Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm...
[sfrench/cifs-2.6.git] / drivers / md / raid5-cache.c
1 /*
2  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3  * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 #include <linux/kernel.h>
16 #include <linux/wait.h>
17 #include <linux/blkdev.h>
18 #include <linux/slab.h>
19 #include <linux/raid/md_p.h>
20 #include <linux/crc32c.h>
21 #include <linux/random.h>
22 #include <linux/kthread.h>
23 #include <linux/types.h>
24 #include "md.h"
25 #include "raid5.h"
26 #include "md-bitmap.h"
27 #include "raid5-log.h"
28
29 /*
30  * metadata/data stored in disk with 4k size unit (a block) regardless
31  * underneath hardware sector size. only works with PAGE_SIZE == 4096
32  */
33 #define BLOCK_SECTORS (8)
34 #define BLOCK_SECTOR_SHIFT (3)
35
36 /*
37  * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
38  *
39  * In write through mode, the reclaim runs every log->max_free_space.
40  * This can prevent the recovery scans for too long
41  */
42 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
43 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
44
45 /* wake up reclaim thread periodically */
46 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
47 /* start flush with these full stripes */
48 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
49 /* reclaim stripes in groups */
50 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
51
52 /*
53  * We only need 2 bios per I/O unit to make progress, but ensure we
54  * have a few more available to not get too tight.
55  */
56 #define R5L_POOL_SIZE   4
57
58 static char *r5c_journal_mode_str[] = {"write-through",
59                                        "write-back"};
60 /*
61  * raid5 cache state machine
62  *
63  * With the RAID cache, each stripe works in two phases:
64  *      - caching phase
65  *      - writing-out phase
66  *
67  * These two phases are controlled by bit STRIPE_R5C_CACHING:
68  *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
69  *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
70  *
71  * When there is no journal, or the journal is in write-through mode,
72  * the stripe is always in writing-out phase.
73  *
74  * For write-back journal, the stripe is sent to caching phase on write
75  * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
76  * the write-out phase by clearing STRIPE_R5C_CACHING.
77  *
78  * Stripes in caching phase do not write the raid disks. Instead, all
79  * writes are committed from the log device. Therefore, a stripe in
80  * caching phase handles writes as:
81  *      - write to log device
82  *      - return IO
83  *
84  * Stripes in writing-out phase handle writes as:
85  *      - calculate parity
86  *      - write pending data and parity to journal
87  *      - write data and parity to raid disks
88  *      - return IO for pending writes
89  */
90
91 struct r5l_log {
92         struct md_rdev *rdev;
93
94         u32 uuid_checksum;
95
96         sector_t device_size;           /* log device size, round to
97                                          * BLOCK_SECTORS */
98         sector_t max_free_space;        /* reclaim run if free space is at
99                                          * this size */
100
101         sector_t last_checkpoint;       /* log tail. where recovery scan
102                                          * starts from */
103         u64 last_cp_seq;                /* log tail sequence */
104
105         sector_t log_start;             /* log head. where new data appends */
106         u64 seq;                        /* log head sequence */
107
108         sector_t next_checkpoint;
109
110         struct mutex io_mutex;
111         struct r5l_io_unit *current_io; /* current io_unit accepting new data */
112
113         spinlock_t io_list_lock;
114         struct list_head running_ios;   /* io_units which are still running,
115                                          * and have not yet been completely
116                                          * written to the log */
117         struct list_head io_end_ios;    /* io_units which have been completely
118                                          * written to the log but not yet written
119                                          * to the RAID */
120         struct list_head flushing_ios;  /* io_units which are waiting for log
121                                          * cache flush */
122         struct list_head finished_ios;  /* io_units which settle down in log disk */
123         struct bio flush_bio;
124
125         struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
126
127         struct kmem_cache *io_kc;
128         mempool_t io_pool;
129         struct bio_set bs;
130         mempool_t meta_pool;
131
132         struct md_thread *reclaim_thread;
133         unsigned long reclaim_target;   /* number of space that need to be
134                                          * reclaimed.  if it's 0, reclaim spaces
135                                          * used by io_units which are in
136                                          * IO_UNIT_STRIPE_END state (eg, reclaim
137                                          * dones't wait for specific io_unit
138                                          * switching to IO_UNIT_STRIPE_END
139                                          * state) */
140         wait_queue_head_t iounit_wait;
141
142         struct list_head no_space_stripes; /* pending stripes, log has no space */
143         spinlock_t no_space_stripes_lock;
144
145         bool need_cache_flush;
146
147         /* for r5c_cache */
148         enum r5c_journal_mode r5c_journal_mode;
149
150         /* all stripes in r5cache, in the order of seq at sh->log_start */
151         struct list_head stripe_in_journal_list;
152
153         spinlock_t stripe_in_journal_lock;
154         atomic_t stripe_in_journal_count;
155
156         /* to submit async io_units, to fulfill ordering of flush */
157         struct work_struct deferred_io_work;
158         /* to disable write back during in degraded mode */
159         struct work_struct disable_writeback_work;
160
161         /* to for chunk_aligned_read in writeback mode, details below */
162         spinlock_t tree_lock;
163         struct radix_tree_root big_stripe_tree;
164 };
165
166 /*
167  * Enable chunk_aligned_read() with write back cache.
168  *
169  * Each chunk may contain more than one stripe (for example, a 256kB
170  * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
171  * chunk_aligned_read, these stripes are grouped into one "big_stripe".
172  * For each big_stripe, we count how many stripes of this big_stripe
173  * are in the write back cache. These data are tracked in a radix tree
174  * (big_stripe_tree). We use radix_tree item pointer as the counter.
175  * r5c_tree_index() is used to calculate keys for the radix tree.
176  *
177  * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
178  * big_stripe of each chunk in the tree. If this big_stripe is in the
179  * tree, chunk_aligned_read() aborts. This look up is protected by
180  * rcu_read_lock().
181  *
182  * It is necessary to remember whether a stripe is counted in
183  * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
184  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
185  * two flags are set, the stripe is counted in big_stripe_tree. This
186  * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
187  * r5c_try_caching_write(); and moving clear_bit of
188  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
189  * r5c_finish_stripe_write_out().
190  */
191
192 /*
193  * radix tree requests lowest 2 bits of data pointer to be 2b'00.
194  * So it is necessary to left shift the counter by 2 bits before using it
195  * as data pointer of the tree.
196  */
197 #define R5C_RADIX_COUNT_SHIFT 2
198
199 /*
200  * calculate key for big_stripe_tree
201  *
202  * sect: align_bi->bi_iter.bi_sector or sh->sector
203  */
204 static inline sector_t r5c_tree_index(struct r5conf *conf,
205                                       sector_t sect)
206 {
207         sector_t offset;
208
209         offset = sector_div(sect, conf->chunk_sectors);
210         return sect;
211 }
212
213 /*
214  * an IO range starts from a meta data block and end at the next meta data
215  * block. The io unit's the meta data block tracks data/parity followed it. io
216  * unit is written to log disk with normal write, as we always flush log disk
217  * first and then start move data to raid disks, there is no requirement to
218  * write io unit with FLUSH/FUA
219  */
220 struct r5l_io_unit {
221         struct r5l_log *log;
222
223         struct page *meta_page; /* store meta block */
224         int meta_offset;        /* current offset in meta_page */
225
226         struct bio *current_bio;/* current_bio accepting new data */
227
228         atomic_t pending_stripe;/* how many stripes not flushed to raid */
229         u64 seq;                /* seq number of the metablock */
230         sector_t log_start;     /* where the io_unit starts */
231         sector_t log_end;       /* where the io_unit ends */
232         struct list_head log_sibling; /* log->running_ios */
233         struct list_head stripe_list; /* stripes added to the io_unit */
234
235         int state;
236         bool need_split_bio;
237         struct bio *split_bio;
238
239         unsigned int has_flush:1;               /* include flush request */
240         unsigned int has_fua:1;                 /* include fua request */
241         unsigned int has_null_flush:1;          /* include null flush request */
242         unsigned int has_flush_payload:1;       /* include flush payload  */
243         /*
244          * io isn't sent yet, flush/fua request can only be submitted till it's
245          * the first IO in running_ios list
246          */
247         unsigned int io_deferred:1;
248
249         struct bio_list flush_barriers;   /* size == 0 flush bios */
250 };
251
252 /* r5l_io_unit state */
253 enum r5l_io_unit_state {
254         IO_UNIT_RUNNING = 0,    /* accepting new IO */
255         IO_UNIT_IO_START = 1,   /* io_unit bio start writing to log,
256                                  * don't accepting new bio */
257         IO_UNIT_IO_END = 2,     /* io_unit bio finish writing to log */
258         IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
259 };
260
261 bool r5c_is_writeback(struct r5l_log *log)
262 {
263         return (log != NULL &&
264                 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
265 }
266
267 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
268 {
269         start += inc;
270         if (start >= log->device_size)
271                 start = start - log->device_size;
272         return start;
273 }
274
275 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
276                                   sector_t end)
277 {
278         if (end >= start)
279                 return end - start;
280         else
281                 return end + log->device_size - start;
282 }
283
284 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
285 {
286         sector_t used_size;
287
288         used_size = r5l_ring_distance(log, log->last_checkpoint,
289                                         log->log_start);
290
291         return log->device_size > used_size + size;
292 }
293
294 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
295                                     enum r5l_io_unit_state state)
296 {
297         if (WARN_ON(io->state >= state))
298                 return;
299         io->state = state;
300 }
301
302 static void
303 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
304 {
305         struct bio *wbi, *wbi2;
306
307         wbi = dev->written;
308         dev->written = NULL;
309         while (wbi && wbi->bi_iter.bi_sector <
310                dev->sector + STRIPE_SECTORS) {
311                 wbi2 = r5_next_bio(wbi, dev->sector);
312                 md_write_end(conf->mddev);
313                 bio_endio(wbi);
314                 wbi = wbi2;
315         }
316 }
317
318 void r5c_handle_cached_data_endio(struct r5conf *conf,
319                                   struct stripe_head *sh, int disks)
320 {
321         int i;
322
323         for (i = sh->disks; i--; ) {
324                 if (sh->dev[i].written) {
325                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
326                         r5c_return_dev_pending_writes(conf, &sh->dev[i]);
327                         md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
328                                            STRIPE_SECTORS,
329                                            !test_bit(STRIPE_DEGRADED, &sh->state),
330                                            0);
331                 }
332         }
333 }
334
335 void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
336
337 /* Check whether we should flush some stripes to free up stripe cache */
338 void r5c_check_stripe_cache_usage(struct r5conf *conf)
339 {
340         int total_cached;
341
342         if (!r5c_is_writeback(conf->log))
343                 return;
344
345         total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
346                 atomic_read(&conf->r5c_cached_full_stripes);
347
348         /*
349          * The following condition is true for either of the following:
350          *   - stripe cache pressure high:
351          *          total_cached > 3/4 min_nr_stripes ||
352          *          empty_inactive_list_nr > 0
353          *   - stripe cache pressure moderate:
354          *          total_cached > 1/2 min_nr_stripes
355          */
356         if (total_cached > conf->min_nr_stripes * 1 / 2 ||
357             atomic_read(&conf->empty_inactive_list_nr) > 0)
358                 r5l_wake_reclaim(conf->log, 0);
359 }
360
361 /*
362  * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
363  * stripes in the cache
364  */
365 void r5c_check_cached_full_stripe(struct r5conf *conf)
366 {
367         if (!r5c_is_writeback(conf->log))
368                 return;
369
370         /*
371          * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
372          * or a full stripe (chunk size / 4k stripes).
373          */
374         if (atomic_read(&conf->r5c_cached_full_stripes) >=
375             min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
376                 conf->chunk_sectors >> STRIPE_SHIFT))
377                 r5l_wake_reclaim(conf->log, 0);
378 }
379
380 /*
381  * Total log space (in sectors) needed to flush all data in cache
382  *
383  * To avoid deadlock due to log space, it is necessary to reserve log
384  * space to flush critical stripes (stripes that occupying log space near
385  * last_checkpoint). This function helps check how much log space is
386  * required to flush all cached stripes.
387  *
388  * To reduce log space requirements, two mechanisms are used to give cache
389  * flush higher priorities:
390  *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
391  *       stripes ALREADY in journal can be flushed w/o pending writes;
392  *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
393  *       can be delayed (r5l_add_no_space_stripe).
