Merge tag 'nfs-for-4.20-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[sfrench/cifs-2.6.git] / drivers / md / dm-thin-metadata.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 48
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74
75 #define DM_MSG_PREFIX   "thin metadata"
76
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81
82 /*
83  * For btree insert:
84  *  3 for btree insert +
85  *  2 for btree lookup used within space map
86  * For btree remove:
87  *  2 for shadow spine +
88  *  4 for rebalance 3 child node
89  */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94
95 /*
96  * Little endian on-disk superblock and device details.
97  */
98 struct thin_disk_superblock {
99         __le32 csum;    /* Checksum of superblock except for this field. */
100         __le32 flags;
101         __le64 blocknr; /* This block number, dm_block_t. */
102
103         __u8 uuid[16];
104         __le64 magic;
105         __le32 version;
106         __le32 time;
107
108         __le64 trans_id;
109
110         /*
111          * Root held by userspace transactions.
112          */
113         __le64 held_root;
114
115         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117
118         /*
119          * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120          */
121         __le64 data_mapping_root;
122
123         /*
124          * Device detail root mapping dev_id -> device_details
125          */
126         __le64 device_details_root;
127
128         __le32 data_block_size;         /* In 512-byte sectors. */
129
130         __le32 metadata_block_size;     /* In 512-byte sectors. */
131         __le64 metadata_nr_blocks;
132
133         __le32 compat_flags;
134         __le32 compat_ro_flags;
135         __le32 incompat_flags;
136 } __packed;
137
138 struct disk_device_details {
139         __le64 mapped_blocks;
140         __le64 transaction_id;          /* When created. */
141         __le32 creation_time;
142         __le32 snapshotted_time;
143 } __packed;
144
145 struct dm_pool_metadata {
146         struct hlist_node hash;
147
148         struct block_device *bdev;
149         struct dm_block_manager *bm;
150         struct dm_space_map *metadata_sm;
151         struct dm_space_map *data_sm;
152         struct dm_transaction_manager *tm;
153         struct dm_transaction_manager *nb_tm;
154
155         /*
156          * Two-level btree.
157          * First level holds thin_dev_t.
158          * Second level holds mappings.
159          */
160         struct dm_btree_info info;
161
162         /*
163          * Non-blocking version of the above.
164          */
165         struct dm_btree_info nb_info;
166
167         /*
168          * Just the top level for deleting whole devices.
169          */
170         struct dm_btree_info tl_info;
171
172         /*
173          * Just the bottom level for creating new devices.
174          */
175         struct dm_btree_info bl_info;
176
177         /*
178          * Describes the device details btree.
179          */
180         struct dm_btree_info details_info;
181
182         struct rw_semaphore root_lock;
183         uint32_t time;
184         dm_block_t root;
185         dm_block_t details_root;
186         struct list_head thin_devices;
187         uint64_t trans_id;
188         unsigned long flags;
189         sector_t data_block_size;
190
191         /*
192          * We reserve a section of the metadata for commit overhead.
193          * All reported space does *not* include this.
194          */
195         dm_block_t metadata_reserve;
196
197         /*
198          * Set if a transaction has to be aborted but the attempt to roll back
199          * to the previous (good) transaction failed.  The only pool metadata
200          * operation possible in this state is the closing of the device.
201          */
202         bool fail_io:1;
203
204         /*
205          * Reading the space map roots can fail, so we read it into these
206          * buffers before the superblock is locked and updated.
207          */
208         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
209         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
210 };
211
212 struct dm_thin_device {
213         struct list_head list;
214         struct dm_pool_metadata *pmd;
215         dm_thin_id id;
216
217         int open_count;
218         bool changed:1;
219         bool aborted_with_changes:1;
220         uint64_t mapped_blocks;
221         uint64_t transaction_id;
222         uint32_t creation_time;
223         uint32_t snapshotted_time;
224 };
225
226 /*----------------------------------------------------------------
227  * superblock validator
228  *--------------------------------------------------------------*/
229
230 #define SUPERBLOCK_CSUM_XOR 160774
231
232 static void sb_prepare_for_write(struct dm_block_validator *v,
233                                  struct dm_block *b,
234                                  size_t block_size)
235 {
236         struct thin_disk_superblock *disk_super = dm_block_data(b);
237
238         disk_super->blocknr = cpu_to_le64(dm_block_location(b));
239         disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
240                                                       block_size - sizeof(__le32),
241                                                       SUPERBLOCK_CSUM_XOR));
242 }
243
244 static int sb_check(struct dm_block_validator *v,
245                     struct dm_block *b,
246                     size_t block_size)
247 {
248         struct thin_disk_superblock *disk_super = dm_block_data(b);
249         __le32 csum_le;
250
251         if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
252                 DMERR("sb_check failed: blocknr %llu: "
253                       "wanted %llu", le64_to_cpu(disk_super->blocknr),
254                       (unsigned long long)dm_block_location(b));
255                 return -ENOTBLK;
256         }
257
258         if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
259                 DMERR("sb_check failed: magic %llu: "
260                       "wanted %llu", le64_to_cpu(disk_super->magic),
261                       (unsigned long long)THIN_SUPERBLOCK_MAGIC);
262                 return -EILSEQ;
263         }
264
265         csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
266                                              block_size - sizeof(__le32),
267                                              SUPERBLOCK_CSUM_XOR));
268         if (csum_le != disk_super->csum) {
269                 DMERR("sb_check failed: csum %u: wanted %u",
270                       le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
271                 return -EILSEQ;
272         }
273
274         return 0;
275 }
276
277 static struct dm_block_validator sb_validator = {
278         .name = "superblock",
279         .prepare_for_write = sb_prepare_for_write,
280         .check = sb_check
281 };
282
283 /*----------------------------------------------------------------
284  * Methods for the btree value types
285  *--------------------------------------------------------------*/
286
287 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
288 {
289         return (b << 24) | t;
290 }
291
292 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
293 {
294         *b = v >> 24;
295         *t = v & ((1 << 24) - 1);
296 }
297
298 static void data_block_inc(void *context, const void *value_le)
299 {
300         struct dm_space_map *sm = context;
301         __le64 v_le;
302         uint64_t b;
303         uint32_t t;
304
305         memcpy(&v_le, value_le, sizeof(v_le));
306         unpack_block_time(le64_to_cpu(v_le), &b, &t);
307         dm_sm_inc_block(sm, b);
308 }
309
310 static void data_block_dec(void *context, const void *value_le)
311 {
312         struct dm_space_map *sm = context;
313         __le64 v_le;
314         uint64_t b;
315         uint32_t t;
316
317         memcpy(&v_le, value_le, sizeof(v_le));
318         unpack_block_time(le64_to_cpu(v_le), &b, &t);
319         dm_sm_dec_block(sm, b);
320 }
321
322 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
323 {
324         __le64 v1_le, v2_le;
325         uint64_t b1, b2;
326         uint32_t t;
327
328         memcpy(&v1_le, value1_le, sizeof(v1_le));
329         memcpy(&v2_le, value2_le, sizeof(v2_le));
330         unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
331         unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
332
333         return b1 == b2;
334 }
335
336 static void subtree_inc(void *context, const void *value)
337 {
338         struct dm_btree_info *info = context;
339         __le64 root_le;
340         uint64_t root;
