Merge tag 'for-4.19/post-20180822' of git://git.kernel.dk/linux-block
[sfrench/cifs-2.6.git] / drivers / md / dm-log-writes.c
1 /*
2  * Copyright (C) 2014 Facebook. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include <linux/device-mapper.h>
8
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/blkdev.h>
12 #include <linux/bio.h>
13 #include <linux/dax.h>
14 #include <linux/slab.h>
15 #include <linux/kthread.h>
16 #include <linux/freezer.h>
17 #include <linux/uio.h>
18
19 #define DM_MSG_PREFIX "log-writes"
20
21 /*
22  * This target will sequentially log all writes to the target device onto the
23  * log device.  This is helpful for replaying writes to check for fs consistency
24  * at all times.  This target provides a mechanism to mark specific events to
25  * check data at a later time.  So for example you would:
26  *
27  * write data
28  * fsync
29  * dmsetup message /dev/whatever mark mymark
30  * unmount /mnt/test
31  *
32  * Then replay the log up to mymark and check the contents of the replay to
33  * verify it matches what was written.
34  *
35  * We log writes only after they have been flushed, this makes the log describe
36  * close to the order in which the data hits the actual disk, not its cache.  So
37  * for example the following sequence (W means write, C means complete)
38  *
39  * Wa,Wb,Wc,Cc,Ca,FLUSH,FUAd,Cb,CFLUSH,CFUAd
40  *
41  * Would result in the log looking like this:
42  *
43  * c,a,flush,fuad,b,<other writes>,<next flush>
44  *
45  * This is meant to help expose problems where file systems do not properly wait
46  * on data being written before invoking a FLUSH.  FUA bypasses cache so once it
47  * completes it is added to the log as it should be on disk.
48  *
49  * We treat DISCARDs as if they don't bypass cache so that they are logged in
50  * order of completion along with the normal writes.  If we didn't do it this
51  * way we would process all the discards first and then write all the data, when
52  * in fact we want to do the data and the discard in the order that they
53  * completed.
54  */
55 #define LOG_FLUSH_FLAG          (1 << 0)
56 #define LOG_FUA_FLAG            (1 << 1)
57 #define LOG_DISCARD_FLAG        (1 << 2)
58 #define LOG_MARK_FLAG           (1 << 3)
59 #define LOG_METADATA_FLAG       (1 << 4)
60
61 #define WRITE_LOG_VERSION 1ULL
62 #define WRITE_LOG_MAGIC 0x6a736677736872ULL
63
64 /*
65  * The disk format for this is braindead simple.
66  *
67  * At byte 0 we have our super, followed by the following sequence for
68  * nr_entries:
69  *
70  * [   1 sector    ][  entry->nr_sectors ]
71  * [log_write_entry][    data written    ]
72  *
73  * The log_write_entry takes up a full sector so we can have arbitrary length
74  * marks and it leaves us room for extra content in the future.
75  */
76
77 /*
78  * Basic info about the log for userspace.
79  */
80 struct log_write_super {
81         __le64 magic;
82         __le64 version;
83         __le64 nr_entries;
84         __le32 sectorsize;
85 };
86
87 /*
88  * sector - the sector we wrote.
89  * nr_sectors - the number of sectors we wrote.
90  * flags - flags for this log entry.
91  * data_len - the size of the data in this log entry, this is for private log
92  * entry stuff, the MARK data provided by userspace for example.
