2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
58 static void autostart_arrays(int part);
61 /* pers_list is a list of registered personalities protected
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
69 static void md_print_devices(void);
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
75 static int remove_and_add_spares(struct mddev *mddev,
76 struct md_rdev *this);
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
81 * Default number of read corrections we'll attempt on an rdev
82 * before ejecting it from the array. We divide the read error
83 * count by 2 for every hour elapsed between read errors.
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
87 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88 * is 1000 KB/sec, so the extra system load does not show up that much.
89 * Increase it if you want to have more _guaranteed_ speed. Note that
90 * the RAID driver will use the maximum available bandwidth if the IO
91 * subsystem is idle. There is also an 'absolute maximum' reconstruction
92 * speed limit - in case reconstruction slows down your system despite
95 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96 * or /sys/block/mdX/md/sync_speed_{min,max}
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
103 return mddev->sync_speed_min ?
104 mddev->sync_speed_min : sysctl_speed_limit_min;
107 static inline int speed_max(struct mddev *mddev)
109 return mddev->sync_speed_max ?
110 mddev->sync_speed_max : sysctl_speed_limit_max;
113 static struct ctl_table_header *raid_table_header;
115 static ctl_table raid_table[] = {
117 .procname = "speed_limit_min",
118 .data = &sysctl_speed_limit_min,
119 .maxlen = sizeof(int),
120 .mode = S_IRUGO|S_IWUSR,
121 .proc_handler = proc_dointvec,
124 .procname = "speed_limit_max",
125 .data = &sysctl_speed_limit_max,
126 .maxlen = sizeof(int),
127 .mode = S_IRUGO|S_IWUSR,
128 .proc_handler = proc_dointvec,
133 static ctl_table raid_dir_table[] = {
137 .mode = S_IRUGO|S_IXUGO,
143 static ctl_table raid_root_table[] = {
148 .child = raid_dir_table,
153 static const struct block_device_operations md_fops;
155 static int start_readonly;
158 * like bio_clone, but with a local bio set
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
166 if (!mddev || !mddev->bio_set)
167 return bio_alloc(gfp_mask, nr_iovecs);
169 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
179 if (!mddev || !mddev->bio_set)
180 return bio_clone(bio, gfp_mask);
182 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
186 void md_trim_bio(struct bio *bio, int offset, int size)
188 /* 'bio' is a cloned bio which we need to trim to match
189 * the given offset and size.
190 * This requires adjusting bi_sector, bi_size, and bi_io_vec
193 struct bio_vec *bvec;
197 if (offset == 0 && size == bio->bi_size)
200 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
202 bio_advance(bio, offset << 9);
206 /* avoid any complications with bi_idx being non-zero*/
208 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
209 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
210 bio->bi_vcnt -= bio->bi_idx;
213 /* Make sure vcnt and last bv are not too big */
214 bio_for_each_segment(bvec, bio, i) {
215 if (sofar + bvec->bv_len > size)
216 bvec->bv_len = size - sofar;
217 if (bvec->bv_len == 0) {
221 sofar += bvec->bv_len;
224 EXPORT_SYMBOL_GPL(md_trim_bio);
227 * We have a system wide 'event count' that is incremented
228 * on any 'interesting' event, and readers of /proc/mdstat
229 * can use 'poll' or 'select' to find out when the event
233 * start array, stop array, error, add device, remove device,
234 * start build, activate spare
236 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
237 static atomic_t md_event_count;
238 void md_new_event(struct mddev *mddev)
240 atomic_inc(&md_event_count);
241 wake_up(&md_event_waiters);
243 EXPORT_SYMBOL_GPL(md_new_event);
245 /* Alternate version that can be called from interrupts
246 * when calling sysfs_notify isn't needed.
248 static void md_new_event_inintr(struct mddev *mddev)
250 atomic_inc(&md_event_count);
251 wake_up(&md_event_waiters);
255 * Enables to iterate over all existing md arrays
256 * all_mddevs_lock protects this list.
258 static LIST_HEAD(all_mddevs);
259 static DEFINE_SPINLOCK(all_mddevs_lock);
263 * iterates through all used mddevs in the system.
264 * We take care to grab the all_mddevs_lock whenever navigating
265 * the list, and to always hold a refcount when unlocked.
266 * Any code which breaks out of this loop while own
267 * a reference to the current mddev and must mddev_put it.
269 #define for_each_mddev(_mddev,_tmp) \
271 for (({ spin_lock(&all_mddevs_lock); \
272 _tmp = all_mddevs.next; \
274 ({ if (_tmp != &all_mddevs) \
275 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
276 spin_unlock(&all_mddevs_lock); \
277 if (_mddev) mddev_put(_mddev); \
278 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
279 _tmp != &all_mddevs;}); \
280 ({ spin_lock(&all_mddevs_lock); \
281 _tmp = _tmp->next;}) \
285 /* Rather than calling directly into the personality make_request function,
286 * IO requests come here first so that we can check if the device is
287 * being suspended pending a reconfiguration.
288 * We hold a refcount over the call to ->make_request. By the time that
289 * call has finished, the bio has been linked into some internal structure
290 * and so is visible to ->quiesce(), so we don't need the refcount any more.
292 static void md_make_request(struct request_queue *q, struct bio *bio)
294 const int rw = bio_data_dir(bio);
295 struct mddev *mddev = q->queuedata;
297 unsigned int sectors;
299 if (mddev == NULL || mddev->pers == NULL
304 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
305 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
308 smp_rmb(); /* Ensure implications of 'active' are visible */
310 if (mddev->suspended) {
313 prepare_to_wait(&mddev->sb_wait, &__wait,
314 TASK_UNINTERRUPTIBLE);
315 if (!mddev->suspended)
321 finish_wait(&mddev->sb_wait, &__wait);
323 atomic_inc(&mddev->active_io);
327 * save the sectors now since our bio can
328 * go away inside make_request
330 sectors = bio_sectors(bio);
331 mddev->pers->make_request(mddev, bio);
333 cpu = part_stat_lock();
334 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
335 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
338 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
339 wake_up(&mddev->sb_wait);
342 /* mddev_suspend makes sure no new requests are submitted
343 * to the device, and that any requests that have been submitted
344 * are completely handled.
345 * Once ->stop is called and completes, the module will be completely
348 void mddev_suspend(struct mddev *mddev)
350 BUG_ON(mddev->suspended);
351 mddev->suspended = 1;
353 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
354 mddev->pers->quiesce(mddev, 1);
356 del_timer_sync(&mddev->safemode_timer);
358 EXPORT_SYMBOL_GPL(mddev_suspend);
360 void mddev_resume(struct mddev *mddev)
362 mddev->suspended = 0;
363 wake_up(&mddev->sb_wait);
364 mddev->pers->quiesce(mddev, 0);
366 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
367 md_wakeup_thread(mddev->thread);
368 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
370 EXPORT_SYMBOL_GPL(mddev_resume);
372 int mddev_congested(struct mddev *mddev, int bits)
374 return mddev->suspended;
376 EXPORT_SYMBOL(mddev_congested);
379 * Generic flush handling for md
382 static void md_end_flush(struct bio *bio, int err)
384 struct md_rdev *rdev = bio->bi_private;
385 struct mddev *mddev = rdev->mddev;
387 rdev_dec_pending(rdev, mddev);
389 if (atomic_dec_and_test(&mddev->flush_pending)) {
390 /* The pre-request flush has finished */
391 queue_work(md_wq, &mddev->flush_work);
396 static void md_submit_flush_data(struct work_struct *ws);
398 static void submit_flushes(struct work_struct *ws)
400 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
401 struct md_rdev *rdev;
403 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
404 atomic_set(&mddev->flush_pending, 1);
406 rdev_for_each_rcu(rdev, mddev)
407 if (rdev->raid_disk >= 0 &&
408 !test_bit(Faulty, &rdev->flags)) {
409 /* Take two references, one is dropped
410 * when request finishes, one after
411 * we reclaim rcu_read_lock
414 atomic_inc(&rdev->nr_pending);
415 atomic_inc(&rdev->nr_pending);
417 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
418 bi->bi_end_io = md_end_flush;
419 bi->bi_private = rdev;
420 bi->bi_bdev = rdev->bdev;
421 atomic_inc(&mddev->flush_pending);
422 submit_bio(WRITE_FLUSH, bi);
424 rdev_dec_pending(rdev, mddev);
427 if (atomic_dec_and_test(&mddev->flush_pending))
428 queue_work(md_wq, &mddev->flush_work);
431 static void md_submit_flush_data(struct work_struct *ws)
433 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
434 struct bio *bio = mddev->flush_bio;
436 if (bio->bi_size == 0)
437 /* an empty barrier - all done */
440 bio->bi_rw &= ~REQ_FLUSH;
441 mddev->pers->make_request(mddev, bio);
444 mddev->flush_bio = NULL;
445 wake_up(&mddev->sb_wait);
448 void md_flush_request(struct mddev *mddev, struct bio *bio)
450 spin_lock_irq(&mddev->write_lock);
451 wait_event_lock_irq(mddev->sb_wait,
454 mddev->flush_bio = bio;
455 spin_unlock_irq(&mddev->write_lock);
457 INIT_WORK(&mddev->flush_work, submit_flushes);
458 queue_work(md_wq, &mddev->flush_work);
460 EXPORT_SYMBOL(md_flush_request);
462 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
464 struct mddev *mddev = cb->data;
465 md_wakeup_thread(mddev->thread);
468 EXPORT_SYMBOL(md_unplug);
470 static inline struct mddev *mddev_get(struct mddev *mddev)
472 atomic_inc(&mddev->active);
476 static void mddev_delayed_delete(struct work_struct *ws);
478 static void mddev_put(struct mddev *mddev)
480 struct bio_set *bs = NULL;
482 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
484 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
485 mddev->ctime == 0 && !mddev->hold_active) {
486 /* Array is not configured at all, and not held active,
488 list_del_init(&mddev->all_mddevs);
490 mddev->bio_set = NULL;
491 if (mddev->gendisk) {
492 /* We did a probe so need to clean up. Call
493 * queue_work inside the spinlock so that
494 * flush_workqueue() after mddev_find will
495 * succeed in waiting for the work to be done.
