Merge tag 'nbd_fixes_20150305' of git://git.pengutronix.de/git/mpa/linux-nbd into...
[sfrench/cifs-2.6.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70                           sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75         struct pool_info *pi = data;
76         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78         /* allocate a r1bio with room for raid_disks entries in the bios array */
79         return kzalloc(size, gfp_flags);
80 }
81
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84         kfree(r1_bio);
85 }
86
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97         struct pool_info *pi = data;
98         struct r1bio *r1_bio;
99         struct bio *bio;
100         int need_pages;
101         int i, j;
102
103         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104         if (!r1_bio)
105                 return NULL;
106
107         /*
108          * Allocate bios : 1 for reading, n-1 for writing
109          */
110         for (j = pi->raid_disks ; j-- ; ) {
111                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112                 if (!bio)
113                         goto out_free_bio;
114                 r1_bio->bios[j] = bio;
115         }
116         /*
117          * Allocate RESYNC_PAGES data pages and attach them to
118          * the first bio.
119          * If this is a user-requested check/repair, allocate
120          * RESYNC_PAGES for each bio.
121          */
122         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123                 need_pages = pi->raid_disks;
124         else
125                 need_pages = 1;
126         for (j = 0; j < need_pages; j++) {
127                 bio = r1_bio->bios[j];
128                 bio->bi_vcnt = RESYNC_PAGES;
129
130                 if (bio_alloc_pages(bio, gfp_flags))
131                         goto out_free_pages;
132         }
133         /* If not user-requests, copy the page pointers to all bios */
134         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135                 for (i=0; i<RESYNC_PAGES ; i++)
136                         for (j=1; j<pi->raid_disks; j++)
137                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
139         }
140
141         r1_bio->master_bio = NULL;
142
143         return r1_bio;
144
145 out_free_pages:
146         while (--j >= 0) {
147                 struct bio_vec *bv;
148
149                 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150                         __free_page(bv->bv_page);
151         }
152
153 out_free_bio:
154         while (++j < pi->raid_disks)
155                 bio_put(r1_bio->bios[j]);
156         r1bio_pool_free(r1_bio, data);
157         return NULL;
158 }
159
160 static void r1buf_pool_free(void *__r1_bio, void *data)
161 {
162         struct pool_info *pi = data;
163         int i,j;
164         struct r1bio *r1bio = __r1_bio;
165
166         for (i = 0; i < RESYNC_PAGES; i++)
167                 for (j = pi->raid_disks; j-- ;) {
168                         if (j == 0 ||
169                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
170                             r1bio->bios[0]->bi_io_vec[i].bv_page)
171                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172                 }
173         for (i=0 ; i < pi->raid_disks; i++)
174                 bio_put(r1bio->bios[i]);
175
176         r1bio_pool_free(r1bio, data);
177 }
178
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180 {
181         int i;
182
183         for (i = 0; i < conf->raid_disks * 2; i++) {
184                 struct bio **bio = r1_bio->bios + i;
185                 if (!BIO_SPECIAL(*bio))
186                         bio_put(*bio);
187                 *bio = NULL;
188         }
189 }
190
191 static void free_r1bio(struct r1bio *r1_bio)
192 {
193         struct r1conf *conf = r1_bio->mddev->private;
194
195         put_all_bios(conf, r1_bio);
196         mempool_free(r1_bio, conf->r1bio_pool);
197 }
198
199 static void put_buf(struct r1bio *r1_bio)
200 {
201         struct r1conf *conf = r1_bio->mddev->private;
202         int i;
203
204         for (i = 0; i < conf->raid_disks * 2; i++) {
205                 struct bio *bio = r1_bio->bios[i];
206                 if (bio->bi_end_io)
207                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208         }
209
210         mempool_free(r1_bio, conf->r1buf_pool);
211
212         lower_barrier(conf);
213 }
214
215 static void reschedule_retry(struct r1bio *r1_bio)
216 {
217         unsigned long flags;
218         struct mddev *mddev = r1_bio->mddev;
219         struct r1conf *conf = mddev->private;
220
221         spin_lock_irqsave(&conf->device_lock, flags);
222         list_add(&r1_bio->retry_list, &conf->retry_list);
223         conf->nr_queued ++;
224         spin_unlock_irqrestore(&conf->device_lock, flags);
225
226         wake_up(&conf->wait_barrier);
227         md_wakeup_thread(mddev->thread);
228 }
229
230 /*
231  * raid_end_bio_io() is called when we have finished servicing a mirrored
232  * operation and are ready to return a success/failure code to the buffer
233  * cache layer.
234  */
235 static void call_bio_endio(struct r1bio *r1_bio)
236 {
237         struct bio *bio = r1_bio->master_bio;
238         int done;
239         struct r1conf *conf = r1_bio->mddev->private;
240         sector_t start_next_window = r1_bio->start_next_window;
241         sector_t bi_sector = bio->bi_iter.bi_sector;
242
243         if (bio->bi_phys_segments) {
244                 unsigned long flags;
245                 spin_lock_irqsave(&conf->device_lock, flags);
246                 bio->bi_phys_segments--;
247                 done = (bio->bi_phys_segments == 0);
248                 spin_unlock_irqrestore(&conf->device_lock, flags);
249                 /*
250                  * make_request() might be waiting for
251                  * bi_phys_segments to decrease
252                  */
253                 wake_up(&conf->wait_barrier);
254         } else
255                 done = 1;
256
257         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
259         if (done) {
260                 bio_endio(bio, 0);
261                 /*
262                  * Wake up any possible resync thread that waits for the device
263                  * to go idle.
264                  */
265                 allow_barrier(conf, start_next_window, bi_sector);
266         }
267 }
268
269 static void raid_end_bio_io(struct r1bio *r1_bio)
270 {
271         struct bio *bio = r1_bio->master_bio;
272
273         /* if nobody has done the final endio yet, do it now */
274         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
277                          (unsigned long long) bio->bi_iter.bi_sector,
278                          (unsigned long long) bio_end_sector(bio) - 1);
279
280                 call_bio_endio(r1_bio);
281         }
282         free_r1bio(r1_bio);
283 }
284
285 /*
286  * Update disk head position estimator based on IRQ completion info.
287  */
288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289 {
290         struct r1conf *conf = r1_bio->mddev->private;
291
292         conf->mirrors[disk].head_position =
293                 r1_bio->sector + (r1_bio->sectors);
294 }
295
296 /*
297  * Find the disk number which triggered given bio
298  */
299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300 {
301         int mirror;
302         struct r1conf *conf = r1_bio->mddev->private;
303         int raid_disks = conf->raid_disks;
304
305         for (mirror = 0; mirror < raid_disks * 2; mirror++)
306                 if (r1_bio->bios[mirror] == bio)
307                         break;
308
309         BUG_ON(mirror == raid_disks * 2);
310         update_head_pos(mirror, r1_bio);
311
312         return mirror;
313 }
314
315 static void raid1_end_read_request(struct bio *bio, int error)
316 {
317         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318         struct r1bio *r1_bio = bio->bi_private;
319         int mirror;
320         struct r1conf *conf = r1_bio->mddev->private;
321
322         mirror = r1_bio->read_disk;
323         /*
324          * this branch is our 'one mirror IO has finished' event handler:
325          */
326         update_head_pos(mirror, r1_bio);
327
328         if (uptodate)
329                 set_bit(R1BIO_Uptodate, &r1_bio->state);
330         else {
331                 /* If all other devices have failed, we want to return
332                  * the error upwards rather than fail the last device.
333                  * Here we redefine "uptodate" to mean "Don't want to retry"
334                  */
335                 unsigned long flags;
336                 spin_lock_irqsave(&conf->device_lock, flags);
337                 if (r1_bio->mddev->degraded == conf->raid_disks ||
338                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339                      !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
340                         uptodate = 1;
341                 spin_unlock_irqrestore(&conf->device_lock, flags);
342         }
343
344         if (uptodate) {
345                 raid_end_bio_io(r1_bio);
346                 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347         } else {
348                 /*
349                  * oops, read error:
350                  */
351                 char b[BDEVNAME_SIZE];
352                 printk_ratelimited(
353                         KERN_ERR "md/raid1:%s: %s: "
354                         "rescheduling sector %llu\n",
355                         mdname(conf->mddev),
356                         bdevname(conf->mirrors[mirror].rdev->bdev,
357                                  b),
358                         (unsigned long long)r1_bio->sector);
359                 set_bit(R1BIO_ReadError, &r1_bio->state);
360                 reschedule_retry(r1_bio);
361                 /* don't drop the reference on read_disk yet */
362         }
363 }
364
365 static void close_write(struct r1bio *r1_bio)
366 {
367         /* it really is the end of this request */
368         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369                 /* free extra copy of the data pages */
370                 int i = r1_bio->behind_page_count;
371                 while (i--)
372                         safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373                 kfree(r1_bio->behind_bvecs);
374                 r1_bio->behind_bvecs = NULL;
375         }
376         /* clear the bitmap if all writes complete successfully */
377         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378                         r1_bio->sectors,
379                         !test_bit(R1BIO_Degraded, &r1_bio->state),
380                         test_bit(R1BIO_BehindIO, &r1_bio->state));
381         md_write_end(r1_bio->mddev);
382 }
383
384 static void r1_bio_write_done(struct r1bio *r1_bio)
385 {
386         if (!atomic_dec_and_test(&r1_bio->remaining))
387                 return;
388
389         if (test_bit(R1BIO_WriteError, &r1_bio->state))
390                 reschedule_retry(r1_bio);
391         else {
392                 close_write(r1_bio);
393                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394                         reschedule_retry(r1_bio);
395                 else
396                         raid_end_bio_io(r1_bio);
397         }
398 }
399
400 static void raid1_end_write_request(struct bio *bio, int error)
401 {
402         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403         struct r1bio *r1_bio = bio->bi_private;
404         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405         struct r1conf *conf = r1_bio->mddev->private;
406         struct bio *to_put = NULL;
407
408         mirror = find_bio_disk(r1_bio, bio);
409
410         /*
411          * 'one mirror IO has finished' event handler:
412          */
413         if (!uptodate) {
414                 set_bit(WriteErrorSeen,
415                         &conf->mirrors[mirror].rdev->flags);
416                 if (!test_and_set_bit(WantReplacement,
417                                       &conf->mirrors[mirror].rdev->flags))
418                         set_bit(MD_RECOVERY_NEEDED, &
419                                 conf->mddev->recovery);
420
421                 set_bit(R1BIO_WriteError, &r1_bio->state);
422         } else {
423                 /*
424                  * Set R1BIO_Uptodate in our master bio, so that we
425                  * will return a good error code for to the higher
426                  * levels even if IO on some other mirrored buffer
427                  * fails.
428                  *
429                  * The 'master' represents the composite IO operation
430                  * to user-side. So if something waits for IO, then it
431                  * will wait for the 'master' bio.
432                  */
433                 sector_t first_bad;
434                 int bad_sectors;
435
436                 r1_bio->bios[mirror] = NULL;
437                 to_put = bio;
438                 /*
439                  * Do not set R1BIO_Uptodate if the current device is
440                  * rebuilding or Faulty. This is because we cannot use
441                  * such device for properly reading the data back (we could
442                  * potentially use it, if the current write would have felt
443                  * before rdev->recovery_offset, but for simplicity we don't
444                  * check this here.
445                  */
446                 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447                     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448                         set_bit(R1BIO_Uptodate, &r1_bio->state);
449
450                 /* Maybe we can clear some bad blocks. */
451                 if (is_badblock(conf->mirrors[mirror].rdev,
452                                 r1_bio->sector, r1_bio->sectors,
453                                 &first_bad, &bad_sectors)) {
454                         r1_bio->bios[mirror] = IO_MADE_GOOD;
455                         set_bit(R1BIO_MadeGood, &r1_bio->state);
456                 }
457         }
458
459         if (behind) {
460                 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461                         atomic_dec(&r1_bio->behind_remaining);
462
463                 /*
464                  * In behind mode, we ACK the master bio once the I/O
465                  * has safely reached all non-writemostly
466                  * disks. Setting the Returned bit ensures that this
467                  * gets done only once -- we don't ever want to return
468                  * -EIO here, instead we'll wait
469                  */
470                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472                         /* Maybe we can return now */
473                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474                                 struct bio *mbio = r1_bio->master_bio;
475                                 pr_debug("raid1: behind end write sectors"
476                                          " %llu-%llu\n",
477                                          (unsigned long long) mbio->bi_iter.bi_sector,
478                                          (unsigned long long) bio_end_sector(mbio) - 1);
479                                 call_bio_endio(r1_bio);
480                         }
481                 }
482         }
483         if (r1_bio->bios[mirror] == NULL)
484                 rdev_dec_pending(conf->mirrors[mirror].rdev,
485                                  conf->mddev);
486
487         /*
488          * Let's see if all mirrored write operations have finished
489          * already.
490          */
491         r1_bio_write_done(r1_bio);
492
493         if (to_put)
494                 bio_put(to_put);
495 }
496
497 /*
498  * This routine returns the disk from which the requested read should
499  * be done. There is a per-array 'next expected sequential IO' sector
500  * number - if this matches on the next IO then we use the last disk.