93  */
94 struct log_write_entry {
95         __le64 sector;
96         __le64 nr_sectors;
97         __le64 flags;
98         __le64 data_len;
99 };
100
101 struct log_writes_c {
102         struct dm_dev *dev;
103         struct dm_dev *logdev;
104         u64 logged_entries;
105         u32 sectorsize;
106         u32 sectorshift;
107         atomic_t io_blocks;
108         atomic_t pending_blocks;
109         sector_t next_sector;
110         sector_t end_sector;
111         bool logging_enabled;
112         bool device_supports_discard;
113         spinlock_t blocks_lock;
114         struct list_head unflushed_blocks;
115         struct list_head logging_blocks;
116         wait_queue_head_t wait;
117         struct task_struct *log_kthread;
118 };
119
120 struct pending_block {
121         int vec_cnt;
122         u64 flags;
123         sector_t sector;
124         sector_t nr_sectors;
125         char *data;
126         u32 datalen;
127         struct list_head list;
128         struct bio_vec vecs[0];
129 };
130
131 struct per_bio_data {
132         struct pending_block *block;
133 };
134
135 static inline sector_t bio_to_dev_sectors(struct log_writes_c *lc,
136                                           sector_t sectors)
137 {
138         return sectors >> (lc->sectorshift - SECTOR_SHIFT);
139 }
140
141 static inline sector_t dev_to_bio_sectors(struct log_writes_c *lc,
142                                           sector_t sectors)
143 {
144         return sectors << (lc->sectorshift - SECTOR_SHIFT);
145 }
146
147 static void put_pending_block(struct log_writes_c *lc)
148 {
149         if (atomic_dec_and_test(&lc->pending_blocks)) {
150                 smp_mb__after_atomic();
151                 if (waitqueue_active(&lc->wait))
152                         wake_up(&lc->wait);
153         }
154 }
155
156 static void put_io_block(struct log_writes_c *lc)
157 {
158         if (atomic_dec_and_test(&lc->io_blocks)) {
159                 smp_mb__after_atomic();
160                 if (waitqueue_active(&lc->wait))
161                         wake_up(&lc->wait);
162         }
163 }
164
165 static void log_end_io(struct bio *bio)
166 {
167         struct log_writes_c *lc = bio->bi_private;
168
169         if (bio->bi_status) {
170                 unsigned long flags;
171
172                 DMERR("Error writing log block, error=%d", bio->bi_status);
173                 spin_lock_irqsave(&lc->blocks_lock, flags);
174                 lc->logging_enabled = false;
175                 spin_unlock_irqrestore(&lc->blocks_lock, flags);
176         }
177
178         bio_free_pages(bio);
179         put_io_block(lc);
180         bio_put(bio);
181 }
182
183 /*
184  * Meant to be called if there is an error, it will free all the pages
185  * associated with the block.
186  */
187 static void free_pending_block(struct log_writes_c *lc,
188                                struct pending_block *block)
189 {
190         int i;
191
192         for (i = 0; i < block->vec_cnt; i++) {
193                 if (block->vecs[i].bv_page)
194                         __free_page(block->vecs[i].bv_page);
195         }
196         kfree(block->data);
197         kfree(block);
198         put_pending_block(lc);
199 }
200
201 static int write_metadata(struct log_writes_c *lc, void *entry,
202                           size_t entrylen, void *data, size_t datalen,
203                           sector_t sector)
204 {
205         struct bio *bio;
206         struct page *page;
207         void *ptr;
208         size_t ret;
209
210         bio = bio_alloc(GFP_KERNEL, 1);
211         if (!bio) {
212                 DMERR("Couldn't alloc log bio");
213                 goto error;
214         }
215         bio->bi_iter.bi_size = 0;
216         bio->bi_iter.bi_sector = sector;
217         bio_set_dev(bio, lc->logdev->bdev);
218         bio->bi_end_io = log_end_io;
219         bio->bi_private = lc;
220         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
221
222         page = alloc_page(GFP_KERNEL);
223         if (!page) {
224                 DMERR("Couldn't alloc log page");
225                 bio_put(bio);
226                 goto error;
227         }
228
229         ptr = kmap_atomic(page);
230         memcpy(ptr, entry, entrylen);
231         if (datalen)
232                 memcpy(ptr + entrylen, data, datalen);
233         memset(ptr + entrylen + datalen, 0,
234                lc->sectorsize - entrylen - datalen);
235         kunmap_atomic(ptr);
236
237         ret = bio_add_page(bio, page, lc->sectorsize, 0);
238         if (ret != lc->sectorsize) {
239                 DMERR("Couldn't add page to the log block");
240                 goto error_bio;
241         }
242         submit_bio(bio);
243         return 0;
244 error_bio:
245         bio_put(bio);
246         __free_page(page);
247 error:
