dm: make flush bios explicitly sync
[sfrench/cifs-2.6.git] / drivers / md / dm-integrity.c
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8
9 #include <linux/module.h>
10 #include <linux/device-mapper.h>
11 #include <linux/dm-io.h>
12 #include <linux/vmalloc.h>
13 #include <linux/sort.h>
14 #include <linux/rbtree.h>
15 #include <linux/delay.h>
16 #include <linux/random.h>
17 #include <crypto/hash.h>
18 #include <crypto/skcipher.h>
19 #include <linux/async_tx.h>
20 #include "dm-bufio.h"
21
22 #define DM_MSG_PREFIX "integrity"
23
24 #define DEFAULT_INTERLEAVE_SECTORS      32768
25 #define DEFAULT_JOURNAL_SIZE_FACTOR     7
26 #define DEFAULT_BUFFER_SECTORS          128
27 #define DEFAULT_JOURNAL_WATERMARK       50
28 #define DEFAULT_SYNC_MSEC               10000
29 #define DEFAULT_MAX_JOURNAL_SECTORS     131072
30 #define MIN_LOG2_INTERLEAVE_SECTORS     3
31 #define MAX_LOG2_INTERLEAVE_SECTORS     31
32 #define METADATA_WORKQUEUE_MAX_ACTIVE   16
33
34 /*
35  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
36  * so it should not be enabled in the official kernel
37  */
38 //#define DEBUG_PRINT
39 //#define INTERNAL_VERIFY
40
41 /*
42  * On disk structures
43  */
44
45 #define SB_MAGIC                        "integrt"
46 #define SB_VERSION                      1
47 #define SB_SECTORS                      8
48 #define MAX_SECTORS_PER_BLOCK           8
49
50 struct superblock {
51         __u8 magic[8];
52         __u8 version;
53         __u8 log2_interleave_sectors;
54         __u16 integrity_tag_size;
55         __u32 journal_sections;
56         __u64 provided_data_sectors;    /* userspace uses this value */
57         __u32 flags;
58         __u8 log2_sectors_per_block;
59 };
60
61 #define SB_FLAG_HAVE_JOURNAL_MAC        0x1
62
63 #define JOURNAL_ENTRY_ROUNDUP           8
64
65 typedef __u64 commit_id_t;
66 #define JOURNAL_MAC_PER_SECTOR          8
67
68 struct journal_entry {
69         union {
70                 struct {
71                         __u32 sector_lo;
72                         __u32 sector_hi;
73                 } s;
74                 __u64 sector;
75         } u;
76         commit_id_t last_bytes[0];
77         /* __u8 tag[0]; */
78 };
79
80 #define journal_entry_tag(ic, je)               ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
81
82 #if BITS_PER_LONG == 64
83 #define journal_entry_set_sector(je, x)         do { smp_wmb(); ACCESS_ONCE((je)->u.sector) = cpu_to_le64(x); } while (0)
84 #define journal_entry_get_sector(je)            le64_to_cpu((je)->u.sector)
85 #elif defined(CONFIG_LBDAF)
86 #define journal_entry_set_sector(je, x)         do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); ACCESS_ONCE((je)->u.s.sector_hi) = cpu_to_le32((x) >> 32); } while (0)
87 #define journal_entry_get_sector(je)            le64_to_cpu((je)->u.sector)
88 #else
89 #define journal_entry_set_sector(je, x)         do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); ACCESS_ONCE((je)->u.s.sector_hi) = cpu_to_le32(0); } while (0)
90 #define journal_entry_get_sector(je)            le32_to_cpu((je)->u.s.sector_lo)
91 #endif
92 #define journal_entry_is_unused(je)             ((je)->u.s.sector_hi == cpu_to_le32(-1))
93 #define journal_entry_set_unused(je)            do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
94 #define journal_entry_is_inprogress(je)         ((je)->u.s.sector_hi == cpu_to_le32(-2))
95 #define journal_entry_set_inprogress(je)        do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
96
97 #define JOURNAL_BLOCK_SECTORS           8
98 #define JOURNAL_SECTOR_DATA             ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
99 #define JOURNAL_MAC_SIZE                (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
100
101 struct journal_sector {
102         __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
103         __u8 mac[JOURNAL_MAC_PER_SECTOR];
104         commit_id_t commit_id;
105 };
106
107 #define MAX_TAG_SIZE                    (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
108
109 #define METADATA_PADDING_SECTORS        8
110
111 #define N_COMMIT_IDS                    4
112
113 static unsigned char prev_commit_seq(unsigned char seq)
114 {
115         return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
116 }
117
118 static unsigned char next_commit_seq(unsigned char seq)
119 {
120         return (seq + 1) % N_COMMIT_IDS;
121 }
122
123 /*
124  * In-memory structures
125  */
126
127 struct journal_node {
128         struct rb_node node;
129         sector_t sector;
130 };
131
132 struct alg_spec {
133         char *alg_string;
134         char *key_string;
135         __u8 *key;
136         unsigned key_size;
137 };
138
139 struct dm_integrity_c {
140         struct dm_dev *dev;
141         unsigned tag_size;
142         __s8 log2_tag_size;
143         sector_t start;
144         mempool_t *journal_io_mempool;
145         struct dm_io_client *io;
146         struct dm_bufio_client *bufio;
147         struct workqueue_struct *metadata_wq;
148         struct superblock *sb;
149         unsigned journal_pages;
150         struct page_list *journal;
151         struct page_list *journal_io;
152         struct page_list *journal_xor;
153
154         struct crypto_skcipher *journal_crypt;
155         struct scatterlist **journal_scatterlist;
156         struct scatterlist **journal_io_scatterlist;
157         struct skcipher_request **sk_requests;
158
159         struct crypto_shash *journal_mac;
160
161         struct journal_node *journal_tree;
162         struct rb_root journal_tree_root;
163
164         sector_t provided_data_sectors;
165
166         unsigned short journal_entry_size;
167         unsigned char journal_entries_per_sector;
168         unsigned char journal_section_entries;
169         unsigned short journal_section_sectors;
170         unsigned journal_sections;
171         unsigned journal_entries;
172         sector_t device_sectors;
173         unsigned initial_sectors;
174         unsigned metadata_run;
175         __s8 log2_metadata_run;
176         __u8 log2_buffer_sectors;
177         __u8 sectors_per_block;
178
179         unsigned char mode;
180         bool suspending;
181
182         int failed;
183
184         struct crypto_shash *internal_hash;
185
186         /* these variables are locked with endio_wait.lock */
187         struct rb_root in_progress;
188         wait_queue_head_t endio_wait;
189         struct workqueue_struct *wait_wq;
190
191         unsigned char commit_seq;
192         commit_id_t commit_ids[N_COMMIT_IDS];
193
194         unsigned committed_section;
195         unsigned n_committed_sections;
196
197         unsigned uncommitted_section;
198         unsigned n_uncommitted_sections;
199
200         unsigned free_section;
201         unsigned char free_section_entry;
202         unsigned free_sectors;
203
204         unsigned free_sectors_threshold;
205
206         struct workqueue_struct *commit_wq;
207         struct work_struct commit_work;
208
209         struct workqueue_struct *writer_wq;
210         struct work_struct writer_work;
211
212         struct bio_list flush_bio_list;
213
214         unsigned long autocommit_jiffies;
215         struct timer_list autocommit_timer;
216         unsigned autocommit_msec;
217
218         wait_queue_head_t copy_to_journal_wait;
219
220         struct completion crypto_backoff;
221
222         bool journal_uptodate;
223         bool just_formatted;
224
225         struct alg_spec internal_hash_alg;
226         struct alg_spec journal_crypt_alg;
227         struct alg_spec journal_mac_alg;
228 };
229
230 struct dm_integrity_range {
231         sector_t logical_sector;
232         unsigned n_sectors;
233         struct rb_node node;
234 };
235
236 struct dm_integrity_io {
237         struct work_struct work;
238
239         struct dm_integrity_c *ic;
240         bool write;
241         bool fua;
242
243         struct dm_integrity_range range;
244
245         sector_t metadata_block;
246         unsigned metadata_offset;
247
248         atomic_t in_flight;
249         int bi_error;
250
251         struct completion *completion;
252
253         struct block_device *orig_bi_bdev;
254         bio_end_io_t *orig_bi_end_io;
255         struct bio_integrity_payload *orig_bi_integrity;
256         struct bvec_iter orig_bi_iter;
257 };
258
259 struct journal_completion {
260         struct dm_integrity_c *ic;
261         atomic_t in_flight;
262         struct completion comp;
263 };
264
265 struct journal_io {
266         struct dm_integrity_range range;
267         struct journal_completion *comp;
268 };
269
270 static struct kmem_cache *journal_io_cache;
271
272 #define JOURNAL_IO_MEMPOOL      32
273
274 #ifdef DEBUG_PRINT
275 #define DEBUG_print(x, ...)     printk(KERN_DEBUG x, ##__VA_ARGS__)
276 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
277 {
278         va_list args;
279         va_start(args, msg);
280         vprintk(msg, args);
281         va_end(args);
282         if (len)
283                 pr_cont(":");
284         while (len) {
285                 pr_cont(" %02x", *bytes);
286                 bytes++;
287                 len--;
288         }
289         pr_cont("\n");
290 }
291 #define DEBUG_bytes(bytes, len, msg, ...)       __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
292 #else
293 #define DEBUG_print(x, ...)                     do { } while (0)
294 #define DEBUG_bytes(bytes, len, msg, ...)       do { } while (0)
295 #endif
296
297 /*
298  * DM Integrity profile, protection is performed layer above (dm-crypt)
299  */
300 static struct blk_integrity_profile dm_integrity_profile = {
301         .name                   = "DM-DIF-EXT-TAG",
302         .generate_fn            = NULL,
303         .verify_fn              = NULL,
304 };
305
306 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
307 static void integrity_bio_wait(struct work_struct *w);
308 static void dm_integrity_dtr(struct dm_target *ti);
309
310 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
311 {
312         if (!cmpxchg(&ic->failed, 0, err))
313                 DMERR("Error on %s: %d", msg, err);
314 }
315
316 static int dm_integrity_failed(struct dm_integrity_c *ic)
317 {
318         return ACCESS_ONCE(ic->failed);
319 }
320
321 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
322                                           unsigned j, unsigned char seq)
323 {
324         /*
325          * Xor the number with section and sector, so that if a piece of
326          * journal is written at wrong place, it is detected.