501  * There is also a per-disk 'last know head position' sector that is
502  * maintained from IRQ contexts, both the normal and the resync IO
503  * completion handlers update this position correctly. If there is no
504  * perfect sequential match then we pick the disk whose head is closest.
505  *
506  * If there are 2 mirrors in the same 2 devices, performance degrades
507  * because position is mirror, not device based.
508  *
509  * The rdev for the device selected will have nr_pending incremented.
510  */
511 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
512 {
513         const sector_t this_sector = r1_bio->sector;
514         int sectors;
515         int best_good_sectors;
516         int best_disk, best_dist_disk, best_pending_disk;
517         int has_nonrot_disk;
518         int disk;
519         sector_t best_dist;
520         unsigned int min_pending;
521         struct md_rdev *rdev;
522         int choose_first;
523         int choose_next_idle;
524
525         rcu_read_lock();
526         /*
527          * Check if we can balance. We can balance on the whole
528          * device if no resync is going on, or below the resync window.
529          * We take the first readable disk when above the resync window.
530          */
531  retry:
532         sectors = r1_bio->sectors;
533         best_disk = -1;
534         best_dist_disk = -1;
535         best_dist = MaxSector;
536         best_pending_disk = -1;
537         min_pending = UINT_MAX;
538         best_good_sectors = 0;
539         has_nonrot_disk = 0;
540         choose_next_idle = 0;
541
542         choose_first = (conf->mddev->recovery_cp < this_sector + sectors);
543
544         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
545                 sector_t dist;
546                 sector_t first_bad;
547                 int bad_sectors;
548                 unsigned int pending;
549                 bool nonrot;
550
551                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
552                 if (r1_bio->bios[disk] == IO_BLOCKED
553                     || rdev == NULL
554                     || test_bit(Unmerged, &rdev->flags)
555                     || test_bit(Faulty, &rdev->flags))
556                         continue;
557                 if (!test_bit(In_sync, &rdev->flags) &&
558                     rdev->recovery_offset < this_sector + sectors)
559                         continue;
560                 if (test_bit(WriteMostly, &rdev->flags)) {
561                         /* Don't balance among write-mostly, just
562                          * use the first as a last resort */
563                         if (best_dist_disk < 0) {
564                                 if (is_badblock(rdev, this_sector, sectors,
565                                                 &first_bad, &bad_sectors)) {
566                                         if (first_bad < this_sector)
567                                                 /* Cannot use this */
568                                                 continue;
569                                         best_good_sectors = first_bad - this_sector;
570                                 } else
571                                         best_good_sectors = sectors;
572                                 best_dist_disk = disk;
573                                 best_pending_disk = disk;
574                         }
575                         continue;
576                 }
577                 /* This is a reasonable device to use.  It might
578                  * even be best.
579                  */
580                 if (is_badblock(rdev, this_sector, sectors,
581                                 &first_bad, &bad_sectors)) {
582                         if (best_dist < MaxSector)
583                                 /* already have a better device */
584                                 continue;
585                         if (first_bad <= this_sector) {
586                                 /* cannot read here. If this is the 'primary'
587                                  * device, then we must not read beyond
588                                  * bad_sectors from another device..
589                                  */
590                                 bad_sectors -= (this_sector - first_bad);
591                                 if (choose_first && sectors > bad_sectors)
592                                         sectors = bad_sectors;
593                                 if (best_good_sectors > sectors)
594                                         best_good_sectors = sectors;
595
596                         } else {
597                                 sector_t good_sectors = first_bad - this_sector;
598                                 if (good_sectors > best_good_sectors) {
599                                         best_good_sectors = good_sectors;
600                                         best_disk = disk;
601                                 }
602                                 if (choose_first)
603                                         break;
604                         }
605                         continue;
606                 } else
607                         best_good_sectors = sectors;
608
609                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
610                 has_nonrot_disk |= nonrot;
611                 pending = atomic_read(&rdev->nr_pending);
612                 dist = abs(this_sector - conf->mirrors[disk].head_position);
613                 if (choose_first) {
614                         best_disk = disk;
615                         break;
616                 }
617                 /* Don't change to another disk for sequential reads */
618                 if (conf->mirrors[disk].next_seq_sect == this_sector
619                     || dist == 0) {
620                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
621                         struct raid1_info *mirror = &conf->mirrors[disk];
622
623                         best_disk = disk;
624                         /*
625                          * If buffered sequential IO size exceeds optimal
626                          * iosize, check if there is idle disk. If yes, choose
627                          * the idle disk. read_balance could already choose an
628                          * idle disk before noticing it's a sequential IO in
629                          * this disk. This doesn't matter because this disk
630                          * will idle, next time it will be utilized after the
631                          * first disk has IO size exceeds optimal iosize. In
632                          * this way, iosize of the first disk will be optimal
633                          * iosize at least. iosize of the second disk might be
634                          * small, but not a big deal since when the second disk
635                          * starts IO, the first disk is likely still busy.
636                          */
637                         if (nonrot && opt_iosize > 0 &&
638                             mirror->seq_start != MaxSector &&
639                             mirror->next_seq_sect > opt_iosize &&
640                             mirror->next_seq_sect - opt_iosize >=
641                             mirror->seq_start) {
642                                 choose_next_idle = 1;
643                                 continue;
644                         }
645                         break;
646                 }
647                 /* If device is idle, use it */
648                 if (pending == 0) {
649                         best_disk = disk;
650                         break;
651                 }
652
653                 if (choose_next_idle)
654                         continue;
655
656                 if (min_pending > pending) {
657                         min_pending = pending;
658                         best_pending_disk = disk;
659                 }
660
661                 if (dist < best_dist) {
662                         best_dist = dist;
663                         best_dist_disk = disk;
664                 }
665         }
666
667         /*
668          * If all disks are rotational, choose the closest disk. If any disk is
669          * non-rotational, choose the disk with less pending request even the
670          * disk is rotational, which might/might not be optimal for raids with
671          * mixed ratation/non-rotational disks depending on workload.
672          */
673         if (best_disk == -1) {
674                 if (has_nonrot_disk)
675                         best_disk = best_pending_disk;
676                 else
677                         best_disk = best_dist_disk;
678         }
679
680         if (best_disk >= 0) {
681                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
682                 if (!rdev)
683                         goto retry;
684                 atomic_inc(&rdev->nr_pending);
685                 if (test_bit(Faulty, &rdev->flags)) {
686                         /* cannot risk returning a device that failed
687                          * before we inc'ed nr_pending
688                          */
689                         rdev_dec_pending(rdev, conf->mddev);
690                         goto retry;
691                 }
692                 sectors = best_good_sectors;
693
694                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
695                         conf->mirrors[best_disk].seq_start = this_sector;
696
697                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
698         }
699         rcu_read_unlock();
700         *max_sectors = sectors;
701
702         return best_disk;
703 }
704
705 static int raid1_mergeable_bvec(struct mddev *mddev,
706                                 struct bvec_merge_data *bvm,
707                                 struct bio_vec *biovec)
708 {
709         struct r1conf *conf = mddev->private;
710         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
711         int max = biovec->bv_len;
712
713         if (mddev->merge_check_needed) {
714                 int disk;
715                 rcu_read_lock();
716                 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
717                         struct md_rdev *rdev = rcu_dereference(
718                                 conf->mirrors[disk].rdev);
719                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
720                                 struct request_queue *q =
721                                         bdev_get_queue(rdev->bdev);
722                                 if (q->merge_bvec_fn) {
723                                         bvm->bi_sector = sector +
724                                                 rdev->data_offset;
725                                         bvm->bi_bdev = rdev->bdev;
726                                         max = min(max, q->merge_bvec_fn(
727                                                           q, bvm, biovec));
728                                 }
729                         }
730                 }
731                 rcu_read_unlock();
732         }
733         return max;
734
735 }
736
737 static int raid1_congested(struct mddev *mddev, int bits)
738 {
739         struct r1conf *conf = mddev->private;
740         int i, ret = 0;
741
742         if ((bits & (1 << BDI_async_congested)) &&
743             conf->pending_count >= max_queued_requests)
744                 return 1;
745
746         rcu_read_lock();
747         for (i = 0; i < conf->raid_disks * 2; i++) {
748                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
749                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
750                         struct request_queue *q = bdev_get_queue(rdev->bdev);
751
752                         BUG_ON(!q);
753
754                         /* Note the '|| 1' - when read_balance prefers
755                          * non-congested targets, it can be removed
756                          */
757                         if ((bits & (1<<BDI_async_congested)) || 1)
758                                 ret |= bdi_congested(&q->backing_dev_info, bits);
759                         else
760                                 ret &= bdi_congested(&q->backing_dev_info, bits);
761                 }
762         }
763         rcu_read_unlock();
764         return ret;
765 }
766
767 static void flush_pending_writes(struct r1conf *conf)
768 {
769         /* Any writes that have been queued but are awaiting
770          * bitmap updates get flushed here.
771          */
772         spin_lock_irq(&conf->device_lock);
773
774         if (conf->pending_bio_list.head) {
775                 struct bio *bio;
776                 bio = bio_list_get(&conf->pending_bio_list);
777                 conf->pending_count = 0;
778                 spin_unlock_irq(&conf->device_lock);
779                 /* flush any pending bitmap writes to
780                  * disk before proceeding w/ I/O */
781                 bitmap_unplug(conf->mddev->bitmap);
782                 wake_up(&conf->wait_barrier);
783
784                 while (bio) { /* submit pending writes */
785                         struct bio *next = bio->bi_next;
786                         bio->bi_next = NULL;
787                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
788                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
789                                 /* Just ignore it */
790                                 bio_endio(bio, 0);
791                         else
792                                 generic_make_request(bio);
793                         bio = next;
794                 }
795         } else
796                 spin_unlock_irq(&conf->device_lock);
797 }
798
799 /* Barriers....
800  * Sometimes we need to suspend IO while we do something else,
801  * either some resync/recovery, or reconfigure the array.
802  * To do this we raise a 'barrier'.
803  * The 'barrier' is a counter that can be raised multiple times
804  * to count how many activities are happening which preclude
805  * normal IO.
806  * We can only raise the barrier if there is no pending IO.
807  * i.e. if nr_pending == 0.
808  * We choose only to raise the barrier if no-one is waiting for the
809  * barrier to go down.  This means that as soon as an IO request
810  * is ready, no other operations which require a barrier will start
811  * until the IO request has had a chance.
812  *
813  * So: regular IO calls 'wait_barrier'.  When that returns there
814  *    is no backgroup IO happening,  It must arrange to call
815  *    allow_barrier when it has finished its IO.
816  * backgroup IO calls must call raise_barrier.  Once that returns
817  *    there is no normal IO happeing.  It must arrange to call
818  *    lower_barrier when the particular background IO completes.
819  */
820 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
821 {
822         spin_lock_irq(&conf->resync_lock);
823
824         /* Wait until no block IO is waiting */
825         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
826                             conf->resync_lock);
827
828         /* block any new IO from starting */
829         conf->barrier++;
830         conf->next_resync = sector_nr;
831
832         /* For these conditions we must wait:
833          * A: while the array is in frozen state
834          * B: while barrier >= RESYNC_DEPTH, meaning resync reach
835          *    the max count which allowed.
836          * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
837          *    next resync will reach to the window which normal bios are
838          *    handling.
839          * D: while there are any active requests in the current window.
840          */
841         wait_event_lock_irq(conf->wait_barrier,
842                             !conf->array_frozen &&
843                             conf->barrier < RESYNC_DEPTH &&
844                             conf->current_window_requests == 0 &&
845                             (conf->start_next_window >=
846                              conf->next_resync + RESYNC_SECTORS),
847                             conf->resync_lock);
848
849         conf->nr_pending++;
850         spin_unlock_irq(&conf->resync_lock);
851 }
852
853 static void lower_barrier(struct r1conf *conf)
854 {
855         unsigned long flags;
856         BUG_ON(conf->barrier <= 0);
857         spin_lock_irqsave(&conf->resync_lock, flags);
858         conf->barrier--;
859         conf->nr_pending--;
860         spin_unlock_irqrestore(&conf->resync_lock, flags);
861         wake_up(&conf->wait_barrier);
862 }
863
864 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
865 {
866         bool wait = false;
867
868         if (conf->array_frozen || !bio)
869                 wait = true;
870         else if (conf->barrier && bio_data_dir(bio) == WRITE) {
871                 if ((conf->mddev->curr_resync_completed
872                      >= bio_end_sector(bio)) ||
873                     (conf->next_resync + NEXT_NORMALIO_DISTANCE
874                      <= bio->bi_iter.bi_sector))
875                         wait = false;
876                 else
877                         wait = true;
878         }
879
880         return wait;
881 }
882
883 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
884 {
885         sector_t sector = 0;
886
887         spin_lock_irq(&conf->resync_lock);
888         if (need_to_wait_for_sync(conf, bio)) {
889                 conf->nr_waiting++;
890                 /* Wait for the barrier to drop.
891                  * However if there are already pending
892                  * requests (preventing the barrier from
893                  * rising completely), and the
894                  * per-process bio queue isn't empty,
895                  * then don't wait, as we need to empty
896                  * that queue to allow conf->start_next_window
897                  * to increase.
