md/raid10: add rcu protection to rdev access in raid10_sync_request.
[sfrench/cifs-2.6.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *    use_far_sets_bugfixed (stored in bit 18 of layout )
43  *
44  * The data to be stored is divided into chunks using chunksize.  Each device
45  * is divided into far_copies sections.   In each section, chunks are laid out
46  * in a style similar to raid0, but near_copies copies of each chunk is stored
47  * (each on a different drive).  The starting device for each section is offset
48  * near_copies from the starting device of the previous section.  Thus there
49  * are (near_copies * far_copies) of each chunk, and each is on a different
50  * drive.  near_copies and far_copies must be at least one, and their product
51  * is at most raid_disks.
52  *
53  * If far_offset is true, then the far_copies are handled a bit differently.
54  * The copies are still in different stripes, but instead of being very far
55  * apart on disk, there are adjacent stripes.
56  *
57  * The far and offset algorithms are handled slightly differently if
58  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
59  * sets that are (near_copies * far_copies) in size.  The far copied stripes
60  * are still shifted by 'near_copies' devices, but this shifting stays confined
61  * to the set rather than the entire array.  This is done to improve the number
62  * of device combinations that can fail without causing the array to fail.
63  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
64  * on a device):
65  *    A B C D    A B C D E
66  *      ...         ...
67  *    D A B C    E A B C D
68  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
69  *    [A B] [C D]    [A B] [C D E]
70  *    |...| |...|    |...| | ... |
71  *    [B A] [D C]    [B A] [E C D]
72  */
73
74 /*
75  * Number of guaranteed r10bios in case of extreme VM load:
76  */
77 #define NR_RAID10_BIOS 256
78
79 /* when we get a read error on a read-only array, we redirect to another
80  * device without failing the first device, or trying to over-write to
81  * correct the read error.  To keep track of bad blocks on a per-bio
82  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
83  */
84 #define IO_BLOCKED ((struct bio *)1)
85 /* When we successfully write to a known bad-block, we need to remove the
86  * bad-block marking which must be done from process context.  So we record
87  * the success by setting devs[n].bio to IO_MADE_GOOD
88  */
89 #define IO_MADE_GOOD ((struct bio *)2)
90
91 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
92
93 /* When there are this many requests queued to be written by
94  * the raid10 thread, we become 'congested' to provide back-pressure
95  * for writeback.
96  */
97 static int max_queued_requests = 1024;
98
99 static void allow_barrier(struct r10conf *conf);
100 static void lower_barrier(struct r10conf *conf);
101 static int _enough(struct r10conf *conf, int previous, int ignore);
102 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
103                                 int *skipped);
104 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
105 static void end_reshape_write(struct bio *bio);
106 static void end_reshape(struct r10conf *conf);
107
108 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
109 {
110         struct r10conf *conf = data;
111         int size = offsetof(struct r10bio, devs[conf->copies]);
112
113         /* allocate a r10bio with room for raid_disks entries in the
114          * bios array */
115         return kzalloc(size, gfp_flags);
116 }
117
118 static void r10bio_pool_free(void *r10_bio, void *data)
119 {
120         kfree(r10_bio);
121 }
122
123 /* Maximum size of each resync request */
124 #define RESYNC_BLOCK_SIZE (64*1024)
125 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
126 /* amount of memory to reserve for resync requests */
127 #define RESYNC_WINDOW (1024*1024)
128 /* maximum number of concurrent requests, memory permitting */
129 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
130
131 /*
132  * When performing a resync, we need to read and compare, so
133  * we need as many pages are there are copies.
134  * When performing a recovery, we need 2 bios, one for read,
135  * one for write (we recover only one drive per r10buf)
136  *
137  */
138 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
139 {
140         struct r10conf *conf = data;
141         struct page *page;
142         struct r10bio *r10_bio;
143         struct bio *bio;
144         int i, j;
145         int nalloc;
146
147         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
148         if (!r10_bio)
149                 return NULL;
150
151         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
152             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
153                 nalloc = conf->copies; /* resync */
154         else
155                 nalloc = 2; /* recovery */
156
157         /*
158          * Allocate bios.
159          */
160         for (j = nalloc ; j-- ; ) {
161                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
162                 if (!bio)
163                         goto out_free_bio;
164                 r10_bio->devs[j].bio = bio;
165                 if (!conf->have_replacement)
166                         continue;
167                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
168                 if (!bio)
169                         goto out_free_bio;
170                 r10_bio->devs[j].repl_bio = bio;
171         }
172         /*
173          * Allocate RESYNC_PAGES data pages and attach them
174          * where needed.
175          */
176         for (j = 0 ; j < nalloc; j++) {
177                 struct bio *rbio = r10_bio->devs[j].repl_bio;
178                 bio = r10_bio->devs[j].bio;
179                 for (i = 0; i < RESYNC_PAGES; i++) {
180                         if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
181                                                &conf->mddev->recovery)) {
182                                 /* we can share bv_page's during recovery
183                                  * and reshape */
184                                 struct bio *rbio = r10_bio->devs[0].bio;
185                                 page = rbio->bi_io_vec[i].bv_page;
186                                 get_page(page);
187                         } else
188                                 page = alloc_page(gfp_flags);
189                         if (unlikely(!page))
190                                 goto out_free_pages;
191
192                         bio->bi_io_vec[i].bv_page = page;
193                         if (rbio)
194                                 rbio->bi_io_vec[i].bv_page = page;
195                 }
196         }
197
198         return r10_bio;
199
200 out_free_pages:
201         for ( ; i > 0 ; i--)
202                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
203         while (j--)
204                 for (i = 0; i < RESYNC_PAGES ; i++)
205                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
206         j = 0;
207 out_free_bio:
208         for ( ; j < nalloc; j++) {
209                 if (r10_bio->devs[j].bio)
210                         bio_put(r10_bio->devs[j].bio);
211                 if (r10_bio->devs[j].repl_bio)
212                         bio_put(r10_bio->devs[j].repl_bio);
213         }
214         r10bio_pool_free(r10_bio, conf);
215         return NULL;
216 }
217
218 static void r10buf_pool_free(void *__r10_bio, void *data)
219 {
220         int i;
221         struct r10conf *conf = data;
222         struct r10bio *r10bio = __r10_bio;
223         int j;
224
225         for (j=0; j < conf->copies; j++) {
226                 struct bio *bio = r10bio->devs[j].bio;
227                 if (bio) {
228                         for (i = 0; i < RESYNC_PAGES; i++) {
229                                 safe_put_page(bio->bi_io_vec[i].bv_page);
230                                 bio->bi_io_vec[i].bv_page = NULL;
231                         }
232                         bio_put(bio);
233                 }
234                 bio = r10bio->devs[j].repl_bio;
235                 if (bio)
236                         bio_put(bio);
237         }
238         r10bio_pool_free(r10bio, conf);
239 }
240
241 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
242 {
243         int i;
244
245         for (i = 0; i < conf->copies; i++) {
246                 struct bio **bio = & r10_bio->devs[i].bio;
247                 if (!BIO_SPECIAL(*bio))
248                         bio_put(*bio);
249                 *bio = NULL;
250                 bio = &r10_bio->devs[i].repl_bio;
251                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
252                         bio_put(*bio);
253                 *bio = NULL;
254         }
255 }
256
257 static void free_r10bio(struct r10bio *r10_bio)
258 {
259         struct r10conf *conf = r10_bio->mddev->private;
260
261         put_all_bios(conf, r10_bio);
262         mempool_free(r10_bio, conf->r10bio_pool);
263 }
264
265 static void put_buf(struct r10bio *r10_bio)
266 {
267         struct r10conf *conf = r10_bio->mddev->private;
268
269         mempool_free(r10_bio, conf->r10buf_pool);
270
271         lower_barrier(conf);
272 }
273
274 static void reschedule_retry(struct r10bio *r10_bio)
275 {
276         unsigned long flags;
277         struct mddev *mddev = r10_bio->mddev;
278         struct r10conf *conf = mddev->private;
279
280         spin_lock_irqsave(&conf->device_lock, flags);
281         list_add(&r10_bio->retry_list, &conf->retry_list);
282         conf->nr_queued ++;
283         spin_unlock_irqrestore(&conf->device_lock, flags);
284
285         /* wake up frozen array... */
286         wake_up(&conf->wait_barrier);
287
288         md_wakeup_thread(mddev->thread);
289 }
290
291 /*
292  * raid_end_bio_io() is called when we have finished servicing a mirrored
293  * operation and are ready to return a success/failure code to the buffer
294  * cache layer.
295  */
296 static void raid_end_bio_io(struct r10bio *r10_bio)
297 {
298         struct bio *bio = r10_bio->master_bio;
299         int done;
300         struct r10conf *conf = r10_bio->mddev->private;
301
302         if (bio->bi_phys_segments) {
303                 unsigned long flags;
304                 spin_lock_irqsave(&conf->device_lock, flags);
305                 bio->bi_phys_segments--;
306                 done = (bio->bi_phys_segments == 0);
307                 spin_unlock_irqrestore(&conf->device_lock, flags);
308         } else
309                 done = 1;
310         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
311                 bio->bi_error = -EIO;
312         if (done) {
313                 bio_endio(bio);
314                 /*
315                  * Wake up any possible resync thread that waits for the device
316                  * to go idle.
317                  */
318                 allow_barrier(conf);
319         }
320         free_r10bio(r10_bio);
321 }
322
323 /*
324  * Update disk head position estimator based on IRQ completion info.
325  */
326 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
327 {
328         struct r10conf *conf = r10_bio->mddev->private;
329
330         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
331                 r10_bio->devs[slot].addr + (r10_bio->sectors);
332 }
333
334 /*
335  * Find the disk number which triggered given bio
336  */
337 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
338                          struct bio *bio, int *slotp, int *replp)
339 {
340         int slot;
341         int repl = 0;
342
343         for (slot = 0; slot < conf->copies; slot++) {
344                 if (r10_bio->devs[slot].bio == bio)
345                         break;
346                 if (r10_bio->devs[slot].repl_bio == bio) {
347                         repl = 1;
348                         break;
349                 }
350         }
351
352         BUG_ON(slot == conf->copies);
353         update_head_pos(slot, r10_bio);
354
355         if (slotp)
356                 *slotp = slot;
357         if (replp)
358                 *replp = repl;
359         return r10_bio->devs[slot].devnum;
360 }
361
362 static void raid10_end_read_request(struct bio *bio)
363 {
364         int uptodate = !bio->bi_error;
365         struct r10bio *r10_bio = bio->bi_private;
366         int slot, dev;
367         struct md_rdev *rdev;
368         struct r10conf *conf = r10_bio->mddev->private;
369
370         slot = r10_bio->read_slot;
371         dev = r10_bio->devs[slot].devnum;
372         rdev = r10_bio->devs[slot].rdev;
373         /*
374          * this branch is our 'one mirror IO has finished' event handler:
375          */
376         update_head_pos(slot, r10_bio);
377
378         if (uptodate) {
379                 /*
380                  * Set R10BIO_Uptodate in our master bio, so that
381                  * we will return a good error code to the higher
382                  * levels even if IO on some other mirrored buffer fails.
383                  *
384                  * The 'master' represents the composite IO operation to
385                  * user-side. So if something waits for IO, then it will
386                  * wait for the 'master' bio.
387                  */
388                 set_bit(R10BIO_Uptodate, &r10_bio->state);
389         } else {
390                 /* If all other devices that store this block have
391                  * failed, we want to return the error upwards rather
392                  * than fail the last device.  Here we redefine
393                  * "uptodate" to mean "Don't want to retry"
394                  */
395                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396                              rdev->raid_disk))
397                         uptodate = 1;
398         }
399         if (uptodate) {
400                 raid_end_bio_io(r10_bio);
401                 rdev_dec_pending(rdev, conf->mddev);
402         } else {
403                 /*
404                  * oops, read error - keep the refcount on the rdev
405                  */
406                 char b[BDEVNAME_SIZE];
407                 printk_ratelimited(KERN_ERR
408                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
409                                    mdname(conf->mddev),
410                                    bdevname(rdev->bdev, b),
411                                    (unsigned long long)r10_bio->sector);
412                 set_bit(R10BIO_ReadError, &r10_bio->state);
413                 reschedule_retry(r10_bio);
414         }
415 }
416
417 static void close_write(struct r10bio *r10_bio)
418 {
419         /* clear the bitmap if all writes complete successfully */
420         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421                         r10_bio->sectors,
422                         !test_bit(R10BIO_Degraded, &r10_bio->state),
423                         0);
424         md_write_end(r10_bio->mddev);
425 }
426
427 static void one_write_done(struct r10bio *r10_bio)
428 {
429         if (atomic_dec_and_test(&r10_bio->remaining)) {
430                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431                         reschedule_retry(r10_bio);
432                 else {
433                         close_write(r10_bio);
434                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435                                 reschedule_retry(r10_bio);
436                         else
437                                 raid_end_bio_io(r10_bio);
438                 }
439         }
440 }
441
442 static void raid10_end_write_request(struct bio *bio)
443 {
444         struct r10bio *r10_bio = bio->bi_private;
445         int dev;
446         int dec_rdev = 1;
447         struct r10conf *conf = r10_bio->mddev->private;
448         int slot, repl;
449         struct md_rdev *rdev = NULL;
450
451         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
452
453         if (repl)
454                 rdev = conf->mirrors[dev].replacement;
455         if (!rdev) {
456                 smp_rmb();
457                 repl = 0;
458                 rdev = conf->mirrors[dev].rdev;
459         }
460         /*
461          * this branch is our 'one mirror IO has finished' event handler:
462          */
463         if (bio->bi_error) {
464                 if (repl)
465                         /* Never record new bad blocks to replacement,
466                          * just fail it.
467                          */
468                         md_error(rdev->mddev, rdev);
469                 else {
470                         set_bit(WriteErrorSeen, &rdev->flags);
471                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
472                                 set_bit(MD_RECOVERY_NEEDED,
473                                         &rdev->mddev->recovery);
474                         set_bit(R10BIO_WriteError, &r10_bio->state);
475                         dec_rdev = 0;
476                 }
477         } else {
478                 /*
479                  * Set R10BIO_Uptodate in our master bio, so that
480                  * we will return a good error code for to the higher
481                  * levels even if IO on some other mirrored buffer fails.
482                  *
483                  * The 'master' represents the composite IO operation to
484                  * user-side. So if something waits for IO, then it will
485                  * wait for the 'master' bio.
486                  */
487                 sector_t first_bad;
488                 int bad_sectors;
489
490                 /*
491                  * Do not set R10BIO_Uptodate if the current device is
492                  * rebuilding or Faulty. This is because we cannot use
493                  * such device for properly reading the data back (we could
494                  * potentially use it, if the current write would have felt
495                  * before rdev->recovery_offset, but for simplicity we don't
496                  * check this here.
497                  */
498                 if (test_bit(In_sync, &rdev->flags) &&
499                     !test_bit(Faulty, &rdev->flags))
500                         set_bit(R10BIO_Uptodate, &r10_bio->state);
501
502                 /* Maybe we can clear some bad blocks. */
503                 if (is_badblock(rdev,
504                                 r10_bio->devs[slot].addr,
505                                 r10_bio->sectors,
506                                 &first_bad, &bad_sectors)) {
507                         bio_put(bio);
508                         if (repl)
509                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510                         else
511                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
512                         dec_rdev = 0;
513                         set_bit(R10BIO_MadeGood, &r10_bio->state);
514                 }
515         }
516
517         /*
518          *
519          * Let's see if all mirrored write operations have finished
520          * already.
521          */
522         one_write_done(r10_bio);
523         if (dec_rdev)
524                 rdev_dec_pending(rdev, conf->mddev);
525 }
526
527 /*
528  * RAID10 layout manager
529  * As well as the chunksize and raid_disks count, there are two
530  * parameters: near_copies and far_copies.
531  * near_copies * far_copies must be <= raid_disks.
532  * Normally one of these will be 1.
533  * If both are 1, we get raid0.
534  * If near_copies == raid_disks, we get raid1.
535  *
536  * Chunks are laid out in raid0 style with near_copies copies of the
537  * first chunk, followed by near_copies copies of the next chunk and
538  * so on.
539  * If far_copies > 1, then after 1/far_copies of the array has been assigned
540  * as described above, we start again with a device offset of near_copies.
541  * So we effectively have another copy of the whole array further down all
542  * the drives, but with blocks on different drives.
543  * With this layout, and block is never stored twice on the one device.
544  *
545  * raid10_find_phys finds the sector offset of a given virtual sector
546  * on each device that it is on.
547  *
548  * raid10_find_virt does the reverse mapping, from a device and a
549  * sector offset to a virtual address
550  */
551
552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
553 {
554         int n,f;
555         sector_t sector;
556         sector_t chunk;
557         sector_t stripe;
558         int dev;
559         int slot = 0;
560         int last_far_set_start, last_far_set_size;
561
562         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563         last_far_set_start *= geo->far_set_size;
564
565         last_far_set_size = geo->far_set_size;
566         last_far_set_size += (geo->raid_disks % geo->far_set_size);
567
568         /* now calculate first sector/dev */
569         chunk = r10bio->sector >> geo->chunk_shift;
570         sector = r10bio->sector & geo->chunk_mask;
571
572         chunk *= geo->near_copies;
573         stripe = chunk;
574         dev = sector_div(stripe, geo->raid_disks);
575         if (geo->far_offset)
576                 stripe *= geo->far_copies;
577
578         sector += stripe << geo->chunk_shift;
579
580         /* and calculate all the others */
581         for (n = 0; n < geo->near_copies; n++) {
582                 int d = dev;
583                 int set;
584                 sector_t s = sector;
585                 r10bio->devs[slot].devnum = d;
586                 r10bio->devs[slot].addr = s;
587                 slot++;
588
589                 for (f = 1; f < geo->far_copies; f++) {
590                         set = d / geo->far_set_size;
591                         d += geo->near_copies;
592
593                         if ((geo->raid_disks % geo->far_set_size) &&
594                             (d > last_far_set_start)) {
595                                 d -= last_far_set_start;
596                                 d %= last_far_set_size;
597                                 d += last_far_set_start;
598                         } else {
599                                 d %= geo->far_set_size;
600                                 d += geo->far_set_size * set;
601                         }
602                         s += geo->stride;
603                         r10bio->devs[slot].devnum = d;
604                         r10bio->devs[slot].addr = s;
605                         slot++;
606                 }
607                 dev++;
608                 if (dev >= geo->raid_disks) {
609                         dev = 0;
610                         sector += (geo->chunk_mask + 1);
611                 }
612         }
613 }
614
615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616 {
617         struct geom *geo = &conf->geo;
618
619         if (conf->reshape_progress != MaxSector &&
620             ((r10bio->sector >= conf->reshape_progress) !=
621              conf->mddev->reshape_backwards)) {
622                 set_bit(R10BIO_Previous, &r10bio->state);
623                 geo = &conf->prev;
624         } else
625                 clear_bit(R10BIO_Previous, &r10bio->state);
626
627         __raid10_find_phys(geo, r10bio);
628 }
629
630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
631 {
632         sector_t offset, chunk, vchunk;
633         /* Never use conf->prev as this is only called during resync
634          * or recovery, so reshape isn't happening
635          */
636         struct geom *geo = &conf->geo;
637         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638         int far_set_size = geo->far_set_size;
639         int last_far_set_start;
640
641         if (geo->raid_disks % geo->far_set_size) {
642                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643                 last_far_set_start *= geo->far_set_size;
644
645                 if (dev >= last_far_set_start) {
646                         far_set_size = geo->far_set_size;
647                         far_set_size += (geo->raid_disks % geo->far_set_size);
648                         far_set_start = last_far_set_start;
649                 }
650         }
651
652         offset = sector & geo->chunk_mask;
653         if (geo->far_offset) {
654                 int fc;
655                 chunk = sector >> geo->chunk_shift;
656                 fc = sector_div(chunk, geo->far_copies);
657                 dev -= fc * geo->near_copies;
658                 if (dev < far_set_start)
659                         dev += far_set_size;
660         } else {
661                 while (sector >= geo->stride) {
662                         sector -= geo->stride;
663                         if (dev < (geo->near_copies + far_set_start))
664                                 dev += far_set_size - geo->near_copies;
665                         else
666                                 dev -= geo->near_copies;
667                 }
668                 chunk = sector >> geo->chunk_shift;
669         }
670         vchunk = chunk * geo->raid_disks + dev;
671         sector_div(vchunk, geo->near_copies);
672         return (vchunk << geo->chunk_shift) + offset;
673 }
674
675 /*
676  * This routine returns the disk from which the requested read should
677  * be done. There is a per-array 'next expected sequential IO' sector
678  * number - if this matches on the next IO then we use the last disk.