327          */
328         return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
329 }
330
331 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
332                                 sector_t *area, sector_t *offset)
333 {
334         __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
335
336         *area = data_sector >> log2_interleave_sectors;
337         *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
338 }
339
340 #define sector_to_block(ic, n)                                          \
341 do {                                                                    \
342         BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));          \
343         (n) >>= (ic)->sb->log2_sectors_per_block;                       \
344 } while (0)
345
346 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
347                                             sector_t offset, unsigned *metadata_offset)
348 {
349         __u64 ms;
350         unsigned mo;
351
352         ms = area << ic->sb->log2_interleave_sectors;
353         if (likely(ic->log2_metadata_run >= 0))
354                 ms += area << ic->log2_metadata_run;
355         else
356                 ms += area * ic->metadata_run;
357         ms >>= ic->log2_buffer_sectors;
358
359         sector_to_block(ic, offset);
360
361         if (likely(ic->log2_tag_size >= 0)) {
362                 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
363                 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
364         } else {
365                 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
366                 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
367         }
368         *metadata_offset = mo;
369         return ms;
370 }
371
372 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
373 {
374         sector_t result;
375
376         result = area << ic->sb->log2_interleave_sectors;
377         if (likely(ic->log2_metadata_run >= 0))
378                 result += (area + 1) << ic->log2_metadata_run;
379         else
380                 result += (area + 1) * ic->metadata_run;
381
382         result += (sector_t)ic->initial_sectors + offset;
383         return result;
384 }
385
386 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
387 {
388         if (unlikely(*sec_ptr >= ic->journal_sections))
389                 *sec_ptr -= ic->journal_sections;
390 }
391
392 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
393 {
394         struct dm_io_request io_req;
395         struct dm_io_region io_loc;
396
397         io_req.bi_op = op;
398         io_req.bi_op_flags = op_flags;
399         io_req.mem.type = DM_IO_KMEM;
400         io_req.mem.ptr.addr = ic->sb;
401         io_req.notify.fn = NULL;
402         io_req.client = ic->io;
403         io_loc.bdev = ic->dev->bdev;
404         io_loc.sector = ic->start;
405         io_loc.count = SB_SECTORS;
406
407         return dm_io(&io_req, 1, &io_loc, NULL);
408 }
409
410 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
411                                  bool e, const char *function)
412 {
413 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
414         unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
415
416         if (unlikely(section >= ic->journal_sections) ||
417             unlikely(offset >= limit)) {
418                 printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n",
419                         function, section, offset, ic->journal_sections, limit);
420                 BUG();
421         }
422 #endif
423 }
424
425 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
426                                unsigned *pl_index, unsigned *pl_offset)
427 {
428         unsigned sector;
429
430         access_journal_check(ic, section, offset, false, "page_list_location");
431
432         sector = section * ic->journal_section_sectors + offset;
433
434         *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
435         *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
436 }
437
438 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
439                                                unsigned section, unsigned offset, unsigned *n_sectors)
440 {
441         unsigned pl_index, pl_offset;
442         char *va;
443
444         page_list_location(ic, section, offset, &pl_index, &pl_offset);
445
446         if (n_sectors)
447                 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
448
449         va = lowmem_page_address(pl[pl_index].page);
450
451         return (struct journal_sector *)(va + pl_offset);
452 }
453
454 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
455 {
456         return access_page_list(ic, ic->journal, section, offset, NULL);
457 }
458
459 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
460 {
461         unsigned rel_sector, offset;
462         struct journal_sector *js;
463
464         access_journal_check(ic, section, n, true, "access_journal_entry");
465
466         rel_sector = n % JOURNAL_BLOCK_SECTORS;
467         offset = n / JOURNAL_BLOCK_SECTORS;
468
469         js = access_journal(ic, section, rel_sector);
470         return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
471 }
472
473 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
474 {
475         n <<= ic->sb->log2_sectors_per_block;
476
477         n += JOURNAL_BLOCK_SECTORS;
478
479         access_journal_check(ic, section, n, false, "access_journal_data");
480
481         return access_journal(ic, section, n);
482 }
483
484 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
485 {
486         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
487         int r;
488         unsigned j, size;
489
490         desc->tfm = ic->journal_mac;
491         desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
492
493         r = crypto_shash_init(desc);
494         if (unlikely(r)) {
495                 dm_integrity_io_error(ic, "crypto_shash_init", r);
496                 goto err;
497         }
498
499         for (j = 0; j < ic->journal_section_entries; j++) {
500                 struct journal_entry *je = access_journal_entry(ic, section, j);
501                 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
502                 if (unlikely(r)) {
503                         dm_integrity_io_error(ic, "crypto_shash_update", r);
504                         goto err;
505                 }
506         }
507
508         size = crypto_shash_digestsize(ic->journal_mac);
509
510         if (likely(size <= JOURNAL_MAC_SIZE)) {
511                 r = crypto_shash_final(desc, result);
512                 if (unlikely(r)) {
513                         dm_integrity_io_error(ic, "crypto_shash_final", r);
514                         goto err;
515                 }
516                 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
517         } else {
518                 __u8 digest[size];
519                 r = crypto_shash_final(desc, digest);
520                 if (unlikely(r)) {
521                         dm_integrity_io_error(ic, "crypto_shash_final", r);
522                         goto err;
523                 }
524                 memcpy(result, digest, JOURNAL_MAC_SIZE);
525         }
526
527         return;
528 err:
529         memset(result, 0, JOURNAL_MAC_SIZE);
530 }
531
532 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
533 {
534         __u8 result[JOURNAL_MAC_SIZE];
535         unsigned j;
536
537         if (!ic->journal_mac)
538                 return;
539
540         section_mac(ic, section, result);
541
542         for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
543                 struct journal_sector *js = access_journal(ic, section, j);
544
545                 if (likely(wr))
546                         memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
547                 else {
548                         if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
549                                 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
550                 }
551         }
552 }
553
554 static void complete_journal_op(void *context)
555 {
556         struct journal_completion *comp = context;
557         BUG_ON(!atomic_read(&comp->in_flight));
558         if (likely(atomic_dec_and_test(&comp->in_flight)))
559                 complete(&comp->comp);
560 }
561
562 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
563                         unsigned n_sections, struct journal_completion *comp)
564 {
565         struct async_submit_ctl submit;
566         size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
567         unsigned pl_index, pl_offset, section_index;
568         struct page_list *source_pl, *target_pl;
569
570         if (likely(encrypt)) {
571                 source_pl = ic->journal;
572                 target_pl = ic->journal_io;
573         } else {
574                 source_pl = ic->journal_io;
575                 target_pl = ic->journal;
576         }
577
578         page_list_location(ic, section, 0, &pl_index, &pl_offset);
579
580         atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
581
582         init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
583
584         section_index = pl_index;
585
586         do {
587                 size_t this_step;
588                 struct page *src_pages[2];
589                 struct page *dst_page;
590
591                 while (unlikely(pl_index == section_index)) {
592                         unsigned dummy;
593                         if (likely(encrypt))
594                                 rw_section_mac(ic, section, true);
595                         section++;
596                         n_sections--;
597                         if (!n_sections)
598                                 break;
599                         page_list_location(ic, section, 0, &section_index, &dummy);
600                 }
601
602                 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
603                 dst_page = target_pl[pl_index].page;
604                 src_pages[0] = source_pl[pl_index].page;
605                 src_pages[1] = ic->journal_xor[pl_index].page;
606
607                 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
608
609                 pl_index++;
610                 pl_offset = 0;
611                 n_bytes -= this_step;
612         } while (n_bytes);
613
614         BUG_ON(n_sections);
615
616         async_tx_issue_pending_all();
617 }
618
619 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
620 {
621         struct journal_completion *comp = req->data;
622         if (unlikely(err)) {
623                 if (likely(err == -EINPROGRESS)) {
624                         complete(&comp->ic->crypto_backoff);
625                         return;
626                 }
627                 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
628         }
629         complete_journal_op(comp);
630 }
631
632 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
633 {
634         int r;
635         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
636                                       complete_journal_encrypt, comp);
637         if (likely(encrypt))
638                 r = crypto_skcipher_encrypt(req);
639         else
640                 r = crypto_skcipher_decrypt(req);
641         if (likely(!r))
642                 return false;
643         if (likely(r == -EINPROGRESS))
644                 return true;
645         if (likely(r == -EBUSY)) {
646                 wait_for_completion(&comp->ic->crypto_backoff);
647                 reinit_completion(&comp->ic->crypto_backoff);
648                 return true;
649         }
650         dm_integrity_io_error(comp->ic, "encrypt", r);
651         return false;
652 }
653
654 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
655                           unsigned n_sections, struct journal_completion *comp)
656 {
657         struct scatterlist **source_sg;
658         struct scatterlist **target_sg;
659
660         atomic_add(2, &comp->in_flight);
661
662         if (likely(encrypt)) {
663                 source_sg = ic->journal_scatterlist;
664                 target_sg = ic->journal_io_scatterlist;
665         } else {
666                 source_sg = ic->journal_io_scatterlist;
667                 target_sg = ic->journal_scatterlist;
668         }
669
670         do {
671                 struct skcipher_request *req;
672                 unsigned ivsize;
673                 char *iv;
674
675                 if (likely(encrypt))
676                         rw_section_mac(ic, section, true);
677
678                 req = ic->sk_requests[section];
679                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
680                 iv = req->iv;
681
682                 memcpy(iv, iv + ivsize, ivsize);
683
684                 req->src = source_sg[section];
685                 req->dst = target_sg[section];
686
687                 if (unlikely(do_crypt(encrypt, req, comp)))
688                         atomic_inc(&comp->in_flight);
689
690                 section++;
