Merge tag 'pm-extra-4.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[sfrench/cifs-2.6.git] / drivers / md / raid5-cache.c
1 /*
2  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3  * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 #include <linux/kernel.h>
16 #include <linux/wait.h>
17 #include <linux/blkdev.h>
18 #include <linux/slab.h>
19 #include <linux/raid/md_p.h>
20 #include <linux/crc32c.h>
21 #include <linux/random.h>
22 #include <linux/kthread.h>
23 #include <linux/types.h>
24 #include "md.h"
25 #include "raid5.h"
26 #include "bitmap.h"
27
28 /*
29  * metadata/data stored in disk with 4k size unit (a block) regardless
30  * underneath hardware sector size. only works with PAGE_SIZE == 4096
31  */
32 #define BLOCK_SECTORS (8)
33 #define BLOCK_SECTOR_SHIFT (3)
34
35 /*
36  * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
37  *
38  * In write through mode, the reclaim runs every log->max_free_space.
39  * This can prevent the recovery scans for too long
40  */
41 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
42 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
43
44 /* wake up reclaim thread periodically */
45 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
46 /* start flush with these full stripes */
47 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
48 /* reclaim stripes in groups */
49 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
50
51 /*
52  * We only need 2 bios per I/O unit to make progress, but ensure we
53  * have a few more available to not get too tight.
54  */
55 #define R5L_POOL_SIZE   4
56
57 static char *r5c_journal_mode_str[] = {"write-through",
58                                        "write-back"};
59 /*
60  * raid5 cache state machine
61  *
62  * With the RAID cache, each stripe works in two phases:
63  *      - caching phase
64  *      - writing-out phase
65  *
66  * These two phases are controlled by bit STRIPE_R5C_CACHING:
67  *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
68  *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
69  *
70  * When there is no journal, or the journal is in write-through mode,
71  * the stripe is always in writing-out phase.
72  *
73  * For write-back journal, the stripe is sent to caching phase on write
74  * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
75  * the write-out phase by clearing STRIPE_R5C_CACHING.
76  *
77  * Stripes in caching phase do not write the raid disks. Instead, all
78  * writes are committed from the log device. Therefore, a stripe in
79  * caching phase handles writes as:
80  *      - write to log device
81  *      - return IO
82  *
83  * Stripes in writing-out phase handle writes as:
84  *      - calculate parity
85  *      - write pending data and parity to journal
86  *      - write data and parity to raid disks
87  *      - return IO for pending writes
88  */
89
90 struct r5l_log {
91         struct md_rdev *rdev;
92
93         u32 uuid_checksum;
94
95         sector_t device_size;           /* log device size, round to
96                                          * BLOCK_SECTORS */
97         sector_t max_free_space;        /* reclaim run if free space is at
98                                          * this size */
99
100         sector_t last_checkpoint;       /* log tail. where recovery scan
101                                          * starts from */
102         u64 last_cp_seq;                /* log tail sequence */
103
104         sector_t log_start;             /* log head. where new data appends */
105         u64 seq;                        /* log head sequence */
106
107         sector_t next_checkpoint;
108
109         struct mutex io_mutex;
110         struct r5l_io_unit *current_io; /* current io_unit accepting new data */
111
112         spinlock_t io_list_lock;
113         struct list_head running_ios;   /* io_units which are still running,
114                                          * and have not yet been completely
115                                          * written to the log */
116         struct list_head io_end_ios;    /* io_units which have been completely
117                                          * written to the log but not yet written
118                                          * to the RAID */
119         struct list_head flushing_ios;  /* io_units which are waiting for log
120                                          * cache flush */
121         struct list_head finished_ios;  /* io_units which settle down in log disk */
122         struct bio flush_bio;
123
124         struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
125
126         struct kmem_cache *io_kc;
127         mempool_t *io_pool;
128         struct bio_set *bs;
129         mempool_t *meta_pool;
130
131         struct md_thread *reclaim_thread;
132         unsigned long reclaim_target;   /* number of space that need to be
133                                          * reclaimed.  if it's 0, reclaim spaces
134                                          * used by io_units which are in
135                                          * IO_UNIT_STRIPE_END state (eg, reclaim
136                                          * dones't wait for specific io_unit
137                                          * switching to IO_UNIT_STRIPE_END
138                                          * state) */
139         wait_queue_head_t iounit_wait;
140
141         struct list_head no_space_stripes; /* pending stripes, log has no space */
142         spinlock_t no_space_stripes_lock;
143
144         bool need_cache_flush;
145
146         /* for r5c_cache */
147         enum r5c_journal_mode r5c_journal_mode;
148
149         /* all stripes in r5cache, in the order of seq at sh->log_start */
150         struct list_head stripe_in_journal_list;
151
152         spinlock_t stripe_in_journal_lock;
153         atomic_t stripe_in_journal_count;
154
155         /* to submit async io_units, to fulfill ordering of flush */
156         struct work_struct deferred_io_work;
157         /* to disable write back during in degraded mode */
158         struct work_struct disable_writeback_work;
159
160         /* to for chunk_aligned_read in writeback mode, details below */
161         spinlock_t tree_lock;
162         struct radix_tree_root big_stripe_tree;
163 };
164
165 /*
166  * Enable chunk_aligned_read() with write back cache.
167  *
168  * Each chunk may contain more than one stripe (for example, a 256kB
169  * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
170  * chunk_aligned_read, these stripes are grouped into one "big_stripe".
171  * For each big_stripe, we count how many stripes of this big_stripe
172  * are in the write back cache. These data are tracked in a radix tree
173  * (big_stripe_tree). We use radix_tree item pointer as the counter.
174  * r5c_tree_index() is used to calculate keys for the radix tree.
175  *
176  * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
177  * big_stripe of each chunk in the tree. If this big_stripe is in the
178  * tree, chunk_aligned_read() aborts. This look up is protected by
179  * rcu_read_lock().
180  *
181  * It is necessary to remember whether a stripe is counted in
182  * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
183  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
184  * two flags are set, the stripe is counted in big_stripe_tree. This
185  * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
186  * r5c_try_caching_write(); and moving clear_bit of
187  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
188  * r5c_finish_stripe_write_out().
189  */
190
191 /*
192  * radix tree requests lowest 2 bits of data pointer to be 2b'00.
193  * So it is necessary to left shift the counter by 2 bits before using it
194  * as data pointer of the tree.
195  */
196 #define R5C_RADIX_COUNT_SHIFT 2
197
198 /*
199  * calculate key for big_stripe_tree
200  *
201  * sect: align_bi->bi_iter.bi_sector or sh->sector
202  */
203 static inline sector_t r5c_tree_index(struct r5conf *conf,
204                                       sector_t sect)
205 {
206         sector_t offset;
207
208         offset = sector_div(sect, conf->chunk_sectors);
209         return sect;
210 }
211
212 /*
213  * an IO range starts from a meta data block and end at the next meta data
214  * block. The io unit's the meta data block tracks data/parity followed it. io
215  * unit is written to log disk with normal write, as we always flush log disk
216  * first and then start move data to raid disks, there is no requirement to
217  * write io unit with FLUSH/FUA
218  */
219 struct r5l_io_unit {
220         struct r5l_log *log;
221
222         struct page *meta_page; /* store meta block */
223         int meta_offset;        /* current offset in meta_page */
224
225         struct bio *current_bio;/* current_bio accepting new data */
226
227         atomic_t pending_stripe;/* how many stripes not flushed to raid */
228         u64 seq;                /* seq number of the metablock */
229         sector_t log_start;     /* where the io_unit starts */
230         sector_t log_end;       /* where the io_unit ends */
231         struct list_head log_sibling; /* log->running_ios */
232         struct list_head stripe_list; /* stripes added to the io_unit */
233
234         int state;
235         bool need_split_bio;
236         struct bio *split_bio;
237
238         unsigned int has_flush:1;      /* include flush request */
239         unsigned int has_fua:1;        /* include fua request */
240         unsigned int has_null_flush:1; /* include empty flush request */
241         /*
242          * io isn't sent yet, flush/fua request can only be submitted till it's
243          * the first IO in running_ios list
244          */
245         unsigned int io_deferred:1;
246
247         struct bio_list flush_barriers;   /* size == 0 flush bios */
248 };
249
250 /* r5l_io_unit state */
251 enum r5l_io_unit_state {
252         IO_UNIT_RUNNING = 0,    /* accepting new IO */
253         IO_UNIT_IO_START = 1,   /* io_unit bio start writing to log,
254                                  * don't accepting new bio */
255         IO_UNIT_IO_END = 2,     /* io_unit bio finish writing to log */
256         IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
257 };
258
259 bool r5c_is_writeback(struct r5l_log *log)
260 {
261         return (log != NULL &&
262                 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
263 }
264
265 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
266 {
267         start += inc;
268         if (start >= log->device_size)
269                 start = start - log->device_size;
270         return start;
271 }
272
273 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
274                                   sector_t end)
275 {
276         if (end >= start)
277                 return end - start;
278         else
279                 return end + log->device_size - start;
280 }
281
282 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
283 {
284         sector_t used_size;
285
286         used_size = r5l_ring_distance(log, log->last_checkpoint,
287                                         log->log_start);
288
289         return log->device_size > used_size + size;
290 }
291
292 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
293                                     enum r5l_io_unit_state state)
294 {
295         if (WARN_ON(io->state >= state))
296                 return;
297         io->state = state;
298 }
299
300 static void
301 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
302 {
303         struct bio *wbi, *wbi2;
304
305         wbi = dev->written;
306         dev->written = NULL;
307         while (wbi && wbi->bi_iter.bi_sector <
308                dev->sector + STRIPE_SECTORS) {
309                 wbi2 = r5_next_bio(wbi, dev->sector);
310                 md_write_end(conf->mddev);
311                 bio_endio(wbi);
312                 wbi = wbi2;
313         }
314 }
315
316 void r5c_handle_cached_data_endio(struct r5conf *conf,
317                                   struct stripe_head *sh, int disks)
318 {
319         int i;
320
321         for (i = sh->disks; i--; ) {
322                 if (sh->dev[i].written) {
323                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
324                         r5c_return_dev_pending_writes(conf, &sh->dev[i]);
325                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
326                                         STRIPE_SECTORS,
327                                         !test_bit(STRIPE_DEGRADED, &sh->state),
328                                         0);
329                 }
330         }
331 }
332
333 void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
334
335 /* Check whether we should flush some stripes to free up stripe cache */
336 void r5c_check_stripe_cache_usage(struct r5conf *conf)
337 {
338         int total_cached;
339
340         if (!r5c_is_writeback(conf->log))
341                 return;
342
343         total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
344                 atomic_read(&conf->r5c_cached_full_stripes);
345
346         /*
347          * The following condition is true for either of the following:
348          *   - stripe cache pressure high:
349          *          total_cached > 3/4 min_nr_stripes ||
350          *          empty_inactive_list_nr > 0
351          *   - stripe cache pressure moderate:
352          *          total_cached > 1/2 min_nr_stripes
353          */
354         if (total_cached > conf->min_nr_stripes * 1 / 2 ||
355             atomic_read(&conf->empty_inactive_list_nr) > 0)
356                 r5l_wake_reclaim(conf->log, 0);
357 }
358
359 /*
360  * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
361  * stripes in the cache
362  */
363 void r5c_check_cached_full_stripe(struct r5conf *conf)
364 {
365         if (!r5c_is_writeback(conf->log))
366                 return;
367
368         /*
369          * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
370          * or a full stripe (chunk size / 4k stripes).
371          */
372         if (atomic_read(&conf->r5c_cached_full_stripes) >=
373             min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
374                 conf->chunk_sectors >> STRIPE_SHIFT))
375                 r5l_wake_reclaim(conf->log, 0);
376 }
377
378 /*
379  * Total log space (in sectors) needed to flush all data in cache
380  *
381  * To avoid deadlock due to log space, it is necessary to reserve log
382  * space to flush critical stripes (stripes that occupying log space near
383  * last_checkpoint). This function helps check how much log space is
384  * required to flush all cached stripes.
385  *
386  * To reduce log space requirements, two mechanisms are used to give cache
387  * flush higher priorities:
388  *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
389  *       stripes ALREADY in journal can be flushed w/o pending writes;
390  *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
391  *       can be delayed (r5l_add_no_space_stripe).