679  * There is also a per-disk 'last know head position' sector that is
680  * maintained from IRQ contexts, both the normal and the resync IO
681  * completion handlers update this position correctly. If there is no
682  * perfect sequential match then we pick the disk whose head is closest.
683  *
684  * If there are 2 mirrors in the same 2 devices, performance degrades
685  * because position is mirror, not device based.
686  *
687  * The rdev for the device selected will have nr_pending incremented.
688  */
689
690 /*
691  * FIXME: possibly should rethink readbalancing and do it differently
692  * depending on near_copies / far_copies geometry.
693  */
694 static struct md_rdev *read_balance(struct r10conf *conf,
695                                     struct r10bio *r10_bio,
696                                     int *max_sectors)
697 {
698         const sector_t this_sector = r10_bio->sector;
699         int disk, slot;
700         int sectors = r10_bio->sectors;
701         int best_good_sectors;
702         sector_t new_distance, best_dist;
703         struct md_rdev *best_rdev, *rdev = NULL;
704         int do_balance;
705         int best_slot;
706         struct geom *geo = &conf->geo;
707
708         raid10_find_phys(conf, r10_bio);
709         rcu_read_lock();
710         sectors = r10_bio->sectors;
711         best_slot = -1;
712         best_rdev = NULL;
713         best_dist = MaxSector;
714         best_good_sectors = 0;
715         do_balance = 1;
716         /*
717          * Check if we can balance. We can balance on the whole
718          * device if no resync is going on (recovery is ok), or below
719          * the resync window. We take the first readable disk when
720          * above the resync window.
721          */
722         if (conf->mddev->recovery_cp < MaxSector
723             && (this_sector + sectors >= conf->next_resync))
724                 do_balance = 0;
725
726         for (slot = 0; slot < conf->copies ; slot++) {
727                 sector_t first_bad;
728                 int bad_sectors;
729                 sector_t dev_sector;
730
731                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
732                         continue;
733                 disk = r10_bio->devs[slot].devnum;
734                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
735                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
736                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
737                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
738                 if (rdev == NULL ||
739                     test_bit(Faulty, &rdev->flags))
740                         continue;
741                 if (!test_bit(In_sync, &rdev->flags) &&
742                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
743                         continue;
744
745                 dev_sector = r10_bio->devs[slot].addr;
746                 if (is_badblock(rdev, dev_sector, sectors,
747                                 &first_bad, &bad_sectors)) {
748                         if (best_dist < MaxSector)
749                                 /* Already have a better slot */
750                                 continue;
751                         if (first_bad <= dev_sector) {
752                                 /* Cannot read here.  If this is the
753                                  * 'primary' device, then we must not read
754                                  * beyond 'bad_sectors' from another device.
755                                  */
756                                 bad_sectors -= (dev_sector - first_bad);
757                                 if (!do_balance && sectors > bad_sectors)
758                                         sectors = bad_sectors;
759                                 if (best_good_sectors > sectors)
760                                         best_good_sectors = sectors;
761                         } else {
762                                 sector_t good_sectors =
763                                         first_bad - dev_sector;
764                                 if (good_sectors > best_good_sectors) {
765                                         best_good_sectors = good_sectors;
766                                         best_slot = slot;
767                                         best_rdev = rdev;
768                                 }
769                                 if (!do_balance)
770                                         /* Must read from here */
771                                         break;
772                         }
773                         continue;
774                 } else
775                         best_good_sectors = sectors;
776
777                 if (!do_balance)
778                         break;
779
780                 /* This optimisation is debatable, and completely destroys
781                  * sequential read speed for 'far copies' arrays.  So only
782                  * keep it for 'near' arrays, and review those later.
783                  */
784                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
785                         break;
786
787                 /* for far > 1 always use the lowest address */
788                 if (geo->far_copies > 1)
789                         new_distance = r10_bio->devs[slot].addr;
790                 else
791                         new_distance = abs(r10_bio->devs[slot].addr -
792                                            conf->mirrors[disk].head_position);
793                 if (new_distance < best_dist) {
794                         best_dist = new_distance;
795                         best_slot = slot;
796                         best_rdev = rdev;
797                 }
798         }
799         if (slot >= conf->copies) {
800                 slot = best_slot;
801                 rdev = best_rdev;
802         }
803
804         if (slot >= 0) {
805                 atomic_inc(&rdev->nr_pending);
806                 r10_bio->read_slot = slot;
807         } else
808                 rdev = NULL;
809         rcu_read_unlock();
810         *max_sectors = best_good_sectors;
811
812         return rdev;
813 }
814
815 static int raid10_congested(struct mddev *mddev, int bits)
816 {
817         struct r10conf *conf = mddev->private;
818         int i, ret = 0;
819
820         if ((bits & (1 << WB_async_congested)) &&
821             conf->pending_count >= max_queued_requests)
822                 return 1;
823
824         rcu_read_lock();
825         for (i = 0;
826              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
827                      && ret == 0;
828              i++) {
829                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
830                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
831                         struct request_queue *q = bdev_get_queue(rdev->bdev);
832
833                         ret |= bdi_congested(&q->backing_dev_info, bits);
834                 }
835         }
836         rcu_read_unlock();
837         return ret;
838 }
839
840 static void flush_pending_writes(struct r10conf *conf)
841 {
842         /* Any writes that have been queued but are awaiting
843          * bitmap updates get flushed here.
844          */
845         spin_lock_irq(&conf->device_lock);
846
847         if (conf->pending_bio_list.head) {
848                 struct bio *bio;
849                 bio = bio_list_get(&conf->pending_bio_list);
850                 conf->pending_count = 0;
851                 spin_unlock_irq(&conf->device_lock);
852                 /* flush any pending bitmap writes to disk
853                  * before proceeding w/ I/O */
854                 bitmap_unplug(conf->mddev->bitmap);
855                 wake_up(&conf->wait_barrier);
856
857                 while (bio) { /* submit pending writes */
858                         struct bio *next = bio->bi_next;
859                         bio->bi_next = NULL;
860                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
861                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
862                                 /* Just ignore it */
863                                 bio_endio(bio);
864                         else
865                                 generic_make_request(bio);
866                         bio = next;
867                 }
868         } else
869                 spin_unlock_irq(&conf->device_lock);
870 }
871
872 /* Barriers....
873  * Sometimes we need to suspend IO while we do something else,
874  * either some resync/recovery, or reconfigure the array.
875  * To do this we raise a 'barrier'.
876  * The 'barrier' is a counter that can be raised multiple times
877  * to count how many activities are happening which preclude
878  * normal IO.
879  * We can only raise the barrier if there is no pending IO.
880  * i.e. if nr_pending == 0.
881  * We choose only to raise the barrier if no-one is waiting for the
882  * barrier to go down.  This means that as soon as an IO request
883  * is ready, no other operations which require a barrier will start
884  * until the IO request has had a chance.
885  *
886  * So: regular IO calls 'wait_barrier'.  When that returns there
887  *    is no backgroup IO happening,  It must arrange to call
888  *    allow_barrier when it has finished its IO.
889  * backgroup IO calls must call raise_barrier.  Once that returns
890  *    there is no normal IO happeing.  It must arrange to call
891  *    lower_barrier when the particular background IO completes.
892  */
893
894 static void raise_barrier(struct r10conf *conf, int force)
895 {
896         BUG_ON(force && !conf->barrier);
897         spin_lock_irq(&conf->resync_lock);
898
899         /* Wait until no block IO is waiting (unless 'force') */
900         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
901                             conf->resync_lock);
902
903         /* block any new IO from starting */
904         conf->barrier++;
905
906         /* Now wait for all pending IO to complete */
907         wait_event_lock_irq(conf->wait_barrier,
908                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
909                             conf->resync_lock);
910
911         spin_unlock_irq(&conf->resync_lock);
912 }
913
914 static void lower_barrier(struct r10conf *conf)
915 {
916         unsigned long flags;
917         spin_lock_irqsave(&conf->resync_lock, flags);
918         conf->barrier--;
919         spin_unlock_irqrestore(&conf->resync_lock, flags);
920         wake_up(&conf->wait_barrier);
921 }
922
923 static void wait_barrier(struct r10conf *conf)
924 {
925         spin_lock_irq(&conf->resync_lock);
926         if (conf->barrier) {
927                 conf->nr_waiting++;
928                 /* Wait for the barrier to drop.
929                  * However if there are already pending
930                  * requests (preventing the barrier from
931                  * rising completely), and the
932                  * pre-process bio queue isn't empty,
933                  * then don't wait, as we need to empty
934                  * that queue to get the nr_pending
935                  * count down.
936                  */
937                 wait_event_lock_irq(conf->wait_barrier,
938                                     !conf->barrier ||
939                                     (conf->nr_pending &&
940                                      current->bio_list &&
941                                      !bio_list_empty(current->bio_list)),
942                                     conf->resync_lock);
943                 conf->nr_waiting--;
944         }
945         conf->nr_pending++;
946         spin_unlock_irq(&conf->resync_lock);
947 }
948
949 static void allow_barrier(struct r10conf *conf)
950 {
951         unsigned long flags;
952         spin_lock_irqsave(&conf->resync_lock, flags);
953         conf->nr_pending--;
954         spin_unlock_irqrestore(&conf->resync_lock, flags);
955         wake_up(&conf->wait_barrier);
956 }
957
958 static void freeze_array(struct r10conf *conf, int extra)
959 {
960         /* stop syncio and normal IO and wait for everything to
961          * go quiet.
962          * We increment barrier and nr_waiting, and then
963          * wait until nr_pending match nr_queued+extra
964          * This is called in the context of one normal IO request
965          * that has failed. Thus any sync request that might be pending
966          * will be blocked by nr_pending, and we need to wait for
967          * pending IO requests to complete or be queued for re-try.
968          * Thus the number queued (nr_queued) plus this request (extra)
969          * must match the number of pending IOs (nr_pending) before
970          * we continue.
971          */
972         spin_lock_irq(&conf->resync_lock);
973         conf->barrier++;
974         conf->nr_waiting++;
975         wait_event_lock_irq_cmd(conf->wait_barrier,
976                                 conf->nr_pending == conf->nr_queued+extra,
977                                 conf->resync_lock,
978                                 flush_pending_writes(conf));
979
980         spin_unlock_irq(&conf->resync_lock);
981 }
982
983 static void unfreeze_array(struct r10conf *conf)
984 {
985         /* reverse the effect of the freeze */
986         spin_lock_irq(&conf->resync_lock);
987         conf->barrier--;
988         conf->nr_waiting--;
989         wake_up(&conf->wait_barrier);
990         spin_unlock_irq(&conf->resync_lock);
991 }
992
993 static sector_t choose_data_offset(struct r10bio *r10_bio,
994                                    struct md_rdev *rdev)
995 {
996         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
997             test_bit(R10BIO_Previous, &r10_bio->state))
998                 return rdev->data_offset;
999         else
1000                 return rdev->new_data_offset;
1001 }
1002
1003 struct raid10_plug_cb {
1004         struct blk_plug_cb      cb;
1005         struct bio_list         pending;
1006         int                     pending_cnt;
1007 };
1008
1009 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1010 {
1011         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1012                                                    cb);
1013         struct mddev *mddev = plug->cb.data;
1014         struct r10conf *conf = mddev->private;
1015         struct bio *bio;
1016
1017         if (from_schedule || current->bio_list) {
1018                 spin_lock_irq(&conf->device_lock);
1019                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1020                 conf->pending_count += plug->pending_cnt;
1021                 spin_unlock_irq(&conf->device_lock);
1022                 wake_up(&conf->wait_barrier);
1023                 md_wakeup_thread(mddev->thread);
1024                 kfree(plug);
1025                 return;
1026         }
1027
1028         /* we aren't scheduling, so we can do the write-out directly. */
1029         bio = bio_list_get(&plug->pending);
1030         bitmap_unplug(mddev->bitmap);
1031         wake_up(&conf->wait_barrier);
1032
1033         while (bio) { /* submit pending writes */
1034                 struct bio *next = bio->bi_next;
1035                 bio->bi_next = NULL;
1036                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1037                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1038                         /* Just ignore it */
1039                         bio_endio(bio);
1040                 else
1041                         generic_make_request(bio);
1042                 bio = next;
1043         }
1044         kfree(plug);
1045 }
1046
1047 static void __make_request(struct mddev *mddev, struct bio *bio)
1048 {
1049         struct r10conf *conf = mddev->private;
1050         struct r10bio *r10_bio;
1051         struct bio *read_bio;
1052         int i;
1053         const int rw = bio_data_dir(bio);
1054         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1055         const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1056         const unsigned long do_discard = (bio->bi_rw
1057                                           & (REQ_DISCARD | REQ_SECURE));
1058         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1059         unsigned long flags;
1060         struct md_rdev *blocked_rdev;
1061         struct blk_plug_cb *cb;
1062         struct raid10_plug_cb *plug = NULL;
1063         int sectors_handled;
1064         int max_sectors;
1065         int sectors;
1066
1067         /*
1068          * Register the new request and wait if the reconstruction
1069          * thread has put up a bar for new requests.
1070          * Continue immediately if no resync is active currently.
1071          */
1072         wait_barrier(conf);
1073
1074         sectors = bio_sectors(bio);
1075         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1076             bio->bi_iter.bi_sector < conf->reshape_progress &&
1077             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1078                 /* IO spans the reshape position.  Need to wait for
1079                  * reshape to pass
1080                  */
1081                 allow_barrier(conf);
1082                 wait_event(conf->wait_barrier,
1083                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1084                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1085                            sectors);
1086                 wait_barrier(conf);
1087         }
1088         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1089             bio_data_dir(bio) == WRITE &&
1090             (mddev->reshape_backwards
1091              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1092                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1093              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1094                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1095                 /* Need to update reshape_position in metadata */
1096                 mddev->reshape_position = conf->reshape_progress;
1097                 set_mask_bits(&mddev->flags, 0,
1098                               BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1099                 md_wakeup_thread(mddev->thread);
1100                 wait_event(mddev->sb_wait,
1101                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1102
1103                 conf->reshape_safe = mddev->reshape_position;
1104         }
1105
1106         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1107
1108         r10_bio->master_bio = bio;
1109         r10_bio->sectors = sectors;
1110
1111         r10_bio->mddev = mddev;
1112         r10_bio->sector = bio->bi_iter.bi_sector;
1113         r10_bio->state = 0;
1114
1115         /* We might need to issue multiple reads to different
1116          * devices if there are bad blocks around, so we keep
1117          * track of the number of reads in bio->bi_phys_segments.
1118          * If this is 0, there is only one r10_bio and no locking
1119          * will be needed when the request completes.  If it is
1120          * non-zero, then it is the number of not-completed requests.
1121          */
1122         bio->bi_phys_segments = 0;
1123         bio_clear_flag(bio, BIO_SEG_VALID);
1124
1125         if (rw == READ) {
1126                 /*
1127                  * read balancing logic:
1128                  */
1129                 struct md_rdev *rdev;
1130                 int slot;
1131
1132 read_again:
1133                 rdev = read_balance(conf, r10_bio, &max_sectors);
1134                 if (!rdev) {
1135                         raid_end_bio_io(r10_bio);
1136                         return;
1137                 }
1138                 slot = r10_bio->read_slot;
1139
1140                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1141                 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1142                          max_sectors);
1143
1144                 r10_bio->devs[slot].bio = read_bio;
1145                 r10_bio->devs[slot].rdev = rdev;
1146
1147                 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1148                         choose_data_offset(r10_bio, rdev);
1149                 read_bio->bi_bdev = rdev->bdev;
1150                 read_bio->bi_end_io = raid10_end_read_request;
1151                 read_bio->bi_rw = READ | do_sync;
1152                 read_bio->bi_private = r10_bio;
1153
1154                 if (max_sectors < r10_bio->sectors) {
1155                         /* Could not read all from this device, so we will
1156                          * need another r10_bio.
1157                          */
1158                         sectors_handled = (r10_bio->sector + max_sectors
1159                                            - bio->bi_iter.bi_sector);
1160                         r10_bio->sectors = max_sectors;
1161                         spin_lock_irq(&conf->device_lock);
1162                         if (bio->bi_phys_segments == 0)
1163                                 bio->bi_phys_segments = 2;
1164                         else
1165                                 bio->bi_phys_segments++;
1166                         spin_unlock_irq(&conf->device_lock);
1167                         /* Cannot call generic_make_request directly
1168                          * as that will be queued in __generic_make_request
1169                          * and subsequent mempool_alloc might block
1170                          * waiting for it.  so hand bio over to raid10d.
1171                          */
1172                         reschedule_retry(r10_bio);
1173
1174                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1175
1176                         r10_bio->master_bio = bio;
1177                         r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1178                         r10_bio->state = 0;
1179                         r10_bio->mddev = mddev;
1180                         r10_bio->sector = bio->bi_iter.bi_sector +
1181                                 sectors_handled;
1182                         goto read_again;
1183                 } else
1184                         generic_make_request(read_bio);
1185                 return;
1186         }
1187
1188         /*
1189          * WRITE:
1190          */
1191         if (conf->pending_count >= max_queued_requests) {
1192                 md_wakeup_thread(mddev->thread);
1193                 wait_event(conf->wait_barrier,
1194                            conf->pending_count < max_queued_requests);
1195         }
1196         /* first select target devices under rcu_lock and
1197          * inc refcount on their rdev.  Record them by setting
1198          * bios[x] to bio
1199          * If there are known/acknowledged bad blocks on any device
1200          * on which we have seen a write error, we want to avoid
1201          * writing to those blocks.  This potentially requires several
1202          * writes to write around the bad blocks.  Each set of writes
1203          * gets its own r10_bio with a set of bios attached.  The number
1204          * of r10_bios is recored in bio->bi_phys_segments just as with
1205          * the read case.