691                 n_sections--;
692         } while (n_sections);
693
694         atomic_dec(&comp->in_flight);
695         complete_journal_op(comp);
696 }
697
698 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
699                             unsigned n_sections, struct journal_completion *comp)
700 {
701         if (ic->journal_xor)
702                 return xor_journal(ic, encrypt, section, n_sections, comp);
703         else
704                 return crypt_journal(ic, encrypt, section, n_sections, comp);
705 }
706
707 static void complete_journal_io(unsigned long error, void *context)
708 {
709         struct journal_completion *comp = context;
710         if (unlikely(error != 0))
711                 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
712         complete_journal_op(comp);
713 }
714
715 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
716                        unsigned n_sections, struct journal_completion *comp)
717 {
718         struct dm_io_request io_req;
719         struct dm_io_region io_loc;
720         unsigned sector, n_sectors, pl_index, pl_offset;
721         int r;
722
723         if (unlikely(dm_integrity_failed(ic))) {
724                 if (comp)
725                         complete_journal_io(-1UL, comp);
726                 return;
727         }
728
729         sector = section * ic->journal_section_sectors;
730         n_sectors = n_sections * ic->journal_section_sectors;
731
732         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
733         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
734
735         io_req.bi_op = op;
736         io_req.bi_op_flags = op_flags;
737         io_req.mem.type = DM_IO_PAGE_LIST;
738         if (ic->journal_io)
739                 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
740         else
741                 io_req.mem.ptr.pl = &ic->journal[pl_index];
742         io_req.mem.offset = pl_offset;
743         if (likely(comp != NULL)) {
744                 io_req.notify.fn = complete_journal_io;
745                 io_req.notify.context = comp;
746         } else {
747                 io_req.notify.fn = NULL;
748         }
749         io_req.client = ic->io;
750         io_loc.bdev = ic->dev->bdev;
751         io_loc.sector = ic->start + SB_SECTORS + sector;
752         io_loc.count = n_sectors;
753
754         r = dm_io(&io_req, 1, &io_loc, NULL);
755         if (unlikely(r)) {
756                 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
757                 if (comp) {
758                         WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
759                         complete_journal_io(-1UL, comp);
760                 }
761         }
762 }
763
764 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
765 {
766         struct journal_completion io_comp;
767         struct journal_completion crypt_comp_1;
768         struct journal_completion crypt_comp_2;
769         unsigned i;
770
771         io_comp.ic = ic;
772         io_comp.comp = COMPLETION_INITIALIZER_ONSTACK(io_comp.comp);
773
774         if (commit_start + commit_sections <= ic->journal_sections) {
775                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
776                 if (ic->journal_io) {
777                         crypt_comp_1.ic = ic;
778                         crypt_comp_1.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp_1.comp);
779                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
780                         encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
781                         wait_for_completion_io(&crypt_comp_1.comp);
782                 } else {
783                         for (i = 0; i < commit_sections; i++)
784                                 rw_section_mac(ic, commit_start + i, true);
785                 }
786                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
787                            commit_sections, &io_comp);
788         } else {
789                 unsigned to_end;
790                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
791                 to_end = ic->journal_sections - commit_start;
792                 if (ic->journal_io) {
793                         crypt_comp_1.ic = ic;
794                         crypt_comp_1.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp_1.comp);
795                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
796                         encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
797                         if (try_wait_for_completion(&crypt_comp_1.comp)) {
798                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
799                                 crypt_comp_1.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp_1.comp);
800                                 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
801                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
802                                 wait_for_completion_io(&crypt_comp_1.comp);
803                         } else {
804                                 crypt_comp_2.ic = ic;
805                                 crypt_comp_2.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp_2.comp);
806                                 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
807                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
808                                 wait_for_completion_io(&crypt_comp_1.comp);
809                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
810                                 wait_for_completion_io(&crypt_comp_2.comp);
811                         }
812                 } else {
813                         for (i = 0; i < to_end; i++)
814                                 rw_section_mac(ic, commit_start + i, true);
815                         rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
816                         for (i = 0; i < commit_sections - to_end; i++)
817                                 rw_section_mac(ic, i, true);
818                 }
819                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
820         }
821
822         wait_for_completion_io(&io_comp.comp);
823 }
824
825 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
826                               unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
827 {
828         struct dm_io_request io_req;
829         struct dm_io_region io_loc;
830         int r;
831         unsigned sector, pl_index, pl_offset;
832
833         BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
834
835         if (unlikely(dm_integrity_failed(ic))) {
836                 fn(-1UL, data);
837                 return;
838         }
839
840         sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
841
842         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
843         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
844
845         io_req.bi_op = REQ_OP_WRITE;
846         io_req.bi_op_flags = 0;
847         io_req.mem.type = DM_IO_PAGE_LIST;
848         io_req.mem.ptr.pl = &ic->journal[pl_index];
849         io_req.mem.offset = pl_offset;
850         io_req.notify.fn = fn;
851         io_req.notify.context = data;
852         io_req.client = ic->io;
853         io_loc.bdev = ic->dev->bdev;
854         io_loc.sector = ic->start + target;
855         io_loc.count = n_sectors;
856
857         r = dm_io(&io_req, 1, &io_loc, NULL);
858         if (unlikely(r)) {
859                 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
860                 fn(-1UL, data);
861         }
862 }
863
864 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
865 {
866         struct rb_node **n = &ic->in_progress.rb_node;
867         struct rb_node *parent;
868
869         BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
870
871         parent = NULL;
872
873         while (*n) {
874                 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
875
876                 parent = *n;
877                 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
878                         n = &range->node.rb_left;
879                 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
880                         n = &range->node.rb_right;
881                 } else {
882                         return false;
883                 }
884         }
885
886         rb_link_node(&new_range->node, parent, n);
887         rb_insert_color(&new_range->node, &ic->in_progress);
888
889         return true;
890 }
891
892 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
893 {
894         rb_erase(&range->node, &ic->in_progress);
895         wake_up_locked(&ic->endio_wait);
896 }
897
898 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
899 {
900         unsigned long flags;
901
902         spin_lock_irqsave(&ic->endio_wait.lock, flags);
903         remove_range_unlocked(ic, range);
904         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
905 }
906
907 static void init_journal_node(struct journal_node *node)
908 {
909         RB_CLEAR_NODE(&node->node);
910         node->sector = (sector_t)-1;
911 }
912
913 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
914 {
915         struct rb_node **link;
916         struct rb_node *parent;
917
918         node->sector = sector;
919         BUG_ON(!RB_EMPTY_NODE(&node->node));
920
921         link = &ic->journal_tree_root.rb_node;
922         parent = NULL;
923
924         while (*link) {
925                 struct journal_node *j;
926                 parent = *link;
927                 j = container_of(parent, struct journal_node, node);
928                 if (sector < j->sector)
929                         link = &j->node.rb_left;
930                 else
931                         link = &j->node.rb_right;
932         }
933
934         rb_link_node(&node->node, parent, link);
935         rb_insert_color(&node->node, &ic->journal_tree_root);
936 }
937
938 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
939 {
940         BUG_ON(RB_EMPTY_NODE(&node->node));
941         rb_erase(&node->node, &ic->journal_tree_root);
942         init_journal_node(node);
943 }
944
945 #define NOT_FOUND       (-1U)
946
947 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
948 {
949         struct rb_node *n = ic->journal_tree_root.rb_node;
950         unsigned found = NOT_FOUND;
951         *next_sector = (sector_t)-1;
952         while (n) {
953                 struct journal_node *j = container_of(n, struct journal_node, node);
954                 if (sector == j->sector) {
955                         found = j - ic->journal_tree;
956                 }
957                 if (sector < j->sector) {
958                         *next_sector = j->sector;
959                         n = j->node.rb_left;
960                 } else {
961                         n = j->node.rb_right;
962                 }
963         }
964
965         return found;
966 }
967
968 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
969 {
970         struct journal_node *node, *next_node;
971         struct rb_node *next;
972
973         if (unlikely(pos >= ic->journal_entries))
974                 return false;
975         node = &ic->journal_tree[pos];
976         if (unlikely(RB_EMPTY_NODE(&node->node)))
977                 return false;
978         if (unlikely(node->sector != sector))
979                 return false;
980
981         next = rb_next(&node->node);
982         if (unlikely(!next))
983                 return true;
984
985         next_node = container_of(next, struct journal_node, node);
986         return next_node->sector != sector;
987 }
988
989 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
990 {
991         struct rb_node *next;
992         struct journal_node *next_node;
993         unsigned next_section;
994
995         BUG_ON(RB_EMPTY_NODE(&node->node));
996
997         next = rb_next(&node->node);
998         if (unlikely(!next))
999                 return false;
1000
1001         next_node = container_of(next, struct journal_node, node);
1002
1003         if (next_node->sector != node->sector)
1004                 return false;
1005
1006         next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1007         if (next_section >= ic->committed_section &&
1008             next_section < ic->committed_section + ic->n_committed_sections)
1009                 return true;
1010         if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1011                 return true;
1012
1013         return false;
1014 }
1015
1016 #define TAG_READ        0
1017 #define TAG_WRITE       1
1018 #define TAG_CMP         2
1019
1020 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1021                                unsigned *metadata_offset, unsigned total_size, int op)
1022 {
1023         do {
1024                 unsigned char *data, *dp;
1025                 struct dm_buffer *b;
1026                 unsigned to_copy;
1027                 int r;
1028
1029                 r = dm_integrity_failed(ic);
1030                 if (unlikely(r))