497 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
498 queue_work(md_misc_wq, &mddev->del_work);
502 spin_unlock(&all_mddevs_lock);
507 void mddev_init(struct mddev *mddev)
509 mutex_init(&mddev->open_mutex);
510 mutex_init(&mddev->reconfig_mutex);
511 mutex_init(&mddev->bitmap_info.mutex);
512 INIT_LIST_HEAD(&mddev->disks);
513 INIT_LIST_HEAD(&mddev->all_mddevs);
514 init_timer(&mddev->safemode_timer);
515 atomic_set(&mddev->active, 1);
516 atomic_set(&mddev->openers, 0);
517 atomic_set(&mddev->active_io, 0);
518 spin_lock_init(&mddev->write_lock);
519 atomic_set(&mddev->flush_pending, 0);
520 init_waitqueue_head(&mddev->sb_wait);
521 init_waitqueue_head(&mddev->recovery_wait);
522 mddev->reshape_position = MaxSector;
523 mddev->reshape_backwards = 0;
524 mddev->resync_min = 0;
525 mddev->resync_max = MaxSector;
526 mddev->level = LEVEL_NONE;
528 EXPORT_SYMBOL_GPL(mddev_init);
530 static struct mddev * mddev_find(dev_t unit)
532 struct mddev *mddev, *new = NULL;
534 if (unit && MAJOR(unit) != MD_MAJOR)
535 unit &= ~((1<<MdpMinorShift)-1);
538 spin_lock(&all_mddevs_lock);
541 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
542 if (mddev->unit == unit) {
544 spin_unlock(&all_mddevs_lock);
550 list_add(&new->all_mddevs, &all_mddevs);
551 spin_unlock(&all_mddevs_lock);
552 new->hold_active = UNTIL_IOCTL;
556 /* find an unused unit number */
557 static int next_minor = 512;
558 int start = next_minor;
562 dev = MKDEV(MD_MAJOR, next_minor);
564 if (next_minor > MINORMASK)
566 if (next_minor == start) {
567 /* Oh dear, all in use. */
568 spin_unlock(&all_mddevs_lock);
574 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
575 if (mddev->unit == dev) {
581 new->md_minor = MINOR(dev);
582 new->hold_active = UNTIL_STOP;
583 list_add(&new->all_mddevs, &all_mddevs);
584 spin_unlock(&all_mddevs_lock);
587 spin_unlock(&all_mddevs_lock);
589 new = kzalloc(sizeof(*new), GFP_KERNEL);
594 if (MAJOR(unit) == MD_MAJOR)
595 new->md_minor = MINOR(unit);
597 new->md_minor = MINOR(unit) >> MdpMinorShift;
604 static inline int mddev_lock(struct mddev * mddev)
606 return mutex_lock_interruptible(&mddev->reconfig_mutex);
609 static inline int mddev_is_locked(struct mddev *mddev)
611 return mutex_is_locked(&mddev->reconfig_mutex);
614 static inline int mddev_trylock(struct mddev * mddev)
616 return mutex_trylock(&mddev->reconfig_mutex);
619 static struct attribute_group md_redundancy_group;
621 static void mddev_unlock(struct mddev * mddev)
623 if (mddev->to_remove) {
624 /* These cannot be removed under reconfig_mutex as
625 * an access to the files will try to take reconfig_mutex
626 * while holding the file unremovable, which leads to
628 * So hold set sysfs_active while the remove in happeing,
629 * and anything else which might set ->to_remove or my
630 * otherwise change the sysfs namespace will fail with
631 * -EBUSY if sysfs_active is still set.
632 * We set sysfs_active under reconfig_mutex and elsewhere
633 * test it under the same mutex to ensure its correct value
636 struct attribute_group *to_remove = mddev->to_remove;
637 mddev->to_remove = NULL;
638 mddev->sysfs_active = 1;
639 mutex_unlock(&mddev->reconfig_mutex);
641 if (mddev->kobj.sd) {
642 if (to_remove != &md_redundancy_group)
643 sysfs_remove_group(&mddev->kobj, to_remove);
644 if (mddev->pers == NULL ||
645 mddev->pers->sync_request == NULL) {
646 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
647 if (mddev->sysfs_action)
648 sysfs_put(mddev->sysfs_action);
649 mddev->sysfs_action = NULL;
652 mddev->sysfs_active = 0;
654 mutex_unlock(&mddev->reconfig_mutex);
656 /* As we've dropped the mutex we need a spinlock to
657 * make sure the thread doesn't disappear
659 spin_lock(&pers_lock);
660 md_wakeup_thread(mddev->thread);
661 spin_unlock(&pers_lock);
664 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
666 struct md_rdev *rdev;
668 rdev_for_each(rdev, mddev)
669 if (rdev->desc_nr == nr)
675 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
677 struct md_rdev *rdev;
679 rdev_for_each_rcu(rdev, mddev)
680 if (rdev->desc_nr == nr)
686 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
688 struct md_rdev *rdev;
690 rdev_for_each(rdev, mddev)
691 if (rdev->bdev->bd_dev == dev)
697 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
699 struct md_rdev *rdev;
701 rdev_for_each_rcu(rdev, mddev)
702 if (rdev->bdev->bd_dev == dev)
708 static struct md_personality *find_pers(int level, char *clevel)
710 struct md_personality *pers;
711 list_for_each_entry(pers, &pers_list, list) {
712 if (level != LEVEL_NONE && pers->level == level)
714 if (strcmp(pers->name, clevel)==0)
720 /* return the offset of the super block in 512byte sectors */
721 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
723 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
724 return MD_NEW_SIZE_SECTORS(num_sectors);
727 static int alloc_disk_sb(struct md_rdev * rdev)
732 rdev->sb_page = alloc_page(GFP_KERNEL);
733 if (!rdev->sb_page) {
734 printk(KERN_ALERT "md: out of memory.\n");
741 void md_rdev_clear(struct md_rdev *rdev)
744 put_page(rdev->sb_page);
746 rdev->sb_page = NULL;
751 put_page(rdev->bb_page);
752 rdev->bb_page = NULL;
754 kfree(rdev->badblocks.page);
755 rdev->badblocks.page = NULL;
757 EXPORT_SYMBOL_GPL(md_rdev_clear);
759 static void super_written(struct bio *bio, int error)
761 struct md_rdev *rdev = bio->bi_private;
762 struct mddev *mddev = rdev->mddev;
764 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
765 printk("md: super_written gets error=%d, uptodate=%d\n",
766 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
767 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
768 md_error(mddev, rdev);
771 if (atomic_dec_and_test(&mddev->pending_writes))
772 wake_up(&mddev->sb_wait);
776 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
777 sector_t sector, int size, struct page *page)
779 /* write first size bytes of page to sector of rdev
780 * Increment mddev->pending_writes before returning
781 * and decrement it on completion, waking up sb_wait
782 * if zero is reached.
783 * If an error occurred, call md_error
785 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
787 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
788 bio->bi_sector = sector;
789 bio_add_page(bio, page, size, 0);
790 bio->bi_private = rdev;
791 bio->bi_end_io = super_written;
793 atomic_inc(&mddev->pending_writes);
794 submit_bio(WRITE_FLUSH_FUA, bio);
797 void md_super_wait(struct mddev *mddev)
799 /* wait for all superblock writes that were scheduled to complete */
802 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
803 if (atomic_read(&mddev->pending_writes)==0)
807 finish_wait(&mddev->sb_wait, &wq);
810 static void bi_complete(struct bio *bio, int error)
812 complete((struct completion*)bio->bi_private);
815 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
816 struct page *page, int rw, bool metadata_op)
818 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
819 struct completion event;
824 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
825 rdev->meta_bdev : rdev->bdev;
827 bio->bi_sector = sector + rdev->sb_start;
828 else if (rdev->mddev->reshape_position != MaxSector &&
829 (rdev->mddev->reshape_backwards ==
830 (sector >= rdev->mddev->reshape_position)))
831 bio->bi_sector = sector + rdev->new_data_offset;
833 bio->bi_sector = sector + rdev->data_offset;
834 bio_add_page(bio, page, size, 0);
835 init_completion(&event);
836 bio->bi_private = &event;
837 bio->bi_end_io = bi_complete;
839 wait_for_completion(&event);
841 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
845 EXPORT_SYMBOL_GPL(sync_page_io);
847 static int read_disk_sb(struct md_rdev * rdev, int size)
849 char b[BDEVNAME_SIZE];
850 if (!rdev->sb_page) {
858 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
864 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
865 bdevname(rdev->bdev,b));
869 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
871 return sb1->set_uuid0 == sb2->set_uuid0 &&
872 sb1->set_uuid1 == sb2->set_uuid1 &&
873 sb1->set_uuid2 == sb2->set_uuid2 &&
874 sb1->set_uuid3 == sb2->set_uuid3;
877 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
880 mdp_super_t *tmp1, *tmp2;
882 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
883 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
885 if (!tmp1 || !tmp2) {
887 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
895 * nr_disks is not constant
900 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
908 static u32 md_csum_fold(u32 csum)
910 csum = (csum & 0xffff) + (csum >> 16);
911 return (csum & 0xffff) + (csum >> 16);
914 static unsigned int calc_sb_csum(mdp_super_t * sb)
917 u32 *sb32 = (u32*)sb;
919 unsigned int disk_csum, csum;
921 disk_csum = sb->sb_csum;
924 for (i = 0; i < MD_SB_BYTES/4 ; i++)
926 csum = (newcsum & 0xffffffff) + (newcsum>>32);
930 /* This used to use csum_partial, which was wrong for several
931 * reasons including that different results are returned on
932 * different architectures. It isn't critical that we get exactly
933 * the same return value as before (we always csum_fold before
934 * testing, and that removes any differences). However as we
935 * know that csum_partial always returned a 16bit value on
936 * alphas, do a fold to maximise conformity to previous behaviour.