392  *
393  * In cache flush, the stripe goes through 1 and then 2. For a stripe that
394  * already passed 1, flushing it requires at most (conf->max_degraded + 1)
395  * pages of journal space. For stripes that has not passed 1, flushing it
396  * requires (conf->raid_disks + 1) pages of journal space. There are at
397  * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
398  * required to flush all cached stripes (in pages) is:
399  *
400  *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
401  *     (group_cnt + 1) * (raid_disks + 1)
402  * or
403  *     (stripe_in_journal_count) * (max_degraded + 1) +
404  *     (group_cnt + 1) * (raid_disks - max_degraded)
405  */
406 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
407 {
408         struct r5l_log *log = conf->log;
409
410         if (!r5c_is_writeback(log))
411                 return 0;
412
413         return BLOCK_SECTORS *
414                 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
415                  (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
416 }
417
418 /*
419  * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
420  *
421  * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
422  * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
423  * device is less than 2x of reclaim_required_space.
424  */
425 static inline void r5c_update_log_state(struct r5l_log *log)
426 {
427         struct r5conf *conf = log->rdev->mddev->private;
428         sector_t free_space;
429         sector_t reclaim_space;
430         bool wake_reclaim = false;
431
432         if (!r5c_is_writeback(log))
433                 return;
434
435         free_space = r5l_ring_distance(log, log->log_start,
436                                        log->last_checkpoint);
437         reclaim_space = r5c_log_required_to_flush_cache(conf);
438         if (free_space < 2 * reclaim_space)
439                 set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
440         else {
441                 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
442                         wake_reclaim = true;
443                 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
444         }
445         if (free_space < 3 * reclaim_space)
446                 set_bit(R5C_LOG_TIGHT, &conf->cache_state);
447         else
448                 clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
449
450         if (wake_reclaim)
451                 r5l_wake_reclaim(log, 0);
452 }
453
454 /*
455  * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
456  * This function should only be called in write-back mode.
457  */
458 void r5c_make_stripe_write_out(struct stripe_head *sh)
459 {
460         struct r5conf *conf = sh->raid_conf;
461         struct r5l_log *log = conf->log;
462
463         BUG_ON(!r5c_is_writeback(log));
464
465         WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
466         clear_bit(STRIPE_R5C_CACHING, &sh->state);
467
468         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
469                 atomic_inc(&conf->preread_active_stripes);
470 }
471
472 static void r5c_handle_data_cached(struct stripe_head *sh)
473 {
474         int i;
475
476         for (i = sh->disks; i--; )
477                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
478                         set_bit(R5_InJournal, &sh->dev[i].flags);
479                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
480                 }
481         clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
482 }
483
484 /*
485  * this journal write must contain full parity,
486  * it may also contain some data pages
487  */
488 static void r5c_handle_parity_cached(struct stripe_head *sh)
489 {
490         int i;
491
492         for (i = sh->disks; i--; )
493                 if (test_bit(R5_InJournal, &sh->dev[i].flags))
494                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
495 }
496
497 /*
498  * Setting proper flags after writing (or flushing) data and/or parity to the
499  * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
500  */
501 static void r5c_finish_cache_stripe(struct stripe_head *sh)
502 {
503         struct r5l_log *log = sh->raid_conf->log;
504
505         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
506                 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
507                 /*
508                  * Set R5_InJournal for parity dev[pd_idx]. This means
509                  * all data AND parity in the journal. For RAID 6, it is
510                  * NOT necessary to set the flag for dev[qd_idx], as the
511                  * two parities are written out together.
512                  */
513                 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
514         } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
515                 r5c_handle_data_cached(sh);
516         } else {
517                 r5c_handle_parity_cached(sh);
518                 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
519         }
520 }
521
522 static void r5l_io_run_stripes(struct r5l_io_unit *io)
523 {
524         struct stripe_head *sh, *next;
525
526         list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
527                 list_del_init(&sh->log_list);
528
529                 r5c_finish_cache_stripe(sh);
530
531                 set_bit(STRIPE_HANDLE, &sh->state);
532                 raid5_release_stripe(sh);
533         }
534 }
535
536 static void r5l_log_run_stripes(struct r5l_log *log)
537 {
538         struct r5l_io_unit *io, *next;
539
540         assert_spin_locked(&log->io_list_lock);
541
542         list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
543                 /* don't change list order */
544                 if (io->state < IO_UNIT_IO_END)
545                         break;
546
547                 list_move_tail(&io->log_sibling, &log->finished_ios);
548                 r5l_io_run_stripes(io);
549         }
550 }
551
552 static void r5l_move_to_end_ios(struct r5l_log *log)
553 {
554         struct r5l_io_unit *io, *next;
555
556         assert_spin_locked(&log->io_list_lock);
557
558         list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
559                 /* don't change list order */
560                 if (io->state < IO_UNIT_IO_END)
561                         break;
562                 list_move_tail(&io->log_sibling, &log->io_end_ios);
563         }
564 }
565
566 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
567 static void r5l_log_endio(struct bio *bio)
568 {
569         struct r5l_io_unit *io = bio->bi_private;
570         struct r5l_io_unit *io_deferred;
571         struct r5l_log *log = io->log;
572         unsigned long flags;
573
574         if (bio->bi_error)
575                 md_error(log->rdev->mddev, log->rdev);
576
577         bio_put(bio);
578         mempool_free(io->meta_page, log->meta_pool);
579
580         spin_lock_irqsave(&log->io_list_lock, flags);
581         __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
582         if (log->need_cache_flush && !list_empty(&io->stripe_list))
583                 r5l_move_to_end_ios(log);
584         else
585                 r5l_log_run_stripes(log);
586         if (!list_empty(&log->running_ios)) {
587                 /*
588                  * FLUSH/FUA io_unit is deferred because of ordering, now we
589                  * can dispatch it
590                  */
591                 io_deferred = list_first_entry(&log->running_ios,
592                                                struct r5l_io_unit, log_sibling);
593                 if (io_deferred->io_deferred)
594                         schedule_work(&log->deferred_io_work);
595         }
596
597         spin_unlock_irqrestore(&log->io_list_lock, flags);
598
599         if (log->need_cache_flush)
600                 md_wakeup_thread(log->rdev->mddev->thread);
601
602         if (io->has_null_flush) {
603                 struct bio *bi;
604
605                 WARN_ON(bio_list_empty(&io->flush_barriers));
606                 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
607                         bio_endio(bi);
608                         atomic_dec(&io->pending_stripe);
609                 }
610         }
611
612         /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
613         if (atomic_read(&io->pending_stripe) == 0)
614                 __r5l_stripe_write_finished(io);
615 }
616
617 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
618 {
619         unsigned long flags;
620
621         spin_lock_irqsave(&log->io_list_lock, flags);
622         __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
623         spin_unlock_irqrestore(&log->io_list_lock, flags);
624
625         if (io->has_flush)
626                 io->current_bio->bi_opf |= REQ_PREFLUSH;
627         if (io->has_fua)
628                 io->current_bio->bi_opf |= REQ_FUA;
629         submit_bio(io->current_bio);
630
631         if (!io->split_bio)
632                 return;
633
634         if (io->has_flush)
635                 io->split_bio->bi_opf |= REQ_PREFLUSH;
636         if (io->has_fua)
637                 io->split_bio->bi_opf |= REQ_FUA;
638         submit_bio(io->split_bio);
639 }
640
641 /* deferred io_unit will be dispatched here */
642 static void r5l_submit_io_async(struct work_struct *work)
643 {
644         struct r5l_log *log = container_of(work, struct r5l_log,
645                                            deferred_io_work);
646         struct r5l_io_unit *io = NULL;
647         unsigned long flags;
648
649         spin_lock_irqsave(&log->io_list_lock, flags);
650         if (!list_empty(&log->running_ios)) {
651                 io = list_first_entry(&log->running_ios, struct r5l_io_unit,
652                                       log_sibling);
653                 if (!io->io_deferred)
654                         io = NULL;
655                 else
656                         io->io_deferred = 0;
657         }
658         spin_unlock_irqrestore(&log->io_list_lock, flags);
659         if (io)
660                 r5l_do_submit_io(log, io);
661 }
662
663 static void r5c_disable_writeback_async(struct work_struct *work)
664 {
665         struct r5l_log *log = container_of(work, struct r5l_log,
666                                            disable_writeback_work);
667         struct mddev *mddev = log->rdev->mddev;
668
669         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
670                 return;
671         pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
672                 mdname(mddev));
673         mddev_suspend(mddev);
674         log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
675         mddev_resume(mddev);
676 }
677
678 static void r5l_submit_current_io(struct r5l_log *log)
679 {
680         struct r5l_io_unit *io = log->current_io;
681         struct bio *bio;
682         struct r5l_meta_block *block;
683         unsigned long flags;
684         u32 crc;
685         bool do_submit = true;
686
687         if (!io)
688                 return;
689
690         block = page_address(io->meta_page);
691         block->meta_size = cpu_to_le32(io->meta_offset);
692         crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
693         block->checksum = cpu_to_le32(crc);
694         bio = io->current_bio;
695
696         log->current_io = NULL;
697         spin_lock_irqsave(&log->io_list_lock, flags);
698         if (io->has_flush || io->has_fua) {
699                 if (io != list_first_entry(&log->running_ios,
700                                            struct r5l_io_unit, log_sibling)) {
701                         io->io_deferred = 1;
702                         do_submit = false;
703                 }
704         }
705         spin_unlock_irqrestore(&log->io_list_lock, flags);
706         if (do_submit)
707                 r5l_do_submit_io(log, io);
708 }
709
710 static struct bio *r5l_bio_alloc(struct r5l_log *log)
711 {
712         struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
713
714         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
715         bio->bi_bdev = log->rdev->bdev;
716         bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
717
718         return bio;
719 }
720
721 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
722 {
723         log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
724
725         r5c_update_log_state(log);
726         /*
727          * If we filled up the log device start from the beginning again,
728          * which will require a new bio.
729          *
730          * Note: for this to work properly the log size needs to me a multiple
731          * of BLOCK_SECTORS.
732          */
733         if (log->log_start == 0)
734                 io->need_split_bio = true;
735
736         io->log_end = log->log_start;
737 }
738
739 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
740 {
741         struct r5l_io_unit *io;
742         struct r5l_meta_block *block;
743
744         io = mempool_alloc(log->io_pool, GFP_ATOMIC);
745         if (!io)
746                 return NULL;
747         memset(io, 0, sizeof(*io));
748
749         io->log = log;
750         INIT_LIST_HEAD(&io->log_sibling);
751         INIT_LIST_HEAD(&io->stripe_list);
752         bio_list_init(&io->flush_barriers);
753         io->state = IO_UNIT_RUNNING;
754
755         io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
756         block = page_address(io->meta_page);
757         clear_page(block);
758         block->magic = cpu_to_le32(R5LOG_MAGIC);
759         block->version = R5LOG_VERSION;
760         block->seq = cpu_to_le64(log->seq);
761         block->position = cpu_to_le64(log->log_start);
762
763         io->log_start = log->log_start;
764         io->meta_offset = sizeof(struct r5l_meta_block);
765         io->seq = log->seq++;
766
767         io->current_bio = r5l_bio_alloc(log);
768         io->current_bio->bi_end_io = r5l_log_endio;
769         io->current_bio->bi_private = io;
770         bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
771
772         r5_reserve_log_entry(log, io);
773
774         spin_lock_irq(&log->io_list_lock);
775         list_add_tail(&io->log_sibling, &log->running_ios);
776         spin_unlock_irq(&log->io_list_lock);
777
778         return io;
779 }
780
781 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
782 {
783         if (log->current_io &&
784             log->current_io->meta_offset + payload_size > PAGE_SIZE)
785                 r5l_submit_current_io(log);
786
787         if (!log->current_io) {
788                 log->current_io = r5l_new_meta(log);
789                 if (!log->current_io)
790                         return -ENOMEM;
791         }
792
793         return 0;
794 }
795
796 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
797                                     sector_t location,
798                                     u32 checksum1, u32 checksum2,
799                                     bool checksum2_valid)
800 {
801         struct r5l_io_unit *io = log->current_io;
802         struct r5l_payload_data_parity *payload;
803
804         payload = page_address(io->meta_page) + io->meta_offset;
805         payload->header.type = cpu_to_le16(type);
806         payload->header.flags = cpu_to_le16(0);
807         payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
808                                     (PAGE_SHIFT - 9));
809         payload->location = cpu_to_le64(location);
810         payload->checksum[0] = cpu_to_le32(checksum1);
811         if (checksum2_valid)
812                 payload->checksum[1] = cpu_to_le32(checksum2);
813
814         io->meta_offset += sizeof(struct r5l_payload_data_parity) +
815                 sizeof(__le32) * (1 + !!checksum2_valid);
816 }
817
818 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
819 {
820         struct r5l_io_unit *io = log->current_io;
821
822         if (io->need_split_bio) {
823                 BUG_ON(io->split_bio);
824                 io->split_bio = io->current_bio;
825                 io->current_bio = r5l_bio_alloc(log);
826                 bio_chain(io->current_bio, io->split_bio);
827                 io->need_split_bio = false;
828         }
829
830         if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
831                 BUG();
832
833         r5_reserve_log_entry(log, io);
834 }
835
836 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
837 {
838         struct mddev *mddev = log->rdev->mddev;
839         struct r5conf *conf = mddev->private;
840         struct r5l_io_unit *io;
841         struct r5l_payload_flush *payload;
842         int meta_size;
843
844         /*
845          * payload_flush requires extra writes to the journal.