1031                         return r;
1032
1033                 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1034                 if (unlikely(IS_ERR(data)))
1035                         return PTR_ERR(data);
1036
1037                 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1038                 dp = data + *metadata_offset;
1039                 if (op == TAG_READ) {
1040                         memcpy(tag, dp, to_copy);
1041                 } else if (op == TAG_WRITE) {
1042                         memcpy(dp, tag, to_copy);
1043                         dm_bufio_mark_buffer_dirty(b);
1044                 } else  {
1045                         /* e.g.: op == TAG_CMP */
1046                         if (unlikely(memcmp(dp, tag, to_copy))) {
1047                                 unsigned i;
1048
1049                                 for (i = 0; i < to_copy; i++) {
1050                                         if (dp[i] != tag[i])
1051                                                 break;
1052                                         total_size--;
1053                                 }
1054                                 dm_bufio_release(b);
1055                                 return total_size;
1056                         }
1057                 }
1058                 dm_bufio_release(b);
1059
1060                 tag += to_copy;
1061                 *metadata_offset += to_copy;
1062                 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1063                         (*metadata_block)++;
1064                         *metadata_offset = 0;
1065                 }
1066                 total_size -= to_copy;
1067         } while (unlikely(total_size));
1068
1069         return 0;
1070 }
1071
1072 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1073 {
1074         int r;
1075         r = dm_bufio_write_dirty_buffers(ic->bufio);
1076         if (unlikely(r))
1077                 dm_integrity_io_error(ic, "writing tags", r);
1078 }
1079
1080 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1081 {
1082         DECLARE_WAITQUEUE(wait, current);
1083         __add_wait_queue(&ic->endio_wait, &wait);
1084         __set_current_state(TASK_UNINTERRUPTIBLE);
1085         spin_unlock_irq(&ic->endio_wait.lock);
1086         io_schedule();
1087         spin_lock_irq(&ic->endio_wait.lock);
1088         __remove_wait_queue(&ic->endio_wait, &wait);
1089 }
1090
1091 static void autocommit_fn(unsigned long data)
1092 {
1093         struct dm_integrity_c *ic = (struct dm_integrity_c *)data;
1094
1095         if (likely(!dm_integrity_failed(ic)))
1096                 queue_work(ic->commit_wq, &ic->commit_work);
1097 }
1098
1099 static void schedule_autocommit(struct dm_integrity_c *ic)
1100 {
1101         if (!timer_pending(&ic->autocommit_timer))
1102                 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1103 }
1104
1105 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1106 {
1107         struct bio *bio;
1108         spin_lock_irq(&ic->endio_wait.lock);
1109         bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1110         bio_list_add(&ic->flush_bio_list, bio);
1111         spin_unlock_irq(&ic->endio_wait.lock);
1112         queue_work(ic->commit_wq, &ic->commit_work);
1113 }
1114
1115 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1116 {
1117         int r = dm_integrity_failed(ic);
1118         if (unlikely(r) && !bio->bi_error)
1119                 bio->bi_error = r;
1120         bio_endio(bio);
1121 }
1122
1123 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1124 {
1125         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1126
1127         if (unlikely(dio->fua) && likely(!bio->bi_error) && likely(!dm_integrity_failed(ic)))
1128                 submit_flush_bio(ic, dio);
1129         else
1130                 do_endio(ic, bio);
1131 }
1132
1133 static void dec_in_flight(struct dm_integrity_io *dio)
1134 {
1135         if (atomic_dec_and_test(&dio->in_flight)) {
1136                 struct dm_integrity_c *ic = dio->ic;
1137                 struct bio *bio;
1138
1139                 remove_range(ic, &dio->range);
1140
1141                 if (unlikely(dio->write))
1142                         schedule_autocommit(ic);
1143
1144                 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1145
1146                 if (unlikely(dio->bi_error) && !bio->bi_error)
1147                         bio->bi_error = dio->bi_error;
1148                 if (likely(!bio->bi_error) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1149                         dio->range.logical_sector += dio->range.n_sectors;
1150                         bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1151                         INIT_WORK(&dio->work, integrity_bio_wait);
1152                         queue_work(ic->wait_wq, &dio->work);
1153                         return;
1154                 }
1155                 do_endio_flush(ic, dio);
1156         }
1157 }
1158
1159 static void integrity_end_io(struct bio *bio)
1160 {
1161         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1162
1163         bio->bi_iter = dio->orig_bi_iter;
1164         bio->bi_bdev = dio->orig_bi_bdev;
1165         if (dio->orig_bi_integrity) {
1166                 bio->bi_integrity = dio->orig_bi_integrity;
1167                 bio->bi_opf |= REQ_INTEGRITY;
1168         }
1169         bio->bi_end_io = dio->orig_bi_end_io;
1170
1171         if (dio->completion)
1172                 complete(dio->completion);
1173
1174         dec_in_flight(dio);
1175 }
1176
1177 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1178                                       const char *data, char *result)
1179 {
1180         __u64 sector_le = cpu_to_le64(sector);
1181         SHASH_DESC_ON_STACK(req, ic->internal_hash);
1182         int r;
1183         unsigned digest_size;
1184
1185         req->tfm = ic->internal_hash;
1186         req->flags = 0;
1187
1188         r = crypto_shash_init(req);
1189         if (unlikely(r < 0)) {
1190                 dm_integrity_io_error(ic, "crypto_shash_init", r);
1191                 goto failed;
1192         }
1193
1194         r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1195         if (unlikely(r < 0)) {
1196                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1197                 goto failed;
1198         }
1199
1200         r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1201         if (unlikely(r < 0)) {
1202                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1203                 goto failed;
1204         }
1205
1206         r = crypto_shash_final(req, result);
1207         if (unlikely(r < 0)) {
1208                 dm_integrity_io_error(ic, "crypto_shash_final", r);
1209                 goto failed;
1210         }
1211
1212         digest_size = crypto_shash_digestsize(ic->internal_hash);
1213         if (unlikely(digest_size < ic->tag_size))
1214                 memset(result + digest_size, 0, ic->tag_size - digest_size);
1215
1216         return;
1217
1218 failed:
1219         /* this shouldn't happen anyway, the hash functions have no reason to fail */
1220         get_random_bytes(result, ic->tag_size);
1221 }
1222
1223 static void integrity_metadata(struct work_struct *w)
1224 {
1225         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1226         struct dm_integrity_c *ic = dio->ic;
1227
1228         int r;
1229
1230         if (ic->internal_hash) {
1231                 struct bvec_iter iter;
1232                 struct bio_vec bv;
1233                 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1234                 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1235                 char *checksums;
1236                 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1237                 char checksums_onstack[ic->tag_size + extra_space];
1238                 unsigned sectors_to_process = dio->range.n_sectors;
1239                 sector_t sector = dio->range.logical_sector;
1240
1241                 if (unlikely(ic->mode == 'R'))
1242                         goto skip_io;
1243
1244                 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1245                                     GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1246                 if (!checksums)
1247                         checksums = checksums_onstack;
1248
1249                 __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) {
1250                         unsigned pos;
1251                         char *mem, *checksums_ptr;
1252
1253 again:
1254                         mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1255                         pos = 0;
1256                         checksums_ptr = checksums;
1257                         do {
1258                                 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1259                                 checksums_ptr += ic->tag_size;
1260                                 sectors_to_process -= ic->sectors_per_block;
1261                                 pos += ic->sectors_per_block << SECTOR_SHIFT;
1262                                 sector += ic->sectors_per_block;
1263                         } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1264                         kunmap_atomic(mem);
1265
1266                         r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1267                                                 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1268                         if (unlikely(r)) {
1269                                 if (r > 0) {
1270                                         DMERR("Checksum failed at sector 0x%llx",
1271                                               (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1272                                         r = -EILSEQ;
1273                                 }
1274                                 if (likely(checksums != checksums_onstack))
1275                                         kfree(checksums);
1276                                 goto error;
1277                         }
1278
1279                         if (!sectors_to_process)
1280                                 break;
1281
1282                         if (unlikely(pos < bv.bv_len)) {
1283                                 bv.bv_offset += pos;
1284                                 bv.bv_len -= pos;
1285                                 goto again;
1286                         }
1287                 }
1288
1289                 if (likely(checksums != checksums_onstack))
1290                         kfree(checksums);
1291         } else {
1292                 struct bio_integrity_payload *bip = dio->orig_bi_integrity;
1293
1294                 if (bip) {
1295                         struct bio_vec biv;
1296                         struct bvec_iter iter;
1297                         unsigned data_to_process = dio->range.n_sectors;
1298                         sector_to_block(ic, data_to_process);
1299                         data_to_process *= ic->tag_size;
1300
1301                         bip_for_each_vec(biv, bip, iter) {
1302                                 unsigned char *tag;
1303                                 unsigned this_len;
1304
1305                                 BUG_ON(PageHighMem(biv.bv_page));
1306                                 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1307                                 this_len = min(biv.bv_len, data_to_process);
1308                                 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1309                                                         this_len, !dio->write ? TAG_READ : TAG_WRITE);
1310                                 if (unlikely(r))
1311                                         goto error;
1312                                 data_to_process -= this_len;
1313                                 if (!data_to_process)
1314                                         break;
1315                         }
1316                 }
1317         }
1318 skip_io:
1319         dec_in_flight(dio);
1320         return;
1321 error:
1322         dio->bi_error = r;
1323         dec_in_flight(dio);
1324 }
1325
1326 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1327 {
1328         struct dm_integrity_c *ic = ti->private;
1329         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1330         struct bio_integrity_payload *bip;
1331
1332         sector_t area, offset;
1333
1334         dio->ic = ic;
1335         dio->bi_error = 0;
1336
1337         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1338                 submit_flush_bio(ic, dio);
1339                 return DM_MAPIO_SUBMITTED;
1340         }
1341
1342         dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1343         dio->write = bio_op(bio) == REQ_OP_WRITE;
1344         dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1345         if (unlikely(dio->fua)) {
1346                 /*
1347                  * Don't pass down the FUA flag because we have to flush
1348                  * disk cache anyway.
