Merge tag 'md-3.10-fixes' of git://neil.brown.name/md
[sfrench/cifs-2.6.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 static int remove_and_add_spares(struct mddev *mddev,
76                                  struct md_rdev *this);
77
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79
80 /*
81  * Default number of read corrections we'll attempt on an rdev
82  * before ejecting it from the array. We divide the read error
83  * count by 2 for every hour elapsed between read errors.
84  */
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
86 /*
87  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88  * is 1000 KB/sec, so the extra system load does not show up that much.
89  * Increase it if you want to have more _guaranteed_ speed. Note that
90  * the RAID driver will use the maximum available bandwidth if the IO
91  * subsystem is idle. There is also an 'absolute maximum' reconstruction
92  * speed limit - in case reconstruction slows down your system despite
93  * idle IO detection.
94  *
95  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96  * or /sys/block/mdX/md/sync_speed_{min,max}
97  */
98
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
102 {
103         return mddev->sync_speed_min ?
104                 mddev->sync_speed_min : sysctl_speed_limit_min;
105 }
106
107 static inline int speed_max(struct mddev *mddev)
108 {
109         return mddev->sync_speed_max ?
110                 mddev->sync_speed_max : sysctl_speed_limit_max;
111 }
112
113 static struct ctl_table_header *raid_table_header;
114
115 static ctl_table raid_table[] = {
116         {
117                 .procname       = "speed_limit_min",
118                 .data           = &sysctl_speed_limit_min,
119                 .maxlen         = sizeof(int),
120                 .mode           = S_IRUGO|S_IWUSR,
121                 .proc_handler   = proc_dointvec,
122         },
123         {
124                 .procname       = "speed_limit_max",
125                 .data           = &sysctl_speed_limit_max,
126                 .maxlen         = sizeof(int),
127                 .mode           = S_IRUGO|S_IWUSR,
128                 .proc_handler   = proc_dointvec,
129         },
130         { }
131 };
132
133 static ctl_table raid_dir_table[] = {
134         {
135                 .procname       = "raid",
136                 .maxlen         = 0,
137                 .mode           = S_IRUGO|S_IXUGO,
138                 .child          = raid_table,
139         },
140         { }
141 };
142
143 static ctl_table raid_root_table[] = {
144         {
145                 .procname       = "dev",
146                 .maxlen         = 0,
147                 .mode           = 0555,
148                 .child          = raid_dir_table,
149         },
150         {  }
151 };
152
153 static const struct block_device_operations md_fops;
154
155 static int start_readonly;
156
157 /* bio_clone_mddev
158  * like bio_clone, but with a local bio set
159  */
160
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
162                             struct mddev *mddev)
163 {
164         struct bio *b;
165
166         if (!mddev || !mddev->bio_set)
167                 return bio_alloc(gfp_mask, nr_iovecs);
168
169         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
170         if (!b)
171                 return NULL;
172         return b;
173 }
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
175
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
177                             struct mddev *mddev)
178 {
179         if (!mddev || !mddev->bio_set)
180                 return bio_clone(bio, gfp_mask);
181
182         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
183 }
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
185
186 void md_trim_bio(struct bio *bio, int offset, int size)
187 {
188         /* 'bio' is a cloned bio which we need to trim to match
189          * the given offset and size.
190          * This requires adjusting bi_sector, bi_size, and bi_io_vec
191          */
192         int i;
193         struct bio_vec *bvec;
194         int sofar = 0;
195
196         size <<= 9;
197         if (offset == 0 && size == bio->bi_size)
198                 return;
199
200         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
201
202         bio_advance(bio, offset << 9);
203
204         bio->bi_size = size;
205
206         /* avoid any complications with bi_idx being non-zero*/
207         if (bio->bi_idx) {
208                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
209                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
210                 bio->bi_vcnt -= bio->bi_idx;
211                 bio->bi_idx = 0;
212         }
213         /* Make sure vcnt and last bv are not too big */
214         bio_for_each_segment(bvec, bio, i) {
215                 if (sofar + bvec->bv_len > size)
216                         bvec->bv_len = size - sofar;
217                 if (bvec->bv_len == 0) {
218                         bio->bi_vcnt = i;
219                         break;
220                 }
221                 sofar += bvec->bv_len;
222         }
223 }
224 EXPORT_SYMBOL_GPL(md_trim_bio);
225
226 /*
227  * We have a system wide 'event count' that is incremented
228  * on any 'interesting' event, and readers of /proc/mdstat
229  * can use 'poll' or 'select' to find out when the event
230  * count increases.
231  *
232  * Events are:
233  *  start array, stop array, error, add device, remove device,
234  *  start build, activate spare
235  */
236 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
237 static atomic_t md_event_count;
238 void md_new_event(struct mddev *mddev)
239 {
240         atomic_inc(&md_event_count);
241         wake_up(&md_event_waiters);
242 }
243 EXPORT_SYMBOL_GPL(md_new_event);
244
245 /* Alternate version that can be called from interrupts
246  * when calling sysfs_notify isn't needed.
247  */
248 static void md_new_event_inintr(struct mddev *mddev)
249 {
250         atomic_inc(&md_event_count);
251         wake_up(&md_event_waiters);
252 }
253
254 /*
255  * Enables to iterate over all existing md arrays
256  * all_mddevs_lock protects this list.
257  */
258 static LIST_HEAD(all_mddevs);
259 static DEFINE_SPINLOCK(all_mddevs_lock);
260
261
262 /*
263  * iterates through all used mddevs in the system.
264  * We take care to grab the all_mddevs_lock whenever navigating
265  * the list, and to always hold a refcount when unlocked.
266  * Any code which breaks out of this loop while own
267  * a reference to the current mddev and must mddev_put it.
268  */
269 #define for_each_mddev(_mddev,_tmp)                                     \
270                                                                         \
271         for (({ spin_lock(&all_mddevs_lock);                            \
272                 _tmp = all_mddevs.next;                                 \
273                 _mddev = NULL;});                                       \
274              ({ if (_tmp != &all_mddevs)                                \
275                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
276                 spin_unlock(&all_mddevs_lock);                          \
277                 if (_mddev) mddev_put(_mddev);                          \
278                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
279                 _tmp != &all_mddevs;});                                 \
280              ({ spin_lock(&all_mddevs_lock);                            \
281                 _tmp = _tmp->next;})                                    \
282                 )
283
284
285 /* Rather than calling directly into the personality make_request function,
286  * IO requests come here first so that we can check if the device is
287  * being suspended pending a reconfiguration.
288  * We hold a refcount over the call to ->make_request.  By the time that
289  * call has finished, the bio has been linked into some internal structure
290  * and so is visible to ->quiesce(), so we don't need the refcount any more.
291  */
292 static void md_make_request(struct request_queue *q, struct bio *bio)
293 {
294         const int rw = bio_data_dir(bio);
295         struct mddev *mddev = q->queuedata;
296         int cpu;
297         unsigned int sectors;
298
299         if (mddev == NULL || mddev->pers == NULL
300             || !mddev->ready) {
301                 bio_io_error(bio);
302                 return;
303         }
304         if (mddev->ro == 1 && unlikely(rw == WRITE)) {
305                 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
306                 return;
307         }
308         smp_rmb(); /* Ensure implications of  'active' are visible */
309         rcu_read_lock();
310         if (mddev->suspended) {
311                 DEFINE_WAIT(__wait);
312                 for (;;) {
313                         prepare_to_wait(&mddev->sb_wait, &__wait,
314                                         TASK_UNINTERRUPTIBLE);
315                         if (!mddev->suspended)
316                                 break;
317                         rcu_read_unlock();
318                         schedule();
319                         rcu_read_lock();
320                 }
321                 finish_wait(&mddev->sb_wait, &__wait);
322         }
323         atomic_inc(&mddev->active_io);
324         rcu_read_unlock();
325
326         /*
327          * save the sectors now since our bio can
328          * go away inside make_request
329          */
330         sectors = bio_sectors(bio);
331         mddev->pers->make_request(mddev, bio);
332
333         cpu = part_stat_lock();
334         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
335         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
336         part_stat_unlock();
337
338         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
339                 wake_up(&mddev->sb_wait);
340 }
341
342 /* mddev_suspend makes sure no new requests are submitted
343  * to the device, and that any requests that have been submitted
344  * are completely handled.
345  * Once ->stop is called and completes, the module will be completely
346  * unused.
347  */
348 void mddev_suspend(struct mddev *mddev)
349 {
350         BUG_ON(mddev->suspended);
351         mddev->suspended = 1;
352         synchronize_rcu();
353         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
354         mddev->pers->quiesce(mddev, 1);
355
356         del_timer_sync(&mddev->safemode_timer);
357 }
358 EXPORT_SYMBOL_GPL(mddev_suspend);
359
360 void mddev_resume(struct mddev *mddev)
361 {
362         mddev->suspended = 0;
363         wake_up(&mddev->sb_wait);
364         mddev->pers->quiesce(mddev, 0);
365
366         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
367         md_wakeup_thread(mddev->thread);
368         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
369 }
370 EXPORT_SYMBOL_GPL(mddev_resume);
371
372 int mddev_congested(struct mddev *mddev, int bits)
373 {
374         return mddev->suspended;
375 }
376 EXPORT_SYMBOL(mddev_congested);
377
378 /*
379  * Generic flush handling for md
380  */
381
382 static void md_end_flush(struct bio *bio, int err)
383 {
384         struct md_rdev *rdev = bio->bi_private;
385         struct mddev *mddev = rdev->mddev;
386
387         rdev_dec_pending(rdev, mddev);
388
389         if (atomic_dec_and_test(&mddev->flush_pending)) {
390                 /* The pre-request flush has finished */
391                 queue_work(md_wq, &mddev->flush_work);
392         }
393         bio_put(bio);
394 }
395
396 static void md_submit_flush_data(struct work_struct *ws);
397
398 static void submit_flushes(struct work_struct *ws)
399 {
400         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
401         struct md_rdev *rdev;
402
403         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
404         atomic_set(&mddev->flush_pending, 1);
405         rcu_read_lock();
406         rdev_for_each_rcu(rdev, mddev)
407                 if (rdev->raid_disk >= 0 &&
408                     !test_bit(Faulty, &rdev->flags)) {
409                         /* Take two references, one is dropped
410                          * when request finishes, one after
411                          * we reclaim rcu_read_lock
412                          */
413                         struct bio *bi;
414                         atomic_inc(&rdev->nr_pending);
415                         atomic_inc(&rdev->nr_pending);
416                         rcu_read_unlock();
417                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
418                         bi->bi_end_io = md_end_flush;
419                         bi->bi_private = rdev;
420                         bi->bi_bdev = rdev->bdev;
421                         atomic_inc(&mddev->flush_pending);
422                         submit_bio(WRITE_FLUSH, bi);
423                         rcu_read_lock();
424                         rdev_dec_pending(rdev, mddev);
425                 }
426         rcu_read_unlock();
427         if (atomic_dec_and_test(&mddev->flush_pending))
428                 queue_work(md_wq, &mddev->flush_work);
429 }
430
431 static void md_submit_flush_data(struct work_struct *ws)
432 {
433         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
434         struct bio *bio = mddev->flush_bio;
435
436         if (bio->bi_size == 0)
437                 /* an empty barrier - all done */
438                 bio_endio(bio, 0);
439         else {
440                 bio->bi_rw &= ~REQ_FLUSH;
441                 mddev->pers->make_request(mddev, bio);
442         }
443
444         mddev->flush_bio = NULL;
445         wake_up(&mddev->sb_wait);
446 }
447
448 void md_flush_request(struct mddev *mddev, struct bio *bio)
449 {
450         spin_lock_irq(&mddev->write_lock);
451         wait_event_lock_irq(mddev->sb_wait,
452                             !mddev->flush_bio,
453                             mddev->write_lock);
454         mddev->flush_bio = bio;
455         spin_unlock_irq(&mddev->write_lock);
456
457         INIT_WORK(&mddev->flush_work, submit_flushes);
458         queue_work(md_wq, &mddev->flush_work);
459 }
460 EXPORT_SYMBOL(md_flush_request);
461
462 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
463 {
464         struct mddev *mddev = cb->data;
465         md_wakeup_thread(mddev->thread);
466         kfree(cb);
467 }
468 EXPORT_SYMBOL(md_unplug);
469
470 static inline struct mddev *mddev_get(struct mddev *mddev)
471 {
472         atomic_inc(&mddev->active);
473         return mddev;
474 }
475
476 static void mddev_delayed_delete(struct work_struct *ws);
477
478 static void mddev_put(struct mddev *mddev)
479 {
480         struct bio_set *bs = NULL;
481
482         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
483                 return;
484         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
485             mddev->ctime == 0 && !mddev->hold_active) {
486                 /* Array is not configured at all, and not held active,
487                  * so destroy it */
488                 list_del_init(&mddev->all_mddevs);
489                 bs = mddev->bio_set;
490                 mddev->bio_set = NULL;
491                 if (mddev->gendisk) {
492                         /* We did a probe so need to clean up.  Call
493                          * queue_work inside the spinlock so that
494                          * flush_workqueue() after mddev_find will
495                          * succeed in waiting for the work to be done.
496                          */
497                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
498                         queue_work(md_misc_wq, &mddev->del_work);
499                 } else
500                         kfree(mddev);
501         }
502         spin_unlock(&all_mddevs_lock);
503         if (bs)
504                 bioset_free(bs);
505 }
506
507 void mddev_init(struct mddev *mddev)
508 {
509         mutex_init(&mddev->open_mutex);
510         mutex_init(&mddev->reconfig_mutex);
511         mutex_init(&mddev->bitmap_info.mutex);
512         INIT_LIST_HEAD(&mddev->disks);
513         INIT_LIST_HEAD(&mddev->all_mddevs);
514         init_timer(&mddev->safemode_timer);
515         atomic_set(&mddev->active, 1);
516         atomic_set(&mddev->openers, 0);
517         atomic_set(&mddev->active_io, 0);
518         spin_lock_init(&mddev->write_lock);
519         atomic_set(&mddev->flush_pending, 0);
520         init_waitqueue_head(&mddev->sb_wait);
521         init_waitqueue_head(&mddev->recovery_wait);
522         mddev->reshape_position = MaxSector;
523         mddev->reshape_backwards = 0;
524         mddev->resync_min = 0;
525         mddev->resync_max = MaxSector;
526         mddev->level = LEVEL_NONE;
527 }
528 EXPORT_SYMBOL_GPL(mddev_init);
529
530 static struct mddev * mddev_find(dev_t unit)
531 {
532         struct mddev *mddev, *new = NULL;
533
534         if (unit && MAJOR(unit) != MD_MAJOR)
535                 unit &= ~((1<<MdpMinorShift)-1);
536
537  retry:
538         spin_lock(&all_mddevs_lock);
539
540         if (unit) {
541                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
542                         if (mddev->unit == unit) {
543                                 mddev_get(mddev);
544                                 spin_unlock(&all_mddevs_lock);
545                                 kfree(new);
546                                 return mddev;
547                         }
548
549                 if (new) {
550                         list_add(&new->all_mddevs, &all_mddevs);
551                         spin_unlock(&all_mddevs_lock);
552                         new->hold_active = UNTIL_IOCTL;
553                         return new;
554                 }
555         } else if (new) {
556                 /* find an unused unit number */
557                 static int next_minor = 512;
558                 int start = next_minor;
559                 int is_free = 0;
560                 int dev = 0;
561                 while (!is_free) {
562                         dev = MKDEV(MD_MAJOR, next_minor);
563                         next_minor++;
564                         if (next_minor > MINORMASK)
565                                 next_minor = 0;
566                         if (next_minor == start) {
567                                 /* Oh dear, all in use. */
568                                 spin_unlock(&all_mddevs_lock);
569                                 kfree(new);
570                                 return NULL;
571                         }
572                                 
573                         is_free = 1;
574                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
575                                 if (mddev->unit == dev) {
576                                         is_free = 0;
577                                         break;
578                                 }
579                 }
580                 new->unit = dev;
581                 new->md_minor = MINOR(dev);
582                 new->hold_active = UNTIL_STOP;
583                 list_add(&new->all_mddevs, &all_mddevs);
584                 spin_unlock(&all_mddevs_lock);
585                 return new;
586         }
587         spin_unlock(&all_mddevs_lock);
588
589         new = kzalloc(sizeof(*new), GFP_KERNEL);
590         if (!new)
591                 return NULL;
592
593         new->unit = unit;
594         if (MAJOR(unit) == MD_MAJOR)
595                 new->md_minor = MINOR(unit);
596         else
597                 new->md_minor = MINOR(unit) >> MdpMinorShift;
598
599         mddev_init(new);
600
601         goto retry;
602 }
603
604 static inline int mddev_lock(struct mddev * mddev)
605 {
606         return mutex_lock_interruptible(&mddev->reconfig_mutex);
607 }
608
609 static inline int mddev_is_locked(struct mddev *mddev)
610 {
611         return mutex_is_locked(&mddev->reconfig_mutex);
612 }
613
614 static inline int mddev_trylock(struct mddev * mddev)
615 {
616         return mutex_trylock(&mddev->reconfig_mutex);
617 }
618
619 static struct attribute_group md_redundancy_group;
620
621 static void mddev_unlock(struct mddev * mddev)
622 {
623         if (mddev->to_remove) {
624                 /* These cannot be removed under reconfig_mutex as
625                  * an access to the files will try to take reconfig_mutex
626                  * while holding the file unremovable, which leads to
627                  * a deadlock.
628                  * So hold set sysfs_active while the remove in happeing,
629                  * and anything else which might set ->to_remove or my
630                  * otherwise change the sysfs namespace will fail with
631                  * -EBUSY if sysfs_active is still set.
632                  * We set sysfs_active under reconfig_mutex and elsewhere
633                  * test it under the same mutex to ensure its correct value
634                  * is seen.
635                  */
636                 struct attribute_group *to_remove = mddev->to_remove;
637                 mddev->to_remove = NULL;
638                 mddev->sysfs_active = 1;
639                 mutex_unlock(&mddev->reconfig_mutex);
640
641                 if (mddev->kobj.sd) {
642                         if (to_remove != &md_redundancy_group)
643                                 sysfs_remove_group(&mddev->kobj, to_remove);
644                         if (mddev->pers == NULL ||
645                             mddev->pers->sync_request == NULL) {
646                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
647                                 if (mddev->sysfs_action)
648                                         sysfs_put(mddev->sysfs_action);
649                                 mddev->sysfs_action = NULL;
650                         }
651                 }
652                 mddev->sysfs_active = 0;
653         } else
654                 mutex_unlock(&mddev->reconfig_mutex);
655
656         /* As we've dropped the mutex we need a spinlock to
657          * make sure the thread doesn't disappear
658          */
659         spin_lock(&pers_lock);
660         md_wakeup_thread(mddev->thread);
661         spin_unlock(&pers_lock);
662 }
663
664 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
665 {
666         struct md_rdev *rdev;
667
668         rdev_for_each(rdev, mddev)
669                 if (rdev->desc_nr == nr)
670                         return rdev;
671
672         return NULL;
673 }
674
675 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
676 {
677         struct md_rdev *rdev;
678
679         rdev_for_each_rcu(rdev, mddev)
680                 if (rdev->desc_nr == nr)
681                         return rdev;
682
683         return NULL;
684 }
685
686 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
687 {
688         struct md_rdev *rdev;
689
690         rdev_for_each(rdev, mddev)
691                 if (rdev->bdev->bd_dev == dev)
692                         return rdev;
693
694         return NULL;
695 }
696
697 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
698 {
699         struct md_rdev *rdev;
700
701         rdev_for_each_rcu(rdev, mddev)
702                 if (rdev->bdev->bd_dev == dev)
703                         return rdev;
704
705         return NULL;
706 }
707
708 static struct md_personality *find_pers(int level, char *clevel)
709 {
710         struct md_personality *pers;
711         list_for_each_entry(pers, &pers_list, list) {
712                 if (level != LEVEL_NONE && pers->level == level)
713                         return pers;
714                 if (strcmp(pers->name, clevel)==0)
715                         return pers;
716         }
717         return NULL;
718 }
719
720 /* return the offset of the super block in 512byte sectors */
721 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
722 {
723         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
724         return MD_NEW_SIZE_SECTORS(num_sectors);
725 }
726
727 static int alloc_disk_sb(struct md_rdev * rdev)
728 {
729         if (rdev->sb_page)
730                 MD_BUG();
731
732         rdev->sb_page = alloc_page(GFP_KERNEL);
733         if (!rdev->sb_page) {
734                 printk(KERN_ALERT "md: out of memory.\n");
735                 return -ENOMEM;
736         }
737
738         return 0;
739 }
740
741 void md_rdev_clear(struct md_rdev *rdev)
742 {
743         if (rdev->sb_page) {
744                 put_page(rdev->sb_page);
745                 rdev->sb_loaded = 0;
746                 rdev->sb_page = NULL;
747                 rdev->sb_start = 0;
748                 rdev->sectors = 0;
749         }
750         if (rdev->bb_page) {
751                 put_page(rdev->bb_page);
752                 rdev->bb_page = NULL;
753         }
754         kfree(rdev->badblocks.page);
755         rdev->badblocks.page = NULL;
756 }
757 EXPORT_SYMBOL_GPL(md_rdev_clear);
758
759 static void super_written(struct bio *bio, int error)
760 {
761         struct md_rdev *rdev = bio->bi_private;
762         struct mddev *mddev = rdev->mddev;
763
764         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
765                 printk("md: super_written gets error=%d, uptodate=%d\n",
766                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
767                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
768                 md_error(mddev, rdev);
769         }
770
771         if (atomic_dec_and_test(&mddev->pending_writes))
772                 wake_up(&mddev->sb_wait);
773         bio_put(bio);
774 }
775
776 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
777                    sector_t sector, int size, struct page *page)
778 {
779         /* write first size bytes of page to sector of rdev
780          * Increment mddev->pending_writes before returning
781          * and decrement it on completion, waking up sb_wait
782          * if zero is reached.
783          * If an error occurred, call md_error
784          */
785         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
786
787         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
788         bio->bi_sector = sector;
789         bio_add_page(bio, page, size, 0);
790         bio->bi_private = rdev;
791         bio->bi_end_io = super_written;
792
793         atomic_inc(&mddev->pending_writes);
794         submit_bio(WRITE_FLUSH_FUA, bio);
795 }
796
797 void md_super_wait(struct mddev *mddev)
798 {
799         /* wait for all superblock writes that were scheduled to complete */
800         DEFINE_WAIT(wq);
801         for(;;) {
802                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
803                 if (atomic_read(&mddev->pending_writes)==0)
804                         break;
805                 schedule();
806         }
807         finish_wait(&mddev->sb_wait, &wq);
808 }
809
810 static void bi_complete(struct bio *bio, int error)
811 {
812         complete((struct completion*)bio->bi_private);
813 }
814
815 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
816                  struct page *page, int rw, bool metadata_op)
817 {
818         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
819         struct completion event;
820         int ret;
821
822         rw |= REQ_SYNC;
823
824         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
825                 rdev->meta_bdev : rdev->bdev;
826         if (metadata_op)
827                 bio->bi_sector = sector + rdev->sb_start;
828         else if (rdev->mddev->reshape_position != MaxSector &&
829                  (rdev->mddev->reshape_backwards ==
830                   (sector >= rdev->mddev->reshape_position)))
831                 bio->bi_sector = sector + rdev->new_data_offset;
832         else
833                 bio->bi_sector = sector + rdev->data_offset;
834         bio_add_page(bio, page, size, 0);
835         init_completion(&event);
836         bio->bi_private = &event;
837         bio->bi_end_io = bi_complete;
838         submit_bio(rw, bio);
839         wait_for_completion(&event);
840
841         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
842         bio_put(bio);
843         return ret;
844 }
845 EXPORT_SYMBOL_GPL(sync_page_io);
846
847 static int read_disk_sb(struct md_rdev * rdev, int size)
848 {
849         char b[BDEVNAME_SIZE];
850         if (!rdev->sb_page) {
851                 MD_BUG();
852                 return -EINVAL;
853         }
854         if (rdev->sb_loaded)
855                 return 0;
856
857
858         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
859                 goto fail;
860         rdev->sb_loaded = 1;
861         return 0;
862
863 fail:
864         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
865                 bdevname(rdev->bdev,b));
866         return -EINVAL;
867 }
868
869 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
870 {
871         return  sb1->set_uuid0 == sb2->set_uuid0 &&
872                 sb1->set_uuid1 == sb2->set_uuid1 &&
873                 sb1->set_uuid2 == sb2->set_uuid2 &&
874                 sb1->set_uuid3 == sb2->set_uuid3;
875 }
876
877 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
878 {
879         int ret;
880         mdp_super_t *tmp1, *tmp2;
881
882         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
883         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
884
885         if (!tmp1 || !tmp2) {
886                 ret = 0;
887                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
888                 goto abort;
889         }
890
891         *tmp1 = *sb1;
892         *tmp2 = *sb2;
893
894         /*
895          * nr_disks is not constant
896          */
897         tmp1->nr_disks = 0;
898         tmp2->nr_disks = 0;
899
900         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
901 abort:
902         kfree(tmp1);
903         kfree(tmp2);
904         return ret;
905 }
906
907
908 static u32 md_csum_fold(u32 csum)
909 {
910         csum = (csum & 0xffff) + (csum >> 16);
911         return (csum & 0xffff) + (csum >> 16);
912 }
913
914 static unsigned int calc_sb_csum(mdp_super_t * sb)
915 {
916         u64 newcsum = 0;
917         u32 *sb32 = (u32*)sb;
918         int i;
919         unsigned int disk_csum, csum;
920
921         disk_csum = sb->sb_csum;
922         sb->sb_csum = 0;
923
924         for (i = 0; i < MD_SB_BYTES/4 ; i++)
925                 newcsum += sb32[i];
926         csum = (newcsum & 0xffffffff) + (newcsum>>32);
927
928
929 #ifdef CONFIG_ALPHA
930         /* This used to use csum_partial, which was wrong for several
931          * reasons including that different results are returned on
932          * different architectures.  It isn't critical that we get exactly
933          * the same return value as before (we always csum_fold before
934          * testing, and that removes any differences).  However as we
935          * know that csum_partial always returned a 16bit value on
936          * alphas, do a fold to maximise conformity to previous behaviour.
937          */
938         sb->sb_csum = md_csum_fold(disk_csum);
939 #else
940         sb->sb_csum = disk_csum;
941 #endif
942         return csum;
943 }
944
945
946 /*
947  * Handle superblock details.
948  * We want to be able to handle multiple superblock formats
949  * so we have a common interface to them all, and an array of
950  * different handlers.
951  * We rely on user-space to write the initial superblock, and support
952  * reading and updating of superblocks.
953  * Interface methods are:
954  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
955  *      loads and validates a superblock on dev.
956  *      if refdev != NULL, compare superblocks on both devices
957  *    Return:
958  *      0 - dev has a superblock that is compatible with refdev
959  *      1 - dev has a superblock that is compatible and newer than refdev
960  *          so dev should be used as the refdev in future
961  *     -EINVAL superblock incompatible or invalid
962  *     -othererror e.g. -EIO
963  *
964  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
965  *      Verify that dev is acceptable into mddev.
966  *       The first time, mddev->raid_disks will be 0, and data from
967  *       dev should be merged in.  Subsequent calls check that dev
968  *       is new enough.  Return 0 or -EINVAL
969  *
970  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
971  *     Update the superblock for rdev with data in mddev
972  *     This does not write to disc.
973  *
974  */
975
976 struct super_type  {
977         char                *name;
978         struct module       *owner;
979         int                 (*load_super)(struct md_rdev *rdev,
980                                           struct md_rdev *refdev,
981                                           int minor_version);
982         int                 (*validate_super)(struct mddev *mddev,
983                                               struct md_rdev *rdev);
984         void                (*sync_super)(struct mddev *mddev,
985                                           struct md_rdev *rdev);
986         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
987                                                 sector_t num_sectors);
988         int                 (*allow_new_offset)(struct md_rdev *rdev,
989                                                 unsigned long long new_offset);
990 };
991
992 /*
993  * Check that the given mddev has no bitmap.
994  *
995  * This function is called from the run method of all personalities that do not
996  * support bitmaps. It prints an error message and returns non-zero if mddev
997  * has a bitmap. Otherwise, it returns 0.
998  *
999  */
1000 int md_check_no_bitmap(struct mddev *mddev)
1001 {
1002         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1003                 return 0;
1004         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1005                 mdname(mddev), mddev->pers->name);
1006         return 1;
1007 }
1008 EXPORT_SYMBOL(md_check_no_bitmap);
1009
1010 /*
1011  * load_super for 0.90.0 
1012  */
1013 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1014 {
1015         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1016         mdp_super_t *sb;
1017         int ret;
1018
1019         /*
1020          * Calculate the position of the superblock (512byte sectors),
1021          * it's at the end of the disk.
1022          *
1023          * It also happens to be a multiple of 4Kb.
1024          */
1025         rdev->sb_start = calc_dev_sboffset(rdev);
1026
1027         ret = read_disk_sb(rdev, MD_SB_BYTES);
1028         if (ret) return ret;
1029
1030         ret = -EINVAL;
1031
1032         bdevname(rdev->bdev, b);
1033         sb = page_address(rdev->sb_page);
1034
1035         if (sb->md_magic != MD_SB_MAGIC) {
1036                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1037                        b);
1038                 goto abort;
1039         }
1040
1041         if (sb->major_version != 0 ||
1042             sb->minor_version < 90 ||
1043             sb->minor_version > 91) {
1044                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1045                         sb->major_version, sb->minor_version,
1046                         b);
1047                 goto abort;
1048         }
1049
1050         if (sb->raid_disks <= 0)
1051                 goto abort;
1052
1053         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1054                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1055                         b);
1056                 goto abort;
1057         }
1058
1059         rdev->preferred_minor = sb->md_minor;
1060         rdev->data_offset = 0;
1061         rdev->new_data_offset = 0;
1062         rdev->sb_size = MD_SB_BYTES;
1063         rdev->badblocks.shift = -1;
1064
1065         if (sb->level == LEVEL_MULTIPATH)
1066                 rdev->desc_nr = -1;
1067         else
1068                 rdev->desc_nr = sb->this_disk.number;
1069
1070         if (!refdev) {
1071                 ret = 1;
1072         } else {
1073                 __u64 ev1, ev2;
1074                 mdp_super_t *refsb = page_address(refdev->sb_page);
1075                 if (!uuid_equal(refsb, sb)) {
1076                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1077                                 b, bdevname(refdev->bdev,b2));
1078                         goto abort;
1079                 }
1080                 if (!sb_equal(refsb, sb)) {
1081                         printk(KERN_WARNING "md: %s has same UUID"
1082                                " but different superblock to %s\n",
1083                                b, bdevname(refdev->bdev, b2));
1084                         goto abort;
1085                 }
1086                 ev1 = md_event(sb);
1087                 ev2 = md_event(refsb);
1088                 if (ev1 > ev2)
1089                         ret = 1;
1090                 else 
1091                         ret = 0;
1092         }
1093         rdev->sectors = rdev->sb_start;
1094         /* Limit to 4TB as metadata cannot record more than that.
1095          * (not needed for Linear and RAID0 as metadata doesn't
1096          * record this size)
1097          */
1098         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1099                 rdev->sectors = (2ULL << 32) - 2;
1100
1101         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1102                 /* "this cannot possibly happen" ... */
1103                 ret = -EINVAL;
1104
1105  abort:
1106         return ret;
1107 }
1108
1109 /*
1110  * validate_super for 0.90.0
1111  */
1112 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1113 {
1114         mdp_disk_t *desc;
1115         mdp_super_t *sb = page_address(rdev->sb_page);
1116         __u64 ev1 = md_event(sb);
1117
1118         rdev->raid_disk = -1;
1119         clear_bit(Faulty, &rdev->flags);
1120         clear_bit(In_sync, &rdev->flags);
1121         clear_bit(WriteMostly, &rdev->flags);
1122
1123         if (mddev->raid_disks == 0) {
1124                 mddev->major_version = 0;
1125                 mddev->minor_version = sb->minor_version;
1126                 mddev->patch_version = sb->patch_version;
1127                 mddev->external = 0;
1128                 mddev->chunk_sectors = sb->chunk_size >> 9;
1129                 mddev->ctime = sb->ctime;
1130                 mddev->utime = sb->utime;
1131                 mddev->level = sb->level;
1132                 mddev->clevel[0] = 0;
1133                 mddev->layout = sb->layout;
1134                 mddev->raid_disks = sb->raid_disks;
1135                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1136                 mddev->events = ev1;
1137                 mddev->bitmap_info.offset = 0;
1138                 mddev->bitmap_info.space = 0;
1139                 /* bitmap can use 60 K after the 4K superblocks */
1140                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1141                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1142                 mddev->reshape_backwards = 0;
1143
1144                 if (mddev->minor_version >= 91) {
1145                         mddev->reshape_position = sb->reshape_position;
1146                         mddev->delta_disks = sb->delta_disks;
1147                         mddev->new_level = sb->new_level;
1148                         mddev->new_layout = sb->new_layout;
1149                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1150                         if (mddev->delta_disks < 0)
1151                                 mddev->reshape_backwards = 1;
1152                 } else {
1153                         mddev->reshape_position = MaxSector;
1154                         mddev->delta_disks = 0;
1155                         mddev->new_level = mddev->level;
1156                         mddev->new_layout = mddev->layout;
1157                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1158                 }
1159
1160                 if (sb->state & (1<<MD_SB_CLEAN))
1161                         mddev->recovery_cp = MaxSector;
1162                 else {
1163                         if (sb->events_hi == sb->cp_events_hi && 
1164                                 sb->events_lo == sb->cp_events_lo) {
1165                                 mddev->recovery_cp = sb->recovery_cp;
1166                         } else
1167                                 mddev->recovery_cp = 0;
1168                 }
1169
1170                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1171                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1172                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1173                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1174
1175                 mddev->max_disks = MD_SB_DISKS;
1176
1177                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1178                     mddev->bitmap_info.file == NULL) {
1179                         mddev->bitmap_info.offset =
1180                                 mddev->bitmap_info.default_offset;
1181                         mddev->bitmap_info.space =
1182                                 mddev->bitmap_info.space;
1183                 }
1184
1185         } else if (mddev->pers == NULL) {
1186                 /* Insist on good event counter while assembling, except
1187                  * for spares (which don't need an event count) */
1188                 ++ev1;
1189                 if (sb->disks[rdev->desc_nr].state & (
1190                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1191                         if (ev1 < mddev->events) 
1192                                 return -EINVAL;
1193         } else if (mddev->bitmap) {
1194                 /* if adding to array with a bitmap, then we can accept an
1195                  * older device ... but not too old.