898                  */
899                 wait_event_lock_irq(conf->wait_barrier,
900                                     !conf->array_frozen &&
901                                     (!conf->barrier ||
902                                      ((conf->start_next_window <
903                                        conf->next_resync + RESYNC_SECTORS) &&
904                                       current->bio_list &&
905                                       !bio_list_empty(current->bio_list))),
906                                     conf->resync_lock);
907                 conf->nr_waiting--;
908         }
909
910         if (bio && bio_data_dir(bio) == WRITE) {
911                 if (bio->bi_iter.bi_sector >=
912                     conf->mddev->curr_resync_completed) {
913                         if (conf->start_next_window == MaxSector)
914                                 conf->start_next_window =
915                                         conf->next_resync +
916                                         NEXT_NORMALIO_DISTANCE;
917
918                         if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
919                             <= bio->bi_iter.bi_sector)
920                                 conf->next_window_requests++;
921                         else
922                                 conf->current_window_requests++;
923                         sector = conf->start_next_window;
924                 }
925         }
926
927         conf->nr_pending++;
928         spin_unlock_irq(&conf->resync_lock);
929         return sector;
930 }
931
932 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
933                           sector_t bi_sector)
934 {
935         unsigned long flags;
936
937         spin_lock_irqsave(&conf->resync_lock, flags);
938         conf->nr_pending--;
939         if (start_next_window) {
940                 if (start_next_window == conf->start_next_window) {
941                         if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
942                             <= bi_sector)
943                                 conf->next_window_requests--;
944                         else
945                                 conf->current_window_requests--;
946                 } else
947                         conf->current_window_requests--;
948
949                 if (!conf->current_window_requests) {
950                         if (conf->next_window_requests) {
951                                 conf->current_window_requests =
952                                         conf->next_window_requests;
953                                 conf->next_window_requests = 0;
954                                 conf->start_next_window +=
955                                         NEXT_NORMALIO_DISTANCE;
956                         } else
957                                 conf->start_next_window = MaxSector;
958                 }
959         }
960         spin_unlock_irqrestore(&conf->resync_lock, flags);
961         wake_up(&conf->wait_barrier);
962 }
963
964 static void freeze_array(struct r1conf *conf, int extra)
965 {
966         /* stop syncio and normal IO and wait for everything to
967          * go quite.
968          * We wait until nr_pending match nr_queued+extra
969          * This is called in the context of one normal IO request
970          * that has failed. Thus any sync request that might be pending
971          * will be blocked by nr_pending, and we need to wait for
972          * pending IO requests to complete or be queued for re-try.
973          * Thus the number queued (nr_queued) plus this request (extra)
974          * must match the number of pending IOs (nr_pending) before
975          * we continue.
976          */
977         spin_lock_irq(&conf->resync_lock);
978         conf->array_frozen = 1;
979         wait_event_lock_irq_cmd(conf->wait_barrier,
980                                 conf->nr_pending == conf->nr_queued+extra,
981                                 conf->resync_lock,
982                                 flush_pending_writes(conf));
983         spin_unlock_irq(&conf->resync_lock);
984 }
985 static void unfreeze_array(struct r1conf *conf)
986 {
987         /* reverse the effect of the freeze */
988         spin_lock_irq(&conf->resync_lock);
989         conf->array_frozen = 0;
990         wake_up(&conf->wait_barrier);
991         spin_unlock_irq(&conf->resync_lock);
992 }
993
994 /* duplicate the data pages for behind I/O
995  */
996 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
997 {
998         int i;
999         struct bio_vec *bvec;
1000         struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1001                                         GFP_NOIO);
1002         if (unlikely(!bvecs))
1003                 return;
1004
1005         bio_for_each_segment_all(bvec, bio, i) {
1006                 bvecs[i] = *bvec;
1007                 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1008                 if (unlikely(!bvecs[i].bv_page))
1009                         goto do_sync_io;
1010                 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1011                        kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1012                 kunmap(bvecs[i].bv_page);
1013                 kunmap(bvec->bv_page);
1014         }
1015         r1_bio->behind_bvecs = bvecs;
1016         r1_bio->behind_page_count = bio->bi_vcnt;
1017         set_bit(R1BIO_BehindIO, &r1_bio->state);
1018         return;
1019
1020 do_sync_io:
1021         for (i = 0; i < bio->bi_vcnt; i++)
1022                 if (bvecs[i].bv_page)
1023                         put_page(bvecs[i].bv_page);
1024         kfree(bvecs);
1025         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1026                  bio->bi_iter.bi_size);
1027 }
1028
1029 struct raid1_plug_cb {
1030         struct blk_plug_cb      cb;
1031         struct bio_list         pending;
1032         int                     pending_cnt;
1033 };
1034
1035 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1036 {
1037         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1038                                                   cb);
1039         struct mddev *mddev = plug->cb.data;
1040         struct r1conf *conf = mddev->private;
1041         struct bio *bio;
1042
1043         if (from_schedule || current->bio_list) {
1044                 spin_lock_irq(&conf->device_lock);
1045                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1046                 conf->pending_count += plug->pending_cnt;
1047                 spin_unlock_irq(&conf->device_lock);
1048                 wake_up(&conf->wait_barrier);
1049                 md_wakeup_thread(mddev->thread);
1050                 kfree(plug);
1051                 return;
1052         }
1053
1054         /* we aren't scheduling, so we can do the write-out directly. */
1055         bio = bio_list_get(&plug->pending);
1056         bitmap_unplug(mddev->bitmap);
1057         wake_up(&conf->wait_barrier);
1058
1059         while (bio) { /* submit pending writes */
1060                 struct bio *next = bio->bi_next;
1061                 bio->bi_next = NULL;
1062                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1063                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1064                         /* Just ignore it */
1065                         bio_endio(bio, 0);
1066                 else
1067                         generic_make_request(bio);
1068                 bio = next;
1069         }
1070         kfree(plug);
1071 }
1072
1073 static void make_request(struct mddev *mddev, struct bio * bio)
1074 {
1075         struct r1conf *conf = mddev->private;
1076         struct raid1_info *mirror;
1077         struct r1bio *r1_bio;
1078         struct bio *read_bio;
1079         int i, disks;
1080         struct bitmap *bitmap;
1081         unsigned long flags;
1082         const int rw = bio_data_dir(bio);
1083         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1084         const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1085         const unsigned long do_discard = (bio->bi_rw
1086                                           & (REQ_DISCARD | REQ_SECURE));
1087         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1088         struct md_rdev *blocked_rdev;
1089         struct blk_plug_cb *cb;
1090         struct raid1_plug_cb *plug = NULL;
1091         int first_clone;
1092         int sectors_handled;
1093         int max_sectors;
1094         sector_t start_next_window;
1095
1096         /*
1097          * Register the new request and wait if the reconstruction
1098          * thread has put up a bar for new requests.
1099          * Continue immediately if no resync is active currently.
1100          */
1101
1102         md_write_start(mddev, bio); /* wait on superblock update early */
1103
1104         if (bio_data_dir(bio) == WRITE &&
1105             bio_end_sector(bio) > mddev->suspend_lo &&
1106             bio->bi_iter.bi_sector < mddev->suspend_hi) {
1107                 /* As the suspend_* range is controlled by
1108                  * userspace, we want an interruptible
1109                  * wait.
1110                  */
1111                 DEFINE_WAIT(w);
1112                 for (;;) {
1113                         flush_signals(current);
1114                         prepare_to_wait(&conf->wait_barrier,
1115                                         &w, TASK_INTERRUPTIBLE);
1116                         if (bio_end_sector(bio) <= mddev->suspend_lo ||
1117                             bio->bi_iter.bi_sector >= mddev->suspend_hi)
1118                                 break;
1119                         schedule();
1120                 }
1121                 finish_wait(&conf->wait_barrier, &w);
1122         }
1123
1124         start_next_window = wait_barrier(conf, bio);
1125
1126         bitmap = mddev->bitmap;
1127
1128         /*
1129          * make_request() can abort the operation when READA is being
1130          * used and no empty request is available.
1131          *
1132          */
1133         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1134
1135         r1_bio->master_bio = bio;
1136         r1_bio->sectors = bio_sectors(bio);
1137         r1_bio->state = 0;
1138         r1_bio->mddev = mddev;
1139         r1_bio->sector = bio->bi_iter.bi_sector;
1140
1141         /* We might need to issue multiple reads to different
1142          * devices if there are bad blocks around, so we keep
1143          * track of the number of reads in bio->bi_phys_segments.
1144          * If this is 0, there is only one r1_bio and no locking
1145          * will be needed when requests complete.  If it is
1146          * non-zero, then it is the number of not-completed requests.
1147          */
1148         bio->bi_phys_segments = 0;
1149         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1150
1151         if (rw == READ) {
1152                 /*
1153                  * read balancing logic:
1154                  */
1155                 int rdisk;
1156
1157 read_again:
1158                 rdisk = read_balance(conf, r1_bio, &max_sectors);
1159
1160                 if (rdisk < 0) {
1161                         /* couldn't find anywhere to read from */
1162                         raid_end_bio_io(r1_bio);
1163                         return;
1164                 }
1165                 mirror = conf->mirrors + rdisk;
1166
1167                 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1168                     bitmap) {
1169                         /* Reading from a write-mostly device must
1170                          * take care not to over-take any writes
1171                          * that are 'behind'
1172                          */
1173                         wait_event(bitmap->behind_wait,
1174                                    atomic_read(&bitmap->behind_writes) == 0);
1175                 }
1176                 r1_bio->read_disk = rdisk;
1177                 r1_bio->start_next_window = 0;
1178
1179                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1180                 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1181                          max_sectors);
1182
1183                 r1_bio->bios[rdisk] = read_bio;
1184
1185                 read_bio->bi_iter.bi_sector = r1_bio->sector +
1186                         mirror->rdev->data_offset;
1187                 read_bio->bi_bdev = mirror->rdev->bdev;
1188                 read_bio->bi_end_io = raid1_end_read_request;
1189                 read_bio->bi_rw = READ | do_sync;
1190                 read_bio->bi_private = r1_bio;
1191
1192                 if (max_sectors < r1_bio->sectors) {
1193                         /* could not read all from this device, so we will
1194                          * need another r1_bio.
1195                          */
1196
1197                         sectors_handled = (r1_bio->sector + max_sectors
1198                                            - bio->bi_iter.bi_sector);
1199                         r1_bio->sectors = max_sectors;
1200                         spin_lock_irq(&conf->device_lock);
1201                         if (bio->bi_phys_segments == 0)
1202                                 bio->bi_phys_segments = 2;
1203                         else
1204                                 bio->bi_phys_segments++;
1205                         spin_unlock_irq(&conf->device_lock);
1206                         /* Cannot call generic_make_request directly
1207                          * as that will be queued in __make_request
1208                          * and subsequent mempool_alloc might block waiting
1209                          * for it.  So hand bio over to raid1d.
1210                          */
1211                         reschedule_retry(r1_bio);
1212
1213                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1214
1215                         r1_bio->master_bio = bio;
1216                         r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1217                         r1_bio->state = 0;
1218                         r1_bio->mddev = mddev;
1219                         r1_bio->sector = bio->bi_iter.bi_sector +
1220                                 sectors_handled;
1221                         goto read_again;
1222                 } else
1223                         generic_make_request(read_bio);
1224                 return;
1225         }
1226
1227         /*
1228          * WRITE:
1229          */
1230         if (conf->pending_count >= max_queued_requests) {
1231                 md_wakeup_thread(mddev->thread);
1232                 wait_event(conf->wait_barrier,
1233                            conf->pending_count < max_queued_requests);
1234         }
1235         /* first select target devices under rcu_lock and
1236          * inc refcount on their rdev.  Record them by setting
1237          * bios[x] to bio
1238          * If there are known/acknowledged bad blocks on any device on
1239          * which we have seen a write error, we want to avoid writing those
1240          * blocks.
1241          * This potentially requires several writes to write around
1242          * the bad blocks.  Each set of writes gets it's own r1bio
1243          * with a set of bios attached.
1244          */
1245
1246         disks = conf->raid_disks * 2;
1247  retry_write:
1248         r1_bio->start_next_window = start_next_window;
1249         blocked_rdev = NULL;
1250         rcu_read_lock();
1251         max_sectors = r1_bio->sectors;
1252         for (i = 0;  i < disks; i++) {
1253                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1254                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1255                         atomic_inc(&rdev->nr_pending);
1256                         blocked_rdev = rdev;
1257                         break;
1258                 }
1259                 r1_bio->bios[i] = NULL;
1260                 if (!rdev || test_bit(Faulty, &rdev->flags)
1261                     || test_bit(Unmerged, &rdev->flags)) {
1262                         if (i < conf->raid_disks)
1263                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1264                         continue;
1265                 }
1266
1267                 atomic_inc(&rdev->nr_pending);
1268                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1269                         sector_t first_bad;
1270                         int bad_sectors;
1271                         int is_bad;
1272
1273                         is_bad = is_badblock(rdev, r1_bio->sector,
1274                                              max_sectors,
1275                                              &first_bad, &bad_sectors);
1276                         if (is_bad < 0) {
1277                                 /* mustn't write here until the bad block is
1278                                  * acknowledged*/
1279                                 set_bit(BlockedBadBlocks, &rdev->flags);
1280                                 blocked_rdev = rdev;
1281                                 break;
1282                         }
1283                         if (is_bad && first_bad <= r1_bio->sector) {
1284                                 /* Cannot write here at all */
1285                                 bad_sectors -= (r1_bio->sector - first_bad);
1286                                 if (bad_sectors < max_sectors)
1287                                         /* mustn't write more than bad_sectors
1288                                          * to other devices yet
1289                                          */
1290                                         max_sectors = bad_sectors;
1291                                 rdev_dec_pending(rdev, mddev);
1292                                 /* We don't set R1BIO_Degraded as that
1293                                  * only applies if the disk is
1294                                  * missing, so it might be re-added,
1295                                  * and we want to know to recover this
1296                                  * chunk.