341
342         memcpy(&root_le, value, sizeof(root_le));
343         root = le64_to_cpu(root_le);
344         dm_tm_inc(info->tm, root);
345 }
346
347 static void subtree_dec(void *context, const void *value)
348 {
349         struct dm_btree_info *info = context;
350         __le64 root_le;
351         uint64_t root;
352
353         memcpy(&root_le, value, sizeof(root_le));
354         root = le64_to_cpu(root_le);
355         if (dm_btree_del(info, root))
356                 DMERR("btree delete failed");
357 }
358
359 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
360 {
361         __le64 v1_le, v2_le;
362         memcpy(&v1_le, value1_le, sizeof(v1_le));
363         memcpy(&v2_le, value2_le, sizeof(v2_le));
364
365         return v1_le == v2_le;
366 }
367
368 /*----------------------------------------------------------------*/
369
370 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
371                                 struct dm_block **sblock)
372 {
373         return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
374                                      &sb_validator, sblock);
375 }
376
377 static int superblock_lock(struct dm_pool_metadata *pmd,
378                            struct dm_block **sblock)
379 {
380         return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
381                                 &sb_validator, sblock);
382 }
383
384 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
385 {
386         int r;
387         unsigned i;
388         struct dm_block *b;
389         __le64 *data_le, zero = cpu_to_le64(0);
390         unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
391
392         /*
393          * We can't use a validator here - it may be all zeroes.
394          */
395         r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
396         if (r)
397                 return r;
398
399         data_le = dm_block_data(b);
400         *result = 1;
401         for (i = 0; i < block_size; i++) {
402                 if (data_le[i] != zero) {
403                         *result = 0;
404                         break;
405                 }
406         }
407
408         dm_bm_unlock(b);
409
410         return 0;
411 }
412
413 static void __setup_btree_details(struct dm_pool_metadata *pmd)
414 {
415         pmd->info.tm = pmd->tm;
416         pmd->info.levels = 2;
417         pmd->info.value_type.context = pmd->data_sm;
418         pmd->info.value_type.size = sizeof(__le64);
419         pmd->info.value_type.inc = data_block_inc;
420         pmd->info.value_type.dec = data_block_dec;
421         pmd->info.value_type.equal = data_block_equal;
422
423         memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
424         pmd->nb_info.tm = pmd->nb_tm;
425
426         pmd->tl_info.tm = pmd->tm;
427         pmd->tl_info.levels = 1;
428         pmd->tl_info.value_type.context = &pmd->bl_info;
429         pmd->tl_info.value_type.size = sizeof(__le64);
430         pmd->tl_info.value_type.inc = subtree_inc;
431         pmd->tl_info.value_type.dec = subtree_dec;
432         pmd->tl_info.value_type.equal = subtree_equal;
433
434         pmd->bl_info.tm = pmd->tm;
435         pmd->bl_info.levels = 1;
436         pmd->bl_info.value_type.context = pmd->data_sm;
437         pmd->bl_info.value_type.size = sizeof(__le64);
438         pmd->bl_info.value_type.inc = data_block_inc;
439         pmd->bl_info.value_type.dec = data_block_dec;
440         pmd->bl_info.value_type.equal = data_block_equal;
441
442         pmd->details_info.tm = pmd->tm;
443         pmd->details_info.levels = 1;
444         pmd->details_info.value_type.context = NULL;
445         pmd->details_info.value_type.size = sizeof(struct disk_device_details);
446         pmd->details_info.value_type.inc = NULL;
447         pmd->details_info.value_type.dec = NULL;
448         pmd->details_info.value_type.equal = NULL;
449 }
450
451 static int save_sm_roots(struct dm_pool_metadata *pmd)
452 {
453         int r;
454         size_t len;
455
456         r = dm_sm_root_size(pmd->metadata_sm, &len);
457         if (r < 0)
458                 return r;
459
460         r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
461         if (r < 0)
462                 return r;
463
464         r = dm_sm_root_size(pmd->data_sm, &len);
465         if (r < 0)
466                 return r;
467
468         return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
469 }
470
471 static void copy_sm_roots(struct dm_pool_metadata *pmd,
472                           struct thin_disk_superblock *disk)
473 {
474         memcpy(&disk->metadata_space_map_root,
475                &pmd->metadata_space_map_root,
476                sizeof(pmd->metadata_space_map_root));
477
478         memcpy(&disk->data_space_map_root,
479                &pmd->data_space_map_root,
480                sizeof(pmd->data_space_map_root));
481 }
482
483 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
484 {
485         int r;
486         struct dm_block *sblock;
487         struct thin_disk_superblock *disk_super;
488         sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
489
490         if (bdev_size > THIN_METADATA_MAX_SECTORS)
491                 bdev_size = THIN_METADATA_MAX_SECTORS;
492
493         r = dm_sm_commit(pmd->data_sm);
494         if (r < 0)
495                 return r;
496
497         r = dm_tm_pre_commit(pmd->tm);
498         if (r < 0)
499                 return r;
500
501         r = save_sm_roots(pmd);
502         if (r < 0)
503                 return r;
504
505         r = superblock_lock_zero(pmd, &sblock);
506         if (r)
507                 return r;
508
509         disk_super = dm_block_data(sblock);
510         disk_super->flags = 0;
511         memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
512         disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
513         disk_super->version = cpu_to_le32(THIN_VERSION);
514         disk_super->time = 0;
515         disk_super->trans_id = 0;
516         disk_super->held_root = 0;
517
518         copy_sm_roots(pmd, disk_super);
519
520         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
521         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
522         disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
523         disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
524         disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
525
526         return dm_tm_commit(pmd->tm, sblock);
527 }
528
529 static int __format_metadata(struct dm_pool_metadata *pmd)
530 {
531         int r;
532
533         r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
534                                  &pmd->tm, &pmd->metadata_sm);
535         if (r < 0) {
536                 DMERR("tm_create_with_sm failed");
537                 return r;
538         }
539
540         pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
541         if (IS_ERR(pmd->data_sm)) {
542                 DMERR("sm_disk_create failed");
543                 r = PTR_ERR(pmd->data_sm);
544                 goto bad_cleanup_tm;
545         }
546
547         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
548         if (!pmd->nb_tm) {
549                 DMERR("could not create non-blocking clone tm");
550                 r = -ENOMEM;
551                 goto bad_cleanup_data_sm;
552         }
553
554         __setup_btree_details(pmd);
555
556         r = dm_btree_empty(&pmd->info, &pmd->root);
557         if (r < 0)
558                 goto bad_cleanup_nb_tm;
559
560         r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
561         if (r < 0) {
562                 DMERR("couldn't create devices root");
563                 goto bad_cleanup_nb_tm;
564         }
565
566         r = __write_initial_superblock(pmd);
567         if (r)
568                 goto bad_cleanup_nb_tm;
569
570         return 0;
571
572 bad_cleanup_nb_tm:
573         dm_tm_destroy(pmd->nb_tm);
574 bad_cleanup_data_sm:
575         dm_sm_destroy(pmd->data_sm);
576 bad_cleanup_tm:
577         dm_tm_destroy(pmd->tm);
578         dm_sm_destroy(pmd->metadata_sm);
579
580         return r;
581 }
582
583 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
584                                      struct dm_pool_metadata *pmd)
585 {
586         uint32_t features;
587
588         features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
589         if (features) {
590                 DMERR("could not access metadata due to unsupported optional features (%lx).",
591                       (unsigned long)features);
592                 return -EINVAL;
593         }
594
595         /*
596          * Check for read-only metadata to skip the following RDWR checks.