938 sb->sb_csum = md_csum_fold(disk_csum);
940 sb->sb_csum = disk_csum;
947 * Handle superblock details.
948 * We want to be able to handle multiple superblock formats
949 * so we have a common interface to them all, and an array of
950 * different handlers.
951 * We rely on user-space to write the initial superblock, and support
952 * reading and updating of superblocks.
953 * Interface methods are:
954 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
955 * loads and validates a superblock on dev.
956 * if refdev != NULL, compare superblocks on both devices
958 * 0 - dev has a superblock that is compatible with refdev
959 * 1 - dev has a superblock that is compatible and newer than refdev
960 * so dev should be used as the refdev in future
961 * -EINVAL superblock incompatible or invalid
962 * -othererror e.g. -EIO
964 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
965 * Verify that dev is acceptable into mddev.
966 * The first time, mddev->raid_disks will be 0, and data from
967 * dev should be merged in. Subsequent calls check that dev
968 * is new enough. Return 0 or -EINVAL
970 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
971 * Update the superblock for rdev with data in mddev
972 * This does not write to disc.
978 struct module *owner;
979 int (*load_super)(struct md_rdev *rdev,
980 struct md_rdev *refdev,
982 int (*validate_super)(struct mddev *mddev,
983 struct md_rdev *rdev);
984 void (*sync_super)(struct mddev *mddev,
985 struct md_rdev *rdev);
986 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
987 sector_t num_sectors);
988 int (*allow_new_offset)(struct md_rdev *rdev,
989 unsigned long long new_offset);
993 * Check that the given mddev has no bitmap.
995 * This function is called from the run method of all personalities that do not
996 * support bitmaps. It prints an error message and returns non-zero if mddev
997 * has a bitmap. Otherwise, it returns 0.
1000 int md_check_no_bitmap(struct mddev *mddev)
1002 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1004 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1005 mdname(mddev), mddev->pers->name);
1008 EXPORT_SYMBOL(md_check_no_bitmap);
1011 * load_super for 0.90.0
1013 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1015 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1020 * Calculate the position of the superblock (512byte sectors),
1021 * it's at the end of the disk.
1023 * It also happens to be a multiple of 4Kb.
1025 rdev->sb_start = calc_dev_sboffset(rdev);
1027 ret = read_disk_sb(rdev, MD_SB_BYTES);
1028 if (ret) return ret;
1032 bdevname(rdev->bdev, b);
1033 sb = page_address(rdev->sb_page);
1035 if (sb->md_magic != MD_SB_MAGIC) {
1036 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1041 if (sb->major_version != 0 ||
1042 sb->minor_version < 90 ||
1043 sb->minor_version > 91) {
1044 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1045 sb->major_version, sb->minor_version,
1050 if (sb->raid_disks <= 0)
1053 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1054 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1059 rdev->preferred_minor = sb->md_minor;
1060 rdev->data_offset = 0;
1061 rdev->new_data_offset = 0;
1062 rdev->sb_size = MD_SB_BYTES;
1063 rdev->badblocks.shift = -1;
1065 if (sb->level == LEVEL_MULTIPATH)
1068 rdev->desc_nr = sb->this_disk.number;
1074 mdp_super_t *refsb = page_address(refdev->sb_page);
1075 if (!uuid_equal(refsb, sb)) {
1076 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1077 b, bdevname(refdev->bdev,b2));
1080 if (!sb_equal(refsb, sb)) {
1081 printk(KERN_WARNING "md: %s has same UUID"
1082 " but different superblock to %s\n",
1083 b, bdevname(refdev->bdev, b2));
1087 ev2 = md_event(refsb);
1093 rdev->sectors = rdev->sb_start;
1094 /* Limit to 4TB as metadata cannot record more than that.
1095 * (not needed for Linear and RAID0 as metadata doesn't
1098 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1099 rdev->sectors = (2ULL << 32) - 2;
1101 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1102 /* "this cannot possibly happen" ... */
1110 * validate_super for 0.90.0
1112 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1115 mdp_super_t *sb = page_address(rdev->sb_page);
1116 __u64 ev1 = md_event(sb);
1118 rdev->raid_disk = -1;
1119 clear_bit(Faulty, &rdev->flags);
1120 clear_bit(In_sync, &rdev->flags);
1121 clear_bit(WriteMostly, &rdev->flags);
1123 if (mddev->raid_disks == 0) {
1124 mddev->major_version = 0;
1125 mddev->minor_version = sb->minor_version;
1126 mddev->patch_version = sb->patch_version;
1127 mddev->external = 0;
1128 mddev->chunk_sectors = sb->chunk_size >> 9;
1129 mddev->ctime = sb->ctime;
1130 mddev->utime = sb->utime;
1131 mddev->level = sb->level;
1132 mddev->clevel[0] = 0;
1133 mddev->layout = sb->layout;
1134 mddev->raid_disks = sb->raid_disks;
1135 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1136 mddev->events = ev1;
1137 mddev->bitmap_info.offset = 0;
1138 mddev->bitmap_info.space = 0;
1139 /* bitmap can use 60 K after the 4K superblocks */
1140 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1141 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1142 mddev->reshape_backwards = 0;
1144 if (mddev->minor_version >= 91) {
1145 mddev->reshape_position = sb->reshape_position;
1146 mddev->delta_disks = sb->delta_disks;
1147 mddev->new_level = sb->new_level;
1148 mddev->new_layout = sb->new_layout;
1149 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1150 if (mddev->delta_disks < 0)
1151 mddev->reshape_backwards = 1;
1153 mddev->reshape_position = MaxSector;
1154 mddev->delta_disks = 0;
1155 mddev->new_level = mddev->level;
1156 mddev->new_layout = mddev->layout;
1157 mddev->new_chunk_sectors = mddev->chunk_sectors;
1160 if (sb->state & (1<<MD_SB_CLEAN))
1161 mddev->recovery_cp = MaxSector;
1163 if (sb->events_hi == sb->cp_events_hi &&
1164 sb->events_lo == sb->cp_events_lo) {
1165 mddev->recovery_cp = sb->recovery_cp;
1167 mddev->recovery_cp = 0;
1170 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1171 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1172 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1173 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1175 mddev->max_disks = MD_SB_DISKS;
1177 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1178 mddev->bitmap_info.file == NULL) {
1179 mddev->bitmap_info.offset =
1180 mddev->bitmap_info.default_offset;
1181 mddev->bitmap_info.space =
1182 mddev->bitmap_info.space;
1185 } else if (mddev->pers == NULL) {
1186 /* Insist on good event counter while assembling, except
1187 * for spares (which don't need an event count) */
1189 if (sb->disks[rdev->desc_nr].state & (
1190 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1191 if (ev1 < mddev->events)
1193 } else if (mddev->bitmap) {
1194 /* if adding to array with a bitmap, then we can accept an
1195 * older device ... but not too old.
1197 if (ev1 < mddev->bitmap->events_cleared)
1200 if (ev1 < mddev->events)
1201 /* just a hot-add of a new device, leave raid_disk at -1 */
1205 if (mddev->level != LEVEL_MULTIPATH) {
1206 desc = sb->disks + rdev->desc_nr;
1208 if (desc->state & (1<<MD_DISK_FAULTY))
1209 set_bit(Faulty, &rdev->flags);
1210 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1211 desc->raid_disk < mddev->raid_disks */) {
1212 set_bit(In_sync, &rdev->flags);
1213 rdev->raid_disk = desc->raid_disk;
1214 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1215 /* active but not in sync implies recovery up to
1216 * reshape position. We don't know exactly where
1217 * that is, so set to zero for now */
1218 if (mddev->minor_version >= 91) {
1219 rdev->recovery_offset = 0;
1220 rdev->raid_disk = desc->raid_disk;
1223 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1224 set_bit(WriteMostly, &rdev->flags);
1225 } else /* MULTIPATH are always insync */
1226 set_bit(In_sync, &rdev->flags);
1231 * sync_super for 0.90.0
1233 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1236 struct md_rdev *rdev2;
1237 int next_spare = mddev->raid_disks;
1240 /* make rdev->sb match mddev data..
1243 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1244 * 3/ any empty disks < next_spare become removed
1246 * disks[0] gets initialised to REMOVED because
1247 * we cannot be sure from other fields if it has
1248 * been initialised or not.
1251 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1253 rdev->sb_size = MD_SB_BYTES;
1255 sb = page_address(rdev->sb_page);
1257 memset(sb, 0, sizeof(*sb));
1259 sb->md_magic = MD_SB_MAGIC;
1260 sb->major_version = mddev->major_version;
1261 sb->patch_version = mddev->patch_version;
1262 sb->gvalid_words = 0; /* ignored */
1263 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1264 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1265 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1266 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1268 sb->ctime = mddev->ctime;
1269 sb->level = mddev->level;
1270 sb->size = mddev->dev_sectors / 2;
1271 sb->raid_disks = mddev->raid_disks;
1272 sb->md_minor = mddev->md_minor;
1273 sb->not_persistent = 0;
1274 sb->utime = mddev->utime;
1276 sb->events_hi = (mddev->events>>32);
1277 sb->events_lo = (u32)mddev->events;
1279 if (mddev->reshape_position == MaxSector)
1280 sb->minor_version = 90;
1282 sb->minor_version = 91;
1283 sb->reshape_position = mddev->reshape_position;
1284 sb->new_level = mddev->new_level;
1285 sb->delta_disks = mddev->delta_disks;
1286 sb->new_layout = mddev->new_layout;
1287 sb->new_chunk = mddev->new_chunk_sectors << 9;
1289 mddev->minor_version = sb->minor_version;
1292 sb->recovery_cp = mddev->recovery_cp;
1293 sb->cp_events_hi = (mddev->events>>32);
1294 sb->cp_events_lo = (u32)mddev->events;
1295 if (mddev->recovery_cp == MaxSector)
1296 sb->state = (1<< MD_SB_CLEAN);
1298 sb->recovery_cp = 0;
1300 sb->layout = mddev->layout;
1301 sb->chunk_size = mddev->chunk_sectors << 9;
1303 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1304 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1306 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1307 rdev_for_each(rdev2, mddev) {
1310 int is_active = test_bit(In_sync, &rdev2->flags);
1312 if (rdev2->raid_disk >= 0 &&
1313 sb->minor_version >= 91)
1314 /* we have nowhere to store the recovery_offset,
1315 * but if it is not below the reshape_position,
1316 * we can piggy-back on that.