1297                                  * In this case the device is here,
1298                                  * and the fact that this chunk is not
1299                                  * in-sync is recorded in the bad
1300                                  * block log
1301                                  */
1302                                 continue;
1303                         }
1304                         if (is_bad) {
1305                                 int good_sectors = first_bad - r1_bio->sector;
1306                                 if (good_sectors < max_sectors)
1307                                         max_sectors = good_sectors;
1308                         }
1309                 }
1310                 r1_bio->bios[i] = bio;
1311         }
1312         rcu_read_unlock();
1313
1314         if (unlikely(blocked_rdev)) {
1315                 /* Wait for this device to become unblocked */
1316                 int j;
1317                 sector_t old = start_next_window;
1318
1319                 for (j = 0; j < i; j++)
1320                         if (r1_bio->bios[j])
1321                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1322                 r1_bio->state = 0;
1323                 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1324                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1325                 start_next_window = wait_barrier(conf, bio);
1326                 /*
1327                  * We must make sure the multi r1bios of bio have
1328                  * the same value of bi_phys_segments
1329                  */
1330                 if (bio->bi_phys_segments && old &&
1331                     old != start_next_window)
1332                         /* Wait for the former r1bio(s) to complete */
1333                         wait_event(conf->wait_barrier,
1334                                    bio->bi_phys_segments == 1);
1335                 goto retry_write;
1336         }
1337
1338         if (max_sectors < r1_bio->sectors) {
1339                 /* We are splitting this write into multiple parts, so
1340                  * we need to prepare for allocating another r1_bio.
1341                  */
1342                 r1_bio->sectors = max_sectors;
1343                 spin_lock_irq(&conf->device_lock);
1344                 if (bio->bi_phys_segments == 0)
1345                         bio->bi_phys_segments = 2;
1346                 else
1347                         bio->bi_phys_segments++;
1348                 spin_unlock_irq(&conf->device_lock);
1349         }
1350         sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1351
1352         atomic_set(&r1_bio->remaining, 1);
1353         atomic_set(&r1_bio->behind_remaining, 0);
1354
1355         first_clone = 1;
1356         for (i = 0; i < disks; i++) {
1357                 struct bio *mbio;
1358                 if (!r1_bio->bios[i])
1359                         continue;
1360
1361                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1362                 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1363
1364                 if (first_clone) {
1365                         /* do behind I/O ?
1366                          * Not if there are too many, or cannot
1367                          * allocate memory, or a reader on WriteMostly
1368                          * is waiting for behind writes to flush */
1369                         if (bitmap &&
1370                             (atomic_read(&bitmap->behind_writes)
1371                              < mddev->bitmap_info.max_write_behind) &&
1372                             !waitqueue_active(&bitmap->behind_wait))
1373                                 alloc_behind_pages(mbio, r1_bio);
1374
1375                         bitmap_startwrite(bitmap, r1_bio->sector,
1376                                           r1_bio->sectors,
1377                                           test_bit(R1BIO_BehindIO,
1378                                                    &r1_bio->state));
1379                         first_clone = 0;
1380                 }
1381                 if (r1_bio->behind_bvecs) {
1382                         struct bio_vec *bvec;
1383                         int j;
1384
1385                         /*
1386                          * We trimmed the bio, so _all is legit
1387                          */
1388                         bio_for_each_segment_all(bvec, mbio, j)
1389                                 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1390                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1391                                 atomic_inc(&r1_bio->behind_remaining);
1392                 }
1393
1394                 r1_bio->bios[i] = mbio;
1395
1396                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1397                                    conf->mirrors[i].rdev->data_offset);
1398                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1399                 mbio->bi_end_io = raid1_end_write_request;
1400                 mbio->bi_rw =
1401                         WRITE | do_flush_fua | do_sync | do_discard | do_same;
1402                 mbio->bi_private = r1_bio;
1403
1404                 atomic_inc(&r1_bio->remaining);
1405
1406                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1407                 if (cb)
1408                         plug = container_of(cb, struct raid1_plug_cb, cb);
1409                 else
1410                         plug = NULL;
1411                 spin_lock_irqsave(&conf->device_lock, flags);
1412                 if (plug) {
1413                         bio_list_add(&plug->pending, mbio);
1414                         plug->pending_cnt++;
1415                 } else {
1416                         bio_list_add(&conf->pending_bio_list, mbio);
1417                         conf->pending_count++;
1418                 }
1419                 spin_unlock_irqrestore(&conf->device_lock, flags);
1420                 if (!plug)
1421                         md_wakeup_thread(mddev->thread);
1422         }
1423         /* Mustn't call r1_bio_write_done before this next test,
1424          * as it could result in the bio being freed.
1425          */
1426         if (sectors_handled < bio_sectors(bio)) {
1427                 r1_bio_write_done(r1_bio);
1428                 /* We need another r1_bio.  It has already been counted
1429                  * in bio->bi_phys_segments
1430                  */
1431                 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1432                 r1_bio->master_bio = bio;
1433                 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1434                 r1_bio->state = 0;
1435                 r1_bio->mddev = mddev;
1436                 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1437                 goto retry_write;
1438         }
1439
1440         r1_bio_write_done(r1_bio);
1441
1442         /* In case raid1d snuck in to freeze_array */
1443         wake_up(&conf->wait_barrier);
1444 }
1445
1446 static void status(struct seq_file *seq, struct mddev *mddev)
1447 {
1448         struct r1conf *conf = mddev->private;
1449         int i;
1450
1451         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1452                    conf->raid_disks - mddev->degraded);
1453         rcu_read_lock();
1454         for (i = 0; i < conf->raid_disks; i++) {
1455                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1456                 seq_printf(seq, "%s",
1457                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1458         }
1459         rcu_read_unlock();
1460         seq_printf(seq, "]");
1461 }
1462
1463 static void error(struct mddev *mddev, struct md_rdev *rdev)
1464 {
1465         char b[BDEVNAME_SIZE];
1466         struct r1conf *conf = mddev->private;
1467
1468         /*
1469          * If it is not operational, then we have already marked it as dead
1470          * else if it is the last working disks, ignore the error, let the
1471          * next level up know.
1472          * else mark the drive as failed
1473          */
1474         if (test_bit(In_sync, &rdev->flags)
1475             && (conf->raid_disks - mddev->degraded) == 1) {
1476                 /*
1477                  * Don't fail the drive, act as though we were just a
1478                  * normal single drive.
1479                  * However don't try a recovery from this drive as
1480                  * it is very likely to fail.
1481                  */
1482                 conf->recovery_disabled = mddev->recovery_disabled;
1483                 return;
1484         }
1485         set_bit(Blocked, &rdev->flags);
1486         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1487                 unsigned long flags;
1488                 spin_lock_irqsave(&conf->device_lock, flags);
1489                 mddev->degraded++;
1490                 set_bit(Faulty, &rdev->flags);
1491                 spin_unlock_irqrestore(&conf->device_lock, flags);
1492         } else
1493                 set_bit(Faulty, &rdev->flags);
1494         /*
1495          * if recovery is running, make sure it aborts.
1496          */
1497         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1498         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1499         printk(KERN_ALERT
1500                "md/raid1:%s: Disk failure on %s, disabling device.\n"
1501                "md/raid1:%s: Operation continuing on %d devices.\n",
1502                mdname(mddev), bdevname(rdev->bdev, b),
1503                mdname(mddev), conf->raid_disks - mddev->degraded);
1504 }
1505
1506 static void print_conf(struct r1conf *conf)
1507 {
1508         int i;
1509
1510         printk(KERN_DEBUG "RAID1 conf printout:\n");
1511         if (!conf) {
1512                 printk(KERN_DEBUG "(!conf)\n");
1513                 return;
1514         }
1515         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1516                 conf->raid_disks);
1517
1518         rcu_read_lock();
1519         for (i = 0; i < conf->raid_disks; i++) {
1520                 char b[BDEVNAME_SIZE];
1521                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1522                 if (rdev)
1523                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1524                                i, !test_bit(In_sync, &rdev->flags),
1525                                !test_bit(Faulty, &rdev->flags),
1526                                bdevname(rdev->bdev,b));
1527         }
1528         rcu_read_unlock();
1529 }
1530
1531 static void close_sync(struct r1conf *conf)
1532 {
1533         wait_barrier(conf, NULL);
1534         allow_barrier(conf, 0, 0);
1535
1536         mempool_destroy(conf->r1buf_pool);
1537         conf->r1buf_pool = NULL;
1538
1539         spin_lock_irq(&conf->resync_lock);
1540         conf->next_resync = 0;
1541         conf->start_next_window = MaxSector;
1542         conf->current_window_requests +=
1543                 conf->next_window_requests;
1544         conf->next_window_requests = 0;
1545         spin_unlock_irq(&conf->resync_lock);
1546 }
1547
1548 static int raid1_spare_active(struct mddev *mddev)
1549 {
1550         int i;
1551         struct r1conf *conf = mddev->private;
1552         int count = 0;
1553         unsigned long flags;
1554
1555         /*
1556          * Find all failed disks within the RAID1 configuration
1557          * and mark them readable.
1558          * Called under mddev lock, so rcu protection not needed.
1559          */
1560         for (i = 0; i < conf->raid_disks; i++) {
1561                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1562                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1563                 if (repl
1564                     && repl->recovery_offset == MaxSector
1565                     && !test_bit(Faulty, &repl->flags)
1566                     && !test_and_set_bit(In_sync, &repl->flags)) {
1567                         /* replacement has just become active */
1568                         if (!rdev ||
1569                             !test_and_clear_bit(In_sync, &rdev->flags))
1570                                 count++;
1571                         if (rdev) {
1572                                 /* Replaced device not technically
1573                                  * faulty, but we need to be sure
1574                                  * it gets removed and never re-added
1575                                  */
1576                                 set_bit(Faulty, &rdev->flags);
1577                                 sysfs_notify_dirent_safe(
1578                                         rdev->sysfs_state);
1579                         }
1580                 }
1581                 if (rdev
1582                     && rdev->recovery_offset == MaxSector
1583                     && !test_bit(Faulty, &rdev->flags)
1584                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1585                         count++;
1586                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1587                 }
1588         }
1589         spin_lock_irqsave(&conf->device_lock, flags);
1590         mddev->degraded -= count;
1591         spin_unlock_irqrestore(&conf->device_lock, flags);
1592
1593         print_conf(conf);
1594         return count;
1595 }
1596
1597 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1598 {
1599         struct r1conf *conf = mddev->private;
1600         int err = -EEXIST;
1601         int mirror = 0;
1602         struct raid1_info *p;
1603         int first = 0;
1604         int last = conf->raid_disks - 1;
1605         struct request_queue *q = bdev_get_queue(rdev->bdev);
1606
1607         if (mddev->recovery_disabled == conf->recovery_disabled)
1608                 return -EBUSY;
1609
1610         if (rdev->raid_disk >= 0)
1611                 first = last = rdev->raid_disk;
1612
1613         if (q->merge_bvec_fn) {
1614                 set_bit(Unmerged, &rdev->flags);
1615                 mddev->merge_check_needed = 1;
1616         }
1617
1618         for (mirror = first; mirror <= last; mirror++) {
1619                 p = conf->mirrors+mirror;
1620                 if (!p->rdev) {
1621
1622                         if (mddev->gendisk)
1623                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1624                                                   rdev->data_offset << 9);
1625
1626                         p->head_position = 0;
1627                         rdev->raid_disk = mirror;
1628                         err = 0;
1629                         /* As all devices are equivalent, we don't need a full recovery
1630                          * if this was recently any drive of the array
1631                          */
1632                         if (rdev->saved_raid_disk < 0)
1633                                 conf->fullsync = 1;
1634                         rcu_assign_pointer(p->rdev, rdev);
1635                         break;
1636                 }
1637                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1638                     p[conf->raid_disks].rdev == NULL) {
1639                         /* Add this device as a replacement */
1640                         clear_bit(In_sync, &rdev->flags);
1641                         set_bit(Replacement, &rdev->flags);
1642                         rdev->raid_disk = mirror;
1643                         err = 0;
1644                         conf->fullsync = 1;
1645                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1646                         break;
1647                 }
1648         }
1649         if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1650                 /* Some requests might not have seen this new
1651                  * merge_bvec_fn.  We must wait for them to complete
1652                  * before merging the device fully.
