Merge branch 'smack-for-4.17' of git://github.com/cschaufler/next-smack into next...
[sfrench/cifs-2.6.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "md-bitmap.h"
33
34 /*
35  * RAID10 provides a combination of RAID0 and RAID1 functionality.
36  * The layout of data is defined by
37  *    chunk_size
38  *    raid_disks
39  *    near_copies (stored in low byte of layout)
40  *    far_copies (stored in second byte of layout)
41  *    far_offset (stored in bit 16 of layout )
42  *    use_far_sets (stored in bit 17 of layout )
43  *    use_far_sets_bugfixed (stored in bit 18 of layout )
44  *
45  * The data to be stored is divided into chunks using chunksize.  Each device
46  * is divided into far_copies sections.   In each section, chunks are laid out
47  * in a style similar to raid0, but near_copies copies of each chunk is stored
48  * (each on a different drive).  The starting device for each section is offset
49  * near_copies from the starting device of the previous section.  Thus there
50  * are (near_copies * far_copies) of each chunk, and each is on a different
51  * drive.  near_copies and far_copies must be at least one, and their product
52  * is at most raid_disks.
53  *
54  * If far_offset is true, then the far_copies are handled a bit differently.
55  * The copies are still in different stripes, but instead of being very far
56  * apart on disk, there are adjacent stripes.
57  *
58  * The far and offset algorithms are handled slightly differently if
59  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
60  * sets that are (near_copies * far_copies) in size.  The far copied stripes
61  * are still shifted by 'near_copies' devices, but this shifting stays confined
62  * to the set rather than the entire array.  This is done to improve the number
63  * of device combinations that can fail without causing the array to fail.
64  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65  * on a device):
66  *    A B C D    A B C D E
67  *      ...         ...
68  *    D A B C    E A B C D
69  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70  *    [A B] [C D]    [A B] [C D E]
71  *    |...| |...|    |...| | ... |
72  *    [B A] [D C]    [B A] [E C D]
73  */
74
75 /*
76  * Number of guaranteed r10bios in case of extreme VM load:
77  */
78 #define NR_RAID10_BIOS 256
79
80 /* when we get a read error on a read-only array, we redirect to another
81  * device without failing the first device, or trying to over-write to
82  * correct the read error.  To keep track of bad blocks on a per-bio
83  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84  */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87  * bad-block marking which must be done from process context.  So we record
88  * the success by setting devs[n].bio to IO_MADE_GOOD
89  */
90 #define IO_MADE_GOOD ((struct bio *)2)
91
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93
94 /* When there are this many requests queued to be written by
95  * the raid10 thread, we become 'congested' to provide back-pressure
96  * for writeback.
97  */
98 static int max_queued_requests = 1024;
99
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105                                 int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109
110 #define raid10_log(md, fmt, args...)                            \
111         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112
113 #include "raid1-10.c"
114
115 /*
116  * for resync bio, r10bio pointer can be retrieved from the per-bio
117  * 'struct resync_pages'.
118  */
119 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
120 {
121         return get_resync_pages(bio)->raid_bio;
122 }
123
124 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
125 {
126         struct r10conf *conf = data;
127         int size = offsetof(struct r10bio, devs[conf->copies]);
128
129         /* allocate a r10bio with room for raid_disks entries in the
130          * bios array */
131         return kzalloc(size, gfp_flags);
132 }
133
134 static void r10bio_pool_free(void *r10_bio, void *data)
135 {
136         kfree(r10_bio);
137 }
138
139 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
140 /* amount of memory to reserve for resync requests */
141 #define RESYNC_WINDOW (1024*1024)
142 /* maximum number of concurrent requests, memory permitting */
143 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
144 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
145 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
146
147 /*
148  * When performing a resync, we need to read and compare, so
149  * we need as many pages are there are copies.
150  * When performing a recovery, we need 2 bios, one for read,
151  * one for write (we recover only one drive per r10buf)
152  *
153  */
154 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
155 {
156         struct r10conf *conf = data;
157         struct r10bio *r10_bio;
158         struct bio *bio;
159         int j;
160         int nalloc, nalloc_rp;
161         struct resync_pages *rps;
162
163         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
164         if (!r10_bio)
165                 return NULL;
166
167         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
168             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
169                 nalloc = conf->copies; /* resync */
170         else
171                 nalloc = 2; /* recovery */
172
173         /* allocate once for all bios */
174         if (!conf->have_replacement)
175                 nalloc_rp = nalloc;
176         else
177                 nalloc_rp = nalloc * 2;
178         rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags);
179         if (!rps)
180                 goto out_free_r10bio;
181
182         /*
183          * Allocate bios.
184          */
185         for (j = nalloc ; j-- ; ) {
186                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
187                 if (!bio)
188                         goto out_free_bio;
189                 r10_bio->devs[j].bio = bio;
190                 if (!conf->have_replacement)
191                         continue;
192                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
193                 if (!bio)
194                         goto out_free_bio;
195                 r10_bio->devs[j].repl_bio = bio;
196         }
197         /*
198          * Allocate RESYNC_PAGES data pages and attach them
199          * where needed.
200          */
201         for (j = 0; j < nalloc; j++) {
202                 struct bio *rbio = r10_bio->devs[j].repl_bio;
203                 struct resync_pages *rp, *rp_repl;
204
205                 rp = &rps[j];
206                 if (rbio)
207                         rp_repl = &rps[nalloc + j];
208
209                 bio = r10_bio->devs[j].bio;
210
211                 if (!j || test_bit(MD_RECOVERY_SYNC,
212                                    &conf->mddev->recovery)) {
213                         if (resync_alloc_pages(rp, gfp_flags))
214                                 goto out_free_pages;
215                 } else {
216                         memcpy(rp, &rps[0], sizeof(*rp));
217                         resync_get_all_pages(rp);
218                 }
219
220                 rp->raid_bio = r10_bio;
221                 bio->bi_private = rp;
222                 if (rbio) {
223                         memcpy(rp_repl, rp, sizeof(*rp));
224                         rbio->bi_private = rp_repl;
225                 }
226         }
227
228         return r10_bio;
229
230 out_free_pages:
231         while (--j >= 0)
232                 resync_free_pages(&rps[j * 2]);
233
234         j = 0;
235 out_free_bio:
236         for ( ; j < nalloc; j++) {
237                 if (r10_bio->devs[j].bio)
238                         bio_put(r10_bio->devs[j].bio);
239                 if (r10_bio->devs[j].repl_bio)
240                         bio_put(r10_bio->devs[j].repl_bio);
241         }
242         kfree(rps);
243 out_free_r10bio:
244         r10bio_pool_free(r10_bio, conf);
245         return NULL;
246 }
247
248 static void r10buf_pool_free(void *__r10_bio, void *data)
249 {
250         struct r10conf *conf = data;
251         struct r10bio *r10bio = __r10_bio;
252         int j;
253         struct resync_pages *rp = NULL;
254
255         for (j = conf->copies; j--; ) {
256                 struct bio *bio = r10bio->devs[j].bio;
257
258                 rp = get_resync_pages(bio);
259                 resync_free_pages(rp);
260                 bio_put(bio);
261
262                 bio = r10bio->devs[j].repl_bio;
263                 if (bio)
264                         bio_put(bio);
265         }
266
267         /* resync pages array stored in the 1st bio's .bi_private */
268         kfree(rp);
269
270         r10bio_pool_free(r10bio, conf);
271 }
272
273 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
274 {
275         int i;
276
277         for (i = 0; i < conf->copies; i++) {
278                 struct bio **bio = & r10_bio->devs[i].bio;
279                 if (!BIO_SPECIAL(*bio))
280                         bio_put(*bio);
281                 *bio = NULL;
282                 bio = &r10_bio->devs[i].repl_bio;
283                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
284                         bio_put(*bio);
285                 *bio = NULL;
286         }
287 }
288
289 static void free_r10bio(struct r10bio *r10_bio)
290 {
291         struct r10conf *conf = r10_bio->mddev->private;
292
293         put_all_bios(conf, r10_bio);
294         mempool_free(r10_bio, conf->r10bio_pool);
295 }
296
297 static void put_buf(struct r10bio *r10_bio)
298 {
299         struct r10conf *conf = r10_bio->mddev->private;
300
301         mempool_free(r10_bio, conf->r10buf_pool);
302
303         lower_barrier(conf);
304 }
305
306 static void reschedule_retry(struct r10bio *r10_bio)
307 {
308         unsigned long flags;
309         struct mddev *mddev = r10_bio->mddev;
310         struct r10conf *conf = mddev->private;
311
312         spin_lock_irqsave(&conf->device_lock, flags);
313         list_add(&r10_bio->retry_list, &conf->retry_list);
314         conf->nr_queued ++;
315         spin_unlock_irqrestore(&conf->device_lock, flags);
316
317         /* wake up frozen array... */
318         wake_up(&conf->wait_barrier);
319
320         md_wakeup_thread(mddev->thread);
321 }
322
323 /*
324  * raid_end_bio_io() is called when we have finished servicing a mirrored
325  * operation and are ready to return a success/failure code to the buffer
326  * cache layer.
327  */
328 static void raid_end_bio_io(struct r10bio *r10_bio)
329 {
330         struct bio *bio = r10_bio->master_bio;
331         struct r10conf *conf = r10_bio->mddev->private;
332
333         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
334                 bio->bi_status = BLK_STS_IOERR;
335
336         bio_endio(bio);
337         /*
338          * Wake up any possible resync thread that waits for the device
339          * to go idle.
340          */
341         allow_barrier(conf);
342
343         free_r10bio(r10_bio);
344 }
345
346 /*
347  * Update disk head position estimator based on IRQ completion info.
348  */
349 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
350 {
351         struct r10conf *conf = r10_bio->mddev->private;
352
353         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
354                 r10_bio->devs[slot].addr + (r10_bio->sectors);
355 }
356
357 /*
358  * Find the disk number which triggered given bio
359  */
360 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
361                          struct bio *bio, int *slotp, int *replp)
362 {
363         int slot;
364         int repl = 0;
365
366         for (slot = 0; slot < conf->copies; slot++) {
367                 if (r10_bio->devs[slot].bio == bio)
368                         break;
369                 if (r10_bio->devs[slot].repl_bio == bio) {
370                         repl = 1;
371                         break;
372                 }
373         }
374
375         BUG_ON(slot == conf->copies);
376         update_head_pos(slot, r10_bio);
377
378         if (slotp)
379                 *slotp = slot;
380         if (replp)
381                 *replp = repl;
382         return r10_bio->devs[slot].devnum;
383 }
384
385 static void raid10_end_read_request(struct bio *bio)
386 {
387         int uptodate = !bio->bi_status;
388         struct r10bio *r10_bio = bio->bi_private;
389         int slot;
390         struct md_rdev *rdev;
391         struct r10conf *conf = r10_bio->mddev->private;
392
393         slot = r10_bio->read_slot;
394         rdev = r10_bio->devs[slot].rdev;
395         /*
396          * this branch is our 'one mirror IO has finished' event handler:
397          */
398         update_head_pos(slot, r10_bio);
399
400         if (uptodate) {
401                 /*
402                  * Set R10BIO_Uptodate in our master bio, so that
403                  * we will return a good error code to the higher
404                  * levels even if IO on some other mirrored buffer fails.
405                  *
406                  * The 'master' represents the composite IO operation to
407                  * user-side. So if something waits for IO, then it will
408                  * wait for the 'master' bio.
409                  */
410                 set_bit(R10BIO_Uptodate, &r10_bio->state);
411         } else {
412                 /* If all other devices that store this block have
413                  * failed, we want to return the error upwards rather
414                  * than fail the last device.  Here we redefine
415                  * "uptodate" to mean "Don't want to retry"
416                  */
417                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
418                              rdev->raid_disk))
419                         uptodate = 1;
420         }
421         if (uptodate) {
422                 raid_end_bio_io(r10_bio);
423                 rdev_dec_pending(rdev, conf->mddev);
424         } else {
425                 /*
426                  * oops, read error - keep the refcount on the rdev
427                  */
428                 char b[BDEVNAME_SIZE];
429                 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
430                                    mdname(conf->mddev),
431                                    bdevname(rdev->bdev, b),
432                                    (unsigned long long)r10_bio->sector);
433                 set_bit(R10BIO_ReadError, &r10_bio->state);
434                 reschedule_retry(r10_bio);
435         }
436 }
437
438 static void close_write(struct r10bio *r10_bio)
439 {
440         /* clear the bitmap if all writes complete successfully */
441         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
442                         r10_bio->sectors,
443                         !test_bit(R10BIO_Degraded, &r10_bio->state),
444                         0);
445         md_write_end(r10_bio->mddev);
446 }
447
448 static void one_write_done(struct r10bio *r10_bio)
449 {
450         if (atomic_dec_and_test(&r10_bio->remaining)) {
451                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
452                         reschedule_retry(r10_bio);
453                 else {
454                         close_write(r10_bio);
455                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
456                                 reschedule_retry(r10_bio);
457                         else
458                                 raid_end_bio_io(r10_bio);
459                 }
460         }
461 }
462
463 static void raid10_end_write_request(struct bio *bio)
464 {
465         struct r10bio *r10_bio = bio->bi_private;
466         int dev;
467         int dec_rdev = 1;
468         struct r10conf *conf = r10_bio->mddev->private;
469         int slot, repl;
470         struct md_rdev *rdev = NULL;
471         struct bio *to_put = NULL;
472         bool discard_error;
473
474         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
475
476         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
477
478         if (repl)
479                 rdev = conf->mirrors[dev].replacement;
480         if (!rdev) {
481                 smp_rmb();
482                 repl = 0;
483                 rdev = conf->mirrors[dev].rdev;
484         }
485         /*
486          * this branch is our 'one mirror IO has finished' event handler:
487          */
488         if (bio->bi_status && !discard_error) {
489                 if (repl)
490                         /* Never record new bad blocks to replacement,
491                          * just fail it.
492                          */
493                         md_error(rdev->mddev, rdev);
494                 else {
495                         set_bit(WriteErrorSeen, &rdev->flags);
496                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
497                                 set_bit(MD_RECOVERY_NEEDED,
498                                         &rdev->mddev->recovery);
499
500                         dec_rdev = 0;
501                         if (test_bit(FailFast, &rdev->flags) &&
502                             (bio->bi_opf & MD_FAILFAST)) {
503                                 md_error(rdev->mddev, rdev);
504                                 if (!test_bit(Faulty, &rdev->flags))
505                                         /* This is the only remaining device,
506                                          * We need to retry the write without
507                                          * FailFast
508                                          */
509                                         set_bit(R10BIO_WriteError, &r10_bio->state);
510                                 else {
511                                         r10_bio->devs[slot].bio = NULL;
512                                         to_put = bio;
513                                         dec_rdev = 1;
514                                 }
515                         } else
516                                 set_bit(R10BIO_WriteError, &r10_bio->state);
517                 }
518         } else {
519                 /*
520                  * Set R10BIO_Uptodate in our master bio, so that
521                  * we will return a good error code for to the higher
522                  * levels even if IO on some other mirrored buffer fails.
523                  *
524                  * The 'master' represents the composite IO operation to
525                  * user-side. So if something waits for IO, then it will
526                  * wait for the 'master' bio.
527                  */
528                 sector_t first_bad;
529                 int bad_sectors;
530
531                 /*
532                  * Do not set R10BIO_Uptodate if the current device is
533                  * rebuilding or Faulty. This is because we cannot use
534                  * such device for properly reading the data back (we could
535                  * potentially use it, if the current write would have felt
536                  * before rdev->recovery_offset, but for simplicity we don't
537                  * check this here.
538                  */
539                 if (test_bit(In_sync, &rdev->flags) &&
540                     !test_bit(Faulty, &rdev->flags))
541                         set_bit(R10BIO_Uptodate, &r10_bio->state);
542
543                 /* Maybe we can clear some bad blocks. */
544                 if (is_badblock(rdev,
545                                 r10_bio->devs[slot].addr,
546                                 r10_bio->sectors,
547                                 &first_bad, &bad_sectors) && !discard_error) {
548                         bio_put(bio);
549                         if (repl)
550                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
551                         else
552                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
553                         dec_rdev = 0;
554                         set_bit(R10BIO_MadeGood, &r10_bio->state);
555                 }
556         }
557
558         /*
559          *
560          * Let's see if all mirrored write operations have finished
561          * already.
562          */
563         one_write_done(r10_bio);
564         if (dec_rdev)
565                 rdev_dec_pending(rdev, conf->mddev);
566         if (to_put)
567                 bio_put(to_put);
568 }
569
570 /*
571  * RAID10 layout manager
572  * As well as the chunksize and raid_disks count, there are two
573  * parameters: near_copies and far_copies.
574  * near_copies * far_copies must be <= raid_disks.
575  * Normally one of these will be 1.
576  * If both are 1, we get raid0.
577  * If near_copies == raid_disks, we get raid1.
578  *
579  * Chunks are laid out in raid0 style with near_copies copies of the
580  * first chunk, followed by near_copies copies of the next chunk and
581  * so on.
582  * If far_copies > 1, then after 1/far_copies of the array has been assigned
583  * as described above, we start again with a device offset of near_copies.
584  * So we effectively have another copy of the whole array further down all
585  * the drives, but with blocks on different drives.
586  * With this layout, and block is never stored twice on the one device.
587  *
588  * raid10_find_phys finds the sector offset of a given virtual sector
589  * on each device that it is on.
590  *
591  * raid10_find_virt does the reverse mapping, from a device and a
592  * sector offset to a virtual address
593  */
594
595 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
596 {
597         int n,f;
598         sector_t sector;
599         sector_t chunk;
600         sector_t stripe;
601         int dev;
602         int slot = 0;
603         int last_far_set_start, last_far_set_size;
604
605         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
606         last_far_set_start *= geo->far_set_size;
607
608         last_far_set_size = geo->far_set_size;
609         last_far_set_size += (geo->raid_disks % geo->far_set_size);
610
611         /* now calculate first sector/dev */
612         chunk = r10bio->sector >> geo->chunk_shift;
613         sector = r10bio->sector & geo->chunk_mask;
614
615         chunk *= geo->near_copies;
616         stripe = chunk;
617         dev = sector_div(stripe, geo->raid_disks);
618         if (geo->far_offset)
619                 stripe *= geo->far_copies;
620
621         sector += stripe << geo->chunk_shift;
622
623         /* and calculate all the others */
624         for (n = 0; n < geo->near_copies; n++) {
625                 int d = dev;
626                 int set;
627                 sector_t s = sector;
628                 r10bio->devs[slot].devnum = d;
629                 r10bio->devs[slot].addr = s;
630                 slot++;
631
632                 for (f = 1; f < geo->far_copies; f++) {
633                         set = d / geo->far_set_size;
634                         d += geo->near_copies;
635
636                         if ((geo->raid_disks % geo->far_set_size) &&
637                             (d > last_far_set_start)) {
638                                 d -= last_far_set_start;
639                                 d %= last_far_set_size;
640                                 d += last_far_set_start;
641                         } else {
642                                 d %= geo->far_set_size;
643                                 d += geo->far_set_size * set;
644                         }
645                         s += geo->stride;
646                         r10bio->devs[slot].devnum = d;
647                         r10bio->devs[slot].addr = s;
648                         slot++;
649                 }
650                 dev++;
651                 if (dev >= geo->raid_disks) {
652                         dev = 0;
653                         sector += (geo->chunk_mask + 1);
654                 }
655         }
656 }
657
658 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
659 {
660         struct geom *geo = &conf->geo;
661
662         if (conf->reshape_progress != MaxSector &&
663             ((r10bio->sector >= conf->reshape_progress) !=
664              conf->mddev->reshape_backwards)) {
665                 set_bit(R10BIO_Previous, &r10bio->state);
666                 geo = &conf->prev;
667         } else
668                 clear_bit(R10BIO_Previous, &r10bio->state);
669
670         __raid10_find_phys(geo, r10bio);
671 }
672
673 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
674 {
675         sector_t offset, chunk, vchunk;
676         /* Never use conf->prev as this is only called during resync
677          * or recovery, so reshape isn't happening
678          */
679         struct geom *geo = &conf->geo;
680         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
681         int far_set_size = geo->far_set_size;
682         int last_far_set_start;
683
684         if (geo->raid_disks % geo->far_set_size) {
685                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
686                 last_far_set_start *= geo->far_set_size;
687
688                 if (dev >= last_far_set_start) {
689                         far_set_size = geo->far_set_size;
690                         far_set_size += (geo->raid_disks % geo->far_set_size);
691                         far_set_start = last_far_set_start;
692                 }
693         }
694
695         offset = sector & geo->chunk_mask;
696         if (geo->far_offset) {
697                 int fc;
698                 chunk = sector >> geo->chunk_shift;
699                 fc = sector_div(chunk, geo->far_copies);
700                 dev -= fc * geo->near_copies;
701                 if (dev < far_set_start)
702                         dev += far_set_size;
703         } else {
704                 while (sector >= geo->stride) {
705                         sector -= geo->stride;
706                         if (dev < (geo->near_copies + far_set_start))
707                                 dev += far_set_size - geo->near_copies;
708                         else
709                                 dev -= geo->near_copies;
710                 }
711                 chunk = sector >> geo->chunk_shift;
712         }
713         vchunk = chunk * geo->raid_disks + dev;
714         sector_div(vchunk, geo->near_copies);
715         return (vchunk << geo->chunk_shift) + offset;
716 }
717
718 /*
719  * This routine returns the disk from which the requested read should
720  * be done. There is a per-array 'next expected sequential IO' sector
721  * number - if this matches on the next IO then we use the last disk.