1319 if (rdev2->raid_disk < 0 ||
1320 test_bit(Faulty, &rdev2->flags))
1323 desc_nr = rdev2->raid_disk;
1325 desc_nr = next_spare++;
1326 rdev2->desc_nr = desc_nr;
1327 d = &sb->disks[rdev2->desc_nr];
1329 d->number = rdev2->desc_nr;
1330 d->major = MAJOR(rdev2->bdev->bd_dev);
1331 d->minor = MINOR(rdev2->bdev->bd_dev);
1333 d->raid_disk = rdev2->raid_disk;
1335 d->raid_disk = rdev2->desc_nr; /* compatibility */
1336 if (test_bit(Faulty, &rdev2->flags))
1337 d->state = (1<<MD_DISK_FAULTY);
1338 else if (is_active) {
1339 d->state = (1<<MD_DISK_ACTIVE);
1340 if (test_bit(In_sync, &rdev2->flags))
1341 d->state |= (1<<MD_DISK_SYNC);
1349 if (test_bit(WriteMostly, &rdev2->flags))
1350 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1352 /* now set the "removed" and "faulty" bits on any missing devices */
1353 for (i=0 ; i < mddev->raid_disks ; i++) {
1354 mdp_disk_t *d = &sb->disks[i];
1355 if (d->state == 0 && d->number == 0) {
1358 d->state = (1<<MD_DISK_REMOVED);
1359 d->state |= (1<<MD_DISK_FAULTY);
1363 sb->nr_disks = nr_disks;
1364 sb->active_disks = active;
1365 sb->working_disks = working;
1366 sb->failed_disks = failed;
1367 sb->spare_disks = spare;
1369 sb->this_disk = sb->disks[rdev->desc_nr];
1370 sb->sb_csum = calc_sb_csum(sb);
1374 * rdev_size_change for 0.90.0
1376 static unsigned long long
1377 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1379 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1380 return 0; /* component must fit device */
1381 if (rdev->mddev->bitmap_info.offset)
1382 return 0; /* can't move bitmap */
1383 rdev->sb_start = calc_dev_sboffset(rdev);
1384 if (!num_sectors || num_sectors > rdev->sb_start)
1385 num_sectors = rdev->sb_start;
1386 /* Limit to 4TB as metadata cannot record more than that.
1387 * 4TB == 2^32 KB, or 2*2^32 sectors.
1389 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1390 num_sectors = (2ULL << 32) - 2;
1391 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1393 md_super_wait(rdev->mddev);
1398 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1400 /* non-zero offset changes not possible with v0.90 */
1401 return new_offset == 0;
1405 * version 1 superblock
1408 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1412 unsigned long long newcsum;
1413 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1414 __le32 *isuper = (__le32*)sb;
1416 disk_csum = sb->sb_csum;
1419 for (; size >= 4; size -= 4)
1420 newcsum += le32_to_cpu(*isuper++);
1423 newcsum += le16_to_cpu(*(__le16*) isuper);
1425 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1426 sb->sb_csum = disk_csum;
1427 return cpu_to_le32(csum);
1430 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1432 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1434 struct mdp_superblock_1 *sb;
1438 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1442 * Calculate the position of the superblock in 512byte sectors.
1443 * It is always aligned to a 4K boundary and
1444 * depeding on minor_version, it can be:
1445 * 0: At least 8K, but less than 12K, from end of device
1446 * 1: At start of device
1447 * 2: 4K from start of device.
1449 switch(minor_version) {
1451 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1453 sb_start &= ~(sector_t)(4*2-1);
1464 rdev->sb_start = sb_start;
1466 /* superblock is rarely larger than 1K, but it can be larger,
1467 * and it is safe to read 4k, so we do that
1469 ret = read_disk_sb(rdev, 4096);
1470 if (ret) return ret;
1473 sb = page_address(rdev->sb_page);
1475 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1476 sb->major_version != cpu_to_le32(1) ||
1477 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1478 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1479 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1482 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1483 printk("md: invalid superblock checksum on %s\n",
1484 bdevname(rdev->bdev,b));
1487 if (le64_to_cpu(sb->data_size) < 10) {
1488 printk("md: data_size too small on %s\n",
1489 bdevname(rdev->bdev,b));
1494 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1495 /* Some padding is non-zero, might be a new feature */
1498 rdev->preferred_minor = 0xffff;
1499 rdev->data_offset = le64_to_cpu(sb->data_offset);
1500 rdev->new_data_offset = rdev->data_offset;
1501 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1502 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1503 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1504 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1506 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1507 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1508 if (rdev->sb_size & bmask)
1509 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1512 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1515 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1518 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1521 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1523 if (!rdev->bb_page) {
1524 rdev->bb_page = alloc_page(GFP_KERNEL);
1528 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1529 rdev->badblocks.count == 0) {
1530 /* need to load the bad block list.
1531 * Currently we limit it to one page.
1537 int sectors = le16_to_cpu(sb->bblog_size);
1538 if (sectors > (PAGE_SIZE / 512))
1540 offset = le32_to_cpu(sb->bblog_offset);
1543 bb_sector = (long long)offset;
1544 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1545 rdev->bb_page, READ, true))
1547 bbp = (u64 *)page_address(rdev->bb_page);
1548 rdev->badblocks.shift = sb->bblog_shift;
1549 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1550 u64 bb = le64_to_cpu(*bbp);
1551 int count = bb & (0x3ff);
1552 u64 sector = bb >> 10;
1553 sector <<= sb->bblog_shift;
1554 count <<= sb->bblog_shift;
1557 if (md_set_badblocks(&rdev->badblocks,
1558 sector, count, 1) == 0)
1561 } else if (sb->bblog_offset != 0)
1562 rdev->badblocks.shift = 0;
1568 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1570 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1571 sb->level != refsb->level ||
1572 sb->layout != refsb->layout ||
1573 sb->chunksize != refsb->chunksize) {
1574 printk(KERN_WARNING "md: %s has strangely different"
1575 " superblock to %s\n",
1576 bdevname(rdev->bdev,b),
1577 bdevname(refdev->bdev,b2));
1580 ev1 = le64_to_cpu(sb->events);
1581 ev2 = le64_to_cpu(refsb->events);
1588 if (minor_version) {
1589 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1590 sectors -= rdev->data_offset;
1592 sectors = rdev->sb_start;
1593 if (sectors < le64_to_cpu(sb->data_size))
1595 rdev->sectors = le64_to_cpu(sb->data_size);
1599 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1601 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1602 __u64 ev1 = le64_to_cpu(sb->events);
1604 rdev->raid_disk = -1;
1605 clear_bit(Faulty, &rdev->flags);
1606 clear_bit(In_sync, &rdev->flags);
1607 clear_bit(WriteMostly, &rdev->flags);
1609 if (mddev->raid_disks == 0) {
1610 mddev->major_version = 1;
1611 mddev->patch_version = 0;
1612 mddev->external = 0;
1613 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1614 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1615 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1616 mddev->level = le32_to_cpu(sb->level);
1617 mddev->clevel[0] = 0;
1618 mddev->layout = le32_to_cpu(sb->layout);
1619 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1620 mddev->dev_sectors = le64_to_cpu(sb->size);
1621 mddev->events = ev1;
1622 mddev->bitmap_info.offset = 0;
1623 mddev->bitmap_info.space = 0;
1624 /* Default location for bitmap is 1K after superblock
1625 * using 3K - total of 4K
1627 mddev->bitmap_info.default_offset = 1024 >> 9;
1628 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1629 mddev->reshape_backwards = 0;
1631 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1632 memcpy(mddev->uuid, sb->set_uuid, 16);
1634 mddev->max_disks = (4096-256)/2;
1636 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1637 mddev->bitmap_info.file == NULL) {
1638 mddev->bitmap_info.offset =
1639 (__s32)le32_to_cpu(sb->bitmap_offset);
1640 /* Metadata doesn't record how much space is available.
1641 * For 1.0, we assume we can use up to the superblock
1642 * if before, else to 4K beyond superblock.
1643 * For others, assume no change is possible.
1645 if (mddev->minor_version > 0)
1646 mddev->bitmap_info.space = 0;
1647 else if (mddev->bitmap_info.offset > 0)
1648 mddev->bitmap_info.space =
1649 8 - mddev->bitmap_info.offset;
1651 mddev->bitmap_info.space =
1652 -mddev->bitmap_info.offset;
1655 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1656 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1657 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1658 mddev->new_level = le32_to_cpu(sb->new_level);
1659 mddev->new_layout = le32_to_cpu(sb->new_layout);
1660 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1661 if (mddev->delta_disks < 0 ||
1662 (mddev->delta_disks == 0 &&
1663 (le32_to_cpu(sb->feature_map)
1664 & MD_FEATURE_RESHAPE_BACKWARDS)))
1665 mddev->reshape_backwards = 1;
1667 mddev->reshape_position = MaxSector;
1668 mddev->delta_disks = 0;
1669 mddev->new_level = mddev->level;
1670 mddev->new_layout = mddev->layout;
1671 mddev->new_chunk_sectors = mddev->chunk_sectors;
1674 } else if (mddev->pers == NULL) {
1675 /* Insist of good event counter while assembling, except for
1676 * spares (which don't need an event count) */
1678 if (rdev->desc_nr >= 0 &&
1679 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1680 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1681 if (ev1 < mddev->events)
1683 } else if (mddev->bitmap) {
1684 /* If adding to array with a bitmap, then we can accept an
1685 * older device, but not too old.