1206          */
1207
1208         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1209         raid10_find_phys(conf, r10_bio);
1210 retry_write:
1211         blocked_rdev = NULL;
1212         rcu_read_lock();
1213         max_sectors = r10_bio->sectors;
1214
1215         for (i = 0;  i < conf->copies; i++) {
1216                 int d = r10_bio->devs[i].devnum;
1217                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1218                 struct md_rdev *rrdev = rcu_dereference(
1219                         conf->mirrors[d].replacement);
1220                 if (rdev == rrdev)
1221                         rrdev = NULL;
1222                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1223                         atomic_inc(&rdev->nr_pending);
1224                         blocked_rdev = rdev;
1225                         break;
1226                 }
1227                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1228                         atomic_inc(&rrdev->nr_pending);
1229                         blocked_rdev = rrdev;
1230                         break;
1231                 }
1232                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1233                         rdev = NULL;
1234                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1235                         rrdev = NULL;
1236
1237                 r10_bio->devs[i].bio = NULL;
1238                 r10_bio->devs[i].repl_bio = NULL;
1239
1240                 if (!rdev && !rrdev) {
1241                         set_bit(R10BIO_Degraded, &r10_bio->state);
1242                         continue;
1243                 }
1244                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1245                         sector_t first_bad;
1246                         sector_t dev_sector = r10_bio->devs[i].addr;
1247                         int bad_sectors;
1248                         int is_bad;
1249
1250                         is_bad = is_badblock(rdev, dev_sector,
1251                                              max_sectors,
1252                                              &first_bad, &bad_sectors);
1253                         if (is_bad < 0) {
1254                                 /* Mustn't write here until the bad block
1255                                  * is acknowledged
1256                                  */
1257                                 atomic_inc(&rdev->nr_pending);
1258                                 set_bit(BlockedBadBlocks, &rdev->flags);
1259                                 blocked_rdev = rdev;
1260                                 break;
1261                         }
1262                         if (is_bad && first_bad <= dev_sector) {
1263                                 /* Cannot write here at all */
1264                                 bad_sectors -= (dev_sector - first_bad);
1265                                 if (bad_sectors < max_sectors)
1266                                         /* Mustn't write more than bad_sectors
1267                                          * to other devices yet
1268                                          */
1269                                         max_sectors = bad_sectors;
1270                                 /* We don't set R10BIO_Degraded as that
1271                                  * only applies if the disk is missing,
1272                                  * so it might be re-added, and we want to
1273                                  * know to recover this chunk.
1274                                  * In this case the device is here, and the
1275                                  * fact that this chunk is not in-sync is
1276                                  * recorded in the bad block log.
1277                                  */
1278                                 continue;
1279                         }
1280                         if (is_bad) {
1281                                 int good_sectors = first_bad - dev_sector;
1282                                 if (good_sectors < max_sectors)
1283                                         max_sectors = good_sectors;
1284                         }
1285                 }
1286                 if (rdev) {
1287                         r10_bio->devs[i].bio = bio;
1288                         atomic_inc(&rdev->nr_pending);
1289                 }
1290                 if (rrdev) {
1291                         r10_bio->devs[i].repl_bio = bio;
1292                         atomic_inc(&rrdev->nr_pending);
1293                 }
1294         }
1295         rcu_read_unlock();
1296
1297         if (unlikely(blocked_rdev)) {
1298                 /* Have to wait for this device to get unblocked, then retry */
1299                 int j;
1300                 int d;
1301
1302                 for (j = 0; j < i; j++) {
1303                         if (r10_bio->devs[j].bio) {
1304                                 d = r10_bio->devs[j].devnum;
1305                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1306                         }
1307                         if (r10_bio->devs[j].repl_bio) {
1308                                 struct md_rdev *rdev;
1309                                 d = r10_bio->devs[j].devnum;
1310                                 rdev = conf->mirrors[d].replacement;
1311                                 if (!rdev) {
1312                                         /* Race with remove_disk */
1313                                         smp_mb();
1314                                         rdev = conf->mirrors[d].rdev;
1315                                 }
1316                                 rdev_dec_pending(rdev, mddev);
1317                         }
1318                 }
1319                 allow_barrier(conf);
1320                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1321                 wait_barrier(conf);
1322                 goto retry_write;
1323         }
1324
1325         if (max_sectors < r10_bio->sectors) {
1326                 /* We are splitting this into multiple parts, so
1327                  * we need to prepare for allocating another r10_bio.
1328                  */
1329                 r10_bio->sectors = max_sectors;
1330                 spin_lock_irq(&conf->device_lock);
1331                 if (bio->bi_phys_segments == 0)
1332                         bio->bi_phys_segments = 2;
1333                 else
1334                         bio->bi_phys_segments++;
1335                 spin_unlock_irq(&conf->device_lock);
1336         }
1337         sectors_handled = r10_bio->sector + max_sectors -
1338                 bio->bi_iter.bi_sector;
1339
1340         atomic_set(&r10_bio->remaining, 1);
1341         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1342
1343         for (i = 0; i < conf->copies; i++) {
1344                 struct bio *mbio;
1345                 int d = r10_bio->devs[i].devnum;
1346                 if (r10_bio->devs[i].bio) {
1347                         struct md_rdev *rdev = conf->mirrors[d].rdev;
1348                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1349                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1350                                  max_sectors);
1351                         r10_bio->devs[i].bio = mbio;
1352
1353                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1354                                            choose_data_offset(r10_bio,
1355                                                               rdev));
1356                         mbio->bi_bdev = rdev->bdev;
1357                         mbio->bi_end_io = raid10_end_write_request;
1358                         mbio->bi_rw =
1359                                 WRITE | do_sync | do_fua | do_discard | do_same;
1360                         mbio->bi_private = r10_bio;
1361
1362                         atomic_inc(&r10_bio->remaining);
1363
1364                         cb = blk_check_plugged(raid10_unplug, mddev,
1365                                                sizeof(*plug));
1366                         if (cb)
1367                                 plug = container_of(cb, struct raid10_plug_cb,
1368                                                     cb);
1369                         else
1370                                 plug = NULL;
1371                         spin_lock_irqsave(&conf->device_lock, flags);
1372                         if (plug) {
1373                                 bio_list_add(&plug->pending, mbio);
1374                                 plug->pending_cnt++;
1375                         } else {
1376                                 bio_list_add(&conf->pending_bio_list, mbio);
1377                                 conf->pending_count++;
1378                         }
1379                         spin_unlock_irqrestore(&conf->device_lock, flags);
1380                         if (!plug)
1381                                 md_wakeup_thread(mddev->thread);
1382                 }
1383
1384                 if (r10_bio->devs[i].repl_bio) {
1385                         struct md_rdev *rdev = conf->mirrors[d].replacement;
1386                         if (rdev == NULL) {
1387                                 /* Replacement just got moved to main 'rdev' */
1388                                 smp_mb();
1389                                 rdev = conf->mirrors[d].rdev;
1390                         }
1391                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1392                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1393                                  max_sectors);
1394                         r10_bio->devs[i].repl_bio = mbio;
1395
1396                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1397                                            choose_data_offset(
1398                                                    r10_bio, rdev));
1399                         mbio->bi_bdev = rdev->bdev;
1400                         mbio->bi_end_io = raid10_end_write_request;
1401                         mbio->bi_rw =
1402                                 WRITE | do_sync | do_fua | do_discard | do_same;
1403                         mbio->bi_private = r10_bio;
1404
1405                         atomic_inc(&r10_bio->remaining);
1406                         spin_lock_irqsave(&conf->device_lock, flags);
1407                         bio_list_add(&conf->pending_bio_list, mbio);
1408                         conf->pending_count++;
1409                         spin_unlock_irqrestore(&conf->device_lock, flags);
1410                         if (!mddev_check_plugged(mddev))
1411                                 md_wakeup_thread(mddev->thread);
1412                 }
1413         }
1414
1415         /* Don't remove the bias on 'remaining' (one_write_done) until
1416          * after checking if we need to go around again.
1417          */
1418
1419         if (sectors_handled < bio_sectors(bio)) {
1420                 one_write_done(r10_bio);
1421                 /* We need another r10_bio.  It has already been counted
1422                  * in bio->bi_phys_segments.
1423                  */
1424                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1425
1426                 r10_bio->master_bio = bio;
1427                 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1428
1429                 r10_bio->mddev = mddev;
1430                 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1431                 r10_bio->state = 0;
1432                 goto retry_write;
1433         }
1434         one_write_done(r10_bio);
1435 }
1436
1437 static void raid10_make_request(struct mddev *mddev, struct bio *bio)
1438 {
1439         struct r10conf *conf = mddev->private;
1440         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1441         int chunk_sects = chunk_mask + 1;
1442
1443         struct bio *split;
1444
1445         if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1446                 md_flush_request(mddev, bio);
1447                 return;
1448         }
1449
1450         md_write_start(mddev, bio);
1451
1452         do {
1453
1454                 /*
1455                  * If this request crosses a chunk boundary, we need to split
1456                  * it.
1457                  */
1458                 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1459                              bio_sectors(bio) > chunk_sects
1460                              && (conf->geo.near_copies < conf->geo.raid_disks
1461                                  || conf->prev.near_copies <
1462                                  conf->prev.raid_disks))) {
1463                         split = bio_split(bio, chunk_sects -
1464                                           (bio->bi_iter.bi_sector &
1465                                            (chunk_sects - 1)),
1466                                           GFP_NOIO, fs_bio_set);
1467                         bio_chain(split, bio);
1468                 } else {
1469                         split = bio;
1470                 }
1471
1472                 __make_request(mddev, split);
1473         } while (split != bio);
1474
1475         /* In case raid10d snuck in to freeze_array */
1476         wake_up(&conf->wait_barrier);
1477 }
1478
1479 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1480 {
1481         struct r10conf *conf = mddev->private;
1482         int i;
1483
1484         if (conf->geo.near_copies < conf->geo.raid_disks)
1485                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1486         if (conf->geo.near_copies > 1)
1487                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1488         if (conf->geo.far_copies > 1) {
1489                 if (conf->geo.far_offset)
1490                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1491                 else
1492                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1493                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1494                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1495         }
1496         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1497                                         conf->geo.raid_disks - mddev->degraded);
1498         rcu_read_lock();
1499         for (i = 0; i < conf->geo.raid_disks; i++) {
1500                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1501                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1502         }
1503         rcu_read_unlock();
1504         seq_printf(seq, "]");
1505 }
1506
1507 /* check if there are enough drives for
1508  * every block to appear on atleast one.
1509  * Don't consider the device numbered 'ignore'
1510  * as we might be about to remove it.
1511  */
1512 static int _enough(struct r10conf *conf, int previous, int ignore)
1513 {
1514         int first = 0;
1515         int has_enough = 0;
1516         int disks, ncopies;
1517         if (previous) {
1518                 disks = conf->prev.raid_disks;
1519                 ncopies = conf->prev.near_copies;
1520         } else {
1521                 disks = conf->geo.raid_disks;
1522                 ncopies = conf->geo.near_copies;
1523         }
1524
1525         rcu_read_lock();
1526         do {
1527                 int n = conf->copies;
1528                 int cnt = 0;
1529                 int this = first;
1530                 while (n--) {
1531                         struct md_rdev *rdev;
1532                         if (this != ignore &&
1533                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1534                             test_bit(In_sync, &rdev->flags))
1535                                 cnt++;
1536                         this = (this+1) % disks;
1537                 }
1538                 if (cnt == 0)
1539                         goto out;
1540                 first = (first + ncopies) % disks;
1541         } while (first != 0);
1542         has_enough = 1;
1543 out:
1544         rcu_read_unlock();
1545         return has_enough;
1546 }
1547
1548 static int enough(struct r10conf *conf, int ignore)
1549 {
1550         /* when calling 'enough', both 'prev' and 'geo' must
1551          * be stable.
1552          * This is ensured if ->reconfig_mutex or ->device_lock
1553          * is held.
1554          */
1555         return _enough(conf, 0, ignore) &&
1556                 _enough(conf, 1, ignore);
1557 }
1558
1559 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1560 {
1561         char b[BDEVNAME_SIZE];
1562         struct r10conf *conf = mddev->private;
1563         unsigned long flags;
1564
1565         /*
1566          * If it is not operational, then we have already marked it as dead
1567          * else if it is the last working disks, ignore the error, let the
1568          * next level up know.
1569          * else mark the drive as failed
1570          */
1571         spin_lock_irqsave(&conf->device_lock, flags);
1572         if (test_bit(In_sync, &rdev->flags)
1573             && !enough(conf, rdev->raid_disk)) {
1574                 /*
1575                  * Don't fail the drive, just return an IO error.
1576                  */
1577                 spin_unlock_irqrestore(&conf->device_lock, flags);
1578                 return;
1579         }
1580         if (test_and_clear_bit(In_sync, &rdev->flags))
1581                 mddev->degraded++;
1582         /*
1583          * If recovery is running, make sure it aborts.
1584          */
1585         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1586         set_bit(Blocked, &rdev->flags);
1587         set_bit(Faulty, &rdev->flags);
1588         set_mask_bits(&mddev->flags, 0,
1589                       BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1590         spin_unlock_irqrestore(&conf->device_lock, flags);
1591         printk(KERN_ALERT
1592                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1593                "md/raid10:%s: Operation continuing on %d devices.\n",
1594                mdname(mddev), bdevname(rdev->bdev, b),
1595                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1596 }
1597
1598 static void print_conf(struct r10conf *conf)
1599 {
1600         int i;
1601         struct raid10_info *tmp;
1602
1603         printk(KERN_DEBUG "RAID10 conf printout:\n");
1604         if (!conf) {
1605                 printk(KERN_DEBUG "(!conf)\n");
1606                 return;
1607         }
1608         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1609                 conf->geo.raid_disks);
1610
1611         for (i = 0; i < conf->geo.raid_disks; i++) {
1612                 char b[BDEVNAME_SIZE];
1613                 tmp = conf->mirrors + i;
1614                 if (tmp->rdev)
1615                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1616                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1617                                 !test_bit(Faulty, &tmp->rdev->flags),
1618                                 bdevname(tmp->rdev->bdev,b));
1619         }
1620 }
1621
1622 static void close_sync(struct r10conf *conf)
1623 {
1624         wait_barrier(conf);
1625         allow_barrier(conf);
1626
1627         mempool_destroy(conf->r10buf_pool);
1628         conf->r10buf_pool = NULL;
1629 }
1630
1631 static int raid10_spare_active(struct mddev *mddev)
1632 {
1633         int i;
1634         struct r10conf *conf = mddev->private;
1635         struct raid10_info *tmp;
1636         int count = 0;
1637         unsigned long flags;
1638
1639         /*
1640          * Find all non-in_sync disks within the RAID10 configuration
1641          * and mark them in_sync
1642          */
1643         for (i = 0; i < conf->geo.raid_disks; i++) {
1644                 tmp = conf->mirrors + i;
1645                 if (tmp->replacement
1646                     && tmp->replacement->recovery_offset == MaxSector
1647                     && !test_bit(Faulty, &tmp->replacement->flags)
1648                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1649                         /* Replacement has just become active */
1650                         if (!tmp->rdev
1651                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1652                                 count++;
1653                         if (tmp->rdev) {
1654                                 /* Replaced device not technically faulty,
1655                                  * but we need to be sure it gets removed
1656                                  * and never re-added.
1657                                  */
1658                                 set_bit(Faulty, &tmp->rdev->flags);
1659                                 sysfs_notify_dirent_safe(
1660                                         tmp->rdev->sysfs_state);
1661                         }
1662                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1663                 } else if (tmp->rdev
1664                            && tmp->rdev->recovery_offset == MaxSector
1665                            && !test_bit(Faulty, &tmp->rdev->flags)
1666                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1667                         count++;
1668                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1669                 }
1670         }
1671         spin_lock_irqsave(&conf->device_lock, flags);
1672         mddev->degraded -= count;
1673         spin_unlock_irqrestore(&conf->device_lock, flags);
1674
1675         print_conf(conf);
1676         return count;
1677 }
1678
1679 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1680 {
1681         struct r10conf *conf = mddev->private;
1682         int err = -EEXIST;
1683         int mirror;
1684         int first = 0;
1685         int last = conf->geo.raid_disks - 1;
1686
1687         if (mddev->recovery_cp < MaxSector)
1688                 /* only hot-add to in-sync arrays, as recovery is
1689                  * very different from resync
1690                  */
1691                 return -EBUSY;
1692         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1693                 return -EINVAL;
1694
1695         if (md_integrity_add_rdev(rdev, mddev))
1696                 return -ENXIO;
1697
1698         if (rdev->raid_disk >= 0)
1699                 first = last = rdev->raid_disk;
1700
1701         if (rdev->saved_raid_disk >= first &&
1702             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1703                 mirror = rdev->saved_raid_disk;
1704         else
1705                 mirror = first;
1706         for ( ; mirror <= last ; mirror++) {
1707                 struct raid10_info *p = &conf->mirrors[mirror];
1708                 if (p->recovery_disabled == mddev->recovery_disabled)
1709                         continue;
1710                 if (p->rdev) {
1711                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1712                             p->replacement != NULL)
1713                                 continue;
1714                         clear_bit(In_sync, &rdev->flags);
1715                         set_bit(Replacement, &rdev->flags);
1716                         rdev->raid_disk = mirror;
1717                         err = 0;
1718                         if (mddev->gendisk)
1719                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1720                                                   rdev->data_offset << 9);
1721                         conf->fullsync = 1;
1722                         rcu_assign_pointer(p->replacement, rdev);
1723                         break;
1724                 }
1725
1726                 if (mddev->gendisk)
1727                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1728                                           rdev->data_offset << 9);
1729
1730                 p->head_position = 0;
1731                 p->recovery_disabled = mddev->recovery_disabled - 1;
1732                 rdev->raid_disk = mirror;
1733                 err = 0;
1734                 if (rdev->saved_raid_disk != mirror)
1735                         conf->fullsync = 1;
1736                 rcu_assign_pointer(p->rdev, rdev);
1737                 break;
1738         }
1739         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1740                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1741
1742         print_conf(conf);
1743         return err;
1744 }
1745
1746 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1747 {
1748         struct r10conf *conf = mddev->private;
1749         int err = 0;
1750         int number = rdev->raid_disk;
1751         struct md_rdev **rdevp;
1752         struct raid10_info *p = conf->mirrors + number;
1753
1754         print_conf(conf);
1755         if (rdev == p->rdev)
1756                 rdevp = &p->rdev;
1757         else if (rdev == p->replacement)
1758                 rdevp = &p->replacement;
1759         else
1760                 return 0;
1761
1762         if (test_bit(In_sync, &rdev->flags) ||
1763             atomic_read(&rdev->nr_pending)) {
1764                 err = -EBUSY;
1765                 goto abort;
1766         }
1767         /* Only remove faulty devices if recovery
1768          * is not possible.
1769          */
1770         if (!test_bit(Faulty, &rdev->flags) &&
1771             mddev->recovery_disabled != p->recovery_disabled &&
1772             (!p->replacement || p->replacement == rdev) &&
1773             number < conf->geo.raid_disks &&
1774             enough(conf, -1)) {
1775                 err = -EBUSY;
1776                 goto abort;
1777         }
1778         *rdevp = NULL;
1779         synchronize_rcu();
1780         if (atomic_read(&rdev->nr_pending)) {
1781                 /* lost the race, try later */
1782                 err = -EBUSY;
1783                 *rdevp = rdev;
1784                 goto abort;
1785         } else if (p->replacement) {
1786                 /* We must have just cleared 'rdev' */
1787                 p->rdev = p->replacement;
1788                 clear_bit(Replacement, &p->replacement->flags);
1789                 smp_mb(); /* Make sure other CPUs may see both as identical
1790                            * but will never see neither -- if they are careful.
1791                            */
1792                 p->replacement = NULL;
1793                 clear_bit(WantReplacement, &rdev->flags);
1794         } else
1795                 /* We might have just remove the Replacement as faulty
1796                  * Clear the flag just in case
1797                  */
1798                 clear_bit(WantReplacement, &rdev->flags);
1799
1800         err = md_integrity_register(mddev);
1801
1802 abort:
1803
1804         print_conf(conf);
1805         return err;
1806 }
1807
1808 static void end_sync_read(struct bio *bio)
1809 {
1810         struct r10bio *r10_bio = bio->bi_private;
1811         struct r10conf *conf = r10_bio->mddev->private;
1812         int d;
1813
1814         if (bio == r10_bio->master_bio) {
1815                 /* this is a reshape read */
1816                 d = r10_bio->read_slot; /* really the read dev */
1817         } else
1818                 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1819
1820         if (!bio->bi_error)
1821                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1822         else
1823                 /* The write handler will notice the lack of
1824                  * R10BIO_Uptodate and record any errors etc
1825                  */
1826                 atomic_add(r10_bio->sectors,
1827                            &conf->mirrors[d].rdev->corrected_errors);
1828
1829         /* for reconstruct, we always reschedule after a read.