1349                  */
1350                 bio->bi_opf &= ~REQ_FUA;
1351         }
1352         if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1353                 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1354                       (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1355                       (unsigned long long)ic->provided_data_sectors);
1356                 return -EIO;
1357         }
1358         if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1359                 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1360                       ic->sectors_per_block,
1361                       (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1362                 return -EIO;
1363         }
1364
1365         if (ic->sectors_per_block > 1) {
1366                 struct bvec_iter iter;
1367                 struct bio_vec bv;
1368                 bio_for_each_segment(bv, bio, iter) {
1369                         if (unlikely((bv.bv_offset | bv.bv_len) & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1370                                 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1371                                         bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1372                                 return -EIO;
1373                         }
1374                 }
1375         }
1376
1377         bip = bio_integrity(bio);
1378         if (!ic->internal_hash) {
1379                 if (bip) {
1380                         unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1381                         if (ic->log2_tag_size >= 0)
1382                                 wanted_tag_size <<= ic->log2_tag_size;
1383                         else
1384                                 wanted_tag_size *= ic->tag_size;
1385                         if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1386                                 DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size);
1387                                 return -EIO;
1388                         }
1389                 }
1390         } else {
1391                 if (unlikely(bip != NULL)) {
1392                         DMERR("Unexpected integrity data when using internal hash");
1393                         return -EIO;
1394                 }
1395         }
1396
1397         if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1398                 return -EIO;
1399
1400         get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1401         dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1402         bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1403
1404         dm_integrity_map_continue(dio, true);
1405         return DM_MAPIO_SUBMITTED;
1406 }
1407
1408 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1409                                  unsigned journal_section, unsigned journal_entry)
1410 {
1411         struct dm_integrity_c *ic = dio->ic;
1412         sector_t logical_sector;
1413         unsigned n_sectors;
1414
1415         logical_sector = dio->range.logical_sector;
1416         n_sectors = dio->range.n_sectors;
1417         do {
1418                 struct bio_vec bv = bio_iovec(bio);
1419                 char *mem;
1420
1421                 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1422                         bv.bv_len = n_sectors << SECTOR_SHIFT;
1423                 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1424                 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1425 retry_kmap:
1426                 mem = kmap_atomic(bv.bv_page);
1427                 if (likely(dio->write))
1428                         flush_dcache_page(bv.bv_page);
1429
1430                 do {
1431                         struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1432
1433                         if (unlikely(!dio->write)) {
1434                                 struct journal_sector *js;
1435                                 char *mem_ptr;
1436                                 unsigned s;
1437
1438                                 if (unlikely(journal_entry_is_inprogress(je))) {
1439                                         flush_dcache_page(bv.bv_page);
1440                                         kunmap_atomic(mem);
1441
1442                                         __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1443                                         goto retry_kmap;
1444                                 }
1445                                 smp_rmb();
1446                                 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1447                                 js = access_journal_data(ic, journal_section, journal_entry);
1448                                 mem_ptr = mem + bv.bv_offset;
1449                                 s = 0;
1450                                 do {
1451                                         memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1452                                         *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1453                                         js++;
1454                                         mem_ptr += 1 << SECTOR_SHIFT;
1455                                 } while (++s < ic->sectors_per_block);
1456 #ifdef INTERNAL_VERIFY
1457                                 if (ic->internal_hash) {
1458                                         char checksums_onstack[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
1459
1460                                         integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1461                                         if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1462                                                 DMERR("Checksum failed when reading from journal, at sector 0x%llx",
1463                                                       (unsigned long long)logical_sector);
1464                                         }
1465                                 }
1466 #endif
1467                         }
1468
1469                         if (!ic->internal_hash) {
1470                                 struct bio_integrity_payload *bip = bio_integrity(bio);
1471                                 unsigned tag_todo = ic->tag_size;
1472                                 char *tag_ptr = journal_entry_tag(ic, je);
1473
1474                                 if (bip) do {
1475                                         struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1476                                         unsigned tag_now = min(biv.bv_len, tag_todo);
1477                                         char *tag_addr;
1478                                         BUG_ON(PageHighMem(biv.bv_page));
1479                                         tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1480                                         if (likely(dio->write))
1481                                                 memcpy(tag_ptr, tag_addr, tag_now);
1482                                         else
1483                                                 memcpy(tag_addr, tag_ptr, tag_now);
1484                                         bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1485                                         tag_ptr += tag_now;
1486                                         tag_todo -= tag_now;
1487                                 } while (unlikely(tag_todo)); else {
1488                                         if (likely(dio->write))
1489                                                 memset(tag_ptr, 0, tag_todo);
1490                                 }
1491                         }
1492
1493                         if (likely(dio->write)) {
1494                                 struct journal_sector *js;
1495                                 unsigned s;
1496
1497                                 js = access_journal_data(ic, journal_section, journal_entry);
1498                                 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1499
1500                                 s = 0;
1501                                 do {
1502                                         je->last_bytes[s] = js[s].commit_id;
1503                                 } while (++s < ic->sectors_per_block);
1504
1505                                 if (ic->internal_hash) {
1506                                         unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1507                                         if (unlikely(digest_size > ic->tag_size)) {
1508                                                 char checksums_onstack[digest_size];
1509                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1510                                                 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1511                                         } else
1512                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1513                                 }
1514
1515                                 journal_entry_set_sector(je, logical_sector);
1516                         }
1517                         logical_sector += ic->sectors_per_block;
1518
1519                         journal_entry++;
1520                         if (unlikely(journal_entry == ic->journal_section_entries)) {
1521                                 journal_entry = 0;
1522                                 journal_section++;
1523                                 wraparound_section(ic, &journal_section);
1524                         }
1525
1526                         bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1527                 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1528
1529                 if (unlikely(!dio->write))
1530                         flush_dcache_page(bv.bv_page);
1531                 kunmap_atomic(mem);
1532         } while (n_sectors);
1533
1534         if (likely(dio->write)) {
1535                 smp_mb();
1536                 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1537                         wake_up(&ic->copy_to_journal_wait);
1538                 if (ACCESS_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1539                         queue_work(ic->commit_wq, &ic->commit_work);
1540                 } else {
1541                         schedule_autocommit(ic);
1542                 }
1543         } else {
1544                 remove_range(ic, &dio->range);
1545         }
1546
1547         if (unlikely(bio->bi_iter.bi_size)) {
1548                 sector_t area, offset;
1549
1550                 dio->range.logical_sector = logical_sector;
1551                 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1552                 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1553                 return true;
1554         }
1555
1556         return false;
1557 }
1558
1559 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1560 {
1561         struct dm_integrity_c *ic = dio->ic;
1562         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1563         unsigned journal_section, journal_entry;
1564         unsigned journal_read_pos;
1565         struct completion read_comp;
1566         bool need_sync_io = ic->internal_hash && !dio->write;
1567
1568         if (need_sync_io && from_map) {
1569                 INIT_WORK(&dio->work, integrity_bio_wait);
1570                 queue_work(ic->metadata_wq, &dio->work);
1571                 return;
1572         }
1573
1574 lock_retry:
1575         spin_lock_irq(&ic->endio_wait.lock);
1576 retry:
1577         if (unlikely(dm_integrity_failed(ic))) {
1578                 spin_unlock_irq(&ic->endio_wait.lock);
1579                 do_endio(ic, bio);
1580                 return;
1581         }
1582         dio->range.n_sectors = bio_sectors(bio);
1583         journal_read_pos = NOT_FOUND;
1584         if (likely(ic->mode == 'J')) {
1585                 if (dio->write) {
1586                         unsigned next_entry, i, pos;
1587                         unsigned ws, we;
1588
1589                         dio->range.n_sectors = min(dio->range.n_sectors, ic->free_sectors);
1590                         if (unlikely(!dio->range.n_sectors))
1591                                 goto sleep;
1592                         ic->free_sectors -= dio->range.n_sectors;
1593                         journal_section = ic->free_section;
1594                         journal_entry = ic->free_section_entry;
1595
1596                         next_entry = ic->free_section_entry + dio->range.n_sectors;
1597                         ic->free_section_entry = next_entry % ic->journal_section_entries;
1598                         ic->free_section += next_entry / ic->journal_section_entries;
1599                         ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1600                         wraparound_section(ic, &ic->free_section);
1601
1602                         pos = journal_section * ic->journal_section_entries + journal_entry;
1603                         ws = journal_section;
1604                         we = journal_entry;
1605                         i = 0;
1606                         do {
1607                                 struct journal_entry *je;
1608
1609                                 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1610                                 pos++;
1611                                 if (unlikely(pos >= ic->journal_entries))
1612                                         pos = 0;
1613
1614                                 je = access_journal_entry(ic, ws, we);
1615                                 BUG_ON(!journal_entry_is_unused(je));
1616                                 journal_entry_set_inprogress(je);
1617                                 we++;
1618                                 if (unlikely(we == ic->journal_section_entries)) {
1619                                         we = 0;
1620                                         ws++;
1621                                         wraparound_section(ic, &ws);
1622                                 }
1623                         } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1624
1625                         spin_unlock_irq(&ic->endio_wait.lock);
1626                         goto journal_read_write;
1627                 } else {
1628                         sector_t next_sector;
1629                         journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1630                         if (likely(journal_read_pos == NOT_FOUND)) {
1631                                 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1632                                         dio->range.n_sectors = next_sector - dio->range.logical_sector;
1633                         } else {
1634                                 unsigned i;
1635                                 unsigned jp = journal_read_pos + 1;
1636                                 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1637                                         if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1638                                                 break;
1639                                 }
1640                                 dio->range.n_sectors = i;
1641                         }
1642                 }
1643         }
1644         if (unlikely(!add_new_range(ic, &dio->range))) {
1645                 /*
1646                  * We must not sleep in the request routine because it could
1647                  * stall bios on current->bio_list.
1648                  * So, we offload the bio to a workqueue if we have to sleep.