394  *
395  * In cache flush, the stripe goes through 1 and then 2. For a stripe that
396  * already passed 1, flushing it requires at most (conf->max_degraded + 1)
397  * pages of journal space. For stripes that has not passed 1, flushing it
398  * requires (conf->raid_disks + 1) pages of journal space. There are at
399  * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
400  * required to flush all cached stripes (in pages) is:
401  *
402  *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
403  *     (group_cnt + 1) * (raid_disks + 1)
404  * or
405  *     (stripe_in_journal_count) * (max_degraded + 1) +
406  *     (group_cnt + 1) * (raid_disks - max_degraded)
407  */
408 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
409 {
410         struct r5l_log *log = conf->log;
411
412         if (!r5c_is_writeback(log))
413                 return 0;
414
415         return BLOCK_SECTORS *
416                 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
417                  (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
418 }
419
420 /*
421  * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
422  *
423  * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
424  * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
425  * device is less than 2x of reclaim_required_space.
426  */
427 static inline void r5c_update_log_state(struct r5l_log *log)
428 {
429         struct r5conf *conf = log->rdev->mddev->private;
430         sector_t free_space;
431         sector_t reclaim_space;
432         bool wake_reclaim = false;
433
434         if (!r5c_is_writeback(log))
435                 return;
436
437         free_space = r5l_ring_distance(log, log->log_start,
438                                        log->last_checkpoint);
439         reclaim_space = r5c_log_required_to_flush_cache(conf);
440         if (free_space < 2 * reclaim_space)
441                 set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
442         else {
443                 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
444                         wake_reclaim = true;
445                 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
446         }
447         if (free_space < 3 * reclaim_space)
448                 set_bit(R5C_LOG_TIGHT, &conf->cache_state);
449         else
450                 clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
451
452         if (wake_reclaim)
453                 r5l_wake_reclaim(log, 0);
454 }
455
456 /*
457  * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
458  * This function should only be called in write-back mode.
459  */
460 void r5c_make_stripe_write_out(struct stripe_head *sh)
461 {
462         struct r5conf *conf = sh->raid_conf;
463         struct r5l_log *log = conf->log;
464
465         BUG_ON(!r5c_is_writeback(log));
466
467         WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
468         clear_bit(STRIPE_R5C_CACHING, &sh->state);
469
470         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
471                 atomic_inc(&conf->preread_active_stripes);
472 }
473
474 static void r5c_handle_data_cached(struct stripe_head *sh)
475 {
476         int i;
477
478         for (i = sh->disks; i--; )
479                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
480                         set_bit(R5_InJournal, &sh->dev[i].flags);
481                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
482                 }
483         clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
484 }
485
486 /*
487  * this journal write must contain full parity,
488  * it may also contain some data pages
489  */
490 static void r5c_handle_parity_cached(struct stripe_head *sh)
491 {
492         int i;
493
494         for (i = sh->disks; i--; )
495                 if (test_bit(R5_InJournal, &sh->dev[i].flags))
496                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
497 }
498
499 /*
500  * Setting proper flags after writing (or flushing) data and/or parity to the
501  * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
502  */
503 static void r5c_finish_cache_stripe(struct stripe_head *sh)
504 {
505         struct r5l_log *log = sh->raid_conf->log;
506
507         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
508                 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
509                 /*
510                  * Set R5_InJournal for parity dev[pd_idx]. This means
511                  * all data AND parity in the journal. For RAID 6, it is
512                  * NOT necessary to set the flag for dev[qd_idx], as the
513                  * two parities are written out together.
514                  */
515                 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
516         } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
517                 r5c_handle_data_cached(sh);
518         } else {
519                 r5c_handle_parity_cached(sh);
520                 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
521         }
522 }
523
524 static void r5l_io_run_stripes(struct r5l_io_unit *io)
525 {
526         struct stripe_head *sh, *next;
527
528         list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
529                 list_del_init(&sh->log_list);
530
531                 r5c_finish_cache_stripe(sh);
532
533                 set_bit(STRIPE_HANDLE, &sh->state);
534                 raid5_release_stripe(sh);
535         }
536 }
537
538 static void r5l_log_run_stripes(struct r5l_log *log)
539 {
540         struct r5l_io_unit *io, *next;
541
542         lockdep_assert_held(&log->io_list_lock);
543
544         list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
545                 /* don't change list order */
546                 if (io->state < IO_UNIT_IO_END)
547                         break;
548
549                 list_move_tail(&io->log_sibling, &log->finished_ios);
550                 r5l_io_run_stripes(io);
551         }
552 }
553
554 static void r5l_move_to_end_ios(struct r5l_log *log)
555 {
556         struct r5l_io_unit *io, *next;
557
558         lockdep_assert_held(&log->io_list_lock);
559
560         list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
561                 /* don't change list order */
562                 if (io->state < IO_UNIT_IO_END)
563                         break;
564                 list_move_tail(&io->log_sibling, &log->io_end_ios);
565         }
566 }
567
568 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
569 static void r5l_log_endio(struct bio *bio)
570 {
571         struct r5l_io_unit *io = bio->bi_private;
572         struct r5l_io_unit *io_deferred;
573         struct r5l_log *log = io->log;
574         unsigned long flags;
575         bool has_null_flush;
576         bool has_flush_payload;
577
578         if (bio->bi_status)
579                 md_error(log->rdev->mddev, log->rdev);
580
581         bio_put(bio);
582         mempool_free(io->meta_page, &log->meta_pool);
583
584         spin_lock_irqsave(&log->io_list_lock, flags);
585         __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
586
587         /*
588          * if the io doesn't not have null_flush or flush payload,
589          * it is not safe to access it after releasing io_list_lock.
590          * Therefore, it is necessary to check the condition with
591          * the lock held.
592          */
593         has_null_flush = io->has_null_flush;
594         has_flush_payload = io->has_flush_payload;
595
596         if (log->need_cache_flush && !list_empty(&io->stripe_list))
597                 r5l_move_to_end_ios(log);
598         else
599                 r5l_log_run_stripes(log);
600         if (!list_empty(&log->running_ios)) {
601                 /*
602                  * FLUSH/FUA io_unit is deferred because of ordering, now we
603                  * can dispatch it
604                  */
605                 io_deferred = list_first_entry(&log->running_ios,
606                                                struct r5l_io_unit, log_sibling);
607                 if (io_deferred->io_deferred)
608                         schedule_work(&log->deferred_io_work);
609         }
610
611         spin_unlock_irqrestore(&log->io_list_lock, flags);
612
613         if (log->need_cache_flush)
614                 md_wakeup_thread(log->rdev->mddev->thread);
615
616         /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
617         if (has_null_flush) {
618                 struct bio *bi;
619
620                 WARN_ON(bio_list_empty(&io->flush_barriers));
621                 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
622                         bio_endio(bi);
623                         if (atomic_dec_and_test(&io->pending_stripe)) {
624                                 __r5l_stripe_write_finished(io);
625                                 return;
626                         }
627                 }
628         }
629         /* decrease pending_stripe for flush payload */
630         if (has_flush_payload)
631                 if (atomic_dec_and_test(&io->pending_stripe))
632                         __r5l_stripe_write_finished(io);
633 }
634
635 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
636 {
637         unsigned long flags;
638
639         spin_lock_irqsave(&log->io_list_lock, flags);
640         __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
641         spin_unlock_irqrestore(&log->io_list_lock, flags);
642
643         /*
644          * In case of journal device failures, submit_bio will get error
645          * and calls endio, then active stripes will continue write
646          * process. Therefore, it is not necessary to check Faulty bit
647          * of journal device here.
648          *
649          * We can't check split_bio after current_bio is submitted. If
650          * io->split_bio is null, after current_bio is submitted, current_bio
651          * might already be completed and the io_unit is freed. We submit
652          * split_bio first to avoid the issue.
653          */
654         if (io->split_bio) {
655                 if (io->has_flush)
656                         io->split_bio->bi_opf |= REQ_PREFLUSH;
657                 if (io->has_fua)
658                         io->split_bio->bi_opf |= REQ_FUA;
659                 submit_bio(io->split_bio);
660         }
661
662         if (io->has_flush)
663                 io->current_bio->bi_opf |= REQ_PREFLUSH;
664         if (io->has_fua)
665                 io->current_bio->bi_opf |= REQ_FUA;
666         submit_bio(io->current_bio);
667 }
668
669 /* deferred io_unit will be dispatched here */
670 static void r5l_submit_io_async(struct work_struct *work)
671 {
672         struct r5l_log *log = container_of(work, struct r5l_log,
673                                            deferred_io_work);
674         struct r5l_io_unit *io = NULL;
675         unsigned long flags;
676
677         spin_lock_irqsave(&log->io_list_lock, flags);
678         if (!list_empty(&log->running_ios)) {
679                 io = list_first_entry(&log->running_ios, struct r5l_io_unit,
680                                       log_sibling);
681                 if (!io->io_deferred)
682                         io = NULL;
683                 else
684                         io->io_deferred = 0;
685         }
686         spin_unlock_irqrestore(&log->io_list_lock, flags);
687         if (io)
688                 r5l_do_submit_io(log, io);
689 }
690
691 static void r5c_disable_writeback_async(struct work_struct *work)
692 {
693         struct r5l_log *log = container_of(work, struct r5l_log,
694                                            disable_writeback_work);
695         struct mddev *mddev = log->rdev->mddev;
696         struct r5conf *conf = mddev->private;
697         int locked = 0;
698
699         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
700                 return;
701         pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
702                 mdname(mddev));
703
704         /* wait superblock change before suspend */
705         wait_event(mddev->sb_wait,
706                    conf->log == NULL ||
707                    (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) &&
708                     (locked = mddev_trylock(mddev))));
709         if (locked) {
710                 mddev_suspend(mddev);
711                 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
712                 mddev_resume(mddev);
713                 mddev_unlock(mddev);
714         }
715 }
716
717 static void r5l_submit_current_io(struct r5l_log *log)
718 {
719         struct r5l_io_unit *io = log->current_io;
720         struct r5l_meta_block *block;
721         unsigned long flags;
722         u32 crc;
723         bool do_submit = true;
724
725         if (!io)
726                 return;
727
728         block = page_address(io->meta_page);
729         block->meta_size = cpu_to_le32(io->meta_offset);
730         crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
731         block->checksum = cpu_to_le32(crc);
732
733         log->current_io = NULL;
734         spin_lock_irqsave(&log->io_list_lock, flags);
735         if (io->has_flush || io->has_fua) {
736                 if (io != list_first_entry(&log->running_ios,
737                                            struct r5l_io_unit, log_sibling)) {
738                         io->io_deferred = 1;
739                         do_submit = false;
740                 }
741         }
742         spin_unlock_irqrestore(&log->io_list_lock, flags);
743         if (do_submit)
744                 r5l_do_submit_io(log, io);
745 }
746
747 static struct bio *r5l_bio_alloc(struct r5l_log *log)
748 {
749         struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, &log->bs);
750
751         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
752         bio_set_dev(bio, log->rdev->bdev);
753         bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
754
755         return bio;
756 }
757
758 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
759 {
760         log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
761
762         r5c_update_log_state(log);
763         /*
764          * If we filled up the log device start from the beginning again,
765          * which will require a new bio.
766          *
767          * Note: for this to work properly the log size needs to me a multiple
768          * of BLOCK_SECTORS.