597          */
598         if (get_disk_ro(pmd->bdev->bd_disk))
599                 return 0;
600
601         features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
602         if (features) {
603                 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
604                       (unsigned long)features);
605                 return -EINVAL;
606         }
607
608         return 0;
609 }
610
611 static int __open_metadata(struct dm_pool_metadata *pmd)
612 {
613         int r;
614         struct dm_block *sblock;
615         struct thin_disk_superblock *disk_super;
616
617         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
618                             &sb_validator, &sblock);
619         if (r < 0) {
620                 DMERR("couldn't read superblock");
621                 return r;
622         }
623
624         disk_super = dm_block_data(sblock);
625
626         /* Verify the data block size hasn't changed */
627         if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
628                 DMERR("changing the data block size (from %u to %llu) is not supported",
629                       le32_to_cpu(disk_super->data_block_size),
630                       (unsigned long long)pmd->data_block_size);
631                 r = -EINVAL;
632                 goto bad_unlock_sblock;
633         }
634
635         r = __check_incompat_features(disk_super, pmd);
636         if (r < 0)
637                 goto bad_unlock_sblock;
638
639         r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
640                                disk_super->metadata_space_map_root,
641                                sizeof(disk_super->metadata_space_map_root),
642                                &pmd->tm, &pmd->metadata_sm);
643         if (r < 0) {
644                 DMERR("tm_open_with_sm failed");
645                 goto bad_unlock_sblock;
646         }
647
648         pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
649                                        sizeof(disk_super->data_space_map_root));
650         if (IS_ERR(pmd->data_sm)) {
651                 DMERR("sm_disk_open failed");
652                 r = PTR_ERR(pmd->data_sm);
653                 goto bad_cleanup_tm;
654         }
655
656         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
657         if (!pmd->nb_tm) {
658                 DMERR("could not create non-blocking clone tm");
659                 r = -ENOMEM;
660                 goto bad_cleanup_data_sm;
661         }
662
663         __setup_btree_details(pmd);
664         dm_bm_unlock(sblock);
665
666         return 0;
667
668 bad_cleanup_data_sm:
669         dm_sm_destroy(pmd->data_sm);
670 bad_cleanup_tm:
671         dm_tm_destroy(pmd->tm);
672         dm_sm_destroy(pmd->metadata_sm);
673 bad_unlock_sblock:
674         dm_bm_unlock(sblock);
675
676         return r;
677 }
678
679 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
680 {
681         int r, unformatted;
682
683         r = __superblock_all_zeroes(pmd->bm, &unformatted);
684         if (r)
685                 return r;
686
687         if (unformatted)
688                 return format_device ? __format_metadata(pmd) : -EPERM;
689
690         return __open_metadata(pmd);
691 }
692
693 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
694 {
695         int r;
696
697         pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
698                                           THIN_MAX_CONCURRENT_LOCKS);
699         if (IS_ERR(pmd->bm)) {
700                 DMERR("could not create block manager");
701                 return PTR_ERR(pmd->bm);
702         }
703
704         r = __open_or_format_metadata(pmd, format_device);
705         if (r)
706                 dm_block_manager_destroy(pmd->bm);
707
708         return r;
709 }
710
711 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
712 {
713         dm_sm_destroy(pmd->data_sm);
714         dm_sm_destroy(pmd->metadata_sm);
715         dm_tm_destroy(pmd->nb_tm);
716         dm_tm_destroy(pmd->tm);
717         dm_block_manager_destroy(pmd->bm);
718 }
719
720 static int __begin_transaction(struct dm_pool_metadata *pmd)
721 {
722         int r;
723         struct thin_disk_superblock *disk_super;
724         struct dm_block *sblock;
725
726         /*
727          * We re-read the superblock every time.  Shouldn't need to do this
728          * really.