1830          * for resync, only after all reads
1831          */
1832         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1833         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1834             atomic_dec_and_test(&r10_bio->remaining)) {
1835                 /* we have read all the blocks,
1836                  * do the comparison in process context in raid10d
1837                  */
1838                 reschedule_retry(r10_bio);
1839         }
1840 }
1841
1842 static void end_sync_request(struct r10bio *r10_bio)
1843 {
1844         struct mddev *mddev = r10_bio->mddev;
1845
1846         while (atomic_dec_and_test(&r10_bio->remaining)) {
1847                 if (r10_bio->master_bio == NULL) {
1848                         /* the primary of several recovery bios */
1849                         sector_t s = r10_bio->sectors;
1850                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1851                             test_bit(R10BIO_WriteError, &r10_bio->state))
1852                                 reschedule_retry(r10_bio);
1853                         else
1854                                 put_buf(r10_bio);
1855                         md_done_sync(mddev, s, 1);
1856                         break;
1857                 } else {
1858                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1859                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1860                             test_bit(R10BIO_WriteError, &r10_bio->state))
1861                                 reschedule_retry(r10_bio);
1862                         else
1863                                 put_buf(r10_bio);
1864                         r10_bio = r10_bio2;
1865                 }
1866         }
1867 }
1868
1869 static void end_sync_write(struct bio *bio)
1870 {
1871         struct r10bio *r10_bio = bio->bi_private;
1872         struct mddev *mddev = r10_bio->mddev;
1873         struct r10conf *conf = mddev->private;
1874         int d;
1875         sector_t first_bad;
1876         int bad_sectors;
1877         int slot;
1878         int repl;
1879         struct md_rdev *rdev = NULL;
1880
1881         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1882         if (repl)
1883                 rdev = conf->mirrors[d].replacement;
1884         else
1885                 rdev = conf->mirrors[d].rdev;
1886
1887         if (bio->bi_error) {
1888                 if (repl)
1889                         md_error(mddev, rdev);
1890                 else {
1891                         set_bit(WriteErrorSeen, &rdev->flags);
1892                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1893                                 set_bit(MD_RECOVERY_NEEDED,
1894                                         &rdev->mddev->recovery);
1895                         set_bit(R10BIO_WriteError, &r10_bio->state);
1896                 }
1897         } else if (is_badblock(rdev,
1898                              r10_bio->devs[slot].addr,
1899                              r10_bio->sectors,
1900                              &first_bad, &bad_sectors))
1901                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1902
1903         rdev_dec_pending(rdev, mddev);
1904
1905         end_sync_request(r10_bio);
1906 }
1907
1908 /*
1909  * Note: sync and recover and handled very differently for raid10
1910  * This code is for resync.
1911  * For resync, we read through virtual addresses and read all blocks.
1912  * If there is any error, we schedule a write.  The lowest numbered
1913  * drive is authoritative.
1914  * However requests come for physical address, so we need to map.
1915  * For every physical address there are raid_disks/copies virtual addresses,
1916  * which is always are least one, but is not necessarly an integer.
1917  * This means that a physical address can span multiple chunks, so we may
1918  * have to submit multiple io requests for a single sync request.
1919  */
1920 /*
1921  * We check if all blocks are in-sync and only write to blocks that
1922  * aren't in sync
1923  */
1924 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1925 {
1926         struct r10conf *conf = mddev->private;
1927         int i, first;
1928         struct bio *tbio, *fbio;
1929         int vcnt;
1930
1931         atomic_set(&r10_bio->remaining, 1);
1932
1933         /* find the first device with a block */
1934         for (i=0; i<conf->copies; i++)
1935                 if (!r10_bio->devs[i].bio->bi_error)
1936                         break;
1937
1938         if (i == conf->copies)
1939                 goto done;
1940
1941         first = i;
1942         fbio = r10_bio->devs[i].bio;
1943         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
1944         fbio->bi_iter.bi_idx = 0;
1945
1946         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1947         /* now find blocks with errors */
1948         for (i=0 ; i < conf->copies ; i++) {
1949                 int  j, d;
1950
1951                 tbio = r10_bio->devs[i].bio;
1952
1953                 if (tbio->bi_end_io != end_sync_read)
1954                         continue;
1955                 if (i == first)
1956                         continue;
1957                 if (!r10_bio->devs[i].bio->bi_error) {
1958                         /* We know that the bi_io_vec layout is the same for
1959                          * both 'first' and 'i', so we just compare them.
1960                          * All vec entries are PAGE_SIZE;
1961                          */
1962                         int sectors = r10_bio->sectors;
1963                         for (j = 0; j < vcnt; j++) {
1964                                 int len = PAGE_SIZE;
1965                                 if (sectors < (len / 512))
1966                                         len = sectors * 512;
1967                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1968                                            page_address(tbio->bi_io_vec[j].bv_page),
1969                                            len))
1970                                         break;
1971                                 sectors -= len/512;
1972                         }
1973                         if (j == vcnt)
1974                                 continue;
1975                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
1976                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1977                                 /* Don't fix anything. */
1978                                 continue;
1979                 }
1980                 /* Ok, we need to write this bio, either to correct an
1981                  * inconsistency or to correct an unreadable block.
1982                  * First we need to fixup bv_offset, bv_len and
1983                  * bi_vecs, as the read request might have corrupted these
1984                  */
1985                 bio_reset(tbio);
1986
1987                 tbio->bi_vcnt = vcnt;
1988                 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
1989                 tbio->bi_rw = WRITE;
1990                 tbio->bi_private = r10_bio;
1991                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1992                 tbio->bi_end_io = end_sync_write;
1993
1994                 bio_copy_data(tbio, fbio);
1995
1996                 d = r10_bio->devs[i].devnum;
1997                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1998                 atomic_inc(&r10_bio->remaining);
1999                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2000
2001                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2002                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2003                 generic_make_request(tbio);
2004         }
2005
2006         /* Now write out to any replacement devices
2007          * that are active
2008          */
2009         for (i = 0; i < conf->copies; i++) {
2010                 int d;
2011
2012                 tbio = r10_bio->devs[i].repl_bio;
2013                 if (!tbio || !tbio->bi_end_io)
2014                         continue;
2015                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2016                     && r10_bio->devs[i].bio != fbio)
2017                         bio_copy_data(tbio, fbio);
2018                 d = r10_bio->devs[i].devnum;
2019                 atomic_inc(&r10_bio->remaining);
2020                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2021                              bio_sectors(tbio));
2022                 generic_make_request(tbio);
2023         }
2024
2025 done:
2026         if (atomic_dec_and_test(&r10_bio->remaining)) {
2027                 md_done_sync(mddev, r10_bio->sectors, 1);
2028                 put_buf(r10_bio);
2029         }
2030 }
2031
2032 /*
2033  * Now for the recovery code.
2034  * Recovery happens across physical sectors.
2035  * We recover all non-is_sync drives by finding the virtual address of
2036  * each, and then choose a working drive that also has that virt address.
2037  * There is a separate r10_bio for each non-in_sync drive.
2038  * Only the first two slots are in use. The first for reading,
2039  * The second for writing.
2040  *
2041  */
2042 static void fix_recovery_read_error(struct r10bio *r10_bio)
2043 {
2044         /* We got a read error during recovery.
2045          * We repeat the read in smaller page-sized sections.
2046          * If a read succeeds, write it to the new device or record
2047          * a bad block if we cannot.
2048          * If a read fails, record a bad block on both old and
2049          * new devices.
2050          */
2051         struct mddev *mddev = r10_bio->mddev;
2052         struct r10conf *conf = mddev->private;
2053         struct bio *bio = r10_bio->devs[0].bio;
2054         sector_t sect = 0;
2055         int sectors = r10_bio->sectors;
2056         int idx = 0;
2057         int dr = r10_bio->devs[0].devnum;
2058         int dw = r10_bio->devs[1].devnum;
2059
2060         while (sectors) {
2061                 int s = sectors;
2062                 struct md_rdev *rdev;
2063                 sector_t addr;
2064                 int ok;
2065
2066                 if (s > (PAGE_SIZE>>9))
2067                         s = PAGE_SIZE >> 9;
2068
2069                 rdev = conf->mirrors[dr].rdev;
2070                 addr = r10_bio->devs[0].addr + sect,
2071                 ok = sync_page_io(rdev,
2072                                   addr,
2073                                   s << 9,
2074                                   bio->bi_io_vec[idx].bv_page,
2075                                   READ, false);
2076                 if (ok) {
2077                         rdev = conf->mirrors[dw].rdev;
2078                         addr = r10_bio->devs[1].addr + sect;
2079                         ok = sync_page_io(rdev,
2080                                           addr,
2081                                           s << 9,
2082                                           bio->bi_io_vec[idx].bv_page,
2083                                           WRITE, false);
2084                         if (!ok) {
2085                                 set_bit(WriteErrorSeen, &rdev->flags);
2086                                 if (!test_and_set_bit(WantReplacement,
2087                                                       &rdev->flags))
2088                                         set_bit(MD_RECOVERY_NEEDED,
2089                                                 &rdev->mddev->recovery);
2090                         }
2091                 }
2092                 if (!ok) {
2093                         /* We don't worry if we cannot set a bad block -
2094                          * it really is bad so there is no loss in not
2095                          * recording it yet
2096                          */
2097                         rdev_set_badblocks(rdev, addr, s, 0);
2098
2099                         if (rdev != conf->mirrors[dw].rdev) {
2100                                 /* need bad block on destination too */
2101                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2102                                 addr = r10_bio->devs[1].addr + sect;
2103                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2104                                 if (!ok) {
2105                                         /* just abort the recovery */
2106                                         printk(KERN_NOTICE
2107                                                "md/raid10:%s: recovery aborted"
2108                                                " due to read error\n",
2109                                                mdname(mddev));
2110
2111                                         conf->mirrors[dw].recovery_disabled
2112                                                 = mddev->recovery_disabled;
2113                                         set_bit(MD_RECOVERY_INTR,
2114                                                 &mddev->recovery);
2115                                         break;
2116                                 }
2117                         }
2118                 }
2119
2120                 sectors -= s;
2121                 sect += s;
2122                 idx++;
2123         }
2124 }
2125
2126 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2127 {
2128         struct r10conf *conf = mddev->private;
2129         int d;
2130         struct bio *wbio, *wbio2;
2131
2132         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2133                 fix_recovery_read_error(r10_bio);
2134                 end_sync_request(r10_bio);
2135                 return;
2136         }
2137
2138         /*
2139          * share the pages with the first bio
2140          * and submit the write request
2141          */
2142         d = r10_bio->devs[1].devnum;
2143         wbio = r10_bio->devs[1].bio;
2144         wbio2 = r10_bio->devs[1].repl_bio;
2145         /* Need to test wbio2->bi_end_io before we call
2146          * generic_make_request as if the former is NULL,
2147          * the latter is free to free wbio2.
2148          */
2149         if (wbio2 && !wbio2->bi_end_io)
2150                 wbio2 = NULL;
2151         if (wbio->bi_end_io) {
2152                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2153                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2154                 generic_make_request(wbio);
2155         }
2156         if (wbio2) {
2157                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2158                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2159                              bio_sectors(wbio2));
2160                 generic_make_request(wbio2);
2161         }
2162 }
2163
2164 /*
2165  * Used by fix_read_error() to decay the per rdev read_errors.
2166  * We halve the read error count for every hour that has elapsed
2167  * since the last recorded read error.
2168  *
2169  */
2170 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2171 {
2172         struct timespec cur_time_mon;
2173         unsigned long hours_since_last;
2174         unsigned int read_errors = atomic_read(&rdev->read_errors);
2175
2176         ktime_get_ts(&cur_time_mon);
2177
2178         if (rdev->last_read_error.tv_sec == 0 &&
2179             rdev->last_read_error.tv_nsec == 0) {
2180                 /* first time we've seen a read error */
2181                 rdev->last_read_error = cur_time_mon;
2182                 return;
2183         }
2184
2185         hours_since_last = (cur_time_mon.tv_sec -
2186                             rdev->last_read_error.tv_sec) / 3600;
2187
2188         rdev->last_read_error = cur_time_mon;
2189
2190         /*
2191          * if hours_since_last is > the number of bits in read_errors
2192          * just set read errors to 0. We do this to avoid
2193          * overflowing the shift of read_errors by hours_since_last.
2194          */
2195         if (hours_since_last >= 8 * sizeof(read_errors))
2196                 atomic_set(&rdev->read_errors, 0);
2197         else
2198                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2199 }
2200
2201 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2202                             int sectors, struct page *page, int rw)
2203 {
2204         sector_t first_bad;
2205         int bad_sectors;
2206
2207         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2208             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2209                 return -1;
2210         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2211                 /* success */
2212                 return 1;
2213         if (rw == WRITE) {
2214                 set_bit(WriteErrorSeen, &rdev->flags);
2215                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2216                         set_bit(MD_RECOVERY_NEEDED,
2217                                 &rdev->mddev->recovery);
2218         }
2219         /* need to record an error - either for the block or the device */
2220         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2221                 md_error(rdev->mddev, rdev);
2222         return 0;
2223 }
2224
2225 /*
2226  * This is a kernel thread which:
2227  *
2228  *      1.      Retries failed read operations on working mirrors.
2229  *      2.      Updates the raid superblock when problems encounter.
2230  *      3.      Performs writes following reads for array synchronising.
2231  */
2232
2233 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2234 {
2235         int sect = 0; /* Offset from r10_bio->sector */
2236         int sectors = r10_bio->sectors;
2237         struct md_rdev*rdev;
2238         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2239         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2240
2241         /* still own a reference to this rdev, so it cannot
2242          * have been cleared recently.
2243          */
2244         rdev = conf->mirrors[d].rdev;
2245
2246         if (test_bit(Faulty, &rdev->flags))
2247                 /* drive has already been failed, just ignore any
2248                    more fix_read_error() attempts */
2249                 return;
2250
2251         check_decay_read_errors(mddev, rdev);
2252         atomic_inc(&rdev->read_errors);
2253         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2254                 char b[BDEVNAME_SIZE];
2255                 bdevname(rdev->bdev, b);
2256
2257                 printk(KERN_NOTICE
2258                        "md/raid10:%s: %s: Raid device exceeded "
2259                        "read_error threshold [cur %d:max %d]\n",
2260                        mdname(mddev), b,
2261                        atomic_read(&rdev->read_errors), max_read_errors);
2262                 printk(KERN_NOTICE
2263                        "md/raid10:%s: %s: Failing raid device\n",
2264                        mdname(mddev), b);
2265                 md_error(mddev, conf->mirrors[d].rdev);
2266                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2267                 return;
2268         }
2269
2270         while(sectors) {
2271                 int s = sectors;
2272                 int sl = r10_bio->read_slot;
2273                 int success = 0;
2274                 int start;
2275
2276                 if (s > (PAGE_SIZE>>9))
2277                         s = PAGE_SIZE >> 9;
2278
2279                 rcu_read_lock();
2280                 do {
2281                         sector_t first_bad;
2282                         int bad_sectors;
2283
2284                         d = r10_bio->devs[sl].devnum;
2285                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2286                         if (rdev &&
2287                             test_bit(In_sync, &rdev->flags) &&
2288                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2289                                         &first_bad, &bad_sectors) == 0) {
2290                                 atomic_inc(&rdev->nr_pending);
2291                                 rcu_read_unlock();
2292                                 success = sync_page_io(rdev,
2293                                                        r10_bio->devs[sl].addr +
2294                                                        sect,
2295                                                        s<<9,
2296                                                        conf->tmppage, READ, false);
2297                                 rdev_dec_pending(rdev, mddev);
2298                                 rcu_read_lock();
2299                                 if (success)
2300                                         break;
2301                         }
2302                         sl++;
2303                         if (sl == conf->copies)
2304                                 sl = 0;
2305                 } while (!success && sl != r10_bio->read_slot);
2306                 rcu_read_unlock();
2307
2308                 if (!success) {
2309                         /* Cannot read from anywhere, just mark the block
2310                          * as bad on the first device to discourage future
2311                          * reads.
2312                          */
2313                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2314                         rdev = conf->mirrors[dn].rdev;
2315
2316                         if (!rdev_set_badblocks(
2317                                     rdev,
2318                                     r10_bio->devs[r10_bio->read_slot].addr
2319                                     + sect,
2320                                     s, 0)) {
2321                                 md_error(mddev, rdev);
2322                                 r10_bio->devs[r10_bio->read_slot].bio
2323                                         = IO_BLOCKED;
2324                         }
2325                         break;
2326                 }
2327
2328                 start = sl;
2329                 /* write it back and re-read */
2330                 rcu_read_lock();
2331                 while (sl != r10_bio->read_slot) {
2332                         char b[BDEVNAME_SIZE];
2333
2334                         if (sl==0)
2335                                 sl = conf->copies;
2336                         sl--;
2337                         d = r10_bio->devs[sl].devnum;
2338                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2339                         if (!rdev ||
2340                             !test_bit(In_sync, &rdev->flags))
2341                                 continue;
2342
2343                         atomic_inc(&rdev->nr_pending);
2344                         rcu_read_unlock();
2345                         if (r10_sync_page_io(rdev,
2346                                              r10_bio->devs[sl].addr +
2347                                              sect,
2348                                              s, conf->tmppage, WRITE)
2349                             == 0) {
2350                                 /* Well, this device is dead */
2351                                 printk(KERN_NOTICE
2352                                        "md/raid10:%s: read correction "
2353                                        "write failed"
2354                                        " (%d sectors at %llu on %s)\n",
2355                                        mdname(mddev), s,
2356                                        (unsigned long long)(
2357                                                sect +
2358                                                choose_data_offset(r10_bio,
2359                                                                   rdev)),
2360                                        bdevname(rdev->bdev, b));
2361                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2362                                        "drive\n",
2363                                        mdname(mddev),
2364                                        bdevname(rdev->bdev, b));
2365                         }
2366                         rdev_dec_pending(rdev, mddev);
2367                         rcu_read_lock();
2368                 }
2369                 sl = start;
2370                 while (sl != r10_bio->read_slot) {
2371                         char b[BDEVNAME_SIZE];
2372
2373                         if (sl==0)
2374                                 sl = conf->copies;
2375                         sl--;
2376                         d = r10_bio->devs[sl].devnum;
2377                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2378                         if (!rdev ||
2379                             !test_bit(In_sync, &rdev->flags))
2380                                 continue;
2381
2382                         atomic_inc(&rdev->nr_pending);
2383                         rcu_read_unlock();
2384                         switch (r10_sync_page_io(rdev,
2385                                              r10_bio->devs[sl].addr +
2386                                              sect,
2387                                              s, conf->tmppage,
2388                                                  READ)) {
2389                         case 0:
2390                                 /* Well, this device is dead */
2391                                 printk(KERN_NOTICE
2392                                        "md/raid10:%s: unable to read back "
2393                                        "corrected sectors"
2394                                        " (%d sectors at %llu on %s)\n",
2395                                        mdname(mddev), s,
2396                                        (unsigned long long)(
2397                                                sect +
2398                                                choose_data_offset(r10_bio, rdev)),
2399                                        bdevname(rdev->bdev, b));
2400                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2401                                        "drive\n",
2402                                        mdname(mddev),
2403                                        bdevname(rdev->bdev, b));
2404                                 break;
2405                         case 1:
2406                                 printk(KERN_INFO
2407                                        "md/raid10:%s: read error corrected"
2408                                        " (%d sectors at %llu on %s)\n",
2409                                        mdname(mddev), s,
2410                                        (unsigned long long)(
2411                                                sect +
2412                                                choose_data_offset(r10_bio, rdev)),
2413                                        bdevname(rdev->bdev, b));
2414                                 atomic_add(s, &rdev->corrected_errors);
2415                         }
2416
2417                         rdev_dec_pending(rdev, mddev);
2418                         rcu_read_lock();
2419                 }
2420                 rcu_read_unlock();
2421
2422                 sectors -= s;
2423                 sect += s;
2424         }
2425 }
2426
2427 static int narrow_write_error(struct r10bio *r10_bio, int i)
2428 {
2429         struct bio *bio = r10_bio->master_bio;
2430         struct mddev *mddev = r10_bio->mddev;
2431         struct r10conf *conf = mddev->private;
2432         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2433         /* bio has the data to be written to slot 'i' where
2434          * we just recently had a write error.