769          */
770         if (log->log_start == 0)
771                 io->need_split_bio = true;
772
773         io->log_end = log->log_start;
774 }
775
776 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
777 {
778         struct r5l_io_unit *io;
779         struct r5l_meta_block *block;
780
781         io = mempool_alloc(&log->io_pool, GFP_ATOMIC);
782         if (!io)
783                 return NULL;
784         memset(io, 0, sizeof(*io));
785
786         io->log = log;
787         INIT_LIST_HEAD(&io->log_sibling);
788         INIT_LIST_HEAD(&io->stripe_list);
789         bio_list_init(&io->flush_barriers);
790         io->state = IO_UNIT_RUNNING;
791
792         io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO);
793         block = page_address(io->meta_page);
794         clear_page(block);
795         block->magic = cpu_to_le32(R5LOG_MAGIC);
796         block->version = R5LOG_VERSION;
797         block->seq = cpu_to_le64(log->seq);
798         block->position = cpu_to_le64(log->log_start);
799
800         io->log_start = log->log_start;
801         io->meta_offset = sizeof(struct r5l_meta_block);
802         io->seq = log->seq++;
803
804         io->current_bio = r5l_bio_alloc(log);
805         io->current_bio->bi_end_io = r5l_log_endio;
806         io->current_bio->bi_private = io;
807         bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
808
809         r5_reserve_log_entry(log, io);
810
811         spin_lock_irq(&log->io_list_lock);
812         list_add_tail(&io->log_sibling, &log->running_ios);
813         spin_unlock_irq(&log->io_list_lock);
814
815         return io;
816 }
817
818 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
819 {
820         if (log->current_io &&
821             log->current_io->meta_offset + payload_size > PAGE_SIZE)
822                 r5l_submit_current_io(log);
823
824         if (!log->current_io) {
825                 log->current_io = r5l_new_meta(log);
826                 if (!log->current_io)
827                         return -ENOMEM;
828         }
829
830         return 0;
831 }
832
833 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
834                                     sector_t location,
835                                     u32 checksum1, u32 checksum2,
836                                     bool checksum2_valid)
837 {
838         struct r5l_io_unit *io = log->current_io;
839         struct r5l_payload_data_parity *payload;
840
841         payload = page_address(io->meta_page) + io->meta_offset;
842         payload->header.type = cpu_to_le16(type);
843         payload->header.flags = cpu_to_le16(0);
844         payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
845                                     (PAGE_SHIFT - 9));
846         payload->location = cpu_to_le64(location);
847         payload->checksum[0] = cpu_to_le32(checksum1);
848         if (checksum2_valid)
849                 payload->checksum[1] = cpu_to_le32(checksum2);
850
851         io->meta_offset += sizeof(struct r5l_payload_data_parity) +
852                 sizeof(__le32) * (1 + !!checksum2_valid);
853 }
854
855 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
856 {
857         struct r5l_io_unit *io = log->current_io;
858
859         if (io->need_split_bio) {
860                 BUG_ON(io->split_bio);
861                 io->split_bio = io->current_bio;
862                 io->current_bio = r5l_bio_alloc(log);
863                 bio_chain(io->current_bio, io->split_bio);
864                 io->need_split_bio = false;
865         }
866
867         if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
868                 BUG();
869
870         r5_reserve_log_entry(log, io);
871 }
872
873 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
874 {
875         struct mddev *mddev = log->rdev->mddev;
876         struct r5conf *conf = mddev->private;
877         struct r5l_io_unit *io;
878         struct r5l_payload_flush *payload;
879         int meta_size;
880
881         /*
882          * payload_flush requires extra writes to the journal.
883          * To avoid handling the extra IO in quiesce, just skip
884          * flush_payload
885          */
886         if (conf->quiesce)
887                 return;
888
889         mutex_lock(&log->io_mutex);
890         meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
891
892         if (r5l_get_meta(log, meta_size)) {
893                 mutex_unlock(&log->io_mutex);
894                 return;
895         }
896
897         /* current implementation is one stripe per flush payload */
898         io = log->current_io;
899         payload = page_address(io->meta_page) + io->meta_offset;
900         payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
901         payload->header.flags = cpu_to_le16(0);
902         payload->size = cpu_to_le32(sizeof(__le64));
903         payload->flush_stripes[0] = cpu_to_le64(sect);
904         io->meta_offset += meta_size;
905         /* multiple flush payloads count as one pending_stripe */
906         if (!io->has_flush_payload) {
907                 io->has_flush_payload = 1;
908                 atomic_inc(&io->pending_stripe);
909         }
910         mutex_unlock(&log->io_mutex);
911 }
912
913 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
914                            int data_pages, int parity_pages)
915 {
916         int i;
917         int meta_size;
918         int ret;
919         struct r5l_io_unit *io;
920
921         meta_size =
922                 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
923                  * data_pages) +
924                 sizeof(struct r5l_payload_data_parity) +
925                 sizeof(__le32) * parity_pages;
926
927         ret = r5l_get_meta(log, meta_size);
928         if (ret)
929                 return ret;
930
931         io = log->current_io;
932
933         if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
934                 io->has_flush = 1;
935
936         for (i = 0; i < sh->disks; i++) {
937                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
938                     test_bit(R5_InJournal, &sh->dev[i].flags))
939                         continue;
940                 if (i == sh->pd_idx || i == sh->qd_idx)
941                         continue;
942                 if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
943                     log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
944                         io->has_fua = 1;
945                         /*
946                          * we need to flush journal to make sure recovery can
947                          * reach the data with fua flag
948                          */
949                         io->has_flush = 1;
950                 }
951                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
952                                         raid5_compute_blocknr(sh, i, 0),
953                                         sh->dev[i].log_checksum, 0, false);
954                 r5l_append_payload_page(log, sh->dev[i].page);
955         }
956
957         if (parity_pages == 2) {
958                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
959                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
960                                         sh->dev[sh->qd_idx].log_checksum, true);
961                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
962                 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
963         } else if (parity_pages == 1) {
964                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
965                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
966                                         0, false);
967                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
968         } else  /* Just writing data, not parity, in caching phase */
969                 BUG_ON(parity_pages != 0);
970
971         list_add_tail(&sh->log_list, &io->stripe_list);
972         atomic_inc(&io->pending_stripe);
973         sh->log_io = io;
974
975         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
976                 return 0;
977
978         if (sh->log_start == MaxSector) {
979                 BUG_ON(!list_empty(&sh->r5c));
980                 sh->log_start = io->log_start;
981                 spin_lock_irq(&log->stripe_in_journal_lock);
982                 list_add_tail(&sh->r5c,
983                               &log->stripe_in_journal_list);
984                 spin_unlock_irq(&log->stripe_in_journal_lock);
985                 atomic_inc(&log->stripe_in_journal_count);
986         }
987         return 0;
988 }
989
990 /* add stripe to no_space_stripes, and then wake up reclaim */
991 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
992                                            struct stripe_head *sh)
993 {
994         spin_lock(&log->no_space_stripes_lock);
995         list_add_tail(&sh->log_list, &log->no_space_stripes);
996         spin_unlock(&log->no_space_stripes_lock);
997 }
998
999 /*
1000  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
1001  * data from log to raid disks), so we shouldn't wait for reclaim here
1002  */
1003 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
1004 {
1005         struct r5conf *conf = sh->raid_conf;
1006         int write_disks = 0;
1007         int data_pages, parity_pages;
1008         int reserve;
1009         int i;
1010         int ret = 0;
1011         bool wake_reclaim = false;
1012
1013         if (!log)
1014                 return -EAGAIN;
1015         /* Don't support stripe batch */
1016         if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1017             test_bit(STRIPE_SYNCING, &sh->state)) {
1018                 /* the stripe is written to log, we start writing it to raid */
1019                 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1020                 return -EAGAIN;
1021         }
1022
1023         WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1024
1025         for (i = 0; i < sh->disks; i++) {
1026                 void *addr;
1027
1028                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1029                     test_bit(R5_InJournal, &sh->dev[i].flags))
1030                         continue;
1031
1032                 write_disks++;
1033                 /* checksum is already calculated in last run */
1034                 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1035                         continue;
1036                 addr = kmap_atomic(sh->dev[i].page);
1037                 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1038                                                     addr, PAGE_SIZE);
1039                 kunmap_atomic(addr);
1040         }
1041         parity_pages = 1 + !!(sh->qd_idx >= 0);
1042         data_pages = write_disks - parity_pages;
1043
1044         set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1045         /*
1046          * The stripe must enter state machine again to finish the write, so
1047          * don't delay.
1048          */
1049         clear_bit(STRIPE_DELAYED, &sh->state);
1050         atomic_inc(&sh->count);
1051
1052         mutex_lock(&log->io_mutex);
1053         /* meta + data */
1054         reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1055
1056         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1057                 if (!r5l_has_free_space(log, reserve)) {
1058                         r5l_add_no_space_stripe(log, sh);
1059                         wake_reclaim = true;
1060                 } else {
1061                         ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1062                         if (ret) {
1063                                 spin_lock_irq(&log->io_list_lock);
1064                                 list_add_tail(&sh->log_list,
1065                                               &log->no_mem_stripes);
1066                                 spin_unlock_irq(&log->io_list_lock);
1067                         }
1068                 }
1069         } else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
1070                 /*
1071                  * log space critical, do not process stripes that are
1072                  * not in cache yet (sh->log_start == MaxSector).
1073                  */
1074                 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1075                     sh->log_start == MaxSector) {
1076                         r5l_add_no_space_stripe(log, sh);
1077                         wake_reclaim = true;
1078                         reserve = 0;
1079                 } else if (!r5l_has_free_space(log, reserve)) {
1080                         if (sh->log_start == log->last_checkpoint)
1081                                 BUG();
1082                         else
1083                                 r5l_add_no_space_stripe(log, sh);
1084                 } else {
1085                         ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1086                         if (ret) {
1087                                 spin_lock_irq(&log->io_list_lock);
1088                                 list_add_tail(&sh->log_list,
1089                                               &log->no_mem_stripes);
1090                                 spin_unlock_irq(&log->io_list_lock);
1091                         }
1092                 }
1093         }
1094
1095         mutex_unlock(&log->io_mutex);
1096         if (wake_reclaim)
1097                 r5l_wake_reclaim(log, reserve);
1098         return 0;
1099 }
1100
1101 void r5l_write_stripe_run(struct r5l_log *log)
1102 {
1103         if (!log)
1104                 return;
1105         mutex_lock(&log->io_mutex);
1106         r5l_submit_current_io(log);
1107         mutex_unlock(&log->io_mutex);
1108 }
1109
1110 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1111 {
1112         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1113                 /*
1114                  * in write through (journal only)
1115                  * we flush log disk cache first, then write stripe data to
1116                  * raid disks. So if bio is finished, the log disk cache is
1117                  * flushed already. The recovery guarantees we can recovery
1118                  * the bio from log disk, so we don't need to flush again
1119                  */
1120                 if (bio->bi_iter.bi_size == 0) {
1121                         bio_endio(bio);
1122                         return 0;
1123                 }
1124                 bio->bi_opf &= ~REQ_PREFLUSH;
1125         } else {
1126                 /* write back (with cache) */
1127                 if (bio->bi_iter.bi_size == 0) {
1128                         mutex_lock(&log->io_mutex);
1129                         r5l_get_meta(log, 0);
1130                         bio_list_add(&log->current_io->flush_barriers, bio);
1131                         log->current_io->has_flush = 1;
1132                         log->current_io->has_null_flush = 1;
1133                         atomic_inc(&log->current_io->pending_stripe);
1134                         r5l_submit_current_io(log);
1135                         mutex_unlock(&log->io_mutex);
1136                         return 0;
1137                 }
1138         }
1139         return -EAGAIN;
1140 }
1141
1142 /* This will run after log space is reclaimed */
1143 static void r5l_run_no_space_stripes(struct r5l_log *log)
1144 {
1145         struct stripe_head *sh;
1146
1147         spin_lock(&log->no_space_stripes_lock);
1148         while (!list_empty(&log->no_space_stripes)) {
1149                 sh = list_first_entry(&log->no_space_stripes,
1150                                       struct stripe_head, log_list);
1151                 list_del_init(&sh->log_list);
1152                 set_bit(STRIPE_HANDLE, &sh->state);
1153                 raid5_release_stripe(sh);
1154         }
1155         spin_unlock(&log->no_space_stripes_lock);
1156 }
1157
1158 /*
1159  * calculate new last_checkpoint
1160  * for write through mode, returns log->next_checkpoint
1161  * for write back, returns log_start of first sh in stripe_in_journal_list
1162  */
1163 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1164 {
1165         struct stripe_head *sh;
1166         struct r5l_log *log = conf->log;
1167         sector_t new_cp;
1168         unsigned long flags;
1169
1170         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1171                 return log->next_checkpoint;
1172
1173         spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1174         if (list_empty(&conf->log->stripe_in_journal_list)) {
1175                 /* all stripes flushed */
1176                 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1177                 return log->next_checkpoint;
1178         }
1179         sh = list_first_entry(&conf->log->stripe_in_journal_list,
1180                               struct stripe_head, r5c);
1181         new_cp = sh->log_start;
1182         spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1183         return new_cp;
1184 }
1185
1186 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1187 {
1188         struct r5conf *conf = log->rdev->mddev->private;
1189
1190         return r5l_ring_distance(log, log->last_checkpoint,
1191                                  r5c_calculate_new_cp(conf));
1192 }
1193
1194 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1195 {
1196         struct stripe_head *sh;
1197
1198         lockdep_assert_held(&log->io_list_lock);
1199
1200         if (!list_empty(&log->no_mem_stripes)) {
1201                 sh = list_first_entry(&log->no_mem_stripes,
1202                                       struct stripe_head, log_list);
1203                 list_del_init(&sh->log_list);
1204                 set_bit(STRIPE_HANDLE, &sh->state);
1205                 raid5_release_stripe(sh);
1206         }
1207 }
1208
1209 static bool r5l_complete_finished_ios(struct r5l_log *log)
1210 {
1211         struct r5l_io_unit *io, *next;
1212         bool found = false;
1213
1214         lockdep_assert_held(&log->io_list_lock);
1215
1216         list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1217                 /* don't change list order */
1218                 if (io->state < IO_UNIT_STRIPE_END)
1219                         break;
1220
1221                 log->next_checkpoint = io->log_start;
1222
1223                 list_del(&io->log_sibling);
1224                 mempool_free(io, &log->io_pool);
1225                 r5l_run_no_mem_stripe(log);
1226
1227                 found = true;
1228         }
1229
1230         return found;
1231 }
1232
1233 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1234 {
1235         struct r5l_log *log = io->log;
1236         struct r5conf *conf = log->rdev->mddev->private;
1237         unsigned long flags;
1238
1239         spin_lock_irqsave(&log->io_list_lock, flags);
1240         __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1241
1242         if (!r5l_complete_finished_ios(log)) {
1243                 spin_unlock_irqrestore(&log->io_list_lock, flags);
1244                 return;
1245         }
1246
1247         if (r5l_reclaimable_space(log) > log->max_free_space ||
1248             test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1249                 r5l_wake_reclaim(log, 0);
1250
1251         spin_unlock_irqrestore(&log->io_list_lock, flags);
1252         wake_up(&log->iounit_wait);
1253 }
1254
1255 void r5l_stripe_write_finished(struct stripe_head *sh)
1256 {
1257         struct r5l_io_unit *io;
1258
1259         io = sh->log_io;
1260         sh->log_io = NULL;
1261
1262         if (io && atomic_dec_and_test(&io->pending_stripe))
1263                 __r5l_stripe_write_finished(io);
1264 }
1265
1266 static void r5l_log_flush_endio(struct bio *bio)
1267 {
1268         struct r5l_log *log = container_of(bio, struct r5l_log,
1269                 flush_bio);
1270         unsigned long flags;
1271         struct r5l_io_unit *io;
1272
1273         if (bio->bi_status)
1274                 md_error(log->rdev->mddev, log->rdev);
1275
1276         spin_lock_irqsave(&log->io_list_lock, flags);
1277         list_for_each_entry(io, &log->flushing_ios, log_sibling)
1278                 r5l_io_run_stripes(io);
1279         list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1280         spin_unlock_irqrestore(&log->io_list_lock, flags);
1281 }
1282
1283 /*
1284  * Starting dispatch IO to raid.