846          * To avoid handling the extra IO in quiesce, just skip
847          * flush_payload
848          */
849         if (conf->quiesce)
850                 return;
851
852         mutex_lock(&log->io_mutex);
853         meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
854
855         if (r5l_get_meta(log, meta_size)) {
856                 mutex_unlock(&log->io_mutex);
857                 return;
858         }
859
860         /* current implementation is one stripe per flush payload */
861         io = log->current_io;
862         payload = page_address(io->meta_page) + io->meta_offset;
863         payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
864         payload->header.flags = cpu_to_le16(0);
865         payload->size = cpu_to_le32(sizeof(__le64));
866         payload->flush_stripes[0] = cpu_to_le64(sect);
867         io->meta_offset += meta_size;
868         mutex_unlock(&log->io_mutex);
869 }
870
871 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
872                            int data_pages, int parity_pages)
873 {
874         int i;
875         int meta_size;
876         int ret;
877         struct r5l_io_unit *io;
878
879         meta_size =
880                 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
881                  * data_pages) +
882                 sizeof(struct r5l_payload_data_parity) +
883                 sizeof(__le32) * parity_pages;
884
885         ret = r5l_get_meta(log, meta_size);
886         if (ret)
887                 return ret;
888
889         io = log->current_io;
890
891         if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
892                 io->has_flush = 1;
893
894         for (i = 0; i < sh->disks; i++) {
895                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
896                     test_bit(R5_InJournal, &sh->dev[i].flags))
897                         continue;
898                 if (i == sh->pd_idx || i == sh->qd_idx)
899                         continue;
900                 if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
901                     log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
902                         io->has_fua = 1;
903                         /*
904                          * we need to flush journal to make sure recovery can
905                          * reach the data with fua flag
906                          */
907                         io->has_flush = 1;
908                 }
909                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
910                                         raid5_compute_blocknr(sh, i, 0),
911                                         sh->dev[i].log_checksum, 0, false);
912                 r5l_append_payload_page(log, sh->dev[i].page);
913         }
914
915         if (parity_pages == 2) {
916                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
917                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
918                                         sh->dev[sh->qd_idx].log_checksum, true);
919                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
920                 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
921         } else if (parity_pages == 1) {
922                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
923                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
924                                         0, false);
925                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
926         } else  /* Just writing data, not parity, in caching phase */
927                 BUG_ON(parity_pages != 0);
928
929         list_add_tail(&sh->log_list, &io->stripe_list);
930         atomic_inc(&io->pending_stripe);
931         sh->log_io = io;
932
933         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
934                 return 0;
935
936         if (sh->log_start == MaxSector) {
937                 BUG_ON(!list_empty(&sh->r5c));
938                 sh->log_start = io->log_start;
939                 spin_lock_irq(&log->stripe_in_journal_lock);
940                 list_add_tail(&sh->r5c,
941                               &log->stripe_in_journal_list);
942                 spin_unlock_irq(&log->stripe_in_journal_lock);
943                 atomic_inc(&log->stripe_in_journal_count);
944         }
945         return 0;
946 }
947
948 /* add stripe to no_space_stripes, and then wake up reclaim */
949 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
950                                            struct stripe_head *sh)
951 {
952         spin_lock(&log->no_space_stripes_lock);
953         list_add_tail(&sh->log_list, &log->no_space_stripes);
954         spin_unlock(&log->no_space_stripes_lock);
955 }
956
957 /*
958  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
959  * data from log to raid disks), so we shouldn't wait for reclaim here
960  */
961 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
962 {
963         struct r5conf *conf = sh->raid_conf;
964         int write_disks = 0;
965         int data_pages, parity_pages;
966         int reserve;
967         int i;
968         int ret = 0;
969         bool wake_reclaim = false;
970
971         if (!log)
972                 return -EAGAIN;
973         /* Don't support stripe batch */
974         if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
975             test_bit(STRIPE_SYNCING, &sh->state)) {
976                 /* the stripe is written to log, we start writing it to raid */
977                 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
978                 return -EAGAIN;
979         }
980
981         WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
982
983         for (i = 0; i < sh->disks; i++) {
984                 void *addr;
985
986                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
987                     test_bit(R5_InJournal, &sh->dev[i].flags))
988                         continue;
989
990                 write_disks++;
991                 /* checksum is already calculated in last run */
992                 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
993                         continue;
994                 addr = kmap_atomic(sh->dev[i].page);
995                 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
996                                                     addr, PAGE_SIZE);
997                 kunmap_atomic(addr);
998         }
999         parity_pages = 1 + !!(sh->qd_idx >= 0);
1000         data_pages = write_disks - parity_pages;
1001
1002         set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1003         /*
1004          * The stripe must enter state machine again to finish the write, so
1005          * don't delay.
1006          */
1007         clear_bit(STRIPE_DELAYED, &sh->state);
1008         atomic_inc(&sh->count);
1009
1010         mutex_lock(&log->io_mutex);
1011         /* meta + data */
1012         reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1013
1014         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1015                 if (!r5l_has_free_space(log, reserve)) {
1016                         r5l_add_no_space_stripe(log, sh);
1017                         wake_reclaim = true;
1018                 } else {
1019                         ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1020                         if (ret) {
1021                                 spin_lock_irq(&log->io_list_lock);
1022                                 list_add_tail(&sh->log_list,
1023                                               &log->no_mem_stripes);
1024                                 spin_unlock_irq(&log->io_list_lock);
1025                         }
1026                 }
1027         } else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
1028                 /*
1029                  * log space critical, do not process stripes that are
1030                  * not in cache yet (sh->log_start == MaxSector).
1031                  */
1032                 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1033                     sh->log_start == MaxSector) {
1034                         r5l_add_no_space_stripe(log, sh);
1035                         wake_reclaim = true;
1036                         reserve = 0;
1037                 } else if (!r5l_has_free_space(log, reserve)) {
1038                         if (sh->log_start == log->last_checkpoint)
1039                                 BUG();
1040                         else
1041                                 r5l_add_no_space_stripe(log, sh);
1042                 } else {
1043                         ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1044                         if (ret) {
1045                                 spin_lock_irq(&log->io_list_lock);
1046                                 list_add_tail(&sh->log_list,
1047                                               &log->no_mem_stripes);
1048                                 spin_unlock_irq(&log->io_list_lock);
1049                         }
1050                 }
1051         }
1052
1053         mutex_unlock(&log->io_mutex);
1054         if (wake_reclaim)
1055                 r5l_wake_reclaim(log, reserve);
1056         return 0;
1057 }
1058
1059 void r5l_write_stripe_run(struct r5l_log *log)
1060 {
1061         if (!log)
1062                 return;
1063         mutex_lock(&log->io_mutex);
1064         r5l_submit_current_io(log);
1065         mutex_unlock(&log->io_mutex);
1066 }
1067
1068 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1069 {
1070         if (!log)
1071                 return -ENODEV;
1072
1073         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1074                 /*
1075                  * in write through (journal only)
1076                  * we flush log disk cache first, then write stripe data to
1077                  * raid disks. So if bio is finished, the log disk cache is
1078                  * flushed already. The recovery guarantees we can recovery
1079                  * the bio from log disk, so we don't need to flush again
1080                  */
1081                 if (bio->bi_iter.bi_size == 0) {
1082                         bio_endio(bio);
1083                         return 0;
1084                 }
1085                 bio->bi_opf &= ~REQ_PREFLUSH;
1086         } else {
1087                 /* write back (with cache) */
1088                 if (bio->bi_iter.bi_size == 0) {
1089                         mutex_lock(&log->io_mutex);
1090                         r5l_get_meta(log, 0);
1091                         bio_list_add(&log->current_io->flush_barriers, bio);
1092                         log->current_io->has_flush = 1;
1093                         log->current_io->has_null_flush = 1;
1094                         atomic_inc(&log->current_io->pending_stripe);
1095                         r5l_submit_current_io(log);
1096                         mutex_unlock(&log->io_mutex);
1097                         return 0;
1098                 }
1099         }
1100         return -EAGAIN;
1101 }
1102
1103 /* This will run after log space is reclaimed */
1104 static void r5l_run_no_space_stripes(struct r5l_log *log)
1105 {
1106         struct stripe_head *sh;
1107
1108         spin_lock(&log->no_space_stripes_lock);
1109         while (!list_empty(&log->no_space_stripes)) {
1110                 sh = list_first_entry(&log->no_space_stripes,
1111                                       struct stripe_head, log_list);
1112                 list_del_init(&sh->log_list);
1113                 set_bit(STRIPE_HANDLE, &sh->state);
1114                 raid5_release_stripe(sh);
1115         }
1116         spin_unlock(&log->no_space_stripes_lock);
1117 }
1118
1119 /*
1120  * calculate new last_checkpoint
1121  * for write through mode, returns log->next_checkpoint
1122  * for write back, returns log_start of first sh in stripe_in_journal_list
1123  */
1124 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1125 {
1126         struct stripe_head *sh;
1127         struct r5l_log *log = conf->log;
1128         sector_t new_cp;
1129         unsigned long flags;
1130
1131         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1132                 return log->next_checkpoint;
1133
1134         spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1135         if (list_empty(&conf->log->stripe_in_journal_list)) {
1136                 /* all stripes flushed */
1137                 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1138                 return log->next_checkpoint;
1139         }
1140         sh = list_first_entry(&conf->log->stripe_in_journal_list,
1141                               struct stripe_head, r5c);
1142         new_cp = sh->log_start;
1143         spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1144         return new_cp;
1145 }
1146
1147 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1148 {
1149         struct r5conf *conf = log->rdev->mddev->private;
1150
1151         return r5l_ring_distance(log, log->last_checkpoint,
1152                                  r5c_calculate_new_cp(conf));
1153 }
1154
1155 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1156 {
1157         struct stripe_head *sh;
1158
1159         assert_spin_locked(&log->io_list_lock);
1160
1161         if (!list_empty(&log->no_mem_stripes)) {
1162                 sh = list_first_entry(&log->no_mem_stripes,
1163                                       struct stripe_head, log_list);
1164                 list_del_init(&sh->log_list);
1165                 set_bit(STRIPE_HANDLE, &sh->state);
1166                 raid5_release_stripe(sh);
1167         }
1168 }
1169
1170 static bool r5l_complete_finished_ios(struct r5l_log *log)
1171 {
1172         struct r5l_io_unit *io, *next;
1173         bool found = false;
1174
1175         assert_spin_locked(&log->io_list_lock);
1176
1177         list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1178                 /* don't change list order */
1179                 if (io->state < IO_UNIT_STRIPE_END)
1180                         break;
1181
1182                 log->next_checkpoint = io->log_start;
1183
1184                 list_del(&io->log_sibling);
1185                 mempool_free(io, log->io_pool);
1186                 r5l_run_no_mem_stripe(log);
1187
1188                 found = true;
1189         }
1190
1191         return found;
1192 }
1193
1194 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1195 {
1196         struct r5l_log *log = io->log;
1197         struct r5conf *conf = log->rdev->mddev->private;
1198         unsigned long flags;
1199
1200         spin_lock_irqsave(&log->io_list_lock, flags);
1201         __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1202
1203         if (!r5l_complete_finished_ios(log)) {
1204                 spin_unlock_irqrestore(&log->io_list_lock, flags);
1205                 return;
1206         }
1207
1208         if (r5l_reclaimable_space(log) > log->max_free_space ||
1209             test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1210                 r5l_wake_reclaim(log, 0);
1211
1212         spin_unlock_irqrestore(&log->io_list_lock, flags);
1213         wake_up(&log->iounit_wait);
1214 }
1215
1216 void r5l_stripe_write_finished(struct stripe_head *sh)
1217 {
1218         struct r5l_io_unit *io;
1219
1220         io = sh->log_io;
1221         sh->log_io = NULL;
1222
1223         if (io && atomic_dec_and_test(&io->pending_stripe))
1224                 __r5l_stripe_write_finished(io);
1225 }
1226
1227 static void r5l_log_flush_endio(struct bio *bio)
1228 {
1229         struct r5l_log *log = container_of(bio, struct r5l_log,
1230                 flush_bio);
1231         unsigned long flags;
1232         struct r5l_io_unit *io;
1233
1234         if (bio->bi_error)
1235                 md_error(log->rdev->mddev, log->rdev);
1236
1237         spin_lock_irqsave(&log->io_list_lock, flags);
1238         list_for_each_entry(io, &log->flushing_ios, log_sibling)
1239                 r5l_io_run_stripes(io);
1240         list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1241         spin_unlock_irqrestore(&log->io_list_lock, flags);
1242 }
1243
1244 /*
1245  * Starting dispatch IO to raid.