1649                  */
1650 sleep:
1651                 if (from_map) {
1652                         spin_unlock_irq(&ic->endio_wait.lock);
1653                         INIT_WORK(&dio->work, integrity_bio_wait);
1654                         queue_work(ic->wait_wq, &dio->work);
1655                         return;
1656                 } else {
1657                         sleep_on_endio_wait(ic);
1658                         goto retry;
1659                 }
1660         }
1661         spin_unlock_irq(&ic->endio_wait.lock);
1662
1663         if (unlikely(journal_read_pos != NOT_FOUND)) {
1664                 journal_section = journal_read_pos / ic->journal_section_entries;
1665                 journal_entry = journal_read_pos % ic->journal_section_entries;
1666                 goto journal_read_write;
1667         }
1668
1669         dio->in_flight = (atomic_t)ATOMIC_INIT(2);
1670
1671         if (need_sync_io) {
1672                 read_comp = COMPLETION_INITIALIZER_ONSTACK(read_comp);
1673                 dio->completion = &read_comp;
1674         } else
1675                 dio->completion = NULL;
1676
1677         dio->orig_bi_iter = bio->bi_iter;
1678
1679         dio->orig_bi_bdev = bio->bi_bdev;
1680         bio->bi_bdev = ic->dev->bdev;
1681
1682         dio->orig_bi_integrity = bio_integrity(bio);
1683         bio->bi_integrity = NULL;
1684         bio->bi_opf &= ~REQ_INTEGRITY;
1685
1686         dio->orig_bi_end_io = bio->bi_end_io;
1687         bio->bi_end_io = integrity_end_io;
1688
1689         bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
1690         bio->bi_iter.bi_sector += ic->start;
1691         generic_make_request(bio);
1692
1693         if (need_sync_io) {
1694                 wait_for_completion_io(&read_comp);
1695                 integrity_metadata(&dio->work);
1696         } else {
1697                 INIT_WORK(&dio->work, integrity_metadata);
1698                 queue_work(ic->metadata_wq, &dio->work);
1699         }
1700
1701         return;
1702
1703 journal_read_write:
1704         if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
1705                 goto lock_retry;
1706
1707         do_endio_flush(ic, dio);
1708 }
1709
1710
1711 static void integrity_bio_wait(struct work_struct *w)
1712 {
1713         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1714
1715         dm_integrity_map_continue(dio, false);
1716 }
1717
1718 static void pad_uncommitted(struct dm_integrity_c *ic)
1719 {
1720         if (ic->free_section_entry) {
1721                 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
1722                 ic->free_section_entry = 0;
1723                 ic->free_section++;
1724                 wraparound_section(ic, &ic->free_section);
1725                 ic->n_uncommitted_sections++;
1726         }
1727 }
1728
1729 static void integrity_commit(struct work_struct *w)
1730 {
1731         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
1732         unsigned commit_start, commit_sections;
1733         unsigned i, j, n;
1734         struct bio *flushes;
1735
1736         del_timer(&ic->autocommit_timer);
1737
1738         spin_lock_irq(&ic->endio_wait.lock);
1739         flushes = bio_list_get(&ic->flush_bio_list);
1740         if (unlikely(ic->mode != 'J')) {
1741                 spin_unlock_irq(&ic->endio_wait.lock);
1742                 dm_integrity_flush_buffers(ic);
1743                 goto release_flush_bios;
1744         }
1745
1746         pad_uncommitted(ic);
1747         commit_start = ic->uncommitted_section;
1748         commit_sections = ic->n_uncommitted_sections;
1749         spin_unlock_irq(&ic->endio_wait.lock);
1750
1751         if (!commit_sections)
1752                 goto release_flush_bios;
1753
1754         i = commit_start;
1755         for (n = 0; n < commit_sections; n++) {
1756                 for (j = 0; j < ic->journal_section_entries; j++) {
1757                         struct journal_entry *je;
1758                         je = access_journal_entry(ic, i, j);
1759                         io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1760                 }
1761                 for (j = 0; j < ic->journal_section_sectors; j++) {
1762                         struct journal_sector *js;
1763                         js = access_journal(ic, i, j);
1764                         js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
1765                 }
1766                 i++;
1767                 if (unlikely(i >= ic->journal_sections))
1768                         ic->commit_seq = next_commit_seq(ic->commit_seq);
1769                 wraparound_section(ic, &i);
1770         }
1771         smp_rmb();
1772
1773         write_journal(ic, commit_start, commit_sections);
1774
1775         spin_lock_irq(&ic->endio_wait.lock);
1776         ic->uncommitted_section += commit_sections;
1777         wraparound_section(ic, &ic->uncommitted_section);
1778         ic->n_uncommitted_sections -= commit_sections;
1779         ic->n_committed_sections += commit_sections;
1780         spin_unlock_irq(&ic->endio_wait.lock);
1781
1782         if (ACCESS_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
1783                 queue_work(ic->writer_wq, &ic->writer_work);
1784
1785 release_flush_bios:
1786         while (flushes) {
1787                 struct bio *next = flushes->bi_next;
1788                 flushes->bi_next = NULL;
1789                 do_endio(ic, flushes);
1790                 flushes = next;
1791         }
1792 }
1793
1794 static void complete_copy_from_journal(unsigned long error, void *context)
1795 {
1796         struct journal_io *io = context;
1797         struct journal_completion *comp = io->comp;
1798         struct dm_integrity_c *ic = comp->ic;
1799         remove_range(ic, &io->range);
1800         mempool_free(io, ic->journal_io_mempool);
1801         if (unlikely(error != 0))
1802                 dm_integrity_io_error(ic, "copying from journal", -EIO);
1803         complete_journal_op(comp);
1804 }
1805
1806 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
1807                                struct journal_entry *je)
1808 {
1809         unsigned s = 0;
1810         do {
1811                 js->commit_id = je->last_bytes[s];
1812                 js++;
1813         } while (++s < ic->sectors_per_block);
1814 }
1815
1816 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
1817                              unsigned write_sections, bool from_replay)
1818 {
1819         unsigned i, j, n;
1820         struct journal_completion comp;
1821
1822         comp.ic = ic;
1823         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1824         comp.comp = COMPLETION_INITIALIZER_ONSTACK(comp.comp);
1825
1826         i = write_start;
1827         for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
1828 #ifndef INTERNAL_VERIFY
1829                 if (unlikely(from_replay))
1830 #endif
1831                         rw_section_mac(ic, i, false);
1832                 for (j = 0; j < ic->journal_section_entries; j++) {
1833                         struct journal_entry *je = access_journal_entry(ic, i, j);
1834                         sector_t sec, area, offset;
1835                         unsigned k, l, next_loop;
1836                         sector_t metadata_block;
1837                         unsigned metadata_offset;
1838                         struct journal_io *io;
1839
1840                         if (journal_entry_is_unused(je))
1841                                 continue;
1842                         BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
1843                         sec = journal_entry_get_sector(je);
1844                         if (unlikely(from_replay)) {
1845                                 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
1846                                         dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
1847                                         sec &= ~(sector_t)(ic->sectors_per_block - 1);
1848                                 }
1849                         }
1850                         get_area_and_offset(ic, sec, &area, &offset);
1851                         restore_last_bytes(ic, access_journal_data(ic, i, j), je);
1852                         for (k = j + 1; k < ic->journal_section_entries; k++) {
1853                                 struct journal_entry *je2 = access_journal_entry(ic, i, k);
1854                                 sector_t sec2, area2, offset2;
1855                                 if (journal_entry_is_unused(je2))
1856                                         break;
1857                                 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
1858                                 sec2 = journal_entry_get_sector(je2);
1859                                 get_area_and_offset(ic, sec2, &area2, &offset2);
1860                                 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
1861                                         break;
1862                                 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
1863                         }
1864                         next_loop = k - 1;
1865
1866                         io = mempool_alloc(ic->journal_io_mempool, GFP_NOIO);
1867                         io->comp = &comp;
1868                         io->range.logical_sector = sec;
1869                         io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
1870
1871                         spin_lock_irq(&ic->endio_wait.lock);
1872                         while (unlikely(!add_new_range(ic, &io->range)))
1873                                 sleep_on_endio_wait(ic);
1874
1875                         if (likely(!from_replay)) {
1876                                 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
1877
1878                                 /* don't write if there is newer committed sector */
1879                                 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
1880                                         struct journal_entry *je2 = access_journal_entry(ic, i, j);
1881
1882                                         journal_entry_set_unused(je2);
1883                                         remove_journal_node(ic, &section_node[j]);
1884                                         j++;
1885                                         sec += ic->sectors_per_block;
1886                                         offset += ic->sectors_per_block;
1887                                 }
1888                                 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
1889                                         struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
1890
1891                                         journal_entry_set_unused(je2);
1892                                         remove_journal_node(ic, &section_node[k - 1]);
1893                                         k--;
1894                                 }
1895                                 if (j == k) {
1896                                         remove_range_unlocked(ic, &io->range);
1897                                         spin_unlock_irq(&ic->endio_wait.lock);
1898                                         mempool_free(io, ic->journal_io_mempool);
1899                                         goto skip_io;
1900                                 }
1901                                 for (l = j; l < k; l++) {
1902                                         remove_journal_node(ic, &section_node[l]);
1903                                 }
1904                         }
1905                         spin_unlock_irq(&ic->endio_wait.lock);
1906
1907                         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
1908                         for (l = j; l < k; l++) {
1909                                 int r;
1910                                 struct journal_entry *je2 = access_journal_entry(ic, i, l);
1911
1912                                 if (
1913 #ifndef INTERNAL_VERIFY
1914                                     unlikely(from_replay) &&
1915 #endif
1916                                     ic->internal_hash) {
1917                                         char test_tag[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
1918
1919                                         integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
1920                                                                   (char *)access_journal_data(ic, i, l), test_tag);
1921                                         if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
1922                                                 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
1923                                 }
1924
1925                                 journal_entry_set_unused(je2);
1926                                 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
1927                                                         ic->tag_size, TAG_WRITE);
1928                                 if (unlikely(r)) {
1929                                         dm_integrity_io_error(ic, "reading tags", r);
1930                                 }
1931                         }
1932
1933                         atomic_inc(&comp.in_flight);
1934                         copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
1935                                           (k - j) << ic->sb->log2_sectors_per_block,
1936                                           get_data_sector(ic, area, offset),
1937                                           complete_copy_from_journal, io);
1938 skip_io:
1939                         j = next_loop;
1940                 }
1941         }
1942
1943         dm_bufio_write_dirty_buffers_async(ic->bufio);
1944
1945         complete_journal_op(&comp);
1946         wait_for_completion_io(&comp.comp);
1947
1948         dm_integrity_flush_buffers(ic);
1949 }
1950
1951 static void integrity_writer(struct work_struct *w)
1952 {
1953         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
1954         unsigned write_start, write_sections;
1955
1956         unsigned prev_free_sectors;
1957
1958         /* the following test is not needed, but it tests the replay code */
1959         if (ACCESS_ONCE(ic->suspending))
1960                 return;
1961
1962         spin_lock_irq(&ic->endio_wait.lock);
1963         write_start = ic->committed_section;
1964         write_sections = ic->n_committed_sections;
1965         spin_unlock_irq(&ic->endio_wait.lock);
1966
1967         if (!write_sections)
1968                 return;
1969
1970         do_journal_write(ic, write_start, write_sections, false);
1971
1972         spin_lock_irq(&ic->endio_wait.lock);
1973
1974         ic->committed_section += write_sections;
1975         wraparound_section(ic, &ic->committed_section);
1976         ic->n_committed_sections -= write_sections;
1977
1978         prev_free_sectors = ic->free_sectors;
1979         ic->free_sectors += write_sections * ic->journal_section_entries;
1980         if (unlikely(!prev_free_sectors))
1981                 wake_up_locked(&ic->endio_wait);
1982
1983         spin_unlock_irq(&ic->endio_wait.lock);
1984 }
1985
1986 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
1987                          unsigned n_sections, unsigned char commit_seq)
1988 {
1989         unsigned i, j, n;
1990
1991         if (!n_sections)
1992                 return;
1993
1994         for (n = 0; n < n_sections; n++) {
1995                 i = start_section + n;
1996                 wraparound_section(ic, &i);
1997                 for (j = 0; j < ic->journal_section_sectors; j++) {
1998                         struct journal_sector *js = access_journal(ic, i, j);
1999                         memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2000                         js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2001                 }
2002                 for (j = 0; j < ic->journal_section_entries; j++) {
2003                         struct journal_entry *je = access_journal_entry(ic, i, j);
2004                         journal_entry_set_unused(je);
2005                 }
2006         }
2007
2008         write_journal(ic, start_section, n_sections);
2009 }
2010
2011 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2012 {
2013         unsigned char k;
2014         for (k = 0; k < N_COMMIT_IDS; k++) {
2015                 if (dm_integrity_commit_id(ic, i, j, k) == id)
2016                         return k;
2017         }
2018         dm_integrity_io_error(ic, "journal commit id", -EIO);
2019         return -EIO;
2020 }
2021
2022 static void replay_journal(struct dm_integrity_c *ic)
2023 {
2024         unsigned i, j;
2025         bool used_commit_ids[N_COMMIT_IDS];
2026         unsigned max_commit_id_sections[N_COMMIT_IDS];
2027         unsigned write_start, write_sections;
2028         unsigned continue_section;
2029         bool journal_empty;
2030         unsigned char unused, last_used, want_commit_seq;
2031
2032         if (ic->mode == 'R')
2033                 return;
2034
2035         if (ic->journal_uptodate)
2036                 return;
2037
2038         last_used = 0;
2039         write_start = 0;
2040
2041         if (!ic->just_formatted) {
2042                 DEBUG_print("reading journal\n");
2043                 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2044                 if (ic->journal_io)
2045                         DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2046                 if (ic->journal_io) {
2047                         struct journal_completion crypt_comp;
2048                         crypt_comp.ic = ic;
2049                         crypt_comp.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp.comp);
2050                         crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2051                         encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2052                         wait_for_completion(&crypt_comp.comp);
2053                 }
2054                 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2055         }
2056
2057         if (dm_integrity_failed(ic))
2058                 goto clear_journal;
2059
2060         journal_empty = true;
2061         memset(used_commit_ids, 0, sizeof used_commit_ids);
2062         memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2063         for (i = 0; i < ic->journal_sections; i++) {
2064                 for (j = 0; j < ic->journal_section_sectors; j++) {
2065                         int k;
2066                         struct journal_sector *js = access_journal(ic, i, j);
2067                         k = find_commit_seq(ic, i, j, js->commit_id);
2068                         if (k < 0)
2069                                 goto clear_journal;
2070                         used_commit_ids[k] = true;
2071                         max_commit_id_sections[k] = i;
2072                 }
2073                 if (journal_empty) {
2074                         for (j = 0; j < ic->journal_section_entries; j++) {
2075                                 struct journal_entry *je = access_journal_entry(ic, i, j);
2076                                 if (!journal_entry_is_unused(je)) {
2077                                         journal_empty = false;
2078                                         break;
2079                                 }
2080                         }
2081                 }
2082         }
2083
2084         if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2085                 unused = N_COMMIT_IDS - 1;
2086                 while (unused && !used_commit_ids[unused - 1])
2087                         unused--;
2088         } else {
2089                 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2090                         if (!used_commit_ids[unused])
2091                                 break;
2092                 if (unused == N_COMMIT_IDS) {
2093                         dm_integrity_io_error(ic, "journal commit ids", -EIO);
2094                         goto clear_journal;
2095                 }
2096         }
2097         DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2098                     unused, used_commit_ids[0], used_commit_ids[1],
2099                     used_commit_ids[2], used_commit_ids[3]);
2100
2101         last_used = prev_commit_seq(unused);
2102         want_commit_seq = prev_commit_seq(last_used);
2103
2104         if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2105                 journal_empty = true;
2106
2107         write_start = max_commit_id_sections[last_used] + 1;
2108         if (unlikely(write_start >= ic->journal_sections))
2109                 want_commit_seq = next_commit_seq(want_commit_seq);
2110         wraparound_section(ic, &write_start);
2111
2112         i = write_start;
2113         for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2114                 for (j = 0; j < ic->journal_section_sectors; j++) {
2115                         struct journal_sector *js = access_journal(ic, i, j);
2116
2117                         if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2118                                 /*
2119                                  * This could be caused by crash during writing.