248         put_io_block(lc);
249         return -1;
250 }
251
252 static int write_inline_data(struct log_writes_c *lc, void *entry,
253                              size_t entrylen, void *data, size_t datalen,
254                              sector_t sector)
255 {
256         int num_pages, bio_pages, pg_datalen, pg_sectorlen, i;
257         struct page *page;
258         struct bio *bio;
259         size_t ret;
260         void *ptr;
261
262         while (datalen) {
263                 num_pages = ALIGN(datalen, PAGE_SIZE) >> PAGE_SHIFT;
264                 bio_pages = min(num_pages, BIO_MAX_PAGES);
265
266                 atomic_inc(&lc->io_blocks);
267
268                 bio = bio_alloc(GFP_KERNEL, bio_pages);
269                 if (!bio) {
270                         DMERR("Couldn't alloc inline data bio");
271                         goto error;
272                 }
273
274                 bio->bi_iter.bi_size = 0;
275                 bio->bi_iter.bi_sector = sector;
276                 bio_set_dev(bio, lc->logdev->bdev);
277                 bio->bi_end_io = log_end_io;
278                 bio->bi_private = lc;
279                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
280
281                 for (i = 0; i < bio_pages; i++) {
282                         pg_datalen = min_t(int, datalen, PAGE_SIZE);
283                         pg_sectorlen = ALIGN(pg_datalen, lc->sectorsize);
284
285                         page = alloc_page(GFP_KERNEL);
286                         if (!page) {
287                                 DMERR("Couldn't alloc inline data page");
288                                 goto error_bio;
289                         }
290
291                         ptr = kmap_atomic(page);
292                         memcpy(ptr, data, pg_datalen);
293                         if (pg_sectorlen > pg_datalen)
294                                 memset(ptr + pg_datalen, 0, pg_sectorlen - pg_datalen);
295                         kunmap_atomic(ptr);
296
297                         ret = bio_add_page(bio, page, pg_sectorlen, 0);
298                         if (ret != pg_sectorlen) {
299                                 DMERR("Couldn't add page of inline data");
300                                 __free_page(page);
301                                 goto error_bio;
302                         }
303
304                         datalen -= pg_datalen;
305                         data    += pg_datalen;
306                 }
307                 submit_bio(bio);
308
309                 sector += bio_pages * PAGE_SECTORS;
310         }
311         return 0;
312 error_bio:
313         bio_free_pages(bio);
314         bio_put(bio);
315 error:
316         put_io_block(lc);
317         return -1;
318 }
319
320 static int log_one_block(struct log_writes_c *lc,
321                          struct pending_block *block, sector_t sector)
322 {
323         struct bio *bio;
324         struct log_write_entry entry;
325         size_t metadatalen, ret;
326         int i;
327
328         entry.sector = cpu_to_le64(block->sector);
329         entry.nr_sectors = cpu_to_le64(block->nr_sectors);
330         entry.flags = cpu_to_le64(block->flags);
331         entry.data_len = cpu_to_le64(block->datalen);
332
333         metadatalen = (block->flags & LOG_MARK_FLAG) ? block->datalen : 0;
334         if (write_metadata(lc, &entry, sizeof(entry), block->data,
335                            metadatalen, sector)) {
336                 free_pending_block(lc, block);
337                 return -1;
338         }
339
340         sector += dev_to_bio_sectors(lc, 1);
341
342         if (block->datalen && metadatalen == 0) {
343                 if (write_inline_data(lc, &entry, sizeof(entry), block->data,
344                                       block->datalen, sector)) {
345                         free_pending_block(lc, block);
346                         return -1;
347                 }
348                 /* we don't support both inline data & bio data */
349                 goto out;
350         }
351
352         if (!block->vec_cnt)
353                 goto out;
354
355         atomic_inc(&lc->io_blocks);
356         bio = bio_alloc(GFP_KERNEL, min(block->vec_cnt, BIO_MAX_PAGES));
357         if (!bio) {
358                 DMERR("Couldn't alloc log bio");
359                 goto error;
360         }
361         bio->bi_iter.bi_size = 0;
362         bio->bi_iter.bi_sector = sector;
363         bio_set_dev(bio, lc->logdev->bdev);
364         bio->bi_end_io = log_end_io;
365         bio->bi_private = lc;
366         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
367
368         for (i = 0; i < block->vec_cnt; i++) {
369                 /*
370                  * The page offset is always 0 because we allocate a new page
371                  * for every bvec in the original bio for simplicity sake.