1687 if (ev1 < mddev->bitmap->events_cleared)
1690 if (ev1 < mddev->events)
1691 /* just a hot-add of a new device, leave raid_disk at -1 */
1694 if (mddev->level != LEVEL_MULTIPATH) {
1696 if (rdev->desc_nr < 0 ||
1697 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1701 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1703 case 0xffff: /* spare */
1705 case 0xfffe: /* faulty */
1706 set_bit(Faulty, &rdev->flags);
1709 if ((le32_to_cpu(sb->feature_map) &
1710 MD_FEATURE_RECOVERY_OFFSET))
1711 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1713 set_bit(In_sync, &rdev->flags);
1714 rdev->raid_disk = role;
1717 if (sb->devflags & WriteMostly1)
1718 set_bit(WriteMostly, &rdev->flags);
1719 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1720 set_bit(Replacement, &rdev->flags);
1721 } else /* MULTIPATH are always insync */
1722 set_bit(In_sync, &rdev->flags);
1727 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1729 struct mdp_superblock_1 *sb;
1730 struct md_rdev *rdev2;
1732 /* make rdev->sb match mddev and rdev data. */
1734 sb = page_address(rdev->sb_page);
1736 sb->feature_map = 0;
1738 sb->recovery_offset = cpu_to_le64(0);
1739 memset(sb->pad3, 0, sizeof(sb->pad3));
1741 sb->utime = cpu_to_le64((__u64)mddev->utime);
1742 sb->events = cpu_to_le64(mddev->events);
1744 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1746 sb->resync_offset = cpu_to_le64(0);
1748 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1750 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1751 sb->size = cpu_to_le64(mddev->dev_sectors);
1752 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1753 sb->level = cpu_to_le32(mddev->level);
1754 sb->layout = cpu_to_le32(mddev->layout);
1756 if (test_bit(WriteMostly, &rdev->flags))
1757 sb->devflags |= WriteMostly1;
1759 sb->devflags &= ~WriteMostly1;
1760 sb->data_offset = cpu_to_le64(rdev->data_offset);
1761 sb->data_size = cpu_to_le64(rdev->sectors);
1763 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1764 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1765 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1768 if (rdev->raid_disk >= 0 &&
1769 !test_bit(In_sync, &rdev->flags)) {
1771 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1772 sb->recovery_offset =
1773 cpu_to_le64(rdev->recovery_offset);
1775 if (test_bit(Replacement, &rdev->flags))
1777 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1779 if (mddev->reshape_position != MaxSector) {
1780 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1781 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1782 sb->new_layout = cpu_to_le32(mddev->new_layout);
1783 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1784 sb->new_level = cpu_to_le32(mddev->new_level);
1785 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1786 if (mddev->delta_disks == 0 &&
1787 mddev->reshape_backwards)
1789 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1790 if (rdev->new_data_offset != rdev->data_offset) {
1792 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1793 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1794 - rdev->data_offset));
1798 if (rdev->badblocks.count == 0)
1799 /* Nothing to do for bad blocks*/ ;
1800 else if (sb->bblog_offset == 0)
1801 /* Cannot record bad blocks on this device */
1802 md_error(mddev, rdev);
1804 struct badblocks *bb = &rdev->badblocks;
1805 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1807 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1812 seq = read_seqbegin(&bb->lock);
1814 memset(bbp, 0xff, PAGE_SIZE);
1816 for (i = 0 ; i < bb->count ; i++) {
1817 u64 internal_bb = p[i];
1818 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1819 | BB_LEN(internal_bb));
1820 bbp[i] = cpu_to_le64(store_bb);
1823 if (read_seqretry(&bb->lock, seq))
1826 bb->sector = (rdev->sb_start +
1827 (int)le32_to_cpu(sb->bblog_offset));
1828 bb->size = le16_to_cpu(sb->bblog_size);
1833 rdev_for_each(rdev2, mddev)
1834 if (rdev2->desc_nr+1 > max_dev)
1835 max_dev = rdev2->desc_nr+1;
1837 if (max_dev > le32_to_cpu(sb->max_dev)) {
1839 sb->max_dev = cpu_to_le32(max_dev);
1840 rdev->sb_size = max_dev * 2 + 256;
1841 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1842 if (rdev->sb_size & bmask)
1843 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1845 max_dev = le32_to_cpu(sb->max_dev);
1847 for (i=0; i<max_dev;i++)
1848 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1850 rdev_for_each(rdev2, mddev) {
1852 if (test_bit(Faulty, &rdev2->flags))
1853 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1854 else if (test_bit(In_sync, &rdev2->flags))
1855 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1856 else if (rdev2->raid_disk >= 0)
1857 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1859 sb->dev_roles[i] = cpu_to_le16(0xffff);
1862 sb->sb_csum = calc_sb_1_csum(sb);
1865 static unsigned long long
1866 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1868 struct mdp_superblock_1 *sb;
1869 sector_t max_sectors;
1870 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1871 return 0; /* component must fit device */
1872 if (rdev->data_offset != rdev->new_data_offset)
1873 return 0; /* too confusing */
1874 if (rdev->sb_start < rdev->data_offset) {
1875 /* minor versions 1 and 2; superblock before data */
1876 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1877 max_sectors -= rdev->data_offset;
1878 if (!num_sectors || num_sectors > max_sectors)
1879 num_sectors = max_sectors;
1880 } else if (rdev->mddev->bitmap_info.offset) {
1881 /* minor version 0 with bitmap we can't move */
1884 /* minor version 0; superblock after data */
1886 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1887 sb_start &= ~(sector_t)(4*2 - 1);
1888 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1889 if (!num_sectors || num_sectors > max_sectors)
1890 num_sectors = max_sectors;
1891 rdev->sb_start = sb_start;
1893 sb = page_address(rdev->sb_page);
1894 sb->data_size = cpu_to_le64(num_sectors);
1895 sb->super_offset = rdev->sb_start;
1896 sb->sb_csum = calc_sb_1_csum(sb);
1897 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1899 md_super_wait(rdev->mddev);
1905 super_1_allow_new_offset(struct md_rdev *rdev,
1906 unsigned long long new_offset)
1908 /* All necessary checks on new >= old have been done */
1909 struct bitmap *bitmap;
1910 if (new_offset >= rdev->data_offset)
1913 /* with 1.0 metadata, there is no metadata to tread on
1914 * so we can always move back */
1915 if (rdev->mddev->minor_version == 0)
1918 /* otherwise we must be sure not to step on
1919 * any metadata, so stay:
1920 * 36K beyond start of superblock
1921 * beyond end of badblocks
1922 * beyond write-intent bitmap
1924 if (rdev->sb_start + (32+4)*2 > new_offset)
1926 bitmap = rdev->mddev->bitmap;
1927 if (bitmap && !rdev->mddev->bitmap_info.file &&
1928 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1929 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1931 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1937 static struct super_type super_types[] = {
1940 .owner = THIS_MODULE,
1941 .load_super = super_90_load,
1942 .validate_super = super_90_validate,
1943 .sync_super = super_90_sync,
1944 .rdev_size_change = super_90_rdev_size_change,
1945 .allow_new_offset = super_90_allow_new_offset,
1949 .owner = THIS_MODULE,
1950 .load_super = super_1_load,
1951 .validate_super = super_1_validate,
1952 .sync_super = super_1_sync,
1953 .rdev_size_change = super_1_rdev_size_change,
1954 .allow_new_offset = super_1_allow_new_offset,
1958 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1960 if (mddev->sync_super) {
1961 mddev->sync_super(mddev, rdev);
1965 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1967 super_types[mddev->major_version].sync_super(mddev, rdev);
1970 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1972 struct md_rdev *rdev, *rdev2;
1975 rdev_for_each_rcu(rdev, mddev1)
1976 rdev_for_each_rcu(rdev2, mddev2)
1977 if (rdev->bdev->bd_contains ==
1978 rdev2->bdev->bd_contains) {
1986 static LIST_HEAD(pending_raid_disks);
1989 * Try to register data integrity profile for an mddev
1991 * This is called when an array is started and after a disk has been kicked
1992 * from the array. It only succeeds if all working and active component devices
1993 * are integrity capable with matching profiles.
1995 int md_integrity_register(struct mddev *mddev)
1997 struct md_rdev *rdev, *reference = NULL;
1999 if (list_empty(&mddev->disks))
2000 return 0; /* nothing to do */
2001 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2002 return 0; /* shouldn't register, or already is */
2003 rdev_for_each(rdev, mddev) {
2004 /* skip spares and non-functional disks */
2005 if (test_bit(Faulty, &rdev->flags))
2007 if (rdev->raid_disk < 0)
2010 /* Use the first rdev as the reference */
2014 /* does this rdev's profile match the reference profile? */
2015 if (blk_integrity_compare(reference->bdev->bd_disk,
2016 rdev->bdev->bd_disk) < 0)
2019 if (!reference || !bdev_get_integrity(reference->bdev))
2022 * All component devices are integrity capable and have matching
2023 * profiles, register the common profile for the md device.
