Merge tag 'kbuild-fixes-v5.0-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX   "thin"
26
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38                 "A percentage of time allocated for copy on write");
39
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113  * Key building.
114  */
115 enum lock_space {
116         VIRTUAL,
117         PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123         key->virtual = (ls == VIRTUAL);
124         key->dev = dm_thin_dev_id(td);
125         key->block_begin = b;
126         key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130                            struct dm_cell_key *key)
131 {
132         build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136                               struct dm_cell_key *key)
137 {
138         build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146         struct rw_semaphore lock;
147         unsigned long threshold;
148         bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153         init_rwsem(&t->lock);
154         t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159         t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164         if (!t->throttle_applied && jiffies > t->threshold) {
165                 down_write(&t->lock);
166                 t->throttle_applied = true;
167         }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172         if (t->throttle_applied) {
173                 t->throttle_applied = false;
174                 up_write(&t->lock);
175         }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180         down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185         up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196
197 /*
198  * The pool runs in various modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201         PM_WRITE,               /* metadata may be changed */
202         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
203
204         /*
205          * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
206          */
207         PM_OUT_OF_METADATA_SPACE,
208         PM_READ_ONLY,           /* metadata may not be changed */
209
210         PM_FAIL,                /* all I/O fails */
211 };
212
213 struct pool_features {
214         enum pool_mode mode;
215
216         bool zero_new_blocks:1;
217         bool discard_enabled:1;
218         bool discard_passdown:1;
219         bool error_if_no_space:1;
220 };
221
222 struct thin_c;
223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
226
227 #define CELL_SORT_ARRAY_SIZE 8192
228
229 struct pool {
230         struct list_head list;
231         struct dm_target *ti;   /* Only set if a pool target is bound */
232
233         struct mapped_device *pool_md;
234         struct block_device *md_dev;
235         struct dm_pool_metadata *pmd;
236
237         dm_block_t low_water_blocks;
238         uint32_t sectors_per_block;
239         int sectors_per_block_shift;
240
241         struct pool_features pf;
242         bool low_water_triggered:1;     /* A dm event has been sent */
243         bool suspended:1;
244         bool out_of_data_space:1;
245
246         struct dm_bio_prison *prison;
247         struct dm_kcopyd_client *copier;
248
249         struct work_struct worker;
250         struct workqueue_struct *wq;
251         struct throttle throttle;
252         struct delayed_work waker;
253         struct delayed_work no_space_timeout;
254
255         unsigned long last_commit_jiffies;
256         unsigned ref_count;
257
258         spinlock_t lock;
259         struct bio_list deferred_flush_bios;
260         struct bio_list deferred_flush_completions;
261         struct list_head prepared_mappings;
262         struct list_head prepared_discards;
263         struct list_head prepared_discards_pt2;
264         struct list_head active_thins;
265
266         struct dm_deferred_set *shared_read_ds;
267         struct dm_deferred_set *all_io_ds;
268
269         struct dm_thin_new_mapping *next_mapping;
270
271         process_bio_fn process_bio;
272         process_bio_fn process_discard;
273
274         process_cell_fn process_cell;
275         process_cell_fn process_discard_cell;
276
277         process_mapping_fn process_prepared_mapping;
278         process_mapping_fn process_prepared_discard;
279         process_mapping_fn process_prepared_discard_pt2;
280
281         struct dm_bio_prison_cell **cell_sort_array;
282
283         mempool_t mapping_pool;
284 };
285
286 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
287
288 static enum pool_mode get_pool_mode(struct pool *pool)
289 {
290         return pool->pf.mode;
291 }
292
293 static void notify_of_pool_mode_change(struct pool *pool)
294 {
295         const char *descs[] = {
296                 "write",
297                 "out-of-data-space",
298                 "read-only",
299                 "read-only",
300                 "fail"
301         };
302         const char *extra_desc = NULL;
303         enum pool_mode mode = get_pool_mode(pool);
304
305         if (mode == PM_OUT_OF_DATA_SPACE) {
306                 if (!pool->pf.error_if_no_space)
307                         extra_desc = " (queue IO)";
308                 else
309                         extra_desc = " (error IO)";
310         }
311
312         dm_table_event(pool->ti->table);
313         DMINFO("%s: switching pool to %s%s mode",
314                dm_device_name(pool->pool_md),
315                descs[(int)mode], extra_desc ? : "");
316 }
317
318 /*
319  * Target context for a pool.
320  */
321 struct pool_c {
322         struct dm_target *ti;
323         struct pool *pool;
324         struct dm_dev *data_dev;
325         struct dm_dev *metadata_dev;
326         struct dm_target_callbacks callbacks;
327
328         dm_block_t low_water_blocks;
329         struct pool_features requested_pf; /* Features requested during table load */
330         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
331 };
332
333 /*
334  * Target context for a thin.
335  */
336 struct thin_c {
337         struct list_head list;
338         struct dm_dev *pool_dev;
339         struct dm_dev *origin_dev;
340         sector_t origin_size;
341         dm_thin_id dev_id;
342
343         struct pool *pool;
344         struct dm_thin_device *td;
345         struct mapped_device *thin_md;
346
347         bool requeue_mode:1;
348         spinlock_t lock;
349         struct list_head deferred_cells;
350         struct bio_list deferred_bio_list;
351         struct bio_list retry_on_resume_list;
352         struct rb_root sort_bio_list; /* sorted list of deferred bios */
353
354         /*
355          * Ensures the thin is not destroyed until the worker has finished
356          * iterating the active_thins list.
357          */
358         refcount_t refcount;
359         struct completion can_destroy;
360 };
361
362 /*----------------------------------------------------------------*/
363
364 static bool block_size_is_power_of_two(struct pool *pool)
365 {
366         return pool->sectors_per_block_shift >= 0;
367 }
368
369 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
370 {
371         return block_size_is_power_of_two(pool) ?
372                 (b << pool->sectors_per_block_shift) :
373                 (b * pool->sectors_per_block);
374 }
375
376 /*----------------------------------------------------------------*/
377
378 struct discard_op {
379         struct thin_c *tc;
380         struct blk_plug plug;
381         struct bio *parent_bio;
382         struct bio *bio;
383 };
384
385 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
386 {
387         BUG_ON(!parent);
388
389         op->tc = tc;
390         blk_start_plug(&op->plug);
391         op->parent_bio = parent;
392         op->bio = NULL;
393 }
394
395 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
396 {
397         struct thin_c *tc = op->tc;
398         sector_t s = block_to_sectors(tc->pool, data_b);
399         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
400
401         return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
402                                       GFP_NOWAIT, 0, &op->bio);
403 }
404
405 static void end_discard(struct discard_op *op, int r)
406 {
407         if (op->bio) {
408                 /*
409                  * Even if one of the calls to issue_discard failed, we
410                  * need to wait for the chain to complete.
411                  */
412                 bio_chain(op->bio, op->parent_bio);
413                 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
414                 submit_bio(op->bio);
415         }
416
417         blk_finish_plug(&op->plug);
418
419         /*
420          * Even if r is set, there could be sub discards in flight that we
421          * need to wait for.
422          */
423         if (r && !op->parent_bio->bi_status)
424                 op->parent_bio->bi_status = errno_to_blk_status(r);
425         bio_endio(op->parent_bio);
426 }
427
428 /*----------------------------------------------------------------*/
429
430 /*
431  * wake_worker() is used when new work is queued and when pool_resume is
432  * ready to continue deferred IO processing.
433  */
434 static void wake_worker(struct pool *pool)
435 {
436         queue_work(pool->wq, &pool->worker);
437 }
438
439 /*----------------------------------------------------------------*/
440
441 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
442                       struct dm_bio_prison_cell **cell_result)
443 {
444         int r;
445         struct dm_bio_prison_cell *cell_prealloc;
446
447         /*
448          * Allocate a cell from the prison's mempool.
449          * This might block but it can't fail.
450          */
451         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
452
453         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
454         if (r)
455                 /*
456                  * We reused an old cell; we can get rid of
457                  * the new one.
458                  */
459                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
460
461         return r;
462 }
463
464 static void cell_release(struct pool *pool,
465                          struct dm_bio_prison_cell *cell,
466                          struct bio_list *bios)
467 {
468         dm_cell_release(pool->prison, cell, bios);
469         dm_bio_prison_free_cell(pool->prison, cell);
470 }
471
472 static void cell_visit_release(struct pool *pool,
473                                void (*fn)(void *, struct dm_bio_prison_cell *),
474                                void *context,
475                                struct dm_bio_prison_cell *cell)
476 {
477         dm_cell_visit_release(pool->prison, fn, context, cell);
478         dm_bio_prison_free_cell(pool->prison, cell);
479 }
480
481 static void cell_release_no_holder(struct pool *pool,
482                                    struct dm_bio_prison_cell *cell,
483                                    struct bio_list *bios)
484 {
485         dm_cell_release_no_holder(pool->prison, cell, bios);
486         dm_bio_prison_free_cell(pool->prison, cell);
487 }
488
489 static void cell_error_with_code(struct pool *pool,
490                 struct dm_bio_prison_cell *cell, blk_status_t error_code)
491 {
492         dm_cell_error(pool->prison, cell, error_code);
493         dm_bio_prison_free_cell(pool->prison, cell);
494 }
495
496 static blk_status_t get_pool_io_error_code(struct pool *pool)
497 {
498         return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
499 }
500
501 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
502 {
503         cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
504 }
505
506 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
507 {
508         cell_error_with_code(pool, cell, 0);
509 }
510
511 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
512 {
513         cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
514 }
515
516 /*----------------------------------------------------------------*/
517
518 /*
519  * A global list of pools that uses a struct mapped_device as a key.
520  */
521 static struct dm_thin_pool_table {
522         struct mutex mutex;
523         struct list_head pools;
524 } dm_thin_pool_table;
525
526 static void pool_table_init(void)
527 {
528         mutex_init(&dm_thin_pool_table.mutex);
529         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
530 }
531
532 static void pool_table_exit(void)
533 {
534         mutex_destroy(&dm_thin_pool_table.mutex);
535 }
536
537 static void __pool_table_insert(struct pool *pool)
538 {
539         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
540         list_add(&pool->list, &dm_thin_pool_table.pools);
541 }
542
543 static void __pool_table_remove(struct pool *pool)
544 {
545         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
546         list_del(&pool->list);
547 }
548
549 static struct pool *__pool_table_lookup(struct mapped_device *md)
550 {
551         struct pool *pool = NULL, *tmp;
552
553         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
554
555         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
556                 if (tmp->pool_md == md) {
557                         pool = tmp;
558                         break;
559                 }
560         }
561
562         return pool;
563 }
564
565 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
566 {
567         struct pool *pool = NULL, *tmp;
568
569         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
570
571         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
572                 if (tmp->md_dev == md_dev) {
573                         pool = tmp;
574                         break;
575                 }
576         }
577
578         return pool;
579 }
580
581 /*----------------------------------------------------------------*/
582
583 struct dm_thin_endio_hook {
584         struct thin_c *tc;
585         struct dm_deferred_entry *shared_read_entry;
586         struct dm_deferred_entry *all_io_entry;
587         struct dm_thin_new_mapping *overwrite_mapping;
588         struct rb_node rb_node;
589         struct dm_bio_prison_cell *cell;
590 };
591
592 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
593 {
594         bio_list_merge(bios, master);
595         bio_list_init(master);
596 }
597
598 static void error_bio_list(struct bio_list *bios, blk_status_t error)
599 {
600         struct bio *bio;
601
602         while ((bio = bio_list_pop(bios))) {
603                 bio->bi_status = error;
604                 bio_endio(bio);
605         }
606 }
607
608 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
609                 blk_status_t error)
610 {
611         struct bio_list bios;
612         unsigned long flags;
613
614         bio_list_init(&bios);
615
616         spin_lock_irqsave(&tc->lock, flags);
617         __merge_bio_list(&bios, master);
618         spin_unlock_irqrestore(&tc->lock, flags);
619
620         error_bio_list(&bios, error);
621 }
622
623 static void requeue_deferred_cells(struct thin_c *tc)
624 {
625         struct pool *pool = tc->pool;
626         unsigned long flags;
627         struct list_head cells;
628         struct dm_bio_prison_cell *cell, *tmp;
629
630         INIT_LIST_HEAD(&cells);
631
632         spin_lock_irqsave(&tc->lock, flags);
633         list_splice_init(&tc->deferred_cells, &cells);
634         spin_unlock_irqrestore(&tc->lock, flags);
635
636         list_for_each_entry_safe(cell, tmp, &cells, user_list)
637                 cell_requeue(pool, cell);
638 }
639
640 static void requeue_io(struct thin_c *tc)
641 {
642         struct bio_list bios;
643         unsigned long flags;
644
645         bio_list_init(&bios);
646
647         spin_lock_irqsave(&tc->lock, flags);
648         __merge_bio_list(&bios, &tc->deferred_bio_list);
649         __merge_bio_list(&bios, &tc->retry_on_resume_list);
650         spin_unlock_irqrestore(&tc->lock, flags);
651
652         error_bio_list(&bios, BLK_STS_DM_REQUEUE);
653         requeue_deferred_cells(tc);
654 }
655
656 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
657 {
658         struct thin_c *tc;
659
660         rcu_read_lock();
661         list_for_each_entry_rcu(tc, &pool->active_thins, list)
662                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
663         rcu_read_unlock();
664 }
665
666 static void error_retry_list(struct pool *pool)
667 {
668         error_retry_list_with_code(pool, get_pool_io_error_code(pool));
669 }
670
671 /*
672  * This section of code contains the logic for processing a thin device's IO.
673  * Much of the code depends on pool object resources (lists, workqueues, etc)
674  * but most is exclusively called from the thin target rather than the thin-pool
675  * target.
676  */
677
678 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
679 {
680         struct pool *pool = tc->pool;
681         sector_t block_nr = bio->bi_iter.bi_sector;
682
683         if (block_size_is_power_of_two(pool))
684                 block_nr >>= pool->sectors_per_block_shift;
685         else
686                 (void) sector_div(block_nr, pool->sectors_per_block);
687
688         return block_nr;
689 }
690
691 /*
692  * Returns the _complete_ blocks that this bio covers.
693  */
694 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
695                                 dm_block_t *begin, dm_block_t *end)
696 {
697         struct pool *pool = tc->pool;
698         sector_t b = bio->bi_iter.bi_sector;
699         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
700
701         b += pool->sectors_per_block - 1ull; /* so we round up */
702
703         if (block_size_is_power_of_two(pool)) {
704                 b >>= pool->sectors_per_block_shift;
705                 e >>= pool->sectors_per_block_shift;
706         } else {
707                 (void) sector_div(b, pool->sectors_per_block);
708                 (void) sector_div(e, pool->sectors_per_block);
709         }
710
711         if (e < b)
712                 /* Can happen if the bio is within a single block. */
713                 e = b;
714
715         *begin = b;
716         *end = e;
717 }
718
719 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
720 {
721         struct pool *pool = tc->pool;
722         sector_t bi_sector = bio->bi_iter.bi_sector;
723
724         bio_set_dev(bio, tc->pool_dev->bdev);
725         if (block_size_is_power_of_two(pool))
726                 bio->bi_iter.bi_sector =
727                         (block << pool->sectors_per_block_shift) |
728                         (bi_sector & (pool->sectors_per_block - 1));
729         else
730                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
731                                  sector_div(bi_sector, pool->sectors_per_block);
732 }
733
734 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
735 {
736         bio_set_dev(bio, tc->origin_dev->bdev);
737 }
738
739 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
740 {
741         return op_is_flush(bio->bi_opf) &&
742                 dm_thin_changed_this_transaction(tc->td);
743 }
744
745 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
746 {
747         struct dm_thin_endio_hook *h;
748
749         if (bio_op(bio) == REQ_OP_DISCARD)
750                 return;
751
752         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
753         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
754 }
755
756 static void issue(struct thin_c *tc, struct bio *bio)
757 {
758         struct pool *pool = tc->pool;
759         unsigned long flags;
760
761         if (!bio_triggers_commit(tc, bio)) {
762                 generic_make_request(bio);
763                 return;
764         }
765
766         /*
767          * Complete bio with an error if earlier I/O caused changes to
768          * the metadata that can't be committed e.g, due to I/O errors
769          * on the metadata device.