2120                                  * We won't replay the inconsistent part of the
2121                                  * journal.
2122                                  */
2123                                 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2124                                             i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2125                                 goto brk;
2126                         }
2127                 }
2128                 i++;
2129                 if (unlikely(i >= ic->journal_sections))
2130                         want_commit_seq = next_commit_seq(want_commit_seq);
2131                 wraparound_section(ic, &i);
2132         }
2133 brk:
2134
2135         if (!journal_empty) {
2136                 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2137                             write_sections, write_start, want_commit_seq);
2138                 do_journal_write(ic, write_start, write_sections, true);
2139         }
2140
2141         if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2142                 continue_section = write_start;
2143                 ic->commit_seq = want_commit_seq;
2144                 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2145         } else {
2146                 unsigned s;
2147                 unsigned char erase_seq;
2148 clear_journal:
2149                 DEBUG_print("clearing journal\n");
2150
2151                 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2152                 s = write_start;
2153                 init_journal(ic, s, 1, erase_seq);
2154                 s++;
2155                 wraparound_section(ic, &s);
2156                 if (ic->journal_sections >= 2) {
2157                         init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2158                         s += ic->journal_sections - 2;
2159                         wraparound_section(ic, &s);
2160                         init_journal(ic, s, 1, erase_seq);
2161                 }
2162
2163                 continue_section = 0;
2164                 ic->commit_seq = next_commit_seq(erase_seq);
2165         }
2166
2167         ic->committed_section = continue_section;
2168         ic->n_committed_sections = 0;
2169
2170         ic->uncommitted_section = continue_section;
2171         ic->n_uncommitted_sections = 0;
2172
2173         ic->free_section = continue_section;
2174         ic->free_section_entry = 0;
2175         ic->free_sectors = ic->journal_entries;
2176
2177         ic->journal_tree_root = RB_ROOT;
2178         for (i = 0; i < ic->journal_entries; i++)
2179                 init_journal_node(&ic->journal_tree[i]);
2180 }
2181
2182 static void dm_integrity_postsuspend(struct dm_target *ti)
2183 {
2184         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2185
2186         del_timer_sync(&ic->autocommit_timer);
2187
2188         ic->suspending = true;
2189
2190         queue_work(ic->commit_wq, &ic->commit_work);
2191         drain_workqueue(ic->commit_wq);
2192
2193         if (ic->mode == 'J') {
2194                 drain_workqueue(ic->writer_wq);
2195                 dm_integrity_flush_buffers(ic);
2196         }
2197
2198         ic->suspending = false;
2199
2200         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2201
2202         ic->journal_uptodate = true;
2203 }
2204
2205 static void dm_integrity_resume(struct dm_target *ti)
2206 {
2207         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2208
2209         replay_journal(ic);
2210 }
2211
2212 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2213                                 unsigned status_flags, char *result, unsigned maxlen)
2214 {
2215         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2216         unsigned arg_count;
2217         size_t sz = 0;
2218
2219         switch (type) {
2220         case STATUSTYPE_INFO:
2221                 result[0] = '\0';
2222                 break;
2223
2224         case STATUSTYPE_TABLE: {
2225                 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2226                 watermark_percentage += ic->journal_entries / 2;
2227                 do_div(watermark_percentage, ic->journal_entries);
2228                 arg_count = 5;
2229                 arg_count += ic->sectors_per_block != 1;
2230                 arg_count += !!ic->internal_hash_alg.alg_string;
2231                 arg_count += !!ic->journal_crypt_alg.alg_string;
2232                 arg_count += !!ic->journal_mac_alg.alg_string;
2233                 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
2234                        ic->tag_size, ic->mode, arg_count);
2235                 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
2236                 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
2237                 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
2238                 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
2239                 DMEMIT(" commit_time:%u", ic->autocommit_msec);
2240                 if (ic->sectors_per_block != 1)
2241                         DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
2242
2243 #define EMIT_ALG(a, n)                                                  \
2244                 do {                                                    \
2245                         if (ic->a.alg_string) {                         \
2246                                 DMEMIT(" %s:%s", n, ic->a.alg_string);  \
2247                                 if (ic->a.key_string)                   \
2248                                         DMEMIT(":%s", ic->a.key_string);\
2249                         }                                               \
2250                 } while (0)
2251                 EMIT_ALG(internal_hash_alg, "internal_hash");
2252                 EMIT_ALG(journal_crypt_alg, "journal_crypt");
2253                 EMIT_ALG(journal_mac_alg, "journal_mac");
2254                 break;
2255         }
2256         }
2257 }
2258
2259 static int dm_integrity_iterate_devices(struct dm_target *ti,
2260                                         iterate_devices_callout_fn fn, void *data)
2261 {
2262         struct dm_integrity_c *ic = ti->private;
2263
2264         return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
2265 }
2266
2267 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
2268 {
2269         struct dm_integrity_c *ic = ti->private;
2270
2271         if (ic->sectors_per_block > 1) {
2272                 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2273                 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2274                 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
2275         }
2276 }
2277
2278 static void calculate_journal_section_size(struct dm_integrity_c *ic)
2279 {
2280         unsigned sector_space = JOURNAL_SECTOR_DATA;
2281
2282         ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
2283         ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
2284                                          JOURNAL_ENTRY_ROUNDUP);
2285
2286         if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
2287                 sector_space -= JOURNAL_MAC_PER_SECTOR;
2288         ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
2289         ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
2290         ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
2291         ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
2292 }
2293
2294 static int calculate_device_limits(struct dm_integrity_c *ic)
2295 {
2296         __u64 initial_sectors;
2297         sector_t last_sector, last_area, last_offset;
2298
2299         calculate_journal_section_size(ic);
2300         initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
2301         if (initial_sectors + METADATA_PADDING_SECTORS >= ic->device_sectors || initial_sectors > UINT_MAX)
2302                 return -EINVAL;
2303         ic->initial_sectors = initial_sectors;
2304
2305         ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
2306                                    (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
2307         if (!(ic->metadata_run & (ic->metadata_run - 1)))
2308                 ic->log2_metadata_run = __ffs(ic->metadata_run);
2309         else
2310                 ic->log2_metadata_run = -1;
2311
2312         get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
2313         last_sector = get_data_sector(ic, last_area, last_offset);
2314
2315         if (ic->start + last_sector < last_sector || ic->start + last_sector >= ic->device_sectors)
2316                 return -EINVAL;
2317
2318         return 0;
2319 }
2320
2321 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
2322 {
2323         unsigned journal_sections;
2324         int test_bit;
2325
2326         memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
2327         memcpy(ic->sb->magic, SB_MAGIC, 8);
2328         ic->sb->version = SB_VERSION;
2329         ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
2330         ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
2331         if (ic->journal_mac_alg.alg_string)
2332                 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
2333
2334         calculate_journal_section_size(ic);
2335         journal_sections = journal_sectors / ic->journal_section_sectors;
2336         if (!journal_sections)
2337                 journal_sections = 1;
2338         ic->sb->journal_sections = cpu_to_le32(journal_sections);
2339
2340         if (!interleave_sectors)
2341                 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
2342         ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
2343         ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2344         ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2345
2346         ic->provided_data_sectors = 0;
2347         for (test_bit = fls64(ic->device_sectors) - 1; test_bit >= 3; test_bit--) {
2348                 __u64 prev_data_sectors = ic->provided_data_sectors;
2349
2350                 ic->provided_data_sectors |= (sector_t)1 << test_bit;
2351                 if (calculate_device_limits(ic))
2352                         ic->provided_data_sectors = prev_data_sectors;
2353         }
2354
2355         if (!ic->provided_data_sectors)
2356                 return -EINVAL;
2357
2358         ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
2359
2360         return 0;
2361 }
2362
2363 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
2364 {
2365         struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
2366         struct blk_integrity bi;
2367
2368         memset(&bi, 0, sizeof(bi));
2369         bi.profile = &dm_integrity_profile;
2370         bi.tuple_size = ic->tag_size;
2371         bi.tag_size = bi.tuple_size;
2372         bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
2373
2374         blk_integrity_register(disk, &bi);
2375         blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
2376 }
2377
2378 static void dm_integrity_free_page_list(struct dm_integrity_c *ic, struct page_list *pl)
2379 {
2380         unsigned i;
2381
2382         if (!pl)
2383                 return;
2384         for (i = 0; i < ic->journal_pages; i++)
2385                 if (pl[i].page)
2386                         __free_page(pl[i].page);
2387         kvfree(pl);
2388 }
2389
2390 static struct page_list *dm_integrity_alloc_page_list(struct dm_integrity_c *ic)
2391 {
2392         size_t page_list_desc_size = ic->journal_pages * sizeof(struct page_list);
2393         struct page_list *pl;
2394         unsigned i;
2395
2396         pl = kvmalloc(page_list_desc_size, GFP_KERNEL | __GFP_ZERO);
2397         if (!pl)