1285  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1286  * broken meta in the middle of a log causes recovery can't find meta at the
1287  * head of log. If operations require meta at the head persistent in log, we
1288  * must make sure meta before it persistent in log too. A case is:
1289  *
1290  * stripe data/parity is in log, we start write stripe to raid disks. stripe
1291  * data/parity must be persistent in log before we do the write to raid disks.
1292  *
1293  * The solution is we restrictly maintain io_unit list order. In this case, we
1294  * only write stripes of an io_unit to raid disks till the io_unit is the first
1295  * one whose data/parity is in log.
1296  */
1297 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1298 {
1299         bool do_flush;
1300
1301         if (!log || !log->need_cache_flush)
1302                 return;
1303
1304         spin_lock_irq(&log->io_list_lock);
1305         /* flush bio is running */
1306         if (!list_empty(&log->flushing_ios)) {
1307                 spin_unlock_irq(&log->io_list_lock);
1308                 return;
1309         }
1310         list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1311         do_flush = !list_empty(&log->flushing_ios);
1312         spin_unlock_irq(&log->io_list_lock);
1313
1314         if (!do_flush)
1315                 return;
1316         bio_reset(&log->flush_bio);
1317         bio_set_dev(&log->flush_bio, log->rdev->bdev);
1318         log->flush_bio.bi_end_io = r5l_log_flush_endio;
1319         log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1320         submit_bio(&log->flush_bio);
1321 }
1322
1323 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1324 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1325         sector_t end)
1326 {
1327         struct block_device *bdev = log->rdev->bdev;
1328         struct mddev *mddev;
1329
1330         r5l_write_super(log, end);
1331
1332         if (!blk_queue_discard(bdev_get_queue(bdev)))
1333                 return;
1334
1335         mddev = log->rdev->mddev;
1336         /*
1337          * Discard could zero data, so before discard we must make sure
1338          * superblock is updated to new log tail. Updating superblock (either
1339          * directly call md_update_sb() or depend on md thread) must hold
1340          * reconfig mutex. On the other hand, raid5_quiesce is called with
1341          * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1342          * for all IO finish, hence waitting for reclaim thread, while reclaim
1343          * thread is calling this function and waitting for reconfig mutex. So
1344          * there is a deadlock. We workaround this issue with a trylock.
1345          * FIXME: we could miss discard if we can't take reconfig mutex
1346          */
1347         set_mask_bits(&mddev->sb_flags, 0,
1348                 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1349         if (!mddev_trylock(mddev))
1350                 return;
1351         md_update_sb(mddev, 1);
1352         mddev_unlock(mddev);
1353
1354         /* discard IO error really doesn't matter, ignore it */
1355         if (log->last_checkpoint < end) {
1356                 blkdev_issue_discard(bdev,
1357                                 log->last_checkpoint + log->rdev->data_offset,
1358                                 end - log->last_checkpoint, GFP_NOIO, 0);
1359         } else {
1360                 blkdev_issue_discard(bdev,
1361                                 log->last_checkpoint + log->rdev->data_offset,
1362                                 log->device_size - log->last_checkpoint,
1363                                 GFP_NOIO, 0);
1364                 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1365                                 GFP_NOIO, 0);
1366         }
1367 }
1368
1369 /*
1370  * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1371  * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1372  *
1373  * must hold conf->device_lock
1374  */
1375 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1376 {
1377         BUG_ON(list_empty(&sh->lru));
1378         BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1379         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1380
1381         /*
1382          * The stripe is not ON_RELEASE_LIST, so it is safe to call
1383          * raid5_release_stripe() while holding conf->device_lock
1384          */
1385         BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1386         lockdep_assert_held(&conf->device_lock);
1387
1388         list_del_init(&sh->lru);
1389         atomic_inc(&sh->count);
1390
1391         set_bit(STRIPE_HANDLE, &sh->state);
1392         atomic_inc(&conf->active_stripes);
1393         r5c_make_stripe_write_out(sh);
1394
1395         if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1396                 atomic_inc(&conf->r5c_flushing_partial_stripes);
1397         else
1398                 atomic_inc(&conf->r5c_flushing_full_stripes);
1399         raid5_release_stripe(sh);
1400 }
1401
1402 /*
1403  * if num == 0, flush all full stripes
1404  * if num > 0, flush all full stripes. If less than num full stripes are
1405  *             flushed, flush some partial stripes until totally num stripes are
1406  *             flushed or there is no more cached stripes.
1407  */
1408 void r5c_flush_cache(struct r5conf *conf, int num)
1409 {
1410         int count;
1411         struct stripe_head *sh, *next;
1412
1413         lockdep_assert_held(&conf->device_lock);
1414         if (!conf->log)
1415                 return;
1416
1417         count = 0;
1418         list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1419                 r5c_flush_stripe(conf, sh);
1420                 count++;
1421         }
1422
1423         if (count >= num)
1424                 return;
1425         list_for_each_entry_safe(sh, next,
1426                                  &conf->r5c_partial_stripe_list, lru) {
1427                 r5c_flush_stripe(conf, sh);
1428                 if (++count >= num)
1429                         break;
1430         }
1431 }
1432
1433 static void r5c_do_reclaim(struct r5conf *conf)
1434 {
1435         struct r5l_log *log = conf->log;
1436         struct stripe_head *sh;
1437         int count = 0;
1438         unsigned long flags;
1439         int total_cached;
1440         int stripes_to_flush;
1441         int flushing_partial, flushing_full;
1442
1443         if (!r5c_is_writeback(log))
1444                 return;
1445
1446         flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1447         flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1448         total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1449                 atomic_read(&conf->r5c_cached_full_stripes) -
1450                 flushing_full - flushing_partial;
1451
1452         if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1453             atomic_read(&conf->empty_inactive_list_nr) > 0)
1454                 /*
1455                  * if stripe cache pressure high, flush all full stripes and
1456                  * some partial stripes
1457                  */
1458                 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1459         else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1460                  atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1461                  R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1462                 /*
1463                  * if stripe cache pressure moderate, or if there is many full
1464                  * stripes,flush all full stripes
1465                  */
1466                 stripes_to_flush = 0;
1467         else
1468                 /* no need to flush */
1469                 stripes_to_flush = -1;
1470
1471         if (stripes_to_flush >= 0) {
1472                 spin_lock_irqsave(&conf->device_lock, flags);
1473                 r5c_flush_cache(conf, stripes_to_flush);
1474                 spin_unlock_irqrestore(&conf->device_lock, flags);
1475         }
1476
1477         /* if log space is tight, flush stripes on stripe_in_journal_list */
1478         if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1479                 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1480                 spin_lock(&conf->device_lock);
1481                 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1482                         /*
1483                          * stripes on stripe_in_journal_list could be in any
1484                          * state of the stripe_cache state machine. In this
1485                          * case, we only want to flush stripe on
1486                          * r5c_cached_full/partial_stripes. The following
1487                          * condition makes sure the stripe is on one of the
1488                          * two lists.
1489                          */
1490                         if (!list_empty(&sh->lru) &&
1491                             !test_bit(STRIPE_HANDLE, &sh->state) &&
1492                             atomic_read(&sh->count) == 0) {
1493                                 r5c_flush_stripe(conf, sh);
1494                                 if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1495                                         break;
1496                         }
1497                 }
1498                 spin_unlock(&conf->device_lock);
1499                 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1500         }
1501
1502         if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1503                 r5l_run_no_space_stripes(log);
1504
1505         md_wakeup_thread(conf->mddev->thread);
1506 }
1507
1508 static void r5l_do_reclaim(struct r5l_log *log)
1509 {
1510         struct r5conf *conf = log->rdev->mddev->private;
1511         sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1512         sector_t reclaimable;
1513         sector_t next_checkpoint;
1514         bool write_super;
1515
1516         spin_lock_irq(&log->io_list_lock);
1517         write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1518                 reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1519         /*
1520          * move proper io_unit to reclaim list. We should not change the order.
1521          * reclaimable/unreclaimable io_unit can be mixed in the list, we
1522          * shouldn't reuse space of an unreclaimable io_unit
1523          */
1524         while (1) {
1525                 reclaimable = r5l_reclaimable_space(log);
1526                 if (reclaimable >= reclaim_target ||
1527                     (list_empty(&log->running_ios) &&
1528                      list_empty(&log->io_end_ios) &&
1529                      list_empty(&log->flushing_ios) &&
1530                      list_empty(&log->finished_ios)))
1531                         break;
1532
1533                 md_wakeup_thread(log->rdev->mddev->thread);
1534                 wait_event_lock_irq(log->iounit_wait,
1535                                     r5l_reclaimable_space(log) > reclaimable,
1536                                     log->io_list_lock);
1537         }
1538
1539         next_checkpoint = r5c_calculate_new_cp(conf);
1540         spin_unlock_irq(&log->io_list_lock);
1541
1542         if (reclaimable == 0 || !write_super)
1543                 return;
1544
1545         /*
1546          * write_super will flush cache of each raid disk. We must write super
1547          * here, because the log area might be reused soon and we don't want to
1548          * confuse recovery
1549          */
1550         r5l_write_super_and_discard_space(log, next_checkpoint);
1551
1552         mutex_lock(&log->io_mutex);
1553         log->last_checkpoint = next_checkpoint;
1554         r5c_update_log_state(log);
1555         mutex_unlock(&log->io_mutex);
1556
1557         r5l_run_no_space_stripes(log);
1558 }
1559
1560 static void r5l_reclaim_thread(struct md_thread *thread)
1561 {
1562         struct mddev *mddev = thread->mddev;
1563         struct r5conf *conf = mddev->private;
1564         struct r5l_log *log = conf->log;
1565
1566         if (!log)
1567                 return;
1568         r5c_do_reclaim(conf);
1569         r5l_do_reclaim(log);
1570 }
1571
1572 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1573 {
1574         unsigned long target;
1575         unsigned long new = (unsigned long)space; /* overflow in theory */
1576
1577         if (!log)
1578                 return;
1579         do {
1580                 target = log->reclaim_target;
1581                 if (new < target)
1582                         return;
1583         } while (cmpxchg(&log->reclaim_target, target, new) != target);
1584         md_wakeup_thread(log->reclaim_thread);
1585 }
1586
1587 void r5l_quiesce(struct r5l_log *log, int quiesce)
1588 {
1589         struct mddev *mddev;
1590
1591         if (quiesce) {
1592                 /* make sure r5l_write_super_and_discard_space exits */
1593                 mddev = log->rdev->mddev;
1594                 wake_up(&mddev->sb_wait);
1595                 kthread_park(log->reclaim_thread->tsk);
1596                 r5l_wake_reclaim(log, MaxSector);
1597                 r5l_do_reclaim(log);
1598         } else
1599                 kthread_unpark(log->reclaim_thread->tsk);
1600 }
1601
1602 bool r5l_log_disk_error(struct r5conf *conf)
1603 {
1604         struct r5l_log *log;
1605         bool ret;
1606         /* don't allow write if journal disk is missing */
1607         rcu_read_lock();
1608         log = rcu_dereference(conf->log);
1609
1610         if (!log)
1611                 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1612         else
1613                 ret = test_bit(Faulty, &log->rdev->flags);
1614         rcu_read_unlock();
1615         return ret;
1616 }
1617
1618 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1619
1620 struct r5l_recovery_ctx {
1621         struct page *meta_page;         /* current meta */
1622         sector_t meta_total_blocks;     /* total size of current meta and data */
1623         sector_t pos;                   /* recovery position */
1624         u64 seq;                        /* recovery position seq */
1625         int data_parity_stripes;        /* number of data_parity stripes */
1626         int data_only_stripes;          /* number of data_only stripes */
1627         struct list_head cached_list;
1628
1629         /*
1630          * read ahead page pool (ra_pool)
1631          * in recovery, log is read sequentially. It is not efficient to
1632          * read every page with sync_page_io(). The read ahead page pool
1633          * reads multiple pages with one IO, so further log read can
1634          * just copy data from the pool.