770          */
771         if (dm_thin_aborted_changes(tc->td)) {
772                 bio_io_error(bio);
773                 return;
774         }
775
776         /*
777          * Batch together any bios that trigger commits and then issue a
778          * single commit for them in process_deferred_bios().
779          */
780         spin_lock_irqsave(&pool->lock, flags);
781         bio_list_add(&pool->deferred_flush_bios, bio);
782         spin_unlock_irqrestore(&pool->lock, flags);
783 }
784
785 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
786 {
787         remap_to_origin(tc, bio);
788         issue(tc, bio);
789 }
790
791 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
792                             dm_block_t block)
793 {
794         remap(tc, bio, block);
795         issue(tc, bio);
796 }
797
798 /*----------------------------------------------------------------*/
799
800 /*
801  * Bio endio functions.
802  */
803 struct dm_thin_new_mapping {
804         struct list_head list;
805
806         bool pass_discard:1;
807         bool maybe_shared:1;
808
809         /*
810          * Track quiescing, copying and zeroing preparation actions.  When this
811          * counter hits zero the block is prepared and can be inserted into the
812          * btree.
813          */
814         atomic_t prepare_actions;
815
816         blk_status_t status;
817         struct thin_c *tc;
818         dm_block_t virt_begin, virt_end;
819         dm_block_t data_block;
820         struct dm_bio_prison_cell *cell;
821
822         /*
823          * If the bio covers the whole area of a block then we can avoid
824          * zeroing or copying.  Instead this bio is hooked.  The bio will
825          * still be in the cell, so care has to be taken to avoid issuing
826          * the bio twice.
827          */
828         struct bio *bio;
829         bio_end_io_t *saved_bi_end_io;
830 };
831
832 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
833 {
834         struct pool *pool = m->tc->pool;
835
836         if (atomic_dec_and_test(&m->prepare_actions)) {
837                 list_add_tail(&m->list, &pool->prepared_mappings);
838                 wake_worker(pool);
839         }
840 }
841
842 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
843 {
844         unsigned long flags;
845         struct pool *pool = m->tc->pool;
846
847         spin_lock_irqsave(&pool->lock, flags);
848         __complete_mapping_preparation(m);
849         spin_unlock_irqrestore(&pool->lock, flags);
850 }
851
852 static void copy_complete(int read_err, unsigned long write_err, void *context)
853 {
854         struct dm_thin_new_mapping *m = context;
855
856         m->status = read_err || write_err ? BLK_STS_IOERR : 0;
857         complete_mapping_preparation(m);
858 }
859
860 static void overwrite_endio(struct bio *bio)
861 {
862         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
863         struct dm_thin_new_mapping *m = h->overwrite_mapping;
864
865         bio->bi_end_io = m->saved_bi_end_io;
866
867         m->status = bio->bi_status;
868         complete_mapping_preparation(m);
869 }
870
871 /*----------------------------------------------------------------*/
872
873 /*
874  * Workqueue.
875  */
876
877 /*
878  * Prepared mapping jobs.
879  */
880
881 /*
882  * This sends the bios in the cell, except the original holder, back
883  * to the deferred_bios list.
884  */
885 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
886 {
887         struct pool *pool = tc->pool;
888         unsigned long flags;
889
890         spin_lock_irqsave(&tc->lock, flags);
891         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
892         spin_unlock_irqrestore(&tc->lock, flags);
893
894         wake_worker(pool);
895 }
896
897 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
898
899 struct remap_info {
900         struct thin_c *tc;
901         struct bio_list defer_bios;
902         struct bio_list issue_bios;
903 };
904
905 static void __inc_remap_and_issue_cell(void *context,
906                                        struct dm_bio_prison_cell *cell)
907 {
908         struct remap_info *info = context;
909         struct bio *bio;
910
911         while ((bio = bio_list_pop(&cell->bios))) {
912                 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
913                         bio_list_add(&info->defer_bios, bio);
914                 else {
915                         inc_all_io_entry(info->tc->pool, bio);
916
917                         /*
918                          * We can't issue the bios with the bio prison lock
919                          * held, so we add them to a list to issue on
920                          * return from this function.
921                          */
922                         bio_list_add(&info->issue_bios, bio);
923                 }
924         }
925 }
926
927 static void inc_remap_and_issue_cell(struct thin_c *tc,
928                                      struct dm_bio_prison_cell *cell,
929                                      dm_block_t block)
930 {
931         struct bio *bio;
932         struct remap_info info;
933
934         info.tc = tc;
935         bio_list_init(&info.defer_bios);
936         bio_list_init(&info.issue_bios);
937
938         /*
939          * We have to be careful to inc any bios we're about to issue
940          * before the cell is released, and avoid a race with new bios
941          * being added to the cell.
942          */
943         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
944                            &info, cell);
945
946         while ((bio = bio_list_pop(&info.defer_bios)))
947                 thin_defer_bio(tc, bio);
948
949         while ((bio = bio_list_pop(&info.issue_bios)))
950                 remap_and_issue(info.tc, bio, block);
951 }
952
953 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
954 {
955         cell_error(m->tc->pool, m->cell);
956         list_del(&m->list);
957         mempool_free(m, &m->tc->pool->mapping_pool);
958 }
959
960 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
961 {
962         struct pool *pool = tc->pool;
963         unsigned long flags;
964
965         /*
966          * If the bio has the REQ_FUA flag set we must commit the metadata
967          * before signaling its completion.
968          */
969         if (!bio_triggers_commit(tc, bio)) {
970                 bio_endio(bio);
971                 return;
972         }
973
974         /*
975          * Complete bio with an error if earlier I/O caused changes to the
976          * metadata that can't be committed, e.g, due to I/O errors on the
977          * metadata device.
978          */
979         if (dm_thin_aborted_changes(tc->td)) {
980                 bio_io_error(bio);
981                 return;
982         }
983
984         /*
985          * Batch together any bios that trigger commits and then issue a
986          * single commit for them in process_deferred_bios().
987          */
988         spin_lock_irqsave(&pool->lock, flags);
989         bio_list_add(&pool->deferred_flush_completions, bio);
990         spin_unlock_irqrestore(&pool->lock, flags);
991 }
992
993 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
994 {
995         struct thin_c *tc = m->tc;
996         struct pool *pool = tc->pool;
997         struct bio *bio = m->bio;
998         int r;
999
1000         if (m->status) {
1001                 cell_error(pool, m->cell);
1002                 goto out;
1003         }
1004
1005         /*
1006          * Commit the prepared block into the mapping btree.
1007          * Any I/O for this block arriving after this point will get
1008          * remapped to it directly.
1009          */
1010         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1011         if (r) {
1012                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
1013                 cell_error(pool, m->cell);
1014                 goto out;
1015         }
1016
1017         /*
1018          * Release any bios held while the block was being provisioned.
1019          * If we are processing a write bio that completely covers the block,
1020          * we already processed it so can ignore it now when processing
1021          * the bios in the cell.
1022          */
1023         if (bio) {
1024                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1025                 complete_overwrite_bio(tc, bio);
1026         } else {
1027                 inc_all_io_entry(tc->pool, m->cell->holder);
1028                 remap_and_issue(tc, m->cell->holder, m->data_block);
1029                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1030         }
1031
1032 out:
1033         list_del(&m->list);
1034         mempool_free(m, &pool->mapping_pool);
1035 }
1036
1037 /*----------------------------------------------------------------*/
1038
1039 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1040 {
1041         struct thin_c *tc = m->tc;
1042         if (m->cell)
1043                 cell_defer_no_holder(tc, m->cell);
1044         mempool_free(m, &tc->pool->mapping_pool);
1045 }
1046
1047 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1048 {
1049         bio_io_error(m->bio);
1050         free_discard_mapping(m);
1051 }
1052
1053 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1054 {
1055         bio_endio(m->bio);
1056         free_discard_mapping(m);
1057 }
1058
1059 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1060 {
1061         int r;
1062         struct thin_c *tc = m->tc;
1063
1064         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1065         if (r) {
1066                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1067                 bio_io_error(m->bio);
1068         } else
1069                 bio_endio(m->bio);
1070
1071         cell_defer_no_holder(tc, m->cell);
1072         mempool_free(m, &tc->pool->mapping_pool);
1073 }
1074
1075 /*----------------------------------------------------------------*/
1076
1077 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1078                                                    struct bio *discard_parent)
1079 {
1080         /*
1081          * We've already unmapped this range of blocks, but before we
1082          * passdown we have to check that these blocks are now unused.
1083          */
1084         int r = 0;
1085         bool shared = true;
1086         struct thin_c *tc = m->tc;
1087         struct pool *pool = tc->pool;
1088         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1089         struct discard_op op;
1090
1091         begin_discard(&op, tc, discard_parent);
1092         while (b != end) {
1093                 /* find start of unmapped run */
1094                 for (; b < end; b++) {
1095                         r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1096                         if (r)
1097                                 goto out;
1098
1099                         if (!shared)
1100                                 break;
1101                 }
1102
1103                 if (b == end)
1104                         break;
1105
1106                 /* find end of run */
1107                 for (e = b + 1; e != end; e++) {
1108                         r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1109                         if (r)
1110                                 goto out;
1111
1112                         if (shared)
1113                                 break;
1114                 }
1115
1116                 r = issue_discard(&op, b, e);
1117                 if (r)
1118                         goto out;
1119
1120                 b = e;
1121         }
1122 out:
1123         end_discard(&op, r);
1124 }
1125
1126 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1127 {
1128         unsigned long flags;
1129         struct pool *pool = m->tc->pool;
1130
1131         spin_lock_irqsave(&pool->lock, flags);
1132         list_add_tail(&m->list, &pool->prepared_discards_pt2);
1133         spin_unlock_irqrestore(&pool->lock, flags);
1134         wake_worker(pool);
1135 }
1136
1137 static void passdown_endio(struct bio *bio)
1138 {
1139         /*
1140          * It doesn't matter if the passdown discard failed, we still want
1141          * to unmap (we ignore err).
1142          */
1143         queue_passdown_pt2(bio->bi_private);
1144         bio_put(bio);
1145 }
1146
1147 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1148 {
1149         int r;
1150         struct thin_c *tc = m->tc;
1151         struct pool *pool = tc->pool;
1152         struct bio *discard_parent;
1153         dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1154
1155         /*
1156          * Only this thread allocates blocks, so we can be sure that the
1157          * newly unmapped blocks will not be allocated before the end of
1158          * the function.
1159          */
1160         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1161         if (r) {
1162                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1163                 bio_io_error(m->bio);
1164                 cell_defer_no_holder(tc, m->cell);
1165                 mempool_free(m, &pool->mapping_pool);
1166                 return;
1167         }
1168
1169         /*
1170          * Increment the unmapped blocks.  This prevents a race between the
1171          * passdown io and reallocation of freed blocks.
1172          */
1173         r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1174         if (r) {
1175                 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1176                 bio_io_error(m->bio);
1177                 cell_defer_no_holder(tc, m->cell);
1178                 mempool_free(m, &pool->mapping_pool);
1179                 return;
1180         }
1181
1182         discard_parent = bio_alloc(GFP_NOIO, 1);
1183         if (!discard_parent) {
1184                 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1185                        dm_device_name(tc->pool->pool_md));
1186                 queue_passdown_pt2(m);
1187
1188         } else {
1189                 discard_parent->bi_end_io = passdown_endio;
1190                 discard_parent->bi_private = m;
1191
1192                 if (m->maybe_shared)
1193                         passdown_double_checking_shared_status(m, discard_parent);
1194                 else {
1195                         struct discard_op op;
1196
1197                         begin_discard(&op, tc, discard_parent);
1198                         r = issue_discard(&op, m->data_block, data_end);
1199                         end_discard(&op, r);
1200                 }
1201         }
1202 }
1203
1204 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1205 {
1206         int r;
1207         struct thin_c *tc = m->tc;
1208         struct pool *pool = tc->pool;
1209
1210         /*
1211          * The passdown has completed, so now we can decrement all those
1212          * unmapped blocks.
1213          */
1214         r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1215                                    m->data_block + (m->virt_end - m->virt_begin));
1216         if (r) {
1217                 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1218                 bio_io_error(m->bio);
1219         } else
1220                 bio_endio(m->bio);
1221
1222         cell_defer_no_holder(tc, m->cell);
1223         mempool_free(m, &pool->mapping_pool);
1224 }
1225
1226 static void process_prepared(struct pool *pool, struct list_head *head,
1227                              process_mapping_fn *fn)
1228 {
1229         unsigned long flags;
1230         struct list_head maps;
1231         struct dm_thin_new_mapping *m, *tmp;
1232
1233         INIT_LIST_HEAD(&maps);
1234         spin_lock_irqsave(&pool->lock, flags);
1235         list_splice_init(head, &maps);
1236         spin_unlock_irqrestore(&pool->lock, flags);
1237
1238         list_for_each_entry_safe(m, tmp, &maps, list)
1239                 (*fn)(m);
1240 }
1241
1242 /*
1243  * Deferred bio jobs.
1244  */
1245 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1246 {
1247         return bio->bi_iter.bi_size ==
1248                 (pool->sectors_per_block << SECTOR_SHIFT);
1249 }
1250
1251 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1252 {
1253         return (bio_data_dir(bio) == WRITE) &&
1254                 io_overlaps_block(pool, bio);
1255 }
1256
1257 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1258                                bio_end_io_t *fn)
1259 {
1260         *save = bio->bi_end_io;
1261         bio->bi_end_io = fn;
1262 }
1263
1264 static int ensure_next_mapping(struct pool *pool)
1265 {
1266         if (pool->next_mapping)
1267                 return 0;
1268
1269         pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1270
1271         return pool->next_mapping ? 0 : -ENOMEM;
1272 }
1273
1274 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1275 {
1276         struct dm_thin_new_mapping *m = pool->next_mapping;
1277
1278         BUG_ON(!pool->next_mapping);
1279
1280         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1281         INIT_LIST_HEAD(&m->list);
1282         m->bio = NULL;
1283
1284         pool->next_mapping = NULL;
1285
1286         return m;
1287 }
1288
1289 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1290                     sector_t begin, sector_t end)
1291 {
1292         struct dm_io_region to;
1293
1294         to.bdev = tc->pool_dev->bdev;
1295         to.sector = begin;
1296         to.count = end - begin;
1297
1298         dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1299 }
1300
1301 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1302                                       dm_block_t data_begin,
1303                                       struct dm_thin_new_mapping *m)
1304 {
1305         struct pool *pool = tc->pool;
1306         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1307
1308         h->overwrite_mapping = m;
1309         m->bio = bio;
1310         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1311         inc_all_io_entry(pool, bio);
1312         remap_and_issue(tc, bio, data_begin);
1313 }
1314
1315 /*
1316  * A partial copy also needs to zero the uncopied region.