372                  */
373                 ret = bio_add_page(bio, block->vecs[i].bv_page,
374                                    block->vecs[i].bv_len, 0);
375                 if (ret != block->vecs[i].bv_len) {
376                         atomic_inc(&lc->io_blocks);
377                         submit_bio(bio);
378                         bio = bio_alloc(GFP_KERNEL, min(block->vec_cnt - i, BIO_MAX_PAGES));
379                         if (!bio) {
380                                 DMERR("Couldn't alloc log bio");
381                                 goto error;
382                         }
383                         bio->bi_iter.bi_size = 0;
384                         bio->bi_iter.bi_sector = sector;
385                         bio_set_dev(bio, lc->logdev->bdev);
386                         bio->bi_end_io = log_end_io;
387                         bio->bi_private = lc;
388                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
389
390                         ret = bio_add_page(bio, block->vecs[i].bv_page,
391                                            block->vecs[i].bv_len, 0);
392                         if (ret != block->vecs[i].bv_len) {
393                                 DMERR("Couldn't add page on new bio?");
394                                 bio_put(bio);
395                                 goto error;
396                         }
397                 }
398                 sector += block->vecs[i].bv_len >> SECTOR_SHIFT;
399         }
400         submit_bio(bio);
401 out:
402         kfree(block->data);
403         kfree(block);
404         put_pending_block(lc);
405         return 0;
406 error:
407         free_pending_block(lc, block);
408         put_io_block(lc);
409         return -1;
410 }
411
412 static int log_super(struct log_writes_c *lc)
413 {
414         struct log_write_super super;
415
416         super.magic = cpu_to_le64(WRITE_LOG_MAGIC);
417         super.version = cpu_to_le64(WRITE_LOG_VERSION);
418         super.nr_entries = cpu_to_le64(lc->logged_entries);
419         super.sectorsize = cpu_to_le32(lc->sectorsize);
420
421         if (write_metadata(lc, &super, sizeof(super), NULL, 0, 0)) {
422                 DMERR("Couldn't write super");
423                 return -1;
424         }
425
426         return 0;
427 }
428
429 static inline sector_t logdev_last_sector(struct log_writes_c *lc)
430 {
431         return i_size_read(lc->logdev->bdev->bd_inode) >> SECTOR_SHIFT;
432 }
433
434 static int log_writes_kthread(void *arg)
435 {
436         struct log_writes_c *lc = (struct log_writes_c *)arg;
437         sector_t sector = 0;
438
439         while (!kthread_should_stop()) {
440                 bool super = false;
441                 bool logging_enabled;
442                 struct pending_block *block = NULL;
443                 int ret;
444
445                 spin_lock_irq(&lc->blocks_lock);
446                 if (!list_empty(&lc->logging_blocks)) {
447                         block = list_first_entry(&lc->logging_blocks,
448                                                  struct pending_block, list);
449                         list_del_init(&block->list);
450                         if (!lc->logging_enabled)
451                                 goto next;
452
453                         sector = lc->next_sector;
454                         if (!(block->flags & LOG_DISCARD_FLAG))
455                                 lc->next_sector += dev_to_bio_sectors(lc, block->nr_sectors);
456                         lc->next_sector += dev_to_bio_sectors(lc, 1);
457
458                         /*
459                          * Apparently the size of the device may not be known
460                          * right away, so handle this properly.
461                          */
462                         if (!lc->end_sector)
463                                 lc->end_sector = logdev_last_sector(lc);
464                         if (lc->end_sector &&
465                             lc->next_sector >= lc->end_sector) {
466                                 DMERR("Ran out of space on the logdev");
467                                 lc->logging_enabled = false;
468                                 goto next;
469                         }
470                         lc->logged_entries++;
471                         atomic_inc(&lc->io_blocks);
472
473                         super = (block->flags & (LOG_FUA_FLAG | LOG_MARK_FLAG));
474                         if (super)
475                                 atomic_inc(&lc->io_blocks);
476                 }
477 next:
478                 logging_enabled = lc->logging_enabled;
479                 spin_unlock_irq(&lc->blocks_lock);
480                 if (block) {
481                         if (logging_enabled) {
482                                 ret = log_one_block(lc, block, sector);
483                                 if (!ret && super)
484                                         ret = log_super(lc);
485                                 if (ret) {
486                                         spin_lock_irq(&lc->blocks_lock);
487                                         lc->logging_enabled = false;
488                                         spin_unlock_irq(&lc->blocks_lock);
489                                 }
490                         } else
491                                 free_pending_block(lc, block);
492                         continue;
493                 }
494
495                 if (!try_to_freeze()) {
496                         set_current_state(TASK_INTERRUPTIBLE);
497                         if (!kthread_should_stop() &&
498                             list_empty(&lc->logging_blocks))
499                                 schedule();
500                         __set_current_state(TASK_RUNNING);
501                 }
502         }
503         return 0;
504 }
505
506 /*