2435          * We repeatedly clone the bio and trim down to one block,
2436          * then try the write.  Where the write fails we record
2437          * a bad block.
2438          * It is conceivable that the bio doesn't exactly align with
2439          * blocks.  We must handle this.
2440          *
2441          * We currently own a reference to the rdev.
2442          */
2443
2444         int block_sectors;
2445         sector_t sector;
2446         int sectors;
2447         int sect_to_write = r10_bio->sectors;
2448         int ok = 1;
2449
2450         if (rdev->badblocks.shift < 0)
2451                 return 0;
2452
2453         block_sectors = roundup(1 << rdev->badblocks.shift,
2454                                 bdev_logical_block_size(rdev->bdev) >> 9);
2455         sector = r10_bio->sector;
2456         sectors = ((r10_bio->sector + block_sectors)
2457                    & ~(sector_t)(block_sectors - 1))
2458                 - sector;
2459
2460         while (sect_to_write) {
2461                 struct bio *wbio;
2462                 if (sectors > sect_to_write)
2463                         sectors = sect_to_write;
2464                 /* Write at 'sector' for 'sectors' */
2465                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2466                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2467                 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2468                                    choose_data_offset(r10_bio, rdev) +
2469                                    (sector - r10_bio->sector));
2470                 wbio->bi_bdev = rdev->bdev;
2471                 if (submit_bio_wait(WRITE, wbio) < 0)
2472                         /* Failure! */
2473                         ok = rdev_set_badblocks(rdev, sector,
2474                                                 sectors, 0)
2475                                 && ok;
2476
2477                 bio_put(wbio);
2478                 sect_to_write -= sectors;
2479                 sector += sectors;
2480                 sectors = block_sectors;
2481         }
2482         return ok;
2483 }
2484
2485 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2486 {
2487         int slot = r10_bio->read_slot;
2488         struct bio *bio;
2489         struct r10conf *conf = mddev->private;
2490         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2491         char b[BDEVNAME_SIZE];
2492         unsigned long do_sync;
2493         int max_sectors;
2494
2495         /* we got a read error. Maybe the drive is bad.  Maybe just
2496          * the block and we can fix it.
2497          * We freeze all other IO, and try reading the block from
2498          * other devices.  When we find one, we re-write
2499          * and check it that fixes the read error.
2500          * This is all done synchronously while the array is
2501          * frozen.
2502          */
2503         bio = r10_bio->devs[slot].bio;
2504         bdevname(bio->bi_bdev, b);
2505         bio_put(bio);
2506         r10_bio->devs[slot].bio = NULL;
2507
2508         if (mddev->ro == 0) {
2509                 freeze_array(conf, 1);
2510                 fix_read_error(conf, mddev, r10_bio);
2511                 unfreeze_array(conf);
2512         } else
2513                 r10_bio->devs[slot].bio = IO_BLOCKED;
2514
2515         rdev_dec_pending(rdev, mddev);
2516
2517 read_more:
2518         rdev = read_balance(conf, r10_bio, &max_sectors);
2519         if (rdev == NULL) {
2520                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2521                        " read error for block %llu\n",
2522                        mdname(mddev), b,
2523                        (unsigned long long)r10_bio->sector);
2524                 raid_end_bio_io(r10_bio);
2525                 return;
2526         }
2527
2528         do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2529         slot = r10_bio->read_slot;
2530         printk_ratelimited(
2531                 KERN_ERR
2532                 "md/raid10:%s: %s: redirecting "
2533                 "sector %llu to another mirror\n",
2534                 mdname(mddev),
2535                 bdevname(rdev->bdev, b),
2536                 (unsigned long long)r10_bio->sector);
2537         bio = bio_clone_mddev(r10_bio->master_bio,
2538                               GFP_NOIO, mddev);
2539         bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2540         r10_bio->devs[slot].bio = bio;
2541         r10_bio->devs[slot].rdev = rdev;
2542         bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2543                 + choose_data_offset(r10_bio, rdev);
2544         bio->bi_bdev = rdev->bdev;
2545         bio->bi_rw = READ | do_sync;
2546         bio->bi_private = r10_bio;
2547         bio->bi_end_io = raid10_end_read_request;
2548         if (max_sectors < r10_bio->sectors) {
2549                 /* Drat - have to split this up more */
2550                 struct bio *mbio = r10_bio->master_bio;
2551                 int sectors_handled =
2552                         r10_bio->sector + max_sectors
2553                         - mbio->bi_iter.bi_sector;
2554                 r10_bio->sectors = max_sectors;
2555                 spin_lock_irq(&conf->device_lock);
2556                 if (mbio->bi_phys_segments == 0)
2557                         mbio->bi_phys_segments = 2;
2558                 else
2559                         mbio->bi_phys_segments++;
2560                 spin_unlock_irq(&conf->device_lock);
2561                 generic_make_request(bio);
2562
2563                 r10_bio = mempool_alloc(conf->r10bio_pool,
2564                                         GFP_NOIO);
2565                 r10_bio->master_bio = mbio;
2566                 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2567                 r10_bio->state = 0;
2568                 set_bit(R10BIO_ReadError,
2569                         &r10_bio->state);
2570                 r10_bio->mddev = mddev;
2571                 r10_bio->sector = mbio->bi_iter.bi_sector
2572                         + sectors_handled;
2573
2574                 goto read_more;
2575         } else
2576                 generic_make_request(bio);
2577 }
2578
2579 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2580 {
2581         /* Some sort of write request has finished and it
2582          * succeeded in writing where we thought there was a
2583          * bad block.  So forget the bad block.
2584          * Or possibly if failed and we need to record
2585          * a bad block.
2586          */
2587         int m;
2588         struct md_rdev *rdev;
2589
2590         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2591             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2592                 for (m = 0; m < conf->copies; m++) {
2593                         int dev = r10_bio->devs[m].devnum;
2594                         rdev = conf->mirrors[dev].rdev;
2595                         if (r10_bio->devs[m].bio == NULL)
2596                                 continue;
2597                         if (!r10_bio->devs[m].bio->bi_error) {
2598                                 rdev_clear_badblocks(
2599                                         rdev,
2600                                         r10_bio->devs[m].addr,
2601                                         r10_bio->sectors, 0);
2602                         } else {
2603                                 if (!rdev_set_badblocks(
2604                                             rdev,
2605                                             r10_bio->devs[m].addr,
2606                                             r10_bio->sectors, 0))
2607                                         md_error(conf->mddev, rdev);
2608                         }
2609                         rdev = conf->mirrors[dev].replacement;
2610                         if (r10_bio->devs[m].repl_bio == NULL)
2611                                 continue;
2612
2613                         if (!r10_bio->devs[m].repl_bio->bi_error) {
2614                                 rdev_clear_badblocks(
2615                                         rdev,
2616                                         r10_bio->devs[m].addr,
2617                                         r10_bio->sectors, 0);
2618                         } else {
2619                                 if (!rdev_set_badblocks(
2620                                             rdev,
2621                                             r10_bio->devs[m].addr,
2622                                             r10_bio->sectors, 0))
2623                                         md_error(conf->mddev, rdev);
2624                         }
2625                 }
2626                 put_buf(r10_bio);
2627         } else {
2628                 bool fail = false;
2629                 for (m = 0; m < conf->copies; m++) {
2630                         int dev = r10_bio->devs[m].devnum;
2631                         struct bio *bio = r10_bio->devs[m].bio;
2632                         rdev = conf->mirrors[dev].rdev;
2633                         if (bio == IO_MADE_GOOD) {
2634                                 rdev_clear_badblocks(
2635                                         rdev,
2636                                         r10_bio->devs[m].addr,
2637                                         r10_bio->sectors, 0);
2638                                 rdev_dec_pending(rdev, conf->mddev);
2639                         } else if (bio != NULL && bio->bi_error) {
2640                                 fail = true;
2641                                 if (!narrow_write_error(r10_bio, m)) {
2642                                         md_error(conf->mddev, rdev);
2643                                         set_bit(R10BIO_Degraded,
2644                                                 &r10_bio->state);
2645                                 }
2646                                 rdev_dec_pending(rdev, conf->mddev);
2647                         }
2648                         bio = r10_bio->devs[m].repl_bio;
2649                         rdev = conf->mirrors[dev].replacement;
2650                         if (rdev && bio == IO_MADE_GOOD) {
2651                                 rdev_clear_badblocks(
2652                                         rdev,
2653                                         r10_bio->devs[m].addr,
2654                                         r10_bio->sectors, 0);
2655                                 rdev_dec_pending(rdev, conf->mddev);
2656                         }
2657                 }
2658                 if (fail) {
2659                         spin_lock_irq(&conf->device_lock);
2660                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2661                         conf->nr_queued++;
2662                         spin_unlock_irq(&conf->device_lock);
2663                         md_wakeup_thread(conf->mddev->thread);
2664                 } else {
2665                         if (test_bit(R10BIO_WriteError,
2666                                      &r10_bio->state))
2667                                 close_write(r10_bio);
2668                         raid_end_bio_io(r10_bio);
2669                 }
2670         }
2671 }
2672
2673 static void raid10d(struct md_thread *thread)
2674 {
2675         struct mddev *mddev = thread->mddev;
2676         struct r10bio *r10_bio;
2677         unsigned long flags;
2678         struct r10conf *conf = mddev->private;
2679         struct list_head *head = &conf->retry_list;
2680         struct blk_plug plug;
2681
2682         md_check_recovery(mddev);
2683
2684         if (!list_empty_careful(&conf->bio_end_io_list) &&
2685             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2686                 LIST_HEAD(tmp);
2687                 spin_lock_irqsave(&conf->device_lock, flags);
2688                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2689                         while (!list_empty(&conf->bio_end_io_list)) {
2690                                 list_move(conf->bio_end_io_list.prev, &tmp);
2691                                 conf->nr_queued--;
2692                         }
2693                 }
2694                 spin_unlock_irqrestore(&conf->device_lock, flags);
2695                 while (!list_empty(&tmp)) {
2696                         r10_bio = list_first_entry(&tmp, struct r10bio,
2697                                                    retry_list);
2698                         list_del(&r10_bio->retry_list);
2699                         if (mddev->degraded)
2700                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2701
2702                         if (test_bit(R10BIO_WriteError,
2703                                      &r10_bio->state))
2704                                 close_write(r10_bio);
2705                         raid_end_bio_io(r10_bio);
2706                 }
2707         }
2708
2709         blk_start_plug(&plug);
2710         for (;;) {
2711
2712                 flush_pending_writes(conf);
2713
2714                 spin_lock_irqsave(&conf->device_lock, flags);
2715                 if (list_empty(head)) {
2716                         spin_unlock_irqrestore(&conf->device_lock, flags);
2717                         break;
2718                 }
2719                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2720                 list_del(head->prev);
2721                 conf->nr_queued--;
2722                 spin_unlock_irqrestore(&conf->device_lock, flags);
2723
2724                 mddev = r10_bio->mddev;
2725                 conf = mddev->private;
2726                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2727                     test_bit(R10BIO_WriteError, &r10_bio->state))
2728                         handle_write_completed(conf, r10_bio);
2729                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2730                         reshape_request_write(mddev, r10_bio);
2731                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2732                         sync_request_write(mddev, r10_bio);
2733                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2734                         recovery_request_write(mddev, r10_bio);
2735                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2736                         handle_read_error(mddev, r10_bio);
2737                 else {
2738                         /* just a partial read to be scheduled from a
2739                          * separate context
2740                          */
2741                         int slot = r10_bio->read_slot;
2742                         generic_make_request(r10_bio->devs[slot].bio);
2743                 }
2744
2745                 cond_resched();
2746                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2747                         md_check_recovery(mddev);
2748         }
2749         blk_finish_plug(&plug);
2750 }
2751
2752 static int init_resync(struct r10conf *conf)
2753 {
2754         int buffs;
2755         int i;
2756
2757         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2758         BUG_ON(conf->r10buf_pool);
2759         conf->have_replacement = 0;
2760         for (i = 0; i < conf->geo.raid_disks; i++)
2761                 if (conf->mirrors[i].replacement)
2762                         conf->have_replacement = 1;
2763         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2764         if (!conf->r10buf_pool)
2765                 return -ENOMEM;
2766         conf->next_resync = 0;
2767         return 0;
2768 }
2769
2770 /*
2771  * perform a "sync" on one "block"
2772  *
2773  * We need to make sure that no normal I/O request - particularly write
2774  * requests - conflict with active sync requests.
2775  *
2776  * This is achieved by tracking pending requests and a 'barrier' concept
2777  * that can be installed to exclude normal IO requests.
2778  *
2779  * Resync and recovery are handled very differently.
2780  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2781  *
2782  * For resync, we iterate over virtual addresses, read all copies,
2783  * and update if there are differences.  If only one copy is live,
2784  * skip it.
2785  * For recovery, we iterate over physical addresses, read a good
2786  * value for each non-in_sync drive, and over-write.
2787  *
2788  * So, for recovery we may have several outstanding complex requests for a
2789  * given address, one for each out-of-sync device.  We model this by allocating
2790  * a number of r10_bio structures, one for each out-of-sync device.
2791  * As we setup these structures, we collect all bio's together into a list
2792  * which we then process collectively to add pages, and then process again
2793  * to pass to generic_make_request.
2794  *
2795  * The r10_bio structures are linked using a borrowed master_bio pointer.
2796  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2797  * has its remaining count decremented to 0, the whole complex operation
2798  * is complete.
2799  *
2800  */
2801
2802 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2803                              int *skipped)
2804 {
2805         struct r10conf *conf = mddev->private;
2806         struct r10bio *r10_bio;
2807         struct bio *biolist = NULL, *bio;
2808         sector_t max_sector, nr_sectors;
2809         int i;
2810         int max_sync;
2811         sector_t sync_blocks;
2812         sector_t sectors_skipped = 0;
2813         int chunks_skipped = 0;
2814         sector_t chunk_mask = conf->geo.chunk_mask;
2815
2816         if (!conf->r10buf_pool)
2817                 if (init_resync(conf))
2818                         return 0;
2819
2820         /*
2821          * Allow skipping a full rebuild for incremental assembly
2822          * of a clean array, like RAID1 does.
2823          */
2824         if (mddev->bitmap == NULL &&
2825             mddev->recovery_cp == MaxSector &&
2826             mddev->reshape_position == MaxSector &&
2827             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2828             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2829             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2830             conf->fullsync == 0) {
2831                 *skipped = 1;
2832                 return mddev->dev_sectors - sector_nr;
2833         }
2834
2835  skipped:
2836         max_sector = mddev->dev_sectors;
2837         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2838             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2839                 max_sector = mddev->resync_max_sectors;
2840         if (sector_nr >= max_sector) {
2841                 /* If we aborted, we need to abort the
2842                  * sync on the 'current' bitmap chucks (there can
2843                  * be several when recovering multiple devices).
2844                  * as we may have started syncing it but not finished.
2845                  * We can find the current address in
2846                  * mddev->curr_resync, but for recovery,
2847                  * we need to convert that to several
2848                  * virtual addresses.
2849                  */
2850                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2851                         end_reshape(conf);
2852                         close_sync(conf);
2853                         return 0;
2854                 }
2855
2856                 if (mddev->curr_resync < max_sector) { /* aborted */
2857                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2858                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2859                                                 &sync_blocks, 1);
2860                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2861                                 sector_t sect =
2862                                         raid10_find_virt(conf, mddev->curr_resync, i);
2863                                 bitmap_end_sync(mddev->bitmap, sect,
2864                                                 &sync_blocks, 1);
2865                         }
2866                 } else {
2867                         /* completed sync */
2868                         if ((!mddev->bitmap || conf->fullsync)
2869                             && conf->have_replacement
2870                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2871                                 /* Completed a full sync so the replacements
2872                                  * are now fully recovered.
2873                                  */
2874                                 rcu_read_lock();
2875                                 for (i = 0; i < conf->geo.raid_disks; i++) {
2876                                         struct md_rdev *rdev =
2877                                                 rcu_dereference(conf->mirrors[i].replacement);
2878                                         if (rdev)
2879                                                 rdev->recovery_offset = MaxSector;
2880                                 }
2881                                 rcu_read_unlock();
2882                         }
2883                         conf->fullsync = 0;
2884                 }
2885                 bitmap_close_sync(mddev->bitmap);
2886                 close_sync(conf);
2887                 *skipped = 1;
2888                 return sectors_skipped;
2889         }
2890
2891         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2892                 return reshape_request(mddev, sector_nr, skipped);
2893
2894         if (chunks_skipped >= conf->geo.raid_disks) {
2895                 /* if there has been nothing to do on any drive,
2896                  * then there is nothing to do at all..
2897                  */
2898                 *skipped = 1;
2899                 return (max_sector - sector_nr) + sectors_skipped;
2900         }
2901
2902         if (max_sector > mddev->resync_max)
2903                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2904
2905         /* make sure whole request will fit in a chunk - if chunks
2906          * are meaningful
2907          */
2908         if (conf->geo.near_copies < conf->geo.raid_disks &&
2909             max_sector > (sector_nr | chunk_mask))
2910                 max_sector = (sector_nr | chunk_mask) + 1;
2911
2912         /*
2913          * If there is non-resync activity waiting for a turn, then let it
2914          * though before starting on this new sync request.
2915          */
2916         if (conf->nr_waiting)
2917                 schedule_timeout_uninterruptible(1);
2918
2919         /* Again, very different code for resync and recovery.
2920          * Both must result in an r10bio with a list of bios that
2921          * have bi_end_io, bi_sector, bi_bdev set,
2922          * and bi_private set to the r10bio.
2923          * For recovery, we may actually create several r10bios
2924          * with 2 bios in each, that correspond to the bios in the main one.
2925          * In this case, the subordinate r10bios link back through a
2926          * borrowed master_bio pointer, and the counter in the master
2927          * includes a ref from each subordinate.
2928          */
2929         /* First, we decide what to do and set ->bi_end_io
2930          * To end_sync_read if we want to read, and
2931          * end_sync_write if we will want to write.
2932          */
2933
2934         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2935         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2936                 /* recovery... the complicated one */
2937                 int j;
2938                 r10_bio = NULL;
2939
2940                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2941                         int still_degraded;
2942                         struct r10bio *rb2;
2943                         sector_t sect;
2944                         int must_sync;
2945                         int any_working;
2946                         struct raid10_info *mirror = &conf->mirrors[i];
2947                         struct md_rdev *mrdev, *mreplace;
2948
2949                         rcu_read_lock();
2950                         mrdev = rcu_dereference(mirror->rdev);
2951                         mreplace = rcu_dereference(mirror->replacement);
2952
2953                         if ((mrdev == NULL ||
2954                              test_bit(In_sync, &mrdev->flags)) &&
2955                             (mreplace == NULL ||
2956                              test_bit(Faulty, &mreplace->flags))) {
2957                                 rcu_read_unlock();
2958                                 continue;
2959                         }
2960
2961                         still_degraded = 0;
2962                         /* want to reconstruct this device */
2963                         rb2 = r10_bio;
2964                         sect = raid10_find_virt(conf, sector_nr, i);
2965                         if (sect >= mddev->resync_max_sectors) {
2966                                 /* last stripe is not complete - don't
2967                                  * try to recover this sector.