2025 if (blk_integrity_register(mddev->gendisk,
2026 bdev_get_integrity(reference->bdev)) != 0) {
2027 printk(KERN_ERR "md: failed to register integrity for %s\n",
2031 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2032 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2033 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2039 EXPORT_SYMBOL(md_integrity_register);
2041 /* Disable data integrity if non-capable/non-matching disk is being added */
2042 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2044 struct blk_integrity *bi_rdev;
2045 struct blk_integrity *bi_mddev;
2047 if (!mddev->gendisk)
2050 bi_rdev = bdev_get_integrity(rdev->bdev);
2051 bi_mddev = blk_get_integrity(mddev->gendisk);
2053 if (!bi_mddev) /* nothing to do */
2055 if (rdev->raid_disk < 0) /* skip spares */
2057 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2058 rdev->bdev->bd_disk) >= 0)
2060 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2061 blk_integrity_unregister(mddev->gendisk);
2063 EXPORT_SYMBOL(md_integrity_add_rdev);
2065 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2067 char b[BDEVNAME_SIZE];
2077 /* prevent duplicates */
2078 if (find_rdev(mddev, rdev->bdev->bd_dev))
2081 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2082 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2083 rdev->sectors < mddev->dev_sectors)) {
2085 /* Cannot change size, so fail
2086 * If mddev->level <= 0, then we don't care
2087 * about aligning sizes (e.g. linear)
2089 if (mddev->level > 0)
2092 mddev->dev_sectors = rdev->sectors;
2095 /* Verify rdev->desc_nr is unique.
2096 * If it is -1, assign a free number, else
2097 * check number is not in use
2099 if (rdev->desc_nr < 0) {
2101 if (mddev->pers) choice = mddev->raid_disks;
2102 while (find_rdev_nr(mddev, choice))
2104 rdev->desc_nr = choice;
2106 if (find_rdev_nr(mddev, rdev->desc_nr))
2109 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2110 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2111 mdname(mddev), mddev->max_disks);
2114 bdevname(rdev->bdev,b);
2115 while ( (s=strchr(b, '/')) != NULL)
2118 rdev->mddev = mddev;
2119 printk(KERN_INFO "md: bind<%s>\n", b);
2121 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2124 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2125 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2126 /* failure here is OK */;
2127 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2129 list_add_rcu(&rdev->same_set, &mddev->disks);
2130 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2132 /* May as well allow recovery to be retried once */
2133 mddev->recovery_disabled++;
2138 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2143 static void md_delayed_delete(struct work_struct *ws)
2145 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2146 kobject_del(&rdev->kobj);
2147 kobject_put(&rdev->kobj);
2150 static void unbind_rdev_from_array(struct md_rdev * rdev)
2152 char b[BDEVNAME_SIZE];
2157 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2158 list_del_rcu(&rdev->same_set);
2159 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2161 sysfs_remove_link(&rdev->kobj, "block");
2162 sysfs_put(rdev->sysfs_state);
2163 rdev->sysfs_state = NULL;
2164 rdev->badblocks.count = 0;
2165 /* We need to delay this, otherwise we can deadlock when
2166 * writing to 'remove' to "dev/state". We also need
2167 * to delay it due to rcu usage.
2170 INIT_WORK(&rdev->del_work, md_delayed_delete);
2171 kobject_get(&rdev->kobj);
2172 queue_work(md_misc_wq, &rdev->del_work);
2176 * prevent the device from being mounted, repartitioned or
2177 * otherwise reused by a RAID array (or any other kernel
2178 * subsystem), by bd_claiming the device.
2180 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2183 struct block_device *bdev;
2184 char b[BDEVNAME_SIZE];
2186 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2187 shared ? (struct md_rdev *)lock_rdev : rdev);
2189 printk(KERN_ERR "md: could not open %s.\n",
2190 __bdevname(dev, b));
2191 return PTR_ERR(bdev);
2197 static void unlock_rdev(struct md_rdev *rdev)
2199 struct block_device *bdev = rdev->bdev;
2203 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2206 void md_autodetect_dev(dev_t dev);
2208 static void export_rdev(struct md_rdev * rdev)
2210 char b[BDEVNAME_SIZE];
2211 printk(KERN_INFO "md: export_rdev(%s)\n",
2212 bdevname(rdev->bdev,b));
2215 md_rdev_clear(rdev);
2217 if (test_bit(AutoDetected, &rdev->flags))
2218 md_autodetect_dev(rdev->bdev->bd_dev);
2221 kobject_put(&rdev->kobj);
2224 static void kick_rdev_from_array(struct md_rdev * rdev)
2226 unbind_rdev_from_array(rdev);
2230 static void export_array(struct mddev *mddev)
2232 struct md_rdev *rdev, *tmp;
2234 rdev_for_each_safe(rdev, tmp, mddev) {
2239 kick_rdev_from_array(rdev);
2241 if (!list_empty(&mddev->disks))
2243 mddev->raid_disks = 0;
2244 mddev->major_version = 0;
2247 static void print_desc(mdp_disk_t *desc)
2249 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2250 desc->major,desc->minor,desc->raid_disk,desc->state);
2253 static void print_sb_90(mdp_super_t *sb)
2258 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2259 sb->major_version, sb->minor_version, sb->patch_version,
2260 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2262 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2263 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2264 sb->md_minor, sb->layout, sb->chunk_size);
2265 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2266 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2267 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2268 sb->failed_disks, sb->spare_disks,
2269 sb->sb_csum, (unsigned long)sb->events_lo);
2272 for (i = 0; i < MD_SB_DISKS; i++) {
2275 desc = sb->disks + i;
2276 if (desc->number || desc->major || desc->minor ||
2277 desc->raid_disk || (desc->state && (desc->state != 4))) {
2278 printk(" D %2d: ", i);
2282 printk(KERN_INFO "md: THIS: ");
2283 print_desc(&sb->this_disk);
2286 static void print_sb_1(struct mdp_superblock_1 *sb)
2290 uuid = sb->set_uuid;
2292 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2293 "md: Name: \"%s\" CT:%llu\n",
2294 le32_to_cpu(sb->major_version),
2295 le32_to_cpu(sb->feature_map),
2298 (unsigned long long)le64_to_cpu(sb->ctime)
2299 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2301 uuid = sb->device_uuid;
2303 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2305 "md: Dev:%08x UUID: %pU\n"
2306 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2307 "md: (MaxDev:%u) \n",
2308 le32_to_cpu(sb->level),
2309 (unsigned long long)le64_to_cpu(sb->size),
2310 le32_to_cpu(sb->raid_disks),
2311 le32_to_cpu(sb->layout),
2312 le32_to_cpu(sb->chunksize),
2313 (unsigned long long)le64_to_cpu(sb->data_offset),
2314 (unsigned long long)le64_to_cpu(sb->data_size),
2315 (unsigned long long)le64_to_cpu(sb->super_offset),
2316 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2317 le32_to_cpu(sb->dev_number),
2320 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2321 (unsigned long long)le64_to_cpu(sb->events),
2322 (unsigned long long)le64_to_cpu(sb->resync_offset),
2323 le32_to_cpu(sb->sb_csum),
2324 le32_to_cpu(sb->max_dev)
2328 static void print_rdev(struct md_rdev *rdev, int major_version)
2330 char b[BDEVNAME_SIZE];
2331 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2332 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2333 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2335 if (rdev->sb_loaded) {
2336 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2337 switch (major_version) {
2339 print_sb_90(page_address(rdev->sb_page));
2342 print_sb_1(page_address(rdev->sb_page));
2346 printk(KERN_INFO "md: no rdev superblock!\n");
2349 static void md_print_devices(void)
2351 struct list_head *tmp;
2352 struct md_rdev *rdev;
2353 struct mddev *mddev;
2354 char b[BDEVNAME_SIZE];
2357 printk("md: **********************************\n");
2358 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2359 printk("md: **********************************\n");
2360 for_each_mddev(mddev, tmp) {
2363 bitmap_print_sb(mddev->bitmap);
2365 printk("%s: ", mdname(mddev));
2366 rdev_for_each(rdev, mddev)
2367 printk("<%s>", bdevname(rdev->bdev,b));
2370 rdev_for_each(rdev, mddev)
2371 print_rdev(rdev, mddev->major_version);
2373 printk("md: **********************************\n");
2378 static void sync_sbs(struct mddev * mddev, int nospares)
2380 /* Update each superblock (in-memory image), but
2381 * if we are allowed to, skip spares which already
2382 * have the right event counter, or have one earlier
2383 * (which would mean they aren't being marked as dirty
2384 * with the rest of the array)
2386 struct md_rdev *rdev;
2387 rdev_for_each(rdev, mddev) {
2388 if (rdev->sb_events == mddev->events ||
2390 rdev->raid_disk < 0 &&
2391 rdev->sb_events+1 == mddev->events)) {
2392 /* Don't update this superblock */
2393 rdev->sb_loaded = 2;
2395 sync_super(mddev, rdev);
2396 rdev->sb_loaded = 1;
2401 static void md_update_sb(struct mddev * mddev, int force_change)
2403 struct md_rdev *rdev;
2406 int any_badblocks_changed = 0;
2410 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2414 /* First make sure individual recovery_offsets are correct */
2415 rdev_for_each(rdev, mddev) {
2416 if (rdev->raid_disk >= 0 &&
2417 mddev->delta_disks >= 0 &&
2418 !test_bit(In_sync, &rdev->flags) &&
2419 mddev->curr_resync_completed > rdev->recovery_offset)
2420 rdev->recovery_offset = mddev->curr_resync_completed;
2423 if (!mddev->persistent) {
2424 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2425 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2426 if (!mddev->external) {
2427 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2428 rdev_for_each(rdev, mddev) {
2429 if (rdev->badblocks.changed) {
2430 rdev->badblocks.changed = 0;
2431 md_ack_all_badblocks(&rdev->badblocks);
2432 md_error(mddev, rdev);
2434 clear_bit(Blocked, &rdev->flags);
2435 clear_bit(BlockedBadBlocks, &rdev->flags);
2436 wake_up(&rdev->blocked_wait);
2439 wake_up(&mddev->sb_wait);
2443 spin_lock_irq(&mddev->write_lock);
2445 mddev->utime = get_seconds();
2447 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2449 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2450 /* just a clean<-> dirty transition, possibly leave spares alone,
2451 * though if events isn't the right even/odd, we will have to do
2457 if (mddev->degraded)
2458 /* If the array is degraded, then skipping spares is both
2459 * dangerous and fairly pointless.