1196                  */
1197                 if (ev1 < mddev->bitmap->events_cleared)
1198                         return 0;
1199         } else {
1200                 if (ev1 < mddev->events)
1201                         /* just a hot-add of a new device, leave raid_disk at -1 */
1202                         return 0;
1203         }
1204
1205         if (mddev->level != LEVEL_MULTIPATH) {
1206                 desc = sb->disks + rdev->desc_nr;
1207
1208                 if (desc->state & (1<<MD_DISK_FAULTY))
1209                         set_bit(Faulty, &rdev->flags);
1210                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1211                             desc->raid_disk < mddev->raid_disks */) {
1212                         set_bit(In_sync, &rdev->flags);
1213                         rdev->raid_disk = desc->raid_disk;
1214                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1215                         /* active but not in sync implies recovery up to
1216                          * reshape position.  We don't know exactly where
1217                          * that is, so set to zero for now */
1218                         if (mddev->minor_version >= 91) {
1219                                 rdev->recovery_offset = 0;
1220                                 rdev->raid_disk = desc->raid_disk;
1221                         }
1222                 }
1223                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1224                         set_bit(WriteMostly, &rdev->flags);
1225         } else /* MULTIPATH are always insync */
1226                 set_bit(In_sync, &rdev->flags);
1227         return 0;
1228 }
1229
1230 /*
1231  * sync_super for 0.90.0
1232  */
1233 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1234 {
1235         mdp_super_t *sb;
1236         struct md_rdev *rdev2;
1237         int next_spare = mddev->raid_disks;
1238
1239
1240         /* make rdev->sb match mddev data..
1241          *
1242          * 1/ zero out disks
1243          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1244          * 3/ any empty disks < next_spare become removed
1245          *
1246          * disks[0] gets initialised to REMOVED because
1247          * we cannot be sure from other fields if it has
1248          * been initialised or not.
1249          */
1250         int i;
1251         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1252
1253         rdev->sb_size = MD_SB_BYTES;
1254
1255         sb = page_address(rdev->sb_page);
1256
1257         memset(sb, 0, sizeof(*sb));
1258
1259         sb->md_magic = MD_SB_MAGIC;
1260         sb->major_version = mddev->major_version;
1261         sb->patch_version = mddev->patch_version;
1262         sb->gvalid_words  = 0; /* ignored */
1263         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1264         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1265         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1266         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1267
1268         sb->ctime = mddev->ctime;
1269         sb->level = mddev->level;
1270         sb->size = mddev->dev_sectors / 2;
1271         sb->raid_disks = mddev->raid_disks;
1272         sb->md_minor = mddev->md_minor;
1273         sb->not_persistent = 0;
1274         sb->utime = mddev->utime;
1275         sb->state = 0;
1276         sb->events_hi = (mddev->events>>32);
1277         sb->events_lo = (u32)mddev->events;
1278
1279         if (mddev->reshape_position == MaxSector)
1280                 sb->minor_version = 90;
1281         else {
1282                 sb->minor_version = 91;
1283                 sb->reshape_position = mddev->reshape_position;
1284                 sb->new_level = mddev->new_level;
1285                 sb->delta_disks = mddev->delta_disks;
1286                 sb->new_layout = mddev->new_layout;
1287                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1288         }
1289         mddev->minor_version = sb->minor_version;
1290         if (mddev->in_sync)
1291         {
1292                 sb->recovery_cp = mddev->recovery_cp;
1293                 sb->cp_events_hi = (mddev->events>>32);
1294                 sb->cp_events_lo = (u32)mddev->events;
1295                 if (mddev->recovery_cp == MaxSector)
1296                         sb->state = (1<< MD_SB_CLEAN);
1297         } else
1298                 sb->recovery_cp = 0;
1299
1300         sb->layout = mddev->layout;
1301         sb->chunk_size = mddev->chunk_sectors << 9;
1302
1303         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1304                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1305
1306         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1307         rdev_for_each(rdev2, mddev) {
1308                 mdp_disk_t *d;
1309                 int desc_nr;
1310                 int is_active = test_bit(In_sync, &rdev2->flags);
1311
1312                 if (rdev2->raid_disk >= 0 &&
1313                     sb->minor_version >= 91)
1314                         /* we have nowhere to store the recovery_offset,
1315                          * but if it is not below the reshape_position,
1316                          * we can piggy-back on that.
1317                          */
1318                         is_active = 1;
1319                 if (rdev2->raid_disk < 0 ||
1320                     test_bit(Faulty, &rdev2->flags))
1321                         is_active = 0;
1322                 if (is_active)
1323                         desc_nr = rdev2->raid_disk;
1324                 else
1325                         desc_nr = next_spare++;
1326                 rdev2->desc_nr = desc_nr;
1327                 d = &sb->disks[rdev2->desc_nr];
1328                 nr_disks++;
1329                 d->number = rdev2->desc_nr;
1330                 d->major = MAJOR(rdev2->bdev->bd_dev);
1331                 d->minor = MINOR(rdev2->bdev->bd_dev);
1332                 if (is_active)
1333                         d->raid_disk = rdev2->raid_disk;
1334                 else
1335                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1336                 if (test_bit(Faulty, &rdev2->flags))
1337                         d->state = (1<<MD_DISK_FAULTY);
1338                 else if (is_active) {
1339                         d->state = (1<<MD_DISK_ACTIVE);
1340                         if (test_bit(In_sync, &rdev2->flags))
1341                                 d->state |= (1<<MD_DISK_SYNC);
1342                         active++;
1343                         working++;
1344                 } else {
1345                         d->state = 0;
1346                         spare++;
1347                         working++;
1348                 }
1349                 if (test_bit(WriteMostly, &rdev2->flags))
1350                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1351         }
1352         /* now set the "removed" and "faulty" bits on any missing devices */
1353         for (i=0 ; i < mddev->raid_disks ; i++) {
1354                 mdp_disk_t *d = &sb->disks[i];
1355                 if (d->state == 0 && d->number == 0) {
1356                         d->number = i;
1357                         d->raid_disk = i;
1358                         d->state = (1<<MD_DISK_REMOVED);
1359                         d->state |= (1<<MD_DISK_FAULTY);
1360                         failed++;
1361                 }
1362         }
1363         sb->nr_disks = nr_disks;
1364         sb->active_disks = active;
1365         sb->working_disks = working;
1366         sb->failed_disks = failed;
1367         sb->spare_disks = spare;
1368
1369         sb->this_disk = sb->disks[rdev->desc_nr];
1370         sb->sb_csum = calc_sb_csum(sb);
1371 }
1372
1373 /*
1374  * rdev_size_change for 0.90.0
1375  */
1376 static unsigned long long
1377 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1378 {
1379         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1380                 return 0; /* component must fit device */
1381         if (rdev->mddev->bitmap_info.offset)
1382                 return 0; /* can't move bitmap */
1383         rdev->sb_start = calc_dev_sboffset(rdev);
1384         if (!num_sectors || num_sectors > rdev->sb_start)
1385                 num_sectors = rdev->sb_start;
1386         /* Limit to 4TB as metadata cannot record more than that.
1387          * 4TB == 2^32 KB, or 2*2^32 sectors.
1388          */
1389         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1390                 num_sectors = (2ULL << 32) - 2;
1391         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1392                        rdev->sb_page);
1393         md_super_wait(rdev->mddev);
1394         return num_sectors;
1395 }
1396
1397 static int
1398 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1399 {
1400         /* non-zero offset changes not possible with v0.90 */
1401         return new_offset == 0;
1402 }
1403
1404 /*
1405  * version 1 superblock
1406  */
1407
1408 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1409 {
1410         __le32 disk_csum;
1411         u32 csum;
1412         unsigned long long newcsum;
1413         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1414         __le32 *isuper = (__le32*)sb;
1415
1416         disk_csum = sb->sb_csum;
1417         sb->sb_csum = 0;
1418         newcsum = 0;
1419         for (; size >= 4; size -= 4)
1420                 newcsum += le32_to_cpu(*isuper++);
1421
1422         if (size == 2)
1423                 newcsum += le16_to_cpu(*(__le16*) isuper);
1424
1425         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1426         sb->sb_csum = disk_csum;
1427         return cpu_to_le32(csum);
1428 }
1429
1430 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1431                             int acknowledged);
1432 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1433 {
1434         struct mdp_superblock_1 *sb;
1435         int ret;
1436         sector_t sb_start;
1437         sector_t sectors;
1438         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1439         int bmask;
1440
1441         /*
1442          * Calculate the position of the superblock in 512byte sectors.
1443          * It is always aligned to a 4K boundary and
1444          * depeding on minor_version, it can be:
1445          * 0: At least 8K, but less than 12K, from end of device
1446          * 1: At start of device
1447          * 2: 4K from start of device.
1448          */
1449         switch(minor_version) {
1450         case 0:
1451                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1452                 sb_start -= 8*2;
1453                 sb_start &= ~(sector_t)(4*2-1);
1454                 break;
1455         case 1:
1456                 sb_start = 0;
1457                 break;
1458         case 2:
1459                 sb_start = 8;
1460                 break;
1461         default:
1462                 return -EINVAL;
1463         }
1464         rdev->sb_start = sb_start;
1465
1466         /* superblock is rarely larger than 1K, but it can be larger,
1467          * and it is safe to read 4k, so we do that
1468          */
1469         ret = read_disk_sb(rdev, 4096);
1470         if (ret) return ret;
1471
1472
1473         sb = page_address(rdev->sb_page);
1474
1475         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1476             sb->major_version != cpu_to_le32(1) ||
1477             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1478             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1479             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1480                 return -EINVAL;
1481
1482         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1483                 printk("md: invalid superblock checksum on %s\n",
1484                         bdevname(rdev->bdev,b));
1485                 return -EINVAL;
1486         }
1487         if (le64_to_cpu(sb->data_size) < 10) {
1488                 printk("md: data_size too small on %s\n",
1489                        bdevname(rdev->bdev,b));
1490                 return -EINVAL;
1491         }
1492         if (sb->pad0 ||
1493             sb->pad3[0] ||
1494             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1495                 /* Some padding is non-zero, might be a new feature */
1496                 return -EINVAL;
1497
1498         rdev->preferred_minor = 0xffff;
1499         rdev->data_offset = le64_to_cpu(sb->data_offset);
1500         rdev->new_data_offset = rdev->data_offset;
1501         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1502             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1503                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1504         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1505
1506         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1507         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1508         if (rdev->sb_size & bmask)
1509                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1510
1511         if (minor_version
1512             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1513                 return -EINVAL;
1514         if (minor_version
1515             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1516                 return -EINVAL;
1517
1518         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1519                 rdev->desc_nr = -1;
1520         else
1521                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1522
1523         if (!rdev->bb_page) {
1524                 rdev->bb_page = alloc_page(GFP_KERNEL);
1525                 if (!rdev->bb_page)
1526                         return -ENOMEM;
1527         }
1528         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1529             rdev->badblocks.count == 0) {
1530                 /* need to load the bad block list.
1531                  * Currently we limit it to one page.
1532                  */
1533                 s32 offset;
1534                 sector_t bb_sector;
1535                 u64 *bbp;
1536                 int i;
1537                 int sectors = le16_to_cpu(sb->bblog_size);
1538                 if (sectors > (PAGE_SIZE / 512))
1539                         return -EINVAL;
1540                 offset = le32_to_cpu(sb->bblog_offset);
1541                 if (offset == 0)
1542                         return -EINVAL;
1543                 bb_sector = (long long)offset;
1544                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1545                                   rdev->bb_page, READ, true))
1546                         return -EIO;
1547                 bbp = (u64 *)page_address(rdev->bb_page);
1548                 rdev->badblocks.shift = sb->bblog_shift;
1549                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1550                         u64 bb = le64_to_cpu(*bbp);
1551                         int count = bb & (0x3ff);
1552                         u64 sector = bb >> 10;
1553                         sector <<= sb->bblog_shift;
1554                         count <<= sb->bblog_shift;
1555                         if (bb + 1 == 0)
1556                                 break;
1557                         if (md_set_badblocks(&rdev->badblocks,
1558                                              sector, count, 1) == 0)
1559                                 return -EINVAL;
1560                 }
1561         } else if (sb->bblog_offset != 0)
1562                 rdev->badblocks.shift = 0;
1563
1564         if (!refdev) {
1565                 ret = 1;
1566         } else {
1567                 __u64 ev1, ev2;
1568                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1569
1570                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1571                     sb->level != refsb->level ||
1572                     sb->layout != refsb->layout ||
1573                     sb->chunksize != refsb->chunksize) {
1574                         printk(KERN_WARNING "md: %s has strangely different"
1575                                 " superblock to %s\n",
1576                                 bdevname(rdev->bdev,b),
1577                                 bdevname(refdev->bdev,b2));
1578                         return -EINVAL;
1579                 }
1580                 ev1 = le64_to_cpu(sb->events);
1581                 ev2 = le64_to_cpu(refsb->events);
1582
1583                 if (ev1 > ev2)
1584                         ret = 1;
1585                 else
1586                         ret = 0;
1587         }
1588         if (minor_version) {
1589                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1590                 sectors -= rdev->data_offset;
1591         } else
1592                 sectors = rdev->sb_start;
1593         if (sectors < le64_to_cpu(sb->data_size))
1594                 return -EINVAL;
1595         rdev->sectors = le64_to_cpu(sb->data_size);
1596         return ret;
1597 }
1598
1599 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1600 {
1601         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1602         __u64 ev1 = le64_to_cpu(sb->events);
1603
1604         rdev->raid_disk = -1;
1605         clear_bit(Faulty, &rdev->flags);
1606         clear_bit(In_sync, &rdev->flags);
1607         clear_bit(WriteMostly, &rdev->flags);
1608
1609         if (mddev->raid_disks == 0) {
1610                 mddev->major_version = 1;
1611                 mddev->patch_version = 0;
1612                 mddev->external = 0;
1613                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1614                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1615                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1616                 mddev->level = le32_to_cpu(sb->level);
1617                 mddev->clevel[0] = 0;
1618                 mddev->layout = le32_to_cpu(sb->layout);
1619                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1620                 mddev->dev_sectors = le64_to_cpu(sb->size);
1621                 mddev->events = ev1;
1622                 mddev->bitmap_info.offset = 0;
1623                 mddev->bitmap_info.space = 0;
1624                 /* Default location for bitmap is 1K after superblock
1625                  * using 3K - total of 4K
1626                  */
1627                 mddev->bitmap_info.default_offset = 1024 >> 9;
1628                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1629                 mddev->reshape_backwards = 0;
1630
1631                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1632                 memcpy(mddev->uuid, sb->set_uuid, 16);
1633
1634                 mddev->max_disks =  (4096-256)/2;
1635
1636                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1637                     mddev->bitmap_info.file == NULL) {
1638                         mddev->bitmap_info.offset =
1639                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1640                         /* Metadata doesn't record how much space is available.
1641                          * For 1.0, we assume we can use up to the superblock
1642                          * if before, else to 4K beyond superblock.
1643                          * For others, assume no change is possible.
1644                          */
1645                         if (mddev->minor_version > 0)
1646                                 mddev->bitmap_info.space = 0;
1647                         else if (mddev->bitmap_info.offset > 0)
1648                                 mddev->bitmap_info.space =
1649                                         8 - mddev->bitmap_info.offset;
1650                         else
1651                                 mddev->bitmap_info.space =
1652                                         -mddev->bitmap_info.offset;
1653                 }
1654
1655                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1656                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1657                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1658                         mddev->new_level = le32_to_cpu(sb->new_level);
1659                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1660                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1661                         if (mddev->delta_disks < 0 ||
1662                             (mddev->delta_disks == 0 &&
1663                              (le32_to_cpu(sb->feature_map)
1664                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1665                                 mddev->reshape_backwards = 1;
1666                 } else {
1667                         mddev->reshape_position = MaxSector;
1668                         mddev->delta_disks = 0;
1669                         mddev->new_level = mddev->level;
1670                         mddev->new_layout = mddev->layout;
1671                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1672                 }
1673
1674         } else if (mddev->pers == NULL) {
1675                 /* Insist of good event counter while assembling, except for
1676                  * spares (which don't need an event count) */
1677                 ++ev1;
1678                 if (rdev->desc_nr >= 0 &&
1679                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1680                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1681                         if (ev1 < mddev->events)
1682                                 return -EINVAL;
1683         } else if (mddev->bitmap) {
1684                 /* If adding to array with a bitmap, then we can accept an
1685                  * older device, but not too old.
1686                  */
1687                 if (ev1 < mddev->bitmap->events_cleared)
1688                         return 0;
1689         } else {
1690                 if (ev1 < mddev->events)
1691                         /* just a hot-add of a new device, leave raid_disk at -1 */
1692                         return 0;
1693         }
1694         if (mddev->level != LEVEL_MULTIPATH) {
1695                 int role;
1696                 if (rdev->desc_nr < 0 ||
1697                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1698                         role = 0xffff;
1699                         rdev->desc_nr = -1;
1700                 } else
1701                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1702                 switch(role) {
1703                 case 0xffff: /* spare */
1704                         break;
1705                 case 0xfffe: /* faulty */
1706                         set_bit(Faulty, &rdev->flags);
1707                         break;
1708                 default:
1709                         if ((le32_to_cpu(sb->feature_map) &
1710                              MD_FEATURE_RECOVERY_OFFSET))
1711                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1712                         else
1713                                 set_bit(In_sync, &rdev->flags);
1714                         rdev->raid_disk = role;
1715                         break;
1716                 }
1717                 if (sb->devflags & WriteMostly1)
1718                         set_bit(WriteMostly, &rdev->flags);
1719                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1720                         set_bit(Replacement, &rdev->flags);
1721         } else /* MULTIPATH are always insync */
1722                 set_bit(In_sync, &rdev->flags);
1723
1724         return 0;
1725 }
1726
1727 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1728 {
1729         struct mdp_superblock_1 *sb;
1730         struct md_rdev *rdev2;
1731         int max_dev, i;
1732         /* make rdev->sb match mddev and rdev data. */
1733
1734         sb = page_address(rdev->sb_page);
1735
1736         sb->feature_map = 0;
1737         sb->pad0 = 0;
1738         sb->recovery_offset = cpu_to_le64(0);
1739         memset(sb->pad3, 0, sizeof(sb->pad3));
1740
1741         sb->utime = cpu_to_le64((__u64)mddev->utime);
1742         sb->events = cpu_to_le64(mddev->events);
1743         if (mddev->in_sync)
1744                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1745         else
1746                 sb->resync_offset = cpu_to_le64(0);
1747
1748         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1749
1750         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1751         sb->size = cpu_to_le64(mddev->dev_sectors);
1752         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1753         sb->level = cpu_to_le32(mddev->level);
1754         sb->layout = cpu_to_le32(mddev->layout);
1755
1756         if (test_bit(WriteMostly, &rdev->flags))
1757                 sb->devflags |= WriteMostly1;
1758         else
1759                 sb->devflags &= ~WriteMostly1;
1760         sb->data_offset = cpu_to_le64(rdev->data_offset);
1761         sb->data_size = cpu_to_le64(rdev->sectors);
1762
1763         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1764                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1765                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1766         }
1767
1768         if (rdev->raid_disk >= 0 &&
1769             !test_bit(In_sync, &rdev->flags)) {
1770                 sb->feature_map |=
1771                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1772                 sb->recovery_offset =
1773                         cpu_to_le64(rdev->recovery_offset);
1774         }
1775         if (test_bit(Replacement, &rdev->flags))
1776                 sb->feature_map |=
1777                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1778
1779         if (mddev->reshape_position != MaxSector) {
1780                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1781                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1782                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1783                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1784                 sb->new_level = cpu_to_le32(mddev->new_level);
1785                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1786                 if (mddev->delta_disks == 0 &&
1787                     mddev->reshape_backwards)
1788                         sb->feature_map
1789                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1790                 if (rdev->new_data_offset != rdev->data_offset) {
1791                         sb->feature_map
1792                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1793                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1794                                                              - rdev->data_offset));
1795                 }
1796         }
1797
1798         if (rdev->badblocks.count == 0)
1799                 /* Nothing to do for bad blocks*/ ;
1800         else if (sb->bblog_offset == 0)
1801                 /* Cannot record bad blocks on this device */
1802                 md_error(mddev, rdev);
1803         else {
1804                 struct badblocks *bb = &rdev->badblocks;
1805                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1806                 u64 *p = bb->page;
1807                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1808                 if (bb->changed) {
1809                         unsigned seq;
1810
1811 retry:
1812                         seq = read_seqbegin(&bb->lock);
1813
1814                         memset(bbp, 0xff, PAGE_SIZE);
1815
1816                         for (i = 0 ; i < bb->count ; i++) {
1817                                 u64 internal_bb = p[i];
1818                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1819                                                 | BB_LEN(internal_bb));
1820                                 bbp[i] = cpu_to_le64(store_bb);
1821                         }
1822                         bb->changed = 0;
1823                         if (read_seqretry(&bb->lock, seq))
1824                                 goto retry;
1825
1826                         bb->sector = (rdev->sb_start +
1827                                       (int)le32_to_cpu(sb->bblog_offset));
1828                         bb->size = le16_to_cpu(sb->bblog_size);
1829                 }
1830         }
1831
1832         max_dev = 0;
1833         rdev_for_each(rdev2, mddev)
1834                 if (rdev2->desc_nr+1 > max_dev)
1835                         max_dev = rdev2->desc_nr+1;
1836
1837         if (max_dev > le32_to_cpu(sb->max_dev)) {
1838                 int bmask;
1839                 sb->max_dev = cpu_to_le32(max_dev);
1840                 rdev->sb_size = max_dev * 2 + 256;
1841                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1842                 if (rdev->sb_size & bmask)
1843                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1844         } else
1845                 max_dev = le32_to_cpu(sb->max_dev);
1846
1847         for (i=0; i<max_dev;i++)
1848                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1849         
1850         rdev_for_each(rdev2, mddev) {
1851                 i = rdev2->desc_nr;
1852                 if (test_bit(Faulty, &rdev2->flags))
1853                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1854                 else if (test_bit(In_sync, &rdev2->flags))
1855                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1856                 else if (rdev2->raid_disk >= 0)
1857                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1858                 else
1859                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1860         }
1861
1862         sb->sb_csum = calc_sb_1_csum(sb);
1863 }
1864
1865 static unsigned long long
1866 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1867 {
1868         struct mdp_superblock_1 *sb;
1869         sector_t max_sectors;
1870         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1871                 return 0; /* component must fit device */
1872         if (rdev->data_offset != rdev->new_data_offset)
1873                 return 0; /* too confusing */
1874         if (rdev->sb_start < rdev->data_offset) {
1875                 /* minor versions 1 and 2; superblock before data */
1876                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1877                 max_sectors -= rdev->data_offset;
1878                 if (!num_sectors || num_sectors > max_sectors)
1879                         num_sectors = max_sectors;
1880         } else if (rdev->mddev->bitmap_info.offset) {
1881                 /* minor version 0 with bitmap we can't move */
1882                 return 0;
1883         } else {
1884                 /* minor version 0; superblock after data */
1885                 sector_t sb_start;
1886                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1887                 sb_start &= ~(sector_t)(4*2 - 1);
1888                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1889                 if (!num_sectors || num_sectors > max_sectors)
1890                         num_sectors = max_sectors;
1891                 rdev->sb_start = sb_start;
1892         }
1893         sb = page_address(rdev->sb_page);
1894         sb->data_size = cpu_to_le64(num_sectors);
1895         sb->super_offset = rdev->sb_start;
1896         sb->sb_csum = calc_sb_1_csum(sb);
1897         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1898                        rdev->sb_page);
1899         md_super_wait(rdev->mddev);
1900         return num_sectors;
1901
1902 }
1903
1904 static int
1905 super_1_allow_new_offset(struct md_rdev *rdev,
1906                          unsigned long long new_offset)
1907 {
1908         /* All necessary checks on new >= old have been done */
1909         struct bitmap *bitmap;
1910         if (new_offset >= rdev->data_offset)
1911                 return 1;
1912
1913         /* with 1.0 metadata, there is no metadata to tread on
1914          * so we can always move back */
1915         if (rdev->mddev->minor_version == 0)
1916                 return 1;
1917
1918         /* otherwise we must be sure not to step on
1919          * any metadata, so stay:
1920          * 36K beyond start of superblock
1921          * beyond end of badblocks
1922          * beyond write-intent bitmap
1923          */
1924         if (rdev->sb_start + (32+4)*2 > new_offset)
1925                 return 0;
1926         bitmap = rdev->mddev->bitmap;
1927         if (bitmap && !rdev->mddev->bitmap_info.file &&
1928             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1929             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1930                 return 0;
1931         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1932                 return 0;
1933
1934         return 1;
1935 }
1936
1937 static struct super_type super_types[] = {
1938         [0] = {
1939                 .name   = "0.90.0",
1940                 .owner  = THIS_MODULE,
1941                 .load_super         = super_90_load,
1942                 .validate_super     = super_90_validate,
1943                 .sync_super         = super_90_sync,
1944                 .rdev_size_change   = super_90_rdev_size_change,
1945                 .allow_new_offset   = super_90_allow_new_offset,
1946         },
1947         [1] = {
1948                 .name   = "md-1",
1949                 .owner  = THIS_MODULE,
1950                 .load_super         = super_1_load,
1951                 .validate_super     = super_1_validate,
1952                 .sync_super         = super_1_sync,
1953                 .rdev_size_change   = super_1_rdev_size_change,
1954                 .allow_new_offset   = super_1_allow_new_offset,
1955         },
1956 };
1957
1958 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1959 {
1960         if (mddev->sync_super) {
1961                 mddev->sync_super(mddev, rdev);
1962                 return;
1963         }
1964
1965         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1966
1967         super_types[mddev->major_version].sync_super(mddev, rdev);
1968 }
1969
1970 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1971 {
1972         struct md_rdev *rdev, *rdev2;
1973
1974         rcu_read_lock();
1975         rdev_for_each_rcu(rdev, mddev1)
1976                 rdev_for_each_rcu(rdev2, mddev2)
1977                         if (rdev->bdev->bd_contains ==
1978                             rdev2->bdev->bd_contains) {
1979                                 rcu_read_unlock();
1980                                 return 1;
1981                         }
1982         rcu_read_unlock();
1983         return 0;
1984 }
1985
1986 static LIST_HEAD(pending_raid_disks);
1987
1988 /*
1989  * Try to register data integrity profile for an mddev
1990  *
1991  * This is called when an array is started and after a disk has been kicked
1992  * from the array. It only succeeds if all working and active component devices
1993  * are integrity capable with matching profiles.
1994  */
1995 int md_integrity_register(struct mddev *mddev)
1996 {
1997         struct md_rdev *rdev, *reference = NULL;
1998
1999         if (list_empty(&mddev->disks))
2000                 return 0; /* nothing to do */
2001         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2002                 return 0; /* shouldn't register, or already is */
2003         rdev_for_each(rdev, mddev) {
2004                 /* skip spares and non-functional disks */
2005                 if (test_bit(Faulty, &rdev->flags))
2006                         continue;
2007                 if (rdev->raid_disk < 0)
2008                         continue;
2009                 if (!reference) {
2010                         /* Use the first rdev as the reference */
2011                         reference = rdev;
2012                         continue;
2013                 }
2014                 /* does this rdev's profile match the reference profile? */
2015                 if (blk_integrity_compare(reference->bdev->bd_disk,
2016                                 rdev->bdev->bd_disk) < 0)
2017                         return -EINVAL;
2018         }
2019         if (!reference || !bdev_get_integrity(reference->bdev))
2020                 return 0;
2021         /*
2022          * All component devices are integrity capable and have matching
2023          * profiles, register the common profile for the md device.
2024          */
2025         if (blk_integrity_register(mddev->gendisk,
2026                         bdev_get_integrity(reference->bdev)) != 0) {
2027                 printk(KERN_ERR "md: failed to register integrity for %s\n",
2028                         mdname(mddev));
2029                 return -EINVAL;
2030         }
2031         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2032         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2033                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2034                        mdname(mddev));
2035                 return -EINVAL;
2036         }
2037         return 0;
2038 }
2039 EXPORT_SYMBOL(md_integrity_register);
2040
2041 /* Disable data integrity if non-capable/non-matching disk is being added */
2042 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2043 {
2044         struct blk_integrity *bi_rdev;
2045         struct blk_integrity *bi_mddev;
2046
2047         if (!mddev->gendisk)
2048                 return;
2049
2050         bi_rdev = bdev_get_integrity(rdev->bdev);
2051         bi_mddev = blk_get_integrity(mddev->gendisk);
2052
2053         if (!bi_mddev) /* nothing to do */
2054                 return;
2055         if (rdev->raid_disk < 0) /* skip spares */
2056                 return;
2057         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2058                                              rdev->bdev->bd_disk) >= 0)
2059                 return;
2060         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2061         blk_integrity_unregister(mddev->gendisk);
2062 }
2063 EXPORT_SYMBOL(md_integrity_add_rdev);
2064
2065 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2066 {
2067         char b[BDEVNAME_SIZE];
2068         struct kobject *ko;
2069         char *s;
2070         int err;
2071
2072         if (rdev->mddev) {
2073                 MD_BUG();
2074                 return -EINVAL;
2075         }
2076
2077         /* prevent duplicates */
2078         if (find_rdev(mddev, rdev->bdev->bd_dev))
2079                 return -EEXIST;
2080
2081         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2082         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2083                         rdev->sectors < mddev->dev_sectors)) {
2084                 if (mddev->pers) {
2085                         /* Cannot change size, so fail
2086                          * If mddev->level <= 0, then we don't care
2087                          * about aligning sizes (e.g. linear)
2088                          */
2089                         if (mddev->level > 0)
2090                                 return -ENOSPC;
2091                 } else
2092                         mddev->dev_sectors = rdev->sectors;
2093         }
2094
2095         /* Verify rdev->desc_nr is unique.
2096          * If it is -1, assign a free number, else
2097          * check number is not in use
2098          */
2099         if (rdev->desc_nr < 0) {
2100                 int choice = 0;
2101                 if (mddev->pers) choice = mddev->raid_disks;
2102                 while (find_rdev_nr(mddev, choice))
2103                         choice++;
2104                 rdev->desc_nr = choice;
2105         } else {
2106                 if (find_rdev_nr(mddev, rdev->desc_nr))
2107                         return -EBUSY;
2108         }
2109         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2110                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2111                        mdname(mddev), mddev->max_disks);
2112                 return -EBUSY;
2113         }
2114         bdevname(rdev->bdev,b);
2115         while ( (s=strchr(b, '/')) != NULL)
2116                 *s = '!';
2117
2118         rdev->mddev = mddev;
2119         printk(KERN_INFO "md: bind<%s>\n", b);
2120
2121         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2122                 goto fail;
2123
2124         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2125         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2126                 /* failure here is OK */;
2127         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2128
2129         list_add_rcu(&rdev->same_set, &mddev->disks);
2130         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2131
2132         /* May as well allow recovery to be retried once */
2133         mddev->recovery_disabled++;
2134
2135         return 0;
2136
2137  fail:
2138         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2139                b, mdname(mddev));
2140         return err;
2141 }
2142
2143 static void md_delayed_delete(struct work_struct *ws)
2144 {
2145         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2146         kobject_del(&rdev->kobj);
2147         kobject_put(&rdev->kobj);
2148 }
2149
2150 static void unbind_rdev_from_array(struct md_rdev * rdev)
2151 {
2152         char b[BDEVNAME_SIZE];
2153         if (!rdev->mddev) {
2154                 MD_BUG();
2155                 return;
2156         }
2157         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2158         list_del_rcu(&rdev->same_set);
2159         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2160         rdev->mddev = NULL;
2161         sysfs_remove_link(&rdev->kobj, "block");
2162         sysfs_put(rdev->sysfs_state);
2163         rdev->sysfs_state = NULL;
2164         rdev->badblocks.count = 0;
2165         /* We need to delay this, otherwise we can deadlock when
2166          * writing to 'remove' to "dev/state".  We also need
2167          * to delay it due to rcu usage.
2168          */
2169         synchronize_rcu();
2170         INIT_WORK(&rdev->del_work, md_delayed_delete);
2171         kobject_get(&rdev->kobj);
2172         queue_work(md_misc_wq, &rdev->del_work);
2173 }
2174
2175 /*
2176  * prevent the device from being mounted, repartitioned or
2177  * otherwise reused by a RAID array (or any other kernel
2178  * subsystem), by bd_claiming the device.