1317  */
1318 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1319                           struct dm_dev *origin, dm_block_t data_origin,
1320                           dm_block_t data_dest,
1321                           struct dm_bio_prison_cell *cell, struct bio *bio,
1322                           sector_t len)
1323 {
1324         struct pool *pool = tc->pool;
1325         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1326
1327         m->tc = tc;
1328         m->virt_begin = virt_block;
1329         m->virt_end = virt_block + 1u;
1330         m->data_block = data_dest;
1331         m->cell = cell;
1332
1333         /*
1334          * quiesce action + copy action + an extra reference held for the
1335          * duration of this function (we may need to inc later for a
1336          * partial zero).
1337          */
1338         atomic_set(&m->prepare_actions, 3);
1339
1340         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1341                 complete_mapping_preparation(m); /* already quiesced */
1342
1343         /*
1344          * IO to pool_dev remaps to the pool target's data_dev.
1345          *
1346          * If the whole block of data is being overwritten, we can issue the
1347          * bio immediately. Otherwise we use kcopyd to clone the data first.
1348          */
1349         if (io_overwrites_block(pool, bio))
1350                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1351         else {
1352                 struct dm_io_region from, to;
1353
1354                 from.bdev = origin->bdev;
1355                 from.sector = data_origin * pool->sectors_per_block;
1356                 from.count = len;
1357
1358                 to.bdev = tc->pool_dev->bdev;
1359                 to.sector = data_dest * pool->sectors_per_block;
1360                 to.count = len;
1361
1362                 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1363                                0, copy_complete, m);
1364
1365                 /*
1366                  * Do we need to zero a tail region?
1367                  */
1368                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1369                         atomic_inc(&m->prepare_actions);
1370                         ll_zero(tc, m,
1371                                 data_dest * pool->sectors_per_block + len,
1372                                 (data_dest + 1) * pool->sectors_per_block);
1373                 }
1374         }
1375
1376         complete_mapping_preparation(m); /* drop our ref */
1377 }
1378
1379 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1380                                    dm_block_t data_origin, dm_block_t data_dest,
1381                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1382 {
1383         schedule_copy(tc, virt_block, tc->pool_dev,
1384                       data_origin, data_dest, cell, bio,
1385                       tc->pool->sectors_per_block);
1386 }
1387
1388 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1389                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1390                           struct bio *bio)
1391 {
1392         struct pool *pool = tc->pool;
1393         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1394
1395         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1396         m->tc = tc;
1397         m->virt_begin = virt_block;
1398         m->virt_end = virt_block + 1u;
1399         m->data_block = data_block;
1400         m->cell = cell;
1401
1402         /*
1403          * If the whole block of data is being overwritten or we are not
1404          * zeroing pre-existing data, we can issue the bio immediately.
1405          * Otherwise we use kcopyd to zero the data first.
1406          */
1407         if (pool->pf.zero_new_blocks) {
1408                 if (io_overwrites_block(pool, bio))
1409                         remap_and_issue_overwrite(tc, bio, data_block, m);
1410                 else
1411                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1412                                 (data_block + 1) * pool->sectors_per_block);
1413         } else
1414                 process_prepared_mapping(m);
1415 }
1416
1417 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1418                                    dm_block_t data_dest,
1419                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1420 {
1421         struct pool *pool = tc->pool;
1422         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1423         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1424
1425         if (virt_block_end <= tc->origin_size)
1426                 schedule_copy(tc, virt_block, tc->origin_dev,
1427                               virt_block, data_dest, cell, bio,
1428                               pool->sectors_per_block);
1429
1430         else if (virt_block_begin < tc->origin_size)
1431                 schedule_copy(tc, virt_block, tc->origin_dev,
1432                               virt_block, data_dest, cell, bio,
1433                               tc->origin_size - virt_block_begin);
1434
1435         else
1436                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1437 }
1438
1439 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1440
1441 static void requeue_bios(struct pool *pool);
1442
1443 static bool is_read_only_pool_mode(enum pool_mode mode)
1444 {
1445         return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1446 }
1447
1448 static bool is_read_only(struct pool *pool)
1449 {
1450         return is_read_only_pool_mode(get_pool_mode(pool));
1451 }
1452
1453 static void check_for_metadata_space(struct pool *pool)
1454 {
1455         int r;
1456         const char *ooms_reason = NULL;
1457         dm_block_t nr_free;
1458
1459         r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1460         if (r)
1461                 ooms_reason = "Could not get free metadata blocks";
1462         else if (!nr_free)
1463                 ooms_reason = "No free metadata blocks";
1464
1465         if (ooms_reason && !is_read_only(pool)) {
1466                 DMERR("%s", ooms_reason);
1467                 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1468         }
1469 }
1470
1471 static void check_for_data_space(struct pool *pool)
1472 {
1473         int r;
1474         dm_block_t nr_free;
1475
1476         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1477                 return;
1478
1479         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1480         if (r)
1481                 return;
1482
1483         if (nr_free) {
1484                 set_pool_mode(pool, PM_WRITE);
1485                 requeue_bios(pool);
1486         }
1487 }
1488
1489 /*
1490  * A non-zero return indicates read_only or fail_io mode.
1491  * Many callers don't care about the return value.
1492  */
1493 static int commit(struct pool *pool)
1494 {
1495         int r;
1496
1497         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1498                 return -EINVAL;
1499
1500         r = dm_pool_commit_metadata(pool->pmd);
1501         if (r)
1502                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1503         else {
1504                 check_for_metadata_space(pool);
1505                 check_for_data_space(pool);
1506         }
1507
1508         return r;
1509 }
1510
1511 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1512 {
1513         unsigned long flags;
1514
1515         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1516                 DMWARN("%s: reached low water mark for data device: sending event.",
1517                        dm_device_name(pool->pool_md));
1518                 spin_lock_irqsave(&pool->lock, flags);
1519                 pool->low_water_triggered = true;
1520                 spin_unlock_irqrestore(&pool->lock, flags);
1521                 dm_table_event(pool->ti->table);
1522         }
1523 }
1524
1525 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1526 {
1527         int r;
1528         dm_block_t free_blocks;
1529         struct pool *pool = tc->pool;
1530
1531         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1532                 return -EINVAL;
1533
1534         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1535         if (r) {
1536                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1537                 return r;
1538         }
1539
1540         check_low_water_mark(pool, free_blocks);
1541
1542         if (!free_blocks) {
1543                 /*
1544                  * Try to commit to see if that will free up some
1545                  * more space.
1546                  */
1547                 r = commit(pool);
1548                 if (r)
1549                         return r;
1550
1551                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1552                 if (r) {
1553                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1554                         return r;
1555                 }
1556
1557                 if (!free_blocks) {
1558                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1559                         return -ENOSPC;
1560                 }
1561         }
1562
1563         r = dm_pool_alloc_data_block(pool->pmd, result);
1564         if (r) {
1565                 if (r == -ENOSPC)
1566                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1567                 else
1568                         metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1569                 return r;
1570         }
1571
1572         r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1573         if (r) {
1574                 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1575                 return r;
1576         }
1577
1578         if (!free_blocks) {
1579                 /* Let's commit before we use up the metadata reserve. */
1580                 r = commit(pool);
1581                 if (r)
1582                         return r;
1583         }
1584
1585         return 0;
1586 }
1587
1588 /*
1589  * If we have run out of space, queue bios until the device is
1590  * resumed, presumably after having been reloaded with more space.
1591  */
1592 static void retry_on_resume(struct bio *bio)
1593 {
1594         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1595         struct thin_c *tc = h->tc;
1596         unsigned long flags;
1597
1598         spin_lock_irqsave(&tc->lock, flags);
1599         bio_list_add(&tc->retry_on_resume_list, bio);
1600         spin_unlock_irqrestore(&tc->lock, flags);
1601 }
1602
1603 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1604 {
1605         enum pool_mode m = get_pool_mode(pool);
1606
1607         switch (m) {
1608         case PM_WRITE:
1609                 /* Shouldn't get here */
1610                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1611                 return BLK_STS_IOERR;
1612
1613         case PM_OUT_OF_DATA_SPACE:
1614                 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1615
1616         case PM_OUT_OF_METADATA_SPACE:
1617         case PM_READ_ONLY:
1618         case PM_FAIL:
1619                 return BLK_STS_IOERR;
1620         default:
1621                 /* Shouldn't get here */
1622                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1623                 return BLK_STS_IOERR;
1624         }
1625 }
1626
1627 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1628 {
1629         blk_status_t error = should_error_unserviceable_bio(pool);
1630
1631         if (error) {
1632                 bio->bi_status = error;
1633                 bio_endio(bio);
1634         } else
1635                 retry_on_resume(bio);
1636 }
1637
1638 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1639 {
1640         struct bio *bio;
1641         struct bio_list bios;
1642         blk_status_t error;
1643
1644         error = should_error_unserviceable_bio(pool);
1645         if (error) {
1646                 cell_error_with_code(pool, cell, error);
1647                 return;
1648         }
1649
1650         bio_list_init(&bios);
1651         cell_release(pool, cell, &bios);
1652
1653         while ((bio = bio_list_pop(&bios)))
1654                 retry_on_resume(bio);
1655 }
1656
1657 static void process_discard_cell_no_passdown(struct thin_c *tc,
1658                                              struct dm_bio_prison_cell *virt_cell)
1659 {
1660         struct pool *pool = tc->pool;
1661         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1662
1663         /*
1664          * We don't need to lock the data blocks, since there's no
1665          * passdown.  We only lock data blocks for allocation and breaking sharing.
1666          */
1667         m->tc = tc;
1668         m->virt_begin = virt_cell->key.block_begin;
1669         m->virt_end = virt_cell->key.block_end;
1670         m->cell = virt_cell;
1671         m->bio = virt_cell->holder;
1672
1673         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1674                 pool->process_prepared_discard(m);
1675 }
1676
1677 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1678                                  struct bio *bio)
1679 {
1680         struct pool *pool = tc->pool;
1681
1682         int r;
1683         bool maybe_shared;
1684         struct dm_cell_key data_key;
1685         struct dm_bio_prison_cell *data_cell;
1686         struct dm_thin_new_mapping *m;
1687         dm_block_t virt_begin, virt_end, data_begin;
1688
1689         while (begin != end) {
1690                 r = ensure_next_mapping(pool);
1691                 if (r)
1692                         /* we did our best */
1693                         return;
1694
1695                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1696                                               &data_begin, &maybe_shared);
1697                 if (r)
1698                         /*
1699                          * Silently fail, letting any mappings we've
1700                          * created complete.
1701                          */
1702                         break;
1703
1704                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1705                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1706                         /* contention, we'll give up with this range */
1707                         begin = virt_end;
1708                         continue;
1709                 }
1710
1711                 /*
1712                  * IO may still be going to the destination block.  We must
1713                  * quiesce before we can do the removal.
1714                  */
1715                 m = get_next_mapping(pool);
1716                 m->tc = tc;
1717                 m->maybe_shared = maybe_shared;
1718                 m->virt_begin = virt_begin;
1719                 m->virt_end = virt_end;
1720                 m->data_block = data_begin;
1721                 m->cell = data_cell;
1722                 m->bio = bio;
1723
1724                 /*
1725                  * The parent bio must not complete before sub discard bios are
1726                  * chained to it (see end_discard's bio_chain)!
1727                  *
1728                  * This per-mapping bi_remaining increment is paired with
1729                  * the implicit decrement that occurs via bio_endio() in
1730                  * end_discard().
1731                  */
1732                 bio_inc_remaining(bio);
1733                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1734                         pool->process_prepared_discard(m);
1735
1736                 begin = virt_end;
1737         }
1738 }
1739
1740 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1741 {
1742         struct bio *bio = virt_cell->holder;
1743         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1744
1745         /*
1746          * The virt_cell will only get freed once the origin bio completes.
1747          * This means it will remain locked while all the individual
1748          * passdown bios are in flight.
1749          */
1750         h->cell = virt_cell;
1751         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1752
1753         /*
1754          * We complete the bio now, knowing that the bi_remaining field
1755          * will prevent completion until the sub range discards have
1756          * completed.
1757          */
1758         bio_endio(bio);
1759 }
1760
1761 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1762 {
1763         dm_block_t begin, end;
1764         struct dm_cell_key virt_key;
1765         struct dm_bio_prison_cell *virt_cell;
1766
1767         get_bio_block_range(tc, bio, &begin, &end);
1768         if (begin == end) {
1769                 /*
1770                  * The discard covers less than a block.
1771                  */
1772                 bio_endio(bio);
1773                 return;
1774         }
1775
1776         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1777         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1778                 /*
1779                  * Potential starvation issue: We're relying on the
1780                  * fs/application being well behaved, and not trying to
1781                  * send IO to a region at the same time as discarding it.
1782                  * If they do this persistently then it's possible this
1783                  * cell will never be granted.
1784                  */
1785                 return;
1786
1787         tc->pool->process_discard_cell(tc, virt_cell);
1788 }
1789
1790 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1791                           struct dm_cell_key *key,
1792                           struct dm_thin_lookup_result *lookup_result,
1793                           struct dm_bio_prison_cell *cell)
1794 {
1795         int r;
1796         dm_block_t data_block;
1797         struct pool *pool = tc->pool;
1798
1799         r = alloc_data_block(tc, &data_block);
1800         switch (r) {
1801         case 0:
1802                 schedule_internal_copy(tc, block, lookup_result->block,
1803                                        data_block, cell, bio);
1804                 break;
1805
1806         case -ENOSPC:
1807                 retry_bios_on_resume(pool, cell);
1808                 break;
1809
1810         default:
1811                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1812                             __func__, r);
1813                 cell_error(pool, cell);
1814                 break;
1815         }
1816 }
1817
1818 static void __remap_and_issue_shared_cell(void *context,
1819                                           struct dm_bio_prison_cell *cell)
1820 {
1821         struct remap_info *info = context;
1822         struct bio *bio;
1823
1824         while ((bio = bio_list_pop(&cell->bios))) {
1825                 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1826                     bio_op(bio) == REQ_OP_DISCARD)
1827                         bio_list_add(&info->defer_bios, bio);
1828                 else {
1829                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1830
1831                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1832                         inc_all_io_entry(info->tc->pool, bio);
1833                         bio_list_add(&info->issue_bios, bio);
1834                 }
1835         }
1836 }
1837
1838 static void remap_and_issue_shared_cell(struct thin_c *tc,
1839                                         struct dm_bio_prison_cell *cell,
1840                                         dm_block_t block)
1841 {
1842         struct bio *bio;
1843         struct remap_info info;
1844
1845         info.tc = tc;
1846         bio_list_init(&info.defer_bios);
1847         bio_list_init(&info.issue_bios);
1848
1849         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1850                            &info, cell);
1851
1852         while ((bio = bio_list_pop(&info.defer_bios)))
1853                 thin_defer_bio(tc, bio);
1854
1855         while ((bio = bio_list_pop(&info.issue_bios)))
1856                 remap_and_issue(tc, bio, block);
1857 }
1858
1859 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1860                                dm_block_t block,
1861                                struct dm_thin_lookup_result *lookup_result,
1862                                struct dm_bio_prison_cell *virt_cell)
1863 {
1864         struct dm_bio_prison_cell *data_cell;
1865         struct pool *pool = tc->pool;
1866         struct dm_cell_key key;
1867
1868         /*
1869          * If cell is already occupied, then sharing is already in the process
1870          * of being broken so we have nothing further to do here.