2968                                  */
2969                                 rcu_read_unlock();
2970                                 continue;
2971                         }
2972                         /* Unless we are doing a full sync, or a replacement
2973                          * we only need to recover the block if it is set in
2974                          * the bitmap
2975                          */
2976                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
2977                                                       &sync_blocks, 1);
2978                         if (sync_blocks < max_sync)
2979                                 max_sync = sync_blocks;
2980                         if (!must_sync &&
2981                             mreplace == NULL &&
2982                             !conf->fullsync) {
2983                                 /* yep, skip the sync_blocks here, but don't assume
2984                                  * that there will never be anything to do here
2985                                  */
2986                                 chunks_skipped = -1;
2987                                 rcu_read_unlock();
2988                                 continue;
2989                         }
2990                         atomic_inc(&mrdev->nr_pending);
2991                         if (mreplace)
2992                                 atomic_inc(&mreplace->nr_pending);
2993                         rcu_read_unlock();
2994
2995                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2996                         r10_bio->state = 0;
2997                         raise_barrier(conf, rb2 != NULL);
2998                         atomic_set(&r10_bio->remaining, 0);
2999
3000                         r10_bio->master_bio = (struct bio*)rb2;
3001                         if (rb2)
3002                                 atomic_inc(&rb2->remaining);
3003                         r10_bio->mddev = mddev;
3004                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3005                         r10_bio->sector = sect;
3006
3007                         raid10_find_phys(conf, r10_bio);
3008
3009                         /* Need to check if the array will still be
3010                          * degraded
3011                          */
3012                         rcu_read_lock();
3013                         for (j = 0; j < conf->geo.raid_disks; j++) {
3014                                 struct md_rdev *rdev = rcu_dereference(
3015                                         conf->mirrors[j].rdev);
3016                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3017                                         still_degraded = 1;
3018                                         break;
3019                                 }
3020                         }
3021
3022                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3023                                                       &sync_blocks, still_degraded);
3024
3025                         any_working = 0;
3026                         for (j=0; j<conf->copies;j++) {
3027                                 int k;
3028                                 int d = r10_bio->devs[j].devnum;
3029                                 sector_t from_addr, to_addr;
3030                                 struct md_rdev *rdev =
3031                                         rcu_dereference(conf->mirrors[d].rdev);
3032                                 sector_t sector, first_bad;
3033                                 int bad_sectors;
3034                                 if (!rdev ||
3035                                     !test_bit(In_sync, &rdev->flags))
3036                                         continue;
3037                                 /* This is where we read from */
3038                                 any_working = 1;
3039                                 sector = r10_bio->devs[j].addr;
3040
3041                                 if (is_badblock(rdev, sector, max_sync,
3042                                                 &first_bad, &bad_sectors)) {
3043                                         if (first_bad > sector)
3044                                                 max_sync = first_bad - sector;
3045                                         else {
3046                                                 bad_sectors -= (sector
3047                                                                 - first_bad);
3048                                                 if (max_sync > bad_sectors)
3049                                                         max_sync = bad_sectors;
3050                                                 continue;
3051                                         }
3052                                 }
3053                                 bio = r10_bio->devs[0].bio;
3054                                 bio_reset(bio);
3055                                 bio->bi_next = biolist;
3056                                 biolist = bio;
3057                                 bio->bi_private = r10_bio;
3058                                 bio->bi_end_io = end_sync_read;
3059                                 bio->bi_rw = READ;
3060                                 from_addr = r10_bio->devs[j].addr;
3061                                 bio->bi_iter.bi_sector = from_addr +
3062                                         rdev->data_offset;
3063                                 bio->bi_bdev = rdev->bdev;
3064                                 atomic_inc(&rdev->nr_pending);
3065                                 /* and we write to 'i' (if not in_sync) */
3066
3067                                 for (k=0; k<conf->copies; k++)
3068                                         if (r10_bio->devs[k].devnum == i)
3069                                                 break;
3070                                 BUG_ON(k == conf->copies);
3071                                 to_addr = r10_bio->devs[k].addr;
3072                                 r10_bio->devs[0].devnum = d;
3073                                 r10_bio->devs[0].addr = from_addr;
3074                                 r10_bio->devs[1].devnum = i;
3075                                 r10_bio->devs[1].addr = to_addr;
3076
3077                                 if (!test_bit(In_sync, &mrdev->flags)) {
3078                                         bio = r10_bio->devs[1].bio;
3079                                         bio_reset(bio);
3080                                         bio->bi_next = biolist;
3081                                         biolist = bio;
3082                                         bio->bi_private = r10_bio;
3083                                         bio->bi_end_io = end_sync_write;
3084                                         bio->bi_rw = WRITE;
3085                                         bio->bi_iter.bi_sector = to_addr
3086                                                 + mrdev->data_offset;
3087                                         bio->bi_bdev = mrdev->bdev;
3088                                         atomic_inc(&r10_bio->remaining);
3089                                 } else
3090                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3091
3092                                 /* and maybe write to replacement */
3093                                 bio = r10_bio->devs[1].repl_bio;
3094                                 if (bio)
3095                                         bio->bi_end_io = NULL;
3096                                 /* Note: if mreplace != NULL, then bio
3097                                  * cannot be NULL as r10buf_pool_alloc will
3098                                  * have allocated it.
3099                                  * So the second test here is pointless.
3100                                  * But it keeps semantic-checkers happy, and
3101                                  * this comment keeps human reviewers
3102                                  * happy.
3103                                  */
3104                                 if (mreplace == NULL || bio == NULL ||
3105                                     test_bit(Faulty, &mreplace->flags))
3106                                         break;
3107                                 bio_reset(bio);
3108                                 bio->bi_next = biolist;
3109                                 biolist = bio;
3110                                 bio->bi_private = r10_bio;
3111                                 bio->bi_end_io = end_sync_write;
3112                                 bio->bi_rw = WRITE;
3113                                 bio->bi_iter.bi_sector = to_addr +
3114                                         mreplace->data_offset;
3115                                 bio->bi_bdev = mreplace->bdev;
3116                                 atomic_inc(&r10_bio->remaining);
3117                                 break;
3118                         }
3119                         rcu_read_unlock();
3120                         if (j == conf->copies) {
3121                                 /* Cannot recover, so abort the recovery or
3122                                  * record a bad block */
3123                                 if (any_working) {
3124                                         /* problem is that there are bad blocks
3125                                          * on other device(s)
3126                                          */
3127                                         int k;
3128                                         for (k = 0; k < conf->copies; k++)
3129                                                 if (r10_bio->devs[k].devnum == i)
3130                                                         break;
3131                                         if (!test_bit(In_sync,
3132                                                       &mrdev->flags)
3133                                             && !rdev_set_badblocks(
3134                                                     mrdev,
3135                                                     r10_bio->devs[k].addr,
3136                                                     max_sync, 0))
3137                                                 any_working = 0;
3138                                         if (mreplace &&
3139                                             !rdev_set_badblocks(
3140                                                     mreplace,
3141                                                     r10_bio->devs[k].addr,
3142                                                     max_sync, 0))
3143                                                 any_working = 0;
3144                                 }
3145                                 if (!any_working)  {
3146                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3147                                                               &mddev->recovery))
3148                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
3149                                                        "working devices for recovery.\n",
3150                                                        mdname(mddev));
3151                                         mirror->recovery_disabled
3152                                                 = mddev->recovery_disabled;
3153                                 }
3154                                 put_buf(r10_bio);
3155                                 if (rb2)
3156                                         atomic_dec(&rb2->remaining);
3157                                 r10_bio = rb2;
3158                                 rdev_dec_pending(mrdev, mddev);
3159                                 if (mreplace)
3160                                         rdev_dec_pending(mreplace, mddev);
3161                                 break;
3162                         }
3163                         rdev_dec_pending(mrdev, mddev);
3164                         if (mreplace)
3165                                 rdev_dec_pending(mreplace, mddev);
3166                 }
3167                 if (biolist == NULL) {
3168                         while (r10_bio) {
3169                                 struct r10bio *rb2 = r10_bio;
3170                                 r10_bio = (struct r10bio*) rb2->master_bio;
3171                                 rb2->master_bio = NULL;
3172                                 put_buf(rb2);
3173                         }
3174                         goto giveup;
3175                 }
3176         } else {
3177                 /* resync. Schedule a read for every block at this virt offset */
3178                 int count = 0;
3179
3180                 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3181
3182                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3183                                        &sync_blocks, mddev->degraded) &&
3184                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3185                                                  &mddev->recovery)) {
3186                         /* We can skip this block */
3187                         *skipped = 1;
3188                         return sync_blocks + sectors_skipped;
3189                 }
3190                 if (sync_blocks < max_sync)
3191                         max_sync = sync_blocks;
3192                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3193                 r10_bio->state = 0;
3194
3195                 r10_bio->mddev = mddev;
3196                 atomic_set(&r10_bio->remaining, 0);
3197                 raise_barrier(conf, 0);
3198                 conf->next_resync = sector_nr;
3199
3200                 r10_bio->master_bio = NULL;
3201                 r10_bio->sector = sector_nr;
3202                 set_bit(R10BIO_IsSync, &r10_bio->state);
3203                 raid10_find_phys(conf, r10_bio);
3204                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3205
3206                 for (i = 0; i < conf->copies; i++) {
3207                         int d = r10_bio->devs[i].devnum;
3208                         sector_t first_bad, sector;
3209                         int bad_sectors;
3210                         struct md_rdev *rdev;
3211
3212                         if (r10_bio->devs[i].repl_bio)
3213                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3214
3215                         bio = r10_bio->devs[i].bio;
3216                         bio_reset(bio);
3217                         bio->bi_error = -EIO;
3218                         rcu_read_lock();
3219                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3220                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3221                                 rcu_read_unlock();
3222                                 continue;
3223                         }
3224                         sector = r10_bio->devs[i].addr;
3225                         if (is_badblock(rdev, sector, max_sync,
3226                                         &first_bad, &bad_sectors)) {
3227                                 if (first_bad > sector)
3228                                         max_sync = first_bad - sector;
3229                                 else {
3230                                         bad_sectors -= (sector - first_bad);
3231                                         if (max_sync > bad_sectors)
3232                                                 max_sync = bad_sectors;
3233                                         rcu_read_unlock();
3234                                         continue;
3235                                 }
3236                         }
3237                         atomic_inc(&rdev->nr_pending);
3238                         atomic_inc(&r10_bio->remaining);
3239                         bio->bi_next = biolist;
3240                         biolist = bio;
3241                         bio->bi_private = r10_bio;
3242                         bio->bi_end_io = end_sync_read;
3243                         bio->bi_rw = READ;
3244                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3245                         bio->bi_bdev = rdev->bdev;
3246                         count++;
3247
3248                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3249                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3250                                 rcu_read_unlock();
3251                                 continue;
3252                         }
3253                         atomic_inc(&rdev->nr_pending);
3254                         rcu_read_unlock();
3255
3256                         /* Need to set up for writing to the replacement */
3257                         bio = r10_bio->devs[i].repl_bio;
3258                         bio_reset(bio);
3259                         bio->bi_error = -EIO;
3260
3261                         sector = r10_bio->devs[i].addr;
3262                         bio->bi_next = biolist;
3263                         biolist = bio;
3264                         bio->bi_private = r10_bio;
3265                         bio->bi_end_io = end_sync_write;
3266                         bio->bi_rw = WRITE;
3267                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3268                         bio->bi_bdev = rdev->bdev;
3269                         count++;
3270                 }
3271
3272                 if (count < 2) {
3273                         for (i=0; i<conf->copies; i++) {
3274                                 int d = r10_bio->devs[i].devnum;
3275                                 if (r10_bio->devs[i].bio->bi_end_io)
3276                                         rdev_dec_pending(conf->mirrors[d].rdev,
3277                                                          mddev);
3278                                 if (r10_bio->devs[i].repl_bio &&
3279                                     r10_bio->devs[i].repl_bio->bi_end_io)
3280                                         rdev_dec_pending(
3281                                                 conf->mirrors[d].replacement,
3282                                                 mddev);
3283                         }
3284                         put_buf(r10_bio);
3285                         biolist = NULL;
3286                         goto giveup;
3287                 }
3288         }
3289
3290         nr_sectors = 0;
3291         if (sector_nr + max_sync < max_sector)
3292                 max_sector = sector_nr + max_sync;
3293         do {
3294                 struct page *page;
3295                 int len = PAGE_SIZE;
3296                 if (sector_nr + (len>>9) > max_sector)
3297                         len = (max_sector - sector_nr) << 9;
3298                 if (len == 0)
3299                         break;
3300                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3301                         struct bio *bio2;
3302                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3303                         if (bio_add_page(bio, page, len, 0))
3304                                 continue;
3305
3306                         /* stop here */
3307                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3308                         for (bio2 = biolist;
3309                              bio2 && bio2 != bio;
3310                              bio2 = bio2->bi_next) {
3311                                 /* remove last page from this bio */
3312                                 bio2->bi_vcnt--;
3313                                 bio2->bi_iter.bi_size -= len;
3314                                 bio_clear_flag(bio2, BIO_SEG_VALID);
3315                         }
3316                         goto bio_full;
3317                 }
3318                 nr_sectors += len>>9;
3319                 sector_nr += len>>9;
3320         } while (biolist->bi_vcnt < RESYNC_PAGES);
3321  bio_full:
3322         r10_bio->sectors = nr_sectors;
3323
3324         while (biolist) {
3325                 bio = biolist;
3326                 biolist = biolist->bi_next;
3327
3328                 bio->bi_next = NULL;
3329                 r10_bio = bio->bi_private;
3330                 r10_bio->sectors = nr_sectors;
3331
3332                 if (bio->bi_end_io == end_sync_read) {
3333                         md_sync_acct(bio->bi_bdev, nr_sectors);
3334                         bio->bi_error = 0;
3335                         generic_make_request(bio);
3336                 }
3337         }
3338
3339         if (sectors_skipped)
3340                 /* pretend they weren't skipped, it makes
3341                  * no important difference in this case
3342                  */
3343                 md_done_sync(mddev, sectors_skipped, 1);
3344
3345         return sectors_skipped + nr_sectors;
3346  giveup:
3347         /* There is nowhere to write, so all non-sync
3348          * drives must be failed or in resync, all drives
3349          * have a bad block, so try the next chunk...
3350          */
3351         if (sector_nr + max_sync < max_sector)
3352                 max_sector = sector_nr + max_sync;
3353
3354         sectors_skipped += (max_sector - sector_nr);
3355         chunks_skipped ++;
3356         sector_nr = max_sector;
3357         goto skipped;
3358 }
3359
3360 static sector_t
3361 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3362 {
3363         sector_t size;
3364         struct r10conf *conf = mddev->private;
3365
3366         if (!raid_disks)
3367                 raid_disks = min(conf->geo.raid_disks,
3368                                  conf->prev.raid_disks);
3369         if (!sectors)
3370                 sectors = conf->dev_sectors;
3371
3372         size = sectors >> conf->geo.chunk_shift;
3373         sector_div(size, conf->geo.far_copies);
3374         size = size * raid_disks;
3375         sector_div(size, conf->geo.near_copies);
3376
3377         return size << conf->geo.chunk_shift;
3378 }
3379
3380 static void calc_sectors(struct r10conf *conf, sector_t size)
3381 {
3382         /* Calculate the number of sectors-per-device that will
3383          * actually be used, and set conf->dev_sectors and
3384          * conf->stride
3385          */
3386
3387         size = size >> conf->geo.chunk_shift;
3388         sector_div(size, conf->geo.far_copies);
3389         size = size * conf->geo.raid_disks;
3390         sector_div(size, conf->geo.near_copies);
3391         /* 'size' is now the number of chunks in the array */
3392         /* calculate "used chunks per device" */
3393         size = size * conf->copies;
3394
3395         /* We need to round up when dividing by raid_disks to
3396          * get the stride size.