507  * Construct a log-writes mapping:
508  * log-writes <dev_path> <log_dev_path>
509  */
510 static int log_writes_ctr(struct dm_target *ti, unsigned int argc, char **argv)
511 {
512         struct log_writes_c *lc;
513         struct dm_arg_set as;
514         const char *devname, *logdevname;
515         int ret;
516
517         as.argc = argc;
518         as.argv = argv;
519
520         if (argc < 2) {
521                 ti->error = "Invalid argument count";
522                 return -EINVAL;
523         }
524
525         lc = kzalloc(sizeof(struct log_writes_c), GFP_KERNEL);
526         if (!lc) {
527                 ti->error = "Cannot allocate context";
528                 return -ENOMEM;
529         }
530         spin_lock_init(&lc->blocks_lock);
531         INIT_LIST_HEAD(&lc->unflushed_blocks);
532         INIT_LIST_HEAD(&lc->logging_blocks);
533         init_waitqueue_head(&lc->wait);
534         atomic_set(&lc->io_blocks, 0);
535         atomic_set(&lc->pending_blocks, 0);
536
537         devname = dm_shift_arg(&as);
538         ret = dm_get_device(ti, devname, dm_table_get_mode(ti->table), &lc->dev);
539         if (ret) {
540                 ti->error = "Device lookup failed";
541                 goto bad;
542         }
543
544         logdevname = dm_shift_arg(&as);
545         ret = dm_get_device(ti, logdevname, dm_table_get_mode(ti->table),
546                             &lc->logdev);
547         if (ret) {
548                 ti->error = "Log device lookup failed";
549                 dm_put_device(ti, lc->dev);
550                 goto bad;
551         }
552
553         lc->sectorsize = bdev_logical_block_size(lc->dev->bdev);
554         lc->sectorshift = ilog2(lc->sectorsize);
555         lc->log_kthread = kthread_run(log_writes_kthread, lc, "log-write");
556         if (IS_ERR(lc->log_kthread)) {
557                 ret = PTR_ERR(lc->log_kthread);
558                 ti->error = "Couldn't alloc kthread";
559                 dm_put_device(ti, lc->dev);
560                 dm_put_device(ti, lc->logdev);
561                 goto bad;
562         }
563
564         /*
565          * next_sector is in 512b sectors to correspond to what bi_sector expects.
566          * The super starts at sector 0, and the next_sector is the next logical
567          * one based on the sectorsize of the device.
568          */
569         lc->next_sector = lc->sectorsize >> SECTOR_SHIFT;
570         lc->logging_enabled = true;
571         lc->end_sector = logdev_last_sector(lc);
572         lc->device_supports_discard = true;
573
574         ti->num_flush_bios = 1;
575         ti->flush_supported = true;
576         ti->num_discard_bios = 1;
577         ti->discards_supported = true;
578         ti->per_io_data_size = sizeof(struct per_bio_data);
579         ti->private = lc;
580         return 0;
581
582 bad:
583         kfree(lc);
584         return ret;
585 }
586
587 static int log_mark(struct log_writes_c *lc, char *data)
588 {
589         struct pending_block *block;
590         size_t maxsize = lc->sectorsize - sizeof(struct log_write_entry);
591
592         block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
593         if (!block) {
594                 DMERR("Error allocating pending block");
595                 return -ENOMEM;
596         }
597
598         block->data = kstrndup(data, maxsize - 1, GFP_KERNEL);
599         if (!block->data) {
600                 DMERR("Error copying mark data");
601                 kfree(block);
602                 return -ENOMEM;
603         }
604         atomic_inc(&lc->pending_blocks);
605         block->datalen = strlen(block->data);
606         block->flags |= LOG_MARK_FLAG;
607         spin_lock_irq(&lc->blocks_lock);
608         list_add_tail(&block->list, &lc->logging_blocks);
609         spin_unlock_irq(&lc->blocks_lock);
610         wake_up_process(lc->log_kthread);
611         return 0;
612 }
613
614 static void log_writes_dtr(struct dm_target *ti)
615 {
616         struct log_writes_c *lc = ti->private;
617
618         spin_lock_irq(&lc->blocks_lock);
619         list_splice_init(&lc->unflushed_blocks, &lc->logging_blocks);
620         spin_unlock_irq(&lc->blocks_lock);
621
622         /*
623          * This is just nice to have since it'll update the super to include the
624          * unflushed blocks, if it fails we don't really care.
625          */
626         log_mark(lc, "dm-log-writes-end");
627         wake_up_process(lc->log_kthread);
628         wait_event(lc->wait, !atomic_read(&lc->io_blocks) &&
629                    !atomic_read(&lc->pending_blocks));
630         kthread_stop(lc->log_kthread);
631
632         WARN_ON(!list_empty(&lc->logging_blocks));
633         WARN_ON(!list_empty(&lc->unflushed_blocks));
634         dm_put_device(ti, lc->dev);
635         dm_put_device(ti, lc->logdev);
636         kfree(lc);
637 }
638
639 static void normal_map_bio(struct dm_target *ti, struct bio *bio)
640 {
641         struct log_writes_c *lc = ti->private;
642
643         bio_set_dev(bio, lc->dev->bdev);
644 }
645
646 static int log_writes_map(struct dm_target *ti, struct bio *bio)
647 {
648         struct log_writes_c *lc = ti->private;
649         struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
650         struct pending_block *block;
651         struct bvec_iter iter;
652         struct bio_vec bv;
653         size_t alloc_size;
654         int i = 0;
655         bool flush_bio = (bio->bi_opf & REQ_PREFLUSH);
656         bool fua_bio = (bio->bi_opf & REQ_FUA);
657         bool discard_bio = (bio_op(bio) == REQ_OP_DISCARD);
658         bool meta_bio = (bio->bi_opf & REQ_META);
659
660         pb->block = NULL;
661
662         /* Don't bother doing anything if logging has been disabled */
663         if (!lc->logging_enabled)
664                 goto map_bio;
665
666         /*
667          * Map reads as normal.