1653                  * First we make sure any code which has tested
1654                  * our function has submitted the request, then
1655                  * we wait for all outstanding requests to complete.
1656                  */
1657                 synchronize_sched();
1658                 freeze_array(conf, 0);
1659                 unfreeze_array(conf);
1660                 clear_bit(Unmerged, &rdev->flags);
1661         }
1662         md_integrity_add_rdev(rdev, mddev);
1663         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1664                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1665         print_conf(conf);
1666         return err;
1667 }
1668
1669 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1670 {
1671         struct r1conf *conf = mddev->private;
1672         int err = 0;
1673         int number = rdev->raid_disk;
1674         struct raid1_info *p = conf->mirrors + number;
1675
1676         if (rdev != p->rdev)
1677                 p = conf->mirrors + conf->raid_disks + number;
1678
1679         print_conf(conf);
1680         if (rdev == p->rdev) {
1681                 if (test_bit(In_sync, &rdev->flags) ||
1682                     atomic_read(&rdev->nr_pending)) {
1683                         err = -EBUSY;
1684                         goto abort;
1685                 }
1686                 /* Only remove non-faulty devices if recovery
1687                  * is not possible.
1688                  */
1689                 if (!test_bit(Faulty, &rdev->flags) &&
1690                     mddev->recovery_disabled != conf->recovery_disabled &&
1691                     mddev->degraded < conf->raid_disks) {
1692                         err = -EBUSY;
1693                         goto abort;
1694                 }
1695                 p->rdev = NULL;
1696                 synchronize_rcu();
1697                 if (atomic_read(&rdev->nr_pending)) {
1698                         /* lost the race, try later */
1699                         err = -EBUSY;
1700                         p->rdev = rdev;
1701                         goto abort;
1702                 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1703                         /* We just removed a device that is being replaced.
1704                          * Move down the replacement.  We drain all IO before
1705                          * doing this to avoid confusion.
1706                          */
1707                         struct md_rdev *repl =
1708                                 conf->mirrors[conf->raid_disks + number].rdev;
1709                         freeze_array(conf, 0);
1710                         clear_bit(Replacement, &repl->flags);
1711                         p->rdev = repl;
1712                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1713                         unfreeze_array(conf);
1714                         clear_bit(WantReplacement, &rdev->flags);
1715                 } else
1716                         clear_bit(WantReplacement, &rdev->flags);
1717                 err = md_integrity_register(mddev);
1718         }
1719 abort:
1720
1721         print_conf(conf);
1722         return err;
1723 }
1724
1725 static void end_sync_read(struct bio *bio, int error)
1726 {
1727         struct r1bio *r1_bio = bio->bi_private;
1728
1729         update_head_pos(r1_bio->read_disk, r1_bio);
1730
1731         /*
1732          * we have read a block, now it needs to be re-written,
1733          * or re-read if the read failed.
1734          * We don't do much here, just schedule handling by raid1d
1735          */
1736         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1737                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1738
1739         if (atomic_dec_and_test(&r1_bio->remaining))
1740                 reschedule_retry(r1_bio);
1741 }
1742
1743 static void end_sync_write(struct bio *bio, int error)
1744 {
1745         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1746         struct r1bio *r1_bio = bio->bi_private;
1747         struct mddev *mddev = r1_bio->mddev;
1748         struct r1conf *conf = mddev->private;
1749         int mirror=0;
1750         sector_t first_bad;
1751         int bad_sectors;
1752
1753         mirror = find_bio_disk(r1_bio, bio);
1754
1755         if (!uptodate) {
1756                 sector_t sync_blocks = 0;
1757                 sector_t s = r1_bio->sector;
1758                 long sectors_to_go = r1_bio->sectors;
1759                 /* make sure these bits doesn't get cleared. */
1760                 do {
1761                         bitmap_end_sync(mddev->bitmap, s,
1762                                         &sync_blocks, 1);
1763                         s += sync_blocks;
1764                         sectors_to_go -= sync_blocks;
1765                 } while (sectors_to_go > 0);
1766                 set_bit(WriteErrorSeen,
1767                         &conf->mirrors[mirror].rdev->flags);
1768                 if (!test_and_set_bit(WantReplacement,
1769                                       &conf->mirrors[mirror].rdev->flags))
1770                         set_bit(MD_RECOVERY_NEEDED, &
1771                                 mddev->recovery);
1772                 set_bit(R1BIO_WriteError, &r1_bio->state);
1773         } else if (is_badblock(conf->mirrors[mirror].rdev,
1774                                r1_bio->sector,
1775                                r1_bio->sectors,
1776                                &first_bad, &bad_sectors) &&
1777                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1778                                 r1_bio->sector,
1779                                 r1_bio->sectors,
1780                                 &first_bad, &bad_sectors)
1781                 )
1782                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1783
1784         if (atomic_dec_and_test(&r1_bio->remaining)) {
1785                 int s = r1_bio->sectors;
1786                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1787                     test_bit(R1BIO_WriteError, &r1_bio->state))
1788                         reschedule_retry(r1_bio);
1789                 else {
1790                         put_buf(r1_bio);
1791                         md_done_sync(mddev, s, uptodate);
1792                 }
1793         }
1794 }
1795
1796 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1797                             int sectors, struct page *page, int rw)
1798 {
1799         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1800                 /* success */
1801                 return 1;
1802         if (rw == WRITE) {
1803                 set_bit(WriteErrorSeen, &rdev->flags);
1804                 if (!test_and_set_bit(WantReplacement,
1805                                       &rdev->flags))
1806                         set_bit(MD_RECOVERY_NEEDED, &
1807                                 rdev->mddev->recovery);
1808         }
1809         /* need to record an error - either for the block or the device */
1810         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1811                 md_error(rdev->mddev, rdev);
1812         return 0;
1813 }
1814
1815 static int fix_sync_read_error(struct r1bio *r1_bio)
1816 {
1817         /* Try some synchronous reads of other devices to get
1818          * good data, much like with normal read errors.  Only
1819          * read into the pages we already have so we don't
1820          * need to re-issue the read request.
1821          * We don't need to freeze the array, because being in an
1822          * active sync request, there is no normal IO, and
1823          * no overlapping syncs.
1824          * We don't need to check is_badblock() again as we
1825          * made sure that anything with a bad block in range
1826          * will have bi_end_io clear.
1827          */
1828         struct mddev *mddev = r1_bio->mddev;
1829         struct r1conf *conf = mddev->private;
1830         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1831         sector_t sect = r1_bio->sector;
1832         int sectors = r1_bio->sectors;
1833         int idx = 0;
1834
1835         while(sectors) {
1836                 int s = sectors;
1837                 int d = r1_bio->read_disk;
1838                 int success = 0;
1839                 struct md_rdev *rdev;
1840                 int start;
1841
1842                 if (s > (PAGE_SIZE>>9))
1843                         s = PAGE_SIZE >> 9;
1844                 do {
1845                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1846                                 /* No rcu protection needed here devices
1847                                  * can only be removed when no resync is
1848                                  * active, and resync is currently active
1849                                  */
1850                                 rdev = conf->mirrors[d].rdev;
1851                                 if (sync_page_io(rdev, sect, s<<9,
1852                                                  bio->bi_io_vec[idx].bv_page,
1853                                                  READ, false)) {
1854                                         success = 1;
1855                                         break;
1856                                 }
1857                         }
1858                         d++;
1859                         if (d == conf->raid_disks * 2)
1860                                 d = 0;
1861                 } while (!success && d != r1_bio->read_disk);
1862
1863                 if (!success) {
1864                         char b[BDEVNAME_SIZE];
1865                         int abort = 0;
1866                         /* Cannot read from anywhere, this block is lost.
1867                          * Record a bad block on each device.  If that doesn't
1868                          * work just disable and interrupt the recovery.
1869                          * Don't fail devices as that won't really help.
1870                          */
1871                         printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1872                                " for block %llu\n",
1873                                mdname(mddev),
1874                                bdevname(bio->bi_bdev, b),
1875                                (unsigned long long)r1_bio->sector);
1876                         for (d = 0; d < conf->raid_disks * 2; d++) {
1877                                 rdev = conf->mirrors[d].rdev;
1878                                 if (!rdev || test_bit(Faulty, &rdev->flags))
1879                                         continue;
1880                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
1881                                         abort = 1;
1882                         }
1883                         if (abort) {
1884                                 conf->recovery_disabled =
1885                                         mddev->recovery_disabled;
1886                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1887                                 md_done_sync(mddev, r1_bio->sectors, 0);
1888                                 put_buf(r1_bio);
1889                                 return 0;
1890                         }
1891                         /* Try next page */
1892                         sectors -= s;
1893                         sect += s;
1894                         idx++;
1895                         continue;
1896                 }
1897
1898                 start = d;
1899                 /* write it back and re-read */
1900                 while (d != r1_bio->read_disk) {
1901                         if (d == 0)
1902                                 d = conf->raid_disks * 2;
1903                         d--;
1904                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1905                                 continue;
1906                         rdev = conf->mirrors[d].rdev;
1907                         if (r1_sync_page_io(rdev, sect, s,
1908                                             bio->bi_io_vec[idx].bv_page,
1909                                             WRITE) == 0) {
1910                                 r1_bio->bios[d]->bi_end_io = NULL;
1911                                 rdev_dec_pending(rdev, mddev);
1912                         }
1913                 }
1914                 d = start;
1915                 while (d != r1_bio->read_disk) {
1916                         if (d == 0)
1917                                 d = conf->raid_disks * 2;
1918                         d--;
1919                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1920                                 continue;
1921                         rdev = conf->mirrors[d].rdev;
1922                         if (r1_sync_page_io(rdev, sect, s,
1923                                             bio->bi_io_vec[idx].bv_page,
1924                                             READ) != 0)
1925                                 atomic_add(s, &rdev->corrected_errors);
1926                 }
1927                 sectors -= s;
1928                 sect += s;
1929                 idx ++;
1930         }
1931         set_bit(R1BIO_Uptodate, &r1_bio->state);
1932         set_bit(BIO_UPTODATE, &bio->bi_flags);
1933         return 1;
1934 }
1935
1936 static void process_checks(struct r1bio *r1_bio)
1937 {
1938         /* We have read all readable devices.  If we haven't
1939          * got the block, then there is no hope left.
1940          * If we have, then we want to do a comparison
1941          * and skip the write if everything is the same.
1942          * If any blocks failed to read, then we need to
1943          * attempt an over-write
1944          */
1945         struct mddev *mddev = r1_bio->mddev;
1946         struct r1conf *conf = mddev->private;
1947         int primary;
1948         int i;
1949         int vcnt;
1950
1951         /* Fix variable parts of all bios */
1952         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1953         for (i = 0; i < conf->raid_disks * 2; i++) {
1954                 int j;
1955                 int size;
1956                 int uptodate;
1957                 struct bio *b = r1_bio->bios[i];
1958                 if (b->bi_end_io != end_sync_read)
1959                         continue;
1960                 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1961                 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1962                 bio_reset(b);
1963                 if (!uptodate)
1964                         clear_bit(BIO_UPTODATE, &b->bi_flags);
1965                 b->bi_vcnt = vcnt;
1966                 b->bi_iter.bi_size = r1_bio->sectors << 9;
1967                 b->bi_iter.bi_sector = r1_bio->sector +
1968                         conf->mirrors[i].rdev->data_offset;
1969                 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1970                 b->bi_end_io = end_sync_read;
1971                 b->bi_private = r1_bio;
1972
1973                 size = b->bi_iter.bi_size;
1974                 for (j = 0; j < vcnt ; j++) {
1975                         struct bio_vec *bi;
1976                         bi = &b->bi_io_vec[j];
1977                         bi->bv_offset = 0;
1978                         if (size > PAGE_SIZE)
1979                                 bi->bv_len = PAGE_SIZE;
1980                         else
1981                                 bi->bv_len = size;
1982                         size -= PAGE_SIZE;
1983                 }
1984         }
1985         for (primary = 0; primary < conf->raid_disks * 2; primary++)
1986                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1987                     test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1988                         r1_bio->bios[primary]->bi_end_io = NULL;
1989                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1990                         break;
1991                 }
1992         r1_bio->read_disk = primary;
1993         for (i = 0; i < conf->raid_disks * 2; i++) {
1994                 int j;
1995                 struct bio *pbio = r1_bio->bios[primary];
1996                 struct bio *sbio = r1_bio->bios[i];
1997                 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
1998
1999                 if (sbio->bi_end_io != end_sync_read)
2000                         continue;
2001                 /* Now we can 'fixup' the BIO_UPTODATE flag */
2002                 set_bit(BIO_UPTODATE, &sbio->bi_flags);
2003
2004                 if (uptodate) {
2005                         for (j = vcnt; j-- ; ) {
2006                                 struct page *p, *s;
2007                                 p = pbio->bi_io_vec[j].bv_page;
2008                                 s = sbio->bi_io_vec[j].bv_page;
2009                                 if (memcmp(page_address(p),
2010                                            page_address(s),
2011                                            sbio->bi_io_vec[j].bv_len))
2012                                         break;
2013                         }
2014                 } else
2015                         j = 0;
2016                 if (j >= 0)
2017                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2018                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2019                               && uptodate)) {
2020                         /* No need to write to this device. */
2021                         sbio->bi_end_io = NULL;
2022                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2023                         continue;
2024                 }
2025
2026                 bio_copy_data(sbio, pbio);
2027         }
2028 }
2029
2030 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2031 {
2032         struct r1conf *conf = mddev->private;
2033         int i;
2034         int disks = conf->raid_disks * 2;
2035         struct bio *bio, *wbio;
2036
2037         bio = r1_bio->bios[r1_bio->read_disk];
2038
2039         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2040                 /* ouch - failed to read all of that. */
2041                 if (!fix_sync_read_error(r1_bio))
2042                         return;
2043
2044         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2045                 process_checks(r1_bio);
2046
2047         /*
2048          * schedule writes
2049          */
2050         atomic_set(&r1_bio->remaining, 1);
2051         for (i = 0; i < disks ; i++) {
2052                 wbio = r1_bio->bios[i];
2053                 if (wbio->bi_end_io == NULL ||
2054                     (wbio->bi_end_io == end_sync_read &&
2055                      (i == r1_bio->read_disk ||
2056                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2057                         continue;
2058
2059                 wbio->bi_rw = WRITE;
2060                 wbio->bi_end_io = end_sync_write;
2061                 atomic_inc(&r1_bio->remaining);
2062                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2063
2064                 generic_make_request(wbio);
2065         }
2066
2067         if (atomic_dec_and_test(&r1_bio->remaining)) {
2068                 /* if we're here, all write(s) have completed, so clean up */
2069                 int s = r1_bio->sectors;
2070                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2071                     test_bit(R1BIO_WriteError, &r1_bio->state))
2072                         reschedule_retry(r1_bio);
2073                 else {
2074                         put_buf(r1_bio);
2075                         md_done_sync(mddev, s, 1);
2076                 }
2077         }
2078 }
2079
2080 /*
2081  * This is a kernel thread which:
2082  *
2083  *      1.      Retries failed read operations on working mirrors.