722  * There is also a per-disk 'last know head position' sector that is
723  * maintained from IRQ contexts, both the normal and the resync IO
724  * completion handlers update this position correctly. If there is no
725  * perfect sequential match then we pick the disk whose head is closest.
726  *
727  * If there are 2 mirrors in the same 2 devices, performance degrades
728  * because position is mirror, not device based.
729  *
730  * The rdev for the device selected will have nr_pending incremented.
731  */
732
733 /*
734  * FIXME: possibly should rethink readbalancing and do it differently
735  * depending on near_copies / far_copies geometry.
736  */
737 static struct md_rdev *read_balance(struct r10conf *conf,
738                                     struct r10bio *r10_bio,
739                                     int *max_sectors)
740 {
741         const sector_t this_sector = r10_bio->sector;
742         int disk, slot;
743         int sectors = r10_bio->sectors;
744         int best_good_sectors;
745         sector_t new_distance, best_dist;
746         struct md_rdev *best_rdev, *rdev = NULL;
747         int do_balance;
748         int best_slot;
749         struct geom *geo = &conf->geo;
750
751         raid10_find_phys(conf, r10_bio);
752         rcu_read_lock();
753         best_slot = -1;
754         best_rdev = NULL;
755         best_dist = MaxSector;
756         best_good_sectors = 0;
757         do_balance = 1;
758         clear_bit(R10BIO_FailFast, &r10_bio->state);
759         /*
760          * Check if we can balance. We can balance on the whole
761          * device if no resync is going on (recovery is ok), or below
762          * the resync window. We take the first readable disk when
763          * above the resync window.
764          */
765         if ((conf->mddev->recovery_cp < MaxSector
766              && (this_sector + sectors >= conf->next_resync)) ||
767             (mddev_is_clustered(conf->mddev) &&
768              md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
769                                             this_sector + sectors)))
770                 do_balance = 0;
771
772         for (slot = 0; slot < conf->copies ; slot++) {
773                 sector_t first_bad;
774                 int bad_sectors;
775                 sector_t dev_sector;
776
777                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
778                         continue;
779                 disk = r10_bio->devs[slot].devnum;
780                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
781                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
782                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
783                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
784                 if (rdev == NULL ||
785                     test_bit(Faulty, &rdev->flags))
786                         continue;
787                 if (!test_bit(In_sync, &rdev->flags) &&
788                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
789                         continue;
790
791                 dev_sector = r10_bio->devs[slot].addr;
792                 if (is_badblock(rdev, dev_sector, sectors,
793                                 &first_bad, &bad_sectors)) {
794                         if (best_dist < MaxSector)
795                                 /* Already have a better slot */
796                                 continue;
797                         if (first_bad <= dev_sector) {
798                                 /* Cannot read here.  If this is the
799                                  * 'primary' device, then we must not read
800                                  * beyond 'bad_sectors' from another device.
801                                  */
802                                 bad_sectors -= (dev_sector - first_bad);
803                                 if (!do_balance && sectors > bad_sectors)
804                                         sectors = bad_sectors;
805                                 if (best_good_sectors > sectors)
806                                         best_good_sectors = sectors;
807                         } else {
808                                 sector_t good_sectors =
809                                         first_bad - dev_sector;
810                                 if (good_sectors > best_good_sectors) {
811                                         best_good_sectors = good_sectors;
812                                         best_slot = slot;
813                                         best_rdev = rdev;
814                                 }
815                                 if (!do_balance)
816                                         /* Must read from here */
817                                         break;
818                         }
819                         continue;
820                 } else
821                         best_good_sectors = sectors;
822
823                 if (!do_balance)
824                         break;
825
826                 if (best_slot >= 0)
827                         /* At least 2 disks to choose from so failfast is OK */
828                         set_bit(R10BIO_FailFast, &r10_bio->state);
829                 /* This optimisation is debatable, and completely destroys
830                  * sequential read speed for 'far copies' arrays.  So only
831                  * keep it for 'near' arrays, and review those later.
832                  */
833                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
834                         new_distance = 0;
835
836                 /* for far > 1 always use the lowest address */
837                 else if (geo->far_copies > 1)
838                         new_distance = r10_bio->devs[slot].addr;
839                 else
840                         new_distance = abs(r10_bio->devs[slot].addr -
841                                            conf->mirrors[disk].head_position);
842                 if (new_distance < best_dist) {
843                         best_dist = new_distance;
844                         best_slot = slot;
845                         best_rdev = rdev;
846                 }
847         }
848         if (slot >= conf->copies) {
849                 slot = best_slot;
850                 rdev = best_rdev;
851         }
852
853         if (slot >= 0) {
854                 atomic_inc(&rdev->nr_pending);
855                 r10_bio->read_slot = slot;
856         } else
857                 rdev = NULL;
858         rcu_read_unlock();
859         *max_sectors = best_good_sectors;
860
861         return rdev;
862 }
863
864 static int raid10_congested(struct mddev *mddev, int bits)
865 {
866         struct r10conf *conf = mddev->private;
867         int i, ret = 0;
868
869         if ((bits & (1 << WB_async_congested)) &&
870             conf->pending_count >= max_queued_requests)
871                 return 1;
872
873         rcu_read_lock();
874         for (i = 0;
875              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
876                      && ret == 0;
877              i++) {
878                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
879                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
880                         struct request_queue *q = bdev_get_queue(rdev->bdev);
881
882                         ret |= bdi_congested(q->backing_dev_info, bits);
883                 }
884         }
885         rcu_read_unlock();
886         return ret;
887 }
888
889 static void flush_pending_writes(struct r10conf *conf)
890 {
891         /* Any writes that have been queued but are awaiting
892          * bitmap updates get flushed here.
893          */
894         spin_lock_irq(&conf->device_lock);
895
896         if (conf->pending_bio_list.head) {
897                 struct blk_plug plug;
898                 struct bio *bio;
899
900                 bio = bio_list_get(&conf->pending_bio_list);
901                 conf->pending_count = 0;
902                 spin_unlock_irq(&conf->device_lock);
903
904                 /*
905                  * As this is called in a wait_event() loop (see freeze_array),
906                  * current->state might be TASK_UNINTERRUPTIBLE which will
907                  * cause a warning when we prepare to wait again.  As it is
908                  * rare that this path is taken, it is perfectly safe to force
909                  * us to go around the wait_event() loop again, so the warning
910                  * is a false-positive. Silence the warning by resetting
911                  * thread state
912                  */
913                 __set_current_state(TASK_RUNNING);
914
915                 blk_start_plug(&plug);
916                 /* flush any pending bitmap writes to disk
917                  * before proceeding w/ I/O */
918                 bitmap_unplug(conf->mddev->bitmap);
919                 wake_up(&conf->wait_barrier);
920
921                 while (bio) { /* submit pending writes */
922                         struct bio *next = bio->bi_next;
923                         struct md_rdev *rdev = (void*)bio->bi_disk;
924                         bio->bi_next = NULL;
925                         bio_set_dev(bio, rdev->bdev);
926                         if (test_bit(Faulty, &rdev->flags)) {
927                                 bio_io_error(bio);
928                         } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
929                                             !blk_queue_discard(bio->bi_disk->queue)))
930                                 /* Just ignore it */
931                                 bio_endio(bio);
932                         else
933                                 generic_make_request(bio);
934                         bio = next;
935                 }
936                 blk_finish_plug(&plug);
937         } else
938                 spin_unlock_irq(&conf->device_lock);
939 }
940
941 /* Barriers....
942  * Sometimes we need to suspend IO while we do something else,
943  * either some resync/recovery, or reconfigure the array.
944  * To do this we raise a 'barrier'.
945  * The 'barrier' is a counter that can be raised multiple times
946  * to count how many activities are happening which preclude
947  * normal IO.
948  * We can only raise the barrier if there is no pending IO.
949  * i.e. if nr_pending == 0.
950  * We choose only to raise the barrier if no-one is waiting for the
951  * barrier to go down.  This means that as soon as an IO request
952  * is ready, no other operations which require a barrier will start
953  * until the IO request has had a chance.
954  *
955  * So: regular IO calls 'wait_barrier'.  When that returns there
956  *    is no backgroup IO happening,  It must arrange to call
957  *    allow_barrier when it has finished its IO.
958  * backgroup IO calls must call raise_barrier.  Once that returns
959  *    there is no normal IO happeing.  It must arrange to call
960  *    lower_barrier when the particular background IO completes.
961  */
962
963 static void raise_barrier(struct r10conf *conf, int force)
964 {
965         BUG_ON(force && !conf->barrier);
966         spin_lock_irq(&conf->resync_lock);
967
968         /* Wait until no block IO is waiting (unless 'force') */
969         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
970                             conf->resync_lock);
971
972         /* block any new IO from starting */
973         conf->barrier++;
974
975         /* Now wait for all pending IO to complete */
976         wait_event_lock_irq(conf->wait_barrier,
977                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
978                             conf->resync_lock);
979
980         spin_unlock_irq(&conf->resync_lock);
981 }
982
983 static void lower_barrier(struct r10conf *conf)
984 {
985         unsigned long flags;
986         spin_lock_irqsave(&conf->resync_lock, flags);
987         conf->barrier--;
988         spin_unlock_irqrestore(&conf->resync_lock, flags);
989         wake_up(&conf->wait_barrier);
990 }
991
992 static void wait_barrier(struct r10conf *conf)
993 {
994         spin_lock_irq(&conf->resync_lock);
995         if (conf->barrier) {
996                 conf->nr_waiting++;
997                 /* Wait for the barrier to drop.
998                  * However if there are already pending
999                  * requests (preventing the barrier from
1000                  * rising completely), and the
1001                  * pre-process bio queue isn't empty,
1002                  * then don't wait, as we need to empty
1003                  * that queue to get the nr_pending
1004                  * count down.
1005                  */
1006                 raid10_log(conf->mddev, "wait barrier");
1007                 wait_event_lock_irq(conf->wait_barrier,
1008                                     !conf->barrier ||
1009                                     (atomic_read(&conf->nr_pending) &&
1010                                      current->bio_list &&
1011                                      (!bio_list_empty(&current->bio_list[0]) ||
1012                                       !bio_list_empty(&current->bio_list[1]))),
1013                                     conf->resync_lock);
1014                 conf->nr_waiting--;
1015                 if (!conf->nr_waiting)
1016                         wake_up(&conf->wait_barrier);
1017         }
1018         atomic_inc(&conf->nr_pending);
1019         spin_unlock_irq(&conf->resync_lock);
1020 }
1021
1022 static void allow_barrier(struct r10conf *conf)
1023 {
1024         if ((atomic_dec_and_test(&conf->nr_pending)) ||
1025                         (conf->array_freeze_pending))
1026                 wake_up(&conf->wait_barrier);
1027 }
1028
1029 static void freeze_array(struct r10conf *conf, int extra)
1030 {
1031         /* stop syncio and normal IO and wait for everything to
1032          * go quiet.
1033          * We increment barrier and nr_waiting, and then
1034          * wait until nr_pending match nr_queued+extra
1035          * This is called in the context of one normal IO request
1036          * that has failed. Thus any sync request that might be pending
1037          * will be blocked by nr_pending, and we need to wait for
1038          * pending IO requests to complete or be queued for re-try.
1039          * Thus the number queued (nr_queued) plus this request (extra)
1040          * must match the number of pending IOs (nr_pending) before
1041          * we continue.
1042          */
1043         spin_lock_irq(&conf->resync_lock);
1044         conf->array_freeze_pending++;
1045         conf->barrier++;
1046         conf->nr_waiting++;
1047         wait_event_lock_irq_cmd(conf->wait_barrier,
1048                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1049                                 conf->resync_lock,
1050                                 flush_pending_writes(conf));
1051
1052         conf->array_freeze_pending--;
1053         spin_unlock_irq(&conf->resync_lock);
1054 }
1055
1056 static void unfreeze_array(struct r10conf *conf)
1057 {
1058         /* reverse the effect of the freeze */
1059         spin_lock_irq(&conf->resync_lock);
1060         conf->barrier--;
1061         conf->nr_waiting--;
1062         wake_up(&conf->wait_barrier);
1063         spin_unlock_irq(&conf->resync_lock);
1064 }
1065
1066 static sector_t choose_data_offset(struct r10bio *r10_bio,
1067                                    struct md_rdev *rdev)
1068 {
1069         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1070             test_bit(R10BIO_Previous, &r10_bio->state))
1071                 return rdev->data_offset;
1072         else
1073                 return rdev->new_data_offset;
1074 }
1075
1076 struct raid10_plug_cb {
1077         struct blk_plug_cb      cb;
1078         struct bio_list         pending;
1079         int                     pending_cnt;
1080 };
1081
1082 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1083 {
1084         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1085                                                    cb);
1086         struct mddev *mddev = plug->cb.data;
1087         struct r10conf *conf = mddev->private;
1088         struct bio *bio;
1089
1090         if (from_schedule || current->bio_list) {
1091                 spin_lock_irq(&conf->device_lock);
1092                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1093                 conf->pending_count += plug->pending_cnt;
1094                 spin_unlock_irq(&conf->device_lock);
1095                 wake_up(&conf->wait_barrier);
1096                 md_wakeup_thread(mddev->thread);
1097                 kfree(plug);
1098                 return;
1099         }
1100
1101         /* we aren't scheduling, so we can do the write-out directly. */
1102         bio = bio_list_get(&plug->pending);
1103         bitmap_unplug(mddev->bitmap);
1104         wake_up(&conf->wait_barrier);
1105
1106         while (bio) { /* submit pending writes */
1107                 struct bio *next = bio->bi_next;
1108                 struct md_rdev *rdev = (void*)bio->bi_disk;
1109                 bio->bi_next = NULL;
1110                 bio_set_dev(bio, rdev->bdev);
1111                 if (test_bit(Faulty, &rdev->flags)) {
1112                         bio_io_error(bio);
1113                 } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1114                                     !blk_queue_discard(bio->bi_disk->queue)))
1115                         /* Just ignore it */
1116                         bio_endio(bio);
1117                 else
1118                         generic_make_request(bio);
1119                 bio = next;
1120         }
1121         kfree(plug);
1122 }
1123
1124 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1125                                 struct r10bio *r10_bio)
1126 {
1127         struct r10conf *conf = mddev->private;
1128         struct bio *read_bio;
1129         const int op = bio_op(bio);
1130         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1131         int max_sectors;
1132         sector_t sectors;
1133         struct md_rdev *rdev;
1134         char b[BDEVNAME_SIZE];
1135         int slot = r10_bio->read_slot;
1136         struct md_rdev *err_rdev = NULL;
1137         gfp_t gfp = GFP_NOIO;
1138
1139         if (r10_bio->devs[slot].rdev) {
1140                 /*
1141                  * This is an error retry, but we cannot
1142                  * safely dereference the rdev in the r10_bio,
1143                  * we must use the one in conf.
1144                  * If it has already been disconnected (unlikely)
1145                  * we lose the device name in error messages.
1146                  */
1147                 int disk;
1148                 /*
1149                  * As we are blocking raid10, it is a little safer to
1150                  * use __GFP_HIGH.
1151                  */
1152                 gfp = GFP_NOIO | __GFP_HIGH;
1153
1154                 rcu_read_lock();
1155                 disk = r10_bio->devs[slot].devnum;
1156                 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1157                 if (err_rdev)
1158                         bdevname(err_rdev->bdev, b);
1159                 else {
1160                         strcpy(b, "???");
1161                         /* This never gets dereferenced */
1162                         err_rdev = r10_bio->devs[slot].rdev;
1163                 }
1164                 rcu_read_unlock();
1165         }
1166         /*
1167          * Register the new request and wait if the reconstruction
1168          * thread has put up a bar for new requests.
1169          * Continue immediately if no resync is active currently.
1170          */
1171         wait_barrier(conf);
1172
1173         sectors = r10_bio->sectors;
1174         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1175             bio->bi_iter.bi_sector < conf->reshape_progress &&
1176             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1177                 /*
1178                  * IO spans the reshape position.  Need to wait for reshape to
1179                  * pass
1180                  */
1181                 raid10_log(conf->mddev, "wait reshape");
1182                 allow_barrier(conf);
1183                 wait_event(conf->wait_barrier,
1184                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1185                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1186                            sectors);
1187                 wait_barrier(conf);
1188         }
1189
1190         rdev = read_balance(conf, r10_bio, &max_sectors);
1191         if (!rdev) {
1192                 if (err_rdev) {
1193                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1194                                             mdname(mddev), b,
1195                                             (unsigned long long)r10_bio->sector);
1196                 }
1197                 raid_end_bio_io(r10_bio);
1198                 return;
1199         }
1200         if (err_rdev)
1201                 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1202                                    mdname(mddev),
1203                                    bdevname(rdev->bdev, b),
1204                                    (unsigned long long)r10_bio->sector);
1205         if (max_sectors < bio_sectors(bio)) {
1206                 struct bio *split = bio_split(bio, max_sectors,
1207                                               gfp, conf->bio_split);
1208                 bio_chain(split, bio);
1209                 generic_make_request(bio);
1210                 bio = split;
1211                 r10_bio->master_bio = bio;
1212                 r10_bio->sectors = max_sectors;
1213         }
1214         slot = r10_bio->read_slot;
1215
1216         read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1217
1218         r10_bio->devs[slot].bio = read_bio;
1219         r10_bio->devs[slot].rdev = rdev;
1220
1221         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1222                 choose_data_offset(r10_bio, rdev);
1223         bio_set_dev(read_bio, rdev->bdev);
1224         read_bio->bi_end_io = raid10_end_read_request;
1225         bio_set_op_attrs(read_bio, op, do_sync);
1226         if (test_bit(FailFast, &rdev->flags) &&
1227             test_bit(R10BIO_FailFast, &r10_bio->state))
1228                 read_bio->bi_opf |= MD_FAILFAST;
1229         read_bio->bi_private = r10_bio;
1230
1231         if (mddev->gendisk)
1232                 trace_block_bio_remap(read_bio->bi_disk->queue,
1233                                       read_bio, disk_devt(mddev->gendisk),
1234                                       r10_bio->sector);
1235         generic_make_request(read_bio);
1236         return;
1237 }
1238
1239 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1240                                   struct bio *bio, bool replacement,
1241                                   int n_copy)
1242 {
1243         const int op = bio_op(bio);
1244         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1245         const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1246         unsigned long flags;
1247         struct blk_plug_cb *cb;
1248         struct raid10_plug_cb *plug = NULL;
1249         struct r10conf *conf = mddev->private;
1250         struct md_rdev *rdev;
1251         int devnum = r10_bio->devs[n_copy].devnum;
1252         struct bio *mbio;
1253
1254         if (replacement) {
1255                 rdev = conf->mirrors[devnum].replacement;
1256                 if (rdev == NULL) {
1257                         /* Replacement just got moved to main 'rdev' */
1258                         smp_mb();
1259                         rdev = conf->mirrors[devnum].rdev;
1260                 }
1261         } else
1262                 rdev = conf->mirrors[devnum].rdev;
1263
1264         mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1265         if (replacement)
1266                 r10_bio->devs[n_copy].repl_bio = mbio;
1267         else
1268                 r10_bio->devs[n_copy].bio = mbio;
1269
1270         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1271                                    choose_data_offset(r10_bio, rdev));
1272         bio_set_dev(mbio, rdev->bdev);
1273         mbio->bi_end_io = raid10_end_write_request;
1274         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1275         if (!replacement && test_bit(FailFast,
1276                                      &conf->mirrors[devnum].rdev->flags)
1277                          && enough(conf, devnum))
1278                 mbio->bi_opf |= MD_FAILFAST;
1279         mbio->bi_private = r10_bio;
1280
1281         if (conf->mddev->gendisk)
1282                 trace_block_bio_remap(mbio->bi_disk->queue,
1283                                       mbio, disk_devt(conf->mddev->gendisk),
1284                                       r10_bio->sector);
1285         /* flush_pending_writes() needs access to the rdev so...*/
1286         mbio->bi_disk = (void *)rdev;
1287
1288         atomic_inc(&r10_bio->remaining);
1289
1290         cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1291         if (cb)
1292                 plug = container_of(cb, struct raid10_plug_cb, cb);
1293         else
1294                 plug = NULL;
1295         if (plug) {
1296                 bio_list_add(&plug->pending, mbio);
1297                 plug->pending_cnt++;
1298         } else {
1299                 spin_lock_irqsave(&conf->device_lock, flags);
1300                 bio_list_add(&conf->pending_bio_list, mbio);
1301                 conf->pending_count++;
1302                 spin_unlock_irqrestore(&conf->device_lock, flags);
1303                 md_wakeup_thread(mddev->thread);
1304         }
1305 }
1306
1307 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1308                                  struct r10bio *r10_bio)
1309 {
1310         struct r10conf *conf = mddev->private;
1311         int i;
1312         struct md_rdev *blocked_rdev;
1313         sector_t sectors;
1314         int max_sectors;
1315
1316         if ((mddev_is_clustered(mddev) &&
1317              md_cluster_ops->area_resyncing(mddev, WRITE,
1318                                             bio->bi_iter.bi_sector,
1319                                             bio_end_sector(bio)))) {
1320                 DEFINE_WAIT(w);
1321                 for (;;) {
1322                         prepare_to_wait(&conf->wait_barrier,
1323                                         &w, TASK_IDLE);
1324                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1325                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1326                                 break;
1327                         schedule();
1328                 }
1329                 finish_wait(&conf->wait_barrier, &w);
1330         }
1331
1332         /*
1333          * Register the new request and wait if the reconstruction
1334          * thread has put up a bar for new requests.