668          */
669         if (bio_data_dir(bio) == READ)
670                 goto map_bio;
671
672         /* No sectors and not a flush?  Don't care */
673         if (!bio_sectors(bio) && !flush_bio)
674                 goto map_bio;
675
676         /*
677          * Discards will have bi_size set but there's no actual data, so just
678          * allocate the size of the pending block.
679          */
680         if (discard_bio)
681                 alloc_size = sizeof(struct pending_block);
682         else
683                 alloc_size = sizeof(struct pending_block) + sizeof(struct bio_vec) * bio_segments(bio);
684
685         block = kzalloc(alloc_size, GFP_NOIO);
686         if (!block) {
687                 DMERR("Error allocating pending block");
688                 spin_lock_irq(&lc->blocks_lock);
689                 lc->logging_enabled = false;
690                 spin_unlock_irq(&lc->blocks_lock);
691                 return DM_MAPIO_KILL;
692         }
693         INIT_LIST_HEAD(&block->list);
694         pb->block = block;
695         atomic_inc(&lc->pending_blocks);
696
697         if (flush_bio)
698                 block->flags |= LOG_FLUSH_FLAG;
699         if (fua_bio)
700                 block->flags |= LOG_FUA_FLAG;
701         if (discard_bio)
702                 block->flags |= LOG_DISCARD_FLAG;
703         if (meta_bio)
704                 block->flags |= LOG_METADATA_FLAG;
705
706         block->sector = bio_to_dev_sectors(lc, bio->bi_iter.bi_sector);
707         block->nr_sectors = bio_to_dev_sectors(lc, bio_sectors(bio));
708
709         /* We don't need the data, just submit */
710         if (discard_bio) {
711                 WARN_ON(flush_bio || fua_bio);
712                 if (lc->device_supports_discard)
713                         goto map_bio;
714                 bio_endio(bio);
715                 return DM_MAPIO_SUBMITTED;
716         }
717
718         /* Flush bio, splice the unflushed blocks onto this list and submit */
719         if (flush_bio && !bio_sectors(bio)) {
720                 spin_lock_irq(&lc->blocks_lock);
721                 list_splice_init(&lc->unflushed_blocks, &block->list);
722                 spin_unlock_irq(&lc->blocks_lock);
723                 goto map_bio;
724         }
725
726         /*
727          * We will write this bio somewhere else way later so we need to copy
728          * the actual contents into new pages so we know the data will always be
729          * there.
730          *
731          * We do this because this could be a bio from O_DIRECT in which case we
732          * can't just hold onto the page until some later point, we have to
733          * manually copy the contents.
734          */
735         bio_for_each_segment(bv, bio, iter) {
736                 struct page *page;
737                 void *src, *dst;
738
739                 page = alloc_page(GFP_NOIO);
740                 if (!page) {
741                         DMERR("Error allocing page");
742                         free_pending_block(lc, block);
743                         spin_lock_irq(&lc->blocks_lock);
744                         lc->logging_enabled = false;
745                         spin_unlock_irq(&lc->blocks_lock);
746                         return DM_MAPIO_KILL;
747                 }
748
749                 src = kmap_atomic(bv.bv_page);
750                 dst = kmap_atomic(page);
751                 memcpy(dst, src + bv.bv_offset, bv.bv_len);
752                 kunmap_atomic(dst);
753                 kunmap_atomic(src);
754                 block->vecs[i].bv_page = page;
755                 block->vecs[i].bv_len = bv.bv_len;
756                 block->vec_cnt++;
757                 i++;
758         }
759
760         /* Had a flush with data in it, weird */
761         if (flush_bio) {
762                 spin_lock_irq(&lc->blocks_lock);
763                 list_splice_init(&lc->unflushed_blocks, &block->list);
764                 spin_unlock_irq(&lc->blocks_lock);
765         }
766 map_bio:
767         normal_map_bio(ti, bio);
768         return DM_MAPIO_REMAPPED;
769 }
770
771 static int normal_end_io(struct dm_target *ti, struct bio *bio,
772                 blk_status_t *error)
773 {
774         struct log_writes_c *lc = ti->private;
775         struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
776
777         if (bio_data_dir(bio) == WRITE && pb->block) {
778                 struct pending_block *block = pb->block;
779                 unsigned long flags;