2084  *      2.      Updates the raid superblock when problems encounter.
2085  *      3.      Performs writes following reads for array synchronising.
2086  */
2087
2088 static void fix_read_error(struct r1conf *conf, int read_disk,
2089                            sector_t sect, int sectors)
2090 {
2091         struct mddev *mddev = conf->mddev;
2092         while(sectors) {
2093                 int s = sectors;
2094                 int d = read_disk;
2095                 int success = 0;
2096                 int start;
2097                 struct md_rdev *rdev;
2098
2099                 if (s > (PAGE_SIZE>>9))
2100                         s = PAGE_SIZE >> 9;
2101
2102                 do {
2103                         /* Note: no rcu protection needed here
2104                          * as this is synchronous in the raid1d thread
2105                          * which is the thread that might remove
2106                          * a device.  If raid1d ever becomes multi-threaded....
2107                          */
2108                         sector_t first_bad;
2109                         int bad_sectors;
2110
2111                         rdev = conf->mirrors[d].rdev;
2112                         if (rdev &&
2113                             (test_bit(In_sync, &rdev->flags) ||
2114                              (!test_bit(Faulty, &rdev->flags) &&
2115                               rdev->recovery_offset >= sect + s)) &&
2116                             is_badblock(rdev, sect, s,
2117                                         &first_bad, &bad_sectors) == 0 &&
2118                             sync_page_io(rdev, sect, s<<9,
2119                                          conf->tmppage, READ, false))
2120                                 success = 1;
2121                         else {
2122                                 d++;
2123                                 if (d == conf->raid_disks * 2)
2124                                         d = 0;
2125                         }
2126                 } while (!success && d != read_disk);
2127
2128                 if (!success) {
2129                         /* Cannot read from anywhere - mark it bad */
2130                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2131                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2132                                 md_error(mddev, rdev);
2133                         break;
2134                 }
2135                 /* write it back and re-read */
2136                 start = d;
2137                 while (d != read_disk) {
2138                         if (d==0)
2139                                 d = conf->raid_disks * 2;
2140                         d--;
2141                         rdev = conf->mirrors[d].rdev;
2142                         if (rdev &&
2143                             !test_bit(Faulty, &rdev->flags))
2144                                 r1_sync_page_io(rdev, sect, s,
2145                                                 conf->tmppage, WRITE);
2146                 }
2147                 d = start;
2148                 while (d != read_disk) {
2149                         char b[BDEVNAME_SIZE];
2150                         if (d==0)
2151                                 d = conf->raid_disks * 2;
2152                         d--;
2153                         rdev = conf->mirrors[d].rdev;
2154                         if (rdev &&
2155                             !test_bit(Faulty, &rdev->flags)) {
2156                                 if (r1_sync_page_io(rdev, sect, s,
2157                                                     conf->tmppage, READ)) {
2158                                         atomic_add(s, &rdev->corrected_errors);
2159                                         printk(KERN_INFO
2160                                                "md/raid1:%s: read error corrected "
2161                                                "(%d sectors at %llu on %s)\n",
2162                                                mdname(mddev), s,
2163                                                (unsigned long long)(sect +
2164                                                    rdev->data_offset),
2165                                                bdevname(rdev->bdev, b));
2166                                 }
2167                         }
2168                 }
2169                 sectors -= s;
2170                 sect += s;
2171         }
2172 }
2173
2174 static int narrow_write_error(struct r1bio *r1_bio, int i)
2175 {
2176         struct mddev *mddev = r1_bio->mddev;
2177         struct r1conf *conf = mddev->private;
2178         struct md_rdev *rdev = conf->mirrors[i].rdev;
2179
2180         /* bio has the data to be written to device 'i' where
2181          * we just recently had a write error.
2182          * We repeatedly clone the bio and trim down to one block,
2183          * then try the write.  Where the write fails we record
2184          * a bad block.
2185          * It is conceivable that the bio doesn't exactly align with
2186          * blocks.  We must handle this somehow.
2187          *
2188          * We currently own a reference on the rdev.
2189          */
2190
2191         int block_sectors;
2192         sector_t sector;
2193         int sectors;
2194         int sect_to_write = r1_bio->sectors;
2195         int ok = 1;
2196
2197         if (rdev->badblocks.shift < 0)
2198                 return 0;
2199
2200         block_sectors = roundup(1 << rdev->badblocks.shift,
2201                                 bdev_logical_block_size(rdev->bdev) >> 9);
2202         sector = r1_bio->sector;
2203         sectors = ((sector + block_sectors)
2204                    & ~(sector_t)(block_sectors - 1))
2205                 - sector;
2206
2207         while (sect_to_write) {
2208                 struct bio *wbio;
2209                 if (sectors > sect_to_write)
2210                         sectors = sect_to_write;
2211                 /* Write at 'sector' for 'sectors'*/
2212
2213                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2214                         unsigned vcnt = r1_bio->behind_page_count;
2215                         struct bio_vec *vec = r1_bio->behind_bvecs;
2216
2217                         while (!vec->bv_page) {
2218                                 vec++;
2219                                 vcnt--;
2220                         }
2221
2222                         wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2223                         memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2224
2225                         wbio->bi_vcnt = vcnt;
2226                 } else {
2227                         wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2228                 }
2229
2230                 wbio->bi_rw = WRITE;
2231                 wbio->bi_iter.bi_sector = r1_bio->sector;
2232                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2233
2234                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2235                 wbio->bi_iter.bi_sector += rdev->data_offset;
2236                 wbio->bi_bdev = rdev->bdev;
2237                 if (submit_bio_wait(WRITE, wbio) == 0)
2238                         /* failure! */
2239                         ok = rdev_set_badblocks(rdev, sector,
2240                                                 sectors, 0)
2241                                 && ok;
2242
2243                 bio_put(wbio);
2244                 sect_to_write -= sectors;
2245                 sector += sectors;
2246                 sectors = block_sectors;
2247         }
2248         return ok;
2249 }
2250
2251 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2252 {
2253         int m;
2254         int s = r1_bio->sectors;
2255         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2256                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2257                 struct bio *bio = r1_bio->bios[m];
2258                 if (bio->bi_end_io == NULL)
2259                         continue;
2260                 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2261                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2262                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2263                 }
2264                 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2265                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2266                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2267                                 md_error(conf->mddev, rdev);
2268                 }
2269         }
2270         put_buf(r1_bio);
2271         md_done_sync(conf->mddev, s, 1);
2272 }
2273
2274 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2275 {
2276         int m;
2277         for (m = 0; m < conf->raid_disks * 2 ; m++)
2278                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2279                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2280                         rdev_clear_badblocks(rdev,
2281                                              r1_bio->sector,
2282                                              r1_bio->sectors, 0);
2283                         rdev_dec_pending(rdev, conf->mddev);
2284                 } else if (r1_bio->bios[m] != NULL) {
2285                         /* This drive got a write error.  We need to
2286                          * narrow down and record precise write
2287                          * errors.
2288                          */
2289                         if (!narrow_write_error(r1_bio, m)) {
2290                                 md_error(conf->mddev,
2291                                          conf->mirrors[m].rdev);
2292                                 /* an I/O failed, we can't clear the bitmap */
2293                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2294                         }
2295                         rdev_dec_pending(conf->mirrors[m].rdev,
2296                                          conf->mddev);
2297                 }
2298         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2299                 close_write(r1_bio);
2300         raid_end_bio_io(r1_bio);
2301 }
2302
2303 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2304 {
2305         int disk;
2306         int max_sectors;
2307         struct mddev *mddev = conf->mddev;
2308         struct bio *bio;
2309         char b[BDEVNAME_SIZE];
2310         struct md_rdev *rdev;
2311
2312         clear_bit(R1BIO_ReadError, &r1_bio->state);
2313         /* we got a read error. Maybe the drive is bad.  Maybe just
2314          * the block and we can fix it.
2315          * We freeze all other IO, and try reading the block from
2316          * other devices.  When we find one, we re-write
2317          * and check it that fixes the read error.
2318          * This is all done synchronously while the array is
2319          * frozen
2320          */
2321         if (mddev->ro == 0) {
2322                 freeze_array(conf, 1);
2323                 fix_read_error(conf, r1_bio->read_disk,
2324                                r1_bio->sector, r1_bio->sectors);
2325                 unfreeze_array(conf);
2326         } else
2327                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2328         rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2329
2330         bio = r1_bio->bios[r1_bio->read_disk];
2331         bdevname(bio->bi_bdev, b);
2332 read_more:
2333         disk = read_balance(conf, r1_bio, &max_sectors);
2334         if (disk == -1) {
2335                 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2336                        " read error for block %llu\n",
2337                        mdname(mddev), b, (unsigned long long)r1_bio->sector);
2338                 raid_end_bio_io(r1_bio);
2339         } else {
2340                 const unsigned long do_sync
2341                         = r1_bio->master_bio->bi_rw & REQ_SYNC;
2342                 if (bio) {
2343                         r1_bio->bios[r1_bio->read_disk] =
2344                                 mddev->ro ? IO_BLOCKED : NULL;
2345                         bio_put(bio);
2346                 }
2347                 r1_bio->read_disk = disk;
2348                 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2349                 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2350                          max_sectors);
2351                 r1_bio->bios[r1_bio->read_disk] = bio;
2352                 rdev = conf->mirrors[disk].rdev;
2353                 printk_ratelimited(KERN_ERR
2354                                    "md/raid1:%s: redirecting sector %llu"
2355                                    " to other mirror: %s\n",
2356                                    mdname(mddev),
2357                                    (unsigned long long)r1_bio->sector,
2358                                    bdevname(rdev->bdev, b));
2359                 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2360                 bio->bi_bdev = rdev->bdev;
2361                 bio->bi_end_io = raid1_end_read_request;
2362                 bio->bi_rw = READ | do_sync;
2363                 bio->bi_private = r1_bio;
2364                 if (max_sectors < r1_bio->sectors) {
2365                         /* Drat - have to split this up more */
2366                         struct bio *mbio = r1_bio->master_bio;
2367                         int sectors_handled = (r1_bio->sector + max_sectors
2368                                                - mbio->bi_iter.bi_sector);
2369                         r1_bio->sectors = max_sectors;
2370                         spin_lock_irq(&conf->device_lock);
2371                         if (mbio->bi_phys_segments == 0)
2372                                 mbio->bi_phys_segments = 2;
2373                         else
2374                                 mbio->bi_phys_segments++;
2375                         spin_unlock_irq(&conf->device_lock);
2376                         generic_make_request(bio);
2377                         bio = NULL;
2378
2379                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2380
2381                         r1_bio->master_bio = mbio;
2382                         r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2383                         r1_bio->state = 0;
2384                         set_bit(R1BIO_ReadError, &r1_bio->state);
2385                         r1_bio->mddev = mddev;
2386                         r1_bio->sector = mbio->bi_iter.bi_sector +
2387                                 sectors_handled;
2388
2389                         goto read_more;
2390                 } else
2391                         generic_make_request(bio);
2392         }
2393 }
2394
2395 static void raid1d(struct md_thread *thread)
2396 {
2397         struct mddev *mddev = thread->mddev;
2398         struct r1bio *r1_bio;
2399         unsigned long flags;
2400         struct r1conf *conf = mddev->private;
2401         struct list_head *head = &conf->retry_list;
2402         struct blk_plug plug;
2403
2404         md_check_recovery(mddev);
2405
2406         blk_start_plug(&plug);
2407         for (;;) {
2408
2409                 flush_pending_writes(conf);
2410
2411                 spin_lock_irqsave(&conf->device_lock, flags);
2412                 if (list_empty(head)) {
2413                         spin_unlock_irqrestore(&conf->device_lock, flags);
2414                         break;
2415                 }
2416                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2417                 list_del(head->prev);
2418                 conf->nr_queued--;
2419                 spin_unlock_irqrestore(&conf->device_lock, flags);
2420
2421                 mddev = r1_bio->mddev;
2422                 conf = mddev->private;
2423                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2424                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2425                             test_bit(R1BIO_WriteError, &r1_bio->state))
2426                                 handle_sync_write_finished(conf, r1_bio);
2427                         else
2428                                 sync_request_write(mddev, r1_bio);
2429                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2430                            test_bit(R1BIO_WriteError, &r1_bio->state))
2431                         handle_write_finished(conf, r1_bio);
2432                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2433                         handle_read_error(conf, r1_bio);
2434                 else
2435                         /* just a partial read to be scheduled from separate
2436                          * context
2437                          */
2438                         generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2439
2440                 cond_resched();
2441                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2442                         md_check_recovery(mddev);
2443         }
2444         blk_finish_plug(&plug);
2445 }
2446
2447 static int init_resync(struct r1conf *conf)
2448 {
2449         int buffs;
2450
2451         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2452         BUG_ON(conf->r1buf_pool);
2453         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2454                                           conf->poolinfo);
2455         if (!conf->r1buf_pool)
2456                 return -ENOMEM;
2457         conf->next_resync = 0;
2458         return 0;
2459 }
2460
2461 /*
2462  * perform a "sync" on one "block"
2463  *
2464  * We need to make sure that no normal I/O request - particularly write
2465  * requests - conflict with active sync requests.