1246  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1247  * broken meta in the middle of a log causes recovery can't find meta at the
1248  * head of log. If operations require meta at the head persistent in log, we
1249  * must make sure meta before it persistent in log too. A case is:
1250  *
1251  * stripe data/parity is in log, we start write stripe to raid disks. stripe
1252  * data/parity must be persistent in log before we do the write to raid disks.
1253  *
1254  * The solution is we restrictly maintain io_unit list order. In this case, we
1255  * only write stripes of an io_unit to raid disks till the io_unit is the first
1256  * one whose data/parity is in log.
1257  */
1258 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1259 {
1260         bool do_flush;
1261
1262         if (!log || !log->need_cache_flush)
1263                 return;
1264
1265         spin_lock_irq(&log->io_list_lock);
1266         /* flush bio is running */
1267         if (!list_empty(&log->flushing_ios)) {
1268                 spin_unlock_irq(&log->io_list_lock);
1269                 return;
1270         }
1271         list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1272         do_flush = !list_empty(&log->flushing_ios);
1273         spin_unlock_irq(&log->io_list_lock);
1274
1275         if (!do_flush)
1276                 return;
1277         bio_reset(&log->flush_bio);
1278         log->flush_bio.bi_bdev = log->rdev->bdev;
1279         log->flush_bio.bi_end_io = r5l_log_flush_endio;
1280         log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1281         submit_bio(&log->flush_bio);
1282 }
1283
1284 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1285 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1286         sector_t end)
1287 {
1288         struct block_device *bdev = log->rdev->bdev;
1289         struct mddev *mddev;
1290
1291         r5l_write_super(log, end);
1292
1293         if (!blk_queue_discard(bdev_get_queue(bdev)))
1294                 return;
1295
1296         mddev = log->rdev->mddev;
1297         /*
1298          * Discard could zero data, so before discard we must make sure
1299          * superblock is updated to new log tail. Updating superblock (either
1300          * directly call md_update_sb() or depend on md thread) must hold
1301          * reconfig mutex. On the other hand, raid5_quiesce is called with
1302          * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1303          * for all IO finish, hence waitting for reclaim thread, while reclaim
1304          * thread is calling this function and waitting for reconfig mutex. So
1305          * there is a deadlock. We workaround this issue with a trylock.
1306          * FIXME: we could miss discard if we can't take reconfig mutex
1307          */
1308         set_mask_bits(&mddev->sb_flags, 0,
1309                 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1310         if (!mddev_trylock(mddev))
1311                 return;
1312         md_update_sb(mddev, 1);
1313         mddev_unlock(mddev);
1314
1315         /* discard IO error really doesn't matter, ignore it */
1316         if (log->last_checkpoint < end) {
1317                 blkdev_issue_discard(bdev,
1318                                 log->last_checkpoint + log->rdev->data_offset,
1319                                 end - log->last_checkpoint, GFP_NOIO, 0);
1320         } else {
1321                 blkdev_issue_discard(bdev,
1322                                 log->last_checkpoint + log->rdev->data_offset,
1323                                 log->device_size - log->last_checkpoint,
1324                                 GFP_NOIO, 0);
1325                 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1326                                 GFP_NOIO, 0);
1327         }
1328 }
1329
1330 /*
1331  * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1332  * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1333  *
1334  * must hold conf->device_lock
1335  */
1336 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1337 {
1338         BUG_ON(list_empty(&sh->lru));
1339         BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1340         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1341
1342         /*
1343          * The stripe is not ON_RELEASE_LIST, so it is safe to call
1344          * raid5_release_stripe() while holding conf->device_lock
1345          */
1346         BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1347         assert_spin_locked(&conf->device_lock);
1348
1349         list_del_init(&sh->lru);
1350         atomic_inc(&sh->count);
1351
1352         set_bit(STRIPE_HANDLE, &sh->state);
1353         atomic_inc(&conf->active_stripes);
1354         r5c_make_stripe_write_out(sh);
1355
1356         if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1357                 atomic_inc(&conf->r5c_flushing_partial_stripes);
1358         else
1359                 atomic_inc(&conf->r5c_flushing_full_stripes);
1360         raid5_release_stripe(sh);
1361 }
1362
1363 /*
1364  * if num == 0, flush all full stripes
1365  * if num > 0, flush all full stripes. If less than num full stripes are
1366  *             flushed, flush some partial stripes until totally num stripes are
1367  *             flushed or there is no more cached stripes.
1368  */
1369 void r5c_flush_cache(struct r5conf *conf, int num)
1370 {
1371         int count;
1372         struct stripe_head *sh, *next;
1373
1374         assert_spin_locked(&conf->device_lock);
1375         if (!conf->log)
1376                 return;
1377
1378         count = 0;
1379         list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1380                 r5c_flush_stripe(conf, sh);
1381                 count++;
1382         }
1383
1384         if (count >= num)
1385                 return;
1386         list_for_each_entry_safe(sh, next,
1387                                  &conf->r5c_partial_stripe_list, lru) {
1388                 r5c_flush_stripe(conf, sh);
1389                 if (++count >= num)
1390                         break;
1391         }
1392 }
1393
1394 static void r5c_do_reclaim(struct r5conf *conf)
1395 {
1396         struct r5l_log *log = conf->log;
1397         struct stripe_head *sh;
1398         int count = 0;
1399         unsigned long flags;
1400         int total_cached;
1401         int stripes_to_flush;
1402         int flushing_partial, flushing_full;
1403
1404         if (!r5c_is_writeback(log))
1405                 return;
1406
1407         flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1408         flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1409         total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1410                 atomic_read(&conf->r5c_cached_full_stripes) -
1411                 flushing_full - flushing_partial;
1412
1413         if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1414             atomic_read(&conf->empty_inactive_list_nr) > 0)
1415                 /*
1416                  * if stripe cache pressure high, flush all full stripes and
1417                  * some partial stripes
1418                  */
1419                 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1420         else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1421                  atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1422                  R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1423                 /*
1424                  * if stripe cache pressure moderate, or if there is many full
1425                  * stripes,flush all full stripes
1426                  */
1427                 stripes_to_flush = 0;
1428         else
1429                 /* no need to flush */
1430                 stripes_to_flush = -1;
1431
1432         if (stripes_to_flush >= 0) {
1433                 spin_lock_irqsave(&conf->device_lock, flags);
1434                 r5c_flush_cache(conf, stripes_to_flush);
1435                 spin_unlock_irqrestore(&conf->device_lock, flags);
1436         }
1437
1438         /* if log space is tight, flush stripes on stripe_in_journal_list */
1439         if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1440                 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1441                 spin_lock(&conf->device_lock);
1442                 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1443                         /*
1444                          * stripes on stripe_in_journal_list could be in any
1445                          * state of the stripe_cache state machine. In this
1446                          * case, we only want to flush stripe on
1447                          * r5c_cached_full/partial_stripes. The following
1448                          * condition makes sure the stripe is on one of the
1449                          * two lists.
1450                          */
1451                         if (!list_empty(&sh->lru) &&
1452                             !test_bit(STRIPE_HANDLE, &sh->state) &&
1453                             atomic_read(&sh->count) == 0) {
1454                                 r5c_flush_stripe(conf, sh);
1455                                 if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1456                                         break;
1457                         }
1458                 }
1459                 spin_unlock(&conf->device_lock);
1460                 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1461         }
1462
1463         if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1464                 r5l_run_no_space_stripes(log);
1465
1466         md_wakeup_thread(conf->mddev->thread);
1467 }
1468
1469 static void r5l_do_reclaim(struct r5l_log *log)
1470 {
1471         struct r5conf *conf = log->rdev->mddev->private;
1472         sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1473         sector_t reclaimable;
1474         sector_t next_checkpoint;
1475         bool write_super;
1476
1477         spin_lock_irq(&log->io_list_lock);
1478         write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1479                 reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1480         /*
1481          * move proper io_unit to reclaim list. We should not change the order.
1482          * reclaimable/unreclaimable io_unit can be mixed in the list, we
1483          * shouldn't reuse space of an unreclaimable io_unit
1484          */
1485         while (1) {
1486                 reclaimable = r5l_reclaimable_space(log);
1487                 if (reclaimable >= reclaim_target ||
1488                     (list_empty(&log->running_ios) &&
1489                      list_empty(&log->io_end_ios) &&
1490                      list_empty(&log->flushing_ios) &&
1491                      list_empty(&log->finished_ios)))
1492                         break;
1493
1494                 md_wakeup_thread(log->rdev->mddev->thread);
1495                 wait_event_lock_irq(log->iounit_wait,
1496                                     r5l_reclaimable_space(log) > reclaimable,
1497                                     log->io_list_lock);
1498         }
1499
1500         next_checkpoint = r5c_calculate_new_cp(conf);
1501         spin_unlock_irq(&log->io_list_lock);
1502
1503         if (reclaimable == 0 || !write_super)
1504                 return;
1505
1506         /*
1507          * write_super will flush cache of each raid disk. We must write super
1508          * here, because the log area might be reused soon and we don't want to
1509          * confuse recovery
1510          */
1511         r5l_write_super_and_discard_space(log, next_checkpoint);
1512
1513         mutex_lock(&log->io_mutex);
1514         log->last_checkpoint = next_checkpoint;
1515         r5c_update_log_state(log);
1516         mutex_unlock(&log->io_mutex);
1517
1518         r5l_run_no_space_stripes(log);
1519 }
1520
1521 static void r5l_reclaim_thread(struct md_thread *thread)
1522 {
1523         struct mddev *mddev = thread->mddev;
1524         struct r5conf *conf = mddev->private;
1525         struct r5l_log *log = conf->log;
1526
1527         if (!log)
1528                 return;
1529         r5c_do_reclaim(conf);
1530         r5l_do_reclaim(log);
1531 }
1532
1533 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1534 {
1535         unsigned long target;
1536         unsigned long new = (unsigned long)space; /* overflow in theory */
1537
1538         if (!log)
1539                 return;
1540         do {
1541                 target = log->reclaim_target;
1542                 if (new < target)
1543                         return;
1544         } while (cmpxchg(&log->reclaim_target, target, new) != target);
1545         md_wakeup_thread(log->reclaim_thread);
1546 }
1547
1548 void r5l_quiesce(struct r5l_log *log, int state)
1549 {
1550         struct mddev *mddev;
1551         if (!log || state == 2)
1552                 return;
1553         if (state == 0)
1554                 kthread_unpark(log->reclaim_thread->tsk);
1555         else if (state == 1) {
1556                 /* make sure r5l_write_super_and_discard_space exits */
1557                 mddev = log->rdev->mddev;
1558                 wake_up(&mddev->sb_wait);
1559                 kthread_park(log->reclaim_thread->tsk);
1560                 r5l_wake_reclaim(log, MaxSector);
1561                 r5l_do_reclaim(log);
1562         }
1563 }
1564
1565 bool r5l_log_disk_error(struct r5conf *conf)
1566 {
1567         struct r5l_log *log;
1568         bool ret;
1569         /* don't allow write if journal disk is missing */
1570         rcu_read_lock();
1571         log = rcu_dereference(conf->log);
1572
1573         if (!log)
1574                 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1575         else
1576                 ret = test_bit(Faulty, &log->rdev->flags);
1577         rcu_read_unlock();
1578         return ret;
1579 }
1580
1581 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1582
1583 struct r5l_recovery_ctx {
1584         struct page *meta_page;         /* current meta */
1585         sector_t meta_total_blocks;     /* total size of current meta and data */
1586         sector_t pos;                   /* recovery position */
1587         u64 seq;                        /* recovery position seq */
1588         int data_parity_stripes;        /* number of data_parity stripes */
1589         int data_only_stripes;          /* number of data_only stripes */
1590         struct list_head cached_list;
1591
1592         /*
1593          * read ahead page pool (ra_pool)
1594          * in recovery, log is read sequentially. It is not efficient to
1595          * read every page with sync_page_io(). The read ahead page pool
1596          * reads multiple pages with one IO, so further log read can
1597          * just copy data from the pool.