1871          */
1872         build_data_key(tc->td, lookup_result->block, &key);
1873         if (bio_detain(pool, &key, bio, &data_cell)) {
1874                 cell_defer_no_holder(tc, virt_cell);
1875                 return;
1876         }
1877
1878         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1879                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1880                 cell_defer_no_holder(tc, virt_cell);
1881         } else {
1882                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1883
1884                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1885                 inc_all_io_entry(pool, bio);
1886                 remap_and_issue(tc, bio, lookup_result->block);
1887
1888                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1889                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1890         }
1891 }
1892
1893 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1894                             struct dm_bio_prison_cell *cell)
1895 {
1896         int r;
1897         dm_block_t data_block;
1898         struct pool *pool = tc->pool;
1899
1900         /*
1901          * Remap empty bios (flushes) immediately, without provisioning.
1902          */
1903         if (!bio->bi_iter.bi_size) {
1904                 inc_all_io_entry(pool, bio);
1905                 cell_defer_no_holder(tc, cell);
1906
1907                 remap_and_issue(tc, bio, 0);
1908                 return;
1909         }
1910
1911         /*
1912          * Fill read bios with zeroes and complete them immediately.
1913          */
1914         if (bio_data_dir(bio) == READ) {
1915                 zero_fill_bio(bio);
1916                 cell_defer_no_holder(tc, cell);
1917                 bio_endio(bio);
1918                 return;
1919         }
1920
1921         r = alloc_data_block(tc, &data_block);
1922         switch (r) {
1923         case 0:
1924                 if (tc->origin_dev)
1925                         schedule_external_copy(tc, block, data_block, cell, bio);
1926                 else
1927                         schedule_zero(tc, block, data_block, cell, bio);
1928                 break;
1929
1930         case -ENOSPC:
1931                 retry_bios_on_resume(pool, cell);
1932                 break;
1933
1934         default:
1935                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1936                             __func__, r);
1937                 cell_error(pool, cell);
1938                 break;
1939         }
1940 }
1941
1942 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1943 {
1944         int r;
1945         struct pool *pool = tc->pool;
1946         struct bio *bio = cell->holder;
1947         dm_block_t block = get_bio_block(tc, bio);
1948         struct dm_thin_lookup_result lookup_result;
1949
1950         if (tc->requeue_mode) {
1951                 cell_requeue(pool, cell);
1952                 return;
1953         }
1954
1955         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1956         switch (r) {
1957         case 0:
1958                 if (lookup_result.shared)
1959                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1960                 else {
1961                         inc_all_io_entry(pool, bio);
1962                         remap_and_issue(tc, bio, lookup_result.block);
1963                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1964                 }
1965                 break;
1966
1967         case -ENODATA:
1968                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1969                         inc_all_io_entry(pool, bio);
1970                         cell_defer_no_holder(tc, cell);
1971
1972                         if (bio_end_sector(bio) <= tc->origin_size)
1973                                 remap_to_origin_and_issue(tc, bio);
1974
1975                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1976                                 zero_fill_bio(bio);
1977                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1978                                 remap_to_origin_and_issue(tc, bio);
1979
1980                         } else {
1981                                 zero_fill_bio(bio);
1982                                 bio_endio(bio);
1983                         }
1984                 } else
1985                         provision_block(tc, bio, block, cell);
1986                 break;
1987
1988         default:
1989                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1990                             __func__, r);
1991                 cell_defer_no_holder(tc, cell);
1992                 bio_io_error(bio);
1993                 break;
1994         }
1995 }
1996
1997 static void process_bio(struct thin_c *tc, struct bio *bio)
1998 {
1999         struct pool *pool = tc->pool;
2000         dm_block_t block = get_bio_block(tc, bio);
2001         struct dm_bio_prison_cell *cell;
2002         struct dm_cell_key key;
2003
2004         /*
2005          * If cell is already occupied, then the block is already
2006          * being provisioned so we have nothing further to do here.
2007          */
2008         build_virtual_key(tc->td, block, &key);
2009         if (bio_detain(pool, &key, bio, &cell))
2010                 return;
2011
2012         process_cell(tc, cell);
2013 }
2014
2015 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2016                                     struct dm_bio_prison_cell *cell)
2017 {
2018         int r;
2019         int rw = bio_data_dir(bio);
2020         dm_block_t block = get_bio_block(tc, bio);
2021         struct dm_thin_lookup_result lookup_result;
2022
2023         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2024         switch (r) {
2025         case 0:
2026                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2027                         handle_unserviceable_bio(tc->pool, bio);
2028                         if (cell)
2029                                 cell_defer_no_holder(tc, cell);
2030                 } else {
2031                         inc_all_io_entry(tc->pool, bio);
2032                         remap_and_issue(tc, bio, lookup_result.block);
2033                         if (cell)
2034                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2035                 }
2036                 break;
2037
2038         case -ENODATA:
2039                 if (cell)
2040                         cell_defer_no_holder(tc, cell);
2041                 if (rw != READ) {
2042                         handle_unserviceable_bio(tc->pool, bio);
2043                         break;
2044                 }
2045
2046                 if (tc->origin_dev) {
2047                         inc_all_io_entry(tc->pool, bio);
2048                         remap_to_origin_and_issue(tc, bio);
2049                         break;
2050                 }
2051
2052                 zero_fill_bio(bio);
2053                 bio_endio(bio);
2054                 break;
2055
2056         default:
2057                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2058                             __func__, r);
2059                 if (cell)
2060                         cell_defer_no_holder(tc, cell);
2061                 bio_io_error(bio);
2062                 break;
2063         }
2064 }
2065
2066 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2067 {
2068         __process_bio_read_only(tc, bio, NULL);
2069 }
2070
2071 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2072 {
2073         __process_bio_read_only(tc, cell->holder, cell);
2074 }
2075
2076 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2077 {
2078         bio_endio(bio);
2079 }
2080
2081 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2082 {
2083         bio_io_error(bio);
2084 }
2085
2086 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2087 {
2088         cell_success(tc->pool, cell);
2089 }
2090
2091 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2092 {
2093         cell_error(tc->pool, cell);
2094 }
2095
2096 /*
2097  * FIXME: should we also commit due to size of transaction, measured in
2098  * metadata blocks?
2099  */
2100 static int need_commit_due_to_time(struct pool *pool)
2101 {
2102         return !time_in_range(jiffies, pool->last_commit_jiffies,
2103                               pool->last_commit_jiffies + COMMIT_PERIOD);
2104 }
2105
2106 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2107 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2108
2109 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2110 {
2111         struct rb_node **rbp, *parent;
2112         struct dm_thin_endio_hook *pbd;
2113         sector_t bi_sector = bio->bi_iter.bi_sector;
2114
2115         rbp = &tc->sort_bio_list.rb_node;
2116         parent = NULL;
2117         while (*rbp) {
2118                 parent = *rbp;
2119                 pbd = thin_pbd(parent);
2120
2121                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2122                         rbp = &(*rbp)->rb_left;
2123                 else
2124                         rbp = &(*rbp)->rb_right;
2125         }
2126
2127         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2128         rb_link_node(&pbd->rb_node, parent, rbp);
2129         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2130 }
2131
2132 static void __extract_sorted_bios(struct thin_c *tc)
2133 {
2134         struct rb_node *node;
2135         struct dm_thin_endio_hook *pbd;
2136         struct bio *bio;
2137
2138         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2139                 pbd = thin_pbd(node);
2140                 bio = thin_bio(pbd);
2141
2142                 bio_list_add(&tc->deferred_bio_list, bio);
2143                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2144         }
2145
2146         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2147 }
2148
2149 static void __sort_thin_deferred_bios(struct thin_c *tc)
2150 {
2151         struct bio *bio;
2152         struct bio_list bios;
2153
2154         bio_list_init(&bios);
2155         bio_list_merge(&bios, &tc->deferred_bio_list);
2156         bio_list_init(&tc->deferred_bio_list);
2157
2158         /* Sort deferred_bio_list using rb-tree */
2159         while ((bio = bio_list_pop(&bios)))
2160                 __thin_bio_rb_add(tc, bio);
2161
2162         /*
2163          * Transfer the sorted bios in sort_bio_list back to
2164          * deferred_bio_list to allow lockless submission of
2165          * all bios.
2166          */
2167         __extract_sorted_bios(tc);
2168 }
2169
2170 static void process_thin_deferred_bios(struct thin_c *tc)
2171 {
2172         struct pool *pool = tc->pool;
2173         unsigned long flags;
2174         struct bio *bio;
2175         struct bio_list bios;
2176         struct blk_plug plug;
2177         unsigned count = 0;
2178
2179         if (tc->requeue_mode) {
2180                 error_thin_bio_list(tc, &tc->deferred_bio_list,
2181                                 BLK_STS_DM_REQUEUE);
2182                 return;
2183         }
2184
2185         bio_list_init(&bios);
2186
2187         spin_lock_irqsave(&tc->lock, flags);
2188
2189         if (bio_list_empty(&tc->deferred_bio_list)) {
2190                 spin_unlock_irqrestore(&tc->lock, flags);
2191                 return;
2192         }
2193
2194         __sort_thin_deferred_bios(tc);
2195
2196         bio_list_merge(&bios, &tc->deferred_bio_list);
2197         bio_list_init(&tc->deferred_bio_list);
2198
2199         spin_unlock_irqrestore(&tc->lock, flags);
2200
2201         blk_start_plug(&plug);
2202         while ((bio = bio_list_pop(&bios))) {
2203                 /*
2204                  * If we've got no free new_mapping structs, and processing
2205                  * this bio might require one, we pause until there are some
2206                  * prepared mappings to process.
2207                  */
2208                 if (ensure_next_mapping(pool)) {
2209                         spin_lock_irqsave(&tc->lock, flags);
2210                         bio_list_add(&tc->deferred_bio_list, bio);
2211                         bio_list_merge(&tc->deferred_bio_list, &bios);
2212                         spin_unlock_irqrestore(&tc->lock, flags);
2213                         break;
2214                 }
2215
2216                 if (bio_op(bio) == REQ_OP_DISCARD)
2217                         pool->process_discard(tc, bio);
2218                 else
2219                         pool->process_bio(tc, bio);
2220
2221                 if ((count++ & 127) == 0) {
2222                         throttle_work_update(&pool->throttle);
2223                         dm_pool_issue_prefetches(pool->pmd);
2224                 }
2225         }
2226         blk_finish_plug(&plug);
2227 }
2228
2229 static int cmp_cells(const void *lhs, const void *rhs)
2230 {
2231         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2232         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2233
2234         BUG_ON(!lhs_cell->holder);
2235         BUG_ON(!rhs_cell->holder);
2236
2237         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2238                 return -1;
2239
2240         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2241                 return 1;
2242
2243         return 0;
2244 }
2245
2246 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2247 {
2248         unsigned count = 0;
2249         struct dm_bio_prison_cell *cell, *tmp;
2250
2251         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2252                 if (count >= CELL_SORT_ARRAY_SIZE)
2253                         break;
2254
2255                 pool->cell_sort_array[count++] = cell;
2256                 list_del(&cell->user_list);
2257         }
2258
2259         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2260
2261         return count;
2262 }
2263
2264 static void process_thin_deferred_cells(struct thin_c *tc)
2265 {
2266         struct pool *pool = tc->pool;
2267         unsigned long flags;
2268         struct list_head cells;
2269         struct dm_bio_prison_cell *cell;
2270         unsigned i, j, count;
2271
2272         INIT_LIST_HEAD(&cells);
2273
2274         spin_lock_irqsave(&tc->lock, flags);
2275         list_splice_init(&tc->deferred_cells, &cells);
2276         spin_unlock_irqrestore(&tc->lock, flags);
2277
2278         if (list_empty(&cells))
2279                 return;
2280
2281         do {
2282                 count = sort_cells(tc->pool, &cells);
2283
2284                 for (i = 0; i < count; i++) {
2285                         cell = pool->cell_sort_array[i];
2286                         BUG_ON(!cell->holder);
2287
2288                         /*
2289                          * If we've got no free new_mapping structs, and processing
2290                          * this bio might require one, we pause until there are some
2291                          * prepared mappings to process.
2292                          */
2293                         if (ensure_next_mapping(pool)) {
2294                                 for (j = i; j < count; j++)
2295                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2296
2297                                 spin_lock_irqsave(&tc->lock, flags);
2298                                 list_splice(&cells, &tc->deferred_cells);
2299                                 spin_unlock_irqrestore(&tc->lock, flags);
2300                                 return;
2301                         }
2302
2303                         if (bio_op(cell->holder) == REQ_OP_DISCARD)
2304                                 pool->process_discard_cell(tc, cell);
2305                         else
2306                                 pool->process_cell(tc, cell);
2307                 }
2308         } while (!list_empty(&cells));
2309 }
2310
2311 static void thin_get(struct thin_c *tc);
2312 static void thin_put(struct thin_c *tc);
2313
2314 /*
2315  * We can't hold rcu_read_lock() around code that can block.  So we
2316  * find a thin with the rcu lock held; bump a refcount; then drop
2317  * the lock.
2318  */
2319 static struct thin_c *get_first_thin(struct pool *pool)
2320 {
2321         struct thin_c *tc = NULL;
2322
2323         rcu_read_lock();
2324         if (!list_empty(&pool->active_thins)) {
2325                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2326                 thin_get(tc);
2327         }
2328         rcu_read_unlock();
2329
2330         return tc;
2331 }
2332
2333 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2334 {
2335         struct thin_c *old_tc = tc;
2336
2337         rcu_read_lock();
2338         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2339                 thin_get(tc);
2340                 thin_put(old_tc);
2341                 rcu_read_unlock();
2342                 return tc;
2343         }
2344         thin_put(old_tc);
2345         rcu_read_unlock();
2346
2347         return NULL;
2348 }
2349
2350 static void process_deferred_bios(struct pool *pool)
2351 {
2352         unsigned long flags;
2353         struct bio *bio;
2354         struct bio_list bios, bio_completions;
2355         struct thin_c *tc;
2356
2357         tc = get_first_thin(pool);
2358         while (tc) {
2359                 process_thin_deferred_cells(tc);
2360                 process_thin_deferred_bios(tc);
2361                 tc = get_next_thin(pool, tc);
2362         }
2363
2364         /*
2365          * If there are any deferred flush bios, we must commit the metadata
2366          * before issuing them or signaling their completion.
2367          */
2368         bio_list_init(&bios);
2369         bio_list_init(&bio_completions);
2370
2371         spin_lock_irqsave(&pool->lock, flags);
2372         bio_list_merge(&bios, &pool->deferred_flush_bios);
2373         bio_list_init(&pool->deferred_flush_bios);
2374
2375         bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2376         bio_list_init(&pool->deferred_flush_completions);
2377         spin_unlock_irqrestore(&pool->lock, flags);
2378
2379         if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2380             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2381                 return;
2382
2383         if (commit(pool)) {
2384                 bio_list_merge(&bios, &bio_completions);
2385
2386                 while ((bio = bio_list_pop(&bios)))
2387                         bio_io_error(bio);
2388                 return;
2389         }
2390         pool->last_commit_jiffies = jiffies;
2391
2392         while ((bio = bio_list_pop(&bio_completions)))
2393                 bio_endio(bio);
2394
2395         while ((bio = bio_list_pop(&bios)))
2396                 generic_make_request(bio);
2397 }
2398
2399 static void do_worker(struct work_struct *ws)
2400 {
2401         struct pool *pool = container_of(ws, struct pool, worker);
2402
2403         throttle_work_start(&pool->throttle);
2404         dm_pool_issue_prefetches(pool->pmd);
2405         throttle_work_update(&pool->throttle);
2406         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2407         throttle_work_update(&pool->throttle);
2408         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2409         throttle_work_update(&pool->throttle);
2410         process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2411         throttle_work_update(&pool->throttle);
2412         process_deferred_bios(pool);
2413         throttle_work_complete(&pool->throttle);
2414 }
2415
2416 /*
2417  * We want to commit periodically so that not too much
2418  * unwritten data builds up.