729          */
730         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
731                             &sb_validator, &sblock);
732         if (r)
733                 return r;
734
735         disk_super = dm_block_data(sblock);
736         pmd->time = le32_to_cpu(disk_super->time);
737         pmd->root = le64_to_cpu(disk_super->data_mapping_root);
738         pmd->details_root = le64_to_cpu(disk_super->device_details_root);
739         pmd->trans_id = le64_to_cpu(disk_super->trans_id);
740         pmd->flags = le32_to_cpu(disk_super->flags);
741         pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
742
743         dm_bm_unlock(sblock);
744         return 0;
745 }
746
747 static int __write_changed_details(struct dm_pool_metadata *pmd)
748 {
749         int r;
750         struct dm_thin_device *td, *tmp;
751         struct disk_device_details details;
752         uint64_t key;
753
754         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
755                 if (!td->changed)
756                         continue;
757
758                 key = td->id;
759
760                 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
761                 details.transaction_id = cpu_to_le64(td->transaction_id);
762                 details.creation_time = cpu_to_le32(td->creation_time);
763                 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
764                 __dm_bless_for_disk(&details);
765
766                 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
767                                     &key, &details, &pmd->details_root);
768                 if (r)
769                         return r;
770
771                 if (td->open_count)
772                         td->changed = 0;
773                 else {
774                         list_del(&td->list);
775                         kfree(td);
776                 }
777         }
778
779         return 0;
780 }
781
782 static int __commit_transaction(struct dm_pool_metadata *pmd)
783 {
784         int r;
785         struct thin_disk_superblock *disk_super;
786         struct dm_block *sblock;
787
788         /*
789          * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
790          */
791         BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
792
793         r = __write_changed_details(pmd);
794         if (r < 0)
795                 return r;
796
797         r = dm_sm_commit(pmd->data_sm);
798         if (r < 0)
799                 return r;
800
801         r = dm_tm_pre_commit(pmd->tm);
802         if (r < 0)
803                 return r;
804
805         r = save_sm_roots(pmd);
806         if (r < 0)
807                 return r;
808
809         r = superblock_lock(pmd, &sblock);
810         if (r)
811                 return r;
812
813         disk_super = dm_block_data(sblock);
814         disk_super->time = cpu_to_le32(pmd->time);
815         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
816         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
817         disk_super->trans_id = cpu_to_le64(pmd->trans_id);
818         disk_super->flags = cpu_to_le32(pmd->flags);
819
820         copy_sm_roots(pmd, disk_super);
821
822         return dm_tm_commit(pmd->tm, sblock);
823 }
824
825 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
826 {
827         int r;
828         dm_block_t total;
829         dm_block_t max_blocks = 4096; /* 16M */
830
831         r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
832         if (r) {
833                 DMERR("could not get size of metadata device");
834                 pmd->metadata_reserve = max_blocks;
835         } else
836                 pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
837 }
838
839 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
840                                                sector_t data_block_size,
841                                                bool format_device)
842 {
843         int r;
844         struct dm_pool_metadata *pmd;
845
846         pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
847         if (!pmd) {
848                 DMERR("could not allocate metadata struct");
849                 return ERR_PTR(-ENOMEM);
850         }
851
852         init_rwsem(&pmd->root_lock);
853         pmd->time = 0;
854         INIT_LIST_HEAD(&pmd->thin_devices);
855         pmd->fail_io = false;
856         pmd->bdev = bdev;
857         pmd->data_block_size = data_block_size;
858
859         r = __create_persistent_data_objects(pmd, format_device);
860         if (r) {
861                 kfree(pmd);
862                 return ERR_PTR(r);
863         }
864
865         r = __begin_transaction(pmd);
866         if (r < 0) {
867                 if (dm_pool_metadata_close(pmd) < 0)
868                         DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
869                 return ERR_PTR(r);
870         }
871
872         __set_metadata_reserve(pmd);
873
874         return pmd;
875 }
876
877 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
878 {
879         int r;
880         unsigned open_devices = 0;
881         struct dm_thin_device *td, *tmp;
882
883         down_read(&pmd->root_lock);
884         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
885                 if (td->open_count)
886                         open_devices++;
887                 else {
888                         list_del(&td->list);
889                         kfree(td);
890                 }
891         }
892         up_read(&pmd->root_lock);
893
894         if (open_devices) {
895                 DMERR("attempt to close pmd when %u device(s) are still open",
896                        open_devices);
897                 return -EBUSY;
898         }
899
900         if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
901                 r = __commit_transaction(pmd);
902                 if (r < 0)
903                         DMWARN("%s: __commit_transaction() failed, error = %d",
904                                __func__, r);
905         }
906
907         if (!pmd->fail_io)
908                 __destroy_persistent_data_objects(pmd);
909
910         kfree(pmd);
911         return 0;
912 }
913
914 /*
915  * __open_device: Returns @td corresponding to device with id @dev,
916  * creating it if @create is set and incrementing @td->open_count.
917  * On failure, @td is undefined.
918  */
919 static int __open_device(struct dm_pool_metadata *pmd,
920                          dm_thin_id dev, int create,
921                          struct dm_thin_device **td)
922 {
923         int r, changed = 0;
924         struct dm_thin_device *td2;
925         uint64_t key = dev;
926         struct disk_device_details details_le;
927
928         /*
929          * If the device is already open, return it.
930          */
931         list_for_each_entry(td2, &pmd->thin_devices, list)
932                 if (td2->id == dev) {
933                         /*
934                          * May not create an already-open device.
935                          */
936                         if (create)
937                                 return -EEXIST;
938
939                         td2->open_count++;
940                         *td = td2;
941                         return 0;
942                 }
943
944         /*
945          * Check the device exists.
946          */
947         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
948                             &key, &details_le);
949         if (r) {
950                 if (r != -ENODATA || !create)
951                         return r;
952
953                 /*
954                  * Create new device.
955                  */
956                 changed = 1;
957                 details_le.mapped_blocks = 0;
958                 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
959                 details_le.creation_time = cpu_to_le32(pmd->time);
960                 details_le.snapshotted_time = cpu_to_le32(pmd->time);
961         }
962
963         *td = kmalloc(sizeof(**td), GFP_NOIO);
964         if (!*td)
965                 return -ENOMEM;
966
967         (*td)->pmd = pmd;
968         (*td)->id = dev;
969         (*td)->open_count = 1;
970         (*td)->changed = changed;
971         (*td)->aborted_with_changes = false;
972         (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
973         (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
974         (*td)->creation_time = le32_to_cpu(details_le.creation_time);
975         (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
976
977         list_add(&(*td)->list, &pmd->thin_devices);
978
979         return 0;
980 }
981
982 static void __close_device(struct dm_thin_device *td)
983 {
984         --td->open_count;
985 }
986
987 static int __create_thin(struct dm_pool_metadata *pmd,
988                          dm_thin_id dev)
989 {
990         int r;
991         dm_block_t dev_root;
992         uint64_t key = dev;
993         struct disk_device_details details_le;
994         struct dm_thin_device *td;
995         __le64 value;
996
997         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
998                             &key, &details_le);
999         if (!r)
1000                 return -EEXIST;
1001
1002         /*
1003          * Create an empty btree for the mappings.
1004          */
1005         r = dm_btree_empty(&pmd->bl_info, &dev_root);
1006         if (r)
1007                 return r;
1008
1009         /*
1010          * Insert it into the main mapping tree.