3397          */
3398         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3399
3400         conf->dev_sectors = size << conf->geo.chunk_shift;
3401
3402         if (conf->geo.far_offset)
3403                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3404         else {
3405                 sector_div(size, conf->geo.far_copies);
3406                 conf->geo.stride = size << conf->geo.chunk_shift;
3407         }
3408 }
3409
3410 enum geo_type {geo_new, geo_old, geo_start};
3411 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3412 {
3413         int nc, fc, fo;
3414         int layout, chunk, disks;
3415         switch (new) {
3416         case geo_old:
3417                 layout = mddev->layout;
3418                 chunk = mddev->chunk_sectors;
3419                 disks = mddev->raid_disks - mddev->delta_disks;
3420                 break;
3421         case geo_new:
3422                 layout = mddev->new_layout;
3423                 chunk = mddev->new_chunk_sectors;
3424                 disks = mddev->raid_disks;
3425                 break;
3426         default: /* avoid 'may be unused' warnings */
3427         case geo_start: /* new when starting reshape - raid_disks not
3428                          * updated yet. */
3429                 layout = mddev->new_layout;
3430                 chunk = mddev->new_chunk_sectors;
3431                 disks = mddev->raid_disks + mddev->delta_disks;
3432                 break;
3433         }
3434         if (layout >> 19)
3435                 return -1;
3436         if (chunk < (PAGE_SIZE >> 9) ||
3437             !is_power_of_2(chunk))
3438                 return -2;
3439         nc = layout & 255;
3440         fc = (layout >> 8) & 255;
3441         fo = layout & (1<<16);
3442         geo->raid_disks = disks;
3443         geo->near_copies = nc;
3444         geo->far_copies = fc;
3445         geo->far_offset = fo;
3446         switch (layout >> 17) {
3447         case 0: /* original layout.  simple but not always optimal */
3448                 geo->far_set_size = disks;
3449                 break;
3450         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3451                  * actually using this, but leave code here just in case.*/
3452                 geo->far_set_size = disks/fc;
3453                 WARN(geo->far_set_size < fc,
3454                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3455                 break;
3456         case 2: /* "improved" layout fixed to match documentation */
3457                 geo->far_set_size = fc * nc;
3458                 break;
3459         default: /* Not a valid layout */
3460                 return -1;
3461         }
3462         geo->chunk_mask = chunk - 1;
3463         geo->chunk_shift = ffz(~chunk);
3464         return nc*fc;
3465 }
3466
3467 static struct r10conf *setup_conf(struct mddev *mddev)
3468 {
3469         struct r10conf *conf = NULL;
3470         int err = -EINVAL;
3471         struct geom geo;
3472         int copies;
3473
3474         copies = setup_geo(&geo, mddev, geo_new);
3475
3476         if (copies == -2) {
3477                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3478                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3479                        mdname(mddev), PAGE_SIZE);
3480                 goto out;
3481         }
3482
3483         if (copies < 2 || copies > mddev->raid_disks) {
3484                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3485                        mdname(mddev), mddev->new_layout);
3486                 goto out;
3487         }
3488
3489         err = -ENOMEM;
3490         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3491         if (!conf)
3492                 goto out;
3493
3494         /* FIXME calc properly */
3495         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3496                                                             max(0,-mddev->delta_disks)),
3497                                 GFP_KERNEL);
3498         if (!conf->mirrors)
3499                 goto out;
3500
3501         conf->tmppage = alloc_page(GFP_KERNEL);
3502         if (!conf->tmppage)
3503                 goto out;
3504
3505         conf->geo = geo;
3506         conf->copies = copies;
3507         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3508                                            r10bio_pool_free, conf);
3509         if (!conf->r10bio_pool)
3510                 goto out;
3511
3512         calc_sectors(conf, mddev->dev_sectors);
3513         if (mddev->reshape_position == MaxSector) {
3514                 conf->prev = conf->geo;
3515                 conf->reshape_progress = MaxSector;
3516         } else {
3517                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3518                         err = -EINVAL;
3519                         goto out;
3520                 }
3521                 conf->reshape_progress = mddev->reshape_position;
3522                 if (conf->prev.far_offset)
3523                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3524                 else
3525                         /* far_copies must be 1 */
3526                         conf->prev.stride = conf->dev_sectors;
3527         }
3528         conf->reshape_safe = conf->reshape_progress;
3529         spin_lock_init(&conf->device_lock);
3530         INIT_LIST_HEAD(&conf->retry_list);
3531         INIT_LIST_HEAD(&conf->bio_end_io_list);
3532
3533         spin_lock_init(&conf->resync_lock);
3534         init_waitqueue_head(&conf->wait_barrier);
3535
3536         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3537         if (!conf->thread)
3538                 goto out;
3539
3540         conf->mddev = mddev;
3541         return conf;
3542
3543  out:
3544         if (err == -ENOMEM)
3545                 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3546                        mdname(mddev));
3547         if (conf) {
3548                 mempool_destroy(conf->r10bio_pool);
3549                 kfree(conf->mirrors);
3550                 safe_put_page(conf->tmppage);
3551                 kfree(conf);
3552         }
3553         return ERR_PTR(err);
3554 }
3555
3556 static int raid10_run(struct mddev *mddev)
3557 {
3558         struct r10conf *conf;
3559         int i, disk_idx, chunk_size;
3560         struct raid10_info *disk;
3561         struct md_rdev *rdev;
3562         sector_t size;
3563         sector_t min_offset_diff = 0;
3564         int first = 1;
3565         bool discard_supported = false;
3566
3567         if (mddev->private == NULL) {
3568                 conf = setup_conf(mddev);
3569                 if (IS_ERR(conf))
3570                         return PTR_ERR(conf);
3571                 mddev->private = conf;
3572         }
3573         conf = mddev->private;
3574         if (!conf)
3575                 goto out;
3576
3577         mddev->thread = conf->thread;
3578         conf->thread = NULL;
3579
3580         chunk_size = mddev->chunk_sectors << 9;
3581         if (mddev->queue) {
3582                 blk_queue_max_discard_sectors(mddev->queue,
3583                                               mddev->chunk_sectors);
3584                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3585                 blk_queue_io_min(mddev->queue, chunk_size);
3586                 if (conf->geo.raid_disks % conf->geo.near_copies)
3587                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3588                 else
3589                         blk_queue_io_opt(mddev->queue, chunk_size *
3590                                          (conf->geo.raid_disks / conf->geo.near_copies));
3591         }
3592
3593         rdev_for_each(rdev, mddev) {
3594                 long long diff;
3595                 struct request_queue *q;
3596
3597                 disk_idx = rdev->raid_disk;
3598                 if (disk_idx < 0)
3599                         continue;
3600                 if (disk_idx >= conf->geo.raid_disks &&
3601                     disk_idx >= conf->prev.raid_disks)
3602                         continue;
3603                 disk = conf->mirrors + disk_idx;
3604
3605                 if (test_bit(Replacement, &rdev->flags)) {
3606                         if (disk->replacement)
3607                                 goto out_free_conf;
3608                         disk->replacement = rdev;
3609                 } else {
3610                         if (disk->rdev)
3611                                 goto out_free_conf;
3612                         disk->rdev = rdev;
3613                 }
3614                 q = bdev_get_queue(rdev->bdev);
3615                 diff = (rdev->new_data_offset - rdev->data_offset);
3616                 if (!mddev->reshape_backwards)
3617                         diff = -diff;
3618                 if (diff < 0)
3619                         diff = 0;
3620                 if (first || diff < min_offset_diff)
3621                         min_offset_diff = diff;
3622
3623                 if (mddev->gendisk)
3624                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3625                                           rdev->data_offset << 9);
3626
3627                 disk->head_position = 0;
3628
3629                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3630                         discard_supported = true;
3631         }
3632
3633         if (mddev->queue) {
3634                 if (discard_supported)
3635                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3636                                                 mddev->queue);
3637                 else
3638                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3639                                                   mddev->queue);
3640         }
3641         /* need to check that every block has at least one working mirror */
3642         if (!enough(conf, -1)) {
3643                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3644                        mdname(mddev));
3645                 goto out_free_conf;
3646         }
3647
3648         if (conf->reshape_progress != MaxSector) {
3649                 /* must ensure that shape change is supported */
3650                 if (conf->geo.far_copies != 1 &&
3651                     conf->geo.far_offset == 0)
3652                         goto out_free_conf;
3653                 if (conf->prev.far_copies != 1 &&
3654                     conf->prev.far_offset == 0)
3655                         goto out_free_conf;
3656         }
3657
3658         mddev->degraded = 0;
3659         for (i = 0;
3660              i < conf->geo.raid_disks
3661                      || i < conf->prev.raid_disks;
3662              i++) {
3663
3664                 disk = conf->mirrors + i;
3665
3666                 if (!disk->rdev && disk->replacement) {
3667                         /* The replacement is all we have - use it */
3668                         disk->rdev = disk->replacement;
3669                         disk->replacement = NULL;
3670                         clear_bit(Replacement, &disk->rdev->flags);
3671                 }
3672
3673                 if (!disk->rdev ||
3674                     !test_bit(In_sync, &disk->rdev->flags)) {
3675                         disk->head_position = 0;
3676                         mddev->degraded++;
3677                         if (disk->rdev &&
3678                             disk->rdev->saved_raid_disk < 0)
3679                                 conf->fullsync = 1;
3680                 }
3681                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3682         }
3683
3684         if (mddev->recovery_cp != MaxSector)
3685                 printk(KERN_NOTICE "md/raid10:%s: not clean"
3686                        " -- starting background reconstruction\n",
3687                        mdname(mddev));
3688         printk(KERN_INFO
3689                 "md/raid10:%s: active with %d out of %d devices\n",
3690                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3691                 conf->geo.raid_disks);
3692         /*
3693          * Ok, everything is just fine now
3694          */
3695         mddev->dev_sectors = conf->dev_sectors;
3696         size = raid10_size(mddev, 0, 0);
3697         md_set_array_sectors(mddev, size);
3698         mddev->resync_max_sectors = size;
3699
3700         if (mddev->queue) {
3701                 int stripe = conf->geo.raid_disks *
3702                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3703
3704                 /* Calculate max read-ahead size.
3705                  * We need to readahead at least twice a whole stripe....
3706                  * maybe...
3707                  */
3708                 stripe /= conf->geo.near_copies;
3709                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3710                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3711         }
3712
3713         if (md_integrity_register(mddev))
3714                 goto out_free_conf;
3715
3716         if (conf->reshape_progress != MaxSector) {
3717                 unsigned long before_length, after_length;
3718
3719                 before_length = ((1 << conf->prev.chunk_shift) *
3720                                  conf->prev.far_copies);
3721                 after_length = ((1 << conf->geo.chunk_shift) *
3722                                 conf->geo.far_copies);
3723
3724                 if (max(before_length, after_length) > min_offset_diff) {
3725                         /* This cannot work */
3726                         printk("md/raid10: offset difference not enough to continue reshape\n");
3727                         goto out_free_conf;
3728                 }
3729                 conf->offset_diff = min_offset_diff;
3730
3731                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3732                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3733                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3734                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3735                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3736                                                         "reshape");
3737         }
3738
3739         return 0;
3740
3741 out_free_conf:
3742         md_unregister_thread(&mddev->thread);
3743         mempool_destroy(conf->r10bio_pool);
3744         safe_put_page(conf->tmppage);
3745         kfree(conf->mirrors);
3746         kfree(conf);
3747         mddev->private = NULL;
3748 out:
3749         return -EIO;
3750 }
3751
3752 static void raid10_free(struct mddev *mddev, void *priv)
3753 {
3754         struct r10conf *conf = priv;
3755
3756         mempool_destroy(conf->r10bio_pool);
3757         safe_put_page(conf->tmppage);
3758         kfree(conf->mirrors);
3759         kfree(conf->mirrors_old);
3760         kfree(conf->mirrors_new);
3761         kfree(conf);
3762 }
3763
3764 static void raid10_quiesce(struct mddev *mddev, int state)
3765 {
3766         struct r10conf *conf = mddev->private;
3767
3768         switch(state) {
3769         case 1:
3770                 raise_barrier(conf, 0);
3771                 break;
3772         case 0:
3773                 lower_barrier(conf);
3774                 break;
3775         }
3776 }
3777
3778 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3779 {
3780         /* Resize of 'far' arrays is not supported.
3781          * For 'near' and 'offset' arrays we can set the
3782          * number of sectors used to be an appropriate multiple
3783          * of the chunk size.
3784          * For 'offset', this is far_copies*chunksize.
3785          * For 'near' the multiplier is the LCM of
3786          * near_copies and raid_disks.
3787          * So if far_copies > 1 && !far_offset, fail.
3788          * Else find LCM(raid_disks, near_copy)*far_copies and
3789          * multiply by chunk_size.  Then round to this number.
3790          * This is mostly done by raid10_size()
3791          */
3792         struct r10conf *conf = mddev->private;
3793         sector_t oldsize, size;
3794
3795         if (mddev->reshape_position != MaxSector)
3796                 return -EBUSY;
3797
3798         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3799                 return -EINVAL;
3800
3801         oldsize = raid10_size(mddev, 0, 0);
3802         size = raid10_size(mddev, sectors, 0);
3803         if (mddev->external_size &&
3804             mddev->array_sectors > size)
3805                 return -EINVAL;
3806         if (mddev->bitmap) {
3807                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3808                 if (ret)
3809                         return ret;
3810         }
3811         md_set_array_sectors(mddev, size);
3812         if (mddev->queue) {
3813                 set_capacity(mddev->gendisk, mddev->array_sectors);
3814                 revalidate_disk(mddev->gendisk);
3815         }
3816         if (sectors > mddev->dev_sectors &&
3817             mddev->recovery_cp > oldsize) {
3818                 mddev->recovery_cp = oldsize;
3819                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3820         }
3821         calc_sectors(conf, sectors);
3822         mddev->dev_sectors = conf->dev_sectors;
3823         mddev->resync_max_sectors = size;
3824         return 0;
3825 }
3826
3827 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3828 {
3829         struct md_rdev *rdev;
3830         struct r10conf *conf;
3831
3832         if (mddev->degraded > 0) {
3833                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3834                        mdname(mddev));
3835                 return ERR_PTR(-EINVAL);
3836         }
3837         sector_div(size, devs);
3838
3839         /* Set new parameters */
3840         mddev->new_level = 10;
3841         /* new layout: far_copies = 1, near_copies = 2 */
3842         mddev->new_layout = (1<<8) + 2;
3843         mddev->new_chunk_sectors = mddev->chunk_sectors;
3844         mddev->delta_disks = mddev->raid_disks;
3845         mddev->raid_disks *= 2;
3846         /* make sure it will be not marked as dirty */
3847         mddev->recovery_cp = MaxSector;
3848         mddev->dev_sectors = size;
3849
3850         conf = setup_conf(mddev);
3851         if (!IS_ERR(conf)) {
3852                 rdev_for_each(rdev, mddev)
3853                         if (rdev->raid_disk >= 0) {
3854                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3855                                 rdev->sectors = size;
3856                         }
3857                 conf->barrier = 1;
3858         }
3859
3860         return conf;
3861 }
3862
3863 static void *raid10_takeover(struct mddev *mddev)
3864 {
3865         struct r0conf *raid0_conf;
3866
3867         /* raid10 can take over:
3868          *  raid0 - providing it has only two drives
3869          */
3870         if (mddev->level == 0) {
3871                 /* for raid0 takeover only one zone is supported */
3872                 raid0_conf = mddev->private;
3873                 if (raid0_conf->nr_strip_zones > 1) {
3874                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3875                                " with more than one zone.\n",
3876                                mdname(mddev));
3877                         return ERR_PTR(-EINVAL);
3878                 }
3879                 return raid10_takeover_raid0(mddev,
3880                         raid0_conf->strip_zone->zone_end,
3881                         raid0_conf->strip_zone->nb_dev);
3882         }
3883         return ERR_PTR(-EINVAL);
3884 }
3885
3886 static int raid10_check_reshape(struct mddev *mddev)
3887 {
3888         /* Called when there is a request to change
3889          * - layout (to ->new_layout)
3890          * - chunk size (to ->new_chunk_sectors)
3891          * - raid_disks (by delta_disks)
3892          * or when trying to restart a reshape that was ongoing.
3893          *
3894          * We need to validate the request and possibly allocate
3895          * space if that might be an issue later.
3896          *
3897          * Currently we reject any reshape of a 'far' mode array,
3898          * allow chunk size to change if new is generally acceptable,
3899          * allow raid_disks to increase, and allow
3900          * a switch between 'near' mode and 'offset' mode.
3901          */
3902         struct r10conf *conf = mddev->private;
3903         struct geom geo;
3904
3905         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3906                 return -EINVAL;
3907
3908         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3909                 /* mustn't change number of copies */
3910                 return -EINVAL;
3911         if (geo.far_copies > 1 && !geo.far_offset)
3912                 /* Cannot switch to 'far' mode */
3913                 return -EINVAL;
3914
3915         if (mddev->array_sectors & geo.chunk_mask)
3916                         /* not factor of array size */
3917                         return -EINVAL;
3918
3919         if (!enough(conf, -1))
3920                 return -EINVAL;
3921
3922         kfree(conf->mirrors_new);
3923         conf->mirrors_new = NULL;
3924         if (mddev->delta_disks > 0) {
3925                 /* allocate new 'mirrors' list */
3926                 conf->mirrors_new = kzalloc(
3927                         sizeof(struct raid10_info)
3928                         *(mddev->raid_disks +
3929                           mddev->delta_disks),
3930                         GFP_KERNEL);
3931                 if (!conf->mirrors_new)
3932                         return -ENOMEM;
3933         }
3934         return 0;
3935 }
3936
3937 /*
3938  * Need to check if array has failed when deciding whether to:
3939  *  - start an array
3940  *  - remove non-faulty devices
3941  *  - add a spare
3942  *  - allow a reshape
3943  * This determination is simple when no reshape is happening.
3944  * However if there is a reshape, we need to carefully check
3945  * both the before and after sections.
3946  * This is because some failed devices may only affect one
3947  * of the two sections, and some non-in_sync devices may
3948  * be insync in the section most affected by failed devices.
3949  */
3950 static int calc_degraded(struct r10conf *conf)
3951 {
3952         int degraded, degraded2;
3953         int i;
3954
3955         rcu_read_lock();
3956         degraded = 0;
3957         /* 'prev' section first */
3958         for (i = 0; i < conf->prev.raid_disks; i++) {
3959                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3960                 if (!rdev || test_bit(Faulty, &rdev->flags))
3961                         degraded++;
3962                 else if (!test_bit(In_sync, &rdev->flags))
3963                         /* When we can reduce the number of devices in
3964                          * an array, this might not contribute to
3965                          * 'degraded'.  It does now.
3966                          */
3967                         degraded++;
3968         }
3969         rcu_read_unlock();
3970         if (conf->geo.raid_disks == conf->prev.raid_disks)
3971                 return degraded;
3972         rcu_read_lock();
3973         degraded2 = 0;
3974         for (i = 0; i < conf->geo.raid_disks; i++) {
3975                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3976                 if (!rdev || test_bit(Faulty, &rdev->flags))
3977                         degraded2++;
3978                 else if (!test_bit(In_sync, &rdev->flags)) {
3979                         /* If reshape is increasing the number of devices,
3980                          * this section has already been recovered, so
3981                          * it doesn't contribute to degraded.
3982                          * else it does.
3983                          */
3984                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
3985                                 degraded2++;
3986                 }
3987         }
3988         rcu_read_unlock();
3989         if (degraded2 > degraded)
3990                 return degraded2;
3991         return degraded;
3992 }
3993
3994 static int raid10_start_reshape(struct mddev *mddev)
3995 {
3996         /* A 'reshape' has been requested. This commits
3997          * the various 'new' fields and sets MD_RECOVER_RESHAPE
3998          * This also checks if there are enough spares and adds them
3999          * to the array.
4000          * We currently require enough spares to make the final
4001          * array non-degraded.  We also require that the difference
4002          * between old and new data_offset - on each device - is
4003          * enough that we never risk over-writing.
4004          */
4005
4006         unsigned long before_length, after_length;
4007         sector_t min_offset_diff = 0;
4008         int first = 1;
4009         struct geom new;
4010         struct r10conf *conf = mddev->private;
4011         struct md_rdev *rdev;
4012         int spares = 0;
4013         int ret;
4014
4015         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4016                 return -EBUSY;
4017
4018         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4019                 return -EINVAL;
4020
4021         before_length = ((1 << conf->prev.chunk_shift) *
4022                          conf->prev.far_copies);
4023         after_length = ((1 << conf->geo.chunk_shift) *
4024                         conf->geo.far_copies);
4025
4026         rdev_for_each(rdev, mddev) {
4027                 if (!test_bit(In_sync, &rdev->flags)
4028                     && !test_bit(Faulty, &rdev->flags))
4029                         spares++;
4030                 if (rdev->raid_disk >= 0) {
4031                         long long diff = (rdev->new_data_offset
4032                                           - rdev->data_offset);
4033                         if (!mddev->reshape_backwards)
4034                                 diff = -diff;
4035                         if (diff < 0)
4036                                 diff = 0;
4037                         if (first || diff < min_offset_diff)
4038                                 min_offset_diff = diff;
4039                 }
4040         }
4041
4042         if (max(before_length, after_length) > min_offset_diff)
4043                 return -EINVAL;
4044
4045         if (spares < mddev->delta_disks)
4046                 return -EINVAL;
4047
4048         conf->offset_diff = min_offset_diff;
4049         spin_lock_irq(&conf->device_lock);
4050         if (conf->mirrors_new) {
4051                 memcpy(conf->mirrors_new, conf->mirrors,
4052                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4053                 smp_mb();
4054                 kfree(conf->mirrors_old);
4055                 conf->mirrors_old = conf->mirrors;
4056                 conf->mirrors = conf->mirrors_new;
4057                 conf->mirrors_new = NULL;
4058         }
4059         setup_geo(&conf->geo, mddev, geo_start);
4060         smp_mb();
4061         if (mddev->reshape_backwards) {
4062                 sector_t size = raid10_size(mddev, 0, 0);
4063                 if (size < mddev->array_sectors) {
4064                         spin_unlock_irq(&conf->device_lock);
4065                         printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4066                                mdname(mddev));
4067                         return -EINVAL;
4068                 }
4069                 mddev->resync_max_sectors = size;
4070                 conf->reshape_progress = size;
4071         } else
4072                 conf->reshape_progress = 0;
4073         conf->reshape_safe = conf->reshape_progress;
4074         spin_unlock_irq(&conf->device_lock);
4075
4076         if (mddev->delta_disks && mddev->bitmap) {
4077                 ret = bitmap_resize(mddev->bitmap,
4078                                     raid10_size(mddev, 0,
4079                                                 conf->geo.raid_disks),
4080                                     0, 0);
4081                 if (ret)
4082                         goto abort;
4083         }
4084         if (mddev->delta_disks > 0) {
4085                 rdev_for_each(rdev, mddev)
4086                         if (rdev->raid_disk < 0 &&
4087                             !test_bit(Faulty, &rdev->flags)) {
4088                                 if (raid10_add_disk(mddev, rdev) == 0) {
4089                                         if (rdev->raid_disk >=
4090                                             conf->prev.raid_disks)
4091                                                 set_bit(In_sync, &rdev->flags);
4092                                         else
4093                                                 rdev->recovery_offset = 0;
4094
4095                                         if (sysfs_link_rdev(mddev, rdev))
4096                                                 /* Failure here  is OK */;
4097                                 }
4098                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4099                                    && !test_bit(Faulty, &rdev->flags)) {
4100                                 /* This is a spare that was manually added */
4101                                 set_bit(In_sync, &rdev->flags);
4102                         }
4103         }
4104         /* When a reshape changes the number of devices,
4105          * ->degraded is measured against the larger of the
4106          * pre and  post numbers.