2419  */
2420 static void do_waker(struct work_struct *ws)
2421 {
2422         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2423         wake_worker(pool);
2424         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2425 }
2426
2427 /*
2428  * We're holding onto IO to allow userland time to react.  After the
2429  * timeout either the pool will have been resized (and thus back in
2430  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2431  */
2432 static void do_no_space_timeout(struct work_struct *ws)
2433 {
2434         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2435                                          no_space_timeout);
2436
2437         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2438                 pool->pf.error_if_no_space = true;
2439                 notify_of_pool_mode_change(pool);
2440                 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2441         }
2442 }
2443
2444 /*----------------------------------------------------------------*/
2445
2446 struct pool_work {
2447         struct work_struct worker;
2448         struct completion complete;
2449 };
2450
2451 static struct pool_work *to_pool_work(struct work_struct *ws)
2452 {
2453         return container_of(ws, struct pool_work, worker);
2454 }
2455
2456 static void pool_work_complete(struct pool_work *pw)
2457 {
2458         complete(&pw->complete);
2459 }
2460
2461 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2462                            void (*fn)(struct work_struct *))
2463 {
2464         INIT_WORK_ONSTACK(&pw->worker, fn);
2465         init_completion(&pw->complete);
2466         queue_work(pool->wq, &pw->worker);
2467         wait_for_completion(&pw->complete);
2468 }
2469
2470 /*----------------------------------------------------------------*/
2471
2472 struct noflush_work {
2473         struct pool_work pw;
2474         struct thin_c *tc;
2475 };
2476
2477 static struct noflush_work *to_noflush(struct work_struct *ws)
2478 {
2479         return container_of(to_pool_work(ws), struct noflush_work, pw);
2480 }
2481
2482 static void do_noflush_start(struct work_struct *ws)
2483 {
2484         struct noflush_work *w = to_noflush(ws);
2485         w->tc->requeue_mode = true;
2486         requeue_io(w->tc);
2487         pool_work_complete(&w->pw);
2488 }
2489
2490 static void do_noflush_stop(struct work_struct *ws)
2491 {
2492         struct noflush_work *w = to_noflush(ws);
2493         w->tc->requeue_mode = false;
2494         pool_work_complete(&w->pw);
2495 }
2496
2497 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2498 {
2499         struct noflush_work w;
2500
2501         w.tc = tc;
2502         pool_work_wait(&w.pw, tc->pool, fn);
2503 }
2504
2505 /*----------------------------------------------------------------*/
2506
2507 static bool passdown_enabled(struct pool_c *pt)
2508 {
2509         return pt->adjusted_pf.discard_passdown;
2510 }
2511
2512 static void set_discard_callbacks(struct pool *pool)
2513 {
2514         struct pool_c *pt = pool->ti->private;
2515
2516         if (passdown_enabled(pt)) {
2517                 pool->process_discard_cell = process_discard_cell_passdown;
2518                 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2519                 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2520         } else {
2521                 pool->process_discard_cell = process_discard_cell_no_passdown;
2522                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2523         }
2524 }
2525
2526 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2527 {
2528         struct pool_c *pt = pool->ti->private;
2529         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2530         enum pool_mode old_mode = get_pool_mode(pool);
2531         unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2532
2533         /*
2534          * Never allow the pool to transition to PM_WRITE mode if user
2535          * intervention is required to verify metadata and data consistency.
2536          */
2537         if (new_mode == PM_WRITE && needs_check) {
2538                 DMERR("%s: unable to switch pool to write mode until repaired.",
2539                       dm_device_name(pool->pool_md));
2540                 if (old_mode != new_mode)
2541                         new_mode = old_mode;
2542                 else
2543                         new_mode = PM_READ_ONLY;
2544         }
2545         /*
2546          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2547          * not going to recover without a thin_repair.  So we never let the
2548          * pool move out of the old mode.
2549          */
2550         if (old_mode == PM_FAIL)
2551                 new_mode = old_mode;
2552
2553         switch (new_mode) {
2554         case PM_FAIL:
2555                 dm_pool_metadata_read_only(pool->pmd);
2556                 pool->process_bio = process_bio_fail;
2557                 pool->process_discard = process_bio_fail;
2558                 pool->process_cell = process_cell_fail;
2559                 pool->process_discard_cell = process_cell_fail;
2560                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2561                 pool->process_prepared_discard = process_prepared_discard_fail;
2562
2563                 error_retry_list(pool);
2564                 break;
2565
2566         case PM_OUT_OF_METADATA_SPACE:
2567         case PM_READ_ONLY:
2568                 dm_pool_metadata_read_only(pool->pmd);
2569                 pool->process_bio = process_bio_read_only;
2570                 pool->process_discard = process_bio_success;
2571                 pool->process_cell = process_cell_read_only;
2572                 pool->process_discard_cell = process_cell_success;
2573                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2574                 pool->process_prepared_discard = process_prepared_discard_success;
2575
2576                 error_retry_list(pool);
2577                 break;
2578
2579         case PM_OUT_OF_DATA_SPACE:
2580                 /*
2581                  * Ideally we'd never hit this state; the low water mark
2582                  * would trigger userland to extend the pool before we
2583                  * completely run out of data space.  However, many small
2584                  * IOs to unprovisioned space can consume data space at an
2585                  * alarming rate.  Adjust your low water mark if you're
2586                  * frequently seeing this mode.
2587                  */
2588                 pool->out_of_data_space = true;
2589                 pool->process_bio = process_bio_read_only;
2590                 pool->process_discard = process_discard_bio;
2591                 pool->process_cell = process_cell_read_only;
2592                 pool->process_prepared_mapping = process_prepared_mapping;
2593                 set_discard_callbacks(pool);
2594
2595                 if (!pool->pf.error_if_no_space && no_space_timeout)
2596                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2597                 break;
2598
2599         case PM_WRITE:
2600                 if (old_mode == PM_OUT_OF_DATA_SPACE)
2601                         cancel_delayed_work_sync(&pool->no_space_timeout);
2602                 pool->out_of_data_space = false;
2603                 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2604                 dm_pool_metadata_read_write(pool->pmd);
2605                 pool->process_bio = process_bio;
2606                 pool->process_discard = process_discard_bio;
2607                 pool->process_cell = process_cell;
2608                 pool->process_prepared_mapping = process_prepared_mapping;
2609                 set_discard_callbacks(pool);
2610                 break;
2611         }
2612
2613         pool->pf.mode = new_mode;
2614         /*
2615          * The pool mode may have changed, sync it so bind_control_target()
2616          * doesn't cause an unexpected mode transition on resume.
2617          */
2618         pt->adjusted_pf.mode = new_mode;
2619
2620         if (old_mode != new_mode)
2621                 notify_of_pool_mode_change(pool);
2622 }
2623
2624 static void abort_transaction(struct pool *pool)
2625 {
2626         const char *dev_name = dm_device_name(pool->pool_md);
2627
2628         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2629         if (dm_pool_abort_metadata(pool->pmd)) {
2630                 DMERR("%s: failed to abort metadata transaction", dev_name);
2631                 set_pool_mode(pool, PM_FAIL);
2632         }
2633
2634         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2635                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2636                 set_pool_mode(pool, PM_FAIL);
2637         }
2638 }
2639
2640 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2641 {
2642         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2643                     dm_device_name(pool->pool_md), op, r);
2644
2645         abort_transaction(pool);
2646         set_pool_mode(pool, PM_READ_ONLY);
2647 }
2648
2649 /*----------------------------------------------------------------*/
2650
2651 /*
2652  * Mapping functions.
2653  */
2654
2655 /*
2656  * Called only while mapping a thin bio to hand it over to the workqueue.
2657  */
2658 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2659 {
2660         unsigned long flags;
2661         struct pool *pool = tc->pool;
2662
2663         spin_lock_irqsave(&tc->lock, flags);
2664         bio_list_add(&tc->deferred_bio_list, bio);
2665         spin_unlock_irqrestore(&tc->lock, flags);
2666
2667         wake_worker(pool);
2668 }
2669
2670 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2671 {
2672         struct pool *pool = tc->pool;
2673
2674         throttle_lock(&pool->throttle);
2675         thin_defer_bio(tc, bio);
2676         throttle_unlock(&pool->throttle);
2677 }
2678
2679 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2680 {
2681         unsigned long flags;
2682         struct pool *pool = tc->pool;
2683
2684         throttle_lock(&pool->throttle);
2685         spin_lock_irqsave(&tc->lock, flags);
2686         list_add_tail(&cell->user_list, &tc->deferred_cells);
2687         spin_unlock_irqrestore(&tc->lock, flags);
2688         throttle_unlock(&pool->throttle);
2689
2690         wake_worker(pool);
2691 }
2692
2693 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2694 {
2695         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2696
2697         h->tc = tc;
2698         h->shared_read_entry = NULL;
2699         h->all_io_entry = NULL;
2700         h->overwrite_mapping = NULL;
2701         h->cell = NULL;
2702 }
2703
2704 /*
2705  * Non-blocking function called from the thin target's map function.
2706  */
2707 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2708 {
2709         int r;
2710         struct thin_c *tc = ti->private;
2711         dm_block_t block = get_bio_block(tc, bio);
2712         struct dm_thin_device *td = tc->td;
2713         struct dm_thin_lookup_result result;
2714         struct dm_bio_prison_cell *virt_cell, *data_cell;
2715         struct dm_cell_key key;
2716
2717         thin_hook_bio(tc, bio);
2718
2719         if (tc->requeue_mode) {
2720                 bio->bi_status = BLK_STS_DM_REQUEUE;
2721                 bio_endio(bio);
2722                 return DM_MAPIO_SUBMITTED;
2723         }
2724
2725         if (get_pool_mode(tc->pool) == PM_FAIL) {
2726                 bio_io_error(bio);
2727                 return DM_MAPIO_SUBMITTED;
2728         }
2729
2730         if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2731                 thin_defer_bio_with_throttle(tc, bio);
2732                 return DM_MAPIO_SUBMITTED;
2733         }
2734
2735         /*
2736          * We must hold the virtual cell before doing the lookup, otherwise
2737          * there's a race with discard.
2738          */
2739         build_virtual_key(tc->td, block, &key);
2740         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2741                 return DM_MAPIO_SUBMITTED;
2742
2743         r = dm_thin_find_block(td, block, 0, &result);
2744
2745         /*
2746          * Note that we defer readahead too.
2747          */
2748         switch (r) {
2749         case 0:
2750                 if (unlikely(result.shared)) {
2751                         /*
2752                          * We have a race condition here between the
2753                          * result.shared value returned by the lookup and
2754                          * snapshot creation, which may cause new
2755                          * sharing.
2756                          *
2757                          * To avoid this always quiesce the origin before
2758                          * taking the snap.  You want to do this anyway to
2759                          * ensure a consistent application view
2760                          * (i.e. lockfs).
2761                          *
2762                          * More distant ancestors are irrelevant. The
2763                          * shared flag will be set in their case.
2764                          */
2765                         thin_defer_cell(tc, virt_cell);
2766                         return DM_MAPIO_SUBMITTED;
2767                 }
2768
2769                 build_data_key(tc->td, result.block, &key);
2770                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2771                         cell_defer_no_holder(tc, virt_cell);
2772                         return DM_MAPIO_SUBMITTED;
2773                 }
2774
2775                 inc_all_io_entry(tc->pool, bio);
2776                 cell_defer_no_holder(tc, data_cell);
2777                 cell_defer_no_holder(tc, virt_cell);
2778
2779                 remap(tc, bio, result.block);
2780                 return DM_MAPIO_REMAPPED;
2781
2782         case -ENODATA:
2783         case -EWOULDBLOCK:
2784                 thin_defer_cell(tc, virt_cell);
2785                 return DM_MAPIO_SUBMITTED;
2786
2787         default:
2788                 /*
2789                  * Must always call bio_io_error on failure.
2790                  * dm_thin_find_block can fail with -EINVAL if the
2791                  * pool is switched to fail-io mode.
2792                  */
2793                 bio_io_error(bio);
2794                 cell_defer_no_holder(tc, virt_cell);
2795                 return DM_MAPIO_SUBMITTED;
2796         }
2797 }
2798
2799 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2800 {
2801         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2802         struct request_queue *q;
2803
2804         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2805                 return 1;
2806
2807         q = bdev_get_queue(pt->data_dev->bdev);
2808         return bdi_congested(q->backing_dev_info, bdi_bits);
2809 }
2810
2811 static void requeue_bios(struct pool *pool)
2812 {
2813         unsigned long flags;
2814         struct thin_c *tc;
2815
2816         rcu_read_lock();
2817         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2818                 spin_lock_irqsave(&tc->lock, flags);
2819                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2820                 bio_list_init(&tc->retry_on_resume_list);
2821                 spin_unlock_irqrestore(&tc->lock, flags);
2822         }
2823         rcu_read_unlock();
2824 }
2825
2826 /*----------------------------------------------------------------
2827  * Binding of control targets to a pool object
2828  *--------------------------------------------------------------*/
2829 static bool data_dev_supports_discard(struct pool_c *pt)
2830 {
2831         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2832
2833         return q && blk_queue_discard(q);
2834 }
2835
2836 static bool is_factor(sector_t block_size, uint32_t n)
2837 {
2838         return !sector_div(block_size, n);
2839 }
2840
2841 /*
2842  * If discard_passdown was enabled verify that the data device
2843  * supports discards.  Disable discard_passdown if not.
2844  */
2845 static void disable_passdown_if_not_supported(struct pool_c *pt)
2846 {
2847         struct pool *pool = pt->pool;
2848         struct block_device *data_bdev = pt->data_dev->bdev;
2849         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2850         const char *reason = NULL;
2851         char buf[BDEVNAME_SIZE];
2852
2853         if (!pt->adjusted_pf.discard_passdown)
2854                 return;
2855
2856         if (!data_dev_supports_discard(pt))
2857                 reason = "discard unsupported";
2858
2859         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2860                 reason = "max discard sectors smaller than a block";
2861
2862         if (reason) {
2863                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2864                 pt->adjusted_pf.discard_passdown = false;
2865         }
2866 }
2867
2868 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2869 {
2870         struct pool_c *pt = ti->private;
2871
2872         /*
2873          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2874          */
2875         enum pool_mode old_mode = get_pool_mode(pool);
2876         enum pool_mode new_mode = pt->adjusted_pf.mode;
2877
2878         /*
2879          * Don't change the pool's mode until set_pool_mode() below.
2880          * Otherwise the pool's process_* function pointers may
2881          * not match the desired pool mode.