780
781                 spin_lock_irqsave(&lc->blocks_lock, flags);
782                 if (block->flags & LOG_FLUSH_FLAG) {
783                         list_splice_tail_init(&block->list, &lc->logging_blocks);
784                         list_add_tail(&block->list, &lc->logging_blocks);
785                         wake_up_process(lc->log_kthread);
786                 } else if (block->flags & LOG_FUA_FLAG) {
787                         list_add_tail(&block->list, &lc->logging_blocks);
788                         wake_up_process(lc->log_kthread);
789                 } else
790                         list_add_tail(&block->list, &lc->unflushed_blocks);
791                 spin_unlock_irqrestore(&lc->blocks_lock, flags);
792         }
793
794         return DM_ENDIO_DONE;
795 }
796
797 /*
798  * INFO format: <logged entries> <highest allocated sector>
799  */
800 static void log_writes_status(struct dm_target *ti, status_type_t type,
801                               unsigned status_flags, char *result,
802                               unsigned maxlen)
803 {
804         unsigned sz = 0;
805         struct log_writes_c *lc = ti->private;
806
807         switch (type) {
808         case STATUSTYPE_INFO:
809                 DMEMIT("%llu %llu", lc->logged_entries,
810                        (unsigned long long)lc->next_sector - 1);
811                 if (!lc->logging_enabled)
812                         DMEMIT(" logging_disabled");
813                 break;
814
815         case STATUSTYPE_TABLE:
816                 DMEMIT("%s %s", lc->dev->name, lc->logdev->name);
817                 break;
818         }
819 }
820
821 static int log_writes_prepare_ioctl(struct dm_target *ti,
822                                     struct block_device **bdev)
823 {
824         struct log_writes_c *lc = ti->private;
825         struct dm_dev *dev = lc->dev;
826
827         *bdev = dev->bdev;
828         /*
829          * Only pass ioctls through if the device sizes match exactly.
830          */
831         if (ti->len != i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT)
832                 return 1;
833         return 0;
834 }
835
836 static int log_writes_iterate_devices(struct dm_target *ti,
837                                       iterate_devices_callout_fn fn,
838                                       void *data)
839 {
840         struct log_writes_c *lc = ti->private;
841
842         return fn(ti, lc->dev, 0, ti->len, data);
843 }
844
845 /*
846  * Messages supported:
847  *   mark <mark data> - specify the marked data.
848  */
849 static int log_writes_message(struct dm_target *ti, unsigned argc, char **argv,
850                               char *result, unsigned maxlen)
851 {
852         int r = -EINVAL;
853         struct log_writes_c *lc = ti->private;
854
855         if (argc != 2) {
856                 DMWARN("Invalid log-writes message arguments, expect 2 arguments, got %d", argc);
857                 return r;
858         }
859
860         if (!strcasecmp(argv[0], "mark"))
861                 r = log_mark(lc, argv[1]);
862         else
863                 DMWARN("Unrecognised log writes target message received: %s", argv[0]);
864
865         return r;
866 }
867
868 static void log_writes_io_hints(struct dm_target *ti, struct queue_limits *limits)
869 {
870         struct log_writes_c *lc = ti->private;
871         struct request_queue *q = bdev_get_queue(lc->dev->bdev);
872
873         if (!q || !blk_queue_discard(q)) {
874                 lc->device_supports_discard = false;
875                 limits->discard_granularity = lc->sectorsize;
876                 limits->max_discard_sectors = (UINT_MAX >> SECTOR_SHIFT);
877         }
878         limits->logical_block_size = bdev_logical_block_size(lc->dev->bdev);
879         limits->physical_block_size = bdev_physical_block_size(lc->dev->bdev);
880         limits->io_min = limits->physical_block_size;
881 }
882
883 #if IS_ENABLED(CONFIG_DAX_DRIVER)
884 static int log_dax(struct log_writes_c *lc, sector_t sector, size_t bytes,
885                    struct iov_iter *i)
886 {
887         struct pending_block *block;
888
889         if (!bytes)
890                 return 0;
891
892         block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
893         if (!block) {
894                 DMERR("Error allocating dax pending block");
895                 return -ENOMEM;
896         }
897
898         block->data = kzalloc(bytes, GFP_KERNEL);
899         if (!block->data) {