1335          * Continue immediately if no resync is active currently.
1336          */
1337         wait_barrier(conf);
1338
1339         sectors = r10_bio->sectors;
1340         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1341             bio->bi_iter.bi_sector < conf->reshape_progress &&
1342             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1343                 /*
1344                  * IO spans the reshape position.  Need to wait for reshape to
1345                  * pass
1346                  */
1347                 raid10_log(conf->mddev, "wait reshape");
1348                 allow_barrier(conf);
1349                 wait_event(conf->wait_barrier,
1350                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1351                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1352                            sectors);
1353                 wait_barrier(conf);
1354         }
1355
1356         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1357             (mddev->reshape_backwards
1358              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1359                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1360              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1361                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1362                 /* Need to update reshape_position in metadata */
1363                 mddev->reshape_position = conf->reshape_progress;
1364                 set_mask_bits(&mddev->sb_flags, 0,
1365                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1366                 md_wakeup_thread(mddev->thread);
1367                 raid10_log(conf->mddev, "wait reshape metadata");
1368                 wait_event(mddev->sb_wait,
1369                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1370
1371                 conf->reshape_safe = mddev->reshape_position;
1372         }
1373
1374         if (conf->pending_count >= max_queued_requests) {
1375                 md_wakeup_thread(mddev->thread);
1376                 raid10_log(mddev, "wait queued");
1377                 wait_event(conf->wait_barrier,
1378                            conf->pending_count < max_queued_requests);
1379         }
1380         /* first select target devices under rcu_lock and
1381          * inc refcount on their rdev.  Record them by setting
1382          * bios[x] to bio
1383          * If there are known/acknowledged bad blocks on any device
1384          * on which we have seen a write error, we want to avoid
1385          * writing to those blocks.  This potentially requires several
1386          * writes to write around the bad blocks.  Each set of writes
1387          * gets its own r10_bio with a set of bios attached.
1388          */
1389
1390         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1391         raid10_find_phys(conf, r10_bio);
1392 retry_write:
1393         blocked_rdev = NULL;
1394         rcu_read_lock();
1395         max_sectors = r10_bio->sectors;
1396
1397         for (i = 0;  i < conf->copies; i++) {
1398                 int d = r10_bio->devs[i].devnum;
1399                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1400                 struct md_rdev *rrdev = rcu_dereference(
1401                         conf->mirrors[d].replacement);
1402                 if (rdev == rrdev)
1403                         rrdev = NULL;
1404                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1405                         atomic_inc(&rdev->nr_pending);
1406                         blocked_rdev = rdev;
1407                         break;
1408                 }
1409                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1410                         atomic_inc(&rrdev->nr_pending);
1411                         blocked_rdev = rrdev;
1412                         break;
1413                 }
1414                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1415                         rdev = NULL;
1416                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1417                         rrdev = NULL;
1418
1419                 r10_bio->devs[i].bio = NULL;
1420                 r10_bio->devs[i].repl_bio = NULL;
1421
1422                 if (!rdev && !rrdev) {
1423                         set_bit(R10BIO_Degraded, &r10_bio->state);
1424                         continue;
1425                 }
1426                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1427                         sector_t first_bad;
1428                         sector_t dev_sector = r10_bio->devs[i].addr;
1429                         int bad_sectors;
1430                         int is_bad;
1431
1432                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1433                                              &first_bad, &bad_sectors);
1434                         if (is_bad < 0) {
1435                                 /* Mustn't write here until the bad block
1436                                  * is acknowledged
1437                                  */
1438                                 atomic_inc(&rdev->nr_pending);
1439                                 set_bit(BlockedBadBlocks, &rdev->flags);
1440                                 blocked_rdev = rdev;
1441                                 break;
1442                         }
1443                         if (is_bad && first_bad <= dev_sector) {
1444                                 /* Cannot write here at all */
1445                                 bad_sectors -= (dev_sector - first_bad);
1446                                 if (bad_sectors < max_sectors)
1447                                         /* Mustn't write more than bad_sectors
1448                                          * to other devices yet
1449                                          */
1450                                         max_sectors = bad_sectors;
1451                                 /* We don't set R10BIO_Degraded as that
1452                                  * only applies if the disk is missing,
1453                                  * so it might be re-added, and we want to
1454                                  * know to recover this chunk.
1455                                  * In this case the device is here, and the
1456                                  * fact that this chunk is not in-sync is
1457                                  * recorded in the bad block log.
1458                                  */
1459                                 continue;
1460                         }
1461                         if (is_bad) {
1462                                 int good_sectors = first_bad - dev_sector;
1463                                 if (good_sectors < max_sectors)
1464                                         max_sectors = good_sectors;
1465                         }
1466                 }
1467                 if (rdev) {
1468                         r10_bio->devs[i].bio = bio;
1469                         atomic_inc(&rdev->nr_pending);
1470                 }
1471                 if (rrdev) {
1472                         r10_bio->devs[i].repl_bio = bio;
1473                         atomic_inc(&rrdev->nr_pending);
1474                 }
1475         }
1476         rcu_read_unlock();
1477
1478         if (unlikely(blocked_rdev)) {
1479                 /* Have to wait for this device to get unblocked, then retry */
1480                 int j;
1481                 int d;
1482
1483                 for (j = 0; j < i; j++) {
1484                         if (r10_bio->devs[j].bio) {
1485                                 d = r10_bio->devs[j].devnum;
1486                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1487                         }
1488                         if (r10_bio->devs[j].repl_bio) {
1489                                 struct md_rdev *rdev;
1490                                 d = r10_bio->devs[j].devnum;
1491                                 rdev = conf->mirrors[d].replacement;
1492                                 if (!rdev) {
1493                                         /* Race with remove_disk */
1494                                         smp_mb();
1495                                         rdev = conf->mirrors[d].rdev;
1496                                 }
1497                                 rdev_dec_pending(rdev, mddev);
1498                         }
1499                 }
1500                 allow_barrier(conf);
1501                 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1502                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1503                 wait_barrier(conf);
1504                 goto retry_write;
1505         }
1506
1507         if (max_sectors < r10_bio->sectors)
1508                 r10_bio->sectors = max_sectors;
1509
1510         if (r10_bio->sectors < bio_sectors(bio)) {
1511                 struct bio *split = bio_split(bio, r10_bio->sectors,
1512                                               GFP_NOIO, conf->bio_split);
1513                 bio_chain(split, bio);
1514                 generic_make_request(bio);
1515                 bio = split;
1516                 r10_bio->master_bio = bio;
1517         }
1518
1519         atomic_set(&r10_bio->remaining, 1);
1520         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1521
1522         for (i = 0; i < conf->copies; i++) {
1523                 if (r10_bio->devs[i].bio)
1524                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1525                 if (r10_bio->devs[i].repl_bio)
1526                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1527         }
1528         one_write_done(r10_bio);
1529 }
1530
1531 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1532 {
1533         struct r10conf *conf = mddev->private;
1534         struct r10bio *r10_bio;
1535
1536         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1537
1538         r10_bio->master_bio = bio;
1539         r10_bio->sectors = sectors;
1540
1541         r10_bio->mddev = mddev;
1542         r10_bio->sector = bio->bi_iter.bi_sector;
1543         r10_bio->state = 0;
1544         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1545
1546         if (bio_data_dir(bio) == READ)
1547                 raid10_read_request(mddev, bio, r10_bio);
1548         else
1549                 raid10_write_request(mddev, bio, r10_bio);
1550 }
1551
1552 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1553 {
1554         struct r10conf *conf = mddev->private;
1555         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1556         int chunk_sects = chunk_mask + 1;
1557         int sectors = bio_sectors(bio);
1558
1559         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1560                 md_flush_request(mddev, bio);
1561                 return true;
1562         }
1563
1564         if (!md_write_start(mddev, bio))
1565                 return false;
1566
1567         /*
1568          * If this request crosses a chunk boundary, we need to split
1569          * it.
1570          */
1571         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1572                      sectors > chunk_sects
1573                      && (conf->geo.near_copies < conf->geo.raid_disks
1574                          || conf->prev.near_copies <
1575                          conf->prev.raid_disks)))
1576                 sectors = chunk_sects -
1577                         (bio->bi_iter.bi_sector &
1578                          (chunk_sects - 1));
1579         __make_request(mddev, bio, sectors);
1580
1581         /* In case raid10d snuck in to freeze_array */
1582         wake_up(&conf->wait_barrier);
1583         return true;
1584 }
1585
1586 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1587 {
1588         struct r10conf *conf = mddev->private;
1589         int i;
1590
1591         if (conf->geo.near_copies < conf->geo.raid_disks)
1592                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1593         if (conf->geo.near_copies > 1)
1594                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1595         if (conf->geo.far_copies > 1) {
1596                 if (conf->geo.far_offset)
1597                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1598                 else
1599                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1600                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1601                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1602         }
1603         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1604                                         conf->geo.raid_disks - mddev->degraded);
1605         rcu_read_lock();
1606         for (i = 0; i < conf->geo.raid_disks; i++) {
1607                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1608                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1609         }
1610         rcu_read_unlock();
1611         seq_printf(seq, "]");
1612 }
1613
1614 /* check if there are enough drives for
1615  * every block to appear on atleast one.
1616  * Don't consider the device numbered 'ignore'
1617  * as we might be about to remove it.
1618  */
1619 static int _enough(struct r10conf *conf, int previous, int ignore)
1620 {
1621         int first = 0;
1622         int has_enough = 0;
1623         int disks, ncopies;
1624         if (previous) {
1625                 disks = conf->prev.raid_disks;
1626                 ncopies = conf->prev.near_copies;
1627         } else {
1628                 disks = conf->geo.raid_disks;
1629                 ncopies = conf->geo.near_copies;
1630         }
1631
1632         rcu_read_lock();
1633         do {
1634                 int n = conf->copies;
1635                 int cnt = 0;
1636                 int this = first;
1637                 while (n--) {
1638                         struct md_rdev *rdev;
1639                         if (this != ignore &&
1640                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1641                             test_bit(In_sync, &rdev->flags))
1642                                 cnt++;
1643                         this = (this+1) % disks;
1644                 }
1645                 if (cnt == 0)
1646                         goto out;
1647                 first = (first + ncopies) % disks;
1648         } while (first != 0);
1649         has_enough = 1;
1650 out:
1651         rcu_read_unlock();
1652         return has_enough;
1653 }
1654
1655 static int enough(struct r10conf *conf, int ignore)
1656 {
1657         /* when calling 'enough', both 'prev' and 'geo' must
1658          * be stable.
1659          * This is ensured if ->reconfig_mutex or ->device_lock
1660          * is held.
1661          */
1662         return _enough(conf, 0, ignore) &&
1663                 _enough(conf, 1, ignore);
1664 }
1665
1666 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1667 {
1668         char b[BDEVNAME_SIZE];
1669         struct r10conf *conf = mddev->private;
1670         unsigned long flags;
1671
1672         /*
1673          * If it is not operational, then we have already marked it as dead
1674          * else if it is the last working disks, ignore the error, let the
1675          * next level up know.
1676          * else mark the drive as failed
1677          */
1678         spin_lock_irqsave(&conf->device_lock, flags);
1679         if (test_bit(In_sync, &rdev->flags)
1680             && !enough(conf, rdev->raid_disk)) {
1681                 /*
1682                  * Don't fail the drive, just return an IO error.
1683                  */
1684                 spin_unlock_irqrestore(&conf->device_lock, flags);
1685                 return;
1686         }
1687         if (test_and_clear_bit(In_sync, &rdev->flags))
1688                 mddev->degraded++;
1689         /*
1690          * If recovery is running, make sure it aborts.
1691          */
1692         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1693         set_bit(Blocked, &rdev->flags);
1694         set_bit(Faulty, &rdev->flags);
1695         set_mask_bits(&mddev->sb_flags, 0,
1696                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1697         spin_unlock_irqrestore(&conf->device_lock, flags);
1698         pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1699                 "md/raid10:%s: Operation continuing on %d devices.\n",
1700                 mdname(mddev), bdevname(rdev->bdev, b),
1701                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1702 }
1703
1704 static void print_conf(struct r10conf *conf)
1705 {
1706         int i;
1707         struct md_rdev *rdev;
1708
1709         pr_debug("RAID10 conf printout:\n");
1710         if (!conf) {
1711                 pr_debug("(!conf)\n");
1712                 return;
1713         }
1714         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1715                  conf->geo.raid_disks);
1716
1717         /* This is only called with ->reconfix_mutex held, so
1718          * rcu protection of rdev is not needed */
1719         for (i = 0; i < conf->geo.raid_disks; i++) {
1720                 char b[BDEVNAME_SIZE];
1721                 rdev = conf->mirrors[i].rdev;
1722                 if (rdev)
1723                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1724                                  i, !test_bit(In_sync, &rdev->flags),
1725                                  !test_bit(Faulty, &rdev->flags),
1726                                  bdevname(rdev->bdev,b));
1727         }
1728 }
1729
1730 static void close_sync(struct r10conf *conf)
1731 {
1732         wait_barrier(conf);
1733         allow_barrier(conf);
1734
1735         mempool_destroy(conf->r10buf_pool);
1736         conf->r10buf_pool = NULL;
1737 }
1738
1739 static int raid10_spare_active(struct mddev *mddev)
1740 {
1741         int i;
1742         struct r10conf *conf = mddev->private;
1743         struct raid10_info *tmp;
1744         int count = 0;
1745         unsigned long flags;
1746
1747         /*
1748          * Find all non-in_sync disks within the RAID10 configuration
1749          * and mark them in_sync
1750          */
1751         for (i = 0; i < conf->geo.raid_disks; i++) {
1752                 tmp = conf->mirrors + i;
1753                 if (tmp->replacement
1754                     && tmp->replacement->recovery_offset == MaxSector
1755                     && !test_bit(Faulty, &tmp->replacement->flags)
1756                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1757                         /* Replacement has just become active */
1758                         if (!tmp->rdev
1759                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1760                                 count++;
1761                         if (tmp->rdev) {
1762                                 /* Replaced device not technically faulty,
1763                                  * but we need to be sure it gets removed
1764                                  * and never re-added.
1765                                  */
1766                                 set_bit(Faulty, &tmp->rdev->flags);
1767                                 sysfs_notify_dirent_safe(
1768                                         tmp->rdev->sysfs_state);
1769                         }
1770                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1771                 } else if (tmp->rdev
1772                            && tmp->rdev->recovery_offset == MaxSector
1773                            && !test_bit(Faulty, &tmp->rdev->flags)
1774                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1775                         count++;
1776                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1777                 }
1778         }
1779         spin_lock_irqsave(&conf->device_lock, flags);
1780         mddev->degraded -= count;
1781         spin_unlock_irqrestore(&conf->device_lock, flags);
1782
1783         print_conf(conf);
1784         return count;
1785 }
1786
1787 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1788 {
1789         struct r10conf *conf = mddev->private;
1790         int err = -EEXIST;
1791         int mirror;
1792         int first = 0;
1793         int last = conf->geo.raid_disks - 1;
1794
1795         if (mddev->recovery_cp < MaxSector)
1796                 /* only hot-add to in-sync arrays, as recovery is
1797                  * very different from resync
1798                  */
1799                 return -EBUSY;
1800         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1801                 return -EINVAL;
1802
1803         if (md_integrity_add_rdev(rdev, mddev))
1804                 return -ENXIO;
1805
1806         if (rdev->raid_disk >= 0)
1807                 first = last = rdev->raid_disk;
1808
1809         if (rdev->saved_raid_disk >= first &&
1810             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1811                 mirror = rdev->saved_raid_disk;
1812         else
1813                 mirror = first;
1814         for ( ; mirror <= last ; mirror++) {
1815                 struct raid10_info *p = &conf->mirrors[mirror];
1816                 if (p->recovery_disabled == mddev->recovery_disabled)
1817                         continue;
1818                 if (p->rdev) {
1819                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1820                             p->replacement != NULL)
1821                                 continue;
1822                         clear_bit(In_sync, &rdev->flags);
1823                         set_bit(Replacement, &rdev->flags);
1824                         rdev->raid_disk = mirror;
1825                         err = 0;
1826                         if (mddev->gendisk)
1827                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1828                                                   rdev->data_offset << 9);
1829                         conf->fullsync = 1;
1830                         rcu_assign_pointer(p->replacement, rdev);
1831                         break;
1832                 }
1833
1834                 if (mddev->gendisk)
1835                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1836                                           rdev->data_offset << 9);
1837
1838                 p->head_position = 0;
1839                 p->recovery_disabled = mddev->recovery_disabled - 1;
1840                 rdev->raid_disk = mirror;
1841                 err = 0;
1842                 if (rdev->saved_raid_disk != mirror)
1843                         conf->fullsync = 1;
1844                 rcu_assign_pointer(p->rdev, rdev);
1845                 break;
1846         }
1847         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1848                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1849
1850         print_conf(conf);
1851         return err;
1852 }
1853
1854 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1855 {
1856         struct r10conf *conf = mddev->private;
1857         int err = 0;
1858         int number = rdev->raid_disk;
1859         struct md_rdev **rdevp;
1860         struct raid10_info *p = conf->mirrors + number;
1861
1862         print_conf(conf);
1863         if (rdev == p->rdev)
1864                 rdevp = &p->rdev;
1865         else if (rdev == p->replacement)
1866                 rdevp = &p->replacement;
1867         else
1868                 return 0;
1869
1870         if (test_bit(In_sync, &rdev->flags) ||
1871             atomic_read(&rdev->nr_pending)) {
1872                 err = -EBUSY;
1873                 goto abort;
1874         }
1875         /* Only remove non-faulty devices if recovery
1876          * is not possible.
1877          */
1878         if (!test_bit(Faulty, &rdev->flags) &&
1879             mddev->recovery_disabled != p->recovery_disabled &&
1880             (!p->replacement || p->replacement == rdev) &&
1881             number < conf->geo.raid_disks &&
1882             enough(conf, -1)) {
1883                 err = -EBUSY;
1884                 goto abort;
1885         }
1886         *rdevp = NULL;
1887         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1888                 synchronize_rcu();
1889                 if (atomic_read(&rdev->nr_pending)) {
1890                         /* lost the race, try later */
1891                         err = -EBUSY;
1892                         *rdevp = rdev;
1893                         goto abort;
1894                 }
1895         }
1896         if (p->replacement) {
1897                 /* We must have just cleared 'rdev' */
1898                 p->rdev = p->replacement;
1899                 clear_bit(Replacement, &p->replacement->flags);
1900                 smp_mb(); /* Make sure other CPUs may see both as identical
1901                            * but will never see neither -- if they are careful.