2882          */
2883         pt->adjusted_pf.mode = old_mode;
2884
2885         pool->ti = ti;
2886         pool->pf = pt->adjusted_pf;
2887         pool->low_water_blocks = pt->low_water_blocks;
2888
2889         set_pool_mode(pool, new_mode);
2890
2891         return 0;
2892 }
2893
2894 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2895 {
2896         if (pool->ti == ti)
2897                 pool->ti = NULL;
2898 }
2899
2900 /*----------------------------------------------------------------
2901  * Pool creation
2902  *--------------------------------------------------------------*/
2903 /* Initialize pool features. */
2904 static void pool_features_init(struct pool_features *pf)
2905 {
2906         pf->mode = PM_WRITE;
2907         pf->zero_new_blocks = true;
2908         pf->discard_enabled = true;
2909         pf->discard_passdown = true;
2910         pf->error_if_no_space = false;
2911 }
2912
2913 static void __pool_destroy(struct pool *pool)
2914 {
2915         __pool_table_remove(pool);
2916
2917         vfree(pool->cell_sort_array);
2918         if (dm_pool_metadata_close(pool->pmd) < 0)
2919                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2920
2921         dm_bio_prison_destroy(pool->prison);
2922         dm_kcopyd_client_destroy(pool->copier);
2923
2924         if (pool->wq)
2925                 destroy_workqueue(pool->wq);
2926
2927         if (pool->next_mapping)
2928                 mempool_free(pool->next_mapping, &pool->mapping_pool);
2929         mempool_exit(&pool->mapping_pool);
2930         dm_deferred_set_destroy(pool->shared_read_ds);
2931         dm_deferred_set_destroy(pool->all_io_ds);
2932         kfree(pool);
2933 }
2934
2935 static struct kmem_cache *_new_mapping_cache;
2936
2937 static struct pool *pool_create(struct mapped_device *pool_md,
2938                                 struct block_device *metadata_dev,
2939                                 unsigned long block_size,
2940                                 int read_only, char **error)
2941 {
2942         int r;
2943         void *err_p;
2944         struct pool *pool;
2945         struct dm_pool_metadata *pmd;
2946         bool format_device = read_only ? false : true;
2947
2948         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2949         if (IS_ERR(pmd)) {
2950                 *error = "Error creating metadata object";
2951                 return (struct pool *)pmd;
2952         }
2953
2954         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2955         if (!pool) {
2956                 *error = "Error allocating memory for pool";
2957                 err_p = ERR_PTR(-ENOMEM);
2958                 goto bad_pool;
2959         }
2960
2961         pool->pmd = pmd;
2962         pool->sectors_per_block = block_size;
2963         if (block_size & (block_size - 1))
2964                 pool->sectors_per_block_shift = -1;
2965         else
2966                 pool->sectors_per_block_shift = __ffs(block_size);
2967         pool->low_water_blocks = 0;
2968         pool_features_init(&pool->pf);
2969         pool->prison = dm_bio_prison_create();
2970         if (!pool->prison) {
2971                 *error = "Error creating pool's bio prison";
2972                 err_p = ERR_PTR(-ENOMEM);
2973                 goto bad_prison;
2974         }
2975
2976         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2977         if (IS_ERR(pool->copier)) {
2978                 r = PTR_ERR(pool->copier);
2979                 *error = "Error creating pool's kcopyd client";
2980                 err_p = ERR_PTR(r);
2981                 goto bad_kcopyd_client;
2982         }
2983
2984         /*
2985          * Create singlethreaded workqueue that will service all devices
2986          * that use this metadata.
2987          */
2988         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2989         if (!pool->wq) {
2990                 *error = "Error creating pool's workqueue";
2991                 err_p = ERR_PTR(-ENOMEM);
2992                 goto bad_wq;
2993         }
2994
2995         throttle_init(&pool->throttle);
2996         INIT_WORK(&pool->worker, do_worker);
2997         INIT_DELAYED_WORK(&pool->waker, do_waker);
2998         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2999         spin_lock_init(&pool->lock);
3000         bio_list_init(&pool->deferred_flush_bios);
3001         bio_list_init(&pool->deferred_flush_completions);
3002         INIT_LIST_HEAD(&pool->prepared_mappings);
3003         INIT_LIST_HEAD(&pool->prepared_discards);
3004         INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3005         INIT_LIST_HEAD(&pool->active_thins);
3006         pool->low_water_triggered = false;
3007         pool->suspended = true;
3008         pool->out_of_data_space = false;
3009
3010         pool->shared_read_ds = dm_deferred_set_create();
3011         if (!pool->shared_read_ds) {
3012                 *error = "Error creating pool's shared read deferred set";
3013                 err_p = ERR_PTR(-ENOMEM);
3014                 goto bad_shared_read_ds;
3015         }
3016
3017         pool->all_io_ds = dm_deferred_set_create();
3018         if (!pool->all_io_ds) {
3019                 *error = "Error creating pool's all io deferred set";
3020                 err_p = ERR_PTR(-ENOMEM);
3021                 goto bad_all_io_ds;
3022         }
3023
3024         pool->next_mapping = NULL;
3025         r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3026                                    _new_mapping_cache);
3027         if (r) {
3028                 *error = "Error creating pool's mapping mempool";
3029                 err_p = ERR_PTR(r);
3030                 goto bad_mapping_pool;
3031         }
3032
3033         pool->cell_sort_array =
3034                 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3035                                    sizeof(*pool->cell_sort_array)));
3036         if (!pool->cell_sort_array) {
3037                 *error = "Error allocating cell sort array";
3038                 err_p = ERR_PTR(-ENOMEM);
3039                 goto bad_sort_array;
3040         }
3041
3042         pool->ref_count = 1;
3043         pool->last_commit_jiffies = jiffies;
3044         pool->pool_md = pool_md;
3045         pool->md_dev = metadata_dev;
3046         __pool_table_insert(pool);
3047
3048         return pool;
3049
3050 bad_sort_array:
3051         mempool_exit(&pool->mapping_pool);
3052 bad_mapping_pool:
3053         dm_deferred_set_destroy(pool->all_io_ds);
3054 bad_all_io_ds:
3055         dm_deferred_set_destroy(pool->shared_read_ds);
3056 bad_shared_read_ds:
3057         destroy_workqueue(pool->wq);
3058 bad_wq:
3059         dm_kcopyd_client_destroy(pool->copier);
3060 bad_kcopyd_client:
3061         dm_bio_prison_destroy(pool->prison);
3062 bad_prison:
3063         kfree(pool);
3064 bad_pool:
3065         if (dm_pool_metadata_close(pmd))
3066                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3067
3068         return err_p;
3069 }
3070
3071 static void __pool_inc(struct pool *pool)
3072 {
3073         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3074         pool->ref_count++;
3075 }
3076
3077 static void __pool_dec(struct pool *pool)
3078 {
3079         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3080         BUG_ON(!pool->ref_count);
3081         if (!--pool->ref_count)
3082                 __pool_destroy(pool);
3083 }
3084
3085 static struct pool *__pool_find(struct mapped_device *pool_md,
3086                                 struct block_device *metadata_dev,
3087                                 unsigned long block_size, int read_only,
3088                                 char **error, int *created)
3089 {
3090         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3091
3092         if (pool) {
3093                 if (pool->pool_md != pool_md) {
3094                         *error = "metadata device already in use by a pool";
3095                         return ERR_PTR(-EBUSY);
3096                 }
3097                 __pool_inc(pool);
3098
3099         } else {
3100                 pool = __pool_table_lookup(pool_md);
3101                 if (pool) {
3102                         if (pool->md_dev != metadata_dev) {
3103                                 *error = "different pool cannot replace a pool";
3104                                 return ERR_PTR(-EINVAL);
3105                         }
3106                         __pool_inc(pool);
3107
3108                 } else {
3109                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3110                         *created = 1;
3111                 }
3112         }
3113
3114         return pool;
3115 }
3116
3117 /*----------------------------------------------------------------
3118  * Pool target methods
3119  *--------------------------------------------------------------*/
3120 static void pool_dtr(struct dm_target *ti)
3121 {
3122         struct pool_c *pt = ti->private;
3123
3124         mutex_lock(&dm_thin_pool_table.mutex);
3125
3126         unbind_control_target(pt->pool, ti);
3127         __pool_dec(pt->pool);
3128         dm_put_device(ti, pt->metadata_dev);
3129         dm_put_device(ti, pt->data_dev);
3130         kfree(pt);
3131
3132         mutex_unlock(&dm_thin_pool_table.mutex);
3133 }
3134
3135 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3136                                struct dm_target *ti)
3137 {
3138         int r;
3139         unsigned argc;
3140         const char *arg_name;
3141
3142         static const struct dm_arg _args[] = {
3143                 {0, 4, "Invalid number of pool feature arguments"},
3144         };
3145
3146         /*
3147          * No feature arguments supplied.
3148          */
3149         if (!as->argc)
3150                 return 0;
3151
3152         r = dm_read_arg_group(_args, as, &argc, &ti->error);
3153         if (r)
3154                 return -EINVAL;
3155
3156         while (argc && !r) {
3157                 arg_name = dm_shift_arg(as);
3158                 argc--;
3159
3160                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3161                         pf->zero_new_blocks = false;
3162
3163                 else if (!strcasecmp(arg_name, "ignore_discard"))
3164                         pf->discard_enabled = false;
3165
3166                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3167                         pf->discard_passdown = false;
3168
3169                 else if (!strcasecmp(arg_name, "read_only"))
3170                         pf->mode = PM_READ_ONLY;
3171
3172                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3173                         pf->error_if_no_space = true;
3174
3175                 else {
3176                         ti->error = "Unrecognised pool feature requested";
3177                         r = -EINVAL;
3178                         break;
3179                 }
3180         }
3181
3182         return r;
3183 }
3184
3185 static void metadata_low_callback(void *context)
3186 {
3187         struct pool *pool = context;
3188
3189         DMWARN("%s: reached low water mark for metadata device: sending event.",
3190                dm_device_name(pool->pool_md));
3191
3192         dm_table_event(pool->ti->table);
3193 }
3194
3195 static sector_t get_dev_size(struct block_device *bdev)
3196 {
3197         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3198 }
3199
3200 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3201 {
3202         sector_t metadata_dev_size = get_dev_size(bdev);
3203         char buffer[BDEVNAME_SIZE];
3204
3205         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3206                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3207                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3208 }
3209
3210 static sector_t get_metadata_dev_size(struct block_device *bdev)
3211 {
3212         sector_t metadata_dev_size = get_dev_size(bdev);
3213
3214         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3215                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3216
3217         return metadata_dev_size;
3218 }
3219
3220 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3221 {
3222         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3223
3224         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3225
3226         return metadata_dev_size;
3227 }
3228
3229 /*
3230  * When a metadata threshold is crossed a dm event is triggered, and
3231  * userland should respond by growing the metadata device.  We could let
3232  * userland set the threshold, like we do with the data threshold, but I'm
3233  * not sure they know enough to do this well.
3234  */
3235 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3236 {
3237         /*
3238          * 4M is ample for all ops with the possible exception of thin
3239          * device deletion which is harmless if it fails (just retry the
3240          * delete after you've grown the device).
3241          */
3242         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3243         return min((dm_block_t)1024ULL /* 4M */, quarter);
3244 }
3245
3246 /*
3247  * thin-pool <metadata dev> <data dev>
3248  *           <data block size (sectors)>
3249  *           <low water mark (blocks)>
3250  *           [<#feature args> [<arg>]*]
3251  *
3252  * Optional feature arguments are:
3253  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3254  *           ignore_discard: disable discard
3255  *           no_discard_passdown: don't pass discards down to the data device
3256  *           read_only: Don't allow any changes to be made to the pool metadata.
3257  *           error_if_no_space: error IOs, instead of queueing, if no space.
3258  */
3259 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3260 {
3261         int r, pool_created = 0;
3262         struct pool_c *pt;
3263         struct pool *pool;
3264         struct pool_features pf;
3265         struct dm_arg_set as;
3266         struct dm_dev *data_dev;
3267         unsigned long block_size;
3268         dm_block_t low_water_blocks;
3269         struct dm_dev *metadata_dev;
3270         fmode_t metadata_mode;
3271
3272         /*
3273          * FIXME Remove validation from scope of lock.
3274          */
3275         mutex_lock(&dm_thin_pool_table.mutex);
3276
3277         if (argc < 4) {
3278                 ti->error = "Invalid argument count";
3279                 r = -EINVAL;
3280                 goto out_unlock;
3281         }
3282
3283         as.argc = argc;
3284         as.argv = argv;
3285
3286         /*
3287          * Set default pool features.
3288          */
3289         pool_features_init(&pf);
3290
3291         dm_consume_args(&as, 4);
3292         r = parse_pool_features(&as, &pf, ti);
3293         if (r)
3294                 goto out_unlock;
3295
3296         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3297         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3298         if (r) {
3299                 ti->error = "Error opening metadata block device";
3300                 goto out_unlock;
3301         }
3302         warn_if_metadata_device_too_big(metadata_dev->bdev);
3303
3304         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3305         if (r) {
3306                 ti->error = "Error getting data device";
3307                 goto out_metadata;
3308         }
3309
3310         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3311             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3312             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3313             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3314                 ti->error = "Invalid block size";
3315                 r = -EINVAL;
3316                 goto out;
3317         }
3318
3319         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3320                 ti->error = "Invalid low water mark";
3321                 r = -EINVAL;
3322                 goto out;
3323         }
3324
3325         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3326         if (!pt) {
3327                 r = -ENOMEM;
3328                 goto out;
3329         }
3330
3331         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3332                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3333         if (IS_ERR(pool)) {
3334                 r = PTR_ERR(pool);
3335                 goto out_free_pt;
3336         }
3337
3338         /*
3339          * 'pool_created' reflects whether this is the first table load.
3340          * Top level discard support is not allowed to be changed after
3341          * initial load.  This would require a pool reload to trigger thin
3342          * device changes.
3343          */
3344         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3345                 ti->error = "Discard support cannot be disabled once enabled";
3346                 r = -EINVAL;
3347                 goto out_flags_changed;
3348         }
3349
3350         pt->pool = pool;
3351         pt->ti = ti;
3352         pt->metadata_dev = metadata_dev;
3353         pt->data_dev = data_dev;
3354         pt->low_water_blocks = low_water_blocks;
3355         pt->adjusted_pf = pt->requested_pf = pf;
3356         ti->num_flush_bios = 1;
3357
3358         /*
3359          * Only need to enable discards if the pool should pass
3360          * them down to the data device.  The thin device's discard
3361          * processing will cause mappings to be removed from the btree.
3362          */
3363         if (pf.discard_enabled && pf.discard_passdown) {
3364                 ti->num_discard_bios = 1;
3365
3366                 /*
3367                  * Setting 'discards_supported' circumvents the normal
3368                  * stacking of discard limits (this keeps the pool and
3369                  * thin devices' discard limits consistent).
3370                  */
3371                 ti->discards_supported = true;
3372         }
3373         ti->private = pt;
3374
3375         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3376                                                 calc_metadata_threshold(pt),
3377                                                 metadata_low_callback,
3378                                                 pool);
3379         if (r)
3380                 goto out_flags_changed;
3381
3382         pt->callbacks.congested_fn = pool_is_congested;
3383         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3384
3385         mutex_unlock(&dm_thin_pool_table.mutex);
3386
3387         return 0;
3388
3389 out_flags_changed:
3390         __pool_dec(pool);
3391 out_free_pt:
3392         kfree(pt);
3393 out:
3394         dm_put_device(ti, data_dev);
3395 out_metadata:
3396         dm_put_device(ti, metadata_dev);
3397 out_unlock:
3398         mutex_unlock(&dm_thin_pool_table.mutex);
3399
3400         return r;
3401 }
3402
3403 static int pool_map(struct dm_target *ti, struct bio *bio)
3404 {
3405         int r;
3406         struct pool_c *pt = ti->private;
3407         struct pool *pool = pt->pool;
3408         unsigned long flags;
3409
3410         /*
3411          * As this is a singleton target, ti->begin is always zero.