2179  */
2180 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2181 {
2182         int err = 0;
2183         struct block_device *bdev;
2184         char b[BDEVNAME_SIZE];
2185
2186         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2187                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2188         if (IS_ERR(bdev)) {
2189                 printk(KERN_ERR "md: could not open %s.\n",
2190                         __bdevname(dev, b));
2191                 return PTR_ERR(bdev);
2192         }
2193         rdev->bdev = bdev;
2194         return err;
2195 }
2196
2197 static void unlock_rdev(struct md_rdev *rdev)
2198 {
2199         struct block_device *bdev = rdev->bdev;
2200         rdev->bdev = NULL;
2201         if (!bdev)
2202                 MD_BUG();
2203         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2204 }
2205
2206 void md_autodetect_dev(dev_t dev);
2207
2208 static void export_rdev(struct md_rdev * rdev)
2209 {
2210         char b[BDEVNAME_SIZE];
2211         printk(KERN_INFO "md: export_rdev(%s)\n",
2212                 bdevname(rdev->bdev,b));
2213         if (rdev->mddev)
2214                 MD_BUG();
2215         md_rdev_clear(rdev);
2216 #ifndef MODULE
2217         if (test_bit(AutoDetected, &rdev->flags))
2218                 md_autodetect_dev(rdev->bdev->bd_dev);
2219 #endif
2220         unlock_rdev(rdev);
2221         kobject_put(&rdev->kobj);
2222 }
2223
2224 static void kick_rdev_from_array(struct md_rdev * rdev)
2225 {
2226         unbind_rdev_from_array(rdev);
2227         export_rdev(rdev);
2228 }
2229
2230 static void export_array(struct mddev *mddev)
2231 {
2232         struct md_rdev *rdev, *tmp;
2233
2234         rdev_for_each_safe(rdev, tmp, mddev) {
2235                 if (!rdev->mddev) {
2236                         MD_BUG();
2237                         continue;
2238                 }
2239                 kick_rdev_from_array(rdev);
2240         }
2241         if (!list_empty(&mddev->disks))
2242                 MD_BUG();
2243         mddev->raid_disks = 0;
2244         mddev->major_version = 0;
2245 }
2246
2247 static void print_desc(mdp_disk_t *desc)
2248 {
2249         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2250                 desc->major,desc->minor,desc->raid_disk,desc->state);
2251 }
2252
2253 static void print_sb_90(mdp_super_t *sb)
2254 {
2255         int i;
2256
2257         printk(KERN_INFO 
2258                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2259                 sb->major_version, sb->minor_version, sb->patch_version,
2260                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2261                 sb->ctime);
2262         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2263                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2264                 sb->md_minor, sb->layout, sb->chunk_size);
2265         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2266                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2267                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2268                 sb->failed_disks, sb->spare_disks,
2269                 sb->sb_csum, (unsigned long)sb->events_lo);
2270
2271         printk(KERN_INFO);
2272         for (i = 0; i < MD_SB_DISKS; i++) {
2273                 mdp_disk_t *desc;
2274
2275                 desc = sb->disks + i;
2276                 if (desc->number || desc->major || desc->minor ||
2277                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2278                         printk("     D %2d: ", i);
2279                         print_desc(desc);
2280                 }
2281         }
2282         printk(KERN_INFO "md:     THIS: ");
2283         print_desc(&sb->this_disk);
2284 }
2285
2286 static void print_sb_1(struct mdp_superblock_1 *sb)
2287 {
2288         __u8 *uuid;
2289
2290         uuid = sb->set_uuid;
2291         printk(KERN_INFO
2292                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2293                "md:    Name: \"%s\" CT:%llu\n",
2294                 le32_to_cpu(sb->major_version),
2295                 le32_to_cpu(sb->feature_map),
2296                 uuid,
2297                 sb->set_name,
2298                 (unsigned long long)le64_to_cpu(sb->ctime)
2299                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2300
2301         uuid = sb->device_uuid;
2302         printk(KERN_INFO
2303                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2304                         " RO:%llu\n"
2305                "md:     Dev:%08x UUID: %pU\n"
2306                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2307                "md:         (MaxDev:%u) \n",
2308                 le32_to_cpu(sb->level),
2309                 (unsigned long long)le64_to_cpu(sb->size),
2310                 le32_to_cpu(sb->raid_disks),
2311                 le32_to_cpu(sb->layout),
2312                 le32_to_cpu(sb->chunksize),
2313                 (unsigned long long)le64_to_cpu(sb->data_offset),
2314                 (unsigned long long)le64_to_cpu(sb->data_size),
2315                 (unsigned long long)le64_to_cpu(sb->super_offset),
2316                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2317                 le32_to_cpu(sb->dev_number),
2318                 uuid,
2319                 sb->devflags,
2320                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2321                 (unsigned long long)le64_to_cpu(sb->events),
2322                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2323                 le32_to_cpu(sb->sb_csum),
2324                 le32_to_cpu(sb->max_dev)
2325                 );
2326 }
2327
2328 static void print_rdev(struct md_rdev *rdev, int major_version)
2329 {
2330         char b[BDEVNAME_SIZE];
2331         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2332                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2333                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2334                 rdev->desc_nr);
2335         if (rdev->sb_loaded) {
2336                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2337                 switch (major_version) {
2338                 case 0:
2339                         print_sb_90(page_address(rdev->sb_page));
2340                         break;
2341                 case 1:
2342                         print_sb_1(page_address(rdev->sb_page));
2343                         break;
2344                 }
2345         } else
2346                 printk(KERN_INFO "md: no rdev superblock!\n");
2347 }
2348
2349 static void md_print_devices(void)
2350 {
2351         struct list_head *tmp;
2352         struct md_rdev *rdev;
2353         struct mddev *mddev;
2354         char b[BDEVNAME_SIZE];
2355
2356         printk("\n");
2357         printk("md:     **********************************\n");
2358         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2359         printk("md:     **********************************\n");
2360         for_each_mddev(mddev, tmp) {
2361
2362                 if (mddev->bitmap)
2363                         bitmap_print_sb(mddev->bitmap);
2364                 else
2365                         printk("%s: ", mdname(mddev));
2366                 rdev_for_each(rdev, mddev)
2367                         printk("<%s>", bdevname(rdev->bdev,b));
2368                 printk("\n");
2369
2370                 rdev_for_each(rdev, mddev)
2371                         print_rdev(rdev, mddev->major_version);
2372         }
2373         printk("md:     **********************************\n");
2374         printk("\n");
2375 }
2376
2377
2378 static void sync_sbs(struct mddev * mddev, int nospares)
2379 {
2380         /* Update each superblock (in-memory image), but
2381          * if we are allowed to, skip spares which already
2382          * have the right event counter, or have one earlier
2383          * (which would mean they aren't being marked as dirty
2384          * with the rest of the array)
2385          */
2386         struct md_rdev *rdev;
2387         rdev_for_each(rdev, mddev) {
2388                 if (rdev->sb_events == mddev->events ||
2389                     (nospares &&
2390                      rdev->raid_disk < 0 &&
2391                      rdev->sb_events+1 == mddev->events)) {
2392                         /* Don't update this superblock */
2393                         rdev->sb_loaded = 2;
2394                 } else {
2395                         sync_super(mddev, rdev);
2396                         rdev->sb_loaded = 1;
2397                 }
2398         }
2399 }
2400
2401 static void md_update_sb(struct mddev * mddev, int force_change)
2402 {
2403         struct md_rdev *rdev;
2404         int sync_req;
2405         int nospares = 0;
2406         int any_badblocks_changed = 0;
2407
2408         if (mddev->ro) {
2409                 if (force_change)
2410                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2411                 return;
2412         }
2413 repeat:
2414         /* First make sure individual recovery_offsets are correct */
2415         rdev_for_each(rdev, mddev) {
2416                 if (rdev->raid_disk >= 0 &&
2417                     mddev->delta_disks >= 0 &&
2418                     !test_bit(In_sync, &rdev->flags) &&
2419                     mddev->curr_resync_completed > rdev->recovery_offset)
2420                                 rdev->recovery_offset = mddev->curr_resync_completed;
2421
2422         }       
2423         if (!mddev->persistent) {
2424                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2425                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2426                 if (!mddev->external) {
2427                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2428                         rdev_for_each(rdev, mddev) {
2429                                 if (rdev->badblocks.changed) {
2430                                         rdev->badblocks.changed = 0;
2431                                         md_ack_all_badblocks(&rdev->badblocks);
2432                                         md_error(mddev, rdev);
2433                                 }
2434                                 clear_bit(Blocked, &rdev->flags);
2435                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2436                                 wake_up(&rdev->blocked_wait);
2437                         }
2438                 }
2439                 wake_up(&mddev->sb_wait);
2440                 return;
2441         }
2442
2443         spin_lock_irq(&mddev->write_lock);
2444
2445         mddev->utime = get_seconds();
2446
2447         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2448                 force_change = 1;
2449         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2450                 /* just a clean<-> dirty transition, possibly leave spares alone,
2451                  * though if events isn't the right even/odd, we will have to do
2452                  * spares after all
2453                  */
2454                 nospares = 1;
2455         if (force_change)
2456                 nospares = 0;
2457         if (mddev->degraded)
2458                 /* If the array is degraded, then skipping spares is both
2459                  * dangerous and fairly pointless.
2460                  * Dangerous because a device that was removed from the array
2461                  * might have a event_count that still looks up-to-date,
2462                  * so it can be re-added without a resync.
2463                  * Pointless because if there are any spares to skip,
2464                  * then a recovery will happen and soon that array won't
2465                  * be degraded any more and the spare can go back to sleep then.
2466                  */
2467                 nospares = 0;
2468
2469         sync_req = mddev->in_sync;
2470
2471         /* If this is just a dirty<->clean transition, and the array is clean
2472          * and 'events' is odd, we can roll back to the previous clean state */
2473         if (nospares
2474             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2475             && mddev->can_decrease_events
2476             && mddev->events != 1) {
2477                 mddev->events--;
2478                 mddev->can_decrease_events = 0;
2479         } else {
2480                 /* otherwise we have to go forward and ... */
2481                 mddev->events ++;
2482                 mddev->can_decrease_events = nospares;
2483         }
2484
2485         if (!mddev->events) {
2486                 /*
2487                  * oops, this 64-bit counter should never wrap.
2488                  * Either we are in around ~1 trillion A.C., assuming
2489                  * 1 reboot per second, or we have a bug:
2490                  */
2491                 MD_BUG();
2492                 mddev->events --;
2493         }
2494
2495         rdev_for_each(rdev, mddev) {
2496                 if (rdev->badblocks.changed)
2497                         any_badblocks_changed++;
2498                 if (test_bit(Faulty, &rdev->flags))
2499                         set_bit(FaultRecorded, &rdev->flags);
2500         }
2501
2502         sync_sbs(mddev, nospares);
2503         spin_unlock_irq(&mddev->write_lock);
2504
2505         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2506                  mdname(mddev), mddev->in_sync);
2507
2508         bitmap_update_sb(mddev->bitmap);
2509         rdev_for_each(rdev, mddev) {
2510                 char b[BDEVNAME_SIZE];
2511
2512                 if (rdev->sb_loaded != 1)
2513                         continue; /* no noise on spare devices */
2514
2515                 if (!test_bit(Faulty, &rdev->flags) &&
2516                     rdev->saved_raid_disk == -1) {
2517                         md_super_write(mddev,rdev,
2518                                        rdev->sb_start, rdev->sb_size,
2519                                        rdev->sb_page);
2520                         pr_debug("md: (write) %s's sb offset: %llu\n",
2521                                  bdevname(rdev->bdev, b),
2522                                  (unsigned long long)rdev->sb_start);
2523                         rdev->sb_events = mddev->events;
2524                         if (rdev->badblocks.size) {
2525                                 md_super_write(mddev, rdev,
2526                                                rdev->badblocks.sector,
2527                                                rdev->badblocks.size << 9,
2528                                                rdev->bb_page);
2529                                 rdev->badblocks.size = 0;
2530                         }
2531
2532                 } else if (test_bit(Faulty, &rdev->flags))
2533                         pr_debug("md: %s (skipping faulty)\n",
2534                                  bdevname(rdev->bdev, b));
2535                 else
2536                         pr_debug("(skipping incremental s/r ");
2537
2538                 if (mddev->level == LEVEL_MULTIPATH)
2539                         /* only need to write one superblock... */
2540                         break;
2541         }
2542         md_super_wait(mddev);
2543         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2544
2545         spin_lock_irq(&mddev->write_lock);
2546         if (mddev->in_sync != sync_req ||
2547             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2548                 /* have to write it out again */
2549                 spin_unlock_irq(&mddev->write_lock);
2550                 goto repeat;
2551         }
2552         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2553         spin_unlock_irq(&mddev->write_lock);
2554         wake_up(&mddev->sb_wait);
2555         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2556                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2557
2558         rdev_for_each(rdev, mddev) {
2559                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2560                         clear_bit(Blocked, &rdev->flags);
2561
2562                 if (any_badblocks_changed)
2563                         md_ack_all_badblocks(&rdev->badblocks);
2564                 clear_bit(BlockedBadBlocks, &rdev->flags);
2565                 wake_up(&rdev->blocked_wait);
2566         }
2567 }
2568
2569 /* words written to sysfs files may, or may not, be \n terminated.
2570  * We want to accept with case. For this we use cmd_match.
2571  */
2572 static int cmd_match(const char *cmd, const char *str)
2573 {
2574         /* See if cmd, written into a sysfs file, matches
2575          * str.  They must either be the same, or cmd can
2576          * have a trailing newline
2577          */
2578         while (*cmd && *str && *cmd == *str) {
2579                 cmd++;
2580                 str++;
2581         }
2582         if (*cmd == '\n')
2583                 cmd++;
2584         if (*str || *cmd)
2585                 return 0;
2586         return 1;
2587 }
2588
2589 struct rdev_sysfs_entry {
2590         struct attribute attr;
2591         ssize_t (*show)(struct md_rdev *, char *);
2592         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2593 };
2594
2595 static ssize_t
2596 state_show(struct md_rdev *rdev, char *page)
2597 {
2598         char *sep = "";
2599         size_t len = 0;
2600
2601         if (test_bit(Faulty, &rdev->flags) ||
2602             rdev->badblocks.unacked_exist) {
2603                 len+= sprintf(page+len, "%sfaulty",sep);
2604                 sep = ",";
2605         }
2606         if (test_bit(In_sync, &rdev->flags)) {
2607                 len += sprintf(page+len, "%sin_sync",sep);
2608                 sep = ",";
2609         }
2610         if (test_bit(WriteMostly, &rdev->flags)) {
2611                 len += sprintf(page+len, "%swrite_mostly",sep);
2612                 sep = ",";
2613         }
2614         if (test_bit(Blocked, &rdev->flags) ||
2615             (rdev->badblocks.unacked_exist
2616              && !test_bit(Faulty, &rdev->flags))) {
2617                 len += sprintf(page+len, "%sblocked", sep);
2618                 sep = ",";
2619         }
2620         if (!test_bit(Faulty, &rdev->flags) &&
2621             !test_bit(In_sync, &rdev->flags)) {
2622                 len += sprintf(page+len, "%sspare", sep);
2623                 sep = ",";
2624         }
2625         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2626                 len += sprintf(page+len, "%swrite_error", sep);
2627                 sep = ",";
2628         }
2629         if (test_bit(WantReplacement, &rdev->flags)) {
2630                 len += sprintf(page+len, "%swant_replacement", sep);
2631                 sep = ",";
2632         }
2633         if (test_bit(Replacement, &rdev->flags)) {
2634                 len += sprintf(page+len, "%sreplacement", sep);
2635                 sep = ",";
2636         }
2637
2638         return len+sprintf(page+len, "\n");
2639 }
2640
2641 static ssize_t
2642 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2643 {
2644         /* can write
2645          *  faulty  - simulates an error
2646          *  remove  - disconnects the device
2647          *  writemostly - sets write_mostly
2648          *  -writemostly - clears write_mostly
2649          *  blocked - sets the Blocked flags
2650          *  -blocked - clears the Blocked and possibly simulates an error
2651          *  insync - sets Insync providing device isn't active
2652          *  write_error - sets WriteErrorSeen
2653          *  -write_error - clears WriteErrorSeen
2654          */
2655         int err = -EINVAL;
2656         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2657                 md_error(rdev->mddev, rdev);
2658                 if (test_bit(Faulty, &rdev->flags))
2659                         err = 0;
2660                 else
2661                         err = -EBUSY;
2662         } else if (cmd_match(buf, "remove")) {
2663                 if (rdev->raid_disk >= 0)
2664                         err = -EBUSY;
2665                 else {
2666                         struct mddev *mddev = rdev->mddev;
2667                         kick_rdev_from_array(rdev);
2668                         if (mddev->pers)
2669                                 md_update_sb(mddev, 1);
2670                         md_new_event(mddev);
2671                         err = 0;
2672                 }
2673         } else if (cmd_match(buf, "writemostly")) {
2674                 set_bit(WriteMostly, &rdev->flags);
2675                 err = 0;
2676         } else if (cmd_match(buf, "-writemostly")) {
2677                 clear_bit(WriteMostly, &rdev->flags);
2678                 err = 0;
2679         } else if (cmd_match(buf, "blocked")) {
2680                 set_bit(Blocked, &rdev->flags);
2681                 err = 0;
2682         } else if (cmd_match(buf, "-blocked")) {
2683                 if (!test_bit(Faulty, &rdev->flags) &&
2684                     rdev->badblocks.unacked_exist) {
2685                         /* metadata handler doesn't understand badblocks,
2686                          * so we need to fail the device
2687                          */
2688                         md_error(rdev->mddev, rdev);
2689                 }
2690                 clear_bit(Blocked, &rdev->flags);
2691                 clear_bit(BlockedBadBlocks, &rdev->flags);
2692                 wake_up(&rdev->blocked_wait);
2693                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2694                 md_wakeup_thread(rdev->mddev->thread);
2695
2696                 err = 0;
2697         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2698                 set_bit(In_sync, &rdev->flags);
2699                 err = 0;
2700         } else if (cmd_match(buf, "write_error")) {
2701                 set_bit(WriteErrorSeen, &rdev->flags);
2702                 err = 0;
2703         } else if (cmd_match(buf, "-write_error")) {
2704                 clear_bit(WriteErrorSeen, &rdev->flags);
2705                 err = 0;
2706         } else if (cmd_match(buf, "want_replacement")) {
2707                 /* Any non-spare device that is not a replacement can
2708                  * become want_replacement at any time, but we then need to
2709                  * check if recovery is needed.
2710                  */
2711                 if (rdev->raid_disk >= 0 &&
2712                     !test_bit(Replacement, &rdev->flags))
2713                         set_bit(WantReplacement, &rdev->flags);
2714                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2715                 md_wakeup_thread(rdev->mddev->thread);
2716                 err = 0;
2717         } else if (cmd_match(buf, "-want_replacement")) {
2718                 /* Clearing 'want_replacement' is always allowed.
2719                  * Once replacements starts it is too late though.
2720                  */
2721                 err = 0;
2722                 clear_bit(WantReplacement, &rdev->flags);
2723         } else if (cmd_match(buf, "replacement")) {
2724                 /* Can only set a device as a replacement when array has not
2725                  * yet been started.  Once running, replacement is automatic
2726                  * from spares, or by assigning 'slot'.
2727                  */
2728                 if (rdev->mddev->pers)
2729                         err = -EBUSY;
2730                 else {
2731                         set_bit(Replacement, &rdev->flags);
2732                         err = 0;
2733                 }
2734         } else if (cmd_match(buf, "-replacement")) {
2735                 /* Similarly, can only clear Replacement before start */
2736                 if (rdev->mddev->pers)
2737                         err = -EBUSY;
2738                 else {
2739                         clear_bit(Replacement, &rdev->flags);
2740                         err = 0;
2741                 }
2742         }
2743         if (!err)
2744                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2745         return err ? err : len;
2746 }
2747 static struct rdev_sysfs_entry rdev_state =
2748 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2749
2750 static ssize_t
2751 errors_show(struct md_rdev *rdev, char *page)
2752 {
2753         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2754 }
2755
2756 static ssize_t
2757 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2758 {
2759         char *e;
2760         unsigned long n = simple_strtoul(buf, &e, 10);
2761         if (*buf && (*e == 0 || *e == '\n')) {
2762                 atomic_set(&rdev->corrected_errors, n);
2763                 return len;
2764         }
2765         return -EINVAL;
2766 }
2767 static struct rdev_sysfs_entry rdev_errors =
2768 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2769
2770 static ssize_t
2771 slot_show(struct md_rdev *rdev, char *page)
2772 {
2773         if (rdev->raid_disk < 0)
2774                 return sprintf(page, "none\n");
2775         else
2776                 return sprintf(page, "%d\n", rdev->raid_disk);
2777 }
2778
2779 static ssize_t
2780 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2781 {
2782         char *e;
2783         int err;
2784         int slot = simple_strtoul(buf, &e, 10);
2785         if (strncmp(buf, "none", 4)==0)
2786                 slot = -1;
2787         else if (e==buf || (*e && *e!= '\n'))
2788                 return -EINVAL;
2789         if (rdev->mddev->pers && slot == -1) {
2790                 /* Setting 'slot' on an active array requires also
2791                  * updating the 'rd%d' link, and communicating
2792                  * with the personality with ->hot_*_disk.
2793                  * For now we only support removing
2794                  * failed/spare devices.  This normally happens automatically,
2795                  * but not when the metadata is externally managed.
2796                  */
2797                 if (rdev->raid_disk == -1)
2798                         return -EEXIST;
2799                 /* personality does all needed checks */
2800                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2801                         return -EINVAL;
2802                 clear_bit(Blocked, &rdev->flags);
2803                 remove_and_add_spares(rdev->mddev, rdev);
2804                 if (rdev->raid_disk >= 0)
2805                         return -EBUSY;
2806                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2807                 md_wakeup_thread(rdev->mddev->thread);
2808         } else if (rdev->mddev->pers) {
2809                 /* Activating a spare .. or possibly reactivating
2810                  * if we ever get bitmaps working here.
2811                  */
2812
2813                 if (rdev->raid_disk != -1)
2814                         return -EBUSY;
2815
2816                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2817                         return -EBUSY;
2818
2819                 if (rdev->mddev->pers->hot_add_disk == NULL)
2820                         return -EINVAL;
2821
2822                 if (slot >= rdev->mddev->raid_disks &&
2823                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2824                         return -ENOSPC;
2825
2826                 rdev->raid_disk = slot;
2827                 if (test_bit(In_sync, &rdev->flags))
2828                         rdev->saved_raid_disk = slot;
2829                 else
2830                         rdev->saved_raid_disk = -1;
2831                 clear_bit(In_sync, &rdev->flags);
2832                 err = rdev->mddev->pers->
2833                         hot_add_disk(rdev->mddev, rdev);
2834                 if (err) {
2835                         rdev->raid_disk = -1;
2836                         return err;
2837                 } else
2838                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2839                 if (sysfs_link_rdev(rdev->mddev, rdev))
2840                         /* failure here is OK */;
2841                 /* don't wakeup anyone, leave that to userspace. */
2842         } else {
2843                 if (slot >= rdev->mddev->raid_disks &&
2844                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2845                         return -ENOSPC;
2846                 rdev->raid_disk = slot;
2847                 /* assume it is working */
2848                 clear_bit(Faulty, &rdev->flags);
2849                 clear_bit(WriteMostly, &rdev->flags);
2850                 set_bit(In_sync, &rdev->flags);
2851                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2852         }
2853         return len;
2854 }
2855
2856
2857 static struct rdev_sysfs_entry rdev_slot =
2858 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2859
2860 static ssize_t
2861 offset_show(struct md_rdev *rdev, char *page)
2862 {
2863         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2864 }
2865
2866 static ssize_t
2867 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2868 {
2869         unsigned long long offset;
2870         if (strict_strtoull(buf, 10, &offset) < 0)
2871                 return -EINVAL;
2872         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2873                 return -EBUSY;
2874         if (rdev->sectors && rdev->mddev->external)
2875                 /* Must set offset before size, so overlap checks
2876                  * can be sane */
2877                 return -EBUSY;
2878         rdev->data_offset = offset;
2879         rdev->new_data_offset = offset;
2880         return len;
2881 }
2882
2883 static struct rdev_sysfs_entry rdev_offset =
2884 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2885
2886 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2887 {
2888         return sprintf(page, "%llu\n",
2889                        (unsigned long long)rdev->new_data_offset);
2890 }
2891
2892 static ssize_t new_offset_store(struct md_rdev *rdev,
2893                                 const char *buf, size_t len)
2894 {
2895         unsigned long long new_offset;
2896         struct mddev *mddev = rdev->mddev;
2897
2898         if (strict_strtoull(buf, 10, &new_offset) < 0)
2899                 return -EINVAL;
2900
2901         if (mddev->sync_thread)
2902                 return -EBUSY;
2903         if (new_offset == rdev->data_offset)
2904                 /* reset is always permitted */
2905                 ;
2906         else if (new_offset > rdev->data_offset) {
2907                 /* must not push array size beyond rdev_sectors */
2908                 if (new_offset - rdev->data_offset
2909                     + mddev->dev_sectors > rdev->sectors)
2910                                 return -E2BIG;
2911         }
2912         /* Metadata worries about other space details. */
2913
2914         /* decreasing the offset is inconsistent with a backwards
2915          * reshape.
2916          */
2917         if (new_offset < rdev->data_offset &&
2918             mddev->reshape_backwards)
2919                 return -EINVAL;
2920         /* Increasing offset is inconsistent with forwards
2921          * reshape.  reshape_direction should be set to
2922          * 'backwards' first.
2923          */
2924         if (new_offset > rdev->data_offset &&
2925             !mddev->reshape_backwards)
2926                 return -EINVAL;
2927
2928         if (mddev->pers && mddev->persistent &&
2929             !super_types[mddev->major_version]
2930             .allow_new_offset(rdev, new_offset))
2931                 return -E2BIG;
2932         rdev->new_data_offset = new_offset;
2933         if (new_offset > rdev->data_offset)
2934                 mddev->reshape_backwards = 1;
2935         else if (new_offset < rdev->data_offset)
2936                 mddev->reshape_backwards = 0;
2937
2938         return len;
2939 }
2940 static struct rdev_sysfs_entry rdev_new_offset =
2941 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2942
2943 static ssize_t
2944 rdev_size_show(struct md_rdev *rdev, char *page)
2945 {
2946         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2947 }
2948
2949 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2950 {
2951         /* check if two start/length pairs overlap */
2952         if (s1+l1 <= s2)
2953                 return 0;
2954         if (s2+l2 <= s1)
2955                 return 0;
2956         return 1;
2957 }
2958
2959 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2960 {
2961         unsigned long long blocks;
2962         sector_t new;
2963
2964         if (strict_strtoull(buf, 10, &blocks) < 0)
2965                 return -EINVAL;
2966
2967         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2968                 return -EINVAL; /* sector conversion overflow */
2969
2970         new = blocks * 2;
2971         if (new != blocks * 2)
2972                 return -EINVAL; /* unsigned long long to sector_t overflow */
2973
2974         *sectors = new;
2975         return 0;
2976 }
2977
2978 static ssize_t
2979 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2980 {
2981         struct mddev *my_mddev = rdev->mddev;
2982         sector_t oldsectors = rdev->sectors;
2983         sector_t sectors;
2984
2985         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2986                 return -EINVAL;
2987         if (rdev->data_offset != rdev->new_data_offset)
2988                 return -EINVAL; /* too confusing */
2989         if (my_mddev->pers && rdev->raid_disk >= 0) {
2990                 if (my_mddev->persistent) {
2991                         sectors = super_types[my_mddev->major_version].
2992                                 rdev_size_change(rdev, sectors);
2993                         if (!sectors)
2994                                 return -EBUSY;
2995                 } else if (!sectors)
2996                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2997                                 rdev->data_offset;
2998                 if (!my_mddev->pers->resize)
2999                         /* Cannot change size for RAID0 or Linear etc */
3000                         return -EINVAL;
3001         }
3002         if (sectors < my_mddev->dev_sectors)
3003                 return -EINVAL; /* component must fit device */
3004
3005         rdev->sectors = sectors;
3006         if (sectors > oldsectors && my_mddev->external) {
3007                 /* need to check that all other rdevs with the same ->bdev
3008                  * do not overlap.  We need to unlock the mddev to avoid
3009                  * a deadlock.  We have already changed rdev->sectors, and if
3010                  * we have to change it back, we will have the lock again.
3011                  */
3012                 struct mddev *mddev;
3013                 int overlap = 0;
3014                 struct list_head *tmp;
3015
3016                 mddev_unlock(my_mddev);
3017                 for_each_mddev(mddev, tmp) {
3018                         struct md_rdev *rdev2;
3019
3020                         mddev_lock(mddev);
3021                         rdev_for_each(rdev2, mddev)
3022                                 if (rdev->bdev == rdev2->bdev &&
3023                                     rdev != rdev2 &&
3024                                     overlaps(rdev->data_offset, rdev->sectors,
3025                                              rdev2->data_offset,
3026                                              rdev2->sectors)) {
3027                                         overlap = 1;
3028                                         break;
3029                                 }
3030                         mddev_unlock(mddev);
3031                         if (overlap) {
3032                                 mddev_put(mddev);
3033                                 break;
3034                         }
3035                 }
3036                 mddev_lock(my_mddev);
3037                 if (overlap) {
3038                         /* Someone else could have slipped in a size
3039                          * change here, but doing so is just silly.
3040                          * We put oldsectors back because we *know* it is
3041                          * safe, and trust userspace not to race with
3042                          * itself
3043                          */
3044                         rdev->sectors = oldsectors;
3045                         return -EBUSY;
3046                 }
3047         }
3048         return len;
3049 }
3050
3051 static struct rdev_sysfs_entry rdev_size =
3052 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3053
3054
3055 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3056 {
3057         unsigned long long recovery_start = rdev->recovery_offset;
3058
3059         if (test_bit(In_sync, &rdev->flags) ||
3060             recovery_start == MaxSector)
3061                 return sprintf(page, "none\n");
3062
3063         return sprintf(page, "%llu\n", recovery_start);
3064 }
3065
3066 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3067 {
3068         unsigned long long recovery_start;
3069
3070         if (cmd_match(buf, "none"))
3071                 recovery_start = MaxSector;
3072         else if (strict_strtoull(buf, 10, &recovery_start))
3073                 return -EINVAL;
3074
3075         if (rdev->mddev->pers &&
3076             rdev->raid_disk >= 0)
3077                 return -EBUSY;
3078
3079         rdev->recovery_offset = recovery_start;
3080         if (recovery_start == MaxSector)
3081                 set_bit(In_sync, &rdev->flags);
3082         else
3083                 clear_bit(In_sync, &rdev->flags);
3084         return len;
3085 }
3086
3087 static struct rdev_sysfs_entry rdev_recovery_start =
3088 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3089
3090
3091 static ssize_t
3092 badblocks_show(struct badblocks *bb, char *page, int unack);
3093 static ssize_t
3094 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3095
3096 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3097 {
3098         return badblocks_show(&rdev->badblocks, page, 0);
3099 }
3100 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3101 {
3102         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3103         /* Maybe that ack was all we needed */
3104         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3105                 wake_up(&rdev->blocked_wait);
3106         return rv;
3107 }
3108 static struct rdev_sysfs_entry rdev_bad_blocks =
3109 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3110
3111
3112 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3113 {
3114         return badblocks_show(&rdev->badblocks, page, 1);
3115 }
3116 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3117 {
3118         return badblocks_store(&rdev->badblocks, page, len, 1);
3119 }
3120 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3121 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3122
3123 static struct attribute *rdev_default_attrs[] = {
3124         &rdev_state.attr,
3125         &rdev_errors.attr,
3126         &rdev_slot.attr,
3127         &rdev_offset.attr,
3128         &rdev_new_offset.attr,
3129         &rdev_size.attr,
3130         &rdev_recovery_start.attr,
3131         &rdev_bad_blocks.attr,
3132         &rdev_unack_bad_blocks.attr,
3133         NULL,
3134 };
3135 static ssize_t
3136 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3137 {
3138         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3139         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3140         struct mddev *mddev = rdev->mddev;
3141         ssize_t rv;
3142
3143         if (!entry->show)
3144                 return -EIO;
3145
3146         rv = mddev ? mddev_lock(mddev) : -EBUSY;
3147         if (!rv) {
3148                 if (rdev->mddev == NULL)
3149                         rv = -EBUSY;
3150                 else
3151                         rv = entry->show(rdev, page);
3152                 mddev_unlock(mddev);
3153         }
3154         return rv;
3155 }
3156
3157 static ssize_t
3158 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3159               const char *page, size_t length)
3160 {
3161         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3162         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3163         ssize_t rv;
3164         struct mddev *mddev = rdev->mddev;
3165
3166         if (!entry->store)
3167                 return -EIO;
3168         if (!capable(CAP_SYS_ADMIN))
3169                 return -EACCES;
3170         rv = mddev ? mddev_lock(mddev): -EBUSY;
3171         if (!rv) {
3172                 if (rdev->mddev == NULL)
3173                         rv = -EBUSY;
3174                 else
3175                         rv = entry->store(rdev, page, length);
3176                 mddev_unlock(mddev);
3177         }
3178         return rv;
3179 }
3180
3181 static void rdev_free(struct kobject *ko)
3182 {
3183         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3184         kfree(rdev);
3185 }
3186 static const struct sysfs_ops rdev_sysfs_ops = {
3187         .show           = rdev_attr_show,
3188         .store          = rdev_attr_store,
3189 };
3190 static struct kobj_type rdev_ktype = {
3191         .release        = rdev_free,
3192         .sysfs_ops      = &rdev_sysfs_ops,
3193         .default_attrs  = rdev_default_attrs,
3194 };
3195
3196 int md_rdev_init(struct md_rdev *rdev)
3197 {
3198         rdev->desc_nr = -1;
3199         rdev->saved_raid_disk = -1;
3200         rdev->raid_disk = -1;
3201         rdev->flags = 0;
3202         rdev->data_offset = 0;
3203         rdev->new_data_offset = 0;
3204         rdev->sb_events = 0;
3205         rdev->last_read_error.tv_sec  = 0;
3206         rdev->last_read_error.tv_nsec = 0;
3207         rdev->sb_loaded = 0;
3208         rdev->bb_page = NULL;
3209         atomic_set(&rdev->nr_pending, 0);
3210         atomic_set(&rdev->read_errors, 0);
3211         atomic_set(&rdev->corrected_errors, 0);
3212
3213         INIT_LIST_HEAD(&rdev->same_set);
3214         init_waitqueue_head(&rdev->blocked_wait);
3215
3216         /* Add space to store bad block list.
3217          * This reserves the space even on arrays where it cannot
3218          * be used - I wonder if that matters
3219          */
3220         rdev->badblocks.count = 0;
3221         rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3222         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3223         seqlock_init(&rdev->badblocks.lock);
3224         if (rdev->badblocks.page == NULL)
3225                 return -ENOMEM;
3226
3227         return 0;
3228 }
3229 EXPORT_SYMBOL_GPL(md_rdev_init);
3230 /*
3231  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3232  *
3233  * mark the device faulty if:
3234  *
3235  *   - the device is nonexistent (zero size)
3236  *   - the device has no valid superblock
3237  *
3238  * a faulty rdev _never_ has rdev->sb set.
3239  */
3240 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3241 {
3242         char b[BDEVNAME_SIZE];
3243         int err;
3244         struct md_rdev *rdev;
3245         sector_t size;
3246
3247         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3248         if (!rdev) {
3249                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3250                 return ERR_PTR(-ENOMEM);
3251         }
3252
3253         err = md_rdev_init(rdev);
3254         if (err)
3255                 goto abort_free;
3256         err = alloc_disk_sb(rdev);
3257         if (err)
3258                 goto abort_free;
3259
3260         err = lock_rdev(rdev, newdev, super_format == -2);
3261         if (err)
3262                 goto abort_free;
3263
3264         kobject_init(&rdev->kobj, &rdev_ktype);
3265
3266         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3267         if (!size) {
3268                 printk(KERN_WARNING 
3269                         "md: %s has zero or unknown size, marking faulty!\n",
3270                         bdevname(rdev->bdev,b));
3271                 err = -EINVAL;
3272                 goto abort_free;
3273         }
3274
3275         if (super_format >= 0) {
3276                 err = super_types[super_format].