1902                            */
1903                 p->replacement = NULL;
1904         }
1905
1906         clear_bit(WantReplacement, &rdev->flags);
1907         err = md_integrity_register(mddev);
1908
1909 abort:
1910
1911         print_conf(conf);
1912         return err;
1913 }
1914
1915 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1916 {
1917         struct r10conf *conf = r10_bio->mddev->private;
1918
1919         if (!bio->bi_status)
1920                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1921         else
1922                 /* The write handler will notice the lack of
1923                  * R10BIO_Uptodate and record any errors etc
1924                  */
1925                 atomic_add(r10_bio->sectors,
1926                            &conf->mirrors[d].rdev->corrected_errors);
1927
1928         /* for reconstruct, we always reschedule after a read.
1929          * for resync, only after all reads
1930          */
1931         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1932         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1933             atomic_dec_and_test(&r10_bio->remaining)) {
1934                 /* we have read all the blocks,
1935                  * do the comparison in process context in raid10d
1936                  */
1937                 reschedule_retry(r10_bio);
1938         }
1939 }
1940
1941 static void end_sync_read(struct bio *bio)
1942 {
1943         struct r10bio *r10_bio = get_resync_r10bio(bio);
1944         struct r10conf *conf = r10_bio->mddev->private;
1945         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1946
1947         __end_sync_read(r10_bio, bio, d);
1948 }
1949
1950 static void end_reshape_read(struct bio *bio)
1951 {
1952         /* reshape read bio isn't allocated from r10buf_pool */
1953         struct r10bio *r10_bio = bio->bi_private;
1954
1955         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1956 }
1957
1958 static void end_sync_request(struct r10bio *r10_bio)
1959 {
1960         struct mddev *mddev = r10_bio->mddev;
1961
1962         while (atomic_dec_and_test(&r10_bio->remaining)) {
1963                 if (r10_bio->master_bio == NULL) {
1964                         /* the primary of several recovery bios */
1965                         sector_t s = r10_bio->sectors;
1966                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1967                             test_bit(R10BIO_WriteError, &r10_bio->state))
1968                                 reschedule_retry(r10_bio);
1969                         else
1970                                 put_buf(r10_bio);
1971                         md_done_sync(mddev, s, 1);
1972                         break;
1973                 } else {
1974                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1975                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1976                             test_bit(R10BIO_WriteError, &r10_bio->state))
1977                                 reschedule_retry(r10_bio);
1978                         else
1979                                 put_buf(r10_bio);
1980                         r10_bio = r10_bio2;
1981                 }
1982         }
1983 }
1984
1985 static void end_sync_write(struct bio *bio)
1986 {
1987         struct r10bio *r10_bio = get_resync_r10bio(bio);
1988         struct mddev *mddev = r10_bio->mddev;
1989         struct r10conf *conf = mddev->private;
1990         int d;
1991         sector_t first_bad;
1992         int bad_sectors;
1993         int slot;
1994         int repl;
1995         struct md_rdev *rdev = NULL;
1996
1997         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1998         if (repl)
1999                 rdev = conf->mirrors[d].replacement;
2000         else
2001                 rdev = conf->mirrors[d].rdev;
2002
2003         if (bio->bi_status) {
2004                 if (repl)
2005                         md_error(mddev, rdev);
2006                 else {
2007                         set_bit(WriteErrorSeen, &rdev->flags);
2008                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2009                                 set_bit(MD_RECOVERY_NEEDED,
2010                                         &rdev->mddev->recovery);
2011                         set_bit(R10BIO_WriteError, &r10_bio->state);
2012                 }
2013         } else if (is_badblock(rdev,
2014                              r10_bio->devs[slot].addr,
2015                              r10_bio->sectors,
2016                              &first_bad, &bad_sectors))
2017                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2018
2019         rdev_dec_pending(rdev, mddev);
2020
2021         end_sync_request(r10_bio);
2022 }
2023
2024 /*
2025  * Note: sync and recover and handled very differently for raid10
2026  * This code is for resync.
2027  * For resync, we read through virtual addresses and read all blocks.
2028  * If there is any error, we schedule a write.  The lowest numbered
2029  * drive is authoritative.
2030  * However requests come for physical address, so we need to map.
2031  * For every physical address there are raid_disks/copies virtual addresses,
2032  * which is always are least one, but is not necessarly an integer.
2033  * This means that a physical address can span multiple chunks, so we may
2034  * have to submit multiple io requests for a single sync request.
2035  */
2036 /*
2037  * We check if all blocks are in-sync and only write to blocks that
2038  * aren't in sync
2039  */
2040 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2041 {
2042         struct r10conf *conf = mddev->private;
2043         int i, first;
2044         struct bio *tbio, *fbio;
2045         int vcnt;
2046         struct page **tpages, **fpages;
2047
2048         atomic_set(&r10_bio->remaining, 1);
2049
2050         /* find the first device with a block */
2051         for (i=0; i<conf->copies; i++)
2052                 if (!r10_bio->devs[i].bio->bi_status)
2053                         break;
2054
2055         if (i == conf->copies)
2056                 goto done;
2057
2058         first = i;
2059         fbio = r10_bio->devs[i].bio;
2060         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2061         fbio->bi_iter.bi_idx = 0;
2062         fpages = get_resync_pages(fbio)->pages;
2063
2064         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2065         /* now find blocks with errors */
2066         for (i=0 ; i < conf->copies ; i++) {
2067                 int  j, d;
2068                 struct md_rdev *rdev;
2069                 struct resync_pages *rp;
2070
2071                 tbio = r10_bio->devs[i].bio;
2072
2073                 if (tbio->bi_end_io != end_sync_read)
2074                         continue;
2075                 if (i == first)
2076                         continue;
2077
2078                 tpages = get_resync_pages(tbio)->pages;
2079                 d = r10_bio->devs[i].devnum;
2080                 rdev = conf->mirrors[d].rdev;
2081                 if (!r10_bio->devs[i].bio->bi_status) {
2082                         /* We know that the bi_io_vec layout is the same for
2083                          * both 'first' and 'i', so we just compare them.
2084                          * All vec entries are PAGE_SIZE;
2085                          */
2086                         int sectors = r10_bio->sectors;
2087                         for (j = 0; j < vcnt; j++) {
2088                                 int len = PAGE_SIZE;
2089                                 if (sectors < (len / 512))
2090                                         len = sectors * 512;
2091                                 if (memcmp(page_address(fpages[j]),
2092                                            page_address(tpages[j]),
2093                                            len))
2094                                         break;
2095                                 sectors -= len/512;
2096                         }
2097                         if (j == vcnt)
2098                                 continue;
2099                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2100                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2101                                 /* Don't fix anything. */
2102                                 continue;
2103                 } else if (test_bit(FailFast, &rdev->flags)) {
2104                         /* Just give up on this device */
2105                         md_error(rdev->mddev, rdev);
2106                         continue;
2107                 }
2108                 /* Ok, we need to write this bio, either to correct an
2109                  * inconsistency or to correct an unreadable block.
2110                  * First we need to fixup bv_offset, bv_len and
2111                  * bi_vecs, as the read request might have corrupted these
2112                  */
2113                 rp = get_resync_pages(tbio);
2114                 bio_reset(tbio);
2115
2116                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2117
2118                 rp->raid_bio = r10_bio;
2119                 tbio->bi_private = rp;
2120                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2121                 tbio->bi_end_io = end_sync_write;
2122                 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2123
2124                 bio_copy_data(tbio, fbio);
2125
2126                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2127                 atomic_inc(&r10_bio->remaining);
2128                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2129
2130                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2131                         tbio->bi_opf |= MD_FAILFAST;
2132                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2133                 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2134                 generic_make_request(tbio);
2135         }
2136
2137         /* Now write out to any replacement devices
2138          * that are active
2139          */
2140         for (i = 0; i < conf->copies; i++) {
2141                 int d;
2142
2143                 tbio = r10_bio->devs[i].repl_bio;
2144                 if (!tbio || !tbio->bi_end_io)
2145                         continue;
2146                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2147                     && r10_bio->devs[i].bio != fbio)
2148                         bio_copy_data(tbio, fbio);
2149                 d = r10_bio->devs[i].devnum;
2150                 atomic_inc(&r10_bio->remaining);
2151                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2152                              bio_sectors(tbio));
2153                 generic_make_request(tbio);
2154         }
2155
2156 done:
2157         if (atomic_dec_and_test(&r10_bio->remaining)) {
2158                 md_done_sync(mddev, r10_bio->sectors, 1);
2159                 put_buf(r10_bio);
2160         }
2161 }
2162
2163 /*
2164  * Now for the recovery code.
2165  * Recovery happens across physical sectors.
2166  * We recover all non-is_sync drives by finding the virtual address of
2167  * each, and then choose a working drive that also has that virt address.
2168  * There is a separate r10_bio for each non-in_sync drive.
2169  * Only the first two slots are in use. The first for reading,
2170  * The second for writing.
2171  *
2172  */
2173 static void fix_recovery_read_error(struct r10bio *r10_bio)
2174 {
2175         /* We got a read error during recovery.
2176          * We repeat the read in smaller page-sized sections.
2177          * If a read succeeds, write it to the new device or record
2178          * a bad block if we cannot.
2179          * If a read fails, record a bad block on both old and
2180          * new devices.
2181          */
2182         struct mddev *mddev = r10_bio->mddev;
2183         struct r10conf *conf = mddev->private;
2184         struct bio *bio = r10_bio->devs[0].bio;
2185         sector_t sect = 0;
2186         int sectors = r10_bio->sectors;
2187         int idx = 0;
2188         int dr = r10_bio->devs[0].devnum;
2189         int dw = r10_bio->devs[1].devnum;
2190         struct page **pages = get_resync_pages(bio)->pages;
2191
2192         while (sectors) {
2193                 int s = sectors;
2194                 struct md_rdev *rdev;
2195                 sector_t addr;
2196                 int ok;
2197
2198                 if (s > (PAGE_SIZE>>9))
2199                         s = PAGE_SIZE >> 9;
2200
2201                 rdev = conf->mirrors[dr].rdev;
2202                 addr = r10_bio->devs[0].addr + sect,
2203                 ok = sync_page_io(rdev,
2204                                   addr,
2205                                   s << 9,
2206                                   pages[idx],
2207                                   REQ_OP_READ, 0, false);
2208                 if (ok) {
2209                         rdev = conf->mirrors[dw].rdev;
2210                         addr = r10_bio->devs[1].addr + sect;
2211                         ok = sync_page_io(rdev,
2212                                           addr,
2213                                           s << 9,
2214                                           pages[idx],
2215                                           REQ_OP_WRITE, 0, false);
2216                         if (!ok) {
2217                                 set_bit(WriteErrorSeen, &rdev->flags);
2218                                 if (!test_and_set_bit(WantReplacement,
2219                                                       &rdev->flags))
2220                                         set_bit(MD_RECOVERY_NEEDED,
2221                                                 &rdev->mddev->recovery);
2222                         }
2223                 }
2224                 if (!ok) {
2225                         /* We don't worry if we cannot set a bad block -
2226                          * it really is bad so there is no loss in not
2227                          * recording it yet
2228                          */
2229                         rdev_set_badblocks(rdev, addr, s, 0);
2230
2231                         if (rdev != conf->mirrors[dw].rdev) {
2232                                 /* need bad block on destination too */
2233                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2234                                 addr = r10_bio->devs[1].addr + sect;
2235                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2236                                 if (!ok) {
2237                                         /* just abort the recovery */
2238                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2239                                                   mdname(mddev));
2240
2241                                         conf->mirrors[dw].recovery_disabled
2242                                                 = mddev->recovery_disabled;
2243                                         set_bit(MD_RECOVERY_INTR,
2244                                                 &mddev->recovery);
2245                                         break;
2246                                 }
2247                         }
2248                 }
2249
2250                 sectors -= s;
2251                 sect += s;
2252                 idx++;
2253         }
2254 }
2255
2256 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2257 {
2258         struct r10conf *conf = mddev->private;
2259         int d;
2260         struct bio *wbio, *wbio2;
2261
2262         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2263                 fix_recovery_read_error(r10_bio);
2264                 end_sync_request(r10_bio);
2265                 return;
2266         }
2267
2268         /*
2269          * share the pages with the first bio
2270          * and submit the write request
2271          */
2272         d = r10_bio->devs[1].devnum;
2273         wbio = r10_bio->devs[1].bio;
2274         wbio2 = r10_bio->devs[1].repl_bio;
2275         /* Need to test wbio2->bi_end_io before we call
2276          * generic_make_request as if the former is NULL,
2277          * the latter is free to free wbio2.
2278          */
2279         if (wbio2 && !wbio2->bi_end_io)
2280                 wbio2 = NULL;
2281         if (wbio->bi_end_io) {
2282                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2283                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2284                 generic_make_request(wbio);
2285         }
2286         if (wbio2) {
2287                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2288                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2289                              bio_sectors(wbio2));
2290                 generic_make_request(wbio2);
2291         }
2292 }
2293
2294 /*
2295  * Used by fix_read_error() to decay the per rdev read_errors.
2296  * We halve the read error count for every hour that has elapsed
2297  * since the last recorded read error.
2298  *
2299  */
2300 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2301 {
2302         long cur_time_mon;
2303         unsigned long hours_since_last;
2304         unsigned int read_errors = atomic_read(&rdev->read_errors);
2305
2306         cur_time_mon = ktime_get_seconds();
2307
2308         if (rdev->last_read_error == 0) {
2309                 /* first time we've seen a read error */
2310                 rdev->last_read_error = cur_time_mon;
2311                 return;
2312         }
2313
2314         hours_since_last = (long)(cur_time_mon -
2315                             rdev->last_read_error) / 3600;
2316
2317         rdev->last_read_error = cur_time_mon;
2318
2319         /*
2320          * if hours_since_last is > the number of bits in read_errors
2321          * just set read errors to 0. We do this to avoid
2322          * overflowing the shift of read_errors by hours_since_last.
2323          */
2324         if (hours_since_last >= 8 * sizeof(read_errors))
2325                 atomic_set(&rdev->read_errors, 0);
2326         else
2327                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2328 }
2329
2330 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2331                             int sectors, struct page *page, int rw)
2332 {
2333         sector_t first_bad;
2334         int bad_sectors;
2335
2336         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2337             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2338                 return -1;
2339         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2340                 /* success */
2341                 return 1;
2342         if (rw == WRITE) {
2343                 set_bit(WriteErrorSeen, &rdev->flags);
2344                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2345                         set_bit(MD_RECOVERY_NEEDED,
2346                                 &rdev->mddev->recovery);
2347         }
2348         /* need to record an error - either for the block or the device */
2349         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2350                 md_error(rdev->mddev, rdev);
2351         return 0;
2352 }
2353
2354 /*
2355  * This is a kernel thread which:
2356  *
2357  *      1.      Retries failed read operations on working mirrors.
2358  *      2.      Updates the raid superblock when problems encounter.
2359  *      3.      Performs writes following reads for array synchronising.
2360  */
2361
2362 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2363 {
2364         int sect = 0; /* Offset from r10_bio->sector */
2365         int sectors = r10_bio->sectors;
2366         struct md_rdev*rdev;
2367         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2368         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2369
2370         /* still own a reference to this rdev, so it cannot
2371          * have been cleared recently.
2372          */
2373         rdev = conf->mirrors[d].rdev;
2374
2375         if (test_bit(Faulty, &rdev->flags))
2376                 /* drive has already been failed, just ignore any
2377                    more fix_read_error() attempts */
2378                 return;
2379
2380         check_decay_read_errors(mddev, rdev);
2381         atomic_inc(&rdev->read_errors);
2382         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2383                 char b[BDEVNAME_SIZE];
2384                 bdevname(rdev->bdev, b);
2385
2386                 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2387                           mdname(mddev), b,
2388                           atomic_read(&rdev->read_errors), max_read_errors);
2389                 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2390                           mdname(mddev), b);
2391                 md_error(mddev, rdev);
2392                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2393                 return;
2394         }
2395
2396         while(sectors) {
2397                 int s = sectors;
2398                 int sl = r10_bio->read_slot;
2399                 int success = 0;
2400                 int start;
2401
2402                 if (s > (PAGE_SIZE>>9))
2403                         s = PAGE_SIZE >> 9;
2404
2405                 rcu_read_lock();
2406                 do {
2407                         sector_t first_bad;
2408                         int bad_sectors;
2409
2410                         d = r10_bio->devs[sl].devnum;
2411                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2412                         if (rdev &&
2413                             test_bit(In_sync, &rdev->flags) &&
2414                             !test_bit(Faulty, &rdev->flags) &&
2415                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2416                                         &first_bad, &bad_sectors) == 0) {
2417                                 atomic_inc(&rdev->nr_pending);
2418                                 rcu_read_unlock();
2419                                 success = sync_page_io(rdev,
2420                                                        r10_bio->devs[sl].addr +
2421                                                        sect,
2422                                                        s<<9,
2423                                                        conf->tmppage,
2424                                                        REQ_OP_READ, 0, false);
2425                                 rdev_dec_pending(rdev, mddev);
2426                                 rcu_read_lock();
2427                                 if (success)
2428                                         break;
2429                         }
2430                         sl++;
2431                         if (sl == conf->copies)
2432                                 sl = 0;
2433                 } while (!success && sl != r10_bio->read_slot);
2434                 rcu_read_unlock();
2435
2436                 if (!success) {
2437                         /* Cannot read from anywhere, just mark the block
2438                          * as bad on the first device to discourage future
2439                          * reads.
2440                          */
2441                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2442                         rdev = conf->mirrors[dn].rdev;
2443
2444                         if (!rdev_set_badblocks(
2445                                     rdev,
2446                                     r10_bio->devs[r10_bio->read_slot].addr
2447                                     + sect,
2448                                     s, 0)) {
2449                                 md_error(mddev, rdev);
2450                                 r10_bio->devs[r10_bio->read_slot].bio
2451                                         = IO_BLOCKED;
2452                         }
2453                         break;
2454                 }
2455
2456                 start = sl;
2457                 /* write it back and re-read */
2458                 rcu_read_lock();
2459                 while (sl != r10_bio->read_slot) {
2460                         char b[BDEVNAME_SIZE];
2461
2462                         if (sl==0)
2463                                 sl = conf->copies;
2464                         sl--;
2465                         d = r10_bio->devs[sl].devnum;
2466                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2467                         if (!rdev ||
2468                             test_bit(Faulty, &rdev->flags) ||
2469                             !test_bit(In_sync, &rdev->flags))
2470                                 continue;
2471
2472                         atomic_inc(&rdev->nr_pending);
2473                         rcu_read_unlock();
2474                         if (r10_sync_page_io(rdev,
2475                                              r10_bio->devs[sl].addr +
2476                                              sect,
2477                                              s, conf->tmppage, WRITE)
2478                             == 0) {
2479                                 /* Well, this device is dead */
2480                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2481                                           mdname(mddev), s,
2482                                           (unsigned long long)(
2483                                                   sect +
2484                                                   choose_data_offset(r10_bio,
2485                                                                      rdev)),
2486                                           bdevname(rdev->bdev, b));
2487                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2488                                           mdname(mddev),
2489                                           bdevname(rdev->bdev, b));
2490                         }
2491                         rdev_dec_pending(rdev, mddev);
2492                         rcu_read_lock();
2493                 }
2494                 sl = start;
2495                 while (sl != r10_bio->read_slot) {
2496                         char b[BDEVNAME_SIZE];
2497
2498                         if (sl==0)
2499                                 sl = conf->copies;
2500                         sl--;
2501                         d = r10_bio->devs[sl].devnum;
2502                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2503                         if (!rdev ||
2504                             test_bit(Faulty, &rdev->flags) ||
2505                             !test_bit(In_sync, &rdev->flags))
2506                                 continue;
2507
2508                         atomic_inc(&rdev->nr_pending);
2509                         rcu_read_unlock();
2510                         switch (r10_sync_page_io(rdev,
2511                                              r10_bio->devs[sl].addr +
2512                                              sect,
2513                                              s, conf->tmppage,
2514                                                  READ)) {
2515                         case 0:
2516                                 /* Well, this device is dead */
2517                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2518                                        mdname(mddev), s,
2519                                        (unsigned long long)(
2520                                                sect +
2521                                                choose_data_offset(r10_bio, rdev)),
2522                                        bdevname(rdev->bdev, b));
2523                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2524                                        mdname(mddev),
2525                                        bdevname(rdev->bdev, b));
2526                                 break;
2527                         case 1:
2528                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2529                                        mdname(mddev), s,
2530                                        (unsigned long long)(
2531                                                sect +
2532                                                choose_data_offset(r10_bio, rdev)),
2533                                        bdevname(rdev->bdev, b));
2534                                 atomic_add(s, &rdev->corrected_errors);
2535                         }
2536
2537                         rdev_dec_pending(rdev, mddev);
2538                         rcu_read_lock();
2539                 }
2540                 rcu_read_unlock();
2541
2542                 sectors -= s;
2543                 sect += s;
2544         }
2545 }
2546
2547 static int narrow_write_error(struct r10bio *r10_bio, int i)
2548 {
2549         struct bio *bio = r10_bio->master_bio;
2550         struct mddev *mddev = r10_bio->mddev;
2551         struct r10conf *conf = mddev->private;
2552         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2553         /* bio has the data to be written to slot 'i' where
2554          * we just recently had a write error.