2460 * Dangerous because a device that was removed from the array
2461 * might have a event_count that still looks up-to-date,
2462 * so it can be re-added without a resync.
2463 * Pointless because if there are any spares to skip,
2464 * then a recovery will happen and soon that array won't
2465 * be degraded any more and the spare can go back to sleep then.
2469 sync_req = mddev->in_sync;
2471 /* If this is just a dirty<->clean transition, and the array is clean
2472 * and 'events' is odd, we can roll back to the previous clean state */
2474 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2475 && mddev->can_decrease_events
2476 && mddev->events != 1) {
2478 mddev->can_decrease_events = 0;
2480 /* otherwise we have to go forward and ... */
2482 mddev->can_decrease_events = nospares;
2485 if (!mddev->events) {
2487 * oops, this 64-bit counter should never wrap.
2488 * Either we are in around ~1 trillion A.C., assuming
2489 * 1 reboot per second, or we have a bug:
2495 rdev_for_each(rdev, mddev) {
2496 if (rdev->badblocks.changed)
2497 any_badblocks_changed++;
2498 if (test_bit(Faulty, &rdev->flags))
2499 set_bit(FaultRecorded, &rdev->flags);
2502 sync_sbs(mddev, nospares);
2503 spin_unlock_irq(&mddev->write_lock);
2505 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2506 mdname(mddev), mddev->in_sync);
2508 bitmap_update_sb(mddev->bitmap);
2509 rdev_for_each(rdev, mddev) {
2510 char b[BDEVNAME_SIZE];
2512 if (rdev->sb_loaded != 1)
2513 continue; /* no noise on spare devices */
2515 if (!test_bit(Faulty, &rdev->flags) &&
2516 rdev->saved_raid_disk == -1) {
2517 md_super_write(mddev,rdev,
2518 rdev->sb_start, rdev->sb_size,
2520 pr_debug("md: (write) %s's sb offset: %llu\n",
2521 bdevname(rdev->bdev, b),
2522 (unsigned long long)rdev->sb_start);
2523 rdev->sb_events = mddev->events;
2524 if (rdev->badblocks.size) {
2525 md_super_write(mddev, rdev,
2526 rdev->badblocks.sector,
2527 rdev->badblocks.size << 9,
2529 rdev->badblocks.size = 0;
2532 } else if (test_bit(Faulty, &rdev->flags))
2533 pr_debug("md: %s (skipping faulty)\n",
2534 bdevname(rdev->bdev, b));
2536 pr_debug("(skipping incremental s/r ");
2538 if (mddev->level == LEVEL_MULTIPATH)
2539 /* only need to write one superblock... */
2542 md_super_wait(mddev);
2543 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2545 spin_lock_irq(&mddev->write_lock);
2546 if (mddev->in_sync != sync_req ||
2547 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2548 /* have to write it out again */
2549 spin_unlock_irq(&mddev->write_lock);
2552 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2553 spin_unlock_irq(&mddev->write_lock);
2554 wake_up(&mddev->sb_wait);
2555 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2556 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2558 rdev_for_each(rdev, mddev) {
2559 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2560 clear_bit(Blocked, &rdev->flags);
2562 if (any_badblocks_changed)
2563 md_ack_all_badblocks(&rdev->badblocks);
2564 clear_bit(BlockedBadBlocks, &rdev->flags);
2565 wake_up(&rdev->blocked_wait);
2569 /* words written to sysfs files may, or may not, be \n terminated.
2570 * We want to accept with case. For this we use cmd_match.
2572 static int cmd_match(const char *cmd, const char *str)
2574 /* See if cmd, written into a sysfs file, matches
2575 * str. They must either be the same, or cmd can
2576 * have a trailing newline
2578 while (*cmd && *str && *cmd == *str) {
2589 struct rdev_sysfs_entry {
2590 struct attribute attr;
2591 ssize_t (*show)(struct md_rdev *, char *);
2592 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2596 state_show(struct md_rdev *rdev, char *page)
2601 if (test_bit(Faulty, &rdev->flags) ||
2602 rdev->badblocks.unacked_exist) {
2603 len+= sprintf(page+len, "%sfaulty",sep);
2606 if (test_bit(In_sync, &rdev->flags)) {
2607 len += sprintf(page+len, "%sin_sync",sep);
2610 if (test_bit(WriteMostly, &rdev->flags)) {
2611 len += sprintf(page+len, "%swrite_mostly",sep);
2614 if (test_bit(Blocked, &rdev->flags) ||
2615 (rdev->badblocks.unacked_exist
2616 && !test_bit(Faulty, &rdev->flags))) {
2617 len += sprintf(page+len, "%sblocked", sep);
2620 if (!test_bit(Faulty, &rdev->flags) &&
2621 !test_bit(In_sync, &rdev->flags)) {
2622 len += sprintf(page+len, "%sspare", sep);
2625 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2626 len += sprintf(page+len, "%swrite_error", sep);
2629 if (test_bit(WantReplacement, &rdev->flags)) {
2630 len += sprintf(page+len, "%swant_replacement", sep);
2633 if (test_bit(Replacement, &rdev->flags)) {
2634 len += sprintf(page+len, "%sreplacement", sep);
2638 return len+sprintf(page+len, "\n");
2642 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2645 * faulty - simulates an error
2646 * remove - disconnects the device
2647 * writemostly - sets write_mostly
2648 * -writemostly - clears write_mostly
2649 * blocked - sets the Blocked flags
2650 * -blocked - clears the Blocked and possibly simulates an error
2651 * insync - sets Insync providing device isn't active
2652 * write_error - sets WriteErrorSeen
2653 * -write_error - clears WriteErrorSeen
2656 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2657 md_error(rdev->mddev, rdev);
2658 if (test_bit(Faulty, &rdev->flags))
2662 } else if (cmd_match(buf, "remove")) {
2663 if (rdev->raid_disk >= 0)
2666 struct mddev *mddev = rdev->mddev;
2667 kick_rdev_from_array(rdev);
2669 md_update_sb(mddev, 1);
2670 md_new_event(mddev);
2673 } else if (cmd_match(buf, "writemostly")) {
2674 set_bit(WriteMostly, &rdev->flags);
2676 } else if (cmd_match(buf, "-writemostly")) {
2677 clear_bit(WriteMostly, &rdev->flags);
2679 } else if (cmd_match(buf, "blocked")) {
2680 set_bit(Blocked, &rdev->flags);
2682 } else if (cmd_match(buf, "-blocked")) {
2683 if (!test_bit(Faulty, &rdev->flags) &&
2684 rdev->badblocks.unacked_exist) {
2685 /* metadata handler doesn't understand badblocks,
2686 * so we need to fail the device
2688 md_error(rdev->mddev, rdev);
2690 clear_bit(Blocked, &rdev->flags);
2691 clear_bit(BlockedBadBlocks, &rdev->flags);
2692 wake_up(&rdev->blocked_wait);
2693 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2694 md_wakeup_thread(rdev->mddev->thread);
2697 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2698 set_bit(In_sync, &rdev->flags);
2700 } else if (cmd_match(buf, "write_error")) {
2701 set_bit(WriteErrorSeen, &rdev->flags);
2703 } else if (cmd_match(buf, "-write_error")) {
2704 clear_bit(WriteErrorSeen, &rdev->flags);
2706 } else if (cmd_match(buf, "want_replacement")) {
2707 /* Any non-spare device that is not a replacement can
2708 * become want_replacement at any time, but we then need to
2709 * check if recovery is needed.
2711 if (rdev->raid_disk >= 0 &&
2712 !test_bit(Replacement, &rdev->flags))
2713 set_bit(WantReplacement, &rdev->flags);
2714 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2715 md_wakeup_thread(rdev->mddev->thread);
2717 } else if (cmd_match(buf, "-want_replacement")) {
2718 /* Clearing 'want_replacement' is always allowed.
2719 * Once replacements starts it is too late though.
2722 clear_bit(WantReplacement, &rdev->flags);
2723 } else if (cmd_match(buf, "replacement")) {
2724 /* Can only set a device as a replacement when array has not
2725 * yet been started. Once running, replacement is automatic
2726 * from spares, or by assigning 'slot'.
2728 if (rdev->mddev->pers)
2731 set_bit(Replacement, &rdev->flags);
2734 } else if (cmd_match(buf, "-replacement")) {
2735 /* Similarly, can only clear Replacement before start */
2736 if (rdev->mddev->pers)
2739 clear_bit(Replacement, &rdev->flags);
2744 sysfs_notify_dirent_safe(rdev->sysfs_state);
2745 return err ? err : len;
2747 static struct rdev_sysfs_entry rdev_state =
2748 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2751 errors_show(struct md_rdev *rdev, char *page)
2753 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2757 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2760 unsigned long n = simple_strtoul(buf, &e, 10);
2761 if (*buf && (*e == 0 || *e == '\n')) {
2762 atomic_set(&rdev->corrected_errors, n);
2767 static struct rdev_sysfs_entry rdev_errors =
2768 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2771 slot_show(struct md_rdev *rdev, char *page)
2773 if (rdev->raid_disk < 0)
2774 return sprintf(page, "none\n");
2776 return sprintf(page, "%d\n", rdev->raid_disk);
2780 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2784 int slot = simple_strtoul(buf, &e, 10);
2785 if (strncmp(buf, "none", 4)==0)
2787 else if (e==buf || (*e && *e!= '\n'))
2789 if (rdev->mddev->pers && slot == -1) {
2790 /* Setting 'slot' on an active array requires also
2791 * updating the 'rd%d' link, and communicating
2792 * with the personality with ->hot_*_disk.
2793 * For now we only support removing
2794 * failed/spare devices. This normally happens automatically,
2795 * but not when the metadata is externally managed.