4107          */
4108         spin_lock_irq(&conf->device_lock);
4109         mddev->degraded = calc_degraded(conf);
4110         spin_unlock_irq(&conf->device_lock);
4111         mddev->raid_disks = conf->geo.raid_disks;
4112         mddev->reshape_position = conf->reshape_progress;
4113         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4114
4115         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4116         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4117         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4118         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4119         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4120
4121         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4122                                                 "reshape");
4123         if (!mddev->sync_thread) {
4124                 ret = -EAGAIN;
4125                 goto abort;
4126         }
4127         conf->reshape_checkpoint = jiffies;
4128         md_wakeup_thread(mddev->sync_thread);
4129         md_new_event(mddev);
4130         return 0;
4131
4132 abort:
4133         mddev->recovery = 0;
4134         spin_lock_irq(&conf->device_lock);
4135         conf->geo = conf->prev;
4136         mddev->raid_disks = conf->geo.raid_disks;
4137         rdev_for_each(rdev, mddev)
4138                 rdev->new_data_offset = rdev->data_offset;
4139         smp_wmb();
4140         conf->reshape_progress = MaxSector;
4141         conf->reshape_safe = MaxSector;
4142         mddev->reshape_position = MaxSector;
4143         spin_unlock_irq(&conf->device_lock);
4144         return ret;
4145 }
4146
4147 /* Calculate the last device-address that could contain
4148  * any block from the chunk that includes the array-address 's'
4149  * and report the next address.
4150  * i.e. the address returned will be chunk-aligned and after
4151  * any data that is in the chunk containing 's'.
4152  */
4153 static sector_t last_dev_address(sector_t s, struct geom *geo)
4154 {
4155         s = (s | geo->chunk_mask) + 1;
4156         s >>= geo->chunk_shift;
4157         s *= geo->near_copies;
4158         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4159         s *= geo->far_copies;
4160         s <<= geo->chunk_shift;
4161         return s;
4162 }
4163
4164 /* Calculate the first device-address that could contain
4165  * any block from the chunk that includes the array-address 's'.
4166  * This too will be the start of a chunk
4167  */
4168 static sector_t first_dev_address(sector_t s, struct geom *geo)
4169 {
4170         s >>= geo->chunk_shift;
4171         s *= geo->near_copies;
4172         sector_div(s, geo->raid_disks);
4173         s *= geo->far_copies;
4174         s <<= geo->chunk_shift;
4175         return s;
4176 }
4177
4178 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4179                                 int *skipped)
4180 {
4181         /* We simply copy at most one chunk (smallest of old and new)
4182          * at a time, possibly less if that exceeds RESYNC_PAGES,
4183          * or we hit a bad block or something.
4184          * This might mean we pause for normal IO in the middle of
4185          * a chunk, but that is not a problem as mddev->reshape_position
4186          * can record any location.
4187          *
4188          * If we will want to write to a location that isn't
4189          * yet recorded as 'safe' (i.e. in metadata on disk) then
4190          * we need to flush all reshape requests and update the metadata.
4191          *
4192          * When reshaping forwards (e.g. to more devices), we interpret
4193          * 'safe' as the earliest block which might not have been copied
4194          * down yet.  We divide this by previous stripe size and multiply
4195          * by previous stripe length to get lowest device offset that we
4196          * cannot write to yet.
4197          * We interpret 'sector_nr' as an address that we want to write to.
4198          * From this we use last_device_address() to find where we might
4199          * write to, and first_device_address on the  'safe' position.
4200          * If this 'next' write position is after the 'safe' position,
4201          * we must update the metadata to increase the 'safe' position.
4202          *
4203          * When reshaping backwards, we round in the opposite direction
4204          * and perform the reverse test:  next write position must not be
4205          * less than current safe position.
4206          *
4207          * In all this the minimum difference in data offsets
4208          * (conf->offset_diff - always positive) allows a bit of slack,
4209          * so next can be after 'safe', but not by more than offset_diff
4210          *
4211          * We need to prepare all the bios here before we start any IO
4212          * to ensure the size we choose is acceptable to all devices.
4213          * The means one for each copy for write-out and an extra one for
4214          * read-in.
4215          * We store the read-in bio in ->master_bio and the others in
4216          * ->devs[x].bio and ->devs[x].repl_bio.
4217          */
4218         struct r10conf *conf = mddev->private;
4219         struct r10bio *r10_bio;
4220         sector_t next, safe, last;
4221         int max_sectors;
4222         int nr_sectors;
4223         int s;
4224         struct md_rdev *rdev;
4225         int need_flush = 0;
4226         struct bio *blist;
4227         struct bio *bio, *read_bio;
4228         int sectors_done = 0;
4229
4230         if (sector_nr == 0) {
4231                 /* If restarting in the middle, skip the initial sectors */
4232                 if (mddev->reshape_backwards &&
4233                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4234                         sector_nr = (raid10_size(mddev, 0, 0)
4235                                      - conf->reshape_progress);
4236                 } else if (!mddev->reshape_backwards &&
4237                            conf->reshape_progress > 0)
4238                         sector_nr = conf->reshape_progress;
4239                 if (sector_nr) {
4240                         mddev->curr_resync_completed = sector_nr;
4241                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4242                         *skipped = 1;
4243                         return sector_nr;
4244                 }
4245         }
4246
4247         /* We don't use sector_nr to track where we are up to
4248          * as that doesn't work well for ->reshape_backwards.
4249          * So just use ->reshape_progress.
4250          */
4251         if (mddev->reshape_backwards) {
4252                 /* 'next' is the earliest device address that we might
4253                  * write to for this chunk in the new layout
4254                  */
4255                 next = first_dev_address(conf->reshape_progress - 1,
4256                                          &conf->geo);
4257
4258                 /* 'safe' is the last device address that we might read from
4259                  * in the old layout after a restart
4260                  */
4261                 safe = last_dev_address(conf->reshape_safe - 1,
4262                                         &conf->prev);
4263
4264                 if (next + conf->offset_diff < safe)
4265                         need_flush = 1;
4266
4267                 last = conf->reshape_progress - 1;
4268                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4269                                                & conf->prev.chunk_mask);
4270                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4271                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4272         } else {
4273                 /* 'next' is after the last device address that we
4274                  * might write to for this chunk in the new layout
4275                  */
4276                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4277
4278                 /* 'safe' is the earliest device address that we might
4279                  * read from in the old layout after a restart
4280                  */
4281                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4282
4283                 /* Need to update metadata if 'next' might be beyond 'safe'
4284                  * as that would possibly corrupt data
4285                  */
4286                 if (next > safe + conf->offset_diff)
4287                         need_flush = 1;
4288
4289                 sector_nr = conf->reshape_progress;
4290                 last  = sector_nr | (conf->geo.chunk_mask
4291                                      & conf->prev.chunk_mask);
4292
4293                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4294                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4295         }
4296
4297         if (need_flush ||
4298             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4299                 /* Need to update reshape_position in metadata */
4300                 wait_barrier(conf);
4301                 mddev->reshape_position = conf->reshape_progress;
4302                 if (mddev->reshape_backwards)
4303                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4304                                 - conf->reshape_progress;
4305                 else
4306                         mddev->curr_resync_completed = conf->reshape_progress;
4307                 conf->reshape_checkpoint = jiffies;
4308                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4309                 md_wakeup_thread(mddev->thread);
4310                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4311                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4312                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4313                         allow_barrier(conf);
4314                         return sectors_done;
4315                 }
4316                 conf->reshape_safe = mddev->reshape_position;
4317                 allow_barrier(conf);
4318         }
4319
4320 read_more:
4321         /* Now schedule reads for blocks from sector_nr to last */
4322         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4323         r10_bio->state = 0;
4324         raise_barrier(conf, sectors_done != 0);
4325         atomic_set(&r10_bio->remaining, 0);
4326         r10_bio->mddev = mddev;
4327         r10_bio->sector = sector_nr;
4328         set_bit(R10BIO_IsReshape, &r10_bio->state);
4329         r10_bio->sectors = last - sector_nr + 1;
4330         rdev = read_balance(conf, r10_bio, &max_sectors);
4331         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4332
4333         if (!rdev) {
4334                 /* Cannot read from here, so need to record bad blocks
4335                  * on all the target devices.
4336                  */
4337                 // FIXME
4338                 mempool_free(r10_bio, conf->r10buf_pool);
4339                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4340                 return sectors_done;
4341         }
4342
4343         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4344
4345         read_bio->bi_bdev = rdev->bdev;
4346         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4347                                + rdev->data_offset);
4348         read_bio->bi_private = r10_bio;
4349         read_bio->bi_end_io = end_sync_read;
4350         read_bio->bi_rw = READ;
4351         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4352         read_bio->bi_error = 0;
4353         read_bio->bi_vcnt = 0;
4354         read_bio->bi_iter.bi_size = 0;
4355         r10_bio->master_bio = read_bio;
4356         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4357
4358         /* Now find the locations in the new layout */
4359         __raid10_find_phys(&conf->geo, r10_bio);
4360
4361         blist = read_bio;
4362         read_bio->bi_next = NULL;
4363
4364         for (s = 0; s < conf->copies*2; s++) {
4365                 struct bio *b;
4366                 int d = r10_bio->devs[s/2].devnum;
4367                 struct md_rdev *rdev2;
4368                 if (s&1) {
4369                         rdev2 = conf->mirrors[d].replacement;
4370                         b = r10_bio->devs[s/2].repl_bio;
4371                 } else {
4372                         rdev2 = conf->mirrors[d].rdev;
4373                         b = r10_bio->devs[s/2].bio;
4374                 }
4375                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4376                         continue;
4377
4378                 bio_reset(b);
4379                 b->bi_bdev = rdev2->bdev;
4380                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4381                         rdev2->new_data_offset;
4382                 b->bi_private = r10_bio;
4383                 b->bi_end_io = end_reshape_write;
4384                 b->bi_rw = WRITE;
4385                 b->bi_next = blist;
4386                 blist = b;
4387         }
4388
4389         /* Now add as many pages as possible to all of these bios. */
4390
4391         nr_sectors = 0;
4392         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4393                 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4394                 int len = (max_sectors - s) << 9;
4395                 if (len > PAGE_SIZE)
4396                         len = PAGE_SIZE;
4397                 for (bio = blist; bio ; bio = bio->bi_next) {
4398                         struct bio *bio2;
4399                         if (bio_add_page(bio, page, len, 0))
4400                                 continue;
4401
4402                         /* Didn't fit, must stop */
4403                         for (bio2 = blist;
4404                              bio2 && bio2 != bio;
4405                              bio2 = bio2->bi_next) {
4406                                 /* Remove last page from this bio */
4407                                 bio2->bi_vcnt--;
4408                                 bio2->bi_iter.bi_size -= len;
4409                                 bio_clear_flag(bio2, BIO_SEG_VALID);
4410                         }
4411                         goto bio_full;
4412                 }
4413                 sector_nr += len >> 9;
4414                 nr_sectors += len >> 9;
4415         }
4416 bio_full:
4417         r10_bio->sectors = nr_sectors;
4418
4419         /* Now submit the read */
4420         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4421         atomic_inc(&r10_bio->remaining);
4422         read_bio->bi_next = NULL;
4423         generic_make_request(read_bio);
4424         sector_nr += nr_sectors;
4425         sectors_done += nr_sectors;
4426         if (sector_nr <= last)
4427                 goto read_more;
4428
4429         /* Now that we have done the whole section we can
4430          * update reshape_progress
4431          */
4432         if (mddev->reshape_backwards)
4433                 conf->reshape_progress -= sectors_done;
4434         else
4435                 conf->reshape_progress += sectors_done;
4436
4437         return sectors_done;
4438 }
4439
4440 static void end_reshape_request(struct r10bio *r10_bio);
4441 static int handle_reshape_read_error(struct mddev *mddev,
4442                                      struct r10bio *r10_bio);
4443 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4444 {
4445         /* Reshape read completed.  Hopefully we have a block
4446          * to write out.
4447          * If we got a read error then we do sync 1-page reads from
4448          * elsewhere until we find the data - or give up.
4449          */
4450         struct r10conf *conf = mddev->private;
4451         int s;
4452
4453         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4454                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4455                         /* Reshape has been aborted */
4456                         md_done_sync(mddev, r10_bio->sectors, 0);
4457                         return;
4458                 }
4459
4460         /* We definitely have the data in the pages, schedule the
4461          * writes.
4462          */
4463         atomic_set(&r10_bio->remaining, 1);
4464         for (s = 0; s < conf->copies*2; s++) {
4465                 struct bio *b;
4466                 int d = r10_bio->devs[s/2].devnum;
4467                 struct md_rdev *rdev;
4468                 if (s&1) {
4469                         rdev = conf->mirrors[d].replacement;
4470                         b = r10_bio->devs[s/2].repl_bio;
4471                 } else {
4472                         rdev = conf->mirrors[d].rdev;
4473                         b = r10_bio->devs[s/2].bio;
4474                 }
4475                 if (!rdev || test_bit(Faulty, &rdev->flags))
4476                         continue;
4477                 atomic_inc(&rdev->nr_pending);
4478                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4479                 atomic_inc(&r10_bio->remaining);
4480                 b->bi_next = NULL;
4481                 generic_make_request(b);
4482         }
4483         end_reshape_request(r10_bio);
4484 }
4485
4486 static void end_reshape(struct r10conf *conf)
4487 {
4488         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4489                 return;
4490
4491         spin_lock_irq(&conf->device_lock);
4492         conf->prev = conf->geo;
4493         md_finish_reshape(conf->mddev);
4494         smp_wmb();
4495         conf->reshape_progress = MaxSector;
4496         conf->reshape_safe = MaxSector;
4497         spin_unlock_irq(&conf->device_lock);
4498
4499         /* read-ahead size must cover two whole stripes, which is
4500          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4501          */
4502         if (conf->mddev->queue) {
4503                 int stripe = conf->geo.raid_disks *
4504                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4505                 stripe /= conf->geo.near_copies;
4506                 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4507                         conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4508         }
4509         conf->fullsync = 0;
4510 }
4511
4512 static int handle_reshape_read_error(struct mddev *mddev,
4513                                      struct r10bio *r10_bio)
4514 {
4515         /* Use sync reads to get the blocks from somewhere else */
4516         int sectors = r10_bio->sectors;
4517         struct r10conf *conf = mddev->private;
4518         struct {
4519                 struct r10bio r10_bio;
4520                 struct r10dev devs[conf->copies];
4521         } on_stack;
4522         struct r10bio *r10b = &on_stack.r10_bio;
4523         int slot = 0;
4524         int idx = 0;
4525         struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4526
4527         r10b->sector = r10_bio->sector;
4528         __raid10_find_phys(&conf->prev, r10b);
4529
4530         while (sectors) {
4531                 int s = sectors;
4532                 int success = 0;
4533                 int first_slot = slot;
4534
4535                 if (s > (PAGE_SIZE >> 9))
4536                         s = PAGE_SIZE >> 9;
4537
4538                 while (!success) {
4539                         int d = r10b->devs[slot].devnum;
4540                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4541                         sector_t addr;
4542                         if (rdev == NULL ||
4543                             test_bit(Faulty, &rdev->flags) ||
4544                             !test_bit(In_sync, &rdev->flags))
4545                                 goto failed;
4546
4547                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4548                         success = sync_page_io(rdev,
4549                                                addr,
4550                                                s << 9,
4551                                                bvec[idx].bv_page,
4552                                                READ, false);
4553                         if (success)
4554                                 break;
4555                 failed:
4556                         slot++;
4557                         if (slot >= conf->copies)
4558                                 slot = 0;
4559                         if (slot == first_slot)
4560                                 break;
4561                 }
4562                 if (!success) {
4563                         /* couldn't read this block, must give up */
4564                         set_bit(MD_RECOVERY_INTR,
4565                                 &mddev->recovery);
4566                         return -EIO;
4567                 }
4568                 sectors -= s;
4569                 idx++;
4570         }
4571         return 0;
4572 }
4573
4574 static void end_reshape_write(struct bio *bio)
4575 {
4576         struct r10bio *r10_bio = bio->bi_private;
4577         struct mddev *mddev = r10_bio->mddev;
4578         struct r10conf *conf = mddev->private;
4579         int d;
4580         int slot;
4581         int repl;
4582         struct md_rdev *rdev = NULL;
4583
4584         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4585         if (repl)
4586                 rdev = conf->mirrors[d].replacement;
4587         if (!rdev) {
4588                 smp_mb();
4589                 rdev = conf->mirrors[d].rdev;
4590         }
4591
4592         if (bio->bi_error) {
4593                 /* FIXME should record badblock */
4594                 md_error(mddev, rdev);
4595         }
4596
4597         rdev_dec_pending(rdev, mddev);
4598         end_reshape_request(r10_bio);
4599 }
4600
4601 static void end_reshape_request(struct r10bio *r10_bio)
4602 {
4603         if (!atomic_dec_and_test(&r10_bio->remaining))
4604                 return;
4605         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4606         bio_put(r10_bio->master_bio);
4607         put_buf(r10_bio);
4608 }
4609
4610 static void raid10_finish_reshape(struct mddev *mddev)
4611 {
4612         struct r10conf *conf = mddev->private;
4613
4614         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4615                 return;
4616
4617         if (mddev->delta_disks > 0) {
4618                 sector_t size = raid10_size(mddev, 0, 0);
4619                 md_set_array_sectors(mddev, size);
4620                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4621                         mddev->recovery_cp = mddev->resync_max_sectors;
4622                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4623                 }
4624                 mddev->resync_max_sectors = size;
4625                 if (mddev->queue) {
4626                         set_capacity(mddev->gendisk, mddev->array_sectors);
4627                         revalidate_disk(mddev->gendisk);
4628                 }
4629         } else {
4630                 int d;
4631                 for (d = conf->geo.raid_disks ;
4632                      d < conf->geo.raid_disks - mddev->delta_disks;
4633                      d++) {
4634                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4635                         if (rdev)
4636                                 clear_bit(In_sync, &rdev->flags);
4637                         rdev = conf->mirrors[d].replacement;
4638                         if (rdev)
4639                                 clear_bit(In_sync, &rdev->flags);
4640                 }
4641         }
4642         mddev->layout = mddev->new_layout;
4643         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4644         mddev->reshape_position = MaxSector;
4645         mddev->delta_disks = 0;
4646         mddev->reshape_backwards = 0;
4647 }
4648
4649 static struct md_personality raid10_personality =
4650 {
4651         .name           = "raid10",
4652         .level          = 10,
4653         .owner          = THIS_MODULE,
4654         .make_request   = raid10_make_request,
4655         .run            = raid10_run,
4656         .free           = raid10_free,
4657         .status         = raid10_status,
4658         .error_handler  = raid10_error,
4659         .hot_add_disk   = raid10_add_disk,
4660         .hot_remove_disk= raid10_remove_disk,
4661         .spare_active   = raid10_spare_active,
4662         .sync_request   = raid10_sync_request,
4663         .quiesce        = raid10_quiesce,
4664         .size           = raid10_size,
4665         .resize         = raid10_resize,
4666         .takeover       = raid10_takeover,
4667         .check_reshape  = raid10_check_reshape,
4668         .start_reshape  = raid10_start_reshape,
4669         .finish_reshape = raid10_finish_reshape,
4670         .congested      = raid10_congested,
4671 };
4672
4673 static int __init raid_init(void)
4674 {
4675         return register_md_personality(&raid10_personality);
4676 }
4677
4678 static void raid_exit(void)
4679 {
4680         unregister_md_personality(&raid10_personality);
4681 }
4682
4683 module_init(raid_init);
4684 module_exit(raid_exit);
4685 MODULE_LICENSE("GPL");
4686 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4687 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4688 MODULE_ALIAS("md-raid10");
4689 MODULE_ALIAS("md-level-10");
4690
4691 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);