1635          */
1636         struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1637         sector_t pool_offset;   /* offset of first page in the pool */
1638         int total_pages;        /* total allocated pages */
1639         int valid_pages;        /* pages with valid data */
1640         struct bio *ra_bio;     /* bio to do the read ahead */
1641 };
1642
1643 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1644                                             struct r5l_recovery_ctx *ctx)
1645 {
1646         struct page *page;
1647
1648         ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, &log->bs);
1649         if (!ctx->ra_bio)
1650                 return -ENOMEM;
1651
1652         ctx->valid_pages = 0;
1653         ctx->total_pages = 0;
1654         while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1655                 page = alloc_page(GFP_KERNEL);
1656
1657                 if (!page)
1658                         break;
1659                 ctx->ra_pool[ctx->total_pages] = page;
1660                 ctx->total_pages += 1;
1661         }
1662
1663         if (ctx->total_pages == 0) {
1664                 bio_put(ctx->ra_bio);
1665                 return -ENOMEM;
1666         }
1667
1668         ctx->pool_offset = 0;
1669         return 0;
1670 }
1671
1672 static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1673                                         struct r5l_recovery_ctx *ctx)
1674 {
1675         int i;
1676
1677         for (i = 0; i < ctx->total_pages; ++i)
1678                 put_page(ctx->ra_pool[i]);
1679         bio_put(ctx->ra_bio);
1680 }
1681
1682 /*
1683  * fetch ctx->valid_pages pages from offset
1684  * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1685  * However, if the offset is close to the end of the journal device,
1686  * ctx->valid_pages could be smaller than ctx->total_pages
1687  */
1688 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1689                                       struct r5l_recovery_ctx *ctx,
1690                                       sector_t offset)
1691 {
1692         bio_reset(ctx->ra_bio);
1693         bio_set_dev(ctx->ra_bio, log->rdev->bdev);
1694         bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0);
1695         ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset;
1696
1697         ctx->valid_pages = 0;
1698         ctx->pool_offset = offset;
1699
1700         while (ctx->valid_pages < ctx->total_pages) {
1701                 bio_add_page(ctx->ra_bio,
1702                              ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0);
1703                 ctx->valid_pages += 1;
1704
1705                 offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1706
1707                 if (offset == 0)  /* reached end of the device */
1708                         break;
1709         }
1710
1711         return submit_bio_wait(ctx->ra_bio);
1712 }
1713
1714 /*
1715  * try read a page from the read ahead page pool, if the page is not in the
1716  * pool, call r5l_recovery_fetch_ra_pool
1717  */
1718 static int r5l_recovery_read_page(struct r5l_log *log,
1719                                   struct r5l_recovery_ctx *ctx,
1720                                   struct page *page,
1721                                   sector_t offset)
1722 {
1723         int ret;
1724
1725         if (offset < ctx->pool_offset ||
1726             offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1727                 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1728                 if (ret)
1729                         return ret;
1730         }
1731
1732         BUG_ON(offset < ctx->pool_offset ||
1733                offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1734
1735         memcpy(page_address(page),
1736                page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1737                                          BLOCK_SECTOR_SHIFT]),
1738                PAGE_SIZE);
1739         return 0;
1740 }
1741
1742 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1743                                         struct r5l_recovery_ctx *ctx)
1744 {
1745         struct page *page = ctx->meta_page;
1746         struct r5l_meta_block *mb;
1747         u32 crc, stored_crc;
1748         int ret;
1749
1750         ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1751         if (ret != 0)
1752                 return ret;
1753
1754         mb = page_address(page);
1755         stored_crc = le32_to_cpu(mb->checksum);
1756         mb->checksum = 0;
1757
1758         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1759             le64_to_cpu(mb->seq) != ctx->seq ||
1760             mb->version != R5LOG_VERSION ||
1761             le64_to_cpu(mb->position) != ctx->pos)
1762                 return -EINVAL;
1763
1764         crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1765         if (stored_crc != crc)
1766                 return -EINVAL;
1767
1768         if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1769                 return -EINVAL;
1770
1771         ctx->meta_total_blocks = BLOCK_SECTORS;
1772
1773         return 0;
1774 }
1775
1776 static void
1777 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1778                                      struct page *page,
1779                                      sector_t pos, u64 seq)
1780 {
1781         struct r5l_meta_block *mb;
1782
1783         mb = page_address(page);
1784         clear_page(mb);
1785         mb->magic = cpu_to_le32(R5LOG_MAGIC);
1786         mb->version = R5LOG_VERSION;
1787         mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1788         mb->seq = cpu_to_le64(seq);
1789         mb->position = cpu_to_le64(pos);
1790 }
1791
1792 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1793                                           u64 seq)
1794 {
1795         struct page *page;
1796         struct r5l_meta_block *mb;
1797
1798         page = alloc_page(GFP_KERNEL);
1799         if (!page)
1800                 return -ENOMEM;
1801         r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1802         mb = page_address(page);
1803         mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1804                                              mb, PAGE_SIZE));
1805         if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1806                           REQ_SYNC | REQ_FUA, false)) {
1807                 __free_page(page);
1808                 return -EIO;
1809         }
1810         __free_page(page);
1811         return 0;
1812 }
1813
1814 /*
1815  * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1816  * to mark valid (potentially not flushed) data in the journal.
1817  *
1818  * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1819  * so there should not be any mismatch here.
1820  */
1821 static void r5l_recovery_load_data(struct r5l_log *log,
1822                                    struct stripe_head *sh,
1823                                    struct r5l_recovery_ctx *ctx,
1824                                    struct r5l_payload_data_parity *payload,
1825                                    sector_t log_offset)
1826 {
1827         struct mddev *mddev = log->rdev->mddev;
1828         struct r5conf *conf = mddev->private;
1829         int dd_idx;
1830
1831         raid5_compute_sector(conf,
1832                              le64_to_cpu(payload->location), 0,
1833                              &dd_idx, sh);
1834         r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1835         sh->dev[dd_idx].log_checksum =
1836                 le32_to_cpu(payload->checksum[0]);
1837         ctx->meta_total_blocks += BLOCK_SECTORS;
1838
1839         set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1840         set_bit(STRIPE_R5C_CACHING, &sh->state);
1841 }
1842
1843 static void r5l_recovery_load_parity(struct r5l_log *log,
1844                                      struct stripe_head *sh,
1845                                      struct r5l_recovery_ctx *ctx,
1846                                      struct r5l_payload_data_parity *payload,
1847                                      sector_t log_offset)
1848 {
1849         struct mddev *mddev = log->rdev->mddev;
1850         struct r5conf *conf = mddev->private;
1851
1852         ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1853         r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1854         sh->dev[sh->pd_idx].log_checksum =
1855                 le32_to_cpu(payload->checksum[0]);
1856         set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1857
1858         if (sh->qd_idx >= 0) {
1859                 r5l_recovery_read_page(
1860                         log, ctx, sh->dev[sh->qd_idx].page,
1861                         r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1862                 sh->dev[sh->qd_idx].log_checksum =
1863                         le32_to_cpu(payload->checksum[1]);
1864                 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1865         }
1866         clear_bit(STRIPE_R5C_CACHING, &sh->state);
1867 }
1868
1869 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1870 {
1871         int i;
1872
1873         sh->state = 0;
1874         sh->log_start = MaxSector;
1875         for (i = sh->disks; i--; )
1876                 sh->dev[i].flags = 0;
1877 }
1878
1879 static void
1880 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1881                                struct stripe_head *sh,
1882                                struct r5l_recovery_ctx *ctx)
1883 {
1884         struct md_rdev *rdev, *rrdev;
1885         int disk_index;
1886         int data_count = 0;
1887
1888         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1889                 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1890                         continue;
1891                 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1892                         continue;
1893                 data_count++;
1894         }
1895
1896         /*
1897          * stripes that only have parity must have been flushed
1898          * before the crash that we are now recovering from, so
1899          * there is nothing more to recovery.
1900          */
1901         if (data_count == 0)
1902                 goto out;
1903
1904         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1905                 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1906                         continue;
1907
1908                 /* in case device is broken */
1909                 rcu_read_lock();
1910                 rdev = rcu_dereference(conf->disks[disk_index].rdev);
1911                 if (rdev) {
1912                         atomic_inc(&rdev->nr_pending);
1913                         rcu_read_unlock();
1914                         sync_page_io(rdev, sh->sector, PAGE_SIZE,
1915                                      sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1916                                      false);
1917                         rdev_dec_pending(rdev, rdev->mddev);
1918                         rcu_read_lock();
1919                 }
1920                 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1921                 if (rrdev) {
1922                         atomic_inc(&rrdev->nr_pending);
1923                         rcu_read_unlock();
1924                         sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1925                                      sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1926                                      false);
1927                         rdev_dec_pending(rrdev, rrdev->mddev);
1928                         rcu_read_lock();
1929                 }
1930                 rcu_read_unlock();
1931         }
1932         ctx->data_parity_stripes++;
1933 out:
1934         r5l_recovery_reset_stripe(sh);
1935 }
1936
1937 static struct stripe_head *
1938 r5c_recovery_alloc_stripe(
1939                 struct r5conf *conf,
1940                 sector_t stripe_sect,
1941                 int noblock)
1942 {
1943         struct stripe_head *sh;
1944
1945         sh = raid5_get_active_stripe(conf, stripe_sect, 0, noblock, 0);
1946         if (!sh)
1947                 return NULL;  /* no more stripe available */
1948
1949         r5l_recovery_reset_stripe(sh);
1950
1951         return sh;
1952 }
1953
1954 static struct stripe_head *
1955 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1956 {
1957         struct stripe_head *sh;
1958
1959         list_for_each_entry(sh, list, lru)
1960                 if (sh->sector == sect)
1961                         return sh;
1962         return NULL;
1963 }
1964
1965 static void
1966 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1967                           struct r5l_recovery_ctx *ctx)
1968 {
1969         struct stripe_head *sh, *next;
1970
1971         list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1972                 r5l_recovery_reset_stripe(sh);
1973                 list_del_init(&sh->lru);
1974                 raid5_release_stripe(sh);
1975         }
1976 }
1977
1978 static void
1979 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1980                             struct r5l_recovery_ctx *ctx)
1981 {
1982         struct stripe_head *sh, *next;
1983
1984         list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1985                 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1986                         r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1987                         list_del_init(&sh->lru);
1988                         raid5_release_stripe(sh);
1989                 }
1990 }
1991
1992 /* if matches return 0; otherwise return -EINVAL */
1993 static int
1994 r5l_recovery_verify_data_checksum(struct r5l_log *log,
1995                                   struct r5l_recovery_ctx *ctx,
1996                                   struct page *page,
1997                                   sector_t log_offset, __le32 log_checksum)
1998 {
1999         void *addr;
2000         u32 checksum;
2001
2002         r5l_recovery_read_page(log, ctx, page, log_offset);
2003         addr = kmap_atomic(page);
2004         checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
2005         kunmap_atomic(addr);
2006         return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
2007 }
2008
2009 /*
2010  * before loading data to stripe cache, we need verify checksum for all data,
2011  * if there is mismatch for any data page, we drop all data in the mata block
2012  */
2013 static int
2014 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
2015                                          struct r5l_recovery_ctx *ctx)
2016 {
2017         struct mddev *mddev = log->rdev->mddev;
2018         struct r5conf *conf = mddev->private;
2019         struct r5l_meta_block *mb = page_address(ctx->meta_page);
2020         sector_t mb_offset = sizeof(struct r5l_meta_block);
2021         sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2022         struct page *page;
2023         struct r5l_payload_data_parity *payload;
2024         struct r5l_payload_flush *payload_flush;
2025
2026         page = alloc_page(GFP_KERNEL);
2027         if (!page)
2028                 return -ENOMEM;
2029
2030         while (mb_offset < le32_to_cpu(mb->meta_size)) {
2031                 payload = (void *)mb + mb_offset;
2032                 payload_flush = (void *)mb + mb_offset;
2033
2034                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2035                         if (r5l_recovery_verify_data_checksum(
2036                                     log, ctx, page, log_offset,
2037                                     payload->checksum[0]) < 0)
2038                                 goto mismatch;
2039                 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2040                         if (r5l_recovery_verify_data_checksum(
2041                                     log, ctx, page, log_offset,
2042                                     payload->checksum[0]) < 0)
2043                                 goto mismatch;
2044                         if (conf->max_degraded == 2 && /* q for RAID 6 */
2045                             r5l_recovery_verify_data_checksum(
2046                                     log, ctx, page,
2047                                     r5l_ring_add(log, log_offset,
2048                                                  BLOCK_SECTORS),
2049                                     payload->checksum[1]) < 0)
2050                                 goto mismatch;
2051                 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2052                         /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2053                 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2054                         goto mismatch;
2055
2056                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2057                         mb_offset += sizeof(struct r5l_payload_flush) +
2058                                 le32_to_cpu(payload_flush->size);
2059                 } else {
2060                         /* DATA or PARITY payload */
2061                         log_offset = r5l_ring_add(log, log_offset,
2062                                                   le32_to_cpu(payload->size));
2063                         mb_offset += sizeof(struct r5l_payload_data_parity) +
2064                                 sizeof(__le32) *
2065                                 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2066                 }
2067
2068         }
2069
2070         put_page(page);
2071         return 0;
2072
2073 mismatch:
2074         put_page(page);
2075         return -EINVAL;
2076 }
2077
2078 /*
2079  * Analyze all data/parity pages in one meta block
2080  * Returns:
2081  * 0 for success
2082  * -EINVAL for unknown playload type
2083  * -EAGAIN for checksum mismatch of data page
2084  * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2085  */
2086 static int
2087 r5c_recovery_analyze_meta_block(struct r5l_log *log,
2088                                 struct r5l_recovery_ctx *ctx,
2089                                 struct list_head *cached_stripe_list)
2090 {
2091         struct mddev *mddev = log->rdev->mddev;
2092         struct r5conf *conf = mddev->private;
2093         struct r5l_meta_block *mb;
2094         struct r5l_payload_data_parity *payload;
2095         struct r5l_payload_flush *payload_flush;
2096         int mb_offset;
2097         sector_t log_offset;
2098         sector_t stripe_sect;
2099         struct stripe_head *sh;
2100         int ret;
2101
2102         /*
2103          * for mismatch in data blocks, we will drop all data in this mb, but
2104          * we will still read next mb for other data with FLUSH flag, as
2105          * io_unit could finish out of order.