1598          */
1599         struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1600         sector_t pool_offset;   /* offset of first page in the pool */
1601         int total_pages;        /* total allocated pages */
1602         int valid_pages;        /* pages with valid data */
1603         struct bio *ra_bio;     /* bio to do the read ahead */
1604 };
1605
1606 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1607                                             struct r5l_recovery_ctx *ctx)
1608 {
1609         struct page *page;
1610
1611         ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, log->bs);
1612         if (!ctx->ra_bio)
1613                 return -ENOMEM;
1614
1615         ctx->valid_pages = 0;
1616         ctx->total_pages = 0;
1617         while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1618                 page = alloc_page(GFP_KERNEL);
1619
1620                 if (!page)
1621                         break;
1622                 ctx->ra_pool[ctx->total_pages] = page;
1623                 ctx->total_pages += 1;
1624         }
1625
1626         if (ctx->total_pages == 0) {
1627                 bio_put(ctx->ra_bio);
1628                 return -ENOMEM;
1629         }
1630
1631         ctx->pool_offset = 0;
1632         return 0;
1633 }
1634
1635 static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1636                                         struct r5l_recovery_ctx *ctx)
1637 {
1638         int i;
1639
1640         for (i = 0; i < ctx->total_pages; ++i)
1641                 put_page(ctx->ra_pool[i]);
1642         bio_put(ctx->ra_bio);
1643 }
1644
1645 /*
1646  * fetch ctx->valid_pages pages from offset
1647  * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1648  * However, if the offset is close to the end of the journal device,
1649  * ctx->valid_pages could be smaller than ctx->total_pages
1650  */
1651 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1652                                       struct r5l_recovery_ctx *ctx,
1653                                       sector_t offset)
1654 {
1655         bio_reset(ctx->ra_bio);
1656         ctx->ra_bio->bi_bdev = log->rdev->bdev;
1657         bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0);
1658         ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset;
1659
1660         ctx->valid_pages = 0;
1661         ctx->pool_offset = offset;
1662
1663         while (ctx->valid_pages < ctx->total_pages) {
1664                 bio_add_page(ctx->ra_bio,
1665                              ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0);
1666                 ctx->valid_pages += 1;
1667
1668                 offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1669
1670                 if (offset == 0)  /* reached end of the device */
1671                         break;
1672         }
1673
1674         return submit_bio_wait(ctx->ra_bio);
1675 }
1676
1677 /*
1678  * try read a page from the read ahead page pool, if the page is not in the
1679  * pool, call r5l_recovery_fetch_ra_pool
1680  */
1681 static int r5l_recovery_read_page(struct r5l_log *log,
1682                                   struct r5l_recovery_ctx *ctx,
1683                                   struct page *page,
1684                                   sector_t offset)
1685 {
1686         int ret;
1687
1688         if (offset < ctx->pool_offset ||
1689             offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1690                 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1691                 if (ret)
1692                         return ret;
1693         }
1694
1695         BUG_ON(offset < ctx->pool_offset ||
1696                offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1697
1698         memcpy(page_address(page),
1699                page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1700                                          BLOCK_SECTOR_SHIFT]),
1701                PAGE_SIZE);
1702         return 0;
1703 }
1704
1705 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1706                                         struct r5l_recovery_ctx *ctx)
1707 {
1708         struct page *page = ctx->meta_page;
1709         struct r5l_meta_block *mb;
1710         u32 crc, stored_crc;
1711         int ret;
1712
1713         ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1714         if (ret != 0)
1715                 return ret;
1716
1717         mb = page_address(page);
1718         stored_crc = le32_to_cpu(mb->checksum);
1719         mb->checksum = 0;
1720
1721         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1722             le64_to_cpu(mb->seq) != ctx->seq ||
1723             mb->version != R5LOG_VERSION ||
1724             le64_to_cpu(mb->position) != ctx->pos)
1725                 return -EINVAL;
1726
1727         crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1728         if (stored_crc != crc)
1729                 return -EINVAL;
1730
1731         if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1732                 return -EINVAL;
1733
1734         ctx->meta_total_blocks = BLOCK_SECTORS;
1735
1736         return 0;
1737 }
1738
1739 static void
1740 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1741                                      struct page *page,
1742                                      sector_t pos, u64 seq)
1743 {
1744         struct r5l_meta_block *mb;
1745
1746         mb = page_address(page);
1747         clear_page(mb);
1748         mb->magic = cpu_to_le32(R5LOG_MAGIC);
1749         mb->version = R5LOG_VERSION;
1750         mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1751         mb->seq = cpu_to_le64(seq);
1752         mb->position = cpu_to_le64(pos);
1753 }
1754
1755 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1756                                           u64 seq)
1757 {
1758         struct page *page;
1759         struct r5l_meta_block *mb;
1760
1761         page = alloc_page(GFP_KERNEL);
1762         if (!page)
1763                 return -ENOMEM;
1764         r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1765         mb = page_address(page);
1766         mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1767                                              mb, PAGE_SIZE));
1768         if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1769                           REQ_FUA, false)) {
1770                 __free_page(page);
1771                 return -EIO;
1772         }
1773         __free_page(page);
1774         return 0;
1775 }
1776
1777 /*
1778  * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1779  * to mark valid (potentially not flushed) data in the journal.
1780  *
1781  * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1782  * so there should not be any mismatch here.
1783  */
1784 static void r5l_recovery_load_data(struct r5l_log *log,
1785                                    struct stripe_head *sh,
1786                                    struct r5l_recovery_ctx *ctx,
1787                                    struct r5l_payload_data_parity *payload,
1788                                    sector_t log_offset)
1789 {
1790         struct mddev *mddev = log->rdev->mddev;
1791         struct r5conf *conf = mddev->private;
1792         int dd_idx;
1793
1794         raid5_compute_sector(conf,
1795                              le64_to_cpu(payload->location), 0,
1796                              &dd_idx, sh);
1797         r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1798         sh->dev[dd_idx].log_checksum =
1799                 le32_to_cpu(payload->checksum[0]);
1800         ctx->meta_total_blocks += BLOCK_SECTORS;
1801
1802         set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1803         set_bit(STRIPE_R5C_CACHING, &sh->state);
1804 }
1805
1806 static void r5l_recovery_load_parity(struct r5l_log *log,
1807                                      struct stripe_head *sh,
1808                                      struct r5l_recovery_ctx *ctx,
1809                                      struct r5l_payload_data_parity *payload,
1810                                      sector_t log_offset)
1811 {
1812         struct mddev *mddev = log->rdev->mddev;
1813         struct r5conf *conf = mddev->private;
1814
1815         ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1816         r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1817         sh->dev[sh->pd_idx].log_checksum =
1818                 le32_to_cpu(payload->checksum[0]);
1819         set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1820
1821         if (sh->qd_idx >= 0) {
1822                 r5l_recovery_read_page(
1823                         log, ctx, sh->dev[sh->qd_idx].page,
1824                         r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1825                 sh->dev[sh->qd_idx].log_checksum =
1826                         le32_to_cpu(payload->checksum[1]);
1827                 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1828         }
1829         clear_bit(STRIPE_R5C_CACHING, &sh->state);
1830 }
1831
1832 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1833 {
1834         int i;
1835
1836         sh->state = 0;
1837         sh->log_start = MaxSector;
1838         for (i = sh->disks; i--; )
1839                 sh->dev[i].flags = 0;
1840 }
1841
1842 static void
1843 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1844                                struct stripe_head *sh,
1845                                struct r5l_recovery_ctx *ctx)
1846 {
1847         struct md_rdev *rdev, *rrdev;
1848         int disk_index;
1849         int data_count = 0;
1850
1851         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1852                 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1853                         continue;
1854                 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1855                         continue;
1856                 data_count++;
1857         }
1858
1859         /*
1860          * stripes that only have parity must have been flushed
1861          * before the crash that we are now recovering from, so
1862          * there is nothing more to recovery.
1863          */
1864         if (data_count == 0)
1865                 goto out;
1866
1867         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1868                 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1869                         continue;
1870
1871                 /* in case device is broken */
1872                 rcu_read_lock();
1873                 rdev = rcu_dereference(conf->disks[disk_index].rdev);
1874                 if (rdev) {
1875                         atomic_inc(&rdev->nr_pending);
1876                         rcu_read_unlock();
1877                         sync_page_io(rdev, sh->sector, PAGE_SIZE,
1878                                      sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1879                                      false);
1880                         rdev_dec_pending(rdev, rdev->mddev);
1881                         rcu_read_lock();
1882                 }
1883                 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1884                 if (rrdev) {
1885                         atomic_inc(&rrdev->nr_pending);
1886                         rcu_read_unlock();
1887                         sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1888                                      sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1889                                      false);
1890                         rdev_dec_pending(rrdev, rrdev->mddev);
1891                         rcu_read_lock();
1892                 }
1893                 rcu_read_unlock();
1894         }
1895         ctx->data_parity_stripes++;
1896 out:
1897         r5l_recovery_reset_stripe(sh);
1898 }
1899
1900 static struct stripe_head *
1901 r5c_recovery_alloc_stripe(struct r5conf *conf,
1902                           sector_t stripe_sect)
1903 {
1904         struct stripe_head *sh;
1905
1906         sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0);
1907         if (!sh)
1908                 return NULL;  /* no more stripe available */
1909
1910         r5l_recovery_reset_stripe(sh);
1911
1912         return sh;
1913 }
1914
1915 static struct stripe_head *
1916 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1917 {
1918         struct stripe_head *sh;
1919
1920         list_for_each_entry(sh, list, lru)
1921                 if (sh->sector == sect)
1922                         return sh;
1923         return NULL;
1924 }
1925
1926 static void
1927 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1928                           struct r5l_recovery_ctx *ctx)
1929 {
1930         struct stripe_head *sh, *next;
1931
1932         list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1933                 r5l_recovery_reset_stripe(sh);
1934                 list_del_init(&sh->lru);
1935                 raid5_release_stripe(sh);
1936         }
1937 }
1938
1939 static void
1940 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1941                             struct r5l_recovery_ctx *ctx)
1942 {
1943         struct stripe_head *sh, *next;
1944
1945         list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1946                 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1947                         r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1948                         list_del_init(&sh->lru);
1949                         raid5_release_stripe(sh);
1950                 }
1951 }
1952
1953 /* if matches return 0; otherwise return -EINVAL */
1954 static int
1955 r5l_recovery_verify_data_checksum(struct r5l_log *log,
1956                                   struct r5l_recovery_ctx *ctx,
1957                                   struct page *page,
1958                                   sector_t log_offset, __le32 log_checksum)
1959 {
1960         void *addr;
1961         u32 checksum;
1962
1963         r5l_recovery_read_page(log, ctx, page, log_offset);
1964         addr = kmap_atomic(page);
1965         checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1966         kunmap_atomic(addr);
1967         return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1968 }
1969
1970 /*
1971  * before loading data to stripe cache, we need verify checksum for all data,
1972  * if there is mismatch for any data page, we drop all data in the mata block
1973  */
1974 static int
1975 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1976                                          struct r5l_recovery_ctx *ctx)
1977 {
1978         struct mddev *mddev = log->rdev->mddev;
1979         struct r5conf *conf = mddev->private;
1980         struct r5l_meta_block *mb = page_address(ctx->meta_page);
1981         sector_t mb_offset = sizeof(struct r5l_meta_block);
1982         sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1983         struct page *page;
1984         struct r5l_payload_data_parity *payload;
1985         struct r5l_payload_flush *payload_flush;
1986
1987         page = alloc_page(GFP_KERNEL);
1988         if (!page)
1989                 return -ENOMEM;
1990
1991         while (mb_offset < le32_to_cpu(mb->meta_size)) {
1992                 payload = (void *)mb + mb_offset;
1993                 payload_flush = (void *)mb + mb_offset;
1994
1995                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
1996                         if (r5l_recovery_verify_data_checksum(
1997                                     log, ctx, page, log_offset,
1998                                     payload->checksum[0]) < 0)
1999                                 goto mismatch;
2000                 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2001                         if (r5l_recovery_verify_data_checksum(
2002                                     log, ctx, page, log_offset,
2003                                     payload->checksum[0]) < 0)
2004                                 goto mismatch;
2005                         if (conf->max_degraded == 2 && /* q for RAID 6 */
2006                             r5l_recovery_verify_data_checksum(
2007                                     log, ctx, page,
2008                                     r5l_ring_add(log, log_offset,
2009                                                  BLOCK_SECTORS),
2010                                     payload->checksum[1]) < 0)
2011                                 goto mismatch;
2012                 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2013                         /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2014                 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2015                         goto mismatch;
2016
2017                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2018                         mb_offset += sizeof(struct r5l_payload_flush) +
2019                                 le32_to_cpu(payload_flush->size);
2020                 } else {
2021                         /* DATA or PARITY payload */
2022                         log_offset = r5l_ring_add(log, log_offset,
2023                                                   le32_to_cpu(payload->size));
2024                         mb_offset += sizeof(struct r5l_payload_data_parity) +
2025                                 sizeof(__le32) *
2026                                 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2027                 }
2028
2029         }
2030
2031         put_page(page);
2032         return 0;
2033
2034 mismatch:
2035         put_page(page);
2036         return -EINVAL;
2037 }
2038
2039 /*
2040  * Analyze all data/parity pages in one meta block
2041  * Returns:
2042  * 0 for success
2043  * -EINVAL for unknown playload type
2044  * -EAGAIN for checksum mismatch of data page
2045  * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2046  */
2047 static int
2048 r5c_recovery_analyze_meta_block(struct r5l_log *log,
2049                                 struct r5l_recovery_ctx *ctx,
2050                                 struct list_head *cached_stripe_list)
2051 {
2052         struct mddev *mddev = log->rdev->mddev;
2053         struct r5conf *conf = mddev->private;
2054         struct r5l_meta_block *mb;
2055         struct r5l_payload_data_parity *payload;
2056         struct r5l_payload_flush *payload_flush;
2057         int mb_offset;
2058         sector_t log_offset;
2059         sector_t stripe_sect;
2060         struct stripe_head *sh;
2061         int ret;
2062
2063         /*
2064          * for mismatch in data blocks, we will drop all data in this mb, but
2065          * we will still read next mb for other data with FLUSH flag, as
2066          * io_unit could finish out of order.