2797 if (rdev->raid_disk == -1)
2799 /* personality does all needed checks */
2800 if (rdev->mddev->pers->hot_remove_disk == NULL)
2802 clear_bit(Blocked, &rdev->flags);
2803 remove_and_add_spares(rdev->mddev, rdev);
2804 if (rdev->raid_disk >= 0)
2806 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2807 md_wakeup_thread(rdev->mddev->thread);
2808 } else if (rdev->mddev->pers) {
2809 /* Activating a spare .. or possibly reactivating
2810 * if we ever get bitmaps working here.
2813 if (rdev->raid_disk != -1)
2816 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2819 if (rdev->mddev->pers->hot_add_disk == NULL)
2822 if (slot >= rdev->mddev->raid_disks &&
2823 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2826 rdev->raid_disk = slot;
2827 if (test_bit(In_sync, &rdev->flags))
2828 rdev->saved_raid_disk = slot;
2830 rdev->saved_raid_disk = -1;
2831 clear_bit(In_sync, &rdev->flags);
2832 err = rdev->mddev->pers->
2833 hot_add_disk(rdev->mddev, rdev);
2835 rdev->raid_disk = -1;
2838 sysfs_notify_dirent_safe(rdev->sysfs_state);
2839 if (sysfs_link_rdev(rdev->mddev, rdev))
2840 /* failure here is OK */;
2841 /* don't wakeup anyone, leave that to userspace. */
2843 if (slot >= rdev->mddev->raid_disks &&
2844 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2846 rdev->raid_disk = slot;
2847 /* assume it is working */
2848 clear_bit(Faulty, &rdev->flags);
2849 clear_bit(WriteMostly, &rdev->flags);
2850 set_bit(In_sync, &rdev->flags);
2851 sysfs_notify_dirent_safe(rdev->sysfs_state);
2857 static struct rdev_sysfs_entry rdev_slot =
2858 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2861 offset_show(struct md_rdev *rdev, char *page)
2863 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2867 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2869 unsigned long long offset;
2870 if (strict_strtoull(buf, 10, &offset) < 0)
2872 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2874 if (rdev->sectors && rdev->mddev->external)
2875 /* Must set offset before size, so overlap checks
2878 rdev->data_offset = offset;
2879 rdev->new_data_offset = offset;
2883 static struct rdev_sysfs_entry rdev_offset =
2884 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2886 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2888 return sprintf(page, "%llu\n",
2889 (unsigned long long)rdev->new_data_offset);
2892 static ssize_t new_offset_store(struct md_rdev *rdev,
2893 const char *buf, size_t len)
2895 unsigned long long new_offset;
2896 struct mddev *mddev = rdev->mddev;
2898 if (strict_strtoull(buf, 10, &new_offset) < 0)
2901 if (mddev->sync_thread)
2903 if (new_offset == rdev->data_offset)
2904 /* reset is always permitted */
2906 else if (new_offset > rdev->data_offset) {
2907 /* must not push array size beyond rdev_sectors */
2908 if (new_offset - rdev->data_offset
2909 + mddev->dev_sectors > rdev->sectors)
2912 /* Metadata worries about other space details. */
2914 /* decreasing the offset is inconsistent with a backwards
2917 if (new_offset < rdev->data_offset &&
2918 mddev->reshape_backwards)
2920 /* Increasing offset is inconsistent with forwards
2921 * reshape. reshape_direction should be set to
2922 * 'backwards' first.
2924 if (new_offset > rdev->data_offset &&
2925 !mddev->reshape_backwards)
2928 if (mddev->pers && mddev->persistent &&
2929 !super_types[mddev->major_version]
2930 .allow_new_offset(rdev, new_offset))
2932 rdev->new_data_offset = new_offset;
2933 if (new_offset > rdev->data_offset)
2934 mddev->reshape_backwards = 1;
2935 else if (new_offset < rdev->data_offset)
2936 mddev->reshape_backwards = 0;
2940 static struct rdev_sysfs_entry rdev_new_offset =
2941 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2944 rdev_size_show(struct md_rdev *rdev, char *page)
2946 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2949 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2951 /* check if two start/length pairs overlap */
2959 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2961 unsigned long long blocks;
2964 if (strict_strtoull(buf, 10, &blocks) < 0)
2967 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2968 return -EINVAL; /* sector conversion overflow */
2971 if (new != blocks * 2)
2972 return -EINVAL; /* unsigned long long to sector_t overflow */
2979 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2981 struct mddev *my_mddev = rdev->mddev;
2982 sector_t oldsectors = rdev->sectors;
2985 if (strict_blocks_to_sectors(buf, §ors) < 0)
2987 if (rdev->data_offset != rdev->new_data_offset)
2988 return -EINVAL; /* too confusing */
2989 if (my_mddev->pers && rdev->raid_disk >= 0) {
2990 if (my_mddev->persistent) {
2991 sectors = super_types[my_mddev->major_version].
2992 rdev_size_change(rdev, sectors);
2995 } else if (!sectors)
2996 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2998 if (!my_mddev->pers->resize)
2999 /* Cannot change size for RAID0 or Linear etc */
3002 if (sectors < my_mddev->dev_sectors)
3003 return -EINVAL; /* component must fit device */
3005 rdev->sectors = sectors;
3006 if (sectors > oldsectors && my_mddev->external) {
3007 /* need to check that all other rdevs with the same ->bdev
3008 * do not overlap. We need to unlock the mddev to avoid
3009 * a deadlock. We have already changed rdev->sectors, and if
3010 * we have to change it back, we will have the lock again.
3012 struct mddev *mddev;
3014 struct list_head *tmp;
3016 mddev_unlock(my_mddev);
3017 for_each_mddev(mddev, tmp) {
3018 struct md_rdev *rdev2;
3021 rdev_for_each(rdev2, mddev)
3022 if (rdev->bdev == rdev2->bdev &&
3024 overlaps(rdev->data_offset, rdev->sectors,
3030 mddev_unlock(mddev);
3036 mddev_lock(my_mddev);
3038 /* Someone else could have slipped in a size
3039 * change here, but doing so is just silly.
3040 * We put oldsectors back because we *know* it is
3041 * safe, and trust userspace not to race with
3044 rdev->sectors = oldsectors;
3051 static struct rdev_sysfs_entry rdev_size =
3052 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3055 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3057 unsigned long long recovery_start = rdev->recovery_offset;
3059 if (test_bit(In_sync, &rdev->flags) ||
3060 recovery_start == MaxSector)
3061 return sprintf(page, "none\n");
3063 return sprintf(page, "%llu\n", recovery_start);
3066 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3068 unsigned long long recovery_start;
3070 if (cmd_match(buf, "none"))
3071 recovery_start = MaxSector;
3072 else if (strict_strtoull(buf, 10, &recovery_start))
3075 if (rdev->mddev->pers &&
3076 rdev->raid_disk >= 0)
3079 rdev->recovery_offset = recovery_start;
3080 if (recovery_start == MaxSector)
3081 set_bit(In_sync, &rdev->flags);
3083 clear_bit(In_sync, &rdev->flags);
3087 static struct rdev_sysfs_entry rdev_recovery_start =
3088 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3092 badblocks_show(struct badblocks *bb, char *page, int unack);
3094 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3096 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3098 return badblocks_show(&rdev->badblocks, page, 0);
3100 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3102 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3103 /* Maybe that ack was all we needed */
3104 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3105 wake_up(&rdev->blocked_wait);
3108 static struct rdev_sysfs_entry rdev_bad_blocks =
3109 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3112 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3114 return badblocks_show(&rdev->badblocks, page, 1);
3116 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3118 return badblocks_store(&rdev->badblocks, page, len, 1);
3120 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3121 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3123 static struct attribute *rdev_default_attrs[] = {
3128 &rdev_new_offset.attr,
3130 &rdev_recovery_start.attr,
3131 &rdev_bad_blocks.attr,
3132 &rdev_unack_bad_blocks.attr,
3136 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3138 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3139 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3140 struct mddev *mddev = rdev->mddev;
3146 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3148 if (rdev->mddev == NULL)
3151 rv = entry->show(rdev, page);
3152 mddev_unlock(mddev);
3158 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3159 const char *page, size_t length)
3161 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3162 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3164 struct mddev *mddev = rdev->mddev;
3168 if (!capable(CAP_SYS_ADMIN))
3170 rv = mddev ? mddev_lock(mddev): -EBUSY;
3172 if (rdev->mddev == NULL)
3175 rv = entry->store(rdev, page, length);
3176 mddev_unlock(mddev);
3181 static void rdev_free(struct kobject *ko)
3183 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3186 static const struct sysfs_ops rdev_sysfs_ops = {
3187 .show = rdev_attr_show,
3188 .store = rdev_attr_store,
3190 static struct kobj_type rdev_ktype = {
3191 .release = rdev_free,
3192 .sysfs_ops = &rdev_sysfs_ops,
3193 .default_attrs = rdev_default_attrs,
3196 int md_rdev_init(struct md_rdev *rdev)
3199 rdev->saved_raid_disk = -1;
3200 rdev->raid_disk = -1;
3202 rdev->data_offset = 0;
3203 rdev->new_data_offset = 0;
3204 rdev->sb_events = 0;
3205 rdev->last_read_error.tv_sec = 0;
3206 rdev->last_read_error.tv_nsec = 0;
3207 rdev->sb_loaded = 0;
3208 rdev->bb_page = NULL;
3209 atomic_set(&rdev->nr_pending, 0);
3210 atomic_set(&rdev->read_errors, 0);
3211 atomic_set(&rdev->corrected_errors, 0);
3213 INIT_LIST_HEAD(&rdev->same_set);
3214 init_waitqueue_head(&rdev->blocked_wait);
3216 /* Add space to store bad block list.
3217 * This reserves the space even on arrays where it cannot
3218 * be used - I wonder if that matters
3220 rdev->badblocks.count = 0;
3221 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3222 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3223 seqlock_init(&rdev->badblocks.lock);
3224 if (rdev->badblocks.page == NULL)