2106          */
2107         ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2108         if (ret == -EINVAL)
2109                 return -EAGAIN;
2110         else if (ret)
2111                 return ret;   /* -ENOMEM duo to alloc_page() failed */
2112
2113         mb = page_address(ctx->meta_page);
2114         mb_offset = sizeof(struct r5l_meta_block);
2115         log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2116
2117         while (mb_offset < le32_to_cpu(mb->meta_size)) {
2118                 int dd;
2119
2120                 payload = (void *)mb + mb_offset;
2121                 payload_flush = (void *)mb + mb_offset;
2122
2123                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2124                         int i, count;
2125
2126                         count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2127                         for (i = 0; i < count; ++i) {
2128                                 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2129                                 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2130                                                                 stripe_sect);
2131                                 if (sh) {
2132                                         WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2133                                         r5l_recovery_reset_stripe(sh);
2134                                         list_del_init(&sh->lru);
2135                                         raid5_release_stripe(sh);
2136                                 }
2137                         }
2138
2139                         mb_offset += sizeof(struct r5l_payload_flush) +
2140                                 le32_to_cpu(payload_flush->size);
2141                         continue;
2142                 }
2143
2144                 /* DATA or PARITY payload */
2145                 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2146                         raid5_compute_sector(
2147                                 conf, le64_to_cpu(payload->location), 0, &dd,
2148                                 NULL)
2149                         : le64_to_cpu(payload->location);
2150
2151                 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2152                                                 stripe_sect);
2153
2154                 if (!sh) {
2155                         sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1);
2156                         /*
2157                          * cannot get stripe from raid5_get_active_stripe
2158                          * try replay some stripes
2159                          */
2160                         if (!sh) {
2161                                 r5c_recovery_replay_stripes(
2162                                         cached_stripe_list, ctx);
2163                                 sh = r5c_recovery_alloc_stripe(
2164                                         conf, stripe_sect, 1);
2165                         }
2166                         if (!sh) {
2167                                 int new_size = conf->min_nr_stripes * 2;
2168                                 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2169                                         mdname(mddev),
2170                                         new_size);
2171                                 ret = raid5_set_cache_size(mddev, new_size);
2172                                 if (conf->min_nr_stripes <= new_size / 2) {
2173                                         pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
2174                                                 mdname(mddev),
2175                                                 ret,
2176                                                 new_size,
2177                                                 conf->min_nr_stripes,
2178                                                 conf->max_nr_stripes);
2179                                         return -ENOMEM;
2180                                 }
2181                                 sh = r5c_recovery_alloc_stripe(
2182                                         conf, stripe_sect, 0);
2183                         }
2184                         if (!sh) {
2185                                 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2186                                         mdname(mddev));
2187                                 return -ENOMEM;
2188                         }
2189                         list_add_tail(&sh->lru, cached_stripe_list);
2190                 }
2191
2192                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2193                         if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2194                             test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2195                                 r5l_recovery_replay_one_stripe(conf, sh, ctx);
2196                                 list_move_tail(&sh->lru, cached_stripe_list);
2197                         }
2198                         r5l_recovery_load_data(log, sh, ctx, payload,
2199                                                log_offset);
2200                 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2201                         r5l_recovery_load_parity(log, sh, ctx, payload,
2202                                                  log_offset);
2203                 else
2204                         return -EINVAL;
2205
2206                 log_offset = r5l_ring_add(log, log_offset,
2207                                           le32_to_cpu(payload->size));
2208
2209                 mb_offset += sizeof(struct r5l_payload_data_parity) +
2210                         sizeof(__le32) *
2211                         (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2212         }
2213
2214         return 0;
2215 }
2216
2217 /*
2218  * Load the stripe into cache. The stripe will be written out later by
2219  * the stripe cache state machine.
2220  */
2221 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2222                                          struct stripe_head *sh)
2223 {
2224         struct r5dev *dev;
2225         int i;
2226
2227         for (i = sh->disks; i--; ) {
2228                 dev = sh->dev + i;
2229                 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2230                         set_bit(R5_InJournal, &dev->flags);
2231                         set_bit(R5_UPTODATE, &dev->flags);
2232                 }
2233         }
2234 }
2235
2236 /*
2237  * Scan through the log for all to-be-flushed data
2238  *
2239  * For stripes with data and parity, namely Data-Parity stripe
2240  * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2241  *
2242  * For stripes with only data, namely Data-Only stripe
2243  * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2244  *
2245  * For a stripe, if we see data after parity, we should discard all previous
2246  * data and parity for this stripe, as these data are already flushed to
2247  * the array.
2248  *
2249  * At the end of the scan, we return the new journal_tail, which points to
2250  * first data-only stripe on the journal device, or next invalid meta block.
2251  */
2252 static int r5c_recovery_flush_log(struct r5l_log *log,
2253                                   struct r5l_recovery_ctx *ctx)
2254 {
2255         struct stripe_head *sh;
2256         int ret = 0;
2257
2258         /* scan through the log */
2259         while (1) {
2260                 if (r5l_recovery_read_meta_block(log, ctx))
2261                         break;
2262
2263                 ret = r5c_recovery_analyze_meta_block(log, ctx,
2264                                                       &ctx->cached_list);
2265                 /*
2266                  * -EAGAIN means mismatch in data block, in this case, we still
2267                  * try scan the next metablock
2268                  */
2269                 if (ret && ret != -EAGAIN)
2270                         break;   /* ret == -EINVAL or -ENOMEM */
2271                 ctx->seq++;
2272                 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2273         }
2274
2275         if (ret == -ENOMEM) {
2276                 r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2277                 return ret;
2278         }
2279
2280         /* replay data-parity stripes */
2281         r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2282
2283         /* load data-only stripes to stripe cache */
2284         list_for_each_entry(sh, &ctx->cached_list, lru) {
2285                 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2286                 r5c_recovery_load_one_stripe(log, sh);
2287                 ctx->data_only_stripes++;
2288         }
2289
2290         return 0;
2291 }
2292
2293 /*
2294  * we did a recovery. Now ctx.pos points to an invalid meta block. New
2295  * log will start here. but we can't let superblock point to last valid
2296  * meta block. The log might looks like:
2297  * | meta 1| meta 2| meta 3|
2298  * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2299  * superblock points to meta 1, we write a new valid meta 2n.  if crash
2300  * happens again, new recovery will start from meta 1. Since meta 2n is
2301  * valid now, recovery will think meta 3 is valid, which is wrong.
2302  * The solution is we create a new meta in meta2 with its seq == meta
2303  * 1's seq + 10000 and let superblock points to meta2. The same recovery
2304  * will not think meta 3 is a valid meta, because its seq doesn't match
2305  */
2306
2307 /*
2308  * Before recovery, the log looks like the following
2309  *
2310  *   ---------------------------------------------
2311  *   |           valid log        | invalid log  |
2312  *   ---------------------------------------------
2313  *   ^
2314  *   |- log->last_checkpoint
2315  *   |- log->last_cp_seq
2316  *
2317  * Now we scan through the log until we see invalid entry
2318  *
2319  *   ---------------------------------------------
2320  *   |           valid log        | invalid log  |
2321  *   ---------------------------------------------
2322  *   ^                            ^
2323  *   |- log->last_checkpoint      |- ctx->pos
2324  *   |- log->last_cp_seq          |- ctx->seq
2325  *
2326  * From this point, we need to increase seq number by 10 to avoid
2327  * confusing next recovery.
2328  *
2329  *   ---------------------------------------------
2330  *   |           valid log        | invalid log  |
2331  *   ---------------------------------------------
2332  *   ^                              ^
2333  *   |- log->last_checkpoint        |- ctx->pos+1
2334  *   |- log->last_cp_seq            |- ctx->seq+10001
2335  *
2336  * However, it is not safe to start the state machine yet, because data only
2337  * parities are not yet secured in RAID. To save these data only parities, we
2338  * rewrite them from seq+11.
2339  *
2340  *   -----------------------------------------------------------------
2341  *   |           valid log        | data only stripes | invalid log  |
2342  *   -----------------------------------------------------------------
2343  *   ^                                                ^
2344  *   |- log->last_checkpoint                          |- ctx->pos+n
2345  *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2346  *
2347  * If failure happens again during this process, the recovery can safe start
2348  * again from log->last_checkpoint.
2349  *
2350  * Once data only stripes are rewritten to journal, we move log_tail
2351  *
2352  *   -----------------------------------------------------------------
2353  *   |     old log        |    data only stripes    | invalid log  |
2354  *   -----------------------------------------------------------------
2355  *                        ^                         ^
2356  *                        |- log->last_checkpoint   |- ctx->pos+n
2357  *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2358  *
2359  * Then we can safely start the state machine. If failure happens from this
2360  * point on, the recovery will start from new log->last_checkpoint.