2067          */
2068         ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2069         if (ret == -EINVAL)
2070                 return -EAGAIN;
2071         else if (ret)
2072                 return ret;   /* -ENOMEM duo to alloc_page() failed */
2073
2074         mb = page_address(ctx->meta_page);
2075         mb_offset = sizeof(struct r5l_meta_block);
2076         log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2077
2078         while (mb_offset < le32_to_cpu(mb->meta_size)) {
2079                 int dd;
2080
2081                 payload = (void *)mb + mb_offset;
2082                 payload_flush = (void *)mb + mb_offset;
2083
2084                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2085                         int i, count;
2086
2087                         count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2088                         for (i = 0; i < count; ++i) {
2089                                 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2090                                 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2091                                                                 stripe_sect);
2092                                 if (sh) {
2093                                         WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2094                                         r5l_recovery_reset_stripe(sh);
2095                                         list_del_init(&sh->lru);
2096                                         raid5_release_stripe(sh);
2097                                 }
2098                         }
2099
2100                         mb_offset += sizeof(struct r5l_payload_flush) +
2101                                 le32_to_cpu(payload_flush->size);
2102                         continue;
2103                 }
2104
2105                 /* DATA or PARITY payload */
2106                 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2107                         raid5_compute_sector(
2108                                 conf, le64_to_cpu(payload->location), 0, &dd,
2109                                 NULL)
2110                         : le64_to_cpu(payload->location);
2111
2112                 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2113                                                 stripe_sect);
2114
2115                 if (!sh) {
2116                         sh = r5c_recovery_alloc_stripe(conf, stripe_sect);
2117                         /*
2118                          * cannot get stripe from raid5_get_active_stripe
2119                          * try replay some stripes
2120                          */
2121                         if (!sh) {
2122                                 r5c_recovery_replay_stripes(
2123                                         cached_stripe_list, ctx);
2124                                 sh = r5c_recovery_alloc_stripe(
2125                                         conf, stripe_sect);
2126                         }
2127                         if (!sh) {
2128                                 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2129                                         mdname(mddev),
2130                                         conf->min_nr_stripes * 2);
2131                                 raid5_set_cache_size(mddev,
2132                                                      conf->min_nr_stripes * 2);
2133                                 sh = r5c_recovery_alloc_stripe(conf,
2134                                                                stripe_sect);
2135                         }
2136                         if (!sh) {
2137                                 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2138                                        mdname(mddev));
2139                                 return -ENOMEM;
2140                         }
2141                         list_add_tail(&sh->lru, cached_stripe_list);
2142                 }
2143
2144                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2145                         if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2146                             test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2147                                 r5l_recovery_replay_one_stripe(conf, sh, ctx);
2148                                 list_move_tail(&sh->lru, cached_stripe_list);
2149                         }
2150                         r5l_recovery_load_data(log, sh, ctx, payload,
2151                                                log_offset);
2152                 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2153                         r5l_recovery_load_parity(log, sh, ctx, payload,
2154                                                  log_offset);
2155                 else
2156                         return -EINVAL;
2157
2158                 log_offset = r5l_ring_add(log, log_offset,
2159                                           le32_to_cpu(payload->size));
2160
2161                 mb_offset += sizeof(struct r5l_payload_data_parity) +
2162                         sizeof(__le32) *
2163                         (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2164         }
2165
2166         return 0;
2167 }
2168
2169 /*
2170  * Load the stripe into cache. The stripe will be written out later by
2171  * the stripe cache state machine.
2172  */
2173 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2174                                          struct stripe_head *sh)
2175 {
2176         struct r5dev *dev;
2177         int i;
2178
2179         for (i = sh->disks; i--; ) {
2180                 dev = sh->dev + i;
2181                 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2182                         set_bit(R5_InJournal, &dev->flags);
2183                         set_bit(R5_UPTODATE, &dev->flags);
2184                 }
2185         }
2186 }
2187
2188 /*
2189  * Scan through the log for all to-be-flushed data
2190  *
2191  * For stripes with data and parity, namely Data-Parity stripe
2192  * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2193  *
2194  * For stripes with only data, namely Data-Only stripe
2195  * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2196  *
2197  * For a stripe, if we see data after parity, we should discard all previous
2198  * data and parity for this stripe, as these data are already flushed to
2199  * the array.
2200  *
2201  * At the end of the scan, we return the new journal_tail, which points to
2202  * first data-only stripe on the journal device, or next invalid meta block.
2203  */
2204 static int r5c_recovery_flush_log(struct r5l_log *log,
2205                                   struct r5l_recovery_ctx *ctx)
2206 {
2207         struct stripe_head *sh;
2208         int ret = 0;
2209
2210         /* scan through the log */
2211         while (1) {
2212                 if (r5l_recovery_read_meta_block(log, ctx))
2213                         break;
2214
2215                 ret = r5c_recovery_analyze_meta_block(log, ctx,
2216                                                       &ctx->cached_list);
2217                 /*
2218                  * -EAGAIN means mismatch in data block, in this case, we still
2219                  * try scan the next metablock
2220                  */
2221                 if (ret && ret != -EAGAIN)
2222                         break;   /* ret == -EINVAL or -ENOMEM */
2223                 ctx->seq++;
2224                 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2225         }
2226
2227         if (ret == -ENOMEM) {
2228                 r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2229                 return ret;
2230         }
2231
2232         /* replay data-parity stripes */
2233         r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2234
2235         /* load data-only stripes to stripe cache */
2236         list_for_each_entry(sh, &ctx->cached_list, lru) {
2237                 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2238                 r5c_recovery_load_one_stripe(log, sh);
2239                 ctx->data_only_stripes++;
2240         }
2241
2242         return 0;
2243 }
2244
2245 /*
2246  * we did a recovery. Now ctx.pos points to an invalid meta block. New
2247  * log will start here. but we can't let superblock point to last valid
2248  * meta block. The log might looks like:
2249  * | meta 1| meta 2| meta 3|
2250  * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2251  * superblock points to meta 1, we write a new valid meta 2n.  if crash
2252  * happens again, new recovery will start from meta 1. Since meta 2n is
2253  * valid now, recovery will think meta 3 is valid, which is wrong.
2254  * The solution is we create a new meta in meta2 with its seq == meta
2255  * 1's seq + 10000 and let superblock points to meta2. The same recovery
2256  * will not think meta 3 is a valid meta, because its seq doesn't match
2257  */
2258
2259 /*
2260  * Before recovery, the log looks like the following
2261  *
2262  *   ---------------------------------------------
2263  *   |           valid log        | invalid log  |
2264  *   ---------------------------------------------
2265  *   ^
2266  *   |- log->last_checkpoint
2267  *   |- log->last_cp_seq
2268  *
2269  * Now we scan through the log until we see invalid entry
2270  *
2271  *   ---------------------------------------------
2272  *   |           valid log        | invalid log  |
2273  *   ---------------------------------------------
2274  *   ^                            ^
2275  *   |- log->last_checkpoint      |- ctx->pos
2276  *   |- log->last_cp_seq          |- ctx->seq
2277  *
2278  * From this point, we need to increase seq number by 10 to avoid
2279  * confusing next recovery.
2280  *
2281  *   ---------------------------------------------
2282  *   |           valid log        | invalid log  |
2283  *   ---------------------------------------------
2284  *   ^                              ^
2285  *   |- log->last_checkpoint        |- ctx->pos+1
2286  *   |- log->last_cp_seq            |- ctx->seq+10001
2287  *
2288  * However, it is not safe to start the state machine yet, because data only
2289  * parities are not yet secured in RAID. To save these data only parities, we
2290  * rewrite them from seq+11.
2291  *
2292  *   -----------------------------------------------------------------
2293  *   |           valid log        | data only stripes | invalid log  |
2294  *   -----------------------------------------------------------------
2295  *   ^                                                ^
2296  *   |- log->last_checkpoint                          |- ctx->pos+n
2297  *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2298  *
2299  * If failure happens again during this process, the recovery can safe start
2300  * again from log->last_checkpoint.
2301  *
2302  * Once data only stripes are rewritten to journal, we move log_tail
2303  *
2304  *   -----------------------------------------------------------------
2305  *   |     old log        |    data only stripes    | invalid log  |
2306  *   -----------------------------------------------------------------
2307  *                        ^                         ^
2308  *                        |- log->last_checkpoint   |- ctx->pos+n
2309  *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2310  *
2311  * Then we can safely start the state machine. If failure happens from this
2312  * point on, the recovery will start from new log->last_checkpoint.