2466  *
2467  * This is achieved by tracking pending requests and a 'barrier' concept
2468  * that can be installed to exclude normal IO requests.
2469  */
2470
2471 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2472 {
2473         struct r1conf *conf = mddev->private;
2474         struct r1bio *r1_bio;
2475         struct bio *bio;
2476         sector_t max_sector, nr_sectors;
2477         int disk = -1;
2478         int i;
2479         int wonly = -1;
2480         int write_targets = 0, read_targets = 0;
2481         sector_t sync_blocks;
2482         int still_degraded = 0;
2483         int good_sectors = RESYNC_SECTORS;
2484         int min_bad = 0; /* number of sectors that are bad in all devices */
2485
2486         if (!conf->r1buf_pool)
2487                 if (init_resync(conf))
2488                         return 0;
2489
2490         max_sector = mddev->dev_sectors;
2491         if (sector_nr >= max_sector) {
2492                 /* If we aborted, we need to abort the
2493                  * sync on the 'current' bitmap chunk (there will
2494                  * only be one in raid1 resync.
2495                  * We can find the current addess in mddev->curr_resync
2496                  */
2497                 if (mddev->curr_resync < max_sector) /* aborted */
2498                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2499                                                 &sync_blocks, 1);
2500                 else /* completed sync */
2501                         conf->fullsync = 0;
2502
2503                 bitmap_close_sync(mddev->bitmap);
2504                 close_sync(conf);
2505                 return 0;
2506         }
2507
2508         if (mddev->bitmap == NULL &&
2509             mddev->recovery_cp == MaxSector &&
2510             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2511             conf->fullsync == 0) {
2512                 *skipped = 1;
2513                 return max_sector - sector_nr;
2514         }
2515         /* before building a request, check if we can skip these blocks..
2516          * This call the bitmap_start_sync doesn't actually record anything
2517          */
2518         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2519             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2520                 /* We can skip this block, and probably several more */
2521                 *skipped = 1;
2522                 return sync_blocks;
2523         }
2524         /*
2525          * If there is non-resync activity waiting for a turn,
2526          * and resync is going fast enough,
2527          * then let it though before starting on this new sync request.
2528          */
2529         if (!go_faster && conf->nr_waiting)
2530                 msleep_interruptible(1000);
2531
2532         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2533         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2534
2535         raise_barrier(conf, sector_nr);
2536
2537         rcu_read_lock();
2538         /*
2539          * If we get a correctably read error during resync or recovery,
2540          * we might want to read from a different device.  So we
2541          * flag all drives that could conceivably be read from for READ,
2542          * and any others (which will be non-In_sync devices) for WRITE.
2543          * If a read fails, we try reading from something else for which READ
2544          * is OK.
2545          */
2546
2547         r1_bio->mddev = mddev;
2548         r1_bio->sector = sector_nr;
2549         r1_bio->state = 0;
2550         set_bit(R1BIO_IsSync, &r1_bio->state);
2551
2552         for (i = 0; i < conf->raid_disks * 2; i++) {
2553                 struct md_rdev *rdev;
2554                 bio = r1_bio->bios[i];
2555                 bio_reset(bio);
2556
2557                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2558                 if (rdev == NULL ||
2559                     test_bit(Faulty, &rdev->flags)) {
2560                         if (i < conf->raid_disks)
2561                                 still_degraded = 1;
2562                 } else if (!test_bit(In_sync, &rdev->flags)) {
2563                         bio->bi_rw = WRITE;
2564                         bio->bi_end_io = end_sync_write;
2565                         write_targets ++;
2566                 } else {
2567                         /* may need to read from here */
2568                         sector_t first_bad = MaxSector;
2569                         int bad_sectors;
2570
2571                         if (is_badblock(rdev, sector_nr, good_sectors,
2572                                         &first_bad, &bad_sectors)) {
2573                                 if (first_bad > sector_nr)
2574                                         good_sectors = first_bad - sector_nr;
2575                                 else {
2576                                         bad_sectors -= (sector_nr - first_bad);
2577                                         if (min_bad == 0 ||
2578                                             min_bad > bad_sectors)
2579                                                 min_bad = bad_sectors;
2580                                 }
2581                         }
2582                         if (sector_nr < first_bad) {
2583                                 if (test_bit(WriteMostly, &rdev->flags)) {
2584                                         if (wonly < 0)
2585                                                 wonly = i;
2586                                 } else {
2587                                         if (disk < 0)
2588                                                 disk = i;
2589                                 }
2590                                 bio->bi_rw = READ;
2591                                 bio->bi_end_io = end_sync_read;
2592                                 read_targets++;
2593                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2594                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2595                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2596                                 /*
2597                                  * The device is suitable for reading (InSync),
2598                                  * but has bad block(s) here. Let's try to correct them,
2599                                  * if we are doing resync or repair. Otherwise, leave
2600                                  * this device alone for this sync request.
2601                                  */
2602                                 bio->bi_rw = WRITE;
2603                                 bio->bi_end_io = end_sync_write;
2604                                 write_targets++;
2605                         }
2606                 }
2607                 if (bio->bi_end_io) {
2608                         atomic_inc(&rdev->nr_pending);
2609                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2610                         bio->bi_bdev = rdev->bdev;
2611                         bio->bi_private = r1_bio;
2612                 }
2613         }
2614         rcu_read_unlock();
2615         if (disk < 0)
2616                 disk = wonly;
2617         r1_bio->read_disk = disk;
2618
2619         if (read_targets == 0 && min_bad > 0) {
2620                 /* These sectors are bad on all InSync devices, so we
2621                  * need to mark them bad on all write targets
2622                  */
2623                 int ok = 1;
2624                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2625                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2626                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2627                                 ok = rdev_set_badblocks(rdev, sector_nr,
2628                                                         min_bad, 0
2629                                         ) && ok;
2630                         }
2631                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2632                 *skipped = 1;
2633                 put_buf(r1_bio);
2634
2635                 if (!ok) {
2636                         /* Cannot record the badblocks, so need to
2637                          * abort the resync.
2638                          * If there are multiple read targets, could just
2639                          * fail the really bad ones ???
2640                          */
2641                         conf->recovery_disabled = mddev->recovery_disabled;
2642                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2643                         return 0;
2644                 } else
2645                         return min_bad;
2646
2647         }
2648         if (min_bad > 0 && min_bad < good_sectors) {
2649                 /* only resync enough to reach the next bad->good
2650                  * transition */
2651                 good_sectors = min_bad;
2652         }
2653
2654         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2655                 /* extra read targets are also write targets */
2656                 write_targets += read_targets-1;
2657
2658         if (write_targets == 0 || read_targets == 0) {
2659                 /* There is nowhere to write, so all non-sync
2660                  * drives must be failed - so we are finished
2661                  */
2662                 sector_t rv;
2663                 if (min_bad > 0)
2664                         max_sector = sector_nr + min_bad;
2665                 rv = max_sector - sector_nr;
2666                 *skipped = 1;
2667                 put_buf(r1_bio);
2668                 return rv;
2669         }
2670
2671         if (max_sector > mddev->resync_max)
2672                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2673         if (max_sector > sector_nr + good_sectors)
2674                 max_sector = sector_nr + good_sectors;
2675         nr_sectors = 0;
2676         sync_blocks = 0;
2677         do {
2678                 struct page *page;
2679                 int len = PAGE_SIZE;
2680                 if (sector_nr + (len>>9) > max_sector)
2681                         len = (max_sector - sector_nr) << 9;
2682                 if (len == 0)
2683                         break;
2684                 if (sync_blocks == 0) {
2685                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2686                                                &sync_blocks, still_degraded) &&
2687                             !conf->fullsync &&
2688                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2689                                 break;
2690                         BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2691                         if ((len >> 9) > sync_blocks)
2692                                 len = sync_blocks<<9;
2693                 }
2694
2695                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2696                         bio = r1_bio->bios[i];
2697                         if (bio->bi_end_io) {
2698                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2699                                 if (bio_add_page(bio, page, len, 0) == 0) {
2700                                         /* stop here */
2701                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2702                                         while (i > 0) {
2703                                                 i--;
2704                                                 bio = r1_bio->bios[i];
2705                                                 if (bio->bi_end_io==NULL)
2706                                                         continue;
2707                                                 /* remove last page from this bio */
2708                                                 bio->bi_vcnt--;
2709                                                 bio->bi_iter.bi_size -= len;
2710                                                 __clear_bit(BIO_SEG_VALID, &bio->bi_flags);
2711                                         }
2712                                         goto bio_full;
2713                                 }
2714                         }
2715                 }
2716                 nr_sectors += len>>9;
2717                 sector_nr += len>>9;
2718                 sync_blocks -= (len>>9);
2719         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2720  bio_full:
2721         r1_bio->sectors = nr_sectors;
2722
2723         /* For a user-requested sync, we read all readable devices and do a
2724          * compare
2725          */
2726         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2727                 atomic_set(&r1_bio->remaining, read_targets);
2728                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2729                         bio = r1_bio->bios[i];
2730                         if (bio->bi_end_io == end_sync_read) {
2731                                 read_targets--;
2732                                 md_sync_acct(bio->bi_bdev, nr_sectors);
2733                                 generic_make_request(bio);
2734                         }
2735                 }
2736         } else {
2737                 atomic_set(&r1_bio->remaining, 1);
2738                 bio = r1_bio->bios[r1_bio->read_disk];
2739                 md_sync_acct(bio->bi_bdev, nr_sectors);
2740                 generic_make_request(bio);
2741
2742         }
2743         return nr_sectors;
2744 }
2745
2746 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2747 {
2748         if (sectors)
2749                 return sectors;
2750
2751         return mddev->dev_sectors;
2752 }
2753
2754 static struct r1conf *setup_conf(struct mddev *mddev)
2755 {
2756         struct r1conf *conf;
2757         int i;
2758         struct raid1_info *disk;
2759         struct md_rdev *rdev;
2760         int err = -ENOMEM;
2761
2762         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2763         if (!conf)
2764                 goto abort;
2765
2766         conf->mirrors = kzalloc(sizeof(struct raid1_info)
2767                                 * mddev->raid_disks * 2,
2768                                  GFP_KERNEL);
2769         if (!conf->mirrors)
2770                 goto abort;
2771
2772         conf->tmppage = alloc_page(GFP_KERNEL);
2773         if (!conf->tmppage)
2774                 goto abort;
2775
2776         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2777         if (!conf->poolinfo)
2778                 goto abort;
2779         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2780         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2781                                           r1bio_pool_free,
2782                                           conf->poolinfo);
2783         if (!conf->r1bio_pool)
2784                 goto abort;
2785
2786         conf->poolinfo->mddev = mddev;
2787
2788         err = -EINVAL;
2789         spin_lock_init(&conf->device_lock);
2790         rdev_for_each(rdev, mddev) {
2791                 struct request_queue *q;
2792                 int disk_idx = rdev->raid_disk;
2793                 if (disk_idx >= mddev->raid_disks
2794                     || disk_idx < 0)
2795                         continue;
2796                 if (test_bit(Replacement, &rdev->flags))