3277                         load_super(rdev, NULL, super_minor);
3278                 if (err == -EINVAL) {
3279                         printk(KERN_WARNING
3280                                 "md: %s does not have a valid v%d.%d "
3281                                "superblock, not importing!\n",
3282                                 bdevname(rdev->bdev,b),
3283                                super_format, super_minor);
3284                         goto abort_free;
3285                 }
3286                 if (err < 0) {
3287                         printk(KERN_WARNING 
3288                                 "md: could not read %s's sb, not importing!\n",
3289                                 bdevname(rdev->bdev,b));
3290                         goto abort_free;
3291                 }
3292         }
3293
3294         return rdev;
3295
3296 abort_free:
3297         if (rdev->bdev)
3298                 unlock_rdev(rdev);
3299         md_rdev_clear(rdev);
3300         kfree(rdev);
3301         return ERR_PTR(err);
3302 }
3303
3304 /*
3305  * Check a full RAID array for plausibility
3306  */
3307
3308
3309 static void analyze_sbs(struct mddev * mddev)
3310 {
3311         int i;
3312         struct md_rdev *rdev, *freshest, *tmp;
3313         char b[BDEVNAME_SIZE];
3314
3315         freshest = NULL;
3316         rdev_for_each_safe(rdev, tmp, mddev)
3317                 switch (super_types[mddev->major_version].
3318                         load_super(rdev, freshest, mddev->minor_version)) {
3319                 case 1:
3320                         freshest = rdev;
3321                         break;
3322                 case 0:
3323                         break;
3324                 default:
3325                         printk( KERN_ERR \
3326                                 "md: fatal superblock inconsistency in %s"
3327                                 " -- removing from array\n", 
3328                                 bdevname(rdev->bdev,b));
3329                         kick_rdev_from_array(rdev);
3330                 }
3331
3332
3333         super_types[mddev->major_version].
3334                 validate_super(mddev, freshest);
3335
3336         i = 0;
3337         rdev_for_each_safe(rdev, tmp, mddev) {
3338                 if (mddev->max_disks &&
3339                     (rdev->desc_nr >= mddev->max_disks ||
3340                      i > mddev->max_disks)) {
3341                         printk(KERN_WARNING
3342                                "md: %s: %s: only %d devices permitted\n",
3343                                mdname(mddev), bdevname(rdev->bdev, b),
3344                                mddev->max_disks);
3345                         kick_rdev_from_array(rdev);
3346                         continue;
3347                 }
3348                 if (rdev != freshest)
3349                         if (super_types[mddev->major_version].
3350                             validate_super(mddev, rdev)) {
3351                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3352                                         " from array!\n",
3353                                         bdevname(rdev->bdev,b));
3354                                 kick_rdev_from_array(rdev);
3355                                 continue;
3356                         }
3357                 if (mddev->level == LEVEL_MULTIPATH) {
3358                         rdev->desc_nr = i++;
3359                         rdev->raid_disk = rdev->desc_nr;
3360                         set_bit(In_sync, &rdev->flags);
3361                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3362                         rdev->raid_disk = -1;
3363                         clear_bit(In_sync, &rdev->flags);
3364                 }
3365         }
3366 }
3367
3368 /* Read a fixed-point number.
3369  * Numbers in sysfs attributes should be in "standard" units where
3370  * possible, so time should be in seconds.
3371  * However we internally use a a much smaller unit such as 
3372  * milliseconds or jiffies.
3373  * This function takes a decimal number with a possible fractional
3374  * component, and produces an integer which is the result of
3375  * multiplying that number by 10^'scale'.
3376  * all without any floating-point arithmetic.
3377  */
3378 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3379 {
3380         unsigned long result = 0;
3381         long decimals = -1;
3382         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3383                 if (*cp == '.')
3384                         decimals = 0;
3385                 else if (decimals < scale) {
3386                         unsigned int value;
3387                         value = *cp - '0';
3388                         result = result * 10 + value;
3389                         if (decimals >= 0)
3390                                 decimals++;
3391                 }
3392                 cp++;
3393         }
3394         if (*cp == '\n')
3395                 cp++;
3396         if (*cp)
3397                 return -EINVAL;
3398         if (decimals < 0)
3399                 decimals = 0;
3400         while (decimals < scale) {
3401                 result *= 10;
3402                 decimals ++;
3403         }
3404         *res = result;
3405         return 0;
3406 }
3407
3408
3409 static void md_safemode_timeout(unsigned long data);
3410
3411 static ssize_t
3412 safe_delay_show(struct mddev *mddev, char *page)
3413 {
3414         int msec = (mddev->safemode_delay*1000)/HZ;
3415         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3416 }
3417 static ssize_t
3418 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3419 {
3420         unsigned long msec;
3421
3422         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3423                 return -EINVAL;
3424         if (msec == 0)
3425                 mddev->safemode_delay = 0;
3426         else {
3427                 unsigned long old_delay = mddev->safemode_delay;
3428                 mddev->safemode_delay = (msec*HZ)/1000;
3429                 if (mddev->safemode_delay == 0)
3430                         mddev->safemode_delay = 1;
3431                 if (mddev->safemode_delay < old_delay)
3432                         md_safemode_timeout((unsigned long)mddev);
3433         }
3434         return len;
3435 }
3436 static struct md_sysfs_entry md_safe_delay =
3437 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3438
3439 static ssize_t
3440 level_show(struct mddev *mddev, char *page)
3441 {
3442         struct md_personality *p = mddev->pers;
3443         if (p)
3444                 return sprintf(page, "%s\n", p->name);
3445         else if (mddev->clevel[0])
3446                 return sprintf(page, "%s\n", mddev->clevel);
3447         else if (mddev->level != LEVEL_NONE)
3448                 return sprintf(page, "%d\n", mddev->level);
3449         else
3450                 return 0;
3451 }
3452
3453 static ssize_t
3454 level_store(struct mddev *mddev, const char *buf, size_t len)
3455 {
3456         char clevel[16];
3457         ssize_t rv = len;
3458         struct md_personality *pers;
3459         long level;
3460         void *priv;
3461         struct md_rdev *rdev;
3462
3463         if (mddev->pers == NULL) {
3464                 if (len == 0)
3465                         return 0;
3466                 if (len >= sizeof(mddev->clevel))
3467                         return -ENOSPC;
3468                 strncpy(mddev->clevel, buf, len);
3469                 if (mddev->clevel[len-1] == '\n')
3470                         len--;
3471                 mddev->clevel[len] = 0;
3472                 mddev->level = LEVEL_NONE;
3473                 return rv;
3474         }
3475
3476         /* request to change the personality.  Need to ensure:
3477          *  - array is not engaged in resync/recovery/reshape
3478          *  - old personality can be suspended
3479          *  - new personality will access other array.
3480          */
3481
3482         if (mddev->sync_thread ||
3483             mddev->reshape_position != MaxSector ||
3484             mddev->sysfs_active)
3485                 return -EBUSY;
3486
3487         if (!mddev->pers->quiesce) {
3488                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3489                        mdname(mddev), mddev->pers->name);
3490                 return -EINVAL;
3491         }
3492
3493         /* Now find the new personality */
3494         if (len == 0 || len >= sizeof(clevel))
3495                 return -EINVAL;
3496         strncpy(clevel, buf, len);
3497         if (clevel[len-1] == '\n')
3498                 len--;
3499         clevel[len] = 0;
3500         if (strict_strtol(clevel, 10, &level))
3501                 level = LEVEL_NONE;
3502
3503         if (request_module("md-%s", clevel) != 0)
3504                 request_module("md-level-%s", clevel);
3505         spin_lock(&pers_lock);
3506         pers = find_pers(level, clevel);
3507         if (!pers || !try_module_get(pers->owner)) {
3508                 spin_unlock(&pers_lock);
3509                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3510                 return -EINVAL;
3511         }
3512         spin_unlock(&pers_lock);
3513
3514         if (pers == mddev->pers) {
3515                 /* Nothing to do! */
3516                 module_put(pers->owner);
3517                 return rv;
3518         }
3519         if (!pers->takeover) {
3520                 module_put(pers->owner);
3521                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3522                        mdname(mddev), clevel);
3523                 return -EINVAL;
3524         }
3525
3526         rdev_for_each(rdev, mddev)
3527                 rdev->new_raid_disk = rdev->raid_disk;
3528
3529         /* ->takeover must set new_* and/or delta_disks
3530          * if it succeeds, and may set them when it fails.
3531          */
3532         priv = pers->takeover(mddev);
3533         if (IS_ERR(priv)) {
3534                 mddev->new_level = mddev->level;
3535                 mddev->new_layout = mddev->layout;
3536                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3537                 mddev->raid_disks -= mddev->delta_disks;
3538                 mddev->delta_disks = 0;
3539                 mddev->reshape_backwards = 0;
3540                 module_put(pers->owner);
3541                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3542                        mdname(mddev), clevel);
3543                 return PTR_ERR(priv);
3544         }
3545
3546         /* Looks like we have a winner */
3547         mddev_suspend(mddev);
3548         mddev->pers->stop(mddev);
3549         
3550         if (mddev->pers->sync_request == NULL &&
3551             pers->sync_request != NULL) {
3552                 /* need to add the md_redundancy_group */
3553                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3554                         printk(KERN_WARNING
3555                                "md: cannot register extra attributes for %s\n",
3556                                mdname(mddev));
3557                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3558         }               
3559         if (mddev->pers->sync_request != NULL &&
3560             pers->sync_request == NULL) {
3561                 /* need to remove the md_redundancy_group */
3562                 if (mddev->to_remove == NULL)
3563                         mddev->to_remove = &md_redundancy_group;
3564         }
3565
3566         if (mddev->pers->sync_request == NULL &&
3567             mddev->external) {
3568                 /* We are converting from a no-redundancy array
3569                  * to a redundancy array and metadata is managed
3570                  * externally so we need to be sure that writes
3571                  * won't block due to a need to transition
3572                  *      clean->dirty
3573                  * until external management is started.
3574                  */
3575                 mddev->in_sync = 0;
3576                 mddev->safemode_delay = 0;
3577                 mddev->safemode = 0;
3578         }
3579
3580         rdev_for_each(rdev, mddev) {
3581                 if (rdev->raid_disk < 0)
3582                         continue;
3583                 if (rdev->new_raid_disk >= mddev->raid_disks)
3584                         rdev->new_raid_disk = -1;
3585                 if (rdev->new_raid_disk == rdev->raid_disk)
3586                         continue;
3587                 sysfs_unlink_rdev(mddev, rdev);
3588         }
3589         rdev_for_each(rdev, mddev) {
3590                 if (rdev->raid_disk < 0)
3591                         continue;
3592                 if (rdev->new_raid_disk == rdev->raid_disk)
3593                         continue;
3594                 rdev->raid_disk = rdev->new_raid_disk;
3595                 if (rdev->raid_disk < 0)
3596                         clear_bit(In_sync, &rdev->flags);
3597                 else {
3598                         if (sysfs_link_rdev(mddev, rdev))
3599                                 printk(KERN_WARNING "md: cannot register rd%d"
3600                                        " for %s after level change\n",
3601                                        rdev->raid_disk, mdname(mddev));
3602                 }
3603         }
3604
3605         module_put(mddev->pers->owner);
3606         mddev->pers = pers;
3607         mddev->private = priv;
3608         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3609         mddev->level = mddev->new_level;
3610         mddev->layout = mddev->new_layout;
3611         mddev->chunk_sectors = mddev->new_chunk_sectors;
3612         mddev->delta_disks = 0;
3613         mddev->reshape_backwards = 0;
3614         mddev->degraded = 0;
3615         if (mddev->pers->sync_request == NULL) {
3616                 /* this is now an array without redundancy, so
3617                  * it must always be in_sync
3618                  */
3619                 mddev->in_sync = 1;
3620                 del_timer_sync(&mddev->safemode_timer);
3621         }
3622         pers->run(mddev);
3623         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3624         mddev_resume(mddev);
3625         sysfs_notify(&mddev->kobj, NULL, "level");
3626         md_new_event(mddev);
3627         return rv;
3628 }
3629
3630 static struct md_sysfs_entry md_level =
3631 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3632
3633
3634 static ssize_t
3635 layout_show(struct mddev *mddev, char *page)
3636 {
3637         /* just a number, not meaningful for all levels */
3638         if (mddev->reshape_position != MaxSector &&
3639             mddev->layout != mddev->new_layout)
3640                 return sprintf(page, "%d (%d)\n",
3641                                mddev->new_layout, mddev->layout);
3642         return sprintf(page, "%d\n", mddev->layout);
3643 }
3644
3645 static ssize_t
3646 layout_store(struct mddev *mddev, const char *buf, size_t len)
3647 {
3648         char *e;
3649         unsigned long n = simple_strtoul(buf, &e, 10);
3650
3651         if (!*buf || (*e && *e != '\n'))
3652                 return -EINVAL;
3653
3654         if (mddev->pers) {
3655                 int err;
3656                 if (mddev->pers->check_reshape == NULL)
3657                         return -EBUSY;
3658                 mddev->new_layout = n;
3659                 err = mddev->pers->check_reshape(mddev);
3660                 if (err) {
3661                         mddev->new_layout = mddev->layout;
3662                         return err;
3663                 }
3664         } else {
3665                 mddev->new_layout = n;
3666                 if (mddev->reshape_position == MaxSector)
3667                         mddev->layout = n;
3668         }
3669         return len;
3670 }
3671 static struct md_sysfs_entry md_layout =
3672 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3673
3674
3675 static ssize_t
3676 raid_disks_show(struct mddev *mddev, char *page)
3677 {
3678         if (mddev->raid_disks == 0)
3679                 return 0;
3680         if (mddev->reshape_position != MaxSector &&
3681             mddev->delta_disks != 0)
3682                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3683                                mddev->raid_disks - mddev->delta_disks);
3684         return sprintf(page, "%d\n", mddev->raid_disks);
3685 }
3686
3687 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3688
3689 static ssize_t
3690 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3691 {
3692         char *e;
3693         int rv = 0;
3694         unsigned long n = simple_strtoul(buf, &e, 10);
3695
3696         if (!*buf || (*e && *e != '\n'))
3697                 return -EINVAL;
3698
3699         if (mddev->pers)
3700                 rv = update_raid_disks(mddev, n);
3701         else if (mddev->reshape_position != MaxSector) {
3702                 struct md_rdev *rdev;
3703                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3704
3705                 rdev_for_each(rdev, mddev) {
3706                         if (olddisks < n &&
3707                             rdev->data_offset < rdev->new_data_offset)
3708                                 return -EINVAL;
3709                         if (olddisks > n &&
3710                             rdev->data_offset > rdev->new_data_offset)
3711                                 return -EINVAL;
3712                 }
3713                 mddev->delta_disks = n - olddisks;
3714                 mddev->raid_disks = n;
3715                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3716         } else
3717                 mddev->raid_disks = n;
3718         return rv ? rv : len;
3719 }
3720 static struct md_sysfs_entry md_raid_disks =
3721 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3722
3723 static ssize_t
3724 chunk_size_show(struct mddev *mddev, char *page)
3725 {
3726         if (mddev->reshape_position != MaxSector &&
3727             mddev->chunk_sectors != mddev->new_chunk_sectors)
3728                 return sprintf(page, "%d (%d)\n",
3729                                mddev->new_chunk_sectors << 9,
3730                                mddev->chunk_sectors << 9);
3731         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3732 }
3733
3734 static ssize_t
3735 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3736 {
3737         char *e;
3738         unsigned long n = simple_strtoul(buf, &e, 10);
3739
3740         if (!*buf || (*e && *e != '\n'))
3741                 return -EINVAL;
3742
3743         if (mddev->pers) {
3744                 int err;
3745                 if (mddev->pers->check_reshape == NULL)
3746                         return -EBUSY;
3747                 mddev->new_chunk_sectors = n >> 9;
3748                 err = mddev->pers->check_reshape(mddev);
3749                 if (err) {
3750                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3751                         return err;
3752                 }
3753         } else {
3754                 mddev->new_chunk_sectors = n >> 9;
3755                 if (mddev->reshape_position == MaxSector)
3756                         mddev->chunk_sectors = n >> 9;
3757         }
3758         return len;
3759 }
3760 static struct md_sysfs_entry md_chunk_size =
3761 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3762
3763 static ssize_t
3764 resync_start_show(struct mddev *mddev, char *page)
3765 {
3766         if (mddev->recovery_cp == MaxSector)
3767                 return sprintf(page, "none\n");
3768         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3769 }
3770
3771 static ssize_t
3772 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3773 {
3774         char *e;
3775         unsigned long long n = simple_strtoull(buf, &e, 10);
3776
3777         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3778                 return -EBUSY;
3779         if (cmd_match(buf, "none"))
3780                 n = MaxSector;
3781         else if (!*buf || (*e && *e != '\n'))
3782                 return -EINVAL;
3783
3784         mddev->recovery_cp = n;
3785         if (mddev->pers)
3786                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3787         return len;
3788 }
3789 static struct md_sysfs_entry md_resync_start =
3790 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3791
3792 /*
3793  * The array state can be:
3794  *
3795  * clear
3796  *     No devices, no size, no level
3797  *     Equivalent to STOP_ARRAY ioctl
3798  * inactive
3799  *     May have some settings, but array is not active
3800  *        all IO results in error
3801  *     When written, doesn't tear down array, but just stops it
3802  * suspended (not supported yet)
3803  *     All IO requests will block. The array can be reconfigured.
3804  *     Writing this, if accepted, will block until array is quiescent
3805  * readonly
3806  *     no resync can happen.  no superblocks get written.
3807  *     write requests fail
3808  * read-auto
3809  *     like readonly, but behaves like 'clean' on a write request.
3810  *
3811  * clean - no pending writes, but otherwise active.
3812  *     When written to inactive array, starts without resync
3813  *     If a write request arrives then
3814  *       if metadata is known, mark 'dirty' and switch to 'active'.
3815  *       if not known, block and switch to write-pending
3816  *     If written to an active array that has pending writes, then fails.
3817  * active
3818  *     fully active: IO and resync can be happening.
3819  *     When written to inactive array, starts with resync
3820  *
3821  * write-pending
3822  *     clean, but writes are blocked waiting for 'active' to be written.
3823  *
3824  * active-idle
3825  *     like active, but no writes have been seen for a while (100msec).
3826  *
3827  */
3828 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3829                    write_pending, active_idle, bad_word};
3830 static char *array_states[] = {
3831         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3832         "write-pending", "active-idle", NULL };
3833
3834 static int match_word(const char *word, char **list)
3835 {
3836         int n;
3837         for (n=0; list[n]; n++)
3838                 if (cmd_match(word, list[n]))
3839                         break;
3840         return n;
3841 }
3842
3843 static ssize_t
3844 array_state_show(struct mddev *mddev, char *page)
3845 {
3846         enum array_state st = inactive;
3847
3848         if (mddev->pers)
3849                 switch(mddev->ro) {
3850                 case 1:
3851                         st = readonly;
3852                         break;
3853                 case 2:
3854                         st = read_auto;
3855                         break;
3856                 case 0:
3857                         if (mddev->in_sync)
3858                                 st = clean;
3859                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3860                                 st = write_pending;
3861                         else if (mddev->safemode)
3862                                 st = active_idle;
3863                         else
3864                                 st = active;
3865                 }
3866         else {
3867                 if (list_empty(&mddev->disks) &&
3868                     mddev->raid_disks == 0 &&
3869                     mddev->dev_sectors == 0)
3870                         st = clear;
3871                 else
3872                         st = inactive;
3873         }
3874         return sprintf(page, "%s\n", array_states[st]);
3875 }
3876
3877 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3878 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3879 static int do_md_run(struct mddev * mddev);
3880 static int restart_array(struct mddev *mddev);
3881
3882 static ssize_t
3883 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3884 {
3885         int err = -EINVAL;
3886         enum array_state st = match_word(buf, array_states);
3887         switch(st) {
3888         case bad_word:
3889                 break;
3890         case clear:
3891                 /* stopping an active array */
3892                 err = do_md_stop(mddev, 0, NULL);
3893                 break;
3894         case inactive:
3895                 /* stopping an active array */
3896                 if (mddev->pers)
3897                         err = do_md_stop(mddev, 2, NULL);
3898                 else
3899                         err = 0; /* already inactive */
3900                 break;
3901         case suspended:
3902                 break; /* not supported yet */
3903         case readonly:
3904                 if (mddev->pers)
3905                         err = md_set_readonly(mddev, NULL);
3906                 else {
3907                         mddev->ro = 1;
3908                         set_disk_ro(mddev->gendisk, 1);
3909                         err = do_md_run(mddev);
3910                 }
3911                 break;
3912         case read_auto:
3913                 if (mddev->pers) {
3914                         if (mddev->ro == 0)
3915                                 err = md_set_readonly(mddev, NULL);
3916                         else if (mddev->ro == 1)
3917                                 err = restart_array(mddev);
3918                         if (err == 0) {
3919                                 mddev->ro = 2;
3920                                 set_disk_ro(mddev->gendisk, 0);
3921                         }
3922                 } else {
3923                         mddev->ro = 2;
3924                         err = do_md_run(mddev);
3925                 }
3926                 break;
3927         case clean:
3928                 if (mddev->pers) {
3929                         restart_array(mddev);
3930                         spin_lock_irq(&mddev->write_lock);
3931                         if (atomic_read(&mddev->writes_pending) == 0) {
3932                                 if (mddev->in_sync == 0) {
3933                                         mddev->in_sync = 1;
3934                                         if (mddev->safemode == 1)
3935                                                 mddev->safemode = 0;
3936                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3937                                 }
3938                                 err = 0;
3939                         } else
3940                                 err = -EBUSY;
3941                         spin_unlock_irq(&mddev->write_lock);
3942                 } else
3943                         err = -EINVAL;
3944                 break;
3945         case active:
3946                 if (mddev->pers) {
3947                         restart_array(mddev);
3948                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3949                         wake_up(&mddev->sb_wait);
3950                         err = 0;
3951                 } else {
3952                         mddev->ro = 0;
3953                         set_disk_ro(mddev->gendisk, 0);
3954                         err = do_md_run(mddev);
3955                 }
3956                 break;
3957         case write_pending:
3958         case active_idle:
3959                 /* these cannot be set */
3960                 break;
3961         }
3962         if (err)
3963                 return err;
3964         else {
3965                 if (mddev->hold_active == UNTIL_IOCTL)
3966                         mddev->hold_active = 0;
3967                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3968                 return len;
3969         }
3970 }
3971 static struct md_sysfs_entry md_array_state =
3972 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3973
3974 static ssize_t
3975 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3976         return sprintf(page, "%d\n",
3977                        atomic_read(&mddev->max_corr_read_errors));
3978 }
3979
3980 static ssize_t
3981 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3982 {
3983         char *e;
3984         unsigned long n = simple_strtoul(buf, &e, 10);
3985
3986         if (*buf && (*e == 0 || *e == '\n')) {
3987                 atomic_set(&mddev->max_corr_read_errors, n);
3988                 return len;
3989         }
3990         return -EINVAL;
3991 }
3992
3993 static struct md_sysfs_entry max_corr_read_errors =
3994 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3995         max_corrected_read_errors_store);
3996
3997 static ssize_t
3998 null_show(struct mddev *mddev, char *page)
3999 {
4000         return -EINVAL;
4001 }
4002
4003 static ssize_t
4004 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4005 {
4006         /* buf must be %d:%d\n? giving major and minor numbers */
4007         /* The new device is added to the array.
4008          * If the array has a persistent superblock, we read the
4009          * superblock to initialise info and check validity.
4010          * Otherwise, only checking done is that in bind_rdev_to_array,
4011          * which mainly checks size.
4012          */
4013         char *e;
4014         int major = simple_strtoul(buf, &e, 10);
4015         int minor;
4016         dev_t dev;
4017         struct md_rdev *rdev;
4018         int err;
4019
4020         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4021                 return -EINVAL;
4022         minor = simple_strtoul(e+1, &e, 10);
4023         if (*e && *e != '\n')
4024                 return -EINVAL;
4025         dev = MKDEV(major, minor);
4026         if (major != MAJOR(dev) ||
4027             minor != MINOR(dev))
4028                 return -EOVERFLOW;
4029
4030
4031         if (mddev->persistent) {
4032                 rdev = md_import_device(dev, mddev->major_version,
4033                                         mddev->minor_version);
4034                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4035                         struct md_rdev *rdev0
4036                                 = list_entry(mddev->disks.next,
4037                                              struct md_rdev, same_set);
4038                         err = super_types[mddev->major_version]
4039                                 .load_super(rdev, rdev0, mddev->minor_version);
4040                         if (err < 0)
4041                                 goto out;
4042                 }
4043         } else if (mddev->external)
4044                 rdev = md_import_device(dev, -2, -1);
4045         else
4046                 rdev = md_import_device(dev, -1, -1);
4047
4048         if (IS_ERR(rdev))
4049                 return PTR_ERR(rdev);
4050         err = bind_rdev_to_array(rdev, mddev);
4051  out:
4052         if (err)
4053                 export_rdev(rdev);
4054         return err ? err : len;
4055 }
4056
4057 static struct md_sysfs_entry md_new_device =
4058 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4059
4060 static ssize_t
4061 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4062 {
4063         char *end;
4064         unsigned long chunk, end_chunk;
4065
4066         if (!mddev->bitmap)
4067                 goto out;
4068         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4069         while (*buf) {
4070                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4071                 if (buf == end) break;
4072                 if (*end == '-') { /* range */
4073                         buf = end + 1;
4074                         end_chunk = simple_strtoul(buf, &end, 0);
4075                         if (buf == end) break;
4076                 }
4077                 if (*end && !isspace(*end)) break;
4078                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4079                 buf = skip_spaces(end);
4080         }
4081         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4082 out:
4083         return len;
4084 }
4085
4086 static struct md_sysfs_entry md_bitmap =
4087 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4088
4089 static ssize_t
4090 size_show(struct mddev *mddev, char *page)
4091 {
4092         return sprintf(page, "%llu\n",
4093                 (unsigned long long)mddev->dev_sectors / 2);
4094 }
4095
4096 static int update_size(struct mddev *mddev, sector_t num_sectors);
4097
4098 static ssize_t
4099 size_store(struct mddev *mddev, const char *buf, size_t len)
4100 {
4101         /* If array is inactive, we can reduce the component size, but
4102          * not increase it (except from 0).
4103          * If array is active, we can try an on-line resize
4104          */
4105         sector_t sectors;
4106         int err = strict_blocks_to_sectors(buf, &sectors);
4107
4108         if (err < 0)
4109                 return err;
4110         if (mddev->pers) {
4111                 err = update_size(mddev, sectors);
4112                 md_update_sb(mddev, 1);
4113         } else {
4114                 if (mddev->dev_sectors == 0 ||
4115                     mddev->dev_sectors > sectors)
4116                         mddev->dev_sectors = sectors;
4117                 else
4118                         err = -ENOSPC;
4119         }
4120         return err ? err : len;
4121 }
4122
4123 static struct md_sysfs_entry md_size =
4124 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4125
4126
4127 /* Metadata version.
4128  * This is one of
4129  *   'none' for arrays with no metadata (good luck...)
4130  *   'external' for arrays with externally managed metadata,
4131  * or N.M for internally known formats
4132  */
4133 static ssize_t
4134 metadata_show(struct mddev *mddev, char *page)
4135 {
4136         if (mddev->persistent)
4137                 return sprintf(page, "%d.%d\n",
4138                                mddev->major_version, mddev->minor_version);
4139         else if (mddev->external)
4140                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4141         else
4142                 return sprintf(page, "none\n");
4143 }
4144
4145 static ssize_t
4146 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4147 {
4148         int major, minor;
4149         char *e;
4150         /* Changing the details of 'external' metadata is
4151          * always permitted.  Otherwise there must be
4152          * no devices attached to the array.
4153          */
4154         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4155                 ;
4156         else if (!list_empty(&mddev->disks))
4157                 return -EBUSY;
4158
4159         if (cmd_match(buf, "none")) {
4160                 mddev->persistent = 0;
4161                 mddev->external = 0;
4162                 mddev->major_version = 0;
4163                 mddev->minor_version = 90;
4164                 return len;
4165         }
4166         if (strncmp(buf, "external:", 9) == 0) {
4167                 size_t namelen = len-9;
4168                 if (namelen >= sizeof(mddev->metadata_type))
4169                         namelen = sizeof(mddev->metadata_type)-1;
4170                 strncpy(mddev->metadata_type, buf+9, namelen);
4171                 mddev->metadata_type[namelen] = 0;
4172                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4173                         mddev->metadata_type[--namelen] = 0;
4174                 mddev->persistent = 0;
4175                 mddev->external = 1;
4176                 mddev->major_version = 0;
4177                 mddev->minor_version = 90;
4178                 return len;
4179         }
4180         major = simple_strtoul(buf, &e, 10);
4181         if (e==buf || *e != '.')