2313  */
2314 static int
2315 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2316                                        struct r5l_recovery_ctx *ctx)
2317 {
2318         struct stripe_head *sh;
2319         struct mddev *mddev = log->rdev->mddev;
2320         struct page *page;
2321         sector_t next_checkpoint = MaxSector;
2322
2323         page = alloc_page(GFP_KERNEL);
2324         if (!page) {
2325                 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2326                        mdname(mddev));
2327                 return -ENOMEM;
2328         }
2329
2330         WARN_ON(list_empty(&ctx->cached_list));
2331
2332         list_for_each_entry(sh, &ctx->cached_list, lru) {
2333                 struct r5l_meta_block *mb;
2334                 int i;
2335                 int offset;
2336                 sector_t write_pos;
2337
2338                 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2339                 r5l_recovery_create_empty_meta_block(log, page,
2340                                                      ctx->pos, ctx->seq);
2341                 mb = page_address(page);
2342                 offset = le32_to_cpu(mb->meta_size);
2343                 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2344
2345                 for (i = sh->disks; i--; ) {
2346                         struct r5dev *dev = &sh->dev[i];
2347                         struct r5l_payload_data_parity *payload;
2348                         void *addr;
2349
2350                         if (test_bit(R5_InJournal, &dev->flags)) {
2351                                 payload = (void *)mb + offset;
2352                                 payload->header.type = cpu_to_le16(
2353                                         R5LOG_PAYLOAD_DATA);
2354                                 payload->size = cpu_to_le32(BLOCK_SECTORS);
2355                                 payload->location = cpu_to_le64(
2356                                         raid5_compute_blocknr(sh, i, 0));
2357                                 addr = kmap_atomic(dev->page);
2358                                 payload->checksum[0] = cpu_to_le32(
2359                                         crc32c_le(log->uuid_checksum, addr,
2360                                                   PAGE_SIZE));
2361                                 kunmap_atomic(addr);
2362                                 sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2363                                              dev->page, REQ_OP_WRITE, 0, false);
2364                                 write_pos = r5l_ring_add(log, write_pos,
2365                                                          BLOCK_SECTORS);
2366                                 offset += sizeof(__le32) +
2367                                         sizeof(struct r5l_payload_data_parity);
2368
2369                         }
2370                 }
2371                 mb->meta_size = cpu_to_le32(offset);
2372                 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2373                                                      mb, PAGE_SIZE));
2374                 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2375                              REQ_OP_WRITE, REQ_FUA, false);
2376                 sh->log_start = ctx->pos;
2377                 list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2378                 atomic_inc(&log->stripe_in_journal_count);
2379                 ctx->pos = write_pos;
2380                 ctx->seq += 1;
2381                 next_checkpoint = sh->log_start;
2382         }
2383         log->next_checkpoint = next_checkpoint;
2384         __free_page(page);
2385         return 0;
2386 }
2387
2388 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2389                                                  struct r5l_recovery_ctx *ctx)
2390 {
2391         struct mddev *mddev = log->rdev->mddev;
2392         struct r5conf *conf = mddev->private;
2393         struct stripe_head *sh, *next;
2394
2395         if (ctx->data_only_stripes == 0)
2396                 return;
2397
2398         log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2399
2400         list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2401                 r5c_make_stripe_write_out(sh);
2402                 set_bit(STRIPE_HANDLE, &sh->state);
2403                 list_del_init(&sh->lru);
2404                 raid5_release_stripe(sh);
2405         }
2406
2407         md_wakeup_thread(conf->mddev->thread);
2408         /* reuse conf->wait_for_quiescent in recovery */
2409         wait_event(conf->wait_for_quiescent,
2410                    atomic_read(&conf->active_stripes) == 0);
2411
2412         log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2413 }
2414
2415 static int r5l_recovery_log(struct r5l_log *log)
2416 {
2417         struct mddev *mddev = log->rdev->mddev;
2418         struct r5l_recovery_ctx *ctx;
2419         int ret;
2420         sector_t pos;
2421
2422         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2423         if (!ctx)
2424                 return -ENOMEM;
2425
2426         ctx->pos = log->last_checkpoint;
2427         ctx->seq = log->last_cp_seq;
2428         INIT_LIST_HEAD(&ctx->cached_list);
2429         ctx->meta_page = alloc_page(GFP_KERNEL);
2430
2431         if (!ctx->meta_page) {
2432                 ret =  -ENOMEM;
2433                 goto meta_page;
2434         }
2435
2436         if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2437                 ret = -ENOMEM;
2438                 goto ra_pool;
2439         }
2440
2441         ret = r5c_recovery_flush_log(log, ctx);
2442
2443         if (ret)
2444                 goto error;
2445
2446         pos = ctx->pos;
2447         ctx->seq += 10000;
2448
2449         if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2450                 pr_debug("md/raid:%s: starting from clean shutdown\n",
2451                          mdname(mddev));
2452         else
2453                 pr_debug("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2454                          mdname(mddev), ctx->data_only_stripes,
2455                          ctx->data_parity_stripes);
2456
2457         if (ctx->data_only_stripes == 0) {
2458                 log->next_checkpoint = ctx->pos;
2459                 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2460                 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2461         } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2462                 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2463                        mdname(mddev));
2464                 ret =  -EIO;
2465                 goto error;
2466         }
2467
2468         log->log_start = ctx->pos;
2469         log->seq = ctx->seq;
2470         log->last_checkpoint = pos;
2471         r5l_write_super(log, pos);
2472
2473         r5c_recovery_flush_data_only_stripes(log, ctx);
2474         ret = 0;
2475 error:
2476         r5l_recovery_free_ra_pool(log, ctx);
2477 ra_pool:
2478         __free_page(ctx->meta_page);
2479 meta_page:
2480         kfree(ctx);
2481         return ret;
2482 }
2483
2484 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2485 {
2486         struct mddev *mddev = log->rdev->mddev;
2487
2488         log->rdev->journal_tail = cp;
2489         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2490 }
2491
2492 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2493 {
2494         struct r5conf *conf = mddev->private;
2495         int ret;
2496
2497         if (!conf->log)
2498                 return 0;
2499
2500         switch (conf->log->r5c_journal_mode) {
2501         case R5C_JOURNAL_MODE_WRITE_THROUGH:
2502                 ret = snprintf(
2503                         page, PAGE_SIZE, "[%s] %s\n",
2504                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2505                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2506                 break;
2507         case R5C_JOURNAL_MODE_WRITE_BACK:
2508                 ret = snprintf(
2509                         page, PAGE_SIZE, "%s [%s]\n",
2510                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2511                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2512                 break;
2513         default:
2514                 ret = 0;
2515         }
2516         return ret;
2517 }
2518
2519 /*
2520  * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2521  *
2522  * @mode as defined in 'enum r5c_journal_mode'.
2523  *
2524  */
2525 int r5c_journal_mode_set(struct mddev *mddev, int mode)
2526 {
2527         struct r5conf *conf = mddev->private;
2528         struct r5l_log *log = conf->log;
2529
2530         if (!log)
2531                 return -ENODEV;
2532
2533         if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2534             mode > R5C_JOURNAL_MODE_WRITE_BACK)
2535                 return -EINVAL;
2536
2537         if (raid5_calc_degraded(conf) > 0 &&
2538             mode == R5C_JOURNAL_MODE_WRITE_BACK)
2539                 return -EINVAL;
2540
2541         mddev_suspend(mddev);
2542         conf->log->r5c_journal_mode = mode;
2543         mddev_resume(mddev);
2544
2545         pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2546                  mdname(mddev), mode, r5c_journal_mode_str[mode]);
2547         return 0;
2548 }
2549 EXPORT_SYMBOL(r5c_journal_mode_set);
2550
2551 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2552                                       const char *page, size_t length)
2553 {
2554         int mode = ARRAY_SIZE(r5c_journal_mode_str);
2555         size_t len = length;
2556
2557         if (len < 2)
2558                 return -EINVAL;
2559
2560         if (page[len - 1] == '\n')
2561                 len--;
2562
2563         while (mode--)
2564                 if (strlen(r5c_journal_mode_str[mode]) == len &&
2565                     !strncmp(page, r5c_journal_mode_str[mode], len))
2566                         break;
2567
2568         return r5c_journal_mode_set(mddev, mode) ?: length;
2569 }
2570
2571 struct md_sysfs_entry
2572 r5c_journal_mode = __ATTR(journal_mode, 0644,
2573                           r5c_journal_mode_show, r5c_journal_mode_store);
2574
2575 /*
2576  * Try handle write operation in caching phase. This function should only
2577  * be called in write-back mode.
2578  *
2579  * If all outstanding writes can be handled in caching phase, returns 0
2580  * If writes requires write-out phase, call r5c_make_stripe_write_out()
2581  * and returns -EAGAIN
2582  */
2583 int r5c_try_caching_write(struct r5conf *conf,
2584                           struct stripe_head *sh,
2585                           struct stripe_head_state *s,
2586                           int disks)
2587 {
2588         struct r5l_log *log = conf->log;
2589         int i;
2590         struct r5dev *dev;
2591         int to_cache = 0;
2592         void **pslot;
2593         sector_t tree_index;
2594         int ret;
2595         uintptr_t refcount;
2596
2597         BUG_ON(!r5c_is_writeback(log));
2598
2599         if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2600                 /*
2601                  * There are two different scenarios here:
2602                  *  1. The stripe has some data cached, and it is sent to
2603                  *     write-out phase for reclaim
2604                  *  2. The stripe is clean, and this is the first write
2605                  *
2606                  * For 1, return -EAGAIN, so we continue with
2607                  * handle_stripe_dirtying().
2608                  *
2609                  * For 2, set STRIPE_R5C_CACHING and continue with caching
2610                  * write.
2611                  */
2612
2613                 /* case 1: anything injournal or anything in written */
2614                 if (s->injournal > 0 || s->written > 0)
2615                         return -EAGAIN;
2616                 /* case 2 */
2617                 set_bit(STRIPE_R5C_CACHING, &sh->state);
2618         }
2619
2620         /*
2621          * When run in degraded mode, array is set to write-through mode.
2622          * This check helps drain pending write safely in the transition to
2623          * write-through mode.
2624          */
2625         if (s->failed) {
2626                 r5c_make_stripe_write_out(sh);
2627                 return -EAGAIN;
2628         }
2629
2630         for (i = disks; i--; ) {
2631                 dev = &sh->dev[i];
2632                 /* if non-overwrite, use writing-out phase */
2633                 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2634                     !test_bit(R5_InJournal, &dev->flags)) {
2635                         r5c_make_stripe_write_out(sh);
2636                         return -EAGAIN;
2637                 }
2638         }
2639
2640         /* if the stripe is not counted in big_stripe_tree, add it now */
2641         if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2642             !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2643                 tree_index = r5c_tree_index(conf, sh->sector);
2644                 spin_lock(&log->tree_lock);
2645                 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2646                                                tree_index);
2647                 if (pslot) {
2648                         refcount = (uintptr_t)radix_tree_deref_slot_protected(
2649                                 pslot, &log->tree_lock) >>
2650                                 R5C_RADIX_COUNT_SHIFT;
2651                         radix_tree_replace_slot(
2652                                 &log->big_stripe_tree, pslot,
2653                                 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2654                 } else {
2655                         /*
2656                          * this radix_tree_insert can fail safely, so no
2657                          * need to call radix_tree_preload()
2658                          */
2659                         ret = radix_tree_insert(
2660                                 &log->big_stripe_tree, tree_index,
2661                                 (void *)(1 << R5C_RADIX_COUNT_SHIFT));
2662                         if (ret) {
2663                                 spin_unlock(&log->tree_lock);
2664                                 r5c_make_stripe_write_out(sh);
2665                                 return -EAGAIN;
2666                         }
2667                 }
2668                 spin_unlock(&log->tree_lock);
2669
2670                 /*
2671                  * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2672                  * counted in the radix tree
2673                  */
2674                 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2675                 atomic_inc(&conf->r5c_cached_partial_stripes);
2676         }
2677
2678         for (i = disks; i--; ) {
2679                 dev = &sh->dev[i];
2680                 if (dev->towrite) {
2681                         set_bit(R5_Wantwrite, &dev->flags);
2682                         set_bit(R5_Wantdrain, &dev->flags);
2683                         set_bit(R5_LOCKED, &dev->flags);
2684                         to_cache++;
2685                 }
2686         }
2687
2688         if (to_cache) {
2689                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2690                 /*
2691                  * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2692                  * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2693                  * r5c_handle_data_cached()
2694                  */
2695                 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2696         }
2697
2698         return 0;
2699 }
2700
2701 /*
2702  * free extra pages (orig_page) we allocated for prexor
2703  */
2704 void r5c_release_extra_page(struct stripe_head *sh)
2705 {
2706         struct r5conf *conf = sh->raid_conf;
2707         int i;
2708         bool using_disk_info_extra_page;
2709
2710         using_disk_info_extra_page =
2711                 sh->dev[0].orig_page == conf->disks[0].extra_page;
2712
2713         for (i = sh->disks; i--; )
2714                 if (sh->dev[i].page != sh->dev[i].orig_page) {
2715                         struct page *p = sh->dev[i].orig_page;
2716
2717                         sh->dev[i].orig_page = sh->dev[i].page;
2718                         clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2719
2720                         if (!using_disk_info_extra_page)
2721                                 put_page(p);
2722                 }
2723
2724         if (using_disk_info_extra_page) {
2725                 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2726                 md_wakeup_thread(conf->mddev->thread);
2727         }
2728 }
2729
2730 void r5c_use_extra_page(struct stripe_head *sh)
2731 {
2732         struct r5conf *conf = sh->raid_conf;
2733         int i;
2734         struct r5dev *dev;
2735
2736         for (i = sh->disks; i--; ) {
2737                 dev = &sh->dev[i];
2738                 if (dev->orig_page != dev->page)
2739                         put_page(dev->orig_page);
2740                 dev->orig_page = conf->disks[i].extra_page;
2741         }
2742 }
2743
2744 /*
2745  * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2746  * stripe is committed to RAID disks.