2797                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2798                 else
2799                         disk = conf->mirrors + disk_idx;
2800
2801                 if (disk->rdev)
2802                         goto abort;
2803                 disk->rdev = rdev;
2804                 q = bdev_get_queue(rdev->bdev);
2805                 if (q->merge_bvec_fn)
2806                         mddev->merge_check_needed = 1;
2807
2808                 disk->head_position = 0;
2809                 disk->seq_start = MaxSector;
2810         }
2811         conf->raid_disks = mddev->raid_disks;
2812         conf->mddev = mddev;
2813         INIT_LIST_HEAD(&conf->retry_list);
2814
2815         spin_lock_init(&conf->resync_lock);
2816         init_waitqueue_head(&conf->wait_barrier);
2817
2818         bio_list_init(&conf->pending_bio_list);
2819         conf->pending_count = 0;
2820         conf->recovery_disabled = mddev->recovery_disabled - 1;
2821
2822         conf->start_next_window = MaxSector;
2823         conf->current_window_requests = conf->next_window_requests = 0;
2824
2825         err = -EIO;
2826         for (i = 0; i < conf->raid_disks * 2; i++) {
2827
2828                 disk = conf->mirrors + i;
2829
2830                 if (i < conf->raid_disks &&
2831                     disk[conf->raid_disks].rdev) {
2832                         /* This slot has a replacement. */
2833                         if (!disk->rdev) {
2834                                 /* No original, just make the replacement
2835                                  * a recovering spare
2836                                  */
2837                                 disk->rdev =
2838                                         disk[conf->raid_disks].rdev;
2839                                 disk[conf->raid_disks].rdev = NULL;
2840                         } else if (!test_bit(In_sync, &disk->rdev->flags))
2841                                 /* Original is not in_sync - bad */
2842                                 goto abort;
2843                 }
2844
2845                 if (!disk->rdev ||
2846                     !test_bit(In_sync, &disk->rdev->flags)) {
2847                         disk->head_position = 0;
2848                         if (disk->rdev &&
2849                             (disk->rdev->saved_raid_disk < 0))
2850                                 conf->fullsync = 1;
2851                 }
2852         }
2853
2854         err = -ENOMEM;
2855         conf->thread = md_register_thread(raid1d, mddev, "raid1");
2856         if (!conf->thread) {
2857                 printk(KERN_ERR
2858                        "md/raid1:%s: couldn't allocate thread\n",
2859                        mdname(mddev));
2860                 goto abort;
2861         }
2862
2863         return conf;
2864
2865  abort:
2866         if (conf) {
2867                 if (conf->r1bio_pool)
2868                         mempool_destroy(conf->r1bio_pool);
2869                 kfree(conf->mirrors);
2870                 safe_put_page(conf->tmppage);
2871                 kfree(conf->poolinfo);
2872                 kfree(conf);
2873         }
2874         return ERR_PTR(err);
2875 }
2876
2877 static void raid1_free(struct mddev *mddev, void *priv);
2878 static int run(struct mddev *mddev)
2879 {
2880         struct r1conf *conf;
2881         int i;
2882         struct md_rdev *rdev;
2883         int ret;
2884         bool discard_supported = false;
2885
2886         if (mddev->level != 1) {
2887                 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2888                        mdname(mddev), mddev->level);
2889                 return -EIO;
2890         }
2891         if (mddev->reshape_position != MaxSector) {
2892                 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2893                        mdname(mddev));
2894                 return -EIO;
2895         }
2896         /*
2897          * copy the already verified devices into our private RAID1
2898          * bookkeeping area. [whatever we allocate in run(),
2899          * should be freed in raid1_free()]
2900          */
2901         if (mddev->private == NULL)
2902                 conf = setup_conf(mddev);
2903         else
2904                 conf = mddev->private;
2905
2906         if (IS_ERR(conf))
2907                 return PTR_ERR(conf);
2908
2909         if (mddev->queue)
2910                 blk_queue_max_write_same_sectors(mddev->queue, 0);
2911
2912         rdev_for_each(rdev, mddev) {
2913                 if (!mddev->gendisk)
2914                         continue;
2915                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2916                                   rdev->data_offset << 9);
2917                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2918                         discard_supported = true;
2919         }
2920
2921         mddev->degraded = 0;
2922         for (i=0; i < conf->raid_disks; i++)
2923                 if (conf->mirrors[i].rdev == NULL ||
2924                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2925                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2926                         mddev->degraded++;
2927
2928         if (conf->raid_disks - mddev->degraded == 1)
2929                 mddev->recovery_cp = MaxSector;
2930
2931         if (mddev->recovery_cp != MaxSector)
2932                 printk(KERN_NOTICE "md/raid1:%s: not clean"
2933                        " -- starting background reconstruction\n",
2934                        mdname(mddev));
2935         printk(KERN_INFO
2936                 "md/raid1:%s: active with %d out of %d mirrors\n",
2937                 mdname(mddev), mddev->raid_disks - mddev->degraded,
2938                 mddev->raid_disks);
2939
2940         /*
2941          * Ok, everything is just fine now
2942          */
2943         mddev->thread = conf->thread;
2944         conf->thread = NULL;
2945         mddev->private = conf;
2946
2947         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2948
2949         if (mddev->queue) {
2950                 if (discard_supported)
2951                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2952                                                 mddev->queue);
2953                 else
2954                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2955                                                   mddev->queue);
2956         }
2957
2958         ret =  md_integrity_register(mddev);
2959         if (ret) {
2960                 md_unregister_thread(&mddev->thread);
2961                 raid1_free(mddev, conf);
2962         }
2963         return ret;
2964 }
2965
2966 static void raid1_free(struct mddev *mddev, void *priv)
2967 {
2968         struct r1conf *conf = priv;
2969
2970         if (conf->r1bio_pool)
2971                 mempool_destroy(conf->r1bio_pool);
2972         kfree(conf->mirrors);
2973         safe_put_page(conf->tmppage);
2974         kfree(conf->poolinfo);
2975         kfree(conf);
2976 }
2977
2978 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2979 {
2980         /* no resync is happening, and there is enough space
2981          * on all devices, so we can resize.
2982          * We need to make sure resync covers any new space.
2983          * If the array is shrinking we should possibly wait until
2984          * any io in the removed space completes, but it hardly seems
2985          * worth it.
2986          */
2987         sector_t newsize = raid1_size(mddev, sectors, 0);
2988         if (mddev->external_size &&
2989             mddev->array_sectors > newsize)
2990                 return -EINVAL;
2991         if (mddev->bitmap) {
2992                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2993                 if (ret)
2994                         return ret;
2995         }
2996         md_set_array_sectors(mddev, newsize);
2997         set_capacity(mddev->gendisk, mddev->array_sectors);
2998         revalidate_disk(mddev->gendisk);
2999         if (sectors > mddev->dev_sectors &&
3000             mddev->recovery_cp > mddev->dev_sectors) {
3001                 mddev->recovery_cp = mddev->dev_sectors;
3002                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3003         }
3004         mddev->dev_sectors = sectors;
3005         mddev->resync_max_sectors = sectors;
3006         return 0;
3007 }
3008
3009 static int raid1_reshape(struct mddev *mddev)
3010 {
3011         /* We need to:
3012          * 1/ resize the r1bio_pool
3013          * 2/ resize conf->mirrors
3014          *
3015          * We allocate a new r1bio_pool if we can.
3016          * Then raise a device barrier and wait until all IO stops.
3017          * Then resize conf->mirrors and swap in the new r1bio pool.
3018          *
3019          * At the same time, we "pack" the devices so that all the missing
3020          * devices have the higher raid_disk numbers.
3021          */
3022         mempool_t *newpool, *oldpool;
3023         struct pool_info *newpoolinfo;
3024         struct raid1_info *newmirrors;
3025         struct r1conf *conf = mddev->private;
3026         int cnt, raid_disks;
3027         unsigned long flags;
3028         int d, d2, err;
3029
3030         /* Cannot change chunk_size, layout, or level */
3031         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3032             mddev->layout != mddev->new_layout ||
3033             mddev->level != mddev->new_level) {
3034                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3035                 mddev->new_layout = mddev->layout;
3036                 mddev->new_level = mddev->level;
3037                 return -EINVAL;
3038         }
3039
3040         err = md_allow_write(mddev);
3041         if (err)
3042                 return err;
3043
3044         raid_disks = mddev->raid_disks + mddev->delta_disks;
3045
3046         if (raid_disks < conf->raid_disks) {
3047                 cnt=0;
3048                 for (d= 0; d < conf->raid_disks; d++)
3049                         if (conf->mirrors[d].rdev)
3050                                 cnt++;
3051                 if (cnt > raid_disks)
3052                         return -EBUSY;
3053         }
3054
3055         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3056         if (!newpoolinfo)
3057                 return -ENOMEM;
3058         newpoolinfo->mddev = mddev;
3059         newpoolinfo->raid_disks = raid_disks * 2;
3060
3061         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3062                                  r1bio_pool_free, newpoolinfo);
3063         if (!newpool) {
3064                 kfree(newpoolinfo);
3065                 return -ENOMEM;
3066         }
3067         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3068                              GFP_KERNEL);
3069         if (!newmirrors) {
3070                 kfree(newpoolinfo);
3071                 mempool_destroy(newpool);
3072                 return -ENOMEM;
3073         }
3074
3075         freeze_array(conf, 0);
3076
3077         /* ok, everything is stopped */
3078         oldpool = conf->r1bio_pool;
3079         conf->r1bio_pool = newpool;
3080
3081         for (d = d2 = 0; d < conf->raid_disks; d++) {
3082                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3083                 if (rdev && rdev->raid_disk != d2) {
3084                         sysfs_unlink_rdev(mddev, rdev);
3085                         rdev->raid_disk = d2;
3086                         sysfs_unlink_rdev(mddev, rdev);
3087                         if (sysfs_link_rdev(mddev, rdev))
3088                                 printk(KERN_WARNING
3089                                        "md/raid1:%s: cannot register rd%d\n",
3090                                        mdname(mddev), rdev->raid_disk);
3091                 }
3092                 if (rdev)
3093                         newmirrors[d2++].rdev = rdev;
3094         }
3095         kfree(conf->mirrors);
3096         conf->mirrors = newmirrors;
3097         kfree(conf->poolinfo);
3098         conf->poolinfo = newpoolinfo;
3099
3100         spin_lock_irqsave(&conf->device_lock, flags);
3101         mddev->degraded += (raid_disks - conf->raid_disks);
3102         spin_unlock_irqrestore(&conf->device_lock, flags);
3103         conf->raid_disks = mddev->raid_disks = raid_disks;
3104         mddev->delta_disks = 0;
3105
3106         unfreeze_array(conf);
3107
3108         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3109         md_wakeup_thread(mddev->thread);
3110
3111         mempool_destroy(oldpool);
3112         return 0;
3113 }
3114
3115 static void raid1_quiesce(struct mddev *mddev, int state)
3116 {
3117         struct r1conf *conf = mddev->private;
3118
3119         switch(state) {
3120         case 2: /* wake for suspend */
3121                 wake_up(&conf->wait_barrier);
3122                 break;
3123         case 1:
3124                 freeze_array(conf, 0);
3125                 break;
3126         case 0:
3127                 unfreeze_array(conf);
3128                 break;
3129         }
3130 }
3131
3132 static void *raid1_takeover(struct mddev *mddev)
3133 {
3134         /* raid1 can take over:
3135          *  raid5 with 2 devices, any layout or chunk size
3136          */
3137         if (mddev->level == 5 && mddev->raid_disks == 2) {
3138                 struct r1conf *conf;
3139                 mddev->new_level = 1;
3140                 mddev->new_layout = 0;
3141                 mddev->new_chunk_sectors = 0;
3142                 conf = setup_conf(mddev);
3143                 if (!IS_ERR(conf))
3144                         /* Array must appear to be quiesced */
3145                         conf->array_frozen = 1;
3146                 return conf;
3147         }
3148         return ERR_PTR(-EINVAL);
3149 }
3150
3151 static struct md_personality raid1_personality =
3152 {
3153         .name           = "raid1",
3154         .level          = 1,
3155         .owner          = THIS_MODULE,
3156         .make_request   = make_request,
3157         .run            = run,
3158         .free           = raid1_free,
3159         .status         = status,
3160         .error_handler  = error,
3161         .hot_add_disk   = raid1_add_disk,
3162         .hot_remove_disk= raid1_remove_disk,
3163         .spare_active   = raid1_spare_active,
3164         .sync_request   = sync_request,
3165         .resize         = raid1_resize,
3166         .size           = raid1_size,
3167         .check_reshape  = raid1_reshape,
3168         .quiesce        = raid1_quiesce,
3169         .takeover       = raid1_takeover,
3170         .congested      = raid1_congested,
3171         .mergeable_bvec = raid1_mergeable_bvec,
3172 };
3173
3174 static int __init raid_init(void)
3175 {
3176         return register_md_personality(&raid1_personality);
3177 }
3178
3179 static void raid_exit(void)
3180 {
3181         unregister_md_personality(&raid1_personality);
3182 }
3183
3184 module_init(raid_init);
3185 module_exit(raid_exit);
3186 MODULE_LICENSE("GPL");
3187 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3188 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3189 MODULE_ALIAS("md-raid1");
3190 MODULE_ALIAS("md-level-1");
3191
3192 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);