4182                 return -EINVAL;
4183         buf = e+1;
4184         minor = simple_strtoul(buf, &e, 10);
4185         if (e==buf || (*e && *e != '\n') )
4186                 return -EINVAL;
4187         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4188                 return -ENOENT;
4189         mddev->major_version = major;
4190         mddev->minor_version = minor;
4191         mddev->persistent = 1;
4192         mddev->external = 0;
4193         return len;
4194 }
4195
4196 static struct md_sysfs_entry md_metadata =
4197 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4198
4199 static ssize_t
4200 action_show(struct mddev *mddev, char *page)
4201 {
4202         char *type = "idle";
4203         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4204                 type = "frozen";
4205         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4206             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4207                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4208                         type = "reshape";
4209                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4210                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4211                                 type = "resync";
4212                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4213                                 type = "check";
4214                         else
4215                                 type = "repair";
4216                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4217                         type = "recover";
4218         }
4219         return sprintf(page, "%s\n", type);
4220 }
4221
4222 static ssize_t
4223 action_store(struct mddev *mddev, const char *page, size_t len)
4224 {
4225         if (!mddev->pers || !mddev->pers->sync_request)
4226                 return -EINVAL;
4227
4228         if (cmd_match(page, "frozen"))
4229                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4230         else
4231                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4232
4233         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4234                 if (mddev->sync_thread) {
4235                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4236                         md_reap_sync_thread(mddev);
4237                 }
4238         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4239                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4240                 return -EBUSY;
4241         else if (cmd_match(page, "resync"))
4242                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4243         else if (cmd_match(page, "recover")) {
4244                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4245                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4246         } else if (cmd_match(page, "reshape")) {
4247                 int err;
4248                 if (mddev->pers->start_reshape == NULL)
4249                         return -EINVAL;
4250                 err = mddev->pers->start_reshape(mddev);
4251                 if (err)
4252                         return err;
4253                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4254         } else {
4255                 if (cmd_match(page, "check"))
4256                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4257                 else if (!cmd_match(page, "repair"))
4258                         return -EINVAL;
4259                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4260                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4261         }
4262         if (mddev->ro == 2) {
4263                 /* A write to sync_action is enough to justify
4264                  * canceling read-auto mode
4265                  */
4266                 mddev->ro = 0;
4267                 md_wakeup_thread(mddev->sync_thread);
4268         }
4269         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4270         md_wakeup_thread(mddev->thread);
4271         sysfs_notify_dirent_safe(mddev->sysfs_action);
4272         return len;
4273 }
4274
4275 static ssize_t
4276 mismatch_cnt_show(struct mddev *mddev, char *page)
4277 {
4278         return sprintf(page, "%llu\n",
4279                        (unsigned long long)
4280                        atomic64_read(&mddev->resync_mismatches));
4281 }
4282
4283 static struct md_sysfs_entry md_scan_mode =
4284 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4285
4286
4287 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4288
4289 static ssize_t
4290 sync_min_show(struct mddev *mddev, char *page)
4291 {
4292         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4293                        mddev->sync_speed_min ? "local": "system");
4294 }
4295
4296 static ssize_t
4297 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4298 {
4299         int min;
4300         char *e;
4301         if (strncmp(buf, "system", 6)==0) {
4302                 mddev->sync_speed_min = 0;
4303                 return len;
4304         }
4305         min = simple_strtoul(buf, &e, 10);
4306         if (buf == e || (*e && *e != '\n') || min <= 0)
4307                 return -EINVAL;
4308         mddev->sync_speed_min = min;
4309         return len;
4310 }
4311
4312 static struct md_sysfs_entry md_sync_min =
4313 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4314
4315 static ssize_t
4316 sync_max_show(struct mddev *mddev, char *page)
4317 {
4318         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4319                        mddev->sync_speed_max ? "local": "system");
4320 }
4321
4322 static ssize_t
4323 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4324 {
4325         int max;
4326         char *e;
4327         if (strncmp(buf, "system", 6)==0) {
4328                 mddev->sync_speed_max = 0;
4329                 return len;
4330         }
4331         max = simple_strtoul(buf, &e, 10);
4332         if (buf == e || (*e && *e != '\n') || max <= 0)
4333                 return -EINVAL;
4334         mddev->sync_speed_max = max;
4335         return len;
4336 }
4337
4338 static struct md_sysfs_entry md_sync_max =
4339 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4340
4341 static ssize_t
4342 degraded_show(struct mddev *mddev, char *page)
4343 {
4344         return sprintf(page, "%d\n", mddev->degraded);
4345 }
4346 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4347
4348 static ssize_t
4349 sync_force_parallel_show(struct mddev *mddev, char *page)
4350 {
4351         return sprintf(page, "%d\n", mddev->parallel_resync);
4352 }
4353
4354 static ssize_t
4355 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4356 {
4357         long n;
4358
4359         if (strict_strtol(buf, 10, &n))
4360                 return -EINVAL;
4361
4362         if (n != 0 && n != 1)
4363                 return -EINVAL;
4364
4365         mddev->parallel_resync = n;
4366
4367         if (mddev->sync_thread)
4368                 wake_up(&resync_wait);
4369
4370         return len;
4371 }
4372
4373 /* force parallel resync, even with shared block devices */
4374 static struct md_sysfs_entry md_sync_force_parallel =
4375 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4376        sync_force_parallel_show, sync_force_parallel_store);
4377
4378 static ssize_t
4379 sync_speed_show(struct mddev *mddev, char *page)
4380 {
4381         unsigned long resync, dt, db;
4382         if (mddev->curr_resync == 0)
4383                 return sprintf(page, "none\n");
4384         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4385         dt = (jiffies - mddev->resync_mark) / HZ;
4386         if (!dt) dt++;
4387         db = resync - mddev->resync_mark_cnt;
4388         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4389 }
4390
4391 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4392
4393 static ssize_t
4394 sync_completed_show(struct mddev *mddev, char *page)
4395 {
4396         unsigned long long max_sectors, resync;
4397
4398         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4399                 return sprintf(page, "none\n");
4400
4401         if (mddev->curr_resync == 1 ||
4402             mddev->curr_resync == 2)
4403                 return sprintf(page, "delayed\n");
4404
4405         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4406             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4407                 max_sectors = mddev->resync_max_sectors;
4408         else
4409                 max_sectors = mddev->dev_sectors;
4410
4411         resync = mddev->curr_resync_completed;
4412         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4413 }
4414
4415 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4416
4417 static ssize_t
4418 min_sync_show(struct mddev *mddev, char *page)
4419 {
4420         return sprintf(page, "%llu\n",
4421                        (unsigned long long)mddev->resync_min);
4422 }
4423 static ssize_t
4424 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4425 {
4426         unsigned long long min;
4427         if (strict_strtoull(buf, 10, &min))
4428                 return -EINVAL;
4429         if (min > mddev->resync_max)
4430                 return -EINVAL;
4431         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4432                 return -EBUSY;
4433
4434         /* Must be a multiple of chunk_size */
4435         if (mddev->chunk_sectors) {
4436                 sector_t temp = min;
4437                 if (sector_div(temp, mddev->chunk_sectors))
4438                         return -EINVAL;
4439         }
4440         mddev->resync_min = min;
4441
4442         return len;
4443 }
4444
4445 static struct md_sysfs_entry md_min_sync =
4446 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4447
4448 static ssize_t
4449 max_sync_show(struct mddev *mddev, char *page)
4450 {
4451         if (mddev->resync_max == MaxSector)
4452                 return sprintf(page, "max\n");
4453         else
4454                 return sprintf(page, "%llu\n",
4455                                (unsigned long long)mddev->resync_max);
4456 }
4457 static ssize_t
4458 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4459 {
4460         if (strncmp(buf, "max", 3) == 0)
4461                 mddev->resync_max = MaxSector;
4462         else {
4463                 unsigned long long max;
4464                 if (strict_strtoull(buf, 10, &max))
4465                         return -EINVAL;
4466                 if (max < mddev->resync_min)
4467                         return -EINVAL;
4468                 if (max < mddev->resync_max &&
4469                     mddev->ro == 0 &&
4470                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4471                         return -EBUSY;
4472
4473                 /* Must be a multiple of chunk_size */
4474                 if (mddev->chunk_sectors) {
4475                         sector_t temp = max;
4476                         if (sector_div(temp, mddev->chunk_sectors))
4477                                 return -EINVAL;
4478                 }
4479                 mddev->resync_max = max;
4480         }
4481         wake_up(&mddev->recovery_wait);
4482         return len;
4483 }
4484
4485 static struct md_sysfs_entry md_max_sync =
4486 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4487
4488 static ssize_t
4489 suspend_lo_show(struct mddev *mddev, char *page)
4490 {
4491         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4492 }
4493
4494 static ssize_t
4495 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4496 {
4497         char *e;
4498         unsigned long long new = simple_strtoull(buf, &e, 10);
4499         unsigned long long old = mddev->suspend_lo;
4500
4501         if (mddev->pers == NULL || 
4502             mddev->pers->quiesce == NULL)
4503                 return -EINVAL;
4504         if (buf == e || (*e && *e != '\n'))
4505                 return -EINVAL;
4506
4507         mddev->suspend_lo = new;
4508         if (new >= old)
4509                 /* Shrinking suspended region */
4510                 mddev->pers->quiesce(mddev, 2);
4511         else {
4512                 /* Expanding suspended region - need to wait */
4513                 mddev->pers->quiesce(mddev, 1);
4514                 mddev->pers->quiesce(mddev, 0);
4515         }
4516         return len;
4517 }
4518 static struct md_sysfs_entry md_suspend_lo =
4519 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4520
4521
4522 static ssize_t
4523 suspend_hi_show(struct mddev *mddev, char *page)
4524 {
4525         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4526 }
4527
4528 static ssize_t
4529 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4530 {
4531         char *e;
4532         unsigned long long new = simple_strtoull(buf, &e, 10);
4533         unsigned long long old = mddev->suspend_hi;
4534
4535         if (mddev->pers == NULL ||
4536             mddev->pers->quiesce == NULL)
4537                 return -EINVAL;
4538         if (buf == e || (*e && *e != '\n'))
4539                 return -EINVAL;
4540
4541         mddev->suspend_hi = new;
4542         if (new <= old)
4543                 /* Shrinking suspended region */
4544                 mddev->pers->quiesce(mddev, 2);
4545         else {
4546                 /* Expanding suspended region - need to wait */
4547                 mddev->pers->quiesce(mddev, 1);
4548                 mddev->pers->quiesce(mddev, 0);
4549         }
4550         return len;
4551 }
4552 static struct md_sysfs_entry md_suspend_hi =
4553 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4554
4555 static ssize_t
4556 reshape_position_show(struct mddev *mddev, char *page)
4557 {
4558         if (mddev->reshape_position != MaxSector)
4559                 return sprintf(page, "%llu\n",
4560                                (unsigned long long)mddev->reshape_position);
4561         strcpy(page, "none\n");
4562         return 5;
4563 }
4564
4565 static ssize_t
4566 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4567 {
4568         struct md_rdev *rdev;
4569         char *e;
4570         unsigned long long new = simple_strtoull(buf, &e, 10);
4571         if (mddev->pers)
4572                 return -EBUSY;
4573         if (buf == e || (*e && *e != '\n'))
4574                 return -EINVAL;
4575         mddev->reshape_position = new;
4576         mddev->delta_disks = 0;
4577         mddev->reshape_backwards = 0;
4578         mddev->new_level = mddev->level;
4579         mddev->new_layout = mddev->layout;
4580         mddev->new_chunk_sectors = mddev->chunk_sectors;
4581         rdev_for_each(rdev, mddev)
4582                 rdev->new_data_offset = rdev->data_offset;
4583         return len;
4584 }
4585
4586 static struct md_sysfs_entry md_reshape_position =
4587 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4588        reshape_position_store);
4589
4590 static ssize_t
4591 reshape_direction_show(struct mddev *mddev, char *page)
4592 {
4593         return sprintf(page, "%s\n",
4594                        mddev->reshape_backwards ? "backwards" : "forwards");
4595 }
4596
4597 static ssize_t
4598 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4599 {
4600         int backwards = 0;
4601         if (cmd_match(buf, "forwards"))
4602                 backwards = 0;
4603         else if (cmd_match(buf, "backwards"))
4604                 backwards = 1;
4605         else
4606                 return -EINVAL;
4607         if (mddev->reshape_backwards == backwards)
4608                 return len;
4609
4610         /* check if we are allowed to change */
4611         if (mddev->delta_disks)
4612                 return -EBUSY;
4613
4614         if (mddev->persistent &&
4615             mddev->major_version == 0)
4616                 return -EINVAL;
4617
4618         mddev->reshape_backwards = backwards;
4619         return len;
4620 }
4621
4622 static struct md_sysfs_entry md_reshape_direction =
4623 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4624        reshape_direction_store);
4625
4626 static ssize_t
4627 array_size_show(struct mddev *mddev, char *page)
4628 {
4629         if (mddev->external_size)
4630                 return sprintf(page, "%llu\n",
4631                                (unsigned long long)mddev->array_sectors/2);
4632         else
4633                 return sprintf(page, "default\n");
4634 }
4635
4636 static ssize_t
4637 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4638 {
4639         sector_t sectors;
4640
4641         if (strncmp(buf, "default", 7) == 0) {
4642                 if (mddev->pers)
4643                         sectors = mddev->pers->size(mddev, 0, 0);
4644                 else
4645                         sectors = mddev->array_sectors;
4646
4647                 mddev->external_size = 0;
4648         } else {
4649                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4650                         return -EINVAL;
4651                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4652                         return -E2BIG;
4653
4654                 mddev->external_size = 1;
4655         }
4656
4657         mddev->array_sectors = sectors;
4658         if (mddev->pers) {
4659                 set_capacity(mddev->gendisk, mddev->array_sectors);
4660                 revalidate_disk(mddev->gendisk);
4661         }
4662         return len;
4663 }
4664
4665 static struct md_sysfs_entry md_array_size =
4666 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4667        array_size_store);
4668
4669 static struct attribute *md_default_attrs[] = {
4670         &md_level.attr,
4671         &md_layout.attr,
4672         &md_raid_disks.attr,
4673         &md_chunk_size.attr,
4674         &md_size.attr,
4675         &md_resync_start.attr,
4676         &md_metadata.attr,
4677         &md_new_device.attr,
4678         &md_safe_delay.attr,
4679         &md_array_state.attr,
4680         &md_reshape_position.attr,
4681         &md_reshape_direction.attr,
4682         &md_array_size.attr,
4683         &max_corr_read_errors.attr,
4684         NULL,
4685 };
4686
4687 static struct attribute *md_redundancy_attrs[] = {
4688         &md_scan_mode.attr,
4689         &md_mismatches.attr,
4690         &md_sync_min.attr,
4691         &md_sync_max.attr,
4692         &md_sync_speed.attr,
4693         &md_sync_force_parallel.attr,
4694         &md_sync_completed.attr,
4695         &md_min_sync.attr,
4696         &md_max_sync.attr,
4697         &md_suspend_lo.attr,
4698         &md_suspend_hi.attr,
4699         &md_bitmap.attr,
4700         &md_degraded.attr,
4701         NULL,
4702 };
4703 static struct attribute_group md_redundancy_group = {
4704         .name = NULL,
4705         .attrs = md_redundancy_attrs,
4706 };
4707
4708
4709 static ssize_t
4710 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4711 {
4712         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4713         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4714         ssize_t rv;
4715
4716         if (!entry->show)
4717                 return -EIO;
4718         spin_lock(&all_mddevs_lock);
4719         if (list_empty(&mddev->all_mddevs)) {
4720                 spin_unlock(&all_mddevs_lock);
4721                 return -EBUSY;
4722         }
4723         mddev_get(mddev);
4724         spin_unlock(&all_mddevs_lock);
4725
4726         rv = mddev_lock(mddev);
4727         if (!rv) {
4728                 rv = entry->show(mddev, page);
4729                 mddev_unlock(mddev);
4730         }
4731         mddev_put(mddev);
4732         return rv;
4733 }
4734
4735 static ssize_t
4736 md_attr_store(struct kobject *kobj, struct attribute *attr,
4737               const char *page, size_t length)
4738 {
4739         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4740         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4741         ssize_t rv;
4742
4743         if (!entry->store)
4744                 return -EIO;
4745         if (!capable(CAP_SYS_ADMIN))
4746                 return -EACCES;
4747         spin_lock(&all_mddevs_lock);
4748         if (list_empty(&mddev->all_mddevs)) {
4749                 spin_unlock(&all_mddevs_lock);
4750                 return -EBUSY;
4751         }
4752         mddev_get(mddev);
4753         spin_unlock(&all_mddevs_lock);
4754         if (entry->store == new_dev_store)
4755                 flush_workqueue(md_misc_wq);
4756         rv = mddev_lock(mddev);
4757         if (!rv) {
4758                 rv = entry->store(mddev, page, length);
4759                 mddev_unlock(mddev);
4760         }
4761         mddev_put(mddev);
4762         return rv;
4763 }
4764
4765 static void md_free(struct kobject *ko)
4766 {
4767         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4768
4769         if (mddev->sysfs_state)
4770                 sysfs_put(mddev->sysfs_state);
4771
4772         if (mddev->gendisk) {
4773                 del_gendisk(mddev->gendisk);
4774                 put_disk(mddev->gendisk);
4775         }
4776         if (mddev->queue)
4777                 blk_cleanup_queue(mddev->queue);
4778
4779         kfree(mddev);
4780 }
4781
4782 static const struct sysfs_ops md_sysfs_ops = {
4783         .show   = md_attr_show,
4784         .store  = md_attr_store,
4785 };
4786 static struct kobj_type md_ktype = {
4787         .release        = md_free,
4788         .sysfs_ops      = &md_sysfs_ops,
4789         .default_attrs  = md_default_attrs,
4790 };
4791
4792 int mdp_major = 0;
4793
4794 static void mddev_delayed_delete(struct work_struct *ws)
4795 {
4796         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4797
4798         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4799         kobject_del(&mddev->kobj);
4800         kobject_put(&mddev->kobj);
4801 }
4802
4803 static int md_alloc(dev_t dev, char *name)
4804 {
4805         static DEFINE_MUTEX(disks_mutex);
4806         struct mddev *mddev = mddev_find(dev);
4807         struct gendisk *disk;
4808         int partitioned;
4809         int shift;
4810         int unit;
4811         int error;
4812
4813         if (!mddev)
4814                 return -ENODEV;
4815
4816         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4817         shift = partitioned ? MdpMinorShift : 0;
4818         unit = MINOR(mddev->unit) >> shift;
4819
4820         /* wait for any previous instance of this device to be
4821          * completely removed (mddev_delayed_delete).
4822          */
4823         flush_workqueue(md_misc_wq);
4824
4825         mutex_lock(&disks_mutex);
4826         error = -EEXIST;
4827         if (mddev->gendisk)
4828                 goto abort;
4829
4830         if (name) {
4831                 /* Need to ensure that 'name' is not a duplicate.
4832                  */
4833                 struct mddev *mddev2;
4834                 spin_lock(&all_mddevs_lock);
4835
4836                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4837                         if (mddev2->gendisk &&
4838                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4839                                 spin_unlock(&all_mddevs_lock);
4840                                 goto abort;
4841                         }
4842                 spin_unlock(&all_mddevs_lock);
4843         }
4844
4845         error = -ENOMEM;
4846         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4847         if (!mddev->queue)
4848                 goto abort;
4849         mddev->queue->queuedata = mddev;
4850
4851         blk_queue_make_request(mddev->queue, md_make_request);
4852         blk_set_stacking_limits(&mddev->queue->limits);
4853
4854         disk = alloc_disk(1 << shift);
4855         if (!disk) {
4856                 blk_cleanup_queue(mddev->queue);
4857                 mddev->queue = NULL;
4858                 goto abort;
4859         }
4860         disk->major = MAJOR(mddev->unit);
4861         disk->first_minor = unit << shift;
4862         if (name)
4863                 strcpy(disk->disk_name, name);
4864         else if (partitioned)
4865                 sprintf(disk->disk_name, "md_d%d", unit);
4866         else
4867                 sprintf(disk->disk_name, "md%d", unit);
4868         disk->fops = &md_fops;
4869         disk->private_data = mddev;
4870         disk->queue = mddev->queue;
4871         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4872         /* Allow extended partitions.  This makes the
4873          * 'mdp' device redundant, but we can't really
4874          * remove it now.
4875          */
4876         disk->flags |= GENHD_FL_EXT_DEVT;
4877         mddev->gendisk = disk;
4878         /* As soon as we call add_disk(), another thread could get
4879          * through to md_open, so make sure it doesn't get too far
4880          */
4881         mutex_lock(&mddev->open_mutex);
4882         add_disk(disk);
4883
4884         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4885                                      &disk_to_dev(disk)->kobj, "%s", "md");
4886         if (error) {
4887                 /* This isn't possible, but as kobject_init_and_add is marked
4888                  * __must_check, we must do something with the result
4889                  */
4890                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4891                        disk->disk_name);
4892                 error = 0;
4893         }
4894         if (mddev->kobj.sd &&
4895             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4896                 printk(KERN_DEBUG "pointless warning\n");
4897         mutex_unlock(&mddev->open_mutex);
4898  abort:
4899         mutex_unlock(&disks_mutex);
4900         if (!error && mddev->kobj.sd) {
4901                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4902                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4903         }
4904         mddev_put(mddev);
4905         return error;
4906 }
4907
4908 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4909 {
4910         md_alloc(dev, NULL);
4911         return NULL;
4912 }
4913
4914 static int add_named_array(const char *val, struct kernel_param *kp)
4915 {
4916         /* val must be "md_*" where * is not all digits.
4917          * We allocate an array with a large free minor number, and
4918          * set the name to val.  val must not already be an active name.
4919          */
4920         int len = strlen(val);
4921         char buf[DISK_NAME_LEN];
4922
4923         while (len && val[len-1] == '\n')
4924                 len--;
4925         if (len >= DISK_NAME_LEN)
4926                 return -E2BIG;
4927         strlcpy(buf, val, len+1);
4928         if (strncmp(buf, "md_", 3) != 0)
4929                 return -EINVAL;
4930         return md_alloc(0, buf);
4931 }
4932
4933 static void md_safemode_timeout(unsigned long data)
4934 {
4935         struct mddev *mddev = (struct mddev *) data;
4936
4937         if (!atomic_read(&mddev->writes_pending)) {
4938                 mddev->safemode = 1;
4939                 if (mddev->external)
4940                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4941         }
4942         md_wakeup_thread(mddev->thread);
4943 }
4944
4945 static int start_dirty_degraded;
4946
4947 int md_run(struct mddev *mddev)
4948 {
4949         int err;
4950         struct md_rdev *rdev;
4951         struct md_personality *pers;
4952
4953         if (list_empty(&mddev->disks))
4954                 /* cannot run an array with no devices.. */
4955                 return -EINVAL;
4956
4957         if (mddev->pers)
4958                 return -EBUSY;
4959         /* Cannot run until previous stop completes properly */
4960         if (mddev->sysfs_active)
4961                 return -EBUSY;
4962
4963         /*
4964          * Analyze all RAID superblock(s)
4965          */
4966         if (!mddev->raid_disks) {
4967                 if (!mddev->persistent)
4968                         return -EINVAL;
4969                 analyze_sbs(mddev);
4970         }
4971
4972         if (mddev->level != LEVEL_NONE)
4973                 request_module("md-level-%d", mddev->level);
4974         else if (mddev->clevel[0])
4975                 request_module("md-%s", mddev->clevel);
4976
4977         /*
4978          * Drop all container device buffers, from now on
4979          * the only valid external interface is through the md
4980          * device.
4981          */
4982         rdev_for_each(rdev, mddev) {
4983                 if (test_bit(Faulty, &rdev->flags))
4984                         continue;
4985                 sync_blockdev(rdev->bdev);
4986                 invalidate_bdev(rdev->bdev);
4987
4988                 /* perform some consistency tests on the device.
4989                  * We don't want the data to overlap the metadata,
4990                  * Internal Bitmap issues have been handled elsewhere.
4991                  */
4992                 if (rdev->meta_bdev) {
4993                         /* Nothing to check */;
4994                 } else if (rdev->data_offset < rdev->sb_start) {
4995                         if (mddev->dev_sectors &&
4996                             rdev->data_offset + mddev->dev_sectors
4997                             > rdev->sb_start) {
4998                                 printk("md: %s: data overlaps metadata\n",
4999                                        mdname(mddev));
5000                                 return -EINVAL;
5001                         }
5002                 } else {
5003                         if (rdev->sb_start + rdev->sb_size/512
5004                             > rdev->data_offset) {
5005                                 printk("md: %s: metadata overlaps data\n",
5006                                        mdname(mddev));
5007                                 return -EINVAL;
5008                         }
5009                 }
5010                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5011         }
5012
5013         if (mddev->bio_set == NULL)
5014                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5015
5016         spin_lock(&pers_lock);
5017         pers = find_pers(mddev->level, mddev->clevel);
5018         if (!pers || !try_module_get(pers->owner)) {
5019                 spin_unlock(&pers_lock);
5020                 if (mddev->level != LEVEL_NONE)
5021                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5022                                mddev->level);
5023                 else
5024                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5025                                mddev->clevel);
5026                 return -EINVAL;
5027         }
5028         mddev->pers = pers;
5029         spin_unlock(&pers_lock);
5030         if (mddev->level != pers->level) {
5031                 mddev->level = pers->level;
5032                 mddev->new_level = pers->level;
5033         }
5034         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5035
5036         if (mddev->reshape_position != MaxSector &&
5037             pers->start_reshape == NULL) {
5038                 /* This personality cannot handle reshaping... */
5039                 mddev->pers = NULL;
5040                 module_put(pers->owner);
5041                 return -EINVAL;
5042         }
5043
5044         if (pers->sync_request) {
5045                 /* Warn if this is a potentially silly
5046                  * configuration.
5047                  */
5048                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5049                 struct md_rdev *rdev2;
5050                 int warned = 0;
5051
5052                 rdev_for_each(rdev, mddev)
5053                         rdev_for_each(rdev2, mddev) {
5054                                 if (rdev < rdev2 &&
5055                                     rdev->bdev->bd_contains ==
5056                                     rdev2->bdev->bd_contains) {
5057                                         printk(KERN_WARNING
5058                                                "%s: WARNING: %s appears to be"
5059                                                " on the same physical disk as"
5060                                                " %s.\n",
5061                                                mdname(mddev),
5062                                                bdevname(rdev->bdev,b),
5063                                                bdevname(rdev2->bdev,b2));
5064                                         warned = 1;
5065                                 }
5066                         }
5067
5068                 if (warned)
5069                         printk(KERN_WARNING
5070                                "True protection against single-disk"
5071                                " failure might be compromised.\n");
5072         }
5073
5074         mddev->recovery = 0;
5075         /* may be over-ridden by personality */
5076         mddev->resync_max_sectors = mddev->dev_sectors;
5077
5078         mddev->ok_start_degraded = start_dirty_degraded;
5079
5080         if (start_readonly && mddev->ro == 0)
5081                 mddev->ro = 2; /* read-only, but switch on first write */
5082
5083         err = mddev->pers->run(mddev);
5084         if (err)
5085                 printk(KERN_ERR "md: pers->run() failed ...\n");
5086         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5087                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5088                           " but 'external_size' not in effect?\n", __func__);
5089                 printk(KERN_ERR
5090                        "md: invalid array_size %llu > default size %llu\n",
5091                        (unsigned long long)mddev->array_sectors / 2,
5092                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5093                 err = -EINVAL;
5094                 mddev->pers->stop(mddev);
5095         }
5096         if (err == 0 && mddev->pers->sync_request &&
5097             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5098                 err = bitmap_create(mddev);
5099                 if (err) {
5100                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5101                                mdname(mddev), err);
5102                         mddev->pers->stop(mddev);
5103                 }
5104         }
5105         if (err) {
5106                 module_put(mddev->pers->owner);
5107                 mddev->pers = NULL;
5108                 bitmap_destroy(mddev);
5109                 return err;
5110         }
5111         if (mddev->pers->sync_request) {
5112                 if (mddev->kobj.sd &&
5113                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5114                         printk(KERN_WARNING
5115                                "md: cannot register extra attributes for %s\n",
5116                                mdname(mddev));
5117                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5118         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5119                 mddev->ro = 0;
5120
5121         atomic_set(&mddev->writes_pending,0);
5122         atomic_set(&mddev->max_corr_read_errors,
5123                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5124         mddev->safemode = 0;
5125         mddev->safemode_timer.function = md_safemode_timeout;
5126         mddev->safemode_timer.data = (unsigned long) mddev;
5127         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5128         mddev->in_sync = 1;
5129         smp_wmb();
5130         mddev->ready = 1;
5131         rdev_for_each(rdev, mddev)
5132                 if (rdev->raid_disk >= 0)
5133                         if (sysfs_link_rdev(mddev, rdev))
5134                                 /* failure here is OK */;
5135         
5136         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5137         
5138         if (mddev->flags)
5139                 md_update_sb(mddev, 0);
5140
5141         md_new_event(mddev);
5142         sysfs_notify_dirent_safe(mddev->sysfs_state);
5143         sysfs_notify_dirent_safe(mddev->sysfs_action);
5144         sysfs_notify(&mddev->kobj, NULL, "degraded");
5145         return 0;
5146 }
5147 EXPORT_SYMBOL_GPL(md_run);
5148
5149 static int do_md_run(struct mddev *mddev)
5150 {
5151         int err;
5152
5153         err = md_run(mddev);
5154         if (err)
5155                 goto out;
5156         err = bitmap_load(mddev);
5157         if (err) {
5158                 bitmap_destroy(mddev);
5159                 goto out;
5160         }
5161
5162         md_wakeup_thread(mddev->thread);
5163         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5164
5165         set_capacity(mddev->gendisk, mddev->array_sectors);
5166         revalidate_disk(mddev->gendisk);
5167         mddev->changed = 1;
5168         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5169 out:
5170         return err;
5171 }
5172
5173 static int restart_array(struct mddev *mddev)
5174 {
5175         struct gendisk *disk = mddev->gendisk;
5176
5177         /* Complain if it has no devices */
5178         if (list_empty(&mddev->disks))
5179                 return -ENXIO;
5180         if (!mddev->pers)
5181                 return -EINVAL;
5182         if (!mddev->ro)
5183                 return -EBUSY;
5184         mddev->safemode = 0;
5185         mddev->ro = 0;
5186         set_disk_ro(disk, 0);
5187         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5188                 mdname(mddev));
5189         /* Kick recovery or resync if necessary */
5190         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5191         md_wakeup_thread(mddev->thread);
5192         md_wakeup_thread(mddev->sync_thread);
5193         sysfs_notify_dirent_safe(mddev->sysfs_state);
5194         return 0;
5195 }
5196
5197 /* similar to deny_write_access, but accounts for our holding a reference
5198  * to the file ourselves */
5199 static int deny_bitmap_write_access(struct file * file)
5200 {
5201         struct inode *inode = file->f_mapping->host;
5202
5203         spin_lock(&inode->i_lock);
5204         if (atomic_read(&inode->i_writecount) > 1) {
5205                 spin_unlock(&inode->i_lock);
5206                 return -ETXTBSY;
5207         }
5208         atomic_set(&inode->i_writecount, -1);
5209         spin_unlock(&inode->i_lock);
5210
5211         return 0;
5212 }
5213
5214 void restore_bitmap_write_access(struct file *file)
5215 {
5216         struct inode *inode = file->f_mapping->host;
5217
5218         spin_lock(&inode->i_lock);
5219         atomic_set(&inode->i_writecount, 1);
5220         spin_unlock(&inode->i_lock);
5221 }
5222
5223 static void md_clean(struct mddev *mddev)
5224 {
5225         mddev->array_sectors = 0;
5226         mddev->external_size = 0;
5227         mddev->dev_sectors = 0;
5228         mddev->raid_disks = 0;
5229         mddev->recovery_cp = 0;
5230         mddev->resync_min = 0;
5231         mddev->resync_max = MaxSector;
5232         mddev->reshape_position = MaxSector;
5233         mddev->external = 0;
5234         mddev->persistent = 0;
5235         mddev->level = LEVEL_NONE;
5236         mddev->clevel[0] = 0;
5237         mddev->flags = 0;
5238         mddev->ro = 0;
5239         mddev->metadata_type[0] = 0;
5240         mddev->chunk_sectors = 0;
5241         mddev->ctime = mddev->utime = 0;
5242         mddev->layout = 0;
5243         mddev->max_disks = 0;
5244         mddev->events = 0;
5245         mddev->can_decrease_events = 0;
5246         mddev->delta_disks = 0;
5247         mddev->reshape_backwards = 0;
5248         mddev->new_level = LEVEL_NONE;
5249         mddev->new_layout = 0;
5250         mddev->new_chunk_sectors = 0;
5251         mddev->curr_resync = 0;
5252         atomic64_set(&mddev->resync_mismatches, 0);
5253         mddev->suspend_lo = mddev->suspend_hi = 0;
5254         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5255         mddev->recovery = 0;
5256         mddev->in_sync = 0;
5257         mddev->changed = 0;
5258         mddev->degraded = 0;
5259         mddev->safemode = 0;
5260         mddev->merge_check_needed = 0;
5261         mddev->bitmap_info.offset = 0;
5262         mddev->bitmap_info.default_offset = 0;
5263         mddev->bitmap_info.default_space = 0;
5264         mddev->bitmap_info.chunksize = 0;
5265         mddev->bitmap_info.daemon_sleep = 0;
5266         mddev->bitmap_info.max_write_behind = 0;
5267 }
5268
5269 static void __md_stop_writes(struct mddev *mddev)
5270 {
5271         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5272         if (mddev->sync_thread) {
5273                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5274                 md_reap_sync_thread(mddev);
5275         }
5276
5277         del_timer_sync(&mddev->safemode_timer);
5278
5279         bitmap_flush(mddev);
5280         md_super_wait(mddev);
5281
5282         if (mddev->ro == 0 &&
5283             (!mddev->in_sync || mddev->flags)) {
5284                 /* mark array as shutdown cleanly */
5285                 mddev->in_sync = 1;
5286                 md_update_sb(mddev, 1);
5287         }
5288 }
5289
5290 void md_stop_writes(struct mddev *mddev)
5291 {
5292         mddev_lock(mddev);
5293         __md_stop_writes(mddev);
5294         mddev_unlock(mddev);
5295 }
5296 EXPORT_SYMBOL_GPL(md_stop_writes);
5297
5298 static void __md_stop(struct mddev *mddev)
5299 {
5300         mddev->ready = 0;
5301         mddev->pers->stop(mddev);
5302         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5303                 mddev->to_remove = &md_redundancy_group;
5304         module_put(mddev->pers->owner);
5305         mddev->pers = NULL;
5306         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5307 }
5308
5309 void md_stop(struct mddev *mddev)
5310 {
5311         /* stop the array and free an attached data structures.
5312          * This is called from dm-raid
5313          */
5314         __md_stop(mddev);
5315         bitmap_destroy(mddev);
5316         if (mddev->bio_set)
5317                 bioset_free(mddev->bio_set);
5318 }
5319
5320 EXPORT_SYMBOL_GPL(md_stop);
5321
5322 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5323 {
5324         int err = 0;
5325         mutex_lock(&mddev->open_mutex);
5326         if (atomic_read(&mddev->openers) > !!bdev) {
5327                 printk("md: %s still in use.\n",mdname(mddev));
5328                 err = -EBUSY;
5329                 goto out;
5330         }
5331         if (bdev)
5332                 sync_blockdev(bdev);
5333         if (mddev->pers) {
5334                 __md_stop_writes(mddev);
5335
5336                 err  = -ENXIO;
5337                 if (mddev->ro==1)
5338                         goto out;
5339                 mddev->ro = 1;
5340                 set_disk_ro(mddev->gendisk, 1);
5341                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5342                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5343                 err = 0;        
5344         }
5345 out:
5346         mutex_unlock(&mddev->open_mutex);
5347         return err;
5348 }
5349
5350 /* mode:
5351  *   0 - completely stop and dis-assemble array
5352  *   2 - stop but do not disassemble array
5353  */
5354 static int do_md_stop(struct mddev * mddev, int mode,
5355                       struct block_device *bdev)
5356 {
5357         struct gendisk *disk = mddev->gendisk;
5358         struct md_rdev *rdev;
5359
5360         mutex_lock(&mddev->open_mutex);
5361         if (atomic_read(&mddev->openers) > !!bdev ||
5362             mddev->sysfs_active) {
5363                 printk("md: %s still in use.\n",mdname(mddev));
5364                 mutex_unlock(&mddev->open_mutex);
5365                 return -EBUSY;
5366         }
5367         if (bdev)
5368                 /* It is possible IO was issued on some other
5369                  * open file which was closed before we took ->open_mutex.
5370                  * As that was not the last close __blkdev_put will not
5371                  * have called sync_blockdev, so we must.
5372                  */
5373                 sync_blockdev(bdev);
5374
5375         if (mddev->pers) {
5376                 if (mddev->ro)
5377                         set_disk_ro(disk, 0);
5378
5379                 __md_stop_writes(mddev);
5380                 __md_stop(mddev);
5381                 mddev->queue->merge_bvec_fn = NULL;
5382                 mddev->queue->backing_dev_info.congested_fn = NULL;
5383
5384                 /* tell userspace to handle 'inactive' */
5385                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5386
5387                 rdev_for_each(rdev, mddev)
5388                         if (rdev->raid_disk >= 0)
5389                                 sysfs_unlink_rdev(mddev, rdev);
5390
5391                 set_capacity(disk, 0);
5392                 mutex_unlock(&mddev->open_mutex);
5393                 mddev->changed = 1;
5394                 revalidate_disk(disk);
5395
5396                 if (mddev->ro)
5397                         mddev->ro = 0;
5398         } else
5399                 mutex_unlock(&mddev->open_mutex);
5400         /*
5401          * Free resources if final stop
5402          */
5403         if (mode == 0) {
5404                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5405
5406                 bitmap_destroy(mddev);
5407                 if (mddev->bitmap_info.file) {
5408                         restore_bitmap_write_access(mddev->bitmap_info.file);
5409                         fput(mddev->bitmap_info.file);
5410                         mddev->bitmap_info.file = NULL;
5411                 }
5412                 mddev->bitmap_info.offset = 0;
5413
5414                 export_array(mddev);
5415
5416                 md_clean(mddev);
5417                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5418                 if (mddev->hold_active == UNTIL_STOP)
5419                         mddev->hold_active = 0;
5420         }
5421         blk_integrity_unregister(disk);
5422         md_new_event(mddev);
5423         sysfs_notify_dirent_safe(mddev->sysfs_state);
5424         return 0;
5425 }
5426
5427 #ifndef MODULE
5428 static void autorun_array(struct mddev *mddev)
5429 {
5430         struct md_rdev *rdev;
5431         int err;
5432
5433         if (list_empty(&mddev->disks))
5434                 return;
5435
5436         printk(KERN_INFO "md: running: ");
5437
5438         rdev_for_each(rdev, mddev) {
5439                 char b[BDEVNAME_SIZE];
5440                 printk("<%s>", bdevname(rdev->bdev,b));
5441         }
5442         printk("\n");
5443
5444         err = do_md_run(mddev);
5445         if (err) {
5446                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5447                 do_md_stop(mddev, 0, NULL);
5448         }
5449 }
5450
5451 /*
5452  * lets try to run arrays based on all disks that have arrived
5453  * until now. (those are in pending_raid_disks)
5454  *
5455  * the method: pick the first pending disk, collect all disks with
5456  * the same UUID, remove all from the pending list and put them into
5457  * the 'same_array' list. Then order this list based on superblock
5458  * update time (freshest comes first), kick out 'old' disks and
5459  * compare superblocks. If everything's fine then run it.