2747  */
2748 void r5c_finish_stripe_write_out(struct r5conf *conf,
2749                                  struct stripe_head *sh,
2750                                  struct stripe_head_state *s)
2751 {
2752         struct r5l_log *log = conf->log;
2753         int i;
2754         int do_wakeup = 0;
2755         sector_t tree_index;
2756         void **pslot;
2757         uintptr_t refcount;
2758
2759         if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2760                 return;
2761
2762         WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2763         clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2764
2765         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2766                 return;
2767
2768         for (i = sh->disks; i--; ) {
2769                 clear_bit(R5_InJournal, &sh->dev[i].flags);
2770                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2771                         do_wakeup = 1;
2772         }
2773
2774         /*
2775          * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2776          * We updated R5_InJournal, so we also update s->injournal.
2777          */
2778         s->injournal = 0;
2779
2780         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2781                 if (atomic_dec_and_test(&conf->pending_full_writes))
2782                         md_wakeup_thread(conf->mddev->thread);
2783
2784         if (do_wakeup)
2785                 wake_up(&conf->wait_for_overlap);
2786
2787         spin_lock_irq(&log->stripe_in_journal_lock);
2788         list_del_init(&sh->r5c);
2789         spin_unlock_irq(&log->stripe_in_journal_lock);
2790         sh->log_start = MaxSector;
2791
2792         atomic_dec(&log->stripe_in_journal_count);
2793         r5c_update_log_state(log);
2794
2795         /* stop counting this stripe in big_stripe_tree */
2796         if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2797             test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2798                 tree_index = r5c_tree_index(conf, sh->sector);
2799                 spin_lock(&log->tree_lock);
2800                 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2801                                                tree_index);
2802                 BUG_ON(pslot == NULL);
2803                 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2804                         pslot, &log->tree_lock) >>
2805                         R5C_RADIX_COUNT_SHIFT;
2806                 if (refcount == 1)
2807                         radix_tree_delete(&log->big_stripe_tree, tree_index);
2808                 else
2809                         radix_tree_replace_slot(
2810                                 &log->big_stripe_tree, pslot,
2811                                 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2812                 spin_unlock(&log->tree_lock);
2813         }
2814
2815         if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2816                 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2817                 atomic_dec(&conf->r5c_flushing_partial_stripes);
2818                 atomic_dec(&conf->r5c_cached_partial_stripes);
2819         }
2820
2821         if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2822                 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2823                 atomic_dec(&conf->r5c_flushing_full_stripes);
2824                 atomic_dec(&conf->r5c_cached_full_stripes);
2825         }
2826
2827         r5l_append_flush_payload(log, sh->sector);
2828 }
2829
2830 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2831 {
2832         struct r5conf *conf = sh->raid_conf;
2833         int pages = 0;
2834         int reserve;
2835         int i;
2836         int ret = 0;
2837
2838         BUG_ON(!log);
2839
2840         for (i = 0; i < sh->disks; i++) {
2841                 void *addr;
2842
2843                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2844                         continue;
2845                 addr = kmap_atomic(sh->dev[i].page);
2846                 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2847                                                     addr, PAGE_SIZE);
2848                 kunmap_atomic(addr);
2849                 pages++;
2850         }
2851         WARN_ON(pages == 0);
2852
2853         /*
2854          * The stripe must enter state machine again to call endio, so
2855          * don't delay.
2856          */
2857         clear_bit(STRIPE_DELAYED, &sh->state);
2858         atomic_inc(&sh->count);
2859
2860         mutex_lock(&log->io_mutex);
2861         /* meta + data */
2862         reserve = (1 + pages) << (PAGE_SHIFT - 9);
2863
2864         if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2865             sh->log_start == MaxSector)
2866                 r5l_add_no_space_stripe(log, sh);
2867         else if (!r5l_has_free_space(log, reserve)) {
2868                 if (sh->log_start == log->last_checkpoint)
2869                         BUG();
2870                 else
2871                         r5l_add_no_space_stripe(log, sh);
2872         } else {
2873                 ret = r5l_log_stripe(log, sh, pages, 0);
2874                 if (ret) {
2875                         spin_lock_irq(&log->io_list_lock);
2876                         list_add_tail(&sh->log_list, &log->no_mem_stripes);
2877                         spin_unlock_irq(&log->io_list_lock);
2878                 }
2879         }
2880
2881         mutex_unlock(&log->io_mutex);
2882         return 0;
2883 }
2884
2885 /* check whether this big stripe is in write back cache. */
2886 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2887 {
2888         struct r5l_log *log = conf->log;
2889         sector_t tree_index;
2890         void *slot;
2891
2892         if (!log)
2893                 return false;
2894
2895         WARN_ON_ONCE(!rcu_read_lock_held());
2896         tree_index = r5c_tree_index(conf, sect);
2897         slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2898         return slot != NULL;
2899 }
2900
2901 static int r5l_load_log(struct r5l_log *log)
2902 {
2903         struct md_rdev *rdev = log->rdev;
2904         struct page *page;
2905         struct r5l_meta_block *mb;
2906         sector_t cp = log->rdev->journal_tail;
2907         u32 stored_crc, expected_crc;
2908         bool create_super = false;
2909         int ret = 0;
2910
2911         /* Make sure it's valid */
2912         if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2913                 cp = 0;
2914         page = alloc_page(GFP_KERNEL);
2915         if (!page)
2916                 return -ENOMEM;
2917
2918         if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2919                 ret = -EIO;
2920                 goto ioerr;
2921         }
2922         mb = page_address(page);
2923
2924         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2925             mb->version != R5LOG_VERSION) {
2926                 create_super = true;
2927                 goto create;
2928         }
2929         stored_crc = le32_to_cpu(mb->checksum);
2930         mb->checksum = 0;
2931         expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2932         if (stored_crc != expected_crc) {
2933                 create_super = true;
2934                 goto create;
2935         }
2936         if (le64_to_cpu(mb->position) != cp) {
2937                 create_super = true;
2938                 goto create;
2939         }
2940 create:
2941         if (create_super) {
2942                 log->last_cp_seq = prandom_u32();
2943                 cp = 0;
2944                 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
2945                 /*
2946                  * Make sure super points to correct address. Log might have
2947                  * data very soon. If super hasn't correct log tail address,
2948                  * recovery can't find the log
2949                  */
2950                 r5l_write_super(log, cp);
2951         } else
2952                 log->last_cp_seq = le64_to_cpu(mb->seq);
2953
2954         log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
2955         log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
2956         if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
2957                 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
2958         log->last_checkpoint = cp;
2959
2960         __free_page(page);
2961
2962         if (create_super) {
2963                 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
2964                 log->seq = log->last_cp_seq + 1;
2965                 log->next_checkpoint = cp;
2966         } else
2967                 ret = r5l_recovery_log(log);
2968
2969         r5c_update_log_state(log);
2970         return ret;
2971 ioerr:
2972         __free_page(page);
2973         return ret;
2974 }
2975
2976 void r5c_update_on_rdev_error(struct mddev *mddev)
2977 {
2978         struct r5conf *conf = mddev->private;
2979         struct r5l_log *log = conf->log;
2980
2981         if (!log)
2982                 return;
2983
2984         if (raid5_calc_degraded(conf) > 0 &&
2985             conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
2986                 schedule_work(&log->disable_writeback_work);
2987 }
2988
2989 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
2990 {
2991         struct request_queue *q = bdev_get_queue(rdev->bdev);
2992         struct r5l_log *log;
2993         char b[BDEVNAME_SIZE];
2994
2995         pr_debug("md/raid:%s: using device %s as journal\n",
2996                  mdname(conf->mddev), bdevname(rdev->bdev, b));
2997
2998         if (PAGE_SIZE != 4096)
2999                 return -EINVAL;
3000
3001         /*
3002          * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3003          * raid_disks r5l_payload_data_parity.
3004          *
3005          * Write journal and cache does not work for very big array
3006          * (raid_disks > 203)
3007          */
3008         if (sizeof(struct r5l_meta_block) +
3009             ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3010              conf->raid_disks) > PAGE_SIZE) {
3011                 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3012                        mdname(conf->mddev), conf->raid_disks);
3013                 return -EINVAL;
3014         }
3015
3016         log = kzalloc(sizeof(*log), GFP_KERNEL);
3017         if (!log)
3018                 return -ENOMEM;
3019         log->rdev = rdev;
3020
3021         log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
3022
3023         log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3024                                        sizeof(rdev->mddev->uuid));
3025
3026         mutex_init(&log->io_mutex);
3027
3028         spin_lock_init(&log->io_list_lock);
3029         INIT_LIST_HEAD(&log->running_ios);
3030         INIT_LIST_HEAD(&log->io_end_ios);
3031         INIT_LIST_HEAD(&log->flushing_ios);
3032         INIT_LIST_HEAD(&log->finished_ios);
3033         bio_init(&log->flush_bio, NULL, 0);
3034
3035         log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3036         if (!log->io_kc)
3037                 goto io_kc;
3038
3039         log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
3040         if (!log->io_pool)
3041                 goto io_pool;
3042
3043         log->bs = bioset_create(R5L_POOL_SIZE, 0);
3044         if (!log->bs)
3045                 goto io_bs;
3046
3047         log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
3048         if (!log->meta_pool)
3049                 goto out_mempool;
3050
3051         spin_lock_init(&log->tree_lock);
3052         INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3053
3054         log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3055                                                  log->rdev->mddev, "reclaim");
3056         if (!log->reclaim_thread)
3057                 goto reclaim_thread;
3058         log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3059
3060         init_waitqueue_head(&log->iounit_wait);
3061
3062         INIT_LIST_HEAD(&log->no_mem_stripes);
3063
3064         INIT_LIST_HEAD(&log->no_space_stripes);
3065         spin_lock_init(&log->no_space_stripes_lock);
3066
3067         INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3068         INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3069
3070         log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3071         INIT_LIST_HEAD(&log->stripe_in_journal_list);
3072         spin_lock_init(&log->stripe_in_journal_lock);
3073         atomic_set(&log->stripe_in_journal_count, 0);
3074
3075         rcu_assign_pointer(conf->log, log);
3076
3077         if (r5l_load_log(log))
3078                 goto error;
3079
3080         set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3081         return 0;
3082
3083 error:
3084         rcu_assign_pointer(conf->log, NULL);
3085         md_unregister_thread(&log->reclaim_thread);
3086 reclaim_thread:
3087         mempool_destroy(log->meta_pool);
3088 out_mempool:
3089         bioset_free(log->bs);
3090 io_bs:
3091         mempool_destroy(log->io_pool);
3092 io_pool:
3093         kmem_cache_destroy(log->io_kc);
3094 io_kc:
3095         kfree(log);
3096         return -EINVAL;
3097 }
3098
3099 void r5l_exit_log(struct r5conf *conf)
3100 {
3101         struct r5l_log *log = conf->log;
3102
3103         conf->log = NULL;
3104         synchronize_rcu();
3105
3106         flush_work(&log->disable_writeback_work);
3107         md_unregister_thread(&log->reclaim_thread);
3108         mempool_destroy(log->meta_pool);
3109         bioset_free(log->bs);
3110         mempool_destroy(log->io_pool);
3111         kmem_cache_destroy(log->io_kc);
3112         kfree(log);
3113 }