2555          * We repeatedly clone the bio and trim down to one block,
2556          * then try the write.  Where the write fails we record
2557          * a bad block.
2558          * It is conceivable that the bio doesn't exactly align with
2559          * blocks.  We must handle this.
2560          *
2561          * We currently own a reference to the rdev.
2562          */
2563
2564         int block_sectors;
2565         sector_t sector;
2566         int sectors;
2567         int sect_to_write = r10_bio->sectors;
2568         int ok = 1;
2569
2570         if (rdev->badblocks.shift < 0)
2571                 return 0;
2572
2573         block_sectors = roundup(1 << rdev->badblocks.shift,
2574                                 bdev_logical_block_size(rdev->bdev) >> 9);
2575         sector = r10_bio->sector;
2576         sectors = ((r10_bio->sector + block_sectors)
2577                    & ~(sector_t)(block_sectors - 1))
2578                 - sector;
2579
2580         while (sect_to_write) {
2581                 struct bio *wbio;
2582                 sector_t wsector;
2583                 if (sectors > sect_to_write)
2584                         sectors = sect_to_write;
2585                 /* Write at 'sector' for 'sectors' */
2586                 wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
2587                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2588                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2589                 wbio->bi_iter.bi_sector = wsector +
2590                                    choose_data_offset(r10_bio, rdev);
2591                 bio_set_dev(wbio, rdev->bdev);
2592                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2593
2594                 if (submit_bio_wait(wbio) < 0)
2595                         /* Failure! */
2596                         ok = rdev_set_badblocks(rdev, wsector,
2597                                                 sectors, 0)
2598                                 && ok;
2599
2600                 bio_put(wbio);
2601                 sect_to_write -= sectors;
2602                 sector += sectors;
2603                 sectors = block_sectors;
2604         }
2605         return ok;
2606 }
2607
2608 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2609 {
2610         int slot = r10_bio->read_slot;
2611         struct bio *bio;
2612         struct r10conf *conf = mddev->private;
2613         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2614
2615         /* we got a read error. Maybe the drive is bad.  Maybe just
2616          * the block and we can fix it.
2617          * We freeze all other IO, and try reading the block from
2618          * other devices.  When we find one, we re-write
2619          * and check it that fixes the read error.
2620          * This is all done synchronously while the array is
2621          * frozen.
2622          */
2623         bio = r10_bio->devs[slot].bio;
2624         bio_put(bio);
2625         r10_bio->devs[slot].bio = NULL;
2626
2627         if (mddev->ro)
2628                 r10_bio->devs[slot].bio = IO_BLOCKED;
2629         else if (!test_bit(FailFast, &rdev->flags)) {
2630                 freeze_array(conf, 1);
2631                 fix_read_error(conf, mddev, r10_bio);
2632                 unfreeze_array(conf);
2633         } else
2634                 md_error(mddev, rdev);
2635
2636         rdev_dec_pending(rdev, mddev);
2637         allow_barrier(conf);
2638         r10_bio->state = 0;
2639         raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2640 }
2641
2642 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2643 {
2644         /* Some sort of write request has finished and it
2645          * succeeded in writing where we thought there was a
2646          * bad block.  So forget the bad block.
2647          * Or possibly if failed and we need to record
2648          * a bad block.
2649          */
2650         int m;
2651         struct md_rdev *rdev;
2652
2653         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2654             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2655                 for (m = 0; m < conf->copies; m++) {
2656                         int dev = r10_bio->devs[m].devnum;
2657                         rdev = conf->mirrors[dev].rdev;
2658                         if (r10_bio->devs[m].bio == NULL ||
2659                                 r10_bio->devs[m].bio->bi_end_io == NULL)
2660                                 continue;
2661                         if (!r10_bio->devs[m].bio->bi_status) {
2662                                 rdev_clear_badblocks(
2663                                         rdev,
2664                                         r10_bio->devs[m].addr,
2665                                         r10_bio->sectors, 0);
2666                         } else {
2667                                 if (!rdev_set_badblocks(
2668                                             rdev,
2669                                             r10_bio->devs[m].addr,
2670                                             r10_bio->sectors, 0))
2671                                         md_error(conf->mddev, rdev);
2672                         }
2673                         rdev = conf->mirrors[dev].replacement;
2674                         if (r10_bio->devs[m].repl_bio == NULL ||
2675                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2676                                 continue;
2677
2678                         if (!r10_bio->devs[m].repl_bio->bi_status) {
2679                                 rdev_clear_badblocks(
2680                                         rdev,
2681                                         r10_bio->devs[m].addr,
2682                                         r10_bio->sectors, 0);
2683                         } else {
2684                                 if (!rdev_set_badblocks(
2685                                             rdev,
2686                                             r10_bio->devs[m].addr,
2687                                             r10_bio->sectors, 0))
2688                                         md_error(conf->mddev, rdev);
2689                         }
2690                 }
2691                 put_buf(r10_bio);
2692         } else {
2693                 bool fail = false;
2694                 for (m = 0; m < conf->copies; m++) {
2695                         int dev = r10_bio->devs[m].devnum;
2696                         struct bio *bio = r10_bio->devs[m].bio;
2697                         rdev = conf->mirrors[dev].rdev;
2698                         if (bio == IO_MADE_GOOD) {
2699                                 rdev_clear_badblocks(
2700                                         rdev,
2701                                         r10_bio->devs[m].addr,
2702                                         r10_bio->sectors, 0);
2703                                 rdev_dec_pending(rdev, conf->mddev);
2704                         } else if (bio != NULL && bio->bi_status) {
2705                                 fail = true;
2706                                 if (!narrow_write_error(r10_bio, m)) {
2707                                         md_error(conf->mddev, rdev);
2708                                         set_bit(R10BIO_Degraded,
2709                                                 &r10_bio->state);
2710                                 }
2711                                 rdev_dec_pending(rdev, conf->mddev);
2712                         }
2713                         bio = r10_bio->devs[m].repl_bio;
2714                         rdev = conf->mirrors[dev].replacement;
2715                         if (rdev && bio == IO_MADE_GOOD) {
2716                                 rdev_clear_badblocks(
2717                                         rdev,
2718                                         r10_bio->devs[m].addr,
2719                                         r10_bio->sectors, 0);
2720                                 rdev_dec_pending(rdev, conf->mddev);
2721                         }
2722                 }
2723                 if (fail) {
2724                         spin_lock_irq(&conf->device_lock);
2725                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2726                         conf->nr_queued++;
2727                         spin_unlock_irq(&conf->device_lock);
2728                         /*
2729                          * In case freeze_array() is waiting for condition
2730                          * nr_pending == nr_queued + extra to be true.
2731                          */
2732                         wake_up(&conf->wait_barrier);
2733                         md_wakeup_thread(conf->mddev->thread);
2734                 } else {
2735                         if (test_bit(R10BIO_WriteError,
2736                                      &r10_bio->state))
2737                                 close_write(r10_bio);
2738                         raid_end_bio_io(r10_bio);
2739                 }
2740         }
2741 }
2742
2743 static void raid10d(struct md_thread *thread)
2744 {
2745         struct mddev *mddev = thread->mddev;
2746         struct r10bio *r10_bio;
2747         unsigned long flags;
2748         struct r10conf *conf = mddev->private;
2749         struct list_head *head = &conf->retry_list;
2750         struct blk_plug plug;
2751
2752         md_check_recovery(mddev);
2753
2754         if (!list_empty_careful(&conf->bio_end_io_list) &&
2755             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2756                 LIST_HEAD(tmp);
2757                 spin_lock_irqsave(&conf->device_lock, flags);
2758                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2759                         while (!list_empty(&conf->bio_end_io_list)) {
2760                                 list_move(conf->bio_end_io_list.prev, &tmp);
2761                                 conf->nr_queued--;
2762                         }
2763                 }
2764                 spin_unlock_irqrestore(&conf->device_lock, flags);
2765                 while (!list_empty(&tmp)) {
2766                         r10_bio = list_first_entry(&tmp, struct r10bio,
2767                                                    retry_list);
2768                         list_del(&r10_bio->retry_list);
2769                         if (mddev->degraded)
2770                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2771
2772                         if (test_bit(R10BIO_WriteError,
2773                                      &r10_bio->state))
2774                                 close_write(r10_bio);
2775                         raid_end_bio_io(r10_bio);
2776                 }
2777         }
2778
2779         blk_start_plug(&plug);
2780         for (;;) {
2781
2782                 flush_pending_writes(conf);
2783
2784                 spin_lock_irqsave(&conf->device_lock, flags);
2785                 if (list_empty(head)) {
2786                         spin_unlock_irqrestore(&conf->device_lock, flags);
2787                         break;
2788                 }
2789                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2790                 list_del(head->prev);
2791                 conf->nr_queued--;
2792                 spin_unlock_irqrestore(&conf->device_lock, flags);
2793
2794                 mddev = r10_bio->mddev;
2795                 conf = mddev->private;
2796                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2797                     test_bit(R10BIO_WriteError, &r10_bio->state))
2798                         handle_write_completed(conf, r10_bio);
2799                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2800                         reshape_request_write(mddev, r10_bio);
2801                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2802                         sync_request_write(mddev, r10_bio);
2803                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2804                         recovery_request_write(mddev, r10_bio);
2805                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2806                         handle_read_error(mddev, r10_bio);
2807                 else
2808                         WARN_ON_ONCE(1);
2809
2810                 cond_resched();
2811                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2812                         md_check_recovery(mddev);
2813         }
2814         blk_finish_plug(&plug);
2815 }
2816
2817 static int init_resync(struct r10conf *conf)
2818 {
2819         int buffs;
2820         int i;
2821
2822         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2823         BUG_ON(conf->r10buf_pool);
2824         conf->have_replacement = 0;
2825         for (i = 0; i < conf->geo.raid_disks; i++)
2826                 if (conf->mirrors[i].replacement)
2827                         conf->have_replacement = 1;
2828         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2829         if (!conf->r10buf_pool)
2830                 return -ENOMEM;
2831         conf->next_resync = 0;
2832         return 0;
2833 }
2834
2835 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2836 {
2837         struct r10bio *r10bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2838         struct rsync_pages *rp;
2839         struct bio *bio;
2840         int nalloc;
2841         int i;
2842
2843         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2844             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2845                 nalloc = conf->copies; /* resync */
2846         else
2847                 nalloc = 2; /* recovery */
2848
2849         for (i = 0; i < nalloc; i++) {
2850                 bio = r10bio->devs[i].bio;
2851                 rp = bio->bi_private;
2852                 bio_reset(bio);
2853                 bio->bi_private = rp;
2854                 bio = r10bio->devs[i].repl_bio;
2855                 if (bio) {
2856                         rp = bio->bi_private;
2857                         bio_reset(bio);
2858                         bio->bi_private = rp;
2859                 }
2860         }
2861         return r10bio;
2862 }
2863
2864 /*
2865  * Set cluster_sync_high since we need other nodes to add the
2866  * range [cluster_sync_low, cluster_sync_high] to suspend list.
2867  */
2868 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2869 {
2870         sector_t window_size;
2871         int extra_chunk, chunks;
2872
2873         /*
2874          * First, here we define "stripe" as a unit which across
2875          * all member devices one time, so we get chunks by use
2876          * raid_disks / near_copies. Otherwise, if near_copies is
2877          * close to raid_disks, then resync window could increases
2878          * linearly with the increase of raid_disks, which means
2879          * we will suspend a really large IO window while it is not
2880          * necessary. If raid_disks is not divisible by near_copies,
2881          * an extra chunk is needed to ensure the whole "stripe" is
2882          * covered.
2883          */
2884
2885         chunks = conf->geo.raid_disks / conf->geo.near_copies;
2886         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2887                 extra_chunk = 0;
2888         else
2889                 extra_chunk = 1;
2890         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2891
2892         /*
2893          * At least use a 32M window to align with raid1's resync window
2894          */
2895         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2896                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2897
2898         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2899 }
2900
2901 /*
2902  * perform a "sync" on one "block"
2903  *
2904  * We need to make sure that no normal I/O request - particularly write
2905  * requests - conflict with active sync requests.
2906  *
2907  * This is achieved by tracking pending requests and a 'barrier' concept
2908  * that can be installed to exclude normal IO requests.
2909  *
2910  * Resync and recovery are handled very differently.
2911  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2912  *
2913  * For resync, we iterate over virtual addresses, read all copies,
2914  * and update if there are differences.  If only one copy is live,
2915  * skip it.
2916  * For recovery, we iterate over physical addresses, read a good
2917  * value for each non-in_sync drive, and over-write.
2918  *
2919  * So, for recovery we may have several outstanding complex requests for a
2920  * given address, one for each out-of-sync device.  We model this by allocating
2921  * a number of r10_bio structures, one for each out-of-sync device.
2922  * As we setup these structures, we collect all bio's together into a list
2923  * which we then process collectively to add pages, and then process again
2924  * to pass to generic_make_request.
2925  *
2926  * The r10_bio structures are linked using a borrowed master_bio pointer.
2927  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2928  * has its remaining count decremented to 0, the whole complex operation
2929  * is complete.
2930  *
2931  */
2932
2933 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2934                              int *skipped)
2935 {
2936         struct r10conf *conf = mddev->private;
2937         struct r10bio *r10_bio;
2938         struct bio *biolist = NULL, *bio;
2939         sector_t max_sector, nr_sectors;
2940         int i;
2941         int max_sync;
2942         sector_t sync_blocks;
2943         sector_t sectors_skipped = 0;
2944         int chunks_skipped = 0;
2945         sector_t chunk_mask = conf->geo.chunk_mask;
2946         int page_idx = 0;
2947
2948         if (!conf->r10buf_pool)
2949                 if (init_resync(conf))
2950                         return 0;
2951
2952         /*
2953          * Allow skipping a full rebuild for incremental assembly
2954          * of a clean array, like RAID1 does.
2955          */
2956         if (mddev->bitmap == NULL &&
2957             mddev->recovery_cp == MaxSector &&
2958             mddev->reshape_position == MaxSector &&
2959             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2960             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2961             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2962             conf->fullsync == 0) {
2963                 *skipped = 1;
2964                 return mddev->dev_sectors - sector_nr;
2965         }
2966
2967  skipped:
2968         max_sector = mddev->dev_sectors;
2969         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2970             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2971                 max_sector = mddev->resync_max_sectors;
2972         if (sector_nr >= max_sector) {
2973                 conf->cluster_sync_low = 0;
2974                 conf->cluster_sync_high = 0;
2975
2976                 /* If we aborted, we need to abort the
2977                  * sync on the 'current' bitmap chucks (there can
2978                  * be several when recovering multiple devices).
2979                  * as we may have started syncing it but not finished.
2980                  * We can find the current address in
2981                  * mddev->curr_resync, but for recovery,
2982                  * we need to convert that to several
2983                  * virtual addresses.
2984                  */
2985                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2986                         end_reshape(conf);
2987                         close_sync(conf);
2988                         return 0;
2989                 }
2990
2991                 if (mddev->curr_resync < max_sector) { /* aborted */
2992                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2993                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2994                                                 &sync_blocks, 1);
2995                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2996                                 sector_t sect =
2997                                         raid10_find_virt(conf, mddev->curr_resync, i);
2998                                 bitmap_end_sync(mddev->bitmap, sect,
2999                                                 &sync_blocks, 1);
3000                         }
3001                 } else {
3002                         /* completed sync */
3003                         if ((!mddev->bitmap || conf->fullsync)
3004                             && conf->have_replacement
3005                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3006                                 /* Completed a full sync so the replacements
3007                                  * are now fully recovered.
3008                                  */
3009                                 rcu_read_lock();
3010                                 for (i = 0; i < conf->geo.raid_disks; i++) {
3011                                         struct md_rdev *rdev =
3012                                                 rcu_dereference(conf->mirrors[i].replacement);
3013                                         if (rdev)
3014                                                 rdev->recovery_offset = MaxSector;
3015                                 }
3016                                 rcu_read_unlock();
3017                         }
3018                         conf->fullsync = 0;
3019                 }
3020                 bitmap_close_sync(mddev->bitmap);
3021                 close_sync(conf);
3022                 *skipped = 1;
3023                 return sectors_skipped;
3024         }
3025
3026         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3027                 return reshape_request(mddev, sector_nr, skipped);
3028
3029         if (chunks_skipped >= conf->geo.raid_disks) {
3030                 /* if there has been nothing to do on any drive,
3031                  * then there is nothing to do at all..
3032                  */
3033                 *skipped = 1;
3034                 return (max_sector - sector_nr) + sectors_skipped;
3035         }
3036
3037         if (max_sector > mddev->resync_max)
3038                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3039
3040         /* make sure whole request will fit in a chunk - if chunks
3041          * are meaningful
3042          */
3043         if (conf->geo.near_copies < conf->geo.raid_disks &&
3044             max_sector > (sector_nr | chunk_mask))
3045                 max_sector = (sector_nr | chunk_mask) + 1;
3046
3047         /*
3048          * If there is non-resync activity waiting for a turn, then let it
3049          * though before starting on this new sync request.
3050          */
3051         if (conf->nr_waiting)
3052                 schedule_timeout_uninterruptible(1);
3053
3054         /* Again, very different code for resync and recovery.
3055          * Both must result in an r10bio with a list of bios that
3056          * have bi_end_io, bi_sector, bi_disk set,
3057          * and bi_private set to the r10bio.
3058          * For recovery, we may actually create several r10bios
3059          * with 2 bios in each, that correspond to the bios in the main one.
3060          * In this case, the subordinate r10bios link back through a
3061          * borrowed master_bio pointer, and the counter in the master
3062          * includes a ref from each subordinate.
3063          */
3064         /* First, we decide what to do and set ->bi_end_io
3065          * To end_sync_read if we want to read, and
3066          * end_sync_write if we will want to write.
3067          */
3068
3069         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3070         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3071                 /* recovery... the complicated one */
3072                 int j;
3073                 r10_bio = NULL;
3074
3075                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3076                         int still_degraded;
3077                         struct r10bio *rb2;
3078                         sector_t sect;
3079                         int must_sync;
3080                         int any_working;
3081                         struct raid10_info *mirror = &conf->mirrors[i];
3082                         struct md_rdev *mrdev, *mreplace;
3083
3084                         rcu_read_lock();
3085                         mrdev = rcu_dereference(mirror->rdev);
3086                         mreplace = rcu_dereference(mirror->replacement);
3087
3088                         if ((mrdev == NULL ||
3089                              test_bit(Faulty, &mrdev->flags) ||
3090                              test_bit(In_sync, &mrdev->flags)) &&
3091                             (mreplace == NULL ||
3092                              test_bit(Faulty, &mreplace->flags))) {
3093                                 rcu_read_unlock();
3094                                 continue;
3095                         }
3096
3097                         still_degraded = 0;
3098                         /* want to reconstruct this device */
3099                         rb2 = r10_bio;
3100                         sect = raid10_find_virt(conf, sector_nr, i);
3101                         if (sect >= mddev->resync_max_sectors) {
3102                                 /* last stripe is not complete - don't
3103                                  * try to recover this sector.