5460  *
5461  * If "unit" is allocated, then bump its reference count
5462  */
5463 static void autorun_devices(int part)
5464 {
5465         struct md_rdev *rdev0, *rdev, *tmp;
5466         struct mddev *mddev;
5467         char b[BDEVNAME_SIZE];
5468
5469         printk(KERN_INFO "md: autorun ...\n");
5470         while (!list_empty(&pending_raid_disks)) {
5471                 int unit;
5472                 dev_t dev;
5473                 LIST_HEAD(candidates);
5474                 rdev0 = list_entry(pending_raid_disks.next,
5475                                          struct md_rdev, same_set);
5476
5477                 printk(KERN_INFO "md: considering %s ...\n",
5478                         bdevname(rdev0->bdev,b));
5479                 INIT_LIST_HEAD(&candidates);
5480                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5481                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5482                                 printk(KERN_INFO "md:  adding %s ...\n",
5483                                         bdevname(rdev->bdev,b));
5484                                 list_move(&rdev->same_set, &candidates);
5485                         }
5486                 /*
5487                  * now we have a set of devices, with all of them having
5488                  * mostly sane superblocks. It's time to allocate the
5489                  * mddev.
5490                  */
5491                 if (part) {
5492                         dev = MKDEV(mdp_major,
5493                                     rdev0->preferred_minor << MdpMinorShift);
5494                         unit = MINOR(dev) >> MdpMinorShift;
5495                 } else {
5496                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5497                         unit = MINOR(dev);
5498                 }
5499                 if (rdev0->preferred_minor != unit) {
5500                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5501                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5502                         break;
5503                 }
5504
5505                 md_probe(dev, NULL, NULL);
5506                 mddev = mddev_find(dev);
5507                 if (!mddev || !mddev->gendisk) {
5508                         if (mddev)
5509                                 mddev_put(mddev);
5510                         printk(KERN_ERR
5511                                 "md: cannot allocate memory for md drive.\n");
5512                         break;
5513                 }
5514                 if (mddev_lock(mddev)) 
5515                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5516                                mdname(mddev));
5517                 else if (mddev->raid_disks || mddev->major_version
5518                          || !list_empty(&mddev->disks)) {
5519                         printk(KERN_WARNING 
5520                                 "md: %s already running, cannot run %s\n",
5521                                 mdname(mddev), bdevname(rdev0->bdev,b));
5522                         mddev_unlock(mddev);
5523                 } else {
5524                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5525                         mddev->persistent = 1;
5526                         rdev_for_each_list(rdev, tmp, &candidates) {
5527                                 list_del_init(&rdev->same_set);
5528                                 if (bind_rdev_to_array(rdev, mddev))
5529                                         export_rdev(rdev);
5530                         }
5531                         autorun_array(mddev);
5532                         mddev_unlock(mddev);
5533                 }
5534                 /* on success, candidates will be empty, on error
5535                  * it won't...
5536                  */
5537                 rdev_for_each_list(rdev, tmp, &candidates) {
5538                         list_del_init(&rdev->same_set);
5539                         export_rdev(rdev);
5540                 }
5541                 mddev_put(mddev);
5542         }
5543         printk(KERN_INFO "md: ... autorun DONE.\n");
5544 }
5545 #endif /* !MODULE */
5546
5547 static int get_version(void __user * arg)
5548 {
5549         mdu_version_t ver;
5550
5551         ver.major = MD_MAJOR_VERSION;
5552         ver.minor = MD_MINOR_VERSION;
5553         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5554
5555         if (copy_to_user(arg, &ver, sizeof(ver)))
5556                 return -EFAULT;
5557
5558         return 0;
5559 }
5560
5561 static int get_array_info(struct mddev * mddev, void __user * arg)
5562 {
5563         mdu_array_info_t info;
5564         int nr,working,insync,failed,spare;
5565         struct md_rdev *rdev;
5566
5567         nr = working = insync = failed = spare = 0;
5568         rcu_read_lock();
5569         rdev_for_each_rcu(rdev, mddev) {
5570                 nr++;
5571                 if (test_bit(Faulty, &rdev->flags))
5572                         failed++;
5573                 else {
5574                         working++;
5575                         if (test_bit(In_sync, &rdev->flags))
5576                                 insync++;       
5577                         else
5578                                 spare++;
5579                 }
5580         }
5581         rcu_read_unlock();
5582
5583         info.major_version = mddev->major_version;
5584         info.minor_version = mddev->minor_version;
5585         info.patch_version = MD_PATCHLEVEL_VERSION;
5586         info.ctime         = mddev->ctime;
5587         info.level         = mddev->level;
5588         info.size          = mddev->dev_sectors / 2;
5589         if (info.size != mddev->dev_sectors / 2) /* overflow */
5590                 info.size = -1;
5591         info.nr_disks      = nr;
5592         info.raid_disks    = mddev->raid_disks;
5593         info.md_minor      = mddev->md_minor;
5594         info.not_persistent= !mddev->persistent;
5595
5596         info.utime         = mddev->utime;
5597         info.state         = 0;
5598         if (mddev->in_sync)
5599                 info.state = (1<<MD_SB_CLEAN);
5600         if (mddev->bitmap && mddev->bitmap_info.offset)
5601                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5602         info.active_disks  = insync;
5603         info.working_disks = working;
5604         info.failed_disks  = failed;
5605         info.spare_disks   = spare;
5606
5607         info.layout        = mddev->layout;
5608         info.chunk_size    = mddev->chunk_sectors << 9;
5609
5610         if (copy_to_user(arg, &info, sizeof(info)))
5611                 return -EFAULT;
5612
5613         return 0;
5614 }
5615
5616 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5617 {
5618         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5619         char *ptr, *buf = NULL;
5620         int err = -ENOMEM;
5621
5622         if (md_allow_write(mddev))
5623                 file = kmalloc(sizeof(*file), GFP_NOIO);
5624         else
5625                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5626
5627         if (!file)
5628                 goto out;
5629
5630         /* bitmap disabled, zero the first byte and copy out */
5631         if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5632                 file->pathname[0] = '\0';
5633                 goto copy_out;
5634         }
5635
5636         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5637         if (!buf)
5638                 goto out;
5639
5640         ptr = d_path(&mddev->bitmap->storage.file->f_path,
5641                      buf, sizeof(file->pathname));
5642         if (IS_ERR(ptr))
5643                 goto out;
5644
5645         strcpy(file->pathname, ptr);
5646
5647 copy_out:
5648         err = 0;
5649         if (copy_to_user(arg, file, sizeof(*file)))
5650                 err = -EFAULT;
5651 out:
5652         kfree(buf);
5653         kfree(file);
5654         return err;
5655 }
5656
5657 static int get_disk_info(struct mddev * mddev, void __user * arg)
5658 {
5659         mdu_disk_info_t info;
5660         struct md_rdev *rdev;
5661
5662         if (copy_from_user(&info, arg, sizeof(info)))
5663                 return -EFAULT;
5664
5665         rcu_read_lock();
5666         rdev = find_rdev_nr_rcu(mddev, info.number);
5667         if (rdev) {
5668                 info.major = MAJOR(rdev->bdev->bd_dev);
5669                 info.minor = MINOR(rdev->bdev->bd_dev);
5670                 info.raid_disk = rdev->raid_disk;
5671                 info.state = 0;
5672                 if (test_bit(Faulty, &rdev->flags))
5673                         info.state |= (1<<MD_DISK_FAULTY);
5674                 else if (test_bit(In_sync, &rdev->flags)) {
5675                         info.state |= (1<<MD_DISK_ACTIVE);
5676                         info.state |= (1<<MD_DISK_SYNC);
5677                 }
5678                 if (test_bit(WriteMostly, &rdev->flags))
5679                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5680         } else {
5681                 info.major = info.minor = 0;
5682                 info.raid_disk = -1;
5683                 info.state = (1<<MD_DISK_REMOVED);
5684         }
5685         rcu_read_unlock();
5686
5687         if (copy_to_user(arg, &info, sizeof(info)))
5688                 return -EFAULT;
5689
5690         return 0;
5691 }
5692
5693 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5694 {
5695         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5696         struct md_rdev *rdev;
5697         dev_t dev = MKDEV(info->major,info->minor);
5698
5699         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5700                 return -EOVERFLOW;
5701
5702         if (!mddev->raid_disks) {
5703                 int err;
5704                 /* expecting a device which has a superblock */
5705                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5706                 if (IS_ERR(rdev)) {
5707                         printk(KERN_WARNING 
5708                                 "md: md_import_device returned %ld\n",
5709                                 PTR_ERR(rdev));
5710                         return PTR_ERR(rdev);
5711                 }
5712                 if (!list_empty(&mddev->disks)) {
5713                         struct md_rdev *rdev0
5714                                 = list_entry(mddev->disks.next,
5715                                              struct md_rdev, same_set);
5716                         err = super_types[mddev->major_version]
5717                                 .load_super(rdev, rdev0, mddev->minor_version);
5718                         if (err < 0) {
5719                                 printk(KERN_WARNING 
5720                                         "md: %s has different UUID to %s\n",
5721                                         bdevname(rdev->bdev,b), 
5722                                         bdevname(rdev0->bdev,b2));
5723                                 export_rdev(rdev);
5724                                 return -EINVAL;
5725                         }
5726                 }
5727                 err = bind_rdev_to_array(rdev, mddev);
5728                 if (err)
5729                         export_rdev(rdev);
5730                 return err;
5731         }
5732
5733         /*
5734          * add_new_disk can be used once the array is assembled
5735          * to add "hot spares".  They must already have a superblock
5736          * written
5737          */
5738         if (mddev->pers) {
5739                 int err;
5740                 if (!mddev->pers->hot_add_disk) {
5741                         printk(KERN_WARNING 
5742                                 "%s: personality does not support diskops!\n",
5743                                mdname(mddev));
5744                         return -EINVAL;
5745                 }
5746                 if (mddev->persistent)
5747                         rdev = md_import_device(dev, mddev->major_version,
5748                                                 mddev->minor_version);
5749                 else
5750                         rdev = md_import_device(dev, -1, -1);
5751                 if (IS_ERR(rdev)) {
5752                         printk(KERN_WARNING 
5753                                 "md: md_import_device returned %ld\n",
5754                                 PTR_ERR(rdev));
5755                         return PTR_ERR(rdev);
5756                 }
5757                 /* set saved_raid_disk if appropriate */
5758                 if (!mddev->persistent) {
5759                         if (info->state & (1<<MD_DISK_SYNC)  &&
5760                             info->raid_disk < mddev->raid_disks) {
5761                                 rdev->raid_disk = info->raid_disk;
5762                                 set_bit(In_sync, &rdev->flags);
5763                         } else
5764                                 rdev->raid_disk = -1;
5765                 } else
5766                         super_types[mddev->major_version].
5767                                 validate_super(mddev, rdev);
5768                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5769                      rdev->raid_disk != info->raid_disk) {
5770                         /* This was a hot-add request, but events doesn't
5771                          * match, so reject it.
5772                          */
5773                         export_rdev(rdev);
5774                         return -EINVAL;
5775                 }
5776
5777                 if (test_bit(In_sync, &rdev->flags))
5778                         rdev->saved_raid_disk = rdev->raid_disk;
5779                 else
5780                         rdev->saved_raid_disk = -1;
5781
5782                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5783                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5784                         set_bit(WriteMostly, &rdev->flags);
5785                 else
5786                         clear_bit(WriteMostly, &rdev->flags);
5787
5788                 rdev->raid_disk = -1;
5789                 err = bind_rdev_to_array(rdev, mddev);
5790                 if (!err && !mddev->pers->hot_remove_disk) {
5791                         /* If there is hot_add_disk but no hot_remove_disk
5792                          * then added disks for geometry changes,
5793                          * and should be added immediately.
5794                          */
5795                         super_types[mddev->major_version].
5796                                 validate_super(mddev, rdev);
5797                         err = mddev->pers->hot_add_disk(mddev, rdev);
5798                         if (err)
5799                                 unbind_rdev_from_array(rdev);
5800                 }
5801                 if (err)
5802                         export_rdev(rdev);
5803                 else
5804                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5805
5806                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5807                 if (mddev->degraded)
5808                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5809                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5810                 if (!err)
5811                         md_new_event(mddev);
5812                 md_wakeup_thread(mddev->thread);
5813                 return err;
5814         }
5815
5816         /* otherwise, add_new_disk is only allowed
5817          * for major_version==0 superblocks
5818          */
5819         if (mddev->major_version != 0) {
5820                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5821                        mdname(mddev));
5822                 return -EINVAL;
5823         }
5824
5825         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5826                 int err;
5827                 rdev = md_import_device(dev, -1, 0);
5828                 if (IS_ERR(rdev)) {
5829                         printk(KERN_WARNING 
5830                                 "md: error, md_import_device() returned %ld\n",
5831                                 PTR_ERR(rdev));
5832                         return PTR_ERR(rdev);
5833                 }
5834                 rdev->desc_nr = info->number;
5835                 if (info->raid_disk < mddev->raid_disks)
5836                         rdev->raid_disk = info->raid_disk;
5837                 else
5838                         rdev->raid_disk = -1;
5839
5840                 if (rdev->raid_disk < mddev->raid_disks)
5841                         if (info->state & (1<<MD_DISK_SYNC))
5842                                 set_bit(In_sync, &rdev->flags);
5843
5844                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5845                         set_bit(WriteMostly, &rdev->flags);
5846
5847                 if (!mddev->persistent) {
5848                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5849                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5850                 } else
5851                         rdev->sb_start = calc_dev_sboffset(rdev);
5852                 rdev->sectors = rdev->sb_start;
5853
5854                 err = bind_rdev_to_array(rdev, mddev);
5855                 if (err) {
5856                         export_rdev(rdev);
5857                         return err;
5858                 }
5859         }
5860
5861         return 0;
5862 }
5863
5864 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5865 {
5866         char b[BDEVNAME_SIZE];
5867         struct md_rdev *rdev;
5868
5869         rdev = find_rdev(mddev, dev);
5870         if (!rdev)
5871                 return -ENXIO;
5872
5873         clear_bit(Blocked, &rdev->flags);
5874         remove_and_add_spares(mddev, rdev);
5875
5876         if (rdev->raid_disk >= 0)
5877                 goto busy;
5878
5879         kick_rdev_from_array(rdev);
5880         md_update_sb(mddev, 1);
5881         md_new_event(mddev);
5882
5883         return 0;
5884 busy:
5885         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5886                 bdevname(rdev->bdev,b), mdname(mddev));
5887         return -EBUSY;
5888 }
5889
5890 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5891 {
5892         char b[BDEVNAME_SIZE];
5893         int err;
5894         struct md_rdev *rdev;
5895
5896         if (!mddev->pers)
5897                 return -ENODEV;
5898
5899         if (mddev->major_version != 0) {
5900                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5901                         " version-0 superblocks.\n",
5902                         mdname(mddev));
5903                 return -EINVAL;
5904         }
5905         if (!mddev->pers->hot_add_disk) {
5906                 printk(KERN_WARNING 
5907                         "%s: personality does not support diskops!\n",
5908                         mdname(mddev));
5909                 return -EINVAL;
5910         }
5911
5912         rdev = md_import_device(dev, -1, 0);
5913         if (IS_ERR(rdev)) {
5914                 printk(KERN_WARNING 
5915                         "md: error, md_import_device() returned %ld\n",
5916                         PTR_ERR(rdev));
5917                 return -EINVAL;
5918         }
5919
5920         if (mddev->persistent)
5921                 rdev->sb_start = calc_dev_sboffset(rdev);
5922         else
5923                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5924
5925         rdev->sectors = rdev->sb_start;
5926
5927         if (test_bit(Faulty, &rdev->flags)) {
5928                 printk(KERN_WARNING 
5929                         "md: can not hot-add faulty %s disk to %s!\n",
5930                         bdevname(rdev->bdev,b), mdname(mddev));
5931                 err = -EINVAL;
5932                 goto abort_export;
5933         }
5934         clear_bit(In_sync, &rdev->flags);
5935         rdev->desc_nr = -1;
5936         rdev->saved_raid_disk = -1;
5937         err = bind_rdev_to_array(rdev, mddev);
5938         if (err)
5939                 goto abort_export;
5940
5941         /*
5942          * The rest should better be atomic, we can have disk failures
5943          * noticed in interrupt contexts ...
5944          */
5945
5946         rdev->raid_disk = -1;
5947
5948         md_update_sb(mddev, 1);
5949
5950         /*
5951          * Kick recovery, maybe this spare has to be added to the
5952          * array immediately.
5953          */
5954         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5955         md_wakeup_thread(mddev->thread);
5956         md_new_event(mddev);
5957         return 0;
5958
5959 abort_export:
5960         export_rdev(rdev);
5961         return err;
5962 }
5963
5964 static int set_bitmap_file(struct mddev *mddev, int fd)
5965 {
5966         int err;
5967
5968         if (mddev->pers) {
5969                 if (!mddev->pers->quiesce)
5970                         return -EBUSY;
5971                 if (mddev->recovery || mddev->sync_thread)
5972                         return -EBUSY;
5973                 /* we should be able to change the bitmap.. */
5974         }
5975
5976
5977         if (fd >= 0) {
5978                 if (mddev->bitmap)
5979                         return -EEXIST; /* cannot add when bitmap is present */
5980                 mddev->bitmap_info.file = fget(fd);
5981
5982                 if (mddev->bitmap_info.file == NULL) {
5983                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5984                                mdname(mddev));
5985                         return -EBADF;
5986                 }
5987
5988                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5989                 if (err) {
5990                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5991                                mdname(mddev));
5992                         fput(mddev->bitmap_info.file);
5993                         mddev->bitmap_info.file = NULL;
5994                         return err;
5995                 }
5996                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5997         } else if (mddev->bitmap == NULL)
5998                 return -ENOENT; /* cannot remove what isn't there */
5999         err = 0;
6000         if (mddev->pers) {
6001                 mddev->pers->quiesce(mddev, 1);
6002                 if (fd >= 0) {
6003                         err = bitmap_create(mddev);
6004                         if (!err)
6005                                 err = bitmap_load(mddev);
6006                 }
6007                 if (fd < 0 || err) {
6008                         bitmap_destroy(mddev);
6009                         fd = -1; /* make sure to put the file */
6010                 }
6011                 mddev->pers->quiesce(mddev, 0);
6012         }
6013         if (fd < 0) {
6014                 if (mddev->bitmap_info.file) {
6015                         restore_bitmap_write_access(mddev->bitmap_info.file);
6016                         fput(mddev->bitmap_info.file);
6017                 }
6018                 mddev->bitmap_info.file = NULL;
6019         }
6020
6021         return err;
6022 }
6023
6024 /*
6025  * set_array_info is used two different ways
6026  * The original usage is when creating a new array.
6027  * In this usage, raid_disks is > 0 and it together with
6028  *  level, size, not_persistent,layout,chunksize determine the
6029  *  shape of the array.
6030  *  This will always create an array with a type-0.90.0 superblock.
6031  * The newer usage is when assembling an array.
6032  *  In this case raid_disks will be 0, and the major_version field is
6033  *  use to determine which style super-blocks are to be found on the devices.
6034  *  The minor and patch _version numbers are also kept incase the
6035  *  super_block handler wishes to interpret them.
6036  */
6037 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6038 {
6039
6040         if (info->raid_disks == 0) {
6041                 /* just setting version number for superblock loading */
6042                 if (info->major_version < 0 ||
6043                     info->major_version >= ARRAY_SIZE(super_types) ||
6044                     super_types[info->major_version].name == NULL) {
6045                         /* maybe try to auto-load a module? */
6046                         printk(KERN_INFO 
6047                                 "md: superblock version %d not known\n",
6048                                 info->major_version);
6049                         return -EINVAL;
6050                 }
6051                 mddev->major_version = info->major_version;
6052                 mddev->minor_version = info->minor_version;
6053                 mddev->patch_version = info->patch_version;
6054                 mddev->persistent = !info->not_persistent;
6055                 /* ensure mddev_put doesn't delete this now that there
6056                  * is some minimal configuration.
6057                  */
6058                 mddev->ctime         = get_seconds();
6059                 return 0;
6060         }
6061         mddev->major_version = MD_MAJOR_VERSION;
6062         mddev->minor_version = MD_MINOR_VERSION;
6063         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6064         mddev->ctime         = get_seconds();
6065
6066         mddev->level         = info->level;
6067         mddev->clevel[0]     = 0;
6068         mddev->dev_sectors   = 2 * (sector_t)info->size;
6069         mddev->raid_disks    = info->raid_disks;
6070         /* don't set md_minor, it is determined by which /dev/md* was
6071          * openned
6072          */
6073         if (info->state & (1<<MD_SB_CLEAN))
6074                 mddev->recovery_cp = MaxSector;
6075         else
6076                 mddev->recovery_cp = 0;
6077         mddev->persistent    = ! info->not_persistent;
6078         mddev->external      = 0;
6079
6080         mddev->layout        = info->layout;
6081         mddev->chunk_sectors = info->chunk_size >> 9;
6082
6083         mddev->max_disks     = MD_SB_DISKS;
6084
6085         if (mddev->persistent)
6086                 mddev->flags         = 0;
6087         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6088
6089         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6090         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6091         mddev->bitmap_info.offset = 0;
6092
6093         mddev->reshape_position = MaxSector;
6094
6095         /*
6096          * Generate a 128 bit UUID
6097          */
6098         get_random_bytes(mddev->uuid, 16);
6099
6100         mddev->new_level = mddev->level;
6101         mddev->new_chunk_sectors = mddev->chunk_sectors;
6102         mddev->new_layout = mddev->layout;
6103         mddev->delta_disks = 0;
6104         mddev->reshape_backwards = 0;
6105
6106         return 0;
6107 }
6108
6109 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6110 {
6111         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6112
6113         if (mddev->external_size)
6114                 return;
6115
6116         mddev->array_sectors = array_sectors;
6117 }
6118 EXPORT_SYMBOL(md_set_array_sectors);
6119
6120 static int update_size(struct mddev *mddev, sector_t num_sectors)
6121 {
6122         struct md_rdev *rdev;
6123         int rv;
6124         int fit = (num_sectors == 0);
6125
6126         if (mddev->pers->resize == NULL)
6127                 return -EINVAL;
6128         /* The "num_sectors" is the number of sectors of each device that
6129          * is used.  This can only make sense for arrays with redundancy.
6130          * linear and raid0 always use whatever space is available. We can only
6131          * consider changing this number if no resync or reconstruction is
6132          * happening, and if the new size is acceptable. It must fit before the
6133          * sb_start or, if that is <data_offset, it must fit before the size
6134          * of each device.  If num_sectors is zero, we find the largest size
6135          * that fits.
6136          */
6137         if (mddev->sync_thread)
6138                 return -EBUSY;
6139
6140         rdev_for_each(rdev, mddev) {
6141                 sector_t avail = rdev->sectors;
6142
6143                 if (fit && (num_sectors == 0 || num_sectors > avail))
6144                         num_sectors = avail;
6145                 if (avail < num_sectors)
6146                         return -ENOSPC;
6147         }
6148         rv = mddev->pers->resize(mddev, num_sectors);
6149         if (!rv)
6150                 revalidate_disk(mddev->gendisk);
6151         return rv;
6152 }
6153
6154 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6155 {
6156         int rv;
6157         struct md_rdev *rdev;
6158         /* change the number of raid disks */
6159         if (mddev->pers->check_reshape == NULL)
6160                 return -EINVAL;
6161         if (raid_disks <= 0 ||
6162             (mddev->max_disks && raid_disks >= mddev->max_disks))
6163                 return -EINVAL;
6164         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6165                 return -EBUSY;
6166
6167         rdev_for_each(rdev, mddev) {
6168                 if (mddev->raid_disks < raid_disks &&
6169                     rdev->data_offset < rdev->new_data_offset)
6170                         return -EINVAL;
6171                 if (mddev->raid_disks > raid_disks &&
6172                     rdev->data_offset > rdev->new_data_offset)
6173                         return -EINVAL;
6174         }
6175
6176         mddev->delta_disks = raid_disks - mddev->raid_disks;
6177         if (mddev->delta_disks < 0)
6178                 mddev->reshape_backwards = 1;
6179         else if (mddev->delta_disks > 0)
6180                 mddev->reshape_backwards = 0;
6181
6182         rv = mddev->pers->check_reshape(mddev);
6183         if (rv < 0) {
6184                 mddev->delta_disks = 0;
6185                 mddev->reshape_backwards = 0;
6186         }
6187         return rv;
6188 }
6189
6190
6191 /*
6192  * update_array_info is used to change the configuration of an
6193  * on-line array.
6194  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6195  * fields in the info are checked against the array.
6196  * Any differences that cannot be handled will cause an error.
6197  * Normally, only one change can be managed at a time.
6198  */
6199 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6200 {
6201         int rv = 0;
6202         int cnt = 0;
6203         int state = 0;
6204
6205         /* calculate expected state,ignoring low bits */
6206         if (mddev->bitmap && mddev->bitmap_info.offset)
6207                 state |= (1 << MD_SB_BITMAP_PRESENT);
6208
6209         if (mddev->major_version != info->major_version ||
6210             mddev->minor_version != info->minor_version ||
6211 /*          mddev->patch_version != info->patch_version || */
6212             mddev->ctime         != info->ctime         ||
6213             mddev->level         != info->level         ||
6214 /*          mddev->layout        != info->layout        || */
6215             !mddev->persistent   != info->not_persistent||
6216             mddev->chunk_sectors != info->chunk_size >> 9 ||
6217             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6218             ((state^info->state) & 0xfffffe00)
6219                 )
6220                 return -EINVAL;
6221         /* Check there is only one change */
6222         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6223                 cnt++;
6224         if (mddev->raid_disks != info->raid_disks)
6225                 cnt++;
6226         if (mddev->layout != info->layout)
6227                 cnt++;
6228         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6229                 cnt++;
6230         if (cnt == 0)
6231                 return 0;
6232         if (cnt > 1)
6233                 return -EINVAL;
6234
6235         if (mddev->layout != info->layout) {
6236                 /* Change layout
6237                  * we don't need to do anything at the md level, the
6238                  * personality will take care of it all.
6239                  */
6240                 if (mddev->pers->check_reshape == NULL)
6241                         return -EINVAL;
6242                 else {
6243                         mddev->new_layout = info->layout;
6244                         rv = mddev->pers->check_reshape(mddev);
6245                         if (rv)
6246                                 mddev->new_layout = mddev->layout;
6247                         return rv;
6248                 }
6249         }
6250         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6251                 rv = update_size(mddev, (sector_t)info->size * 2);
6252
6253         if (mddev->raid_disks    != info->raid_disks)
6254                 rv = update_raid_disks(mddev, info->raid_disks);
6255
6256         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6257                 if (mddev->pers->quiesce == NULL)
6258                         return -EINVAL;
6259                 if (mddev->recovery || mddev->sync_thread)
6260                         return -EBUSY;
6261                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6262                         /* add the bitmap */
6263                         if (mddev->bitmap)
6264                                 return -EEXIST;
6265                         if (mddev->bitmap_info.default_offset == 0)
6266                                 return -EINVAL;
6267                         mddev->bitmap_info.offset =
6268                                 mddev->bitmap_info.default_offset;
6269                         mddev->bitmap_info.space =
6270                                 mddev->bitmap_info.default_space;
6271                         mddev->pers->quiesce(mddev, 1);
6272                         rv = bitmap_create(mddev);
6273                         if (!rv)
6274                                 rv = bitmap_load(mddev);
6275                         if (rv)
6276                                 bitmap_destroy(mddev);
6277                         mddev->pers->quiesce(mddev, 0);
6278                 } else {
6279                         /* remove the bitmap */
6280                         if (!mddev->bitmap)
6281                                 return -ENOENT;
6282                         if (mddev->bitmap->storage.file)
6283                                 return -EINVAL;
6284                         mddev->pers->quiesce(mddev, 1);
6285                         bitmap_destroy(mddev);
6286                         mddev->pers->quiesce(mddev, 0);
6287                         mddev->bitmap_info.offset = 0;
6288                 }
6289         }
6290         md_update_sb(mddev, 1);
6291         return rv;
6292 }
6293
6294 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6295 {
6296         struct md_rdev *rdev;
6297         int err = 0;
6298
6299         if (mddev->pers == NULL)
6300                 return -ENODEV;
6301
6302         rcu_read_lock();
6303         rdev = find_rdev_rcu(mddev, dev);
6304         if (!rdev)
6305                 err =  -ENODEV;
6306         else {
6307                 md_error(mddev, rdev);
6308                 if (!test_bit(Faulty, &rdev->flags))
6309                         err = -EBUSY;
6310         }
6311         rcu_read_unlock();
6312         return err;
6313 }
6314
6315 /*
6316  * We have a problem here : there is no easy way to give a CHS
6317  * virtual geometry. We currently pretend that we have a 2 heads
6318  * 4 sectors (with a BIG number of cylinders...). This drives
6319  * dosfs just mad... ;-)
6320  */
6321 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6322 {
6323         struct mddev *mddev = bdev->bd_disk->private_data;
6324
6325         geo->heads = 2;
6326         geo->sectors = 4;
6327         geo->cylinders = mddev->array_sectors / 8;
6328         return 0;
6329 }
6330
6331 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6332                         unsigned int cmd, unsigned long arg)
6333 {
6334         int err = 0;
6335         void __user *argp = (void __user *)arg;
6336         struct mddev *mddev = NULL;
6337         int ro;
6338
6339         switch (cmd) {
6340         case RAID_VERSION:
6341         case GET_ARRAY_INFO:
6342         case GET_DISK_INFO:
6343                 break;
6344         default:
6345                 if (!capable(CAP_SYS_ADMIN))
6346                         return -EACCES;
6347         }
6348
6349         /*
6350          * Commands dealing with the RAID driver but not any
6351          * particular array:
6352          */
6353         switch (cmd) {
6354         case RAID_VERSION:
6355                 err = get_version(argp);
6356                 goto done;
6357
6358         case PRINT_RAID_DEBUG:
6359                 err = 0;
6360                 md_print_devices();
6361                 goto done;
6362
6363 #ifndef MODULE
6364         case RAID_AUTORUN:
6365                 err = 0;
6366                 autostart_arrays(arg);
6367                 goto done;
6368 #endif
6369         default:;
6370         }
6371
6372         /*
6373          * Commands creating/starting a new array:
6374          */
6375
6376         mddev = bdev->bd_disk->private_data;
6377
6378         if (!mddev) {
6379                 BUG();
6380                 goto abort;
6381         }
6382
6383         /* Some actions do not requires the mutex */
6384         switch (cmd) {
6385         case GET_ARRAY_INFO:
6386                 if (!mddev->raid_disks && !mddev->external)
6387                         err = -ENODEV;
6388                 else
6389                         err = get_array_info(mddev, argp);
6390                 goto abort;
6391
6392         case GET_DISK_INFO:
6393                 if (!mddev->raid_disks && !mddev->external)
6394                         err = -ENODEV;
6395                 else
6396                         err = get_disk_info(mddev, argp);
6397                 goto abort;
6398
6399         case SET_DISK_FAULTY:
6400                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6401                 goto abort;
6402         }
6403
6404         if (cmd == ADD_NEW_DISK)
6405                 /* need to ensure md_delayed_delete() has completed */
6406                 flush_workqueue(md_misc_wq);
6407
6408         err = mddev_lock(mddev);
6409         if (err) {
6410                 printk(KERN_INFO 
6411                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6412                         err, cmd);
6413                 goto abort;
6414         }
6415
6416         if (cmd == SET_ARRAY_INFO) {
6417                 mdu_array_info_t info;
6418                 if (!arg)
6419                         memset(&info, 0, sizeof(info));
6420                 else if (copy_from_user(&info, argp, sizeof(info))) {
6421                         err = -EFAULT;
6422                         goto abort_unlock;
6423                 }
6424                 if (mddev->pers) {
6425                         err = update_array_info(mddev, &info);
6426                         if (err) {
6427                                 printk(KERN_WARNING "md: couldn't update"
6428                                        " array info. %d\n", err);
6429                                 goto abort_unlock;
6430                         }
6431                         goto done_unlock;
6432                 }
6433                 if (!list_empty(&mddev->disks)) {
6434                         printk(KERN_WARNING
6435                                "md: array %s already has disks!\n",
6436                                mdname(mddev));
6437                         err = -EBUSY;
6438                         goto abort_unlock;
6439                 }
6440                 if (mddev->raid_disks) {
6441                         printk(KERN_WARNING
6442                                "md: array %s already initialised!\n",
6443                                mdname(mddev));
6444                         err = -EBUSY;
6445                         goto abort_unlock;
6446                 }
6447                 err = set_array_info(mddev, &info);
6448                 if (err) {
6449                         printk(KERN_WARNING "md: couldn't set"
6450                                " array info. %d\n", err);
6451                         goto abort_unlock;
6452                 }
6453                 goto done_unlock;
6454         }
6455
6456         /*
6457          * Commands querying/configuring an existing array:
6458          */
6459         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6460          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6461         if ((!mddev->raid_disks && !mddev->external)
6462             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6463             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6464             && cmd != GET_BITMAP_FILE) {
6465                 err = -ENODEV;
6466                 goto abort_unlock;
6467         }
6468
6469         /*
6470          * Commands even a read-only array can execute:
6471          */
6472         switch (cmd) {
6473         case GET_BITMAP_FILE:
6474                 err = get_bitmap_file(mddev, argp);
6475                 goto done_unlock;
6476
6477         case RESTART_ARRAY_RW:
6478                 err = restart_array(mddev);
6479                 goto done_unlock;
6480
6481         case STOP_ARRAY:
6482                 err = do_md_stop(mddev, 0, bdev);
6483                 goto done_unlock;
6484
6485         case STOP_ARRAY_RO:
6486                 err = md_set_readonly(mddev, bdev);
6487                 goto done_unlock;
6488
6489         case HOT_REMOVE_DISK:
6490                 err = hot_remove_disk(mddev, new_decode_dev(arg));
6491                 goto done_unlock;
6492
6493         case ADD_NEW_DISK:
6494                 /* We can support ADD_NEW_DISK on read-only arrays
6495                  * on if we are re-adding a preexisting device.
6496                  * So require mddev->pers and MD_DISK_SYNC.