2361  */
2362 static int
2363 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2364                                        struct r5l_recovery_ctx *ctx)
2365 {
2366         struct stripe_head *sh;
2367         struct mddev *mddev = log->rdev->mddev;
2368         struct page *page;
2369         sector_t next_checkpoint = MaxSector;
2370
2371         page = alloc_page(GFP_KERNEL);
2372         if (!page) {
2373                 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2374                        mdname(mddev));
2375                 return -ENOMEM;
2376         }
2377
2378         WARN_ON(list_empty(&ctx->cached_list));
2379
2380         list_for_each_entry(sh, &ctx->cached_list, lru) {
2381                 struct r5l_meta_block *mb;
2382                 int i;
2383                 int offset;
2384                 sector_t write_pos;
2385
2386                 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2387                 r5l_recovery_create_empty_meta_block(log, page,
2388                                                      ctx->pos, ctx->seq);
2389                 mb = page_address(page);
2390                 offset = le32_to_cpu(mb->meta_size);
2391                 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2392
2393                 for (i = sh->disks; i--; ) {
2394                         struct r5dev *dev = &sh->dev[i];
2395                         struct r5l_payload_data_parity *payload;
2396                         void *addr;
2397
2398                         if (test_bit(R5_InJournal, &dev->flags)) {
2399                                 payload = (void *)mb + offset;
2400                                 payload->header.type = cpu_to_le16(
2401                                         R5LOG_PAYLOAD_DATA);
2402                                 payload->size = cpu_to_le32(BLOCK_SECTORS);
2403                                 payload->location = cpu_to_le64(
2404                                         raid5_compute_blocknr(sh, i, 0));
2405                                 addr = kmap_atomic(dev->page);
2406                                 payload->checksum[0] = cpu_to_le32(
2407                                         crc32c_le(log->uuid_checksum, addr,
2408                                                   PAGE_SIZE));
2409                                 kunmap_atomic(addr);
2410                                 sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2411                                              dev->page, REQ_OP_WRITE, 0, false);
2412                                 write_pos = r5l_ring_add(log, write_pos,
2413                                                          BLOCK_SECTORS);
2414                                 offset += sizeof(__le32) +
2415                                         sizeof(struct r5l_payload_data_parity);
2416
2417                         }
2418                 }
2419                 mb->meta_size = cpu_to_le32(offset);
2420                 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2421                                                      mb, PAGE_SIZE));
2422                 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2423                              REQ_OP_WRITE, REQ_SYNC | REQ_FUA, false);
2424                 sh->log_start = ctx->pos;
2425                 list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2426                 atomic_inc(&log->stripe_in_journal_count);
2427                 ctx->pos = write_pos;
2428                 ctx->seq += 1;
2429                 next_checkpoint = sh->log_start;
2430         }
2431         log->next_checkpoint = next_checkpoint;
2432         __free_page(page);
2433         return 0;
2434 }
2435
2436 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2437                                                  struct r5l_recovery_ctx *ctx)
2438 {
2439         struct mddev *mddev = log->rdev->mddev;
2440         struct r5conf *conf = mddev->private;
2441         struct stripe_head *sh, *next;
2442
2443         if (ctx->data_only_stripes == 0)
2444                 return;
2445
2446         log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2447
2448         list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2449                 r5c_make_stripe_write_out(sh);
2450                 set_bit(STRIPE_HANDLE, &sh->state);
2451                 list_del_init(&sh->lru);
2452                 raid5_release_stripe(sh);
2453         }
2454
2455         /* reuse conf->wait_for_quiescent in recovery */
2456         wait_event(conf->wait_for_quiescent,
2457                    atomic_read(&conf->active_stripes) == 0);
2458
2459         log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2460 }
2461
2462 static int r5l_recovery_log(struct r5l_log *log)
2463 {
2464         struct mddev *mddev = log->rdev->mddev;
2465         struct r5l_recovery_ctx *ctx;
2466         int ret;
2467         sector_t pos;
2468
2469         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2470         if (!ctx)
2471                 return -ENOMEM;
2472
2473         ctx->pos = log->last_checkpoint;
2474         ctx->seq = log->last_cp_seq;
2475         INIT_LIST_HEAD(&ctx->cached_list);
2476         ctx->meta_page = alloc_page(GFP_KERNEL);
2477
2478         if (!ctx->meta_page) {
2479                 ret =  -ENOMEM;
2480                 goto meta_page;
2481         }
2482
2483         if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2484                 ret = -ENOMEM;
2485                 goto ra_pool;
2486         }
2487
2488         ret = r5c_recovery_flush_log(log, ctx);
2489
2490         if (ret)
2491                 goto error;
2492
2493         pos = ctx->pos;
2494         ctx->seq += 10000;
2495
2496         if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2497                 pr_info("md/raid:%s: starting from clean shutdown\n",
2498                          mdname(mddev));
2499         else
2500                 pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2501                          mdname(mddev), ctx->data_only_stripes,
2502                          ctx->data_parity_stripes);
2503
2504         if (ctx->data_only_stripes == 0) {
2505                 log->next_checkpoint = ctx->pos;
2506                 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2507                 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2508         } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2509                 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2510                        mdname(mddev));
2511                 ret =  -EIO;
2512                 goto error;
2513         }
2514
2515         log->log_start = ctx->pos;
2516         log->seq = ctx->seq;
2517         log->last_checkpoint = pos;
2518         r5l_write_super(log, pos);
2519
2520         r5c_recovery_flush_data_only_stripes(log, ctx);
2521         ret = 0;
2522 error:
2523         r5l_recovery_free_ra_pool(log, ctx);
2524 ra_pool:
2525         __free_page(ctx->meta_page);
2526 meta_page:
2527         kfree(ctx);
2528         return ret;
2529 }
2530
2531 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2532 {
2533         struct mddev *mddev = log->rdev->mddev;
2534
2535         log->rdev->journal_tail = cp;
2536         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2537 }
2538
2539 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2540 {
2541         struct r5conf *conf;
2542         int ret;
2543
2544         ret = mddev_lock(mddev);
2545         if (ret)
2546                 return ret;
2547
2548         conf = mddev->private;
2549         if (!conf || !conf->log) {
2550                 mddev_unlock(mddev);
2551                 return 0;
2552         }
2553
2554         switch (conf->log->r5c_journal_mode) {
2555         case R5C_JOURNAL_MODE_WRITE_THROUGH:
2556                 ret = snprintf(
2557                         page, PAGE_SIZE, "[%s] %s\n",
2558                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2559                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2560                 break;
2561         case R5C_JOURNAL_MODE_WRITE_BACK:
2562                 ret = snprintf(
2563                         page, PAGE_SIZE, "%s [%s]\n",
2564                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2565                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2566                 break;
2567         default:
2568                 ret = 0;
2569         }
2570         mddev_unlock(mddev);
2571         return ret;
2572 }
2573
2574 /*
2575  * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2576  *
2577  * @mode as defined in 'enum r5c_journal_mode'.
2578  *
2579  */
2580 int r5c_journal_mode_set(struct mddev *mddev, int mode)
2581 {
2582         struct r5conf *conf;
2583
2584         if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2585             mode > R5C_JOURNAL_MODE_WRITE_BACK)
2586                 return -EINVAL;
2587
2588         conf = mddev->private;
2589         if (!conf || !conf->log)
2590                 return -ENODEV;
2591
2592         if (raid5_calc_degraded(conf) > 0 &&
2593             mode == R5C_JOURNAL_MODE_WRITE_BACK)
2594                 return -EINVAL;
2595
2596         mddev_suspend(mddev);
2597         conf->log->r5c_journal_mode = mode;
2598         mddev_resume(mddev);
2599
2600         pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2601                  mdname(mddev), mode, r5c_journal_mode_str[mode]);
2602         return 0;
2603 }
2604 EXPORT_SYMBOL(r5c_journal_mode_set);
2605
2606 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2607                                       const char *page, size_t length)
2608 {
2609         int mode = ARRAY_SIZE(r5c_journal_mode_str);
2610         size_t len = length;
2611         int ret;
2612
2613         if (len < 2)
2614                 return -EINVAL;
2615
2616         if (page[len - 1] == '\n')
2617                 len--;
2618
2619         while (mode--)
2620                 if (strlen(r5c_journal_mode_str[mode]) == len &&
2621                     !strncmp(page, r5c_journal_mode_str[mode], len))
2622                         break;
2623         ret = mddev_lock(mddev);
2624         if (ret)
2625                 return ret;
2626         ret = r5c_journal_mode_set(mddev, mode);
2627         mddev_unlock(mddev);
2628         return ret ?: length;
2629 }
2630
2631 struct md_sysfs_entry
2632 r5c_journal_mode = __ATTR(journal_mode, 0644,
2633                           r5c_journal_mode_show, r5c_journal_mode_store);
2634
2635 /*
2636  * Try handle write operation in caching phase. This function should only
2637  * be called in write-back mode.
2638  *
2639  * If all outstanding writes can be handled in caching phase, returns 0
2640  * If writes requires write-out phase, call r5c_make_stripe_write_out()
2641  * and returns -EAGAIN
2642  */
2643 int r5c_try_caching_write(struct r5conf *conf,
2644                           struct stripe_head *sh,
2645                           struct stripe_head_state *s,
2646                           int disks)
2647 {
2648         struct r5l_log *log = conf->log;
2649         int i;
2650         struct r5dev *dev;
2651         int to_cache = 0;
2652         void **pslot;
2653         sector_t tree_index;
2654         int ret;
2655         uintptr_t refcount;
2656
2657         BUG_ON(!r5c_is_writeback(log));
2658
2659         if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2660                 /*
2661                  * There are two different scenarios here:
2662                  *  1. The stripe has some data cached, and it is sent to
2663                  *     write-out phase for reclaim
2664                  *  2. The stripe is clean, and this is the first write
2665                  *
2666                  * For 1, return -EAGAIN, so we continue with
2667                  * handle_stripe_dirtying().
2668                  *
2669                  * For 2, set STRIPE_R5C_CACHING and continue with caching
2670                  * write.
2671                  */
2672
2673                 /* case 1: anything injournal or anything in written */
2674                 if (s->injournal > 0 || s->written > 0)
2675                         return -EAGAIN;
2676                 /* case 2 */
2677                 set_bit(STRIPE_R5C_CACHING, &sh->state);
2678         }
2679
2680         /*
2681          * When run in degraded mode, array is set to write-through mode.
2682          * This check helps drain pending write safely in the transition to
2683          * write-through mode.
2684          *
2685          * When a stripe is syncing, the write is also handled in write
2686          * through mode.
2687          */
2688         if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2689                 r5c_make_stripe_write_out(sh);
2690                 return -EAGAIN;
2691         }
2692
2693         for (i = disks; i--; ) {
2694                 dev = &sh->dev[i];
2695                 /* if non-overwrite, use writing-out phase */
2696                 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2697                     !test_bit(R5_InJournal, &dev->flags)) {
2698                         r5c_make_stripe_write_out(sh);
2699                         return -EAGAIN;
2700                 }
2701         }
2702
2703         /* if the stripe is not counted in big_stripe_tree, add it now */
2704         if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2705             !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2706                 tree_index = r5c_tree_index(conf, sh->sector);
2707                 spin_lock(&log->tree_lock);
2708                 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2709                                                tree_index);
2710                 if (pslot) {
2711                         refcount = (uintptr_t)radix_tree_deref_slot_protected(
2712                                 pslot, &log->tree_lock) >>
2713                                 R5C_RADIX_COUNT_SHIFT;
2714                         radix_tree_replace_slot(
2715                                 &log->big_stripe_tree, pslot,
2716                                 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2717                 } else {
2718                         /*
2719                          * this radix_tree_insert can fail safely, so no
2720                          * need to call radix_tree_preload()
2721                          */
2722                         ret = radix_tree_insert(
2723                                 &log->big_stripe_tree, tree_index,
2724                                 (void *)(1 << R5C_RADIX_COUNT_SHIFT));
2725                         if (ret) {
2726                                 spin_unlock(&log->tree_lock);
2727                                 r5c_make_stripe_write_out(sh);
2728                                 return -EAGAIN;
2729                         }
2730                 }
2731                 spin_unlock(&log->tree_lock);
2732
2733                 /*
2734                  * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2735                  * counted in the radix tree
2736                  */
2737                 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2738                 atomic_inc(&conf->r5c_cached_partial_stripes);
2739         }
2740
2741         for (i = disks; i--; ) {
2742                 dev = &sh->dev[i];
2743                 if (dev->towrite) {
2744                         set_bit(R5_Wantwrite, &dev->flags);
2745                         set_bit(R5_Wantdrain, &dev->flags);
2746                         set_bit(R5_LOCKED, &dev->flags);
2747                         to_cache++;
2748                 }
2749         }
2750
2751         if (to_cache) {
2752                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2753                 /*
2754                  * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2755                  * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2756                  * r5c_handle_data_cached()
2757                  */
2758                 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2759         }
2760
2761         return 0;
2762 }
2763
2764 /*
2765  * free extra pages (orig_page) we allocated for prexor
2766  */
2767 void r5c_release_extra_page(struct stripe_head *sh)
2768 {
2769         struct r5conf *conf = sh->raid_conf;
2770         int i;
2771         bool using_disk_info_extra_page;
2772
2773         using_disk_info_extra_page =
2774                 sh->dev[0].orig_page == conf->disks[0].extra_page;
2775
2776         for (i = sh->disks; i--; )
2777                 if (sh->dev[i].page != sh->dev[i].orig_page) {
2778                         struct page *p = sh->dev[i].orig_page;
2779
2780                         sh->dev[i].orig_page = sh->dev[i].page;
2781                         clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2782
2783                         if (!using_disk_info_extra_page)
2784                                 put_page(p);
2785                 }
2786
2787         if (using_disk_info_extra_page) {
2788                 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2789                 md_wakeup_thread(conf->mddev->thread);
2790         }
2791 }
2792
2793 void r5c_use_extra_page(struct stripe_head *sh)
2794 {
2795         struct r5conf *conf = sh->raid_conf;
2796         int i;
2797         struct r5dev *dev;
2798
2799         for (i = sh->disks; i--; ) {
2800                 dev = &sh->dev[i];
2801                 if (dev->orig_page != dev->page)
2802                         put_page(dev->orig_page);
2803                 dev->orig_page = conf->disks[i].extra_page;
2804         }
2805 }
2806
2807 /*
2808  * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2809  * stripe is committed to RAID disks.