3104                                  */
3105                                 rcu_read_unlock();
3106                                 continue;
3107                         }
3108                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3109                                 mreplace = NULL;
3110                         /* Unless we are doing a full sync, or a replacement
3111                          * we only need to recover the block if it is set in
3112                          * the bitmap
3113                          */
3114                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3115                                                       &sync_blocks, 1);
3116                         if (sync_blocks < max_sync)
3117                                 max_sync = sync_blocks;
3118                         if (!must_sync &&
3119                             mreplace == NULL &&
3120                             !conf->fullsync) {
3121                                 /* yep, skip the sync_blocks here, but don't assume
3122                                  * that there will never be anything to do here
3123                                  */
3124                                 chunks_skipped = -1;
3125                                 rcu_read_unlock();
3126                                 continue;
3127                         }
3128                         atomic_inc(&mrdev->nr_pending);
3129                         if (mreplace)
3130                                 atomic_inc(&mreplace->nr_pending);
3131                         rcu_read_unlock();
3132
3133                         r10_bio = raid10_alloc_init_r10buf(conf);
3134                         r10_bio->state = 0;
3135                         raise_barrier(conf, rb2 != NULL);
3136                         atomic_set(&r10_bio->remaining, 0);
3137
3138                         r10_bio->master_bio = (struct bio*)rb2;
3139                         if (rb2)
3140                                 atomic_inc(&rb2->remaining);
3141                         r10_bio->mddev = mddev;
3142                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3143                         r10_bio->sector = sect;
3144
3145                         raid10_find_phys(conf, r10_bio);
3146
3147                         /* Need to check if the array will still be
3148                          * degraded
3149                          */
3150                         rcu_read_lock();
3151                         for (j = 0; j < conf->geo.raid_disks; j++) {
3152                                 struct md_rdev *rdev = rcu_dereference(
3153                                         conf->mirrors[j].rdev);
3154                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3155                                         still_degraded = 1;
3156                                         break;
3157                                 }
3158                         }
3159
3160                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3161                                                       &sync_blocks, still_degraded);
3162
3163                         any_working = 0;
3164                         for (j=0; j<conf->copies;j++) {
3165                                 int k;
3166                                 int d = r10_bio->devs[j].devnum;
3167                                 sector_t from_addr, to_addr;
3168                                 struct md_rdev *rdev =
3169                                         rcu_dereference(conf->mirrors[d].rdev);
3170                                 sector_t sector, first_bad;
3171                                 int bad_sectors;
3172                                 if (!rdev ||
3173                                     !test_bit(In_sync, &rdev->flags))
3174                                         continue;
3175                                 /* This is where we read from */
3176                                 any_working = 1;
3177                                 sector = r10_bio->devs[j].addr;
3178
3179                                 if (is_badblock(rdev, sector, max_sync,
3180                                                 &first_bad, &bad_sectors)) {
3181                                         if (first_bad > sector)
3182                                                 max_sync = first_bad - sector;
3183                                         else {
3184                                                 bad_sectors -= (sector
3185                                                                 - first_bad);
3186                                                 if (max_sync > bad_sectors)
3187                                                         max_sync = bad_sectors;
3188                                                 continue;
3189                                         }
3190                                 }
3191                                 bio = r10_bio->devs[0].bio;
3192                                 bio->bi_next = biolist;
3193                                 biolist = bio;
3194                                 bio->bi_end_io = end_sync_read;
3195                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3196                                 if (test_bit(FailFast, &rdev->flags))
3197                                         bio->bi_opf |= MD_FAILFAST;
3198                                 from_addr = r10_bio->devs[j].addr;
3199                                 bio->bi_iter.bi_sector = from_addr +
3200                                         rdev->data_offset;
3201                                 bio_set_dev(bio, rdev->bdev);
3202                                 atomic_inc(&rdev->nr_pending);
3203                                 /* and we write to 'i' (if not in_sync) */
3204
3205                                 for (k=0; k<conf->copies; k++)
3206                                         if (r10_bio->devs[k].devnum == i)
3207                                                 break;
3208                                 BUG_ON(k == conf->copies);
3209                                 to_addr = r10_bio->devs[k].addr;
3210                                 r10_bio->devs[0].devnum = d;
3211                                 r10_bio->devs[0].addr = from_addr;
3212                                 r10_bio->devs[1].devnum = i;
3213                                 r10_bio->devs[1].addr = to_addr;
3214
3215                                 if (!test_bit(In_sync, &mrdev->flags)) {
3216                                         bio = r10_bio->devs[1].bio;
3217                                         bio->bi_next = biolist;
3218                                         biolist = bio;
3219                                         bio->bi_end_io = end_sync_write;
3220                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3221                                         bio->bi_iter.bi_sector = to_addr
3222                                                 + mrdev->data_offset;
3223                                         bio_set_dev(bio, mrdev->bdev);
3224                                         atomic_inc(&r10_bio->remaining);
3225                                 } else
3226                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3227
3228                                 /* and maybe write to replacement */
3229                                 bio = r10_bio->devs[1].repl_bio;
3230                                 if (bio)
3231                                         bio->bi_end_io = NULL;
3232                                 /* Note: if mreplace != NULL, then bio
3233                                  * cannot be NULL as r10buf_pool_alloc will
3234                                  * have allocated it.
3235                                  * So the second test here is pointless.
3236                                  * But it keeps semantic-checkers happy, and
3237                                  * this comment keeps human reviewers
3238                                  * happy.
3239                                  */
3240                                 if (mreplace == NULL || bio == NULL ||
3241                                     test_bit(Faulty, &mreplace->flags))
3242                                         break;
3243                                 bio->bi_next = biolist;
3244                                 biolist = bio;
3245                                 bio->bi_end_io = end_sync_write;
3246                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3247                                 bio->bi_iter.bi_sector = to_addr +
3248                                         mreplace->data_offset;
3249                                 bio_set_dev(bio, mreplace->bdev);
3250                                 atomic_inc(&r10_bio->remaining);
3251                                 break;
3252                         }
3253                         rcu_read_unlock();
3254                         if (j == conf->copies) {
3255                                 /* Cannot recover, so abort the recovery or
3256                                  * record a bad block */
3257                                 if (any_working) {
3258                                         /* problem is that there are bad blocks
3259                                          * on other device(s)
3260                                          */
3261                                         int k;
3262                                         for (k = 0; k < conf->copies; k++)
3263                                                 if (r10_bio->devs[k].devnum == i)
3264                                                         break;
3265                                         if (!test_bit(In_sync,
3266                                                       &mrdev->flags)
3267                                             && !rdev_set_badblocks(
3268                                                     mrdev,
3269                                                     r10_bio->devs[k].addr,
3270                                                     max_sync, 0))
3271                                                 any_working = 0;
3272                                         if (mreplace &&
3273                                             !rdev_set_badblocks(
3274                                                     mreplace,
3275                                                     r10_bio->devs[k].addr,
3276                                                     max_sync, 0))
3277                                                 any_working = 0;
3278                                 }
3279                                 if (!any_working)  {
3280                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3281                                                               &mddev->recovery))
3282                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3283                                                        mdname(mddev));
3284                                         mirror->recovery_disabled
3285                                                 = mddev->recovery_disabled;
3286                                 }
3287                                 put_buf(r10_bio);
3288                                 if (rb2)
3289                                         atomic_dec(&rb2->remaining);
3290                                 r10_bio = rb2;
3291                                 rdev_dec_pending(mrdev, mddev);
3292                                 if (mreplace)
3293                                         rdev_dec_pending(mreplace, mddev);
3294                                 break;
3295                         }
3296                         rdev_dec_pending(mrdev, mddev);
3297                         if (mreplace)
3298                                 rdev_dec_pending(mreplace, mddev);
3299                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3300                                 /* Only want this if there is elsewhere to
3301                                  * read from. 'j' is currently the first
3302                                  * readable copy.
3303                                  */
3304                                 int targets = 1;
3305                                 for (; j < conf->copies; j++) {
3306                                         int d = r10_bio->devs[j].devnum;
3307                                         if (conf->mirrors[d].rdev &&
3308                                             test_bit(In_sync,
3309                                                       &conf->mirrors[d].rdev->flags))
3310                                                 targets++;
3311                                 }
3312                                 if (targets == 1)
3313                                         r10_bio->devs[0].bio->bi_opf
3314                                                 &= ~MD_FAILFAST;
3315                         }
3316                 }
3317                 if (biolist == NULL) {
3318                         while (r10_bio) {
3319                                 struct r10bio *rb2 = r10_bio;
3320                                 r10_bio = (struct r10bio*) rb2->master_bio;
3321                                 rb2->master_bio = NULL;
3322                                 put_buf(rb2);
3323                         }
3324                         goto giveup;
3325                 }
3326         } else {
3327                 /* resync. Schedule a read for every block at this virt offset */
3328                 int count = 0;
3329
3330                 /*
3331                  * Since curr_resync_completed could probably not update in
3332                  * time, and we will set cluster_sync_low based on it.
3333                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3334                  * safety reason, which ensures curr_resync_completed is
3335                  * updated in bitmap_cond_end_sync.
3336                  */
3337                 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3338                                      mddev_is_clustered(mddev) &&
3339                                      (sector_nr + 2 * RESYNC_SECTORS >
3340                                       conf->cluster_sync_high));
3341
3342                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3343                                        &sync_blocks, mddev->degraded) &&
3344                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3345                                                  &mddev->recovery)) {
3346                         /* We can skip this block */
3347                         *skipped = 1;
3348                         return sync_blocks + sectors_skipped;
3349                 }
3350                 if (sync_blocks < max_sync)
3351                         max_sync = sync_blocks;
3352                 r10_bio = raid10_alloc_init_r10buf(conf);
3353                 r10_bio->state = 0;
3354
3355                 r10_bio->mddev = mddev;
3356                 atomic_set(&r10_bio->remaining, 0);
3357                 raise_barrier(conf, 0);
3358                 conf->next_resync = sector_nr;
3359
3360                 r10_bio->master_bio = NULL;
3361                 r10_bio->sector = sector_nr;
3362                 set_bit(R10BIO_IsSync, &r10_bio->state);
3363                 raid10_find_phys(conf, r10_bio);
3364                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3365
3366                 for (i = 0; i < conf->copies; i++) {
3367                         int d = r10_bio->devs[i].devnum;
3368                         sector_t first_bad, sector;
3369                         int bad_sectors;
3370                         struct md_rdev *rdev;
3371
3372                         if (r10_bio->devs[i].repl_bio)
3373                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3374
3375                         bio = r10_bio->devs[i].bio;
3376                         bio->bi_status = BLK_STS_IOERR;
3377                         rcu_read_lock();
3378                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3379                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3380                                 rcu_read_unlock();
3381                                 continue;
3382                         }
3383                         sector = r10_bio->devs[i].addr;
3384                         if (is_badblock(rdev, sector, max_sync,
3385                                         &first_bad, &bad_sectors)) {
3386                                 if (first_bad > sector)
3387                                         max_sync = first_bad - sector;
3388                                 else {
3389                                         bad_sectors -= (sector - first_bad);
3390                                         if (max_sync > bad_sectors)
3391                                                 max_sync = bad_sectors;
3392                                         rcu_read_unlock();
3393                                         continue;
3394                                 }
3395                         }
3396                         atomic_inc(&rdev->nr_pending);
3397                         atomic_inc(&r10_bio->remaining);
3398                         bio->bi_next = biolist;
3399                         biolist = bio;
3400                         bio->bi_end_io = end_sync_read;
3401                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3402                         if (test_bit(FailFast, &rdev->flags))
3403                                 bio->bi_opf |= MD_FAILFAST;
3404                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3405                         bio_set_dev(bio, rdev->bdev);
3406                         count++;
3407
3408                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3409                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3410                                 rcu_read_unlock();
3411                                 continue;
3412                         }
3413                         atomic_inc(&rdev->nr_pending);
3414
3415                         /* Need to set up for writing to the replacement */
3416                         bio = r10_bio->devs[i].repl_bio;
3417                         bio->bi_status = BLK_STS_IOERR;
3418
3419                         sector = r10_bio->devs[i].addr;
3420                         bio->bi_next = biolist;
3421                         biolist = bio;
3422                         bio->bi_end_io = end_sync_write;
3423                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3424                         if (test_bit(FailFast, &rdev->flags))
3425                                 bio->bi_opf |= MD_FAILFAST;
3426                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3427                         bio_set_dev(bio, rdev->bdev);
3428                         count++;
3429                         rcu_read_unlock();
3430                 }
3431
3432                 if (count < 2) {
3433                         for (i=0; i<conf->copies; i++) {
3434                                 int d = r10_bio->devs[i].devnum;
3435                                 if (r10_bio->devs[i].bio->bi_end_io)
3436                                         rdev_dec_pending(conf->mirrors[d].rdev,
3437                                                          mddev);
3438                                 if (r10_bio->devs[i].repl_bio &&
3439                                     r10_bio->devs[i].repl_bio->bi_end_io)
3440                                         rdev_dec_pending(
3441                                                 conf->mirrors[d].replacement,
3442                                                 mddev);
3443                         }
3444                         put_buf(r10_bio);
3445                         biolist = NULL;
3446                         goto giveup;
3447                 }
3448         }
3449
3450         nr_sectors = 0;
3451         if (sector_nr + max_sync < max_sector)
3452                 max_sector = sector_nr + max_sync;
3453         do {
3454                 struct page *page;
3455                 int len = PAGE_SIZE;
3456                 if (sector_nr + (len>>9) > max_sector)
3457                         len = (max_sector - sector_nr) << 9;
3458                 if (len == 0)
3459                         break;
3460                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3461                         struct resync_pages *rp = get_resync_pages(bio);
3462                         page = resync_fetch_page(rp, page_idx);
3463                         /*
3464                          * won't fail because the vec table is big enough
3465                          * to hold all these pages
3466                          */
3467                         bio_add_page(bio, page, len, 0);
3468                 }
3469                 nr_sectors += len>>9;
3470                 sector_nr += len>>9;
3471         } while (++page_idx < RESYNC_PAGES);
3472         r10_bio->sectors = nr_sectors;
3473
3474         if (mddev_is_clustered(mddev) &&
3475             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3476                 /* It is resync not recovery */
3477                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3478                         conf->cluster_sync_low = mddev->curr_resync_completed;
3479                         raid10_set_cluster_sync_high(conf);
3480                         /* Send resync message */
3481                         md_cluster_ops->resync_info_update(mddev,
3482                                                 conf->cluster_sync_low,
3483                                                 conf->cluster_sync_high);
3484                 }
3485         } else if (mddev_is_clustered(mddev)) {
3486                 /* This is recovery not resync */
3487                 sector_t sect_va1, sect_va2;
3488                 bool broadcast_msg = false;
3489
3490                 for (i = 0; i < conf->geo.raid_disks; i++) {
3491                         /*
3492                          * sector_nr is a device address for recovery, so we
3493                          * need translate it to array address before compare
3494                          * with cluster_sync_high.
3495                          */
3496                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3497
3498                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3499                                 broadcast_msg = true;
3500                                 /*
3501                                  * curr_resync_completed is similar as
3502                                  * sector_nr, so make the translation too.
3503                                  */
3504                                 sect_va2 = raid10_find_virt(conf,
3505                                         mddev->curr_resync_completed, i);
3506
3507                                 if (conf->cluster_sync_low == 0 ||
3508                                     conf->cluster_sync_low > sect_va2)
3509                                         conf->cluster_sync_low = sect_va2;
3510                         }
3511                 }
3512                 if (broadcast_msg) {
3513                         raid10_set_cluster_sync_high(conf);
3514                         md_cluster_ops->resync_info_update(mddev,
3515                                                 conf->cluster_sync_low,
3516                                                 conf->cluster_sync_high);
3517                 }
3518         }
3519
3520         while (biolist) {
3521                 bio = biolist;
3522                 biolist = biolist->bi_next;
3523
3524                 bio->bi_next = NULL;
3525                 r10_bio = get_resync_r10bio(bio);
3526                 r10_bio->sectors = nr_sectors;
3527
3528                 if (bio->bi_end_io == end_sync_read) {
3529                         md_sync_acct_bio(bio, nr_sectors);
3530                         bio->bi_status = 0;
3531                         generic_make_request(bio);
3532                 }
3533         }
3534
3535         if (sectors_skipped)
3536                 /* pretend they weren't skipped, it makes
3537                  * no important difference in this case
3538                  */
3539                 md_done_sync(mddev, sectors_skipped, 1);
3540
3541         return sectors_skipped + nr_sectors;
3542  giveup:
3543         /* There is nowhere to write, so all non-sync
3544          * drives must be failed or in resync, all drives
3545          * have a bad block, so try the next chunk...
3546          */
3547         if (sector_nr + max_sync < max_sector)
3548                 max_sector = sector_nr + max_sync;
3549
3550         sectors_skipped += (max_sector - sector_nr);
3551         chunks_skipped ++;
3552         sector_nr = max_sector;
3553         goto skipped;
3554 }
3555
3556 static sector_t
3557 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3558 {
3559         sector_t size;
3560         struct r10conf *conf = mddev->private;
3561
3562         if (!raid_disks)
3563                 raid_disks = min(conf->geo.raid_disks,
3564                                  conf->prev.raid_disks);
3565         if (!sectors)
3566                 sectors = conf->dev_sectors;
3567
3568         size = sectors >> conf->geo.chunk_shift;
3569         sector_div(size, conf->geo.far_copies);
3570         size = size * raid_disks;
3571         sector_div(size, conf->geo.near_copies);
3572
3573         return size << conf->geo.chunk_shift;
3574 }
3575
3576 static void calc_sectors(struct r10conf *conf, sector_t size)
3577 {
3578         /* Calculate the number of sectors-per-device that will
3579          * actually be used, and set conf->dev_sectors and
3580          * conf->stride
3581          */
3582
3583         size = size >> conf->geo.chunk_shift;
3584         sector_div(size, conf->geo.far_copies);
3585         size = size * conf->geo.raid_disks;
3586         sector_div(size, conf->geo.near_copies);
3587         /* 'size' is now the number of chunks in the array */
3588         /* calculate "used chunks per device" */
3589         size = size * conf->copies;
3590
3591         /* We need to round up when dividing by raid_disks to
3592          * get the stride size.