3412          */
3413         spin_lock_irqsave(&pool->lock, flags);
3414         bio_set_dev(bio, pt->data_dev->bdev);
3415         r = DM_MAPIO_REMAPPED;
3416         spin_unlock_irqrestore(&pool->lock, flags);
3417
3418         return r;
3419 }
3420
3421 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3422 {
3423         int r;
3424         struct pool_c *pt = ti->private;
3425         struct pool *pool = pt->pool;
3426         sector_t data_size = ti->len;
3427         dm_block_t sb_data_size;
3428
3429         *need_commit = false;
3430
3431         (void) sector_div(data_size, pool->sectors_per_block);
3432
3433         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3434         if (r) {
3435                 DMERR("%s: failed to retrieve data device size",
3436                       dm_device_name(pool->pool_md));
3437                 return r;
3438         }
3439
3440         if (data_size < sb_data_size) {
3441                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3442                       dm_device_name(pool->pool_md),
3443                       (unsigned long long)data_size, sb_data_size);
3444                 return -EINVAL;
3445
3446         } else if (data_size > sb_data_size) {
3447                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3448                         DMERR("%s: unable to grow the data device until repaired.",
3449                               dm_device_name(pool->pool_md));
3450                         return 0;
3451                 }
3452
3453                 if (sb_data_size)
3454                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3455                                dm_device_name(pool->pool_md),
3456                                sb_data_size, (unsigned long long)data_size);
3457                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3458                 if (r) {
3459                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3460                         return r;
3461                 }
3462
3463                 *need_commit = true;
3464         }
3465
3466         return 0;
3467 }
3468
3469 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3470 {
3471         int r;
3472         struct pool_c *pt = ti->private;
3473         struct pool *pool = pt->pool;
3474         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3475
3476         *need_commit = false;
3477
3478         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3479
3480         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3481         if (r) {
3482                 DMERR("%s: failed to retrieve metadata device size",
3483                       dm_device_name(pool->pool_md));
3484                 return r;
3485         }
3486
3487         if (metadata_dev_size < sb_metadata_dev_size) {
3488                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3489                       dm_device_name(pool->pool_md),
3490                       metadata_dev_size, sb_metadata_dev_size);
3491                 return -EINVAL;
3492
3493         } else if (metadata_dev_size > sb_metadata_dev_size) {
3494                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3495                         DMERR("%s: unable to grow the metadata device until repaired.",
3496                               dm_device_name(pool->pool_md));
3497                         return 0;
3498                 }
3499
3500                 warn_if_metadata_device_too_big(pool->md_dev);
3501                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3502                        dm_device_name(pool->pool_md),
3503                        sb_metadata_dev_size, metadata_dev_size);
3504
3505                 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3506                         set_pool_mode(pool, PM_WRITE);
3507
3508                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3509                 if (r) {
3510                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3511                         return r;
3512                 }
3513
3514                 *need_commit = true;
3515         }
3516
3517         return 0;
3518 }
3519
3520 /*
3521  * Retrieves the number of blocks of the data device from
3522  * the superblock and compares it to the actual device size,
3523  * thus resizing the data device in case it has grown.
3524  *
3525  * This both copes with opening preallocated data devices in the ctr
3526  * being followed by a resume
3527  * -and-
3528  * calling the resume method individually after userspace has
3529  * grown the data device in reaction to a table event.
3530  */
3531 static int pool_preresume(struct dm_target *ti)
3532 {
3533         int r;
3534         bool need_commit1, need_commit2;
3535         struct pool_c *pt = ti->private;
3536         struct pool *pool = pt->pool;
3537
3538         /*
3539          * Take control of the pool object.
3540          */
3541         r = bind_control_target(pool, ti);
3542         if (r)
3543                 return r;
3544
3545         r = maybe_resize_data_dev(ti, &need_commit1);
3546         if (r)
3547                 return r;
3548
3549         r = maybe_resize_metadata_dev(ti, &need_commit2);
3550         if (r)
3551                 return r;
3552
3553         if (need_commit1 || need_commit2)
3554                 (void) commit(pool);
3555
3556         return 0;
3557 }
3558
3559 static void pool_suspend_active_thins(struct pool *pool)
3560 {
3561         struct thin_c *tc;
3562
3563         /* Suspend all active thin devices */
3564         tc = get_first_thin(pool);
3565         while (tc) {
3566                 dm_internal_suspend_noflush(tc->thin_md);
3567                 tc = get_next_thin(pool, tc);
3568         }
3569 }
3570
3571 static void pool_resume_active_thins(struct pool *pool)
3572 {
3573         struct thin_c *tc;
3574
3575         /* Resume all active thin devices */
3576         tc = get_first_thin(pool);
3577         while (tc) {
3578                 dm_internal_resume(tc->thin_md);
3579                 tc = get_next_thin(pool, tc);
3580         }
3581 }
3582
3583 static void pool_resume(struct dm_target *ti)
3584 {
3585         struct pool_c *pt = ti->private;
3586         struct pool *pool = pt->pool;
3587         unsigned long flags;
3588
3589         /*
3590          * Must requeue active_thins' bios and then resume
3591          * active_thins _before_ clearing 'suspend' flag.
3592          */
3593         requeue_bios(pool);
3594         pool_resume_active_thins(pool);
3595
3596         spin_lock_irqsave(&pool->lock, flags);
3597         pool->low_water_triggered = false;
3598         pool->suspended = false;
3599         spin_unlock_irqrestore(&pool->lock, flags);
3600
3601         do_waker(&pool->waker.work);
3602 }
3603
3604 static void pool_presuspend(struct dm_target *ti)
3605 {
3606         struct pool_c *pt = ti->private;
3607         struct pool *pool = pt->pool;
3608         unsigned long flags;
3609
3610         spin_lock_irqsave(&pool->lock, flags);
3611         pool->suspended = true;
3612         spin_unlock_irqrestore(&pool->lock, flags);
3613
3614         pool_suspend_active_thins(pool);
3615 }
3616
3617 static void pool_presuspend_undo(struct dm_target *ti)
3618 {
3619         struct pool_c *pt = ti->private;
3620         struct pool *pool = pt->pool;
3621         unsigned long flags;
3622
3623         pool_resume_active_thins(pool);
3624
3625         spin_lock_irqsave(&pool->lock, flags);
3626         pool->suspended = false;
3627         spin_unlock_irqrestore(&pool->lock, flags);
3628 }
3629
3630 static void pool_postsuspend(struct dm_target *ti)
3631 {
3632         struct pool_c *pt = ti->private;
3633         struct pool *pool = pt->pool;
3634
3635         cancel_delayed_work_sync(&pool->waker);
3636         cancel_delayed_work_sync(&pool->no_space_timeout);
3637         flush_workqueue(pool->wq);
3638         (void) commit(pool);
3639 }
3640
3641 static int check_arg_count(unsigned argc, unsigned args_required)
3642 {
3643         if (argc != args_required) {
3644                 DMWARN("Message received with %u arguments instead of %u.",
3645                        argc, args_required);
3646                 return -EINVAL;
3647         }
3648
3649         return 0;
3650 }
3651
3652 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3653 {
3654         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3655             *dev_id <= MAX_DEV_ID)
3656                 return 0;
3657
3658         if (warning)
3659                 DMWARN("Message received with invalid device id: %s", arg);
3660
3661         return -EINVAL;
3662 }
3663
3664 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3665 {
3666         dm_thin_id dev_id;
3667         int r;
3668
3669         r = check_arg_count(argc, 2);
3670         if (r)
3671                 return r;
3672
3673         r = read_dev_id(argv[1], &dev_id, 1);
3674         if (r)
3675                 return r;
3676
3677         r = dm_pool_create_thin(pool->pmd, dev_id);
3678         if (r) {
3679                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3680                        argv[1]);
3681                 return r;
3682         }
3683
3684         return 0;
3685 }
3686
3687 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3688 {
3689         dm_thin_id dev_id;
3690         dm_thin_id origin_dev_id;
3691         int r;
3692
3693         r = check_arg_count(argc, 3);
3694         if (r)
3695                 return r;
3696
3697         r = read_dev_id(argv[1], &dev_id, 1);
3698         if (r)
3699                 return r;
3700
3701         r = read_dev_id(argv[2], &origin_dev_id, 1);
3702         if (r)
3703                 return r;
3704
3705         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3706         if (r) {
3707                 DMWARN("Creation of new snapshot %s of device %s failed.",
3708                        argv[1], argv[2]);
3709                 return r;
3710         }
3711
3712         return 0;
3713 }
3714
3715 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3716 {
3717         dm_thin_id dev_id;
3718         int r;
3719
3720         r = check_arg_count(argc, 2);
3721         if (r)
3722                 return r;
3723
3724         r = read_dev_id(argv[1], &dev_id, 1);
3725         if (r)
3726                 return r;
3727
3728         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3729         if (r)
3730                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3731
3732         return r;
3733 }
3734
3735 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3736 {
3737         dm_thin_id old_id, new_id;
3738         int r;
3739
3740         r = check_arg_count(argc, 3);
3741         if (r)
3742                 return r;
3743
3744         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3745                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3746                 return -EINVAL;
3747         }
3748
3749         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3750                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3751                 return -EINVAL;
3752         }
3753
3754         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3755         if (r) {
3756                 DMWARN("Failed to change transaction id from %s to %s.",
3757                        argv[1], argv[2]);
3758                 return r;
3759         }
3760
3761         return 0;
3762 }
3763
3764 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3765 {
3766         int r;
3767
3768         r = check_arg_count(argc, 1);
3769         if (r)
3770                 return r;
3771
3772         (void) commit(pool);
3773
3774         r = dm_pool_reserve_metadata_snap(pool->pmd);
3775         if (r)
3776                 DMWARN("reserve_metadata_snap message failed.");
3777
3778         return r;
3779 }
3780
3781 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3782 {
3783         int r;
3784
3785         r = check_arg_count(argc, 1);
3786         if (r)
3787                 return r;
3788
3789         r = dm_pool_release_metadata_snap(pool->pmd);
3790         if (r)
3791                 DMWARN("release_metadata_snap message failed.");
3792
3793         return r;
3794 }
3795
3796 /*
3797  * Messages supported:
3798  *   create_thin        <dev_id>
3799  *   create_snap        <dev_id> <origin_id>
3800  *   delete             <dev_id>
3801  *   set_transaction_id <current_trans_id> <new_trans_id>
3802  *   reserve_metadata_snap
3803  *   release_metadata_snap
3804  */
3805 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3806                         char *result, unsigned maxlen)
3807 {
3808         int r = -EINVAL;
3809         struct pool_c *pt = ti->private;
3810         struct pool *pool = pt->pool;
3811
3812         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3813                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3814                       dm_device_name(pool->pool_md));
3815                 return -EOPNOTSUPP;
3816         }
3817
3818         if (!strcasecmp(argv[0], "create_thin"))
3819                 r = process_create_thin_mesg(argc, argv, pool);
3820
3821         else if (!strcasecmp(argv[0], "create_snap"))
3822                 r = process_create_snap_mesg(argc, argv, pool);
3823
3824         else if (!strcasecmp(argv[0], "delete"))
3825                 r = process_delete_mesg(argc, argv, pool);
3826
3827         else if (!strcasecmp(argv[0], "set_transaction_id"))
3828                 r = process_set_transaction_id_mesg(argc, argv, pool);
3829
3830         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3831                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3832
3833         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3834                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3835
3836         else
3837                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3838
3839         if (!r)
3840                 (void) commit(pool);
3841
3842         return r;
3843 }
3844
3845 static void emit_flags(struct pool_features *pf, char *result,
3846                        unsigned sz, unsigned maxlen)
3847 {
3848         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3849                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3850                 pf->error_if_no_space;
3851         DMEMIT("%u ", count);
3852
3853         if (!pf->zero_new_blocks)
3854                 DMEMIT("skip_block_zeroing ");
3855
3856         if (!pf->discard_enabled)
3857                 DMEMIT("ignore_discard ");
3858
3859         if (!pf->discard_passdown)
3860                 DMEMIT("no_discard_passdown ");
3861
3862         if (pf->mode == PM_READ_ONLY)
3863                 DMEMIT("read_only ");
3864
3865         if (pf->error_if_no_space)
3866                 DMEMIT("error_if_no_space ");
3867 }
3868
3869 /*
3870  * Status line is:
3871  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3872  *    <used data sectors>/<total data sectors> <held metadata root>
3873  *    <pool mode> <discard config> <no space config> <needs_check>
3874  */
3875 static void pool_status(struct dm_target *ti, status_type_t type,
3876                         unsigned status_flags, char *result, unsigned maxlen)
3877 {
3878         int r;
3879         unsigned sz = 0;
3880         uint64_t transaction_id;
3881         dm_block_t nr_free_blocks_data;
3882         dm_block_t nr_free_blocks_metadata;
3883         dm_block_t nr_blocks_data;
3884         dm_block_t nr_blocks_metadata;
3885         dm_block_t held_root;
3886         enum pool_mode mode;
3887         char buf[BDEVNAME_SIZE];
3888         char buf2[BDEVNAME_SIZE];
3889         struct pool_c *pt = ti->private;
3890         struct pool *pool = pt->pool;
3891
3892         switch (type) {
3893         case STATUSTYPE_INFO:
3894                 if (get_pool_mode(pool) == PM_FAIL) {
3895                         DMEMIT("Fail");
3896                         break;
3897                 }
3898
3899                 /* Commit to ensure statistics aren't out-of-date */
3900                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3901                         (void) commit(pool);
3902
3903                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3904                 if (r) {
3905                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3906                               dm_device_name(pool->pool_md), r);
3907                         goto err;
3908                 }
3909
3910                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3911                 if (r) {
3912                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3913                               dm_device_name(pool->pool_md), r);
3914                         goto err;
3915                 }
3916
3917                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3918                 if (r) {
3919                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3920                               dm_device_name(pool->pool_md), r);
3921                         goto err;
3922                 }
3923
3924                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3925                 if (r) {
3926                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3927                               dm_device_name(pool->pool_md), r);
3928                         goto err;
3929                 }
3930
3931                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3932                 if (r) {
3933                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3934                               dm_device_name(pool->pool_md), r);
3935                         goto err;
3936                 }
3937
3938                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3939                 if (r) {
3940                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3941                               dm_device_name(pool->pool_md), r);
3942                         goto err;
3943                 }
3944
3945                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3946                        (unsigned long long)transaction_id,
3947                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3948                        (unsigned long long)nr_blocks_metadata,
3949                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3950                        (unsigned long long)nr_blocks_data);
3951
3952                 if (held_root)
3953                         DMEMIT("%llu ", held_root);
3954                 else
3955                         DMEMIT("- ");
3956
3957                 mode = get_pool_mode(pool);
3958                 if (mode == PM_OUT_OF_DATA_SPACE)
3959                         DMEMIT("out_of_data_space ");
3960                 else if (is_read_only_pool_mode(mode))
3961                         DMEMIT("ro ");
3962                 else
3963                         DMEMIT("rw ");
3964
3965                 if (!pool->pf.discard_enabled)
3966                         DMEMIT("ignore_discard ");
3967                 else if (pool->pf.discard_passdown)
3968                         DMEMIT("discard_passdown ");
3969                 else
3970                         DMEMIT("no_discard_passdown ");
3971
3972                 if (pool->pf.error_if_no_space)
3973                         DMEMIT("error_if_no_space ");
3974                 else
3975                         DMEMIT("queue_if_no_space ");
3976
3977                 if (dm_pool_metadata_needs_check(pool->pmd))
3978                         DMEMIT("needs_check ");
3979                 else
3980                         DMEMIT("- ");
3981
3982                 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
3983
3984                 break;
3985
3986         case STATUSTYPE_TABLE:
3987                 DMEMIT("%s %s %lu %llu ",
3988                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3989                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3990                        (unsigned long)pool->sectors_per_block,
3991                        (unsigned long long)pt->low_water_blocks);
3992                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3993                 break;
3994         }
3995         return;
3996
3997 err:
3998         DMEMIT("Error");
3999 }
4000
4001 static int pool_iterate_devices(struct dm_target *ti,
4002                                 iterate_devices_callout_fn fn, void *data)
4003 {
4004         struct pool_c *pt = ti->private;
4005
4006         return fn(ti, pt->data_dev, 0, ti->len, data);
4007 }
4008
4009 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4010 {
4011         struct pool_c *pt = ti->private;
4012         struct pool *pool = pt->pool;
4013         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4014
4015         /*
4016          * If max_sectors is smaller than pool->sectors_per_block adjust it
4017          * to the highest possible power-of-2 factor of pool->sectors_per_block.