2810  */
2811 void r5c_finish_stripe_write_out(struct r5conf *conf,
2812                                  struct stripe_head *sh,
2813                                  struct stripe_head_state *s)
2814 {
2815         struct r5l_log *log = conf->log;
2816         int i;
2817         int do_wakeup = 0;
2818         sector_t tree_index;
2819         void **pslot;
2820         uintptr_t refcount;
2821
2822         if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2823                 return;
2824
2825         WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2826         clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2827
2828         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2829                 return;
2830
2831         for (i = sh->disks; i--; ) {
2832                 clear_bit(R5_InJournal, &sh->dev[i].flags);
2833                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2834                         do_wakeup = 1;
2835         }
2836
2837         /*
2838          * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2839          * We updated R5_InJournal, so we also update s->injournal.
2840          */
2841         s->injournal = 0;
2842
2843         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2844                 if (atomic_dec_and_test(&conf->pending_full_writes))
2845                         md_wakeup_thread(conf->mddev->thread);
2846
2847         if (do_wakeup)
2848                 wake_up(&conf->wait_for_overlap);
2849
2850         spin_lock_irq(&log->stripe_in_journal_lock);
2851         list_del_init(&sh->r5c);
2852         spin_unlock_irq(&log->stripe_in_journal_lock);
2853         sh->log_start = MaxSector;
2854
2855         atomic_dec(&log->stripe_in_journal_count);
2856         r5c_update_log_state(log);
2857
2858         /* stop counting this stripe in big_stripe_tree */
2859         if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2860             test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2861                 tree_index = r5c_tree_index(conf, sh->sector);
2862                 spin_lock(&log->tree_lock);
2863                 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2864                                                tree_index);
2865                 BUG_ON(pslot == NULL);
2866                 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2867                         pslot, &log->tree_lock) >>
2868                         R5C_RADIX_COUNT_SHIFT;
2869                 if (refcount == 1)
2870                         radix_tree_delete(&log->big_stripe_tree, tree_index);
2871                 else
2872                         radix_tree_replace_slot(
2873                                 &log->big_stripe_tree, pslot,
2874                                 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2875                 spin_unlock(&log->tree_lock);
2876         }
2877
2878         if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2879                 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2880                 atomic_dec(&conf->r5c_flushing_partial_stripes);
2881                 atomic_dec(&conf->r5c_cached_partial_stripes);
2882         }
2883
2884         if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2885                 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2886                 atomic_dec(&conf->r5c_flushing_full_stripes);
2887                 atomic_dec(&conf->r5c_cached_full_stripes);
2888         }
2889
2890         r5l_append_flush_payload(log, sh->sector);
2891         /* stripe is flused to raid disks, we can do resync now */
2892         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2893                 set_bit(STRIPE_HANDLE, &sh->state);
2894 }
2895
2896 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2897 {
2898         struct r5conf *conf = sh->raid_conf;
2899         int pages = 0;
2900         int reserve;
2901         int i;
2902         int ret = 0;
2903
2904         BUG_ON(!log);
2905
2906         for (i = 0; i < sh->disks; i++) {
2907                 void *addr;
2908
2909                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2910                         continue;
2911                 addr = kmap_atomic(sh->dev[i].page);
2912                 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2913                                                     addr, PAGE_SIZE);
2914                 kunmap_atomic(addr);
2915                 pages++;
2916         }
2917         WARN_ON(pages == 0);
2918
2919         /*
2920          * The stripe must enter state machine again to call endio, so
2921          * don't delay.
2922          */
2923         clear_bit(STRIPE_DELAYED, &sh->state);
2924         atomic_inc(&sh->count);
2925
2926         mutex_lock(&log->io_mutex);
2927         /* meta + data */
2928         reserve = (1 + pages) << (PAGE_SHIFT - 9);
2929
2930         if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2931             sh->log_start == MaxSector)
2932                 r5l_add_no_space_stripe(log, sh);
2933         else if (!r5l_has_free_space(log, reserve)) {
2934                 if (sh->log_start == log->last_checkpoint)
2935                         BUG();
2936                 else
2937                         r5l_add_no_space_stripe(log, sh);
2938         } else {
2939                 ret = r5l_log_stripe(log, sh, pages, 0);
2940                 if (ret) {
2941                         spin_lock_irq(&log->io_list_lock);
2942                         list_add_tail(&sh->log_list, &log->no_mem_stripes);
2943                         spin_unlock_irq(&log->io_list_lock);
2944                 }
2945         }
2946
2947         mutex_unlock(&log->io_mutex);
2948         return 0;
2949 }
2950
2951 /* check whether this big stripe is in write back cache. */
2952 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2953 {
2954         struct r5l_log *log = conf->log;
2955         sector_t tree_index;
2956         void *slot;
2957
2958         if (!log)
2959                 return false;
2960
2961         WARN_ON_ONCE(!rcu_read_lock_held());
2962         tree_index = r5c_tree_index(conf, sect);
2963         slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2964         return slot != NULL;
2965 }
2966
2967 static int r5l_load_log(struct r5l_log *log)
2968 {
2969         struct md_rdev *rdev = log->rdev;
2970         struct page *page;
2971         struct r5l_meta_block *mb;
2972         sector_t cp = log->rdev->journal_tail;
2973         u32 stored_crc, expected_crc;
2974         bool create_super = false;
2975         int ret = 0;
2976
2977         /* Make sure it's valid */
2978         if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2979                 cp = 0;
2980         page = alloc_page(GFP_KERNEL);
2981         if (!page)
2982                 return -ENOMEM;
2983
2984         if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2985                 ret = -EIO;
2986                 goto ioerr;
2987         }
2988         mb = page_address(page);
2989
2990         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2991             mb->version != R5LOG_VERSION) {
2992                 create_super = true;
2993                 goto create;
2994         }
2995         stored_crc = le32_to_cpu(mb->checksum);
2996         mb->checksum = 0;
2997         expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2998         if (stored_crc != expected_crc) {
2999                 create_super = true;
3000                 goto create;
3001         }
3002         if (le64_to_cpu(mb->position) != cp) {
3003                 create_super = true;
3004                 goto create;
3005         }
3006 create:
3007         if (create_super) {
3008                 log->last_cp_seq = prandom_u32();
3009                 cp = 0;
3010                 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
3011                 /*
3012                  * Make sure super points to correct address. Log might have
3013                  * data very soon. If super hasn't correct log tail address,
3014                  * recovery can't find the log
3015                  */
3016                 r5l_write_super(log, cp);
3017         } else
3018                 log->last_cp_seq = le64_to_cpu(mb->seq);
3019
3020         log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
3021         log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
3022         if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
3023                 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
3024         log->last_checkpoint = cp;
3025
3026         __free_page(page);
3027
3028         if (create_super) {
3029                 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3030                 log->seq = log->last_cp_seq + 1;
3031                 log->next_checkpoint = cp;
3032         } else
3033                 ret = r5l_recovery_log(log);
3034
3035         r5c_update_log_state(log);
3036         return ret;
3037 ioerr:
3038         __free_page(page);
3039         return ret;
3040 }
3041
3042 int r5l_start(struct r5l_log *log)
3043 {
3044         int ret;
3045
3046         if (!log)
3047                 return 0;
3048
3049         ret = r5l_load_log(log);
3050         if (ret) {
3051                 struct mddev *mddev = log->rdev->mddev;
3052                 struct r5conf *conf = mddev->private;
3053
3054                 r5l_exit_log(conf);
3055         }
3056         return ret;
3057 }
3058
3059 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3060 {
3061         struct r5conf *conf = mddev->private;
3062         struct r5l_log *log = conf->log;
3063
3064         if (!log)
3065                 return;
3066
3067         if ((raid5_calc_degraded(conf) > 0 ||
3068              test_bit(Journal, &rdev->flags)) &&
3069             conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3070                 schedule_work(&log->disable_writeback_work);
3071 }
3072
3073 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3074 {
3075         struct request_queue *q = bdev_get_queue(rdev->bdev);
3076         struct r5l_log *log;
3077         char b[BDEVNAME_SIZE];
3078         int ret;
3079
3080         pr_debug("md/raid:%s: using device %s as journal\n",
3081                  mdname(conf->mddev), bdevname(rdev->bdev, b));
3082
3083         if (PAGE_SIZE != 4096)
3084                 return -EINVAL;
3085
3086         /*
3087          * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3088          * raid_disks r5l_payload_data_parity.
3089          *
3090          * Write journal and cache does not work for very big array
3091          * (raid_disks > 203)
3092          */
3093         if (sizeof(struct r5l_meta_block) +
3094             ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3095              conf->raid_disks) > PAGE_SIZE) {
3096                 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3097                        mdname(conf->mddev), conf->raid_disks);
3098                 return -EINVAL;
3099         }
3100
3101         log = kzalloc(sizeof(*log), GFP_KERNEL);
3102         if (!log)
3103                 return -ENOMEM;
3104         log->rdev = rdev;
3105
3106         log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
3107
3108         log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3109                                        sizeof(rdev->mddev->uuid));
3110
3111         mutex_init(&log->io_mutex);
3112
3113         spin_lock_init(&log->io_list_lock);
3114         INIT_LIST_HEAD(&log->running_ios);
3115         INIT_LIST_HEAD(&log->io_end_ios);
3116         INIT_LIST_HEAD(&log->flushing_ios);
3117         INIT_LIST_HEAD(&log->finished_ios);
3118         bio_init(&log->flush_bio, NULL, 0);
3119
3120         log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3121         if (!log->io_kc)
3122                 goto io_kc;
3123
3124         ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc);
3125         if (ret)
3126                 goto io_pool;
3127
3128         ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3129         if (ret)
3130                 goto io_bs;
3131
3132         ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0);
3133         if (ret)
3134                 goto out_mempool;
3135
3136         spin_lock_init(&log->tree_lock);
3137         INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3138
3139         log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3140                                                  log->rdev->mddev, "reclaim");
3141         if (!log->reclaim_thread)
3142                 goto reclaim_thread;
3143         log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3144
3145         init_waitqueue_head(&log->iounit_wait);
3146
3147         INIT_LIST_HEAD(&log->no_mem_stripes);
3148
3149         INIT_LIST_HEAD(&log->no_space_stripes);
3150         spin_lock_init(&log->no_space_stripes_lock);
3151
3152         INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3153         INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3154
3155         log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3156         INIT_LIST_HEAD(&log->stripe_in_journal_list);
3157         spin_lock_init(&log->stripe_in_journal_lock);
3158         atomic_set(&log->stripe_in_journal_count, 0);
3159
3160         rcu_assign_pointer(conf->log, log);
3161
3162         set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3163         return 0;
3164
3165 reclaim_thread:
3166         mempool_exit(&log->meta_pool);
3167 out_mempool:
3168         bioset_exit(&log->bs);
3169 io_bs:
3170         mempool_exit(&log->io_pool);
3171 io_pool:
3172         kmem_cache_destroy(log->io_kc);
3173 io_kc:
3174         kfree(log);
3175         return -EINVAL;
3176 }
3177
3178 void r5l_exit_log(struct r5conf *conf)
3179 {
3180         struct r5l_log *log = conf->log;
3181
3182         conf->log = NULL;
3183         synchronize_rcu();
3184
3185         /* Ensure disable_writeback_work wakes up and exits */
3186         wake_up(&conf->mddev->sb_wait);
3187         flush_work(&log->disable_writeback_work);
3188         md_unregister_thread(&log->reclaim_thread);
3189         mempool_exit(&log->meta_pool);
3190         bioset_exit(&log->bs);
3191         mempool_exit(&log->io_pool);
3192         kmem_cache_destroy(log->io_kc);
3193         kfree(log);
3194 }