6497                  */
6498                 if (mddev->pers) {
6499                         mdu_disk_info_t info;
6500                         if (copy_from_user(&info, argp, sizeof(info)))
6501                                 err = -EFAULT;
6502                         else if (!(info.state & (1<<MD_DISK_SYNC)))
6503                                 /* Need to clear read-only for this */
6504                                 break;
6505                         else
6506                                 err = add_new_disk(mddev, &info);
6507                         goto done_unlock;
6508                 }
6509                 break;
6510
6511         case BLKROSET:
6512                 if (get_user(ro, (int __user *)(arg))) {
6513                         err = -EFAULT;
6514                         goto done_unlock;
6515                 }
6516                 err = -EINVAL;
6517
6518                 /* if the bdev is going readonly the value of mddev->ro
6519                  * does not matter, no writes are coming
6520                  */
6521                 if (ro)
6522                         goto done_unlock;
6523
6524                 /* are we are already prepared for writes? */
6525                 if (mddev->ro != 1)
6526                         goto done_unlock;
6527
6528                 /* transitioning to readauto need only happen for
6529                  * arrays that call md_write_start
6530                  */
6531                 if (mddev->pers) {
6532                         err = restart_array(mddev);
6533                         if (err == 0) {
6534                                 mddev->ro = 2;
6535                                 set_disk_ro(mddev->gendisk, 0);
6536                         }
6537                 }
6538                 goto done_unlock;
6539         }
6540
6541         /*
6542          * The remaining ioctls are changing the state of the
6543          * superblock, so we do not allow them on read-only arrays.
6544          * However non-MD ioctls (e.g. get-size) will still come through
6545          * here and hit the 'default' below, so only disallow
6546          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6547          */
6548         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6549                 if (mddev->ro == 2) {
6550                         mddev->ro = 0;
6551                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6552                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6553                         /* mddev_unlock will wake thread */
6554                         /* If a device failed while we were read-only, we
6555                          * need to make sure the metadata is updated now.
6556                          */
6557                         if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6558                                 mddev_unlock(mddev);
6559                                 wait_event(mddev->sb_wait,
6560                                            !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6561                                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6562                                 mddev_lock(mddev);
6563                         }
6564                 } else {
6565                         err = -EROFS;
6566                         goto abort_unlock;
6567                 }
6568         }
6569
6570         switch (cmd) {
6571         case ADD_NEW_DISK:
6572         {
6573                 mdu_disk_info_t info;
6574                 if (copy_from_user(&info, argp, sizeof(info)))
6575                         err = -EFAULT;
6576                 else
6577                         err = add_new_disk(mddev, &info);
6578                 goto done_unlock;
6579         }
6580
6581         case HOT_ADD_DISK:
6582                 err = hot_add_disk(mddev, new_decode_dev(arg));
6583                 goto done_unlock;
6584
6585         case RUN_ARRAY:
6586                 err = do_md_run(mddev);
6587                 goto done_unlock;
6588
6589         case SET_BITMAP_FILE:
6590                 err = set_bitmap_file(mddev, (int)arg);
6591                 goto done_unlock;
6592
6593         default:
6594                 err = -EINVAL;
6595                 goto abort_unlock;
6596         }
6597
6598 done_unlock:
6599 abort_unlock:
6600         if (mddev->hold_active == UNTIL_IOCTL &&
6601             err != -EINVAL)
6602                 mddev->hold_active = 0;
6603         mddev_unlock(mddev);
6604
6605         return err;
6606 done:
6607         if (err)
6608                 MD_BUG();
6609 abort:
6610         return err;
6611 }
6612 #ifdef CONFIG_COMPAT
6613 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6614                     unsigned int cmd, unsigned long arg)
6615 {
6616         switch (cmd) {
6617         case HOT_REMOVE_DISK:
6618         case HOT_ADD_DISK:
6619         case SET_DISK_FAULTY:
6620         case SET_BITMAP_FILE:
6621                 /* These take in integer arg, do not convert */
6622                 break;
6623         default:
6624                 arg = (unsigned long)compat_ptr(arg);
6625                 break;
6626         }
6627
6628         return md_ioctl(bdev, mode, cmd, arg);
6629 }
6630 #endif /* CONFIG_COMPAT */
6631
6632 static int md_open(struct block_device *bdev, fmode_t mode)
6633 {
6634         /*
6635          * Succeed if we can lock the mddev, which confirms that
6636          * it isn't being stopped right now.
6637          */
6638         struct mddev *mddev = mddev_find(bdev->bd_dev);
6639         int err;
6640
6641         if (!mddev)
6642                 return -ENODEV;
6643
6644         if (mddev->gendisk != bdev->bd_disk) {
6645                 /* we are racing with mddev_put which is discarding this
6646                  * bd_disk.
6647                  */
6648                 mddev_put(mddev);
6649                 /* Wait until bdev->bd_disk is definitely gone */
6650                 flush_workqueue(md_misc_wq);
6651                 /* Then retry the open from the top */
6652                 return -ERESTARTSYS;
6653         }
6654         BUG_ON(mddev != bdev->bd_disk->private_data);
6655
6656         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6657                 goto out;
6658
6659         err = 0;
6660         atomic_inc(&mddev->openers);
6661         mutex_unlock(&mddev->open_mutex);
6662
6663         check_disk_change(bdev);
6664  out:
6665         return err;
6666 }
6667
6668 static void md_release(struct gendisk *disk, fmode_t mode)
6669 {
6670         struct mddev *mddev = disk->private_data;
6671
6672         BUG_ON(!mddev);
6673         atomic_dec(&mddev->openers);
6674         mddev_put(mddev);
6675 }
6676
6677 static int md_media_changed(struct gendisk *disk)
6678 {
6679         struct mddev *mddev = disk->private_data;
6680
6681         return mddev->changed;
6682 }
6683
6684 static int md_revalidate(struct gendisk *disk)
6685 {
6686         struct mddev *mddev = disk->private_data;
6687
6688         mddev->changed = 0;
6689         return 0;
6690 }
6691 static const struct block_device_operations md_fops =
6692 {
6693         .owner          = THIS_MODULE,
6694         .open           = md_open,
6695         .release        = md_release,
6696         .ioctl          = md_ioctl,
6697 #ifdef CONFIG_COMPAT
6698         .compat_ioctl   = md_compat_ioctl,
6699 #endif
6700         .getgeo         = md_getgeo,
6701         .media_changed  = md_media_changed,
6702         .revalidate_disk= md_revalidate,
6703 };
6704
6705 static int md_thread(void * arg)
6706 {
6707         struct md_thread *thread = arg;
6708
6709         /*
6710          * md_thread is a 'system-thread', it's priority should be very
6711          * high. We avoid resource deadlocks individually in each
6712          * raid personality. (RAID5 does preallocation) We also use RR and
6713          * the very same RT priority as kswapd, thus we will never get
6714          * into a priority inversion deadlock.
6715          *
6716          * we definitely have to have equal or higher priority than
6717          * bdflush, otherwise bdflush will deadlock if there are too
6718          * many dirty RAID5 blocks.
6719          */
6720
6721         allow_signal(SIGKILL);
6722         while (!kthread_should_stop()) {
6723
6724                 /* We need to wait INTERRUPTIBLE so that
6725                  * we don't add to the load-average.
6726                  * That means we need to be sure no signals are
6727                  * pending
6728                  */
6729                 if (signal_pending(current))
6730                         flush_signals(current);
6731
6732                 wait_event_interruptible_timeout
6733                         (thread->wqueue,
6734                          test_bit(THREAD_WAKEUP, &thread->flags)
6735                          || kthread_should_stop(),
6736                          thread->timeout);
6737
6738                 clear_bit(THREAD_WAKEUP, &thread->flags);
6739                 if (!kthread_should_stop())
6740                         thread->run(thread);
6741         }
6742
6743         return 0;
6744 }
6745
6746 void md_wakeup_thread(struct md_thread *thread)
6747 {
6748         if (thread) {
6749                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6750                 set_bit(THREAD_WAKEUP, &thread->flags);
6751                 wake_up(&thread->wqueue);
6752         }
6753 }
6754
6755 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6756                 struct mddev *mddev, const char *name)
6757 {
6758         struct md_thread *thread;
6759
6760         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6761         if (!thread)
6762                 return NULL;
6763
6764         init_waitqueue_head(&thread->wqueue);
6765
6766         thread->run = run;
6767         thread->mddev = mddev;
6768         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6769         thread->tsk = kthread_run(md_thread, thread,
6770                                   "%s_%s",
6771                                   mdname(thread->mddev),
6772                                   name);
6773         if (IS_ERR(thread->tsk)) {
6774                 kfree(thread);
6775                 return NULL;
6776         }
6777         return thread;
6778 }
6779
6780 void md_unregister_thread(struct md_thread **threadp)
6781 {
6782         struct md_thread *thread = *threadp;
6783         if (!thread)
6784                 return;
6785         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6786         /* Locking ensures that mddev_unlock does not wake_up a
6787          * non-existent thread
6788          */
6789         spin_lock(&pers_lock);
6790         *threadp = NULL;
6791         spin_unlock(&pers_lock);
6792
6793         kthread_stop(thread->tsk);
6794         kfree(thread);
6795 }
6796
6797 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6798 {
6799         if (!mddev) {
6800                 MD_BUG();
6801                 return;
6802         }
6803
6804         if (!rdev || test_bit(Faulty, &rdev->flags))
6805                 return;
6806
6807         if (!mddev->pers || !mddev->pers->error_handler)
6808                 return;
6809         mddev->pers->error_handler(mddev,rdev);
6810         if (mddev->degraded)
6811                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6812         sysfs_notify_dirent_safe(rdev->sysfs_state);
6813         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6814         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6815         md_wakeup_thread(mddev->thread);
6816         if (mddev->event_work.func)
6817                 queue_work(md_misc_wq, &mddev->event_work);
6818         md_new_event_inintr(mddev);
6819 }
6820
6821 /* seq_file implementation /proc/mdstat */
6822
6823 static void status_unused(struct seq_file *seq)
6824 {
6825         int i = 0;
6826         struct md_rdev *rdev;
6827
6828         seq_printf(seq, "unused devices: ");
6829
6830         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6831                 char b[BDEVNAME_SIZE];
6832                 i++;
6833                 seq_printf(seq, "%s ",
6834                               bdevname(rdev->bdev,b));
6835         }
6836         if (!i)
6837                 seq_printf(seq, "<none>");
6838
6839         seq_printf(seq, "\n");
6840 }
6841
6842
6843 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6844 {
6845         sector_t max_sectors, resync, res;
6846         unsigned long dt, db;
6847         sector_t rt;
6848         int scale;
6849         unsigned int per_milli;
6850
6851         if (mddev->curr_resync <= 3)
6852                 resync = 0;
6853         else
6854                 resync = mddev->curr_resync
6855                         - atomic_read(&mddev->recovery_active);
6856
6857         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6858             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6859                 max_sectors = mddev->resync_max_sectors;
6860         else
6861                 max_sectors = mddev->dev_sectors;
6862
6863         /*
6864          * Should not happen.
6865          */
6866         if (!max_sectors) {
6867                 MD_BUG();
6868                 return;
6869         }
6870         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6871          * in a sector_t, and (max_sectors>>scale) will fit in a
6872          * u32, as those are the requirements for sector_div.
6873          * Thus 'scale' must be at least 10
6874          */
6875         scale = 10;
6876         if (sizeof(sector_t) > sizeof(unsigned long)) {
6877                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6878                         scale++;
6879         }
6880         res = (resync>>scale)*1000;
6881         sector_div(res, (u32)((max_sectors>>scale)+1));
6882
6883         per_milli = res;
6884         {
6885                 int i, x = per_milli/50, y = 20-x;
6886                 seq_printf(seq, "[");
6887                 for (i = 0; i < x; i++)
6888                         seq_printf(seq, "=");
6889                 seq_printf(seq, ">");
6890                 for (i = 0; i < y; i++)
6891                         seq_printf(seq, ".");
6892                 seq_printf(seq, "] ");
6893         }
6894         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6895                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6896                     "reshape" :
6897                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6898                      "check" :
6899                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6900                       "resync" : "recovery"))),
6901                    per_milli/10, per_milli % 10,
6902                    (unsigned long long) resync/2,
6903                    (unsigned long long) max_sectors/2);
6904
6905         /*
6906          * dt: time from mark until now
6907          * db: blocks written from mark until now
6908          * rt: remaining time
6909          *
6910          * rt is a sector_t, so could be 32bit or 64bit.
6911          * So we divide before multiply in case it is 32bit and close
6912          * to the limit.
6913          * We scale the divisor (db) by 32 to avoid losing precision
6914          * near the end of resync when the number of remaining sectors
6915          * is close to 'db'.
6916          * We then divide rt by 32 after multiplying by db to compensate.
6917          * The '+1' avoids division by zero if db is very small.
6918          */
6919         dt = ((jiffies - mddev->resync_mark) / HZ);
6920         if (!dt) dt++;
6921         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6922                 - mddev->resync_mark_cnt;
6923
6924         rt = max_sectors - resync;    /* number of remaining sectors */
6925         sector_div(rt, db/32+1);
6926         rt *= dt;
6927         rt >>= 5;
6928
6929         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6930                    ((unsigned long)rt % 60)/6);
6931
6932         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6933 }
6934
6935 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6936 {
6937         struct list_head *tmp;
6938         loff_t l = *pos;
6939         struct mddev *mddev;
6940
6941         if (l >= 0x10000)
6942                 return NULL;
6943         if (!l--)
6944                 /* header */
6945                 return (void*)1;
6946
6947         spin_lock(&all_mddevs_lock);
6948         list_for_each(tmp,&all_mddevs)
6949                 if (!l--) {
6950                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6951                         mddev_get(mddev);
6952                         spin_unlock(&all_mddevs_lock);
6953                         return mddev;
6954                 }
6955         spin_unlock(&all_mddevs_lock);
6956         if (!l--)
6957                 return (void*)2;/* tail */
6958         return NULL;
6959 }
6960
6961 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6962 {
6963         struct list_head *tmp;
6964         struct mddev *next_mddev, *mddev = v;
6965         
6966         ++*pos;
6967         if (v == (void*)2)
6968                 return NULL;
6969
6970         spin_lock(&all_mddevs_lock);
6971         if (v == (void*)1)
6972                 tmp = all_mddevs.next;
6973         else
6974                 tmp = mddev->all_mddevs.next;
6975         if (tmp != &all_mddevs)
6976                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6977         else {
6978                 next_mddev = (void*)2;
6979                 *pos = 0x10000;
6980         }               
6981         spin_unlock(&all_mddevs_lock);
6982
6983         if (v != (void*)1)
6984                 mddev_put(mddev);
6985         return next_mddev;
6986
6987 }
6988
6989 static void md_seq_stop(struct seq_file *seq, void *v)
6990 {
6991         struct mddev *mddev = v;
6992
6993         if (mddev && v != (void*)1 && v != (void*)2)
6994                 mddev_put(mddev);
6995 }
6996
6997 static int md_seq_show(struct seq_file *seq, void *v)
6998 {
6999         struct mddev *mddev = v;
7000         sector_t sectors;
7001         struct md_rdev *rdev;
7002
7003         if (v == (void*)1) {
7004                 struct md_personality *pers;
7005                 seq_printf(seq, "Personalities : ");
7006                 spin_lock(&pers_lock);
7007                 list_for_each_entry(pers, &pers_list, list)
7008                         seq_printf(seq, "[%s] ", pers->name);
7009
7010                 spin_unlock(&pers_lock);
7011                 seq_printf(seq, "\n");
7012                 seq->poll_event = atomic_read(&md_event_count);
7013                 return 0;
7014         }
7015         if (v == (void*)2) {
7016                 status_unused(seq);
7017                 return 0;
7018         }
7019
7020         if (mddev_lock(mddev) < 0)
7021                 return -EINTR;
7022
7023         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7024                 seq_printf(seq, "%s : %sactive", mdname(mddev),
7025                                                 mddev->pers ? "" : "in");
7026                 if (mddev->pers) {
7027                         if (mddev->ro==1)
7028                                 seq_printf(seq, " (read-only)");
7029                         if (mddev->ro==2)
7030                                 seq_printf(seq, " (auto-read-only)");
7031                         seq_printf(seq, " %s", mddev->pers->name);
7032                 }
7033
7034                 sectors = 0;
7035                 rdev_for_each(rdev, mddev) {
7036                         char b[BDEVNAME_SIZE];
7037                         seq_printf(seq, " %s[%d]",
7038                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7039                         if (test_bit(WriteMostly, &rdev->flags))
7040                                 seq_printf(seq, "(W)");
7041                         if (test_bit(Faulty, &rdev->flags)) {
7042                                 seq_printf(seq, "(F)");
7043                                 continue;
7044                         }
7045                         if (rdev->raid_disk < 0)
7046                                 seq_printf(seq, "(S)"); /* spare */
7047                         if (test_bit(Replacement, &rdev->flags))
7048                                 seq_printf(seq, "(R)");
7049                         sectors += rdev->sectors;
7050                 }
7051
7052                 if (!list_empty(&mddev->disks)) {
7053                         if (mddev->pers)
7054                                 seq_printf(seq, "\n      %llu blocks",
7055                                            (unsigned long long)
7056                                            mddev->array_sectors / 2);
7057                         else
7058                                 seq_printf(seq, "\n      %llu blocks",
7059                                            (unsigned long long)sectors / 2);
7060                 }
7061                 if (mddev->persistent) {
7062                         if (mddev->major_version != 0 ||
7063                             mddev->minor_version != 90) {
7064                                 seq_printf(seq," super %d.%d",
7065                                            mddev->major_version,
7066                                            mddev->minor_version);
7067                         }
7068                 } else if (mddev->external)
7069                         seq_printf(seq, " super external:%s",
7070                                    mddev->metadata_type);
7071                 else
7072                         seq_printf(seq, " super non-persistent");
7073
7074                 if (mddev->pers) {
7075                         mddev->pers->status(seq, mddev);
7076                         seq_printf(seq, "\n      ");
7077                         if (mddev->pers->sync_request) {
7078                                 if (mddev->curr_resync > 2) {
7079                                         status_resync(seq, mddev);
7080                                         seq_printf(seq, "\n      ");
7081                                 } else if (mddev->curr_resync >= 1)
7082                                         seq_printf(seq, "\tresync=DELAYED\n      ");
7083                                 else if (mddev->recovery_cp < MaxSector)
7084                                         seq_printf(seq, "\tresync=PENDING\n      ");
7085                         }
7086                 } else
7087                         seq_printf(seq, "\n       ");
7088
7089                 bitmap_status(seq, mddev->bitmap);
7090
7091                 seq_printf(seq, "\n");
7092         }
7093         mddev_unlock(mddev);
7094         
7095         return 0;
7096 }
7097
7098 static const struct seq_operations md_seq_ops = {
7099         .start  = md_seq_start,
7100         .next   = md_seq_next,
7101         .stop   = md_seq_stop,
7102         .show   = md_seq_show,
7103 };
7104
7105 static int md_seq_open(struct inode *inode, struct file *file)
7106 {
7107         struct seq_file *seq;
7108         int error;
7109
7110         error = seq_open(file, &md_seq_ops);
7111         if (error)
7112                 return error;
7113
7114         seq = file->private_data;
7115         seq->poll_event = atomic_read(&md_event_count);
7116         return error;
7117 }
7118
7119 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7120 {
7121         struct seq_file *seq = filp->private_data;
7122         int mask;
7123
7124         poll_wait(filp, &md_event_waiters, wait);
7125
7126         /* always allow read */
7127         mask = POLLIN | POLLRDNORM;
7128
7129         if (seq->poll_event != atomic_read(&md_event_count))
7130                 mask |= POLLERR | POLLPRI;
7131         return mask;
7132 }
7133
7134 static const struct file_operations md_seq_fops = {
7135         .owner          = THIS_MODULE,
7136         .open           = md_seq_open,
7137         .read           = seq_read,
7138         .llseek         = seq_lseek,
7139         .release        = seq_release_private,
7140         .poll           = mdstat_poll,
7141 };
7142
7143 int register_md_personality(struct md_personality *p)
7144 {
7145         spin_lock(&pers_lock);
7146         list_add_tail(&p->list, &pers_list);
7147         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7148         spin_unlock(&pers_lock);
7149         return 0;
7150 }
7151
7152 int unregister_md_personality(struct md_personality *p)
7153 {
7154         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7155         spin_lock(&pers_lock);
7156         list_del_init(&p->list);
7157         spin_unlock(&pers_lock);
7158         return 0;
7159 }
7160
7161 static int is_mddev_idle(struct mddev *mddev, int init)
7162 {
7163         struct md_rdev * rdev;
7164         int idle;
7165         int curr_events;
7166
7167         idle = 1;
7168         rcu_read_lock();
7169         rdev_for_each_rcu(rdev, mddev) {
7170                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7171                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7172                               (int)part_stat_read(&disk->part0, sectors[1]) -
7173                               atomic_read(&disk->sync_io);
7174                 /* sync IO will cause sync_io to increase before the disk_stats
7175                  * as sync_io is counted when a request starts, and
7176                  * disk_stats is counted when it completes.
7177                  * So resync activity will cause curr_events to be smaller than
7178                  * when there was no such activity.
7179                  * non-sync IO will cause disk_stat to increase without
7180                  * increasing sync_io so curr_events will (eventually)
7181                  * be larger than it was before.  Once it becomes
7182                  * substantially larger, the test below will cause
7183                  * the array to appear non-idle, and resync will slow
7184                  * down.
7185                  * If there is a lot of outstanding resync activity when
7186                  * we set last_event to curr_events, then all that activity
7187                  * completing might cause the array to appear non-idle
7188                  * and resync will be slowed down even though there might
7189                  * not have been non-resync activity.  This will only
7190                  * happen once though.  'last_events' will soon reflect
7191                  * the state where there is little or no outstanding
7192                  * resync requests, and further resync activity will
7193                  * always make curr_events less than last_events.
7194                  *
7195                  */
7196                 if (init || curr_events - rdev->last_events > 64) {
7197                         rdev->last_events = curr_events;
7198                         idle = 0;
7199                 }
7200         }
7201         rcu_read_unlock();
7202         return idle;
7203 }
7204
7205 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7206 {
7207         /* another "blocks" (512byte) blocks have been synced */
7208         atomic_sub(blocks, &mddev->recovery_active);
7209         wake_up(&mddev->recovery_wait);
7210         if (!ok) {
7211                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7212                 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7213                 md_wakeup_thread(mddev->thread);
7214                 // stop recovery, signal do_sync ....
7215         }
7216 }
7217
7218
7219 /* md_write_start(mddev, bi)
7220  * If we need to update some array metadata (e.g. 'active' flag
7221  * in superblock) before writing, schedule a superblock update
7222  * and wait for it to complete.
7223  */
7224 void md_write_start(struct mddev *mddev, struct bio *bi)
7225 {
7226         int did_change = 0;
7227         if (bio_data_dir(bi) != WRITE)
7228                 return;
7229
7230         BUG_ON(mddev->ro == 1);
7231         if (mddev->ro == 2) {
7232                 /* need to switch to read/write */
7233                 mddev->ro = 0;
7234                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7235                 md_wakeup_thread(mddev->thread);
7236                 md_wakeup_thread(mddev->sync_thread);
7237                 did_change = 1;
7238         }
7239         atomic_inc(&mddev->writes_pending);
7240         if (mddev->safemode == 1)
7241                 mddev->safemode = 0;
7242         if (mddev->in_sync) {
7243                 spin_lock_irq(&mddev->write_lock);
7244                 if (mddev->in_sync) {
7245                         mddev->in_sync = 0;
7246                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7247                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7248                         md_wakeup_thread(mddev->thread);
7249                         did_change = 1;
7250                 }
7251                 spin_unlock_irq(&mddev->write_lock);
7252         }
7253         if (did_change)
7254                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7255         wait_event(mddev->sb_wait,
7256                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7257 }
7258
7259 void md_write_end(struct mddev *mddev)
7260 {
7261         if (atomic_dec_and_test(&mddev->writes_pending)) {
7262                 if (mddev->safemode == 2)
7263                         md_wakeup_thread(mddev->thread);
7264                 else if (mddev->safemode_delay)
7265                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7266         }
7267 }
7268
7269 /* md_allow_write(mddev)
7270  * Calling this ensures that the array is marked 'active' so that writes
7271  * may proceed without blocking.  It is important to call this before
7272  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7273  * Must be called with mddev_lock held.
7274  *
7275  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7276  * is dropped, so return -EAGAIN after notifying userspace.
7277  */
7278 int md_allow_write(struct mddev *mddev)
7279 {
7280         if (!mddev->pers)
7281                 return 0;
7282         if (mddev->ro)
7283                 return 0;
7284         if (!mddev->pers->sync_request)
7285                 return 0;
7286
7287         spin_lock_irq(&mddev->write_lock);
7288         if (mddev->in_sync) {
7289                 mddev->in_sync = 0;
7290                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7291                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7292                 if (mddev->safemode_delay &&
7293                     mddev->safemode == 0)
7294                         mddev->safemode = 1;
7295                 spin_unlock_irq(&mddev->write_lock);
7296                 md_update_sb(mddev, 0);
7297                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7298         } else
7299                 spin_unlock_irq(&mddev->write_lock);
7300
7301         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7302                 return -EAGAIN;
7303         else
7304                 return 0;
7305 }
7306 EXPORT_SYMBOL_GPL(md_allow_write);
7307
7308 #define SYNC_MARKS      10
7309 #define SYNC_MARK_STEP  (3*HZ)
7310 #define UPDATE_FREQUENCY (5*60*HZ)
7311 void md_do_sync(struct md_thread *thread)
7312 {
7313         struct mddev *mddev = thread->mddev;
7314         struct mddev *mddev2;
7315         unsigned int currspeed = 0,
7316                  window;
7317         sector_t max_sectors,j, io_sectors;
7318         unsigned long mark[SYNC_MARKS];
7319         unsigned long update_time;
7320         sector_t mark_cnt[SYNC_MARKS];
7321         int last_mark,m;
7322         struct list_head *tmp;
7323         sector_t last_check;
7324         int skipped = 0;
7325         struct md_rdev *rdev;
7326         char *desc;
7327         struct blk_plug plug;
7328
7329         /* just incase thread restarts... */
7330         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7331                 return;
7332         if (mddev->ro) /* never try to sync a read-only array */
7333                 return;
7334
7335         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7336                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7337                         desc = "data-check";
7338                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7339                         desc = "requested-resync";
7340                 else
7341                         desc = "resync";
7342         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7343                 desc = "reshape";
7344         else
7345                 desc = "recovery";
7346
7347         /* we overload curr_resync somewhat here.
7348          * 0 == not engaged in resync at all
7349          * 2 == checking that there is no conflict with another sync
7350          * 1 == like 2, but have yielded to allow conflicting resync to
7351          *              commense
7352          * other == active in resync - this many blocks
7353          *
7354          * Before starting a resync we must have set curr_resync to
7355          * 2, and then checked that every "conflicting" array has curr_resync
7356          * less than ours.  When we find one that is the same or higher
7357          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7358          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7359          * This will mean we have to start checking from the beginning again.
7360          *
7361          */
7362
7363         do {
7364                 mddev->curr_resync = 2;
7365
7366         try_again:
7367                 if (kthread_should_stop())
7368                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7369
7370                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7371                         goto skip;
7372                 for_each_mddev(mddev2, tmp) {
7373                         if (mddev2 == mddev)
7374                                 continue;
7375                         if (!mddev->parallel_resync
7376                         &&  mddev2->curr_resync
7377                         &&  match_mddev_units(mddev, mddev2)) {
7378                                 DEFINE_WAIT(wq);
7379                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7380                                         /* arbitrarily yield */
7381                                         mddev->curr_resync = 1;
7382                                         wake_up(&resync_wait);
7383                                 }
7384                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7385                                         /* no need to wait here, we can wait the next
7386                                          * time 'round when curr_resync == 2
7387                                          */
7388                                         continue;
7389                                 /* We need to wait 'interruptible' so as not to
7390                                  * contribute to the load average, and not to
7391                                  * be caught by 'softlockup'
7392                                  */
7393                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7394                                 if (!kthread_should_stop() &&
7395                                     mddev2->curr_resync >= mddev->curr_resync) {
7396                                         printk(KERN_INFO "md: delaying %s of %s"
7397                                                " until %s has finished (they"
7398                                                " share one or more physical units)\n",
7399                                                desc, mdname(mddev), mdname(mddev2));
7400                                         mddev_put(mddev2);
7401                                         if (signal_pending(current))
7402                                                 flush_signals(current);
7403                                         schedule();
7404                                         finish_wait(&resync_wait, &wq);
7405                                         goto try_again;
7406                                 }
7407                                 finish_wait(&resync_wait, &wq);
7408                         }
7409                 }
7410         } while (mddev->curr_resync < 2);
7411
7412         j = 0;
7413         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7414                 /* resync follows the size requested by the personality,
7415                  * which defaults to physical size, but can be virtual size
7416                  */
7417                 max_sectors = mddev->resync_max_sectors;
7418                 atomic64_set(&mddev->resync_mismatches, 0);
7419                 /* we don't use the checkpoint if there's a bitmap */
7420                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7421                         j = mddev->resync_min;
7422                 else if (!mddev->bitmap)
7423                         j = mddev->recovery_cp;
7424
7425         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7426                 max_sectors = mddev->resync_max_sectors;
7427         else {
7428                 /* recovery follows the physical size of devices */
7429                 max_sectors = mddev->dev_sectors;
7430                 j = MaxSector;
7431                 rcu_read_lock();
7432                 rdev_for_each_rcu(rdev, mddev)
7433                         if (rdev->raid_disk >= 0 &&
7434                             !test_bit(Faulty, &rdev->flags) &&
7435                             !test_bit(In_sync, &rdev->flags) &&
7436                             rdev->recovery_offset < j)
7437                                 j = rdev->recovery_offset;
7438                 rcu_read_unlock();
7439         }
7440
7441         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7442         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7443                 " %d KB/sec/disk.\n", speed_min(mddev));
7444         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7445                "(but not more than %d KB/sec) for %s.\n",
7446                speed_max(mddev), desc);
7447
7448         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7449
7450         io_sectors = 0;
7451         for (m = 0; m < SYNC_MARKS; m++) {
7452                 mark[m] = jiffies;
7453                 mark_cnt[m] = io_sectors;
7454         }
7455         last_mark = 0;
7456         mddev->resync_mark = mark[last_mark];
7457         mddev->resync_mark_cnt = mark_cnt[last_mark];
7458
7459         /*
7460          * Tune reconstruction:
7461          */
7462         window = 32*(PAGE_SIZE/512);
7463         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7464                 window/2, (unsigned long long)max_sectors/2);
7465
7466         atomic_set(&mddev->recovery_active, 0);
7467         last_check = 0;
7468
7469         if (j>2) {
7470                 printk(KERN_INFO 
7471                        "md: resuming %s of %s from checkpoint.\n",
7472                        desc, mdname(mddev));
7473                 mddev->curr_resync = j;
7474         } else
7475                 mddev->curr_resync = 3; /* no longer delayed */
7476         mddev->curr_resync_completed = j;
7477         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7478         md_new_event(mddev);
7479         update_time = jiffies;
7480
7481         blk_start_plug(&plug);
7482         while (j < max_sectors) {
7483                 sector_t sectors;
7484
7485                 skipped = 0;
7486
7487                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7488                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7489                       (mddev->curr_resync - mddev->curr_resync_completed)
7490                       > (max_sectors >> 4)) ||
7491                      time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7492                      (j - mddev->curr_resync_completed)*2
7493                      >= mddev->resync_max - mddev->curr_resync_completed
7494                             )) {
7495                         /* time to update curr_resync_completed */
7496                         wait_event(mddev->recovery_wait,
7497                                    atomic_read(&mddev->recovery_active) == 0);
7498                         mddev->curr_resync_completed = j;
7499                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7500                             j > mddev->recovery_cp)
7501                                 mddev->recovery_cp = j;
7502                         update_time = jiffies;
7503                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7504                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7505                 }
7506
7507                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7508                         /* As this condition is controlled by user-space,
7509                          * we can block indefinitely, so use '_interruptible'
7510                          * to avoid triggering warnings.
7511                          */
7512                         flush_signals(current); /* just in case */
7513                         wait_event_interruptible(mddev->recovery_wait,
7514                                                  mddev->resync_max > j
7515                                                  || kthread_should_stop());
7516                 }
7517
7518                 if (kthread_should_stop())
7519                         goto interrupted;
7520
7521                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7522                                                   currspeed < speed_min(mddev));
7523                 if (sectors == 0) {
7524                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7525                         goto out;
7526                 }
7527
7528                 if (!skipped) { /* actual IO requested */
7529                         io_sectors += sectors;
7530                         atomic_add(sectors, &mddev->recovery_active);
7531                 }
7532
7533                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7534                         break;
7535
7536                 j += sectors;
7537                 if (j > 2)
7538                         mddev->curr_resync = j;
7539                 mddev->curr_mark_cnt = io_sectors;
7540                 if (last_check == 0)
7541                         /* this is the earliest that rebuild will be
7542                          * visible in /proc/mdstat
7543                          */
7544                         md_new_event(mddev);
7545
7546                 if (last_check + window > io_sectors || j == max_sectors)
7547                         continue;
7548
7549                 last_check = io_sectors;
7550         repeat:
7551                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7552                         /* step marks */
7553                         int next = (last_mark+1) % SYNC_MARKS;
7554
7555                         mddev->resync_mark = mark[next];
7556                         mddev->resync_mark_cnt = mark_cnt[next];
7557                         mark[next] = jiffies;
7558                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7559                         last_mark = next;
7560                 }
7561
7562
7563                 if (kthread_should_stop())
7564                         goto interrupted;
7565
7566
7567                 /*
7568                  * this loop exits only if either when we are slower than
7569                  * the 'hard' speed limit, or the system was IO-idle for
7570                  * a jiffy.