1011          */
1012         value = cpu_to_le64(dev_root);
1013         __dm_bless_for_disk(&value);
1014         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1015         if (r) {
1016                 dm_btree_del(&pmd->bl_info, dev_root);
1017                 return r;
1018         }
1019
1020         r = __open_device(pmd, dev, 1, &td);
1021         if (r) {
1022                 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1023                 dm_btree_del(&pmd->bl_info, dev_root);
1024                 return r;
1025         }
1026         __close_device(td);
1027
1028         return r;
1029 }
1030
1031 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1032 {
1033         int r = -EINVAL;
1034
1035         down_write(&pmd->root_lock);
1036         if (!pmd->fail_io)
1037                 r = __create_thin(pmd, dev);
1038         up_write(&pmd->root_lock);
1039
1040         return r;
1041 }
1042
1043 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1044                                   struct dm_thin_device *snap,
1045                                   dm_thin_id origin, uint32_t time)
1046 {
1047         int r;
1048         struct dm_thin_device *td;
1049
1050         r = __open_device(pmd, origin, 0, &td);
1051         if (r)
1052                 return r;
1053
1054         td->changed = 1;
1055         td->snapshotted_time = time;
1056
1057         snap->mapped_blocks = td->mapped_blocks;
1058         snap->snapshotted_time = time;
1059         __close_device(td);
1060
1061         return 0;
1062 }
1063
1064 static int __create_snap(struct dm_pool_metadata *pmd,
1065                          dm_thin_id dev, dm_thin_id origin)
1066 {
1067         int r;
1068         dm_block_t origin_root;
1069         uint64_t key = origin, dev_key = dev;
1070         struct dm_thin_device *td;
1071         struct disk_device_details details_le;
1072         __le64 value;
1073
1074         /* check this device is unused */
1075         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1076                             &dev_key, &details_le);
1077         if (!r)
1078                 return -EEXIST;
1079
1080         /* find the mapping tree for the origin */
1081         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1082         if (r)
1083                 return r;
1084         origin_root = le64_to_cpu(value);
1085
1086         /* clone the origin, an inc will do */
1087         dm_tm_inc(pmd->tm, origin_root);
1088
1089         /* insert into the main mapping tree */
1090         value = cpu_to_le64(origin_root);
1091         __dm_bless_for_disk(&value);
1092         key = dev;
1093         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1094         if (r) {
1095                 dm_tm_dec(pmd->tm, origin_root);
1096                 return r;
1097         }
1098
1099         pmd->time++;
1100
1101         r = __open_device(pmd, dev, 1, &td);
1102         if (r)
1103                 goto bad;
1104
1105         r = __set_snapshot_details(pmd, td, origin, pmd->time);
1106         __close_device(td);
1107
1108         if (r)
1109                 goto bad;
1110
1111         return 0;
1112
1113 bad:
1114         dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1115         dm_btree_remove(&pmd->details_info, pmd->details_root,
1116                         &key, &pmd->details_root);
1117         return r;
1118 }
1119
1120 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1121                                  dm_thin_id dev,
1122                                  dm_thin_id origin)
1123 {
1124         int r = -EINVAL;
1125
1126         down_write(&pmd->root_lock);
1127         if (!pmd->fail_io)
1128                 r = __create_snap(pmd, dev, origin);
1129         up_write(&pmd->root_lock);
1130
1131         return r;
1132 }
1133
1134 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1135 {
1136         int r;
1137         uint64_t key = dev;
1138         struct dm_thin_device *td;
1139
1140         /* TODO: failure should mark the transaction invalid */
1141         r = __open_device(pmd, dev, 0, &td);
1142         if (r)
1143                 return r;
1144
1145         if (td->open_count > 1) {
1146                 __close_device(td);
1147                 return -EBUSY;
1148         }
1149
1150         list_del(&td->list);
1151         kfree(td);
1152         r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1153                             &key, &pmd->details_root);
1154         if (r)
1155                 return r;
1156
1157         r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1158         if (r)
1159                 return r;
1160
1161         return 0;
1162 }
1163
1164 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1165                                dm_thin_id dev)
1166 {
1167         int r = -EINVAL;
1168
1169         down_write(&pmd->root_lock);
1170         if (!pmd->fail_io)
1171                 r = __delete_device(pmd, dev);
1172         up_write(&pmd->root_lock);
1173
1174         return r;
1175 }
1176
1177 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1178                                         uint64_t current_id,
1179                                         uint64_t new_id)
1180 {
1181         int r = -EINVAL;
1182
1183         down_write(&pmd->root_lock);
1184
1185         if (pmd->fail_io)
1186                 goto out;
1187
1188         if (pmd->trans_id != current_id) {
1189                 DMERR("mismatched transaction id");
1190                 goto out;
1191         }
1192
1193         pmd->trans_id = new_id;
1194         r = 0;
1195
1196 out:
1197         up_write(&pmd->root_lock);
1198
1199         return r;
1200 }
1201
1202 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1203                                         uint64_t *result)
1204 {
1205         int r = -EINVAL;
1206
1207         down_read(&pmd->root_lock);
1208         if (!pmd->fail_io) {
1209                 *result = pmd->trans_id;
1210                 r = 0;
1211         }
1212         up_read(&pmd->root_lock);
1213
1214         return r;
1215 }
1216
1217 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1218 {
1219         int r, inc;
1220         struct thin_disk_superblock *disk_super;
1221         struct dm_block *copy, *sblock;
1222         dm_block_t held_root;
1223
1224         /*
1225          * We commit to ensure the btree roots which we increment in a
1226          * moment are up to date.
1227          */
1228         __commit_transaction(pmd);
1229
1230         /*
1231          * Copy the superblock.
1232          */
1233         dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1234         r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1235                                &sb_validator, &copy, &inc);
1236         if (r)
1237                 return r;
1238
1239         BUG_ON(!inc);
1240
1241         held_root = dm_block_location(copy);
1242         disk_super = dm_block_data(copy);
1243
1244         if (le64_to_cpu(disk_super->held_root)) {
1245                 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1246
1247                 dm_tm_dec(pmd->tm, held_root);
1248                 dm_tm_unlock(pmd->tm, copy);
1249                 return -EBUSY;
1250         }
1251
1252         /*
1253          * Wipe the spacemap since we're not publishing this.
1254          */
1255         memset(&disk_super->data_space_map_root, 0,
1256                sizeof(disk_super->data_space_map_root));
1257         memset(&disk_super->metadata_space_map_root, 0,
1258                sizeof(disk_super->metadata_space_map_root));
1259
1260         /*
1261          * Increment the data structures that need to be preserved.
1262          */
1263         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1264         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1265         dm_tm_unlock(pmd->tm, copy);
1266
1267         /*
1268          * Write the held root into the superblock.