3593          */
3594         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3595
3596         conf->dev_sectors = size << conf->geo.chunk_shift;
3597
3598         if (conf->geo.far_offset)
3599                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3600         else {
3601                 sector_div(size, conf->geo.far_copies);
3602                 conf->geo.stride = size << conf->geo.chunk_shift;
3603         }
3604 }
3605
3606 enum geo_type {geo_new, geo_old, geo_start};
3607 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3608 {
3609         int nc, fc, fo;
3610         int layout, chunk, disks;
3611         switch (new) {
3612         case geo_old:
3613                 layout = mddev->layout;
3614                 chunk = mddev->chunk_sectors;
3615                 disks = mddev->raid_disks - mddev->delta_disks;
3616                 break;
3617         case geo_new:
3618                 layout = mddev->new_layout;
3619                 chunk = mddev->new_chunk_sectors;
3620                 disks = mddev->raid_disks;
3621                 break;
3622         default: /* avoid 'may be unused' warnings */
3623         case geo_start: /* new when starting reshape - raid_disks not
3624                          * updated yet. */
3625                 layout = mddev->new_layout;
3626                 chunk = mddev->new_chunk_sectors;
3627                 disks = mddev->raid_disks + mddev->delta_disks;
3628                 break;
3629         }
3630         if (layout >> 19)
3631                 return -1;
3632         if (chunk < (PAGE_SIZE >> 9) ||
3633             !is_power_of_2(chunk))
3634                 return -2;
3635         nc = layout & 255;
3636         fc = (layout >> 8) & 255;
3637         fo = layout & (1<<16);
3638         geo->raid_disks = disks;
3639         geo->near_copies = nc;
3640         geo->far_copies = fc;
3641         geo->far_offset = fo;
3642         switch (layout >> 17) {
3643         case 0: /* original layout.  simple but not always optimal */
3644                 geo->far_set_size = disks;
3645                 break;
3646         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3647                  * actually using this, but leave code here just in case.*/
3648                 geo->far_set_size = disks/fc;
3649                 WARN(geo->far_set_size < fc,
3650                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3651                 break;
3652         case 2: /* "improved" layout fixed to match documentation */
3653                 geo->far_set_size = fc * nc;
3654                 break;
3655         default: /* Not a valid layout */
3656                 return -1;
3657         }
3658         geo->chunk_mask = chunk - 1;
3659         geo->chunk_shift = ffz(~chunk);
3660         return nc*fc;
3661 }
3662
3663 static struct r10conf *setup_conf(struct mddev *mddev)
3664 {
3665         struct r10conf *conf = NULL;
3666         int err = -EINVAL;
3667         struct geom geo;
3668         int copies;
3669
3670         copies = setup_geo(&geo, mddev, geo_new);
3671
3672         if (copies == -2) {
3673                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3674                         mdname(mddev), PAGE_SIZE);
3675                 goto out;
3676         }
3677
3678         if (copies < 2 || copies > mddev->raid_disks) {
3679                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3680                         mdname(mddev), mddev->new_layout);
3681                 goto out;
3682         }
3683
3684         err = -ENOMEM;
3685         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3686         if (!conf)
3687                 goto out;
3688
3689         /* FIXME calc properly */
3690         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3691                                                             max(0,-mddev->delta_disks)),
3692                                 GFP_KERNEL);
3693         if (!conf->mirrors)
3694                 goto out;
3695
3696         conf->tmppage = alloc_page(GFP_KERNEL);
3697         if (!conf->tmppage)
3698                 goto out;
3699
3700         conf->geo = geo;
3701         conf->copies = copies;
3702         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3703                                            r10bio_pool_free, conf);
3704         if (!conf->r10bio_pool)
3705                 goto out;
3706
3707         conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
3708         if (!conf->bio_split)
3709                 goto out;
3710
3711         calc_sectors(conf, mddev->dev_sectors);
3712         if (mddev->reshape_position == MaxSector) {
3713                 conf->prev = conf->geo;
3714                 conf->reshape_progress = MaxSector;
3715         } else {
3716                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3717                         err = -EINVAL;
3718                         goto out;
3719                 }
3720                 conf->reshape_progress = mddev->reshape_position;
3721                 if (conf->prev.far_offset)
3722                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3723                 else
3724                         /* far_copies must be 1 */
3725                         conf->prev.stride = conf->dev_sectors;
3726         }
3727         conf->reshape_safe = conf->reshape_progress;
3728         spin_lock_init(&conf->device_lock);
3729         INIT_LIST_HEAD(&conf->retry_list);
3730         INIT_LIST_HEAD(&conf->bio_end_io_list);
3731
3732         spin_lock_init(&conf->resync_lock);
3733         init_waitqueue_head(&conf->wait_barrier);
3734         atomic_set(&conf->nr_pending, 0);
3735
3736         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3737         if (!conf->thread)
3738                 goto out;
3739
3740         conf->mddev = mddev;
3741         return conf;
3742
3743  out:
3744         if (conf) {
3745                 mempool_destroy(conf->r10bio_pool);
3746                 kfree(conf->mirrors);
3747                 safe_put_page(conf->tmppage);
3748                 if (conf->bio_split)
3749                         bioset_free(conf->bio_split);
3750                 kfree(conf);
3751         }
3752         return ERR_PTR(err);
3753 }
3754
3755 static int raid10_run(struct mddev *mddev)
3756 {
3757         struct r10conf *conf;
3758         int i, disk_idx, chunk_size;
3759         struct raid10_info *disk;
3760         struct md_rdev *rdev;
3761         sector_t size;
3762         sector_t min_offset_diff = 0;
3763         int first = 1;
3764         bool discard_supported = false;
3765
3766         if (mddev_init_writes_pending(mddev) < 0)
3767                 return -ENOMEM;
3768
3769         if (mddev->private == NULL) {
3770                 conf = setup_conf(mddev);
3771                 if (IS_ERR(conf))
3772                         return PTR_ERR(conf);
3773                 mddev->private = conf;
3774         }
3775         conf = mddev->private;
3776         if (!conf)
3777                 goto out;
3778
3779         if (mddev_is_clustered(conf->mddev)) {
3780                 int fc, fo;
3781
3782                 fc = (mddev->layout >> 8) & 255;
3783                 fo = mddev->layout & (1<<16);
3784                 if (fc > 1 || fo > 0) {
3785                         pr_err("only near layout is supported by clustered"
3786                                 " raid10\n");
3787                         goto out_free_conf;
3788                 }
3789         }
3790
3791         mddev->thread = conf->thread;
3792         conf->thread = NULL;
3793
3794         chunk_size = mddev->chunk_sectors << 9;
3795         if (mddev->queue) {
3796                 blk_queue_max_discard_sectors(mddev->queue,
3797                                               mddev->chunk_sectors);
3798                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3799                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3800                 blk_queue_io_min(mddev->queue, chunk_size);
3801                 if (conf->geo.raid_disks % conf->geo.near_copies)
3802                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3803                 else
3804                         blk_queue_io_opt(mddev->queue, chunk_size *
3805                                          (conf->geo.raid_disks / conf->geo.near_copies));
3806         }
3807
3808         rdev_for_each(rdev, mddev) {
3809                 long long diff;
3810
3811                 disk_idx = rdev->raid_disk;
3812                 if (disk_idx < 0)
3813                         continue;
3814                 if (disk_idx >= conf->geo.raid_disks &&
3815                     disk_idx >= conf->prev.raid_disks)
3816                         continue;
3817                 disk = conf->mirrors + disk_idx;
3818
3819                 if (test_bit(Replacement, &rdev->flags)) {
3820                         if (disk->replacement)
3821                                 goto out_free_conf;
3822                         disk->replacement = rdev;
3823                 } else {
3824                         if (disk->rdev)
3825                                 goto out_free_conf;
3826                         disk->rdev = rdev;
3827                 }
3828                 diff = (rdev->new_data_offset - rdev->data_offset);
3829                 if (!mddev->reshape_backwards)
3830                         diff = -diff;
3831                 if (diff < 0)
3832                         diff = 0;
3833                 if (first || diff < min_offset_diff)
3834                         min_offset_diff = diff;
3835
3836                 if (mddev->gendisk)
3837                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3838                                           rdev->data_offset << 9);
3839
3840                 disk->head_position = 0;
3841
3842                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3843                         discard_supported = true;
3844                 first = 0;
3845         }
3846
3847         if (mddev->queue) {
3848                 if (discard_supported)
3849                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3850                                                 mddev->queue);
3851                 else
3852                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3853                                                   mddev->queue);
3854         }
3855         /* need to check that every block has at least one working mirror */
3856         if (!enough(conf, -1)) {
3857                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3858                        mdname(mddev));
3859                 goto out_free_conf;
3860         }
3861
3862         if (conf->reshape_progress != MaxSector) {
3863                 /* must ensure that shape change is supported */
3864                 if (conf->geo.far_copies != 1 &&
3865                     conf->geo.far_offset == 0)
3866                         goto out_free_conf;
3867                 if (conf->prev.far_copies != 1 &&
3868                     conf->prev.far_offset == 0)
3869                         goto out_free_conf;
3870         }
3871
3872         mddev->degraded = 0;
3873         for (i = 0;
3874              i < conf->geo.raid_disks
3875                      || i < conf->prev.raid_disks;
3876              i++) {
3877
3878                 disk = conf->mirrors + i;
3879
3880                 if (!disk->rdev && disk->replacement) {
3881                         /* The replacement is all we have - use it */
3882                         disk->rdev = disk->replacement;
3883                         disk->replacement = NULL;
3884                         clear_bit(Replacement, &disk->rdev->flags);
3885                 }
3886
3887                 if (!disk->rdev ||
3888                     !test_bit(In_sync, &disk->rdev->flags)) {
3889                         disk->head_position = 0;
3890                         mddev->degraded++;
3891                         if (disk->rdev &&
3892                             disk->rdev->saved_raid_disk < 0)
3893                                 conf->fullsync = 1;
3894                 }
3895                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3896         }
3897
3898         if (mddev->recovery_cp != MaxSector)
3899                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3900                           mdname(mddev));
3901         pr_info("md/raid10:%s: active with %d out of %d devices\n",
3902                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3903                 conf->geo.raid_disks);
3904         /*
3905          * Ok, everything is just fine now
3906          */
3907         mddev->dev_sectors = conf->dev_sectors;
3908         size = raid10_size(mddev, 0, 0);
3909         md_set_array_sectors(mddev, size);
3910         mddev->resync_max_sectors = size;
3911         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3912
3913         if (mddev->queue) {
3914                 int stripe = conf->geo.raid_disks *
3915                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3916
3917                 /* Calculate max read-ahead size.
3918                  * We need to readahead at least twice a whole stripe....
3919                  * maybe...
3920                  */
3921                 stripe /= conf->geo.near_copies;
3922                 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3923                         mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3924         }
3925
3926         if (md_integrity_register(mddev))
3927                 goto out_free_conf;
3928
3929         if (conf->reshape_progress != MaxSector) {
3930                 unsigned long before_length, after_length;
3931
3932                 before_length = ((1 << conf->prev.chunk_shift) *
3933                                  conf->prev.far_copies);
3934                 after_length = ((1 << conf->geo.chunk_shift) *
3935                                 conf->geo.far_copies);
3936
3937                 if (max(before_length, after_length) > min_offset_diff) {
3938                         /* This cannot work */
3939                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3940                         goto out_free_conf;
3941                 }
3942                 conf->offset_diff = min_offset_diff;
3943
3944                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3945                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3946                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3947                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3948                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3949                                                         "reshape");
3950         }
3951
3952         return 0;
3953
3954 out_free_conf:
3955         md_unregister_thread(&mddev->thread);
3956         mempool_destroy(conf->r10bio_pool);
3957         safe_put_page(conf->tmppage);
3958         kfree(conf->mirrors);
3959         kfree(conf);
3960         mddev->private = NULL;
3961 out:
3962         return -EIO;
3963 }
3964
3965 static void raid10_free(struct mddev *mddev, void *priv)
3966 {
3967         struct r10conf *conf = priv;
3968
3969         mempool_destroy(conf->r10bio_pool);
3970         safe_put_page(conf->tmppage);
3971         kfree(conf->mirrors);
3972         kfree(conf->mirrors_old);
3973         kfree(conf->mirrors_new);
3974         if (conf->bio_split)
3975                 bioset_free(conf->bio_split);
3976         kfree(conf);
3977 }
3978
3979 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3980 {
3981         struct r10conf *conf = mddev->private;
3982
3983         if (quiesce)
3984                 raise_barrier(conf, 0);
3985         else
3986                 lower_barrier(conf);
3987 }
3988
3989 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3990 {
3991         /* Resize of 'far' arrays is not supported.
3992          * For 'near' and 'offset' arrays we can set the
3993          * number of sectors used to be an appropriate multiple
3994          * of the chunk size.
3995          * For 'offset', this is far_copies*chunksize.
3996          * For 'near' the multiplier is the LCM of
3997          * near_copies and raid_disks.
3998          * So if far_copies > 1 && !far_offset, fail.
3999          * Else find LCM(raid_disks, near_copy)*far_copies and
4000          * multiply by chunk_size.  Then round to this number.
4001          * This is mostly done by raid10_size()
4002          */
4003         struct r10conf *conf = mddev->private;
4004         sector_t oldsize, size;
4005
4006         if (mddev->reshape_position != MaxSector)
4007                 return -EBUSY;
4008
4009         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4010                 return -EINVAL;
4011
4012         oldsize = raid10_size(mddev, 0, 0);
4013         size = raid10_size(mddev, sectors, 0);
4014         if (mddev->external_size &&
4015             mddev->array_sectors > size)
4016                 return -EINVAL;
4017         if (mddev->bitmap) {
4018                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
4019                 if (ret)
4020                         return ret;
4021         }
4022         md_set_array_sectors(mddev, size);
4023         if (sectors > mddev->dev_sectors &&
4024             mddev->recovery_cp > oldsize) {
4025                 mddev->recovery_cp = oldsize;
4026                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4027         }
4028         calc_sectors(conf, sectors);
4029         mddev->dev_sectors = conf->dev_sectors;
4030         mddev->resync_max_sectors = size;
4031         return 0;
4032 }
4033
4034 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4035 {
4036         struct md_rdev *rdev;
4037         struct r10conf *conf;
4038
4039         if (mddev->degraded > 0) {
4040                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4041                         mdname(mddev));
4042                 return ERR_PTR(-EINVAL);
4043         }
4044         sector_div(size, devs);
4045
4046         /* Set new parameters */
4047         mddev->new_level = 10;
4048         /* new layout: far_copies = 1, near_copies = 2 */
4049         mddev->new_layout = (1<<8) + 2;
4050         mddev->new_chunk_sectors = mddev->chunk_sectors;
4051         mddev->delta_disks = mddev->raid_disks;
4052         mddev->raid_disks *= 2;
4053         /* make sure it will be not marked as dirty */
4054         mddev->recovery_cp = MaxSector;
4055         mddev->dev_sectors = size;
4056
4057         conf = setup_conf(mddev);
4058         if (!IS_ERR(conf)) {
4059                 rdev_for_each(rdev, mddev)
4060                         if (rdev->raid_disk >= 0) {
4061                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4062                                 rdev->sectors = size;
4063                         }
4064                 conf->barrier = 1;
4065         }
4066
4067         return conf;
4068 }
4069
4070 static void *raid10_takeover(struct mddev *mddev)
4071 {
4072         struct r0conf *raid0_conf;
4073
4074         /* raid10 can take over:
4075          *  raid0 - providing it has only two drives
4076          */
4077         if (mddev->level == 0) {
4078                 /* for raid0 takeover only one zone is supported */
4079                 raid0_conf = mddev->private;
4080                 if (raid0_conf->nr_strip_zones > 1) {
4081                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4082                                 mdname(mddev));
4083                         return ERR_PTR(-EINVAL);
4084                 }
4085                 return raid10_takeover_raid0(mddev,
4086                         raid0_conf->strip_zone->zone_end,
4087                         raid0_conf->strip_zone->nb_dev);
4088         }
4089         return ERR_PTR(-EINVAL);
4090 }
4091
4092 static int raid10_check_reshape(struct mddev *mddev)
4093 {
4094         /* Called when there is a request to change
4095          * - layout (to ->new_layout)
4096          * - chunk size (to ->new_chunk_sectors)
4097          * - raid_disks (by delta_disks)
4098          * or when trying to restart a reshape that was ongoing.
4099          *
4100          * We need to validate the request and possibly allocate
4101          * space if that might be an issue later.
4102          *
4103          * Currently we reject any reshape of a 'far' mode array,
4104          * allow chunk size to change if new is generally acceptable,
4105          * allow raid_disks to increase, and allow
4106          * a switch between 'near' mode and 'offset' mode.
4107          */
4108         struct r10conf *conf = mddev->private;
4109         struct geom geo;
4110
4111         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4112                 return -EINVAL;
4113
4114         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4115                 /* mustn't change number of copies */
4116                 return -EINVAL;
4117         if (geo.far_copies > 1 && !geo.far_offset)
4118                 /* Cannot switch to 'far' mode */
4119                 return -EINVAL;
4120
4121         if (mddev->array_sectors & geo.chunk_mask)
4122                         /* not factor of array size */
4123                         return -EINVAL;
4124
4125         if (!enough(conf, -1))
4126                 return -EINVAL;
4127
4128         kfree(conf->mirrors_new);
4129         conf->mirrors_new = NULL;
4130         if (mddev->delta_disks > 0) {
4131                 /* allocate new 'mirrors' list */
4132                 conf->mirrors_new = kzalloc(
4133                         sizeof(struct raid10_info)
4134                         *(mddev->raid_disks +
4135                           mddev->delta_disks),
4136                         GFP_KERNEL);
4137                 if (!conf->mirrors_new)
4138                         return -ENOMEM;
4139         }
4140         return 0;
4141 }
4142
4143 /*
4144  * Need to check if array has failed when deciding whether to:
4145  *  - start an array
4146  *  - remove non-faulty devices
4147  *  - add a spare
4148  *  - allow a reshape
4149  * This determination is simple when no reshape is happening.
4150  * However if there is a reshape, we need to carefully check
4151  * both the before and after sections.
4152  * This is because some failed devices may only affect one
4153  * of the two sections, and some non-in_sync devices may
4154  * be insync in the section most affected by failed devices.
4155  */
4156 static int calc_degraded(struct r10conf *conf)
4157 {
4158         int degraded, degraded2;
4159         int i;
4160
4161         rcu_read_lock();
4162         degraded = 0;
4163         /* 'prev' section first */
4164         for (i = 0; i < conf->prev.raid_disks; i++) {
4165                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4166                 if (!rdev || test_bit(Faulty, &rdev->flags))
4167                         degraded++;
4168                 else if (!test_bit(In_sync, &rdev->flags))
4169                         /* When we can reduce the number of devices in
4170                          * an array, this might not contribute to
4171                          * 'degraded'.  It does now.
4172                          */
4173                         degraded++;
4174         }
4175         rcu_read_unlock();
4176         if (conf->geo.raid_disks == conf->prev.raid_disks)
4177                 return degraded;
4178         rcu_read_lock();
4179         degraded2 = 0;
4180         for (i = 0; i < conf->geo.raid_disks; i++) {
4181                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4182                 if (!rdev || test_bit(Faulty, &rdev->flags))
4183                         degraded2++;
4184                 else if (!test_bit(In_sync, &rdev->flags)) {
4185                         /* If reshape is increasing the number of devices,
4186                          * this section has already been recovered, so
4187                          * it doesn't contribute to degraded.
4188                          * else it does.
4189                          */
4190                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4191                                 degraded2++;
4192                 }
4193         }
4194         rcu_read_unlock();
4195         if (degraded2 > degraded)
4196                 return degraded2;
4197         return degraded;
4198 }
4199
4200 static int raid10_start_reshape(struct mddev *mddev)
4201 {
4202         /* A 'reshape' has been requested. This commits
4203          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4204          * This also checks if there are enough spares and adds them
4205          * to the array.
4206          * We currently require enough spares to make the final
4207          * array non-degraded.  We also require that the difference
4208          * between old and new data_offset - on each device - is
4209          * enough that we never risk over-writing.
4210          */
4211
4212         unsigned long before_length, after_length;
4213         sector_t min_offset_diff = 0;
4214         int first = 1;
4215         struct geom new;
4216         struct r10conf *conf = mddev->private;
4217         struct md_rdev *rdev;
4218         int spares = 0;
4219         int ret;
4220
4221         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4222                 return -EBUSY;
4223
4224         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4225                 return -EINVAL;
4226
4227         before_length = ((1 << conf->prev.chunk_shift) *
4228                          conf->prev.far_copies);
4229         after_length = ((1 << conf->geo.chunk_shift) *
4230                         conf->geo.far_copies);
4231
4232         rdev_for_each(rdev, mddev) {
4233                 if (!test_bit(In_sync, &rdev->flags)
4234                     && !test_bit(Faulty, &rdev->flags))
4235                         spares++;
4236                 if (rdev->raid_disk >= 0) {
4237                         long long diff = (rdev->new_data_offset
4238                                           - rdev->data_offset);
4239                         if (!mddev->reshape_backwards)
4240                                 diff = -diff;
4241                         if (diff < 0)
4242                                 diff = 0;
4243                         if (first || diff < min_offset_diff)
4244                                 min_offset_diff = diff;
4245                         first = 0;
4246                 }
4247         }
4248
4249         if (max(before_length, after_length) > min_offset_diff)
4250                 return -EINVAL;
4251
4252         if (spares < mddev->delta_disks)
4253                 return -EINVAL;
4254
4255         conf->offset_diff = min_offset_diff;
4256         spin_lock_irq(&conf->device_lock);
4257         if (conf->mirrors_new) {
4258                 memcpy(conf->mirrors_new, conf->mirrors,
4259                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4260                 smp_mb();
4261                 kfree(conf->mirrors_old);
4262                 conf->mirrors_old = conf->mirrors;
4263                 conf->mirrors = conf->mirrors_new;
4264                 conf->mirrors_new = NULL;
4265         }
4266         setup_geo(&conf->geo, mddev, geo_start);
4267         smp_mb();
4268         if (mddev->reshape_backwards) {
4269                 sector_t size = raid10_size(mddev, 0, 0);
4270                 if (size < mddev->array_sectors) {
4271                         spin_unlock_irq(&conf->device_lock);
4272                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4273                                 mdname(mddev));
4274                         return -EINVAL;
4275                 }
4276                 mddev->resync_max_sectors = size;
4277                 conf->reshape_progress = size;
4278         } else
4279                 conf->reshape_progress = 0;
4280         conf->reshape_safe = conf->reshape_progress;
4281         spin_unlock_irq(&conf->device_lock);
4282
4283         if (mddev->delta_disks && mddev->bitmap) {
4284                 ret = bitmap_resize(mddev->bitmap,
4285                                     raid10_size(mddev, 0,
4286                                                 conf->geo.raid_disks),
4287                                     0, 0);
4288                 if (ret)
4289                         goto abort;
4290         }
4291         if (mddev->delta_disks > 0) {
4292                 rdev_for_each(rdev, mddev)
4293                         if (rdev->raid_disk < 0 &&
4294                             !test_bit(Faulty, &rdev->flags)) {
4295                                 if (raid10_add_disk(mddev, rdev) == 0) {
4296                                         if (rdev->raid_disk >=
4297                                             conf->prev.raid_disks)
4298                                                 set_bit(In_sync, &rdev->flags);
4299                                         else
4300                                                 rdev->recovery_offset = 0;
4301
4302                                         if (sysfs_link_rdev(mddev, rdev))
4303                                                 /* Failure here  is OK */;
4304                                 }
4305                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4306                                    && !test_bit(Faulty, &rdev->flags)) {
4307                                 /* This is a spare that was manually added */
4308                                 set_bit(In_sync, &rdev->flags);
4309                         }
4310         }
4311         /* When a reshape changes the number of devices,
4312          * ->degraded is measured against the larger of the
4313          * pre and  post numbers.