4018          * This is especially beneficial when the pool's data device is a RAID
4019          * device that has a full stripe width that matches pool->sectors_per_block
4020          * -- because even though partial RAID stripe-sized IOs will be issued to a
4021          *    single RAID stripe; when aggregated they will end on a full RAID stripe
4022          *    boundary.. which avoids additional partial RAID stripe writes cascading
4023          */
4024         if (limits->max_sectors < pool->sectors_per_block) {
4025                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4026                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4027                                 limits->max_sectors--;
4028                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4029                 }
4030         }
4031
4032         /*
4033          * If the system-determined stacked limits are compatible with the
4034          * pool's blocksize (io_opt is a factor) do not override them.
4035          */
4036         if (io_opt_sectors < pool->sectors_per_block ||
4037             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4038                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4039                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4040                 else
4041                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4042                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4043         }
4044
4045         /*
4046          * pt->adjusted_pf is a staging area for the actual features to use.
4047          * They get transferred to the live pool in bind_control_target()
4048          * called from pool_preresume().
4049          */
4050         if (!pt->adjusted_pf.discard_enabled) {
4051                 /*
4052                  * Must explicitly disallow stacking discard limits otherwise the
4053                  * block layer will stack them if pool's data device has support.
4054                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4055                  * user to see that, so make sure to set all discard limits to 0.
4056                  */
4057                 limits->discard_granularity = 0;
4058                 return;
4059         }
4060
4061         disable_passdown_if_not_supported(pt);
4062
4063         /*
4064          * The pool uses the same discard limits as the underlying data
4065          * device.  DM core has already set this up.
4066          */
4067 }
4068
4069 static struct target_type pool_target = {
4070         .name = "thin-pool",
4071         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4072                     DM_TARGET_IMMUTABLE,
4073         .version = {1, 21, 0},
4074         .module = THIS_MODULE,
4075         .ctr = pool_ctr,
4076         .dtr = pool_dtr,
4077         .map = pool_map,
4078         .presuspend = pool_presuspend,
4079         .presuspend_undo = pool_presuspend_undo,
4080         .postsuspend = pool_postsuspend,
4081         .preresume = pool_preresume,
4082         .resume = pool_resume,
4083         .message = pool_message,
4084         .status = pool_status,
4085         .iterate_devices = pool_iterate_devices,
4086         .io_hints = pool_io_hints,
4087 };
4088
4089 /*----------------------------------------------------------------
4090  * Thin target methods
4091  *--------------------------------------------------------------*/
4092 static void thin_get(struct thin_c *tc)
4093 {
4094         refcount_inc(&tc->refcount);
4095 }
4096
4097 static void thin_put(struct thin_c *tc)
4098 {
4099         if (refcount_dec_and_test(&tc->refcount))
4100                 complete(&tc->can_destroy);
4101 }
4102
4103 static void thin_dtr(struct dm_target *ti)
4104 {
4105         struct thin_c *tc = ti->private;
4106         unsigned long flags;
4107
4108         spin_lock_irqsave(&tc->pool->lock, flags);
4109         list_del_rcu(&tc->list);
4110         spin_unlock_irqrestore(&tc->pool->lock, flags);
4111         synchronize_rcu();
4112
4113         thin_put(tc);
4114         wait_for_completion(&tc->can_destroy);
4115
4116         mutex_lock(&dm_thin_pool_table.mutex);
4117
4118         __pool_dec(tc->pool);
4119         dm_pool_close_thin_device(tc->td);
4120         dm_put_device(ti, tc->pool_dev);
4121         if (tc->origin_dev)
4122                 dm_put_device(ti, tc->origin_dev);
4123         kfree(tc);
4124
4125         mutex_unlock(&dm_thin_pool_table.mutex);
4126 }
4127
4128 /*
4129  * Thin target parameters:
4130  *
4131  * <pool_dev> <dev_id> [origin_dev]
4132  *
4133  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4134  * dev_id: the internal device identifier
4135  * origin_dev: a device external to the pool that should act as the origin
4136  *
4137  * If the pool device has discards disabled, they get disabled for the thin
4138  * device as well.
4139  */
4140 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4141 {
4142         int r;
4143         struct thin_c *tc;
4144         struct dm_dev *pool_dev, *origin_dev;
4145         struct mapped_device *pool_md;
4146         unsigned long flags;
4147
4148         mutex_lock(&dm_thin_pool_table.mutex);
4149
4150         if (argc != 2 && argc != 3) {
4151                 ti->error = "Invalid argument count";
4152                 r = -EINVAL;
4153                 goto out_unlock;
4154         }
4155
4156         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4157         if (!tc) {
4158                 ti->error = "Out of memory";
4159                 r = -ENOMEM;
4160                 goto out_unlock;
4161         }
4162         tc->thin_md = dm_table_get_md(ti->table);
4163         spin_lock_init(&tc->lock);
4164         INIT_LIST_HEAD(&tc->deferred_cells);
4165         bio_list_init(&tc->deferred_bio_list);
4166         bio_list_init(&tc->retry_on_resume_list);
4167         tc->sort_bio_list = RB_ROOT;
4168
4169         if (argc == 3) {
4170                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4171                 if (r) {
4172                         ti->error = "Error opening origin device";
4173                         goto bad_origin_dev;
4174                 }
4175                 tc->origin_dev = origin_dev;
4176         }
4177
4178         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4179         if (r) {
4180                 ti->error = "Error opening pool device";
4181                 goto bad_pool_dev;
4182         }
4183         tc->pool_dev = pool_dev;
4184
4185         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4186                 ti->error = "Invalid device id";
4187                 r = -EINVAL;
4188                 goto bad_common;
4189         }
4190
4191         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4192         if (!pool_md) {
4193                 ti->error = "Couldn't get pool mapped device";
4194                 r = -EINVAL;
4195                 goto bad_common;
4196         }
4197
4198         tc->pool = __pool_table_lookup(pool_md);
4199         if (!tc->pool) {
4200                 ti->error = "Couldn't find pool object";
4201                 r = -EINVAL;
4202                 goto bad_pool_lookup;
4203         }
4204         __pool_inc(tc->pool);
4205
4206         if (get_pool_mode(tc->pool) == PM_FAIL) {
4207                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4208                 r = -EINVAL;
4209                 goto bad_pool;
4210         }
4211
4212         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4213         if (r) {
4214                 ti->error = "Couldn't open thin internal device";
4215                 goto bad_pool;
4216         }
4217
4218         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4219         if (r)
4220                 goto bad;
4221
4222         ti->num_flush_bios = 1;
4223         ti->flush_supported = true;
4224         ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4225
4226         /* In case the pool supports discards, pass them on. */
4227         if (tc->pool->pf.discard_enabled) {
4228                 ti->discards_supported = true;
4229                 ti->num_discard_bios = 1;
4230                 ti->split_discard_bios = false;
4231         }
4232
4233         mutex_unlock(&dm_thin_pool_table.mutex);
4234
4235         spin_lock_irqsave(&tc->pool->lock, flags);
4236         if (tc->pool->suspended) {
4237                 spin_unlock_irqrestore(&tc->pool->lock, flags);
4238                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4239                 ti->error = "Unable to activate thin device while pool is suspended";
4240                 r = -EINVAL;
4241                 goto bad;
4242         }
4243         refcount_set(&tc->refcount, 1);
4244         init_completion(&tc->can_destroy);
4245         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4246         spin_unlock_irqrestore(&tc->pool->lock, flags);
4247         /*
4248          * This synchronize_rcu() call is needed here otherwise we risk a
4249          * wake_worker() call finding no bios to process (because the newly
4250          * added tc isn't yet visible).  So this reduces latency since we
4251          * aren't then dependent on the periodic commit to wake_worker().
4252          */
4253         synchronize_rcu();
4254
4255         dm_put(pool_md);
4256
4257         return 0;
4258
4259 bad:
4260         dm_pool_close_thin_device(tc->td);
4261 bad_pool:
4262         __pool_dec(tc->pool);
4263 bad_pool_lookup:
4264         dm_put(pool_md);
4265 bad_common:
4266         dm_put_device(ti, tc->pool_dev);
4267 bad_pool_dev:
4268         if (tc->origin_dev)
4269                 dm_put_device(ti, tc->origin_dev);
4270 bad_origin_dev:
4271         kfree(tc);
4272 out_unlock:
4273         mutex_unlock(&dm_thin_pool_table.mutex);
4274
4275         return r;
4276 }
4277
4278 static int thin_map(struct dm_target *ti, struct bio *bio)
4279 {
4280         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4281
4282         return thin_bio_map(ti, bio);
4283 }
4284
4285 static int thin_endio(struct dm_target *ti, struct bio *bio,
4286                 blk_status_t *err)
4287 {
4288         unsigned long flags;
4289         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4290         struct list_head work;
4291         struct dm_thin_new_mapping *m, *tmp;
4292         struct pool *pool = h->tc->pool;
4293
4294         if (h->shared_read_entry) {
4295                 INIT_LIST_HEAD(&work);
4296                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4297
4298                 spin_lock_irqsave(&pool->lock, flags);
4299                 list_for_each_entry_safe(m, tmp, &work, list) {
4300                         list_del(&m->list);
4301                         __complete_mapping_preparation(m);
4302                 }
4303                 spin_unlock_irqrestore(&pool->lock, flags);
4304         }
4305
4306         if (h->all_io_entry) {
4307                 INIT_LIST_HEAD(&work);
4308                 dm_deferred_entry_dec(h->all_io_entry, &work);
4309                 if (!list_empty(&work)) {
4310                         spin_lock_irqsave(&pool->lock, flags);
4311                         list_for_each_entry_safe(m, tmp, &work, list)
4312                                 list_add_tail(&m->list, &pool->prepared_discards);
4313                         spin_unlock_irqrestore(&pool->lock, flags);
4314                         wake_worker(pool);
4315                 }
4316         }
4317
4318         if (h->cell)
4319                 cell_defer_no_holder(h->tc, h->cell);
4320
4321         return DM_ENDIO_DONE;
4322 }
4323
4324 static void thin_presuspend(struct dm_target *ti)
4325 {
4326         struct thin_c *tc = ti->private;
4327
4328         if (dm_noflush_suspending(ti))
4329                 noflush_work(tc, do_noflush_start);
4330 }
4331
4332 static void thin_postsuspend(struct dm_target *ti)
4333 {
4334         struct thin_c *tc = ti->private;
4335
4336         /*
4337          * The dm_noflush_suspending flag has been cleared by now, so
4338          * unfortunately we must always run this.
4339          */
4340         noflush_work(tc, do_noflush_stop);
4341 }
4342
4343 static int thin_preresume(struct dm_target *ti)
4344 {
4345         struct thin_c *tc = ti->private;
4346
4347         if (tc->origin_dev)
4348                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4349
4350         return 0;
4351 }
4352
4353 /*
4354  * <nr mapped sectors> <highest mapped sector>
4355  */
4356 static void thin_status(struct dm_target *ti, status_type_t type,
4357                         unsigned status_flags, char *result, unsigned maxlen)
4358 {
4359         int r;
4360         ssize_t sz = 0;
4361         dm_block_t mapped, highest;
4362         char buf[BDEVNAME_SIZE];
4363         struct thin_c *tc = ti->private;
4364
4365         if (get_pool_mode(tc->pool) == PM_FAIL) {
4366                 DMEMIT("Fail");
4367                 return;
4368         }
4369
4370         if (!tc->td)
4371                 DMEMIT("-");
4372         else {
4373                 switch (type) {
4374                 case STATUSTYPE_INFO:
4375                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4376                         if (r) {
4377                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4378                                 goto err;
4379                         }
4380
4381                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4382                         if (r < 0) {
4383                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4384                                 goto err;
4385                         }
4386
4387                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4388                         if (r)
4389                                 DMEMIT("%llu", ((highest + 1) *
4390                                                 tc->pool->sectors_per_block) - 1);
4391                         else
4392                                 DMEMIT("-");
4393                         break;
4394
4395                 case STATUSTYPE_TABLE:
4396                         DMEMIT("%s %lu",
4397                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4398                                (unsigned long) tc->dev_id);
4399                         if (tc->origin_dev)
4400                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4401                         break;
4402                 }
4403         }
4404
4405         return;
4406
4407 err:
4408         DMEMIT("Error");
4409 }
4410
4411 static int thin_iterate_devices(struct dm_target *ti,
4412                                 iterate_devices_callout_fn fn, void *data)
4413 {
4414         sector_t blocks;
4415         struct thin_c *tc = ti->private;
4416         struct pool *pool = tc->pool;
4417
4418         /*
4419          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4420          * we follow a more convoluted path through to the pool's target.
4421          */
4422         if (!pool->ti)
4423                 return 0;       /* nothing is bound */
4424
4425         blocks = pool->ti->len;
4426         (void) sector_div(blocks, pool->sectors_per_block);
4427         if (blocks)
4428                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4429
4430         return 0;
4431 }
4432
4433 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4434 {
4435         struct thin_c *tc = ti->private;
4436         struct pool *pool = tc->pool;
4437
4438         if (!pool->pf.discard_enabled)
4439                 return;
4440
4441         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4442         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4443 }
4444
4445 static struct target_type thin_target = {
4446         .name = "thin",
4447         .version = {1, 21, 0},
4448         .module = THIS_MODULE,
4449         .ctr = thin_ctr,
4450         .dtr = thin_dtr,
4451         .map = thin_map,
4452         .end_io = thin_endio,
4453         .preresume = thin_preresume,
4454         .presuspend = thin_presuspend,
4455         .postsuspend = thin_postsuspend,
4456         .status = thin_status,
4457         .iterate_devices = thin_iterate_devices,
4458         .io_hints = thin_io_hints,
4459 };
4460
4461 /*----------------------------------------------------------------*/
4462
4463 static int __init dm_thin_init(void)
4464 {
4465         int r = -ENOMEM;
4466
4467         pool_table_init();
4468
4469         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4470         if (!_new_mapping_cache)
4471                 return r;
4472
4473         r = dm_register_target(&thin_target);
4474         if (r)
4475                 goto bad_new_mapping_cache;
4476
4477         r = dm_register_target(&pool_target);
4478         if (r)
4479                 goto bad_thin_target;
4480
4481         return 0;
4482
4483 bad_thin_target:
4484         dm_unregister_target(&thin_target);
4485 bad_new_mapping_cache:
4486         kmem_cache_destroy(_new_mapping_cache);
4487
4488         return r;
4489 }
4490
4491 static void dm_thin_exit(void)
4492 {
4493         dm_unregister_target(&thin_target);
4494         dm_unregister_target(&pool_target);
4495
4496         kmem_cache_destroy(_new_mapping_cache);
4497
4498         pool_table_exit();
4499 }
4500
4501 module_init(dm_thin_init);
4502 module_exit(dm_thin_exit);
4503
4504 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4505 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4506
4507 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4508 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4509 MODULE_LICENSE("GPL");