1269          */
1270         r = superblock_lock(pmd, &sblock);
1271         if (r) {
1272                 dm_tm_dec(pmd->tm, held_root);
1273                 return r;
1274         }
1275
1276         disk_super = dm_block_data(sblock);
1277         disk_super->held_root = cpu_to_le64(held_root);
1278         dm_bm_unlock(sblock);
1279         return 0;
1280 }
1281
1282 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1283 {
1284         int r = -EINVAL;
1285
1286         down_write(&pmd->root_lock);
1287         if (!pmd->fail_io)
1288                 r = __reserve_metadata_snap(pmd);
1289         up_write(&pmd->root_lock);
1290
1291         return r;
1292 }
1293
1294 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1295 {
1296         int r;
1297         struct thin_disk_superblock *disk_super;
1298         struct dm_block *sblock, *copy;
1299         dm_block_t held_root;
1300
1301         r = superblock_lock(pmd, &sblock);
1302         if (r)
1303                 return r;
1304
1305         disk_super = dm_block_data(sblock);
1306         held_root = le64_to_cpu(disk_super->held_root);
1307         disk_super->held_root = cpu_to_le64(0);
1308
1309         dm_bm_unlock(sblock);
1310
1311         if (!held_root) {
1312                 DMWARN("No pool metadata snapshot found: nothing to release.");
1313                 return -EINVAL;
1314         }
1315
1316         r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1317         if (r)
1318                 return r;
1319
1320         disk_super = dm_block_data(copy);
1321         dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1322         dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1323         dm_sm_dec_block(pmd->metadata_sm, held_root);
1324
1325         dm_tm_unlock(pmd->tm, copy);
1326
1327         return 0;
1328 }
1329
1330 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1331 {
1332         int r = -EINVAL;
1333
1334         down_write(&pmd->root_lock);
1335         if (!pmd->fail_io)
1336                 r = __release_metadata_snap(pmd);
1337         up_write(&pmd->root_lock);
1338
1339         return r;
1340 }
1341
1342 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1343                                dm_block_t *result)
1344 {
1345         int r;
1346         struct thin_disk_superblock *disk_super;
1347         struct dm_block *sblock;
1348
1349         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1350                             &sb_validator, &sblock);
1351         if (r)
1352                 return r;
1353
1354         disk_super = dm_block_data(sblock);
1355         *result = le64_to_cpu(disk_super->held_root);
1356
1357         dm_bm_unlock(sblock);
1358
1359         return 0;
1360 }
1361
1362 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1363                               dm_block_t *result)
1364 {
1365         int r = -EINVAL;
1366
1367         down_read(&pmd->root_lock);
1368         if (!pmd->fail_io)
1369                 r = __get_metadata_snap(pmd, result);
1370         up_read(&pmd->root_lock);
1371
1372         return r;
1373 }
1374
1375 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1376                              struct dm_thin_device **td)
1377 {
1378         int r = -EINVAL;
1379
1380         down_write(&pmd->root_lock);
1381         if (!pmd->fail_io)
1382                 r = __open_device(pmd, dev, 0, td);
1383         up_write(&pmd->root_lock);
1384
1385         return r;
1386 }
1387
1388 int dm_pool_close_thin_device(struct dm_thin_device *td)
1389 {
1390         down_write(&td->pmd->root_lock);
1391         __close_device(td);
1392         up_write(&td->pmd->root_lock);
1393
1394         return 0;
1395 }
1396
1397 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1398 {
1399         return td->id;
1400 }
1401
1402 /*
1403  * Check whether @time (of block creation) is older than @td's last snapshot.
1404  * If so then the associated block is shared with the last snapshot device.
1405  * Any block on a device created *after* the device last got snapshotted is
1406  * necessarily not shared.
1407  */
1408 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1409 {
1410         return td->snapshotted_time > time;
1411 }
1412
1413 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1414                                  struct dm_thin_lookup_result *result)
1415 {
1416         uint64_t block_time = 0;
1417         dm_block_t exception_block;
1418         uint32_t exception_time;
1419
1420         block_time = le64_to_cpu(value);
1421         unpack_block_time(block_time, &exception_block, &exception_time);
1422         result->block = exception_block;
1423         result->shared = __snapshotted_since(td, exception_time);
1424 }
1425
1426 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1427                         int can_issue_io, struct dm_thin_lookup_result *result)
1428 {
1429         int r;
1430         __le64 value;
1431         struct dm_pool_metadata *pmd = td->pmd;
1432         dm_block_t keys[2] = { td->id, block };
1433         struct dm_btree_info *info;
1434
1435         if (can_issue_io) {
1436                 info = &pmd->info;
1437         } else
1438                 info = &pmd->nb_info;
1439
1440         r = dm_btree_lookup(info, pmd->root, keys, &value);
1441         if (!r)
1442                 unpack_lookup_result(td, value, result);
1443
1444         return r;
1445 }
1446
1447 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1448                        int can_issue_io, struct dm_thin_lookup_result *result)
1449 {
1450         int r;
1451         struct dm_pool_metadata *pmd = td->pmd;
1452
1453         down_read(&pmd->root_lock);
1454         if (pmd->fail_io) {
1455                 up_read(&pmd->root_lock);
1456                 return -EINVAL;
1457         }
1458
1459         r = __find_block(td, block, can_issue_io, result);
1460
1461         up_read(&pmd->root_lock);
1462         return r;
1463 }
1464
1465 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1466                                           dm_block_t *vblock,
1467                                           struct dm_thin_lookup_result *result)
1468 {
1469         int r;
1470         __le64 value;
1471         struct dm_pool_metadata *pmd = td->pmd;
1472         dm_block_t keys[2] = { td->id, block };
1473
1474         r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1475         if (!r)
1476                 unpack_lookup_result(td, value, result);
1477
1478         return r;
1479 }
1480
1481 static int __find_mapped_range(struct dm_thin_device *td,
1482                                dm_block_t begin, dm_block_t end,
1483                                dm_block_t *thin_begin, dm_block_t *thin_end,
1484                                dm_block_t *pool_begin, bool *maybe_shared)
1485 {
1486         int r;
1487         dm_block_t pool_end;
1488         struct dm_thin_lookup_result lookup;
1489
1490         if (end < begin)
1491                 return -ENODATA;
1492
1493         r = __find_next_mapped_block(td, begin, &begin, &lookup);
1494         if (r)
1495                 return r;
1496
1497         if (begin >= end)
1498                 return -ENODATA;
1499
1500         *thin_begin = begin;
1501         *pool_begin = lookup.block;
1502         *maybe_shared = lookup.shared;
1503
1504         begin++;
1505         pool_end = *pool_begin + 1;
1506         while (begin != end) {
1507                 r = __find_block(td, begin, true, &lookup);
1508                 if (r) {
1509                         if (r == -ENODATA)
1510                                 break;
1511                         else
1512                                 return r;
1513                 }
1514
1515                 if ((lookup.block != pool_end) ||
1516                     (lookup.shared != *maybe_shared))
1517                         break;