4314          */
4315         spin_lock_irq(&conf->device_lock);
4316         mddev->degraded = calc_degraded(conf);
4317         spin_unlock_irq(&conf->device_lock);
4318         mddev->raid_disks = conf->geo.raid_disks;
4319         mddev->reshape_position = conf->reshape_progress;
4320         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4321
4322         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4323         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4324         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4325         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4326         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4327
4328         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4329                                                 "reshape");
4330         if (!mddev->sync_thread) {
4331                 ret = -EAGAIN;
4332                 goto abort;
4333         }
4334         conf->reshape_checkpoint = jiffies;
4335         md_wakeup_thread(mddev->sync_thread);
4336         md_new_event(mddev);
4337         return 0;
4338
4339 abort:
4340         mddev->recovery = 0;
4341         spin_lock_irq(&conf->device_lock);
4342         conf->geo = conf->prev;
4343         mddev->raid_disks = conf->geo.raid_disks;
4344         rdev_for_each(rdev, mddev)
4345                 rdev->new_data_offset = rdev->data_offset;
4346         smp_wmb();
4347         conf->reshape_progress = MaxSector;
4348         conf->reshape_safe = MaxSector;
4349         mddev->reshape_position = MaxSector;
4350         spin_unlock_irq(&conf->device_lock);
4351         return ret;
4352 }
4353
4354 /* Calculate the last device-address that could contain
4355  * any block from the chunk that includes the array-address 's'
4356  * and report the next address.
4357  * i.e. the address returned will be chunk-aligned and after
4358  * any data that is in the chunk containing 's'.
4359  */
4360 static sector_t last_dev_address(sector_t s, struct geom *geo)
4361 {
4362         s = (s | geo->chunk_mask) + 1;
4363         s >>= geo->chunk_shift;
4364         s *= geo->near_copies;
4365         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4366         s *= geo->far_copies;
4367         s <<= geo->chunk_shift;
4368         return s;
4369 }
4370
4371 /* Calculate the first device-address that could contain
4372  * any block from the chunk that includes the array-address 's'.
4373  * This too will be the start of a chunk
4374  */
4375 static sector_t first_dev_address(sector_t s, struct geom *geo)
4376 {
4377         s >>= geo->chunk_shift;
4378         s *= geo->near_copies;
4379         sector_div(s, geo->raid_disks);
4380         s *= geo->far_copies;
4381         s <<= geo->chunk_shift;
4382         return s;
4383 }
4384
4385 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4386                                 int *skipped)
4387 {
4388         /* We simply copy at most one chunk (smallest of old and new)
4389          * at a time, possibly less if that exceeds RESYNC_PAGES,
4390          * or we hit a bad block or something.
4391          * This might mean we pause for normal IO in the middle of
4392          * a chunk, but that is not a problem as mddev->reshape_position
4393          * can record any location.
4394          *
4395          * If we will want to write to a location that isn't
4396          * yet recorded as 'safe' (i.e. in metadata on disk) then
4397          * we need to flush all reshape requests and update the metadata.
4398          *
4399          * When reshaping forwards (e.g. to more devices), we interpret
4400          * 'safe' as the earliest block which might not have been copied
4401          * down yet.  We divide this by previous stripe size and multiply
4402          * by previous stripe length to get lowest device offset that we
4403          * cannot write to yet.
4404          * We interpret 'sector_nr' as an address that we want to write to.
4405          * From this we use last_device_address() to find where we might
4406          * write to, and first_device_address on the  'safe' position.
4407          * If this 'next' write position is after the 'safe' position,
4408          * we must update the metadata to increase the 'safe' position.
4409          *
4410          * When reshaping backwards, we round in the opposite direction
4411          * and perform the reverse test:  next write position must not be
4412          * less than current safe position.
4413          *
4414          * In all this the minimum difference in data offsets
4415          * (conf->offset_diff - always positive) allows a bit of slack,
4416          * so next can be after 'safe', but not by more than offset_diff
4417          *
4418          * We need to prepare all the bios here before we start any IO
4419          * to ensure the size we choose is acceptable to all devices.
4420          * The means one for each copy for write-out and an extra one for
4421          * read-in.
4422          * We store the read-in bio in ->master_bio and the others in
4423          * ->devs[x].bio and ->devs[x].repl_bio.
4424          */
4425         struct r10conf *conf = mddev->private;
4426         struct r10bio *r10_bio;
4427         sector_t next, safe, last;
4428         int max_sectors;
4429         int nr_sectors;
4430         int s;
4431         struct md_rdev *rdev;
4432         int need_flush = 0;
4433         struct bio *blist;
4434         struct bio *bio, *read_bio;
4435         int sectors_done = 0;
4436         struct page **pages;
4437
4438         if (sector_nr == 0) {
4439                 /* If restarting in the middle, skip the initial sectors */
4440                 if (mddev->reshape_backwards &&
4441                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4442                         sector_nr = (raid10_size(mddev, 0, 0)
4443                                      - conf->reshape_progress);
4444                 } else if (!mddev->reshape_backwards &&
4445                            conf->reshape_progress > 0)
4446                         sector_nr = conf->reshape_progress;
4447                 if (sector_nr) {
4448                         mddev->curr_resync_completed = sector_nr;
4449                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4450                         *skipped = 1;
4451                         return sector_nr;
4452                 }
4453         }
4454
4455         /* We don't use sector_nr to track where we are up to
4456          * as that doesn't work well for ->reshape_backwards.
4457          * So just use ->reshape_progress.
4458          */
4459         if (mddev->reshape_backwards) {
4460                 /* 'next' is the earliest device address that we might
4461                  * write to for this chunk in the new layout
4462                  */
4463                 next = first_dev_address(conf->reshape_progress - 1,
4464                                          &conf->geo);
4465
4466                 /* 'safe' is the last device address that we might read from
4467                  * in the old layout after a restart
4468                  */
4469                 safe = last_dev_address(conf->reshape_safe - 1,
4470                                         &conf->prev);
4471
4472                 if (next + conf->offset_diff < safe)
4473                         need_flush = 1;
4474
4475                 last = conf->reshape_progress - 1;
4476                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4477                                                & conf->prev.chunk_mask);
4478                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4479                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4480         } else {
4481                 /* 'next' is after the last device address that we
4482                  * might write to for this chunk in the new layout
4483                  */
4484                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4485
4486                 /* 'safe' is the earliest device address that we might
4487                  * read from in the old layout after a restart
4488                  */
4489                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4490
4491                 /* Need to update metadata if 'next' might be beyond 'safe'
4492                  * as that would possibly corrupt data
4493                  */
4494                 if (next > safe + conf->offset_diff)
4495                         need_flush = 1;
4496
4497                 sector_nr = conf->reshape_progress;
4498                 last  = sector_nr | (conf->geo.chunk_mask
4499                                      & conf->prev.chunk_mask);
4500
4501                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4502                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4503         }
4504
4505         if (need_flush ||
4506             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4507                 /* Need to update reshape_position in metadata */
4508                 wait_barrier(conf);
4509                 mddev->reshape_position = conf->reshape_progress;
4510                 if (mddev->reshape_backwards)
4511                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4512                                 - conf->reshape_progress;
4513                 else
4514                         mddev->curr_resync_completed = conf->reshape_progress;
4515                 conf->reshape_checkpoint = jiffies;
4516                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4517                 md_wakeup_thread(mddev->thread);
4518                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4519                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4520                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4521                         allow_barrier(conf);
4522                         return sectors_done;
4523                 }
4524                 conf->reshape_safe = mddev->reshape_position;
4525                 allow_barrier(conf);
4526         }
4527
4528 read_more:
4529         /* Now schedule reads for blocks from sector_nr to last */
4530         r10_bio = raid10_alloc_init_r10buf(conf);
4531         r10_bio->state = 0;
4532         raise_barrier(conf, sectors_done != 0);
4533         atomic_set(&r10_bio->remaining, 0);
4534         r10_bio->mddev = mddev;
4535         r10_bio->sector = sector_nr;
4536         set_bit(R10BIO_IsReshape, &r10_bio->state);
4537         r10_bio->sectors = last - sector_nr + 1;
4538         rdev = read_balance(conf, r10_bio, &max_sectors);
4539         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4540
4541         if (!rdev) {
4542                 /* Cannot read from here, so need to record bad blocks
4543                  * on all the target devices.
4544                  */
4545                 // FIXME
4546                 mempool_free(r10_bio, conf->r10buf_pool);
4547                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4548                 return sectors_done;
4549         }
4550
4551         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4552
4553         bio_set_dev(read_bio, rdev->bdev);
4554         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4555                                + rdev->data_offset);
4556         read_bio->bi_private = r10_bio;
4557         read_bio->bi_end_io = end_reshape_read;
4558         bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4559         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4560         read_bio->bi_status = 0;
4561         read_bio->bi_vcnt = 0;
4562         read_bio->bi_iter.bi_size = 0;
4563         r10_bio->master_bio = read_bio;
4564         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4565
4566         /* Now find the locations in the new layout */
4567         __raid10_find_phys(&conf->geo, r10_bio);
4568
4569         blist = read_bio;
4570         read_bio->bi_next = NULL;
4571
4572         rcu_read_lock();
4573         for (s = 0; s < conf->copies*2; s++) {
4574                 struct bio *b;
4575                 int d = r10_bio->devs[s/2].devnum;
4576                 struct md_rdev *rdev2;
4577                 if (s&1) {
4578                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4579                         b = r10_bio->devs[s/2].repl_bio;
4580                 } else {
4581                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4582                         b = r10_bio->devs[s/2].bio;
4583                 }
4584                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4585                         continue;
4586
4587                 bio_set_dev(b, rdev2->bdev);
4588                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4589                         rdev2->new_data_offset;
4590                 b->bi_end_io = end_reshape_write;
4591                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4592                 b->bi_next = blist;
4593                 blist = b;
4594         }
4595
4596         /* Now add as many pages as possible to all of these bios. */
4597
4598         nr_sectors = 0;
4599         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4600         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4601                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4602                 int len = (max_sectors - s) << 9;
4603                 if (len > PAGE_SIZE)
4604                         len = PAGE_SIZE;
4605                 for (bio = blist; bio ; bio = bio->bi_next) {
4606                         /*
4607                          * won't fail because the vec table is big enough
4608                          * to hold all these pages
4609                          */
4610                         bio_add_page(bio, page, len, 0);
4611                 }
4612                 sector_nr += len >> 9;
4613                 nr_sectors += len >> 9;
4614         }
4615         rcu_read_unlock();
4616         r10_bio->sectors = nr_sectors;
4617
4618         /* Now submit the read */
4619         md_sync_acct_bio(read_bio, r10_bio->sectors);
4620         atomic_inc(&r10_bio->remaining);
4621         read_bio->bi_next = NULL;
4622         generic_make_request(read_bio);
4623         sector_nr += nr_sectors;
4624         sectors_done += nr_sectors;
4625         if (sector_nr <= last)
4626                 goto read_more;
4627
4628         /* Now that we have done the whole section we can
4629          * update reshape_progress
4630          */
4631         if (mddev->reshape_backwards)
4632                 conf->reshape_progress -= sectors_done;
4633         else
4634                 conf->reshape_progress += sectors_done;
4635
4636         return sectors_done;
4637 }
4638
4639 static void end_reshape_request(struct r10bio *r10_bio);
4640 static int handle_reshape_read_error(struct mddev *mddev,
4641                                      struct r10bio *r10_bio);
4642 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4643 {
4644         /* Reshape read completed.  Hopefully we have a block
4645          * to write out.
4646          * If we got a read error then we do sync 1-page reads from
4647          * elsewhere until we find the data - or give up.
4648          */
4649         struct r10conf *conf = mddev->private;
4650         int s;
4651
4652         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4653                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4654                         /* Reshape has been aborted */
4655                         md_done_sync(mddev, r10_bio->sectors, 0);
4656                         return;
4657                 }
4658
4659         /* We definitely have the data in the pages, schedule the
4660          * writes.
4661          */
4662         atomic_set(&r10_bio->remaining, 1);
4663         for (s = 0; s < conf->copies*2; s++) {
4664                 struct bio *b;
4665                 int d = r10_bio->devs[s/2].devnum;
4666                 struct md_rdev *rdev;
4667                 rcu_read_lock();
4668                 if (s&1) {
4669                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4670                         b = r10_bio->devs[s/2].repl_bio;
4671                 } else {
4672                         rdev = rcu_dereference(conf->mirrors[d].rdev);
4673                         b = r10_bio->devs[s/2].bio;
4674                 }
4675                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4676                         rcu_read_unlock();
4677                         continue;
4678                 }
4679                 atomic_inc(&rdev->nr_pending);
4680                 rcu_read_unlock();
4681                 md_sync_acct_bio(b, r10_bio->sectors);
4682                 atomic_inc(&r10_bio->remaining);
4683                 b->bi_next = NULL;
4684                 generic_make_request(b);
4685         }
4686         end_reshape_request(r10_bio);
4687 }
4688
4689 static void end_reshape(struct r10conf *conf)
4690 {
4691         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4692                 return;
4693
4694         spin_lock_irq(&conf->device_lock);
4695         conf->prev = conf->geo;
4696         md_finish_reshape(conf->mddev);
4697         smp_wmb();
4698         conf->reshape_progress = MaxSector;
4699         conf->reshape_safe = MaxSector;
4700         spin_unlock_irq(&conf->device_lock);
4701
4702         /* read-ahead size must cover two whole stripes, which is
4703          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4704          */
4705         if (conf->mddev->queue) {
4706                 int stripe = conf->geo.raid_disks *
4707                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4708                 stripe /= conf->geo.near_copies;
4709                 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4710                         conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4711         }
4712         conf->fullsync = 0;
4713 }
4714
4715 static int handle_reshape_read_error(struct mddev *mddev,
4716                                      struct r10bio *r10_bio)
4717 {
4718         /* Use sync reads to get the blocks from somewhere else */
4719         int sectors = r10_bio->sectors;
4720         struct r10conf *conf = mddev->private;
4721         struct r10bio *r10b;
4722         int slot = 0;
4723         int idx = 0;
4724         struct page **pages;
4725
4726         r10b = kmalloc(sizeof(*r10b) +
4727                sizeof(struct r10dev) * conf->copies, GFP_NOIO);
4728         if (!r10b) {
4729                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4730                 return -ENOMEM;
4731         }
4732
4733         /* reshape IOs share pages from .devs[0].bio */
4734         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4735
4736         r10b->sector = r10_bio->sector;
4737         __raid10_find_phys(&conf->prev, r10b);
4738
4739         while (sectors) {
4740                 int s = sectors;
4741                 int success = 0;
4742                 int first_slot = slot;
4743
4744                 if (s > (PAGE_SIZE >> 9))
4745                         s = PAGE_SIZE >> 9;
4746
4747                 rcu_read_lock();
4748                 while (!success) {
4749                         int d = r10b->devs[slot].devnum;
4750                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4751                         sector_t addr;
4752                         if (rdev == NULL ||
4753                             test_bit(Faulty, &rdev->flags) ||
4754                             !test_bit(In_sync, &rdev->flags))
4755                                 goto failed;
4756
4757                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4758                         atomic_inc(&rdev->nr_pending);
4759                         rcu_read_unlock();
4760                         success = sync_page_io(rdev,
4761                                                addr,
4762                                                s << 9,
4763                                                pages[idx],
4764                                                REQ_OP_READ, 0, false);
4765                         rdev_dec_pending(rdev, mddev);
4766                         rcu_read_lock();
4767                         if (success)
4768                                 break;
4769                 failed:
4770                         slot++;
4771                         if (slot >= conf->copies)
4772                                 slot = 0;
4773                         if (slot == first_slot)
4774                                 break;
4775                 }
4776                 rcu_read_unlock();
4777                 if (!success) {
4778                         /* couldn't read this block, must give up */
4779                         set_bit(MD_RECOVERY_INTR,
4780                                 &mddev->recovery);
4781                         kfree(r10b);
4782                         return -EIO;
4783                 }
4784                 sectors -= s;
4785                 idx++;
4786         }
4787         kfree(r10b);
4788         return 0;
4789 }
4790
4791 static void end_reshape_write(struct bio *bio)
4792 {
4793         struct r10bio *r10_bio = get_resync_r10bio(bio);
4794         struct mddev *mddev = r10_bio->mddev;
4795         struct r10conf *conf = mddev->private;
4796         int d;
4797         int slot;
4798         int repl;
4799         struct md_rdev *rdev = NULL;
4800
4801         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4802         if (repl)
4803                 rdev = conf->mirrors[d].replacement;
4804         if (!rdev) {
4805                 smp_mb();
4806                 rdev = conf->mirrors[d].rdev;
4807         }
4808
4809         if (bio->bi_status) {
4810                 /* FIXME should record badblock */
4811                 md_error(mddev, rdev);
4812         }
4813
4814         rdev_dec_pending(rdev, mddev);
4815         end_reshape_request(r10_bio);
4816 }
4817
4818 static void end_reshape_request(struct r10bio *r10_bio)
4819 {
4820         if (!atomic_dec_and_test(&r10_bio->remaining))
4821                 return;
4822         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4823         bio_put(r10_bio->master_bio);
4824         put_buf(r10_bio);
4825 }
4826
4827 static void raid10_finish_reshape(struct mddev *mddev)
4828 {
4829         struct r10conf *conf = mddev->private;
4830
4831         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4832                 return;
4833
4834         if (mddev->delta_disks > 0) {
4835                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4836                         mddev->recovery_cp = mddev->resync_max_sectors;
4837                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4838                 }
4839                 mddev->resync_max_sectors = mddev->array_sectors;
4840         } else {
4841                 int d;
4842                 rcu_read_lock();
4843                 for (d = conf->geo.raid_disks ;
4844                      d < conf->geo.raid_disks - mddev->delta_disks;
4845                      d++) {
4846                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4847                         if (rdev)
4848                                 clear_bit(In_sync, &rdev->flags);
4849                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4850                         if (rdev)
4851                                 clear_bit(In_sync, &rdev->flags);
4852                 }
4853                 rcu_read_unlock();
4854         }
4855         mddev->layout = mddev->new_layout;
4856         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4857         mddev->reshape_position = MaxSector;
4858         mddev->delta_disks = 0;
4859         mddev->reshape_backwards = 0;
4860 }
4861
4862 static struct md_personality raid10_personality =
4863 {
4864         .name           = "raid10",
4865         .level          = 10,
4866         .owner          = THIS_MODULE,
4867         .make_request   = raid10_make_request,
4868         .run            = raid10_run,
4869         .free           = raid10_free,
4870         .status         = raid10_status,
4871         .error_handler  = raid10_error,
4872         .hot_add_disk   = raid10_add_disk,
4873         .hot_remove_disk= raid10_remove_disk,
4874         .spare_active   = raid10_spare_active,
4875         .sync_request   = raid10_sync_request,
4876         .quiesce        = raid10_quiesce,
4877         .size           = raid10_size,
4878         .resize         = raid10_resize,
4879         .takeover       = raid10_takeover,
4880         .check_reshape  = raid10_check_reshape,
4881         .start_reshape  = raid10_start_reshape,
4882         .finish_reshape = raid10_finish_reshape,
4883         .congested      = raid10_congested,
4884 };
4885
4886 static int __init raid_init(void)
4887 {
4888         return register_md_personality(&raid10_personality);
4889 }
4890
4891 static void raid_exit(void)
4892 {
4893         unregister_md_personality(&raid10_personality);
4894 }
4895
4896 module_init(raid_init);
4897 module_exit(raid_exit);
4898 MODULE_LICENSE("GPL");
4899 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4900 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4901 MODULE_ALIAS("md-raid10");
4902 MODULE_ALIAS("md-level-10");
4903
4904 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);