
8377 };
8378 static struct md_personality raid5_personality =
8379 {
8380         .name           = "raid5",
8381         .level          = 5,
8382         .owner          = THIS_MODULE,
8383         .make_request   = raid5_make_request,
8384         .run            = raid5_run,
8385         .free           = raid5_free,
8386         .status         = raid5_status,
8387         .error_handler  = raid5_error,
8388         .hot_add_disk   = raid5_add_disk,
8389         .hot_remove_disk= raid5_remove_disk,
8390         .spare_active   = raid5_spare_active,
8391         .sync_request   = raid5_sync_request,
8392         .resize         = raid5_resize,
8393         .size           = raid5_size,
8394         .check_reshape  = raid5_check_reshape,
8395         .start_reshape  = raid5_start_reshape,
8396         .finish_reshape = raid5_finish_reshape,
8397         .quiesce        = raid5_quiesce,
8398         .takeover       = raid5_takeover,
8399         .congested      = raid5_congested,
8400         .change_consistency_policy = raid5_change_consistency_policy,
8401 };
8402
8403 static struct md_personality raid4_personality =
8404 {
8405         .name           = "raid4",
8406         .level          = 4,
8407         .owner          = THIS_MODULE,
8408         .make_request   = raid5_make_request,
8409         .run            = raid5_run,
8410         .free           = raid5_free,
8411         .status         = raid5_status,
8412         .error_handler  = raid5_error,
8413         .hot_add_disk   = raid5_add_disk,
8414         .hot_remove_disk= raid5_remove_disk,
8415         .spare_active   = raid5_spare_active,
8416         .sync_request   = raid5_sync_request,
8417         .resize         = raid5_resize,
8418         .size           = raid5_size,
8419         .check_reshape  = raid5_check_reshape,
8420         .start_reshape  = raid5_start_reshape,
8421         .finish_reshape = raid5_finish_reshape,
8422         .quiesce        = raid5_quiesce,
8423         .takeover       = raid4_takeover,
8424         .congested      = raid5_congested,
8425         .change_consistency_policy = raid5_change_consistency_policy,
8426 };
8427
8428 static int __init raid5_init(void)
8429 {
8430         int ret;
8431
8432         raid5_wq = alloc_workqueue("raid5wq",
8433                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8434         if (!raid5_wq)
8435                 return -ENOMEM;
8436
8437         ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8438                                       "md/raid5:prepare",
8439                                       raid456_cpu_up_prepare,
8440                                       raid456_cpu_dead);
8441         if (ret) {
8442                 destroy_workqueue(raid5_wq);
8443                 return ret;
8444         }
8445         register_md_personality(&raid6_personality);
8446         register_md_personality(&raid5_personality);
8447         register_md_personality(&raid4_personality);
8448         return 0;
8449 }
8450
8451 static void raid5_exit(void)
8452 {
8453         unregister_md_personality(&raid6_personality);
8454         unregister_md_personality(&raid5_personality);
8455         unregister_md_personality(&raid4_personality);
8456         cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8457         destroy_workqueue(raid5_wq);
8458 }
8459
8460 module_init(raid5_init);
8461 module_exit(raid5_exit);
8462 MODULE_LICENSE("GPL");
8463 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8464 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8465 MODULE_ALIAS("md-raid5");
8466 MODULE_ALIAS("md-raid4");
8467 MODULE_ALIAS("md-level-5");
8468 MODULE_ALIAS("md-level-4");
8469 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8470 MODULE_ALIAS("md-raid6");
8471 MODULE_ALIAS("md-level-6");
8472
8473 /* This used to be two separate modules, they were: */
8474 MODULE_ALIAS("raid5");
8475 MODULE_ALIAS("raid6");