1518
1519                 pool_end++;
1520                 begin++;
1521         }
1522
1523         *thin_end = begin;
1524         return 0;
1525 }
1526
1527 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1528                               dm_block_t begin, dm_block_t end,
1529                               dm_block_t *thin_begin, dm_block_t *thin_end,
1530                               dm_block_t *pool_begin, bool *maybe_shared)
1531 {
1532         int r = -EINVAL;
1533         struct dm_pool_metadata *pmd = td->pmd;
1534
1535         down_read(&pmd->root_lock);
1536         if (!pmd->fail_io) {
1537                 r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1538                                         pool_begin, maybe_shared);
1539         }
1540         up_read(&pmd->root_lock);
1541
1542         return r;
1543 }
1544
1545 static int __insert(struct dm_thin_device *td, dm_block_t block,
1546                     dm_block_t data_block)
1547 {
1548         int r, inserted;
1549         __le64 value;
1550         struct dm_pool_metadata *pmd = td->pmd;
1551         dm_block_t keys[2] = { td->id, block };
1552
1553         value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1554         __dm_bless_for_disk(&value);
1555
1556         r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1557                                    &pmd->root, &inserted);
1558         if (r)
1559                 return r;
1560
1561         td->changed = 1;
1562         if (inserted)
1563                 td->mapped_blocks++;
1564
1565         return 0;
1566 }
1567
1568 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1569                          dm_block_t data_block)
1570 {
1571         int r = -EINVAL;
1572
1573         down_write(&td->pmd->root_lock);
1574         if (!td->pmd->fail_io)
1575                 r = __insert(td, block, data_block);
1576         up_write(&td->pmd->root_lock);
1577
1578         return r;
1579 }
1580
1581 static int __remove(struct dm_thin_device *td, dm_block_t block)
1582 {
1583         int r;
1584         struct dm_pool_metadata *pmd = td->pmd;
1585         dm_block_t keys[2] = { td->id, block };
1586
1587         r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1588         if (r)
1589                 return r;
1590
1591         td->mapped_blocks--;
1592         td->changed = 1;
1593
1594         return 0;
1595 }
1596
1597 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1598 {
1599         int r;
1600         unsigned count, total_count = 0;
1601         struct dm_pool_metadata *pmd = td->pmd;
1602         dm_block_t keys[1] = { td->id };
1603         __le64 value;
1604         dm_block_t mapping_root;
1605
1606         /*
1607          * Find the mapping tree
1608          */
1609         r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1610         if (r)
1611                 return r;
1612
1613         /*
1614          * Remove from the mapping tree, taking care to inc the
1615          * ref count so it doesn't get deleted.
1616          */
1617         mapping_root = le64_to_cpu(value);
1618         dm_tm_inc(pmd->tm, mapping_root);
1619         r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1620         if (r)
1621                 return r;
1622
1623         /*
1624          * Remove leaves stops at the first unmapped entry, so we have to
1625          * loop round finding mapped ranges.
1626          */
1627         while (begin < end) {
1628                 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1629                 if (r == -ENODATA)
1630                         break;
1631
1632                 if (r)
1633                         return r;
1634
1635                 if (begin >= end)
1636                         break;
1637
1638                 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1639                 if (r)
1640                         return r;
1641
1642                 total_count += count;
1643         }
1644
1645         td->mapped_blocks -= total_count;
1646         td->changed = 1;
1647
1648         /*
1649          * Reinsert the mapping tree.
1650          */
1651         value = cpu_to_le64(mapping_root);
1652         __dm_bless_for_disk(&value);
1653         return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1654 }
1655
1656 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1657 {
1658         int r = -EINVAL;
1659
1660         down_write(&td->pmd->root_lock);
1661         if (!td->pmd->fail_io)
1662                 r = __remove(td, block);
1663         up_write(&td->pmd->root_lock);
1664
1665         return r;
1666 }
1667
1668 int dm_thin_remove_range(struct dm_thin_device *td,
1669                          dm_block_t begin, dm_block_t end)
1670 {
1671         int r = -EINVAL;
1672
1673         down_write(&td->pmd->root_lock);
1674         if (!td->pmd->fail_io)
1675                 r = __remove_range(td, begin, end);
1676         up_write(&td->pmd->root_lock);
1677
1678         return r;
1679 }
1680
1681 int dm_pool_block_is_used(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1682 {
1683         int r;
1684         uint32_t ref_count;
1685
1686         down_read(&pmd->root_lock);
1687         r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1688         if (!r)
1689                 *result = (ref_count != 0);
1690         up_read(&pmd->root_lock);
1691
1692         return r;
1693 }
1694
1695 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1696 {
1697         int r = 0;
1698
1699         down_write(&pmd->root_lock);
1700         for (; b != e; b++) {
1701                 r = dm_sm_inc_block(pmd->data_sm, b);
1702                 if (r)
1703                         break;
1704         }
1705         up_write(&pmd->root_lock);
1706
1707         return r;
1708 }
1709
1710 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1711 {
1712         int r = 0;
1713
1714         down_write(&pmd->root_lock);
1715         for (; b != e; b++) {
1716                 r = dm_sm_dec_block(pmd->data_sm, b);
1717                 if (r)
1718                         break;
1719         }
1720         up_write(&pmd->root_lock);
1721
1722         return r;
1723 }
1724
1725 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1726 {
1727         int r;
1728
1729         down_read(&td->pmd->root_lock);
1730         r = td->changed;
1731         up_read(&td->pmd->root_lock);
1732
1733         return r;
1734 }
1735
1736 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1737 {
1738         bool r = false;
1739         struct dm_thin_device *td, *tmp;
1740
1741         down_read(&pmd->root_lock);
1742         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1743                 if (td->changed) {
1744                         r = td->changed;
1745                         break;
1746                 }
1747         }
1748         up_read(&pmd->root_lock);
1749
1750         return r;
1751 }
1752
1753 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1754 {
1755         bool r;
1756
1757         down_read(&td->pmd->root_lock);
1758         r = td->aborted_with_changes;
1759         up_read(&td->pmd->root_lock);
1760
1761         return r;
1762 }
1763
1764 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1765 {
1766         int r = -EINVAL;
1767
1768         down_write(&pmd->root_lock);
1769         if (!pmd->fail_io)
1770                 r = dm_sm_new_block(pmd->data_sm, result);
1771         up_write(&pmd->root_lock);
1772
1773         return r;
1774 }
1775
1776 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1777 {
1778         int r = -EINVAL;
1779
1780         down_write(&pmd->root_lock);
1781         if (pmd->fail_io)
1782                 goto out;
1783
1784         r = __commit_transaction(pmd);
1785         if (r <= 0)
1786                 goto out;
1787
1788         /*
1789          * Open the next transaction.