7571                  * the system might be non-idle CPU-wise, but we only care
7572                  * about not overloading the IO subsystem. (things like an
7573                  * e2fsck being done on the RAID array should execute fast)
7574                  */
7575                 cond_resched();
7576
7577                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7578                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7579
7580                 if (currspeed > speed_min(mddev)) {
7581                         if ((currspeed > speed_max(mddev)) ||
7582                                         !is_mddev_idle(mddev, 0)) {
7583                                 msleep(500);
7584                                 goto repeat;
7585                         }
7586                 }
7587         }
7588         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7589         /*
7590          * this also signals 'finished resyncing' to md_stop
7591          */
7592  out:
7593         blk_finish_plug(&plug);
7594         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7595
7596         /* tell personality that we are finished */
7597         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7598
7599         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7600             mddev->curr_resync > 2) {
7601                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7602                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7603                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7604                                         printk(KERN_INFO
7605                                                "md: checkpointing %s of %s.\n",
7606                                                desc, mdname(mddev));
7607                                         if (test_bit(MD_RECOVERY_ERROR,
7608                                                 &mddev->recovery))
7609                                                 mddev->recovery_cp =
7610                                                         mddev->curr_resync_completed;
7611                                         else
7612                                                 mddev->recovery_cp =
7613                                                         mddev->curr_resync;
7614                                 }
7615                         } else
7616                                 mddev->recovery_cp = MaxSector;
7617                 } else {
7618                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7619                                 mddev->curr_resync = MaxSector;
7620                         rcu_read_lock();
7621                         rdev_for_each_rcu(rdev, mddev)
7622                                 if (rdev->raid_disk >= 0 &&
7623                                     mddev->delta_disks >= 0 &&
7624                                     !test_bit(Faulty, &rdev->flags) &&
7625                                     !test_bit(In_sync, &rdev->flags) &&
7626                                     rdev->recovery_offset < mddev->curr_resync)
7627                                         rdev->recovery_offset = mddev->curr_resync;
7628                         rcu_read_unlock();
7629                 }
7630         }
7631  skip:
7632         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7633
7634         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7635                 /* We completed so min/max setting can be forgotten if used. */
7636                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7637                         mddev->resync_min = 0;
7638                 mddev->resync_max = MaxSector;
7639         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7640                 mddev->resync_min = mddev->curr_resync_completed;
7641         mddev->curr_resync = 0;
7642         wake_up(&resync_wait);
7643         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7644         md_wakeup_thread(mddev->thread);
7645         return;
7646
7647  interrupted:
7648         /*
7649          * got a signal, exit.
7650          */
7651         printk(KERN_INFO
7652                "md: md_do_sync() got signal ... exiting\n");
7653         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7654         goto out;
7655
7656 }
7657 EXPORT_SYMBOL_GPL(md_do_sync);
7658
7659 static int remove_and_add_spares(struct mddev *mddev,
7660                                  struct md_rdev *this)
7661 {
7662         struct md_rdev *rdev;
7663         int spares = 0;
7664         int removed = 0;
7665
7666         rdev_for_each(rdev, mddev)
7667                 if ((this == NULL || rdev == this) &&
7668                     rdev->raid_disk >= 0 &&
7669                     !test_bit(Blocked, &rdev->flags) &&
7670                     (test_bit(Faulty, &rdev->flags) ||
7671                      ! test_bit(In_sync, &rdev->flags)) &&
7672                     atomic_read(&rdev->nr_pending)==0) {
7673                         if (mddev->pers->hot_remove_disk(
7674                                     mddev, rdev) == 0) {
7675                                 sysfs_unlink_rdev(mddev, rdev);
7676                                 rdev->raid_disk = -1;
7677                                 removed++;
7678                         }
7679                 }
7680         if (removed && mddev->kobj.sd)
7681                 sysfs_notify(&mddev->kobj, NULL, "degraded");
7682
7683         if (this)
7684                 goto no_add;
7685
7686         rdev_for_each(rdev, mddev) {
7687                 if (rdev->raid_disk >= 0 &&
7688                     !test_bit(In_sync, &rdev->flags) &&
7689                     !test_bit(Faulty, &rdev->flags))
7690                         spares++;
7691                 if (rdev->raid_disk >= 0)
7692                         continue;
7693                 if (test_bit(Faulty, &rdev->flags))
7694                         continue;
7695                 if (mddev->ro &&
7696                     rdev->saved_raid_disk < 0)
7697                         continue;
7698
7699                 rdev->recovery_offset = 0;
7700                 if (rdev->saved_raid_disk >= 0 && mddev->in_sync) {
7701                         spin_lock_irq(&mddev->write_lock);
7702                         if (mddev->in_sync)
7703                                 /* OK, this device, which is in_sync,
7704                                  * will definitely be noticed before
7705                                  * the next write, so recovery isn't
7706                                  * needed.
7707                                  */
7708                                 rdev->recovery_offset = mddev->recovery_cp;
7709                         spin_unlock_irq(&mddev->write_lock);
7710                 }
7711                 if (mddev->ro && rdev->recovery_offset != MaxSector)
7712                         /* not safe to add this disk now */
7713                         continue;
7714                 if (mddev->pers->
7715                     hot_add_disk(mddev, rdev) == 0) {
7716                         if (sysfs_link_rdev(mddev, rdev))
7717                                 /* failure here is OK */;
7718                         spares++;
7719                         md_new_event(mddev);
7720                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7721                 }
7722         }
7723 no_add:
7724         if (removed)
7725                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7726         return spares;
7727 }
7728
7729 /*
7730  * This routine is regularly called by all per-raid-array threads to
7731  * deal with generic issues like resync and super-block update.
7732  * Raid personalities that don't have a thread (linear/raid0) do not
7733  * need this as they never do any recovery or update the superblock.
7734  *
7735  * It does not do any resync itself, but rather "forks" off other threads
7736  * to do that as needed.
7737  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7738  * "->recovery" and create a thread at ->sync_thread.
7739  * When the thread finishes it sets MD_RECOVERY_DONE
7740  * and wakeups up this thread which will reap the thread and finish up.
7741  * This thread also removes any faulty devices (with nr_pending == 0).
7742  *
7743  * The overall approach is:
7744  *  1/ if the superblock needs updating, update it.
7745  *  2/ If a recovery thread is running, don't do anything else.
7746  *  3/ If recovery has finished, clean up, possibly marking spares active.
7747  *  4/ If there are any faulty devices, remove them.
7748  *  5/ If array is degraded, try to add spares devices
7749  *  6/ If array has spares or is not in-sync, start a resync thread.
7750  */
7751 void md_check_recovery(struct mddev *mddev)
7752 {
7753         if (mddev->suspended)
7754                 return;
7755
7756         if (mddev->bitmap)
7757                 bitmap_daemon_work(mddev);
7758
7759         if (signal_pending(current)) {
7760                 if (mddev->pers->sync_request && !mddev->external) {
7761                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7762                                mdname(mddev));
7763                         mddev->safemode = 2;
7764                 }
7765                 flush_signals(current);
7766         }
7767
7768         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7769                 return;
7770         if ( ! (
7771                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7772                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7773                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7774                 (mddev->external == 0 && mddev->safemode == 1) ||
7775                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7776                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7777                 ))
7778                 return;
7779
7780         if (mddev_trylock(mddev)) {
7781                 int spares = 0;
7782
7783                 if (mddev->ro) {
7784                         /* On a read-only array we can:
7785                          * - remove failed devices
7786                          * - add already-in_sync devices if the array itself
7787                          *   is in-sync.
7788                          * As we only add devices that are already in-sync,
7789                          * we can activate the spares immediately.
7790                          */
7791                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7792                         remove_and_add_spares(mddev, NULL);
7793                         mddev->pers->spare_active(mddev);
7794                         goto unlock;
7795                 }
7796
7797                 if (!mddev->external) {
7798                         int did_change = 0;
7799                         spin_lock_irq(&mddev->write_lock);
7800                         if (mddev->safemode &&
7801                             !atomic_read(&mddev->writes_pending) &&
7802                             !mddev->in_sync &&
7803                             mddev->recovery_cp == MaxSector) {
7804                                 mddev->in_sync = 1;
7805                                 did_change = 1;
7806                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7807                         }
7808                         if (mddev->safemode == 1)
7809                                 mddev->safemode = 0;
7810                         spin_unlock_irq(&mddev->write_lock);
7811                         if (did_change)
7812                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7813                 }
7814
7815                 if (mddev->flags)
7816                         md_update_sb(mddev, 0);
7817
7818                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7819                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7820                         /* resync/recovery still happening */
7821                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7822                         goto unlock;
7823                 }
7824                 if (mddev->sync_thread) {
7825                         md_reap_sync_thread(mddev);
7826                         goto unlock;
7827                 }
7828                 /* Set RUNNING before clearing NEEDED to avoid
7829                  * any transients in the value of "sync_action".
7830                  */
7831                 mddev->curr_resync_completed = 0;
7832                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7833                 /* Clear some bits that don't mean anything, but
7834                  * might be left set
7835                  */
7836                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7837                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7838
7839                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7840                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7841                         goto unlock;
7842                 /* no recovery is running.
7843                  * remove any failed drives, then
7844                  * add spares if possible.
7845                  * Spares are also removed and re-added, to allow
7846                  * the personality to fail the re-add.
7847                  */
7848
7849                 if (mddev->reshape_position != MaxSector) {
7850                         if (mddev->pers->check_reshape == NULL ||
7851                             mddev->pers->check_reshape(mddev) != 0)
7852                                 /* Cannot proceed */
7853                                 goto unlock;
7854                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7855                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7856                 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7857                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7858                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7859                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7860                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7861                 } else if (mddev->recovery_cp < MaxSector) {
7862                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7863                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7864                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7865                         /* nothing to be done ... */
7866                         goto unlock;
7867
7868                 if (mddev->pers->sync_request) {
7869                         if (spares) {
7870                                 /* We are adding a device or devices to an array
7871                                  * which has the bitmap stored on all devices.
7872                                  * So make sure all bitmap pages get written
7873                                  */
7874                                 bitmap_write_all(mddev->bitmap);
7875                         }
7876                         mddev->sync_thread = md_register_thread(md_do_sync,
7877                                                                 mddev,
7878                                                                 "resync");
7879                         if (!mddev->sync_thread) {
7880                                 printk(KERN_ERR "%s: could not start resync"
7881                                         " thread...\n", 
7882                                         mdname(mddev));
7883                                 /* leave the spares where they are, it shouldn't hurt */
7884                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7885                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7886                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7887                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7888                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7889                         } else
7890                                 md_wakeup_thread(mddev->sync_thread);
7891                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7892                         md_new_event(mddev);
7893                 }
7894         unlock:
7895                 if (!mddev->sync_thread) {
7896                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7897                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7898                                                &mddev->recovery))
7899                                 if (mddev->sysfs_action)
7900                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7901                 }
7902                 mddev_unlock(mddev);
7903         }
7904 }
7905
7906 void md_reap_sync_thread(struct mddev *mddev)
7907 {
7908         struct md_rdev *rdev;
7909
7910         /* resync has finished, collect result */
7911         md_unregister_thread(&mddev->sync_thread);
7912         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7913             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7914                 /* success...*/
7915                 /* activate any spares */
7916                 if (mddev->pers->spare_active(mddev)) {
7917                         sysfs_notify(&mddev->kobj, NULL,
7918                                      "degraded");
7919                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7920                 }
7921         }
7922         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7923             mddev->pers->finish_reshape)
7924                 mddev->pers->finish_reshape(mddev);
7925
7926         /* If array is no-longer degraded, then any saved_raid_disk
7927          * information must be scrapped.  Also if any device is now
7928          * In_sync we must scrape the saved_raid_disk for that device
7929          * do the superblock for an incrementally recovered device
7930          * written out.
7931          */
7932         rdev_for_each(rdev, mddev)
7933                 if (!mddev->degraded ||
7934                     test_bit(In_sync, &rdev->flags))
7935                         rdev->saved_raid_disk = -1;
7936
7937         md_update_sb(mddev, 1);
7938         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7939         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7940         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7941         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7942         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7943         /* flag recovery needed just to double check */
7944         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7945         sysfs_notify_dirent_safe(mddev->sysfs_action);
7946         md_new_event(mddev);
7947         if (mddev->event_work.func)
7948                 queue_work(md_misc_wq, &mddev->event_work);
7949 }
7950
7951 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7952 {
7953         sysfs_notify_dirent_safe(rdev->sysfs_state);
7954         wait_event_timeout(rdev->blocked_wait,
7955                            !test_bit(Blocked, &rdev->flags) &&
7956                            !test_bit(BlockedBadBlocks, &rdev->flags),
7957                            msecs_to_jiffies(5000));
7958         rdev_dec_pending(rdev, mddev);
7959 }
7960 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7961
7962 void md_finish_reshape(struct mddev *mddev)
7963 {
7964         /* called be personality module when reshape completes. */
7965         struct md_rdev *rdev;
7966
7967         rdev_for_each(rdev, mddev) {
7968                 if (rdev->data_offset > rdev->new_data_offset)
7969                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7970                 else
7971                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7972                 rdev->data_offset = rdev->new_data_offset;
7973         }
7974 }
7975 EXPORT_SYMBOL(md_finish_reshape);
7976
7977 /* Bad block management.
7978  * We can record which blocks on each device are 'bad' and so just
7979  * fail those blocks, or that stripe, rather than the whole device.
7980  * Entries in the bad-block table are 64bits wide.  This comprises:
7981  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7982  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7983  *  A 'shift' can be set so that larger blocks are tracked and
7984  *  consequently larger devices can be covered.
7985  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7986  *
7987  * Locking of the bad-block table uses a seqlock so md_is_badblock
7988  * might need to retry if it is very unlucky.
7989  * We will sometimes want to check for bad blocks in a bi_end_io function,
7990  * so we use the write_seqlock_irq variant.
7991  *
7992  * When looking for a bad block we specify a range and want to
7993  * know if any block in the range is bad.  So we binary-search
7994  * to the last range that starts at-or-before the given endpoint,
7995  * (or "before the sector after the target range")
7996  * then see if it ends after the given start.
7997  * We return
7998  *  0 if there are no known bad blocks in the range
7999  *  1 if there are known bad block which are all acknowledged
8000  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8001  * plus the start/length of the first bad section we overlap.
8002  */
8003 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8004                    sector_t *first_bad, int *bad_sectors)
8005 {
8006         int hi;
8007         int lo;
8008         u64 *p = bb->page;
8009         int rv;
8010         sector_t target = s + sectors;
8011         unsigned seq;
8012
8013         if (bb->shift > 0) {
8014                 /* round the start down, and the end up */
8015                 s >>= bb->shift;
8016                 target += (1<<bb->shift) - 1;
8017                 target >>= bb->shift;
8018                 sectors = target - s;
8019         }
8020         /* 'target' is now the first block after the bad range */
8021
8022 retry:
8023         seq = read_seqbegin(&bb->lock);
8024         lo = 0;
8025         rv = 0;
8026         hi = bb->count;
8027
8028         /* Binary search between lo and hi for 'target'
8029          * i.e. for the last range that starts before 'target'
8030          */
8031         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8032          * are known not to be the last range before target.
8033          * VARIANT: hi-lo is the number of possible
8034          * ranges, and decreases until it reaches 1
8035          */
8036         while (hi - lo > 1) {
8037                 int mid = (lo + hi) / 2;
8038                 sector_t a = BB_OFFSET(p[mid]);
8039                 if (a < target)
8040                         /* This could still be the one, earlier ranges
8041                          * could not. */
8042                         lo = mid;
8043                 else
8044                         /* This and later ranges are definitely out. */
8045                         hi = mid;
8046         }
8047         /* 'lo' might be the last that started before target, but 'hi' isn't */
8048         if (hi > lo) {
8049                 /* need to check all range that end after 's' to see if
8050                  * any are unacknowledged.
8051                  */
8052                 while (lo >= 0 &&
8053                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8054                         if (BB_OFFSET(p[lo]) < target) {
8055                                 /* starts before the end, and finishes after
8056                                  * the start, so they must overlap
8057                                  */
8058                                 if (rv != -1 && BB_ACK(p[lo]))
8059                                         rv = 1;
8060                                 else
8061                                         rv = -1;
8062                                 *first_bad = BB_OFFSET(p[lo]);
8063                                 *bad_sectors = BB_LEN(p[lo]);
8064                         }
8065                         lo--;
8066                 }
8067         }
8068
8069         if (read_seqretry(&bb->lock, seq))
8070                 goto retry;
8071
8072         return rv;
8073 }
8074 EXPORT_SYMBOL_GPL(md_is_badblock);
8075
8076 /*
8077  * Add a range of bad blocks to the table.
8078  * This might extend the table, or might contract it
8079  * if two adjacent ranges can be merged.
8080  * We binary-search to find the 'insertion' point, then
8081  * decide how best to handle it.
8082  */
8083 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8084                             int acknowledged)
8085 {
8086         u64 *p;
8087         int lo, hi;
8088         int rv = 1;
8089
8090         if (bb->shift < 0)
8091                 /* badblocks are disabled */
8092                 return 0;
8093
8094         if (bb->shift) {
8095                 /* round the start down, and the end up */
8096                 sector_t next = s + sectors;
8097                 s >>= bb->shift;
8098                 next += (1<<bb->shift) - 1;
8099                 next >>= bb->shift;
8100                 sectors = next - s;
8101         }
8102
8103         write_seqlock_irq(&bb->lock);
8104
8105         p = bb->page;
8106         lo = 0;
8107         hi = bb->count;
8108         /* Find the last range that starts at-or-before 's' */
8109         while (hi - lo > 1) {
8110                 int mid = (lo + hi) / 2;
8111                 sector_t a = BB_OFFSET(p[mid]);
8112                 if (a <= s)
8113                         lo = mid;
8114                 else
8115                         hi = mid;
8116         }
8117         if (hi > lo && BB_OFFSET(p[lo]) > s)
8118                 hi = lo;
8119
8120         if (hi > lo) {
8121                 /* we found a range that might merge with the start
8122                  * of our new range
8123                  */
8124                 sector_t a = BB_OFFSET(p[lo]);
8125                 sector_t e = a + BB_LEN(p[lo]);
8126                 int ack = BB_ACK(p[lo]);
8127                 if (e >= s) {
8128                         /* Yes, we can merge with a previous range */
8129                         if (s == a && s + sectors >= e)
8130                                 /* new range covers old */
8131                                 ack = acknowledged;
8132                         else
8133                                 ack = ack && acknowledged;
8134
8135                         if (e < s + sectors)
8136                                 e = s + sectors;
8137                         if (e - a <= BB_MAX_LEN) {
8138                                 p[lo] = BB_MAKE(a, e-a, ack);
8139                                 s = e;
8140                         } else {
8141                                 /* does not all fit in one range,
8142                                  * make p[lo] maximal
8143                                  */
8144                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8145                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8146                                 s = a + BB_MAX_LEN;
8147                         }
8148                         sectors = e - s;
8149                 }
8150         }
8151         if (sectors && hi < bb->count) {
8152                 /* 'hi' points to the first range that starts after 's'.
8153                  * Maybe we can merge with the start of that range */
8154                 sector_t a = BB_OFFSET(p[hi]);
8155                 sector_t e = a + BB_LEN(p[hi]);
8156                 int ack = BB_ACK(p[hi]);
8157                 if (a <= s + sectors) {
8158                         /* merging is possible */
8159                         if (e <= s + sectors) {
8160                                 /* full overlap */
8161                                 e = s + sectors;
8162                                 ack = acknowledged;
8163                         } else
8164                                 ack = ack && acknowledged;
8165
8166                         a = s;
8167                         if (e - a <= BB_MAX_LEN) {
8168                                 p[hi] = BB_MAKE(a, e-a, ack);
8169                                 s = e;
8170                         } else {
8171                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8172                                 s = a + BB_MAX_LEN;
8173                         }
8174                         sectors = e - s;
8175                         lo = hi;
8176                         hi++;
8177                 }
8178         }
8179         if (sectors == 0 && hi < bb->count) {
8180                 /* we might be able to combine lo and hi */
8181                 /* Note: 's' is at the end of 'lo' */
8182                 sector_t a = BB_OFFSET(p[hi]);
8183                 int lolen = BB_LEN(p[lo]);
8184                 int hilen = BB_LEN(p[hi]);
8185                 int newlen = lolen + hilen - (s - a);
8186                 if (s >= a && newlen < BB_MAX_LEN) {
8187                         /* yes, we can combine them */
8188                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8189                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8190                         memmove(p + hi, p + hi + 1,
8191                                 (bb->count - hi - 1) * 8);
8192                         bb->count--;
8193                 }
8194         }
8195         while (sectors) {
8196                 /* didn't merge (it all).
8197                  * Need to add a range just before 'hi' */
8198                 if (bb->count >= MD_MAX_BADBLOCKS) {
8199                         /* No room for more */
8200                         rv = 0;
8201                         break;
8202                 } else {
8203                         int this_sectors = sectors;
8204                         memmove(p + hi + 1, p + hi,
8205                                 (bb->count - hi) * 8);
8206                         bb->count++;
8207
8208                         if (this_sectors > BB_MAX_LEN)
8209                                 this_sectors = BB_MAX_LEN;
8210                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8211                         sectors -= this_sectors;
8212                         s += this_sectors;
8213                 }
8214         }
8215
8216         bb->changed = 1;
8217         if (!acknowledged)
8218                 bb->unacked_exist = 1;
8219         write_sequnlock_irq(&bb->lock);
8220
8221         return rv;
8222 }
8223
8224 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8225                        int is_new)
8226 {
8227         int rv;
8228         if (is_new)
8229                 s += rdev->new_data_offset;
8230         else
8231                 s += rdev->data_offset;
8232         rv = md_set_badblocks(&rdev->badblocks,
8233                               s, sectors, 0);
8234         if (rv) {
8235                 /* Make sure they get written out promptly */
8236                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8237                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8238                 md_wakeup_thread(rdev->mddev->thread);
8239         }
8240         return rv;
8241 }
8242 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8243
8244 /*
8245  * Remove a range of bad blocks from the table.
8246  * This may involve extending the table if we spilt a region,
8247  * but it must not fail.  So if the table becomes full, we just
8248  * drop the remove request.
8249  */
8250 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8251 {
8252         u64 *p;
8253         int lo, hi;
8254         sector_t target = s + sectors;
8255         int rv = 0;
8256
8257         if (bb->shift > 0) {
8258                 /* When clearing we round the start up and the end down.
8259                  * This should not matter as the shift should align with
8260                  * the block size and no rounding should ever be needed.
8261                  * However it is better the think a block is bad when it
8262                  * isn't than to think a block is not bad when it is.
8263                  */
8264                 s += (1<<bb->shift) - 1;
8265                 s >>= bb->shift;
8266                 target >>= bb->shift;
8267                 sectors = target - s;
8268         }
8269
8270         write_seqlock_irq(&bb->lock);
8271
8272         p = bb->page;
8273         lo = 0;
8274         hi = bb->count;
8275         /* Find the last range that starts before 'target' */
8276         while (hi - lo > 1) {
8277                 int mid = (lo + hi) / 2;
8278                 sector_t a = BB_OFFSET(p[mid]);
8279                 if (a < target)
8280                         lo = mid;
8281                 else
8282                         hi = mid;
8283         }
8284         if (hi > lo) {
8285                 /* p[lo] is the last range that could overlap the
8286                  * current range.  Earlier ranges could also overlap,
8287                  * but only this one can overlap the end of the range.
8288                  */
8289                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8290                         /* Partial overlap, leave the tail of this range */
8291                         int ack = BB_ACK(p[lo]);
8292                         sector_t a = BB_OFFSET(p[lo]);
8293                         sector_t end = a + BB_LEN(p[lo]);
8294
8295                         if (a < s) {
8296                                 /* we need to split this range */
8297                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8298                                         rv = 0;
8299                                         goto out;
8300                                 }
8301                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8302                                 bb->count++;
8303                                 p[lo] = BB_MAKE(a, s-a, ack);
8304                                 lo++;
8305                         }
8306                         p[lo] = BB_MAKE(target, end - target, ack);
8307                         /* there is no longer an overlap */
8308                         hi = lo;
8309                         lo--;
8310                 }
8311                 while (lo >= 0 &&
8312                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8313                         /* This range does overlap */
8314                         if (BB_OFFSET(p[lo]) < s) {
8315                                 /* Keep the early parts of this range. */
8316                                 int ack = BB_ACK(p[lo]);
8317                                 sector_t start = BB_OFFSET(p[lo]);
8318                                 p[lo] = BB_MAKE(start, s - start, ack);
8319                                 /* now low doesn't overlap, so.. */
8320                                 break;
8321                         }
8322                         lo--;
8323                 }
8324                 /* 'lo' is strictly before, 'hi' is strictly after,
8325                  * anything between needs to be discarded
8326                  */
8327                 if (hi - lo > 1) {
8328                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8329                         bb->count -= (hi - lo - 1);
8330                 }
8331         }
8332
8333         bb->changed = 1;
8334 out:
8335         write_sequnlock_irq(&bb->lock);
8336         return rv;
8337 }
8338
8339 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8340                          int is_new)
8341 {
8342         if (is_new)
8343                 s += rdev->new_data_offset;
8344         else
8345                 s += rdev->data_offset;
8346         return md_clear_badblocks(&rdev->badblocks,
8347                                   s, sectors);
8348 }
8349 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8350
8351 /*
8352  * Acknowledge all bad blocks in a list.
8353  * This only succeeds if ->changed is clear.  It is used by
8354  * in-kernel metadata updates
8355  */
8356 void md_ack_all_badblocks(struct badblocks *bb)
8357 {
8358         if (bb->page == NULL || bb->changed)
8359                 /* no point even trying */
8360                 return;
8361         write_seqlock_irq(&bb->lock);
8362
8363         if (bb->changed == 0 && bb->unacked_exist) {
8364                 u64 *p = bb->page;
8365                 int i;
8366                 for (i = 0; i < bb->count ; i++) {
8367                         if (!BB_ACK(p[i])) {
8368                                 sector_t start = BB_OFFSET(p[i]);
8369                                 int len = BB_LEN(p[i]);
8370                                 p[i] = BB_MAKE(start, len, 1);
8371                         }
8372                 }
8373                 bb->unacked_exist = 0;
8374         }
8375         write_sequnlock_irq(&bb->lock);
8376 }
8377 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8378
8379 /* sysfs access to bad-blocks list.
8380  * We present two files.
8381  * 'bad-blocks' lists sector numbers and lengths of ranges that
8382  *    are recorded as bad.  The list is truncated to fit within
8383  *    the one-page limit of sysfs.
8384  *    Writing "sector length" to this file adds an acknowledged
8385  *    bad block list.
8386  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8387  *    been acknowledged.  Writing to this file adds bad blocks
8388  *    without acknowledging them.  This is largely for testing.
8389  */
8390
8391 static ssize_t
8392 badblocks_show(struct badblocks *bb, char *page, int unack)
8393 {
8394         size_t len;
8395         int i;
8396         u64 *p = bb->page;
8397         unsigned seq;
8398
8399         if (bb->shift < 0)
8400                 return 0;
8401
8402 retry:
8403         seq = read_seqbegin(&bb->lock);
8404
8405         len = 0;
8406         i = 0;
8407
8408         while (len < PAGE_SIZE && i < bb->count) {
8409                 sector_t s = BB_OFFSET(p[i]);
8410                 unsigned int length = BB_LEN(p[i]);
8411                 int ack = BB_ACK(p[i]);
8412                 i++;
8413
8414                 if (unack && ack)
8415                         continue;
8416
8417                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8418                                 (unsigned long long)s << bb->shift,
8419                                 length << bb->shift);
8420         }
8421         if (unack && len == 0)
8422                 bb->unacked_exist = 0;
8423
8424         if (read_seqretry(&bb->lock, seq))
8425                 goto retry;
8426
8427         return len;
8428 }
8429
8430 #define DO_DEBUG 1
8431
8432 static ssize_t
8433 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8434 {
8435         unsigned long long sector;
8436         int length;
8437         char newline;
8438 #ifdef DO_DEBUG
8439         /* Allow clearing via sysfs *only* for testing/debugging.
8440          * Normally only a successful write may clear a badblock
8441          */
8442         int clear = 0;
8443         if (page[0] == '-') {
8444                 clear = 1;
8445                 page++;
8446         }
8447 #endif /* DO_DEBUG */
8448
8449         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8450         case 3:
8451                 if (newline != '\n')
8452                         return -EINVAL;
8453         case 2:
8454                 if (length <= 0)
8455                         return -EINVAL;
8456                 break;
8457         default:
8458                 return -EINVAL;
8459         }
8460
8461 #ifdef DO_DEBUG
8462         if (clear) {
8463                 md_clear_badblocks(bb, sector, length);
8464                 return len;
8465         }
8466 #endif /* DO_DEBUG */
8467         if (md_set_badblocks(bb, sector, length, !unack))
8468                 return len;
8469         else
8470                 return -ENOSPC;
8471 }
8472
8473 static int md_notify_reboot(struct notifier_block *this,
8474                             unsigned long code, void *x)
8475 {
8476         struct list_head *tmp;
8477         struct mddev *mddev;
8478         int need_delay = 0;
8479
8480         for_each_mddev(mddev, tmp) {
8481                 if (mddev_trylock(mddev)) {
8482                         if (mddev->pers)
8483                                 __md_stop_writes(mddev);
8484                         mddev->safemode = 2;
8485                         mddev_unlock(mddev);
8486                 }
8487                 need_delay = 1;
8488         }
8489         /*
8490          * certain more exotic SCSI devices are known to be
8491          * volatile wrt too early system reboots. While the
8492          * right place to handle this issue is the given
8493          * driver, we do want to have a safe RAID driver ...
8494          */
8495         if (need_delay)
8496                 mdelay(1000*1);
8497
8498         return NOTIFY_DONE;
8499 }
8500
8501 static struct notifier_block md_notifier = {
8502         .notifier_call  = md_notify_reboot,
8503         .next           = NULL,
8504         .priority       = INT_MAX, /* before any real devices */
8505 };
8506
8507 static void md_geninit(void)
8508 {
8509         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8510
8511         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8512 }
8513
8514 static int __init md_init(void)
8515 {
8516         int ret = -ENOMEM;
8517
8518         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8519         if (!md_wq)
8520                 goto err_wq;
8521
8522         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8523         if (!md_misc_wq)
8524                 goto err_misc_wq;
8525
8526         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8527                 goto err_md;
8528
8529         if ((ret = register_blkdev(0, "mdp")) < 0)
8530                 goto err_mdp;
8531         mdp_major = ret;
8532
8533         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8534                             md_probe, NULL, NULL);
8535         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8536                             md_probe, NULL, NULL);
8537
8538         register_reboot_notifier(&md_notifier);
8539         raid_table_header = register_sysctl_table(raid_root_table);
8540
8541         md_geninit();
8542         return 0;
8543
8544 err_mdp:
8545         unregister_blkdev(MD_MAJOR, "md");
8546 err_md:
8547         destroy_workqueue(md_misc_wq);
8548 err_misc_wq:
8549         destroy_workqueue(md_wq);
8550 err_wq:
8551         return ret;
8552 }
8553
8554 #ifndef MODULE
8555
8556 /*
8557  * Searches all registered partitions for autorun RAID arrays
8558  * at boot time.
8559  */
8560
8561 static LIST_HEAD(all_detected_devices);
8562 struct detected_devices_node {
8563         struct list_head list;
8564         dev_t dev;
8565 };
8566
8567 void md_autodetect_dev(dev_t dev)
8568 {
8569         struct detected_devices_node *node_detected_dev;
8570
8571         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8572         if (node_detected_dev) {
8573                 node_detected_dev->dev = dev;
8574                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8575         } else {
8576                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8577                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8578         }
8579 }
8580
8581
8582 static void autostart_arrays(int part)
8583 {
8584         struct md_rdev *rdev;
8585         struct detected_devices_node *node_detected_dev;
8586         dev_t dev;
8587         int i_scanned, i_passed;
8588
8589         i_scanned = 0;
8590         i_passed = 0;
8591
8592         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8593
8594         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8595                 i_scanned++;
8596                 node_detected_dev = list_entry(all_detected_devices.next,
8597                                         struct detected_devices_node, list);
8598                 list_del(&node_detected_dev->list);
8599                 dev = node_detected_dev->dev;
8600                 kfree(node_detected_dev);
8601                 rdev = md_import_device(dev,0, 90);
8602                 if (IS_ERR(rdev))
8603                         continue;
8604
8605                 if (test_bit(Faulty, &rdev->flags)) {
8606                         MD_BUG();
8607                         continue;
8608                 }
8609                 set_bit(AutoDetected, &rdev->flags);
8610                 list_add(&rdev->same_set, &pending_raid_disks);
8611                 i_passed++;
8612         }
8613
8614         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8615                                                 i_scanned, i_passed);
8616
8617         autorun_devices(part);
8618 }
8619
8620 #endif /* !MODULE */
8621
8622 static __exit void md_exit(void)
8623 {
8624         struct mddev *mddev;
8625         struct list_head *tmp;
8626
8627         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8628         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8629
8630         unregister_blkdev(MD_MAJOR,"md");
8631         unregister_blkdev(mdp_major, "mdp");
8632         unregister_reboot_notifier(&md_notifier);
8633         unregister_sysctl_table(raid_table_header);
8634         remove_proc_entry("mdstat", NULL);
8635         for_each_mddev(mddev, tmp) {
8636                 export_array(mddev);
8637                 mddev->hold_active = 0;
8638         }
8639         destroy_workqueue(md_misc_wq);
8640         destroy_workqueue(md_wq);
8641 }
8642
8643 subsys_initcall(md_init);
8644 module_exit(md_exit)
8645
8646 static int get_ro(char *buffer, struct kernel_param *kp)
8647 {
8648         return sprintf(buffer, "%d", start_readonly);
8649 }
8650 static int set_ro(const char *val, struct kernel_param *kp)
8651 {
8652         char *e;
8653         int num = simple_strtoul(val, &e, 10);
8654         if (*val && (*e == '\0' || *e == '\n')) {
8655                 start_readonly = num;
8656                 return 0;
8657         }
8658         return -EINVAL;
8659 }
8660
8661 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8662 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8663
8664 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8665
8666 EXPORT_SYMBOL(register_md_personality);
8667 EXPORT_SYMBOL(unregister_md_personality);
8668 EXPORT_SYMBOL(md_error);
8669 EXPORT_SYMBOL(md_done_sync);
8670 EXPORT_SYMBOL(md_write_start);
8671 EXPORT_SYMBOL(md_write_end);
8672 EXPORT_SYMBOL(md_register_thread);
8673 EXPORT_SYMBOL(md_unregister_thread);
8674 EXPORT_SYMBOL(md_wakeup_thread);
8675 EXPORT_SYMBOL(md_check_recovery);
8676 EXPORT_SYMBOL(md_reap_sync_thread);
8677 MODULE_LICENSE("GPL");
8678 MODULE_DESCRIPTION("MD RAID framework");
8679 MODULE_ALIAS("md");
8680 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);