900                 DMERR("Error allocating dax data space");
901                 kfree(block);
902                 return -ENOMEM;
903         }
904
905         /* write data provided via the iterator */
906         if (!copy_from_iter(block->data, bytes, i)) {
907                 DMERR("Error copying dax data");
908                 kfree(block->data);
909                 kfree(block);
910                 return -EIO;
911         }
912
913         /* rewind the iterator so that the block driver can use it */
914         iov_iter_revert(i, bytes);
915
916         block->datalen = bytes;
917         block->sector = bio_to_dev_sectors(lc, sector);
918         block->nr_sectors = ALIGN(bytes, lc->sectorsize) >> lc->sectorshift;
919
920         atomic_inc(&lc->pending_blocks);
921         spin_lock_irq(&lc->blocks_lock);
922         list_add_tail(&block->list, &lc->unflushed_blocks);
923         spin_unlock_irq(&lc->blocks_lock);
924         wake_up_process(lc->log_kthread);
925
926         return 0;
927 }
928
929 static long log_writes_dax_direct_access(struct dm_target *ti, pgoff_t pgoff,
930                                          long nr_pages, void **kaddr, pfn_t *pfn)
931 {
932         struct log_writes_c *lc = ti->private;
933         sector_t sector = pgoff * PAGE_SECTORS;
934         int ret;
935
936         ret = bdev_dax_pgoff(lc->dev->bdev, sector, nr_pages * PAGE_SIZE, &pgoff);
937         if (ret)
938                 return ret;
939         return dax_direct_access(lc->dev->dax_dev, pgoff, nr_pages, kaddr, pfn);
940 }
941
942 static size_t log_writes_dax_copy_from_iter(struct dm_target *ti,
943                                             pgoff_t pgoff, void *addr, size_t bytes,
944                                             struct iov_iter *i)
945 {
946         struct log_writes_c *lc = ti->private;
947         sector_t sector = pgoff * PAGE_SECTORS;
948         int err;
949
950         if (bdev_dax_pgoff(lc->dev->bdev, sector, ALIGN(bytes, PAGE_SIZE), &pgoff))
951                 return 0;
952
953         /* Don't bother doing anything if logging has been disabled */
954         if (!lc->logging_enabled)
955                 goto dax_copy;
956
957         err = log_dax(lc, sector, bytes, i);
958         if (err) {
959                 DMWARN("Error %d logging DAX write", err);
960                 return 0;
961         }
962 dax_copy:
963         return dax_copy_from_iter(lc->dev->dax_dev, pgoff, addr, bytes, i);
964 }
965
966 static size_t log_writes_dax_copy_to_iter(struct dm_target *ti,
967                                           pgoff_t pgoff, void *addr, size_t bytes,
968                                           struct iov_iter *i)
969 {
970         struct log_writes_c *lc = ti->private;
971         sector_t sector = pgoff * PAGE_SECTORS;
972
973         if (bdev_dax_pgoff(lc->dev->bdev, sector, ALIGN(bytes, PAGE_SIZE), &pgoff))
974                 return 0;
975         return dax_copy_to_iter(lc->dev->dax_dev, pgoff, addr, bytes, i);
976 }
977
978 #else
979 #define log_writes_dax_direct_access NULL
980 #define log_writes_dax_copy_from_iter NULL
981 #define log_writes_dax_copy_to_iter NULL
982 #endif
983
984 static struct target_type log_writes_target = {
985         .name   = "log-writes",
986         .version = {1, 1, 0},
987         .module = THIS_MODULE,
988         .ctr    = log_writes_ctr,
989         .dtr    = log_writes_dtr,
990         .map    = log_writes_map,
991         .end_io = normal_end_io,
992         .status = log_writes_status,
993         .prepare_ioctl = log_writes_prepare_ioctl,
994         .message = log_writes_message,
995         .iterate_devices = log_writes_iterate_devices,
996         .io_hints = log_writes_io_hints,
997         .direct_access = log_writes_dax_direct_access,
998         .dax_copy_from_iter = log_writes_dax_copy_from_iter,
999         .dax_copy_to_iter = log_writes_dax_copy_to_iter,
1000 };
1001
1002 static int __init dm_log_writes_init(void)
1003 {
1004         int r = dm_register_target(&log_writes_target);
1005
1006         if (r < 0)
1007                 DMERR("register failed %d", r);
1008
1009         return r;
1010 }
1011
1012 static void __exit dm_log_writes_exit(void)
1013 {
1014         dm_unregister_target(&log_writes_target);
1015 }
1016
1017 module_init(dm_log_writes_init);
1018 module_exit(dm_log_writes_exit);
1019
1020 MODULE_DESCRIPTION(DM_NAME " log writes target");
1021 MODULE_AUTHOR("Josef Bacik <jbacik@fb.com>");
1022 MODULE_LICENSE("GPL");