1790          */
1791         r = __begin_transaction(pmd);
1792 out:
1793         up_write(&pmd->root_lock);
1794         return r;
1795 }
1796
1797 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1798 {
1799         struct dm_thin_device *td;
1800
1801         list_for_each_entry(td, &pmd->thin_devices, list)
1802                 td->aborted_with_changes = td->changed;
1803 }
1804
1805 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1806 {
1807         int r = -EINVAL;
1808
1809         down_write(&pmd->root_lock);
1810         if (pmd->fail_io)
1811                 goto out;
1812
1813         __set_abort_with_changes_flags(pmd);
1814         __destroy_persistent_data_objects(pmd);
1815         r = __create_persistent_data_objects(pmd, false);
1816         if (r)
1817                 pmd->fail_io = true;
1818
1819 out:
1820         up_write(&pmd->root_lock);
1821
1822         return r;
1823 }
1824
1825 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1826 {
1827         int r = -EINVAL;
1828
1829         down_read(&pmd->root_lock);
1830         if (!pmd->fail_io)
1831                 r = dm_sm_get_nr_free(pmd->data_sm, result);
1832         up_read(&pmd->root_lock);
1833
1834         return r;
1835 }
1836
1837 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1838                                           dm_block_t *result)
1839 {
1840         int r = -EINVAL;
1841
1842         down_read(&pmd->root_lock);
1843         if (!pmd->fail_io)
1844                 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1845
1846         if (!r) {
1847                 if (*result < pmd->metadata_reserve)
1848                         *result = 0;
1849                 else
1850                         *result -= pmd->metadata_reserve;
1851         }
1852         up_read(&pmd->root_lock);
1853
1854         return r;
1855 }
1856
1857 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1858                                   dm_block_t *result)
1859 {
1860         int r = -EINVAL;
1861
1862         down_read(&pmd->root_lock);
1863         if (!pmd->fail_io)
1864                 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1865         up_read(&pmd->root_lock);
1866
1867         return r;
1868 }
1869
1870 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1871 {
1872         int r = -EINVAL;
1873
1874         down_read(&pmd->root_lock);
1875         if (!pmd->fail_io)
1876                 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1877         up_read(&pmd->root_lock);
1878
1879         return r;
1880 }
1881
1882 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1883 {
1884         int r = -EINVAL;
1885         struct dm_pool_metadata *pmd = td->pmd;
1886
1887         down_read(&pmd->root_lock);
1888         if (!pmd->fail_io) {
1889                 *result = td->mapped_blocks;
1890                 r = 0;
1891         }
1892         up_read(&pmd->root_lock);
1893
1894         return r;
1895 }
1896
1897 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1898 {
1899         int r;
1900         __le64 value_le;
1901         dm_block_t thin_root;
1902         struct dm_pool_metadata *pmd = td->pmd;
1903
1904         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1905         if (r)
1906                 return r;
1907
1908         thin_root = le64_to_cpu(value_le);
1909
1910         return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1911 }
1912
1913 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1914                                      dm_block_t *result)
1915 {
1916         int r = -EINVAL;
1917         struct dm_pool_metadata *pmd = td->pmd;
1918
1919         down_read(&pmd->root_lock);
1920         if (!pmd->fail_io)
1921                 r = __highest_block(td, result);
1922         up_read(&pmd->root_lock);
1923
1924         return r;
1925 }
1926
1927 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1928 {
1929         int r;
1930         dm_block_t old_count;
1931
1932         r = dm_sm_get_nr_blocks(sm, &old_count);
1933         if (r)
1934                 return r;
1935
1936         if (new_count == old_count)
1937                 return 0;
1938
1939         if (new_count < old_count) {
1940                 DMERR("cannot reduce size of space map");
1941                 return -EINVAL;
1942         }
1943
1944         return dm_sm_extend(sm, new_count - old_count);
1945 }
1946
1947 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1948 {
1949         int r = -EINVAL;
1950
1951         down_write(&pmd->root_lock);
1952         if (!pmd->fail_io)
1953                 r = __resize_space_map(pmd->data_sm, new_count);
1954         up_write(&pmd->root_lock);
1955
1956         return r;
1957 }
1958
1959 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1960 {
1961         int r = -EINVAL;
1962
1963         down_write(&pmd->root_lock);
1964         if (!pmd->fail_io) {
1965                 r = __resize_space_map(pmd->metadata_sm, new_count);
1966                 if (!r)
1967                         __set_metadata_reserve(pmd);
1968         }
1969         up_write(&pmd->root_lock);
1970
1971         return r;
1972 }
1973
1974 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
1975 {
1976         down_write(&pmd->root_lock);
1977         dm_bm_set_read_only(pmd->bm);
1978         up_write(&pmd->root_lock);
1979 }
1980
1981 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
1982 {
1983         down_write(&pmd->root_lock);
1984         dm_bm_set_read_write(pmd->bm);
1985         up_write(&pmd->root_lock);
1986 }
1987
1988 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
1989                                         dm_block_t threshold,
1990                                         dm_sm_threshold_fn fn,
1991                                         void *context)
1992 {
1993         int r;
1994
1995         down_write(&pmd->root_lock);
1996         r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
1997         up_write(&pmd->root_lock);
1998
1999         return r;
2000 }
2001
2002 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2003 {
2004         int r;
2005         struct dm_block *sblock;
2006         struct thin_disk_superblock *disk_super;
2007
2008         down_write(&pmd->root_lock);
2009         pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2010
2011         r = superblock_lock(pmd, &sblock);
2012         if (r) {
2013                 DMERR("couldn't read superblock");
2014                 goto out;
2015         }
2016
2017         disk_super = dm_block_data(sblock);
2018         disk_super->flags = cpu_to_le32(pmd->flags);
2019
2020         dm_bm_unlock(sblock);
2021 out:
2022         up_write(&pmd->root_lock);
2023         return r;
2024 }
2025
2026 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2027 {
2028         bool needs_check;
2029
2030         down_read(&pmd->root_lock);
2031         needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2032         up_read(&pmd->root_lock);
2033
2034         return needs_check;
2035 }
2036
2037 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2038 {
2039         down_read(&pmd->root_lock);
2040         if (!pmd->fail_io)
2041                 dm_tm_issue_prefetches(pmd->tm);
2042         up_read(&pmd->root_lock);
2043 }