2398                 return NULL;
2399
2400         for (i = 0; i < ic->journal_pages; i++) {
2401                 pl[i].page = alloc_page(GFP_KERNEL);
2402                 if (!pl[i].page) {
2403                         dm_integrity_free_page_list(ic, pl);
2404                         return NULL;
2405                 }
2406                 if (i)
2407                         pl[i - 1].next = &pl[i];
2408         }
2409
2410         return pl;
2411 }
2412
2413 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
2414 {
2415         unsigned i;
2416         for (i = 0; i < ic->journal_sections; i++)
2417                 kvfree(sl[i]);
2418         kfree(sl);
2419 }
2420
2421 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl)
2422 {
2423         struct scatterlist **sl;
2424         unsigned i;
2425
2426         sl = kvmalloc(ic->journal_sections * sizeof(struct scatterlist *), GFP_KERNEL | __GFP_ZERO);
2427         if (!sl)
2428                 return NULL;
2429
2430         for (i = 0; i < ic->journal_sections; i++) {
2431                 struct scatterlist *s;
2432                 unsigned start_index, start_offset;
2433                 unsigned end_index, end_offset;
2434                 unsigned n_pages;
2435                 unsigned idx;
2436
2437                 page_list_location(ic, i, 0, &start_index, &start_offset);
2438                 page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset);
2439
2440                 n_pages = (end_index - start_index + 1);
2441
2442                 s = kvmalloc(n_pages * sizeof(struct scatterlist), GFP_KERNEL);
2443                 if (!s) {
2444                         dm_integrity_free_journal_scatterlist(ic, sl);
2445                         return NULL;
2446                 }
2447
2448                 sg_init_table(s, n_pages);
2449                 for (idx = start_index; idx <= end_index; idx++) {
2450                         char *va = lowmem_page_address(pl[idx].page);
2451                         unsigned start = 0, end = PAGE_SIZE;
2452                         if (idx == start_index)
2453                                 start = start_offset;
2454                         if (idx == end_index)
2455                                 end = end_offset + (1 << SECTOR_SHIFT);
2456                         sg_set_buf(&s[idx - start_index], va + start, end - start);
2457                 }
2458
2459                 sl[i] = s;
2460         }
2461
2462         return sl;
2463 }
2464
2465 static void free_alg(struct alg_spec *a)
2466 {
2467         kzfree(a->alg_string);
2468         kzfree(a->key);
2469         memset(a, 0, sizeof *a);
2470 }
2471
2472 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
2473 {
2474         char *k;
2475
2476         free_alg(a);
2477
2478         a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
2479         if (!a->alg_string)
2480                 goto nomem;
2481
2482         k = strchr(a->alg_string, ':');
2483         if (k) {
2484                 *k = 0;
2485                 a->key_string = k + 1;
2486                 if (strlen(a->key_string) & 1)
2487                         goto inval;
2488
2489                 a->key_size = strlen(a->key_string) / 2;
2490                 a->key = kmalloc(a->key_size, GFP_KERNEL);
2491                 if (!a->key)
2492                         goto nomem;
2493                 if (hex2bin(a->key, a->key_string, a->key_size))
2494                         goto inval;
2495         }
2496
2497         return 0;
2498 inval:
2499         *error = error_inval;
2500         return -EINVAL;
2501 nomem:
2502         *error = "Out of memory for an argument";
2503         return -ENOMEM;
2504 }
2505
2506 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
2507                    char *error_alg, char *error_key)
2508 {
2509         int r;
2510
2511         if (a->alg_string) {
2512                 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ASYNC);
2513                 if (IS_ERR(*hash)) {
2514                         *error = error_alg;
2515                         r = PTR_ERR(*hash);
2516                         *hash = NULL;
2517                         return r;
2518                 }
2519
2520                 if (a->key) {
2521                         r = crypto_shash_setkey(*hash, a->key, a->key_size);
2522                         if (r) {
2523                                 *error = error_key;
2524                                 return r;
2525                         }
2526                 }
2527         }
2528
2529         return 0;
2530 }
2531
2532 static int create_journal(struct dm_integrity_c *ic, char **error)
2533 {
2534         int r = 0;
2535         unsigned i;
2536         __u64 journal_pages, journal_desc_size, journal_tree_size;
2537         unsigned char *crypt_data = NULL;
2538
2539         ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
2540         ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
2541         ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
2542         ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
2543
2544         journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
2545                                 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
2546         journal_desc_size = journal_pages * sizeof(struct page_list);
2547         if (journal_pages >= totalram_pages - totalhigh_pages || journal_desc_size > ULONG_MAX) {
2548                 *error = "Journal doesn't fit into memory";
2549                 r = -ENOMEM;
2550                 goto bad;
2551         }
2552         ic->journal_pages = journal_pages;
2553
2554         ic->journal = dm_integrity_alloc_page_list(ic);
2555         if (!ic->journal) {
2556                 *error = "Could not allocate memory for journal";
2557                 r = -ENOMEM;
2558                 goto bad;
2559         }
2560         if (ic->journal_crypt_alg.alg_string) {
2561                 unsigned ivsize, blocksize;
2562                 struct journal_completion comp;
2563
2564                 comp.ic = ic;
2565                 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
2566                 if (IS_ERR(ic->journal_crypt)) {
2567                         *error = "Invalid journal cipher";
2568                         r = PTR_ERR(ic->journal_crypt);
2569                         ic->journal_crypt = NULL;
2570                         goto bad;
2571                 }
2572                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
2573                 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
2574
2575                 if (ic->journal_crypt_alg.key) {
2576                         r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
2577                                                    ic->journal_crypt_alg.key_size);
2578                         if (r) {
2579                                 *error = "Error setting encryption key";
2580                                 goto bad;
2581                         }
2582                 }
2583                 DEBUG_print("cipher %s, block size %u iv size %u\n",
2584                             ic->journal_crypt_alg.alg_string, blocksize, ivsize);
2585
2586                 ic->journal_io = dm_integrity_alloc_page_list(ic);
2587                 if (!ic->journal_io) {
2588                         *error = "Could not allocate memory for journal io";
2589                         r = -ENOMEM;
2590                         goto bad;
2591                 }
2592
2593                 if (blocksize == 1) {
2594                         struct scatterlist *sg;
2595                         SKCIPHER_REQUEST_ON_STACK(req, ic->journal_crypt);
2596                         unsigned char iv[ivsize];
2597                         skcipher_request_set_tfm(req, ic->journal_crypt);
2598
2599                         ic->journal_xor = dm_integrity_alloc_page_list(ic);
2600                         if (!ic->journal_xor) {
2601                                 *error = "Could not allocate memory for journal xor";
2602                                 r = -ENOMEM;
2603                                 goto bad;
2604                         }
2605
2606                         sg = kvmalloc((ic->journal_pages + 1) * sizeof(struct scatterlist), GFP_KERNEL);
2607                         if (!sg) {
2608                                 *error = "Unable to allocate sg list";
2609                                 r = -ENOMEM;
2610                                 goto bad;
2611                         }
2612                         sg_init_table(sg, ic->journal_pages + 1);
2613                         for (i = 0; i < ic->journal_pages; i++) {
2614                                 char *va = lowmem_page_address(ic->journal_xor[i].page);
2615                                 clear_page(va);
2616                                 sg_set_buf(&sg[i], va, PAGE_SIZE);
2617                         }
2618                         sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
2619                         memset(iv, 0x00, ivsize);
2620
2621                         skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, iv);
2622                         comp.comp = COMPLETION_INITIALIZER_ONSTACK(comp.comp);
2623                         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2624                         if (do_crypt(true, req, &comp))
2625                                 wait_for_completion(&comp.comp);
2626                         kvfree(sg);
2627                         r = dm_integrity_failed(ic);
2628                         if (r) {
2629                                 *error = "Unable to encrypt journal";
2630                                 goto bad;
2631                         }
2632                         DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
2633
2634                         crypto_free_skcipher(ic->journal_crypt);
2635                         ic->journal_crypt = NULL;
2636                 } else {
2637                         SKCIPHER_REQUEST_ON_STACK(req, ic->journal_crypt);
2638                         unsigned char iv[ivsize];
2639                         unsigned crypt_len = roundup(ivsize, blocksize);
2640
2641                         crypt_data = kmalloc(crypt_len, GFP_KERNEL);
2642                         if (!crypt_data) {
2643                                 *error = "Unable to allocate crypt data";
2644                                 r = -ENOMEM;
2645                                 goto bad;
2646                         }
2647
2648                         skcipher_request_set_tfm(req, ic->journal_crypt);
2649
2650                         ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
2651                         if (!ic->journal_scatterlist) {
2652                                 *error = "Unable to allocate sg list";
2653                                 r = -ENOMEM;
2654                                 goto bad;
2655                         }
2656                         ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
2657                         if (!ic->journal_io_scatterlist) {
2658                                 *error = "Unable to allocate sg list";
2659                                 r = -ENOMEM;
2660                                 goto bad;
2661                         }
2662                         ic->sk_requests = kvmalloc(ic->journal_sections * sizeof(struct skcipher_request *), GFP_KERNEL | __GFP_ZERO);
2663                         if (!ic->sk_requests) {
2664                                 *error = "Unable to allocate sk requests";
2665                                 r = -ENOMEM;
2666                                 goto bad;
2667                         }
2668                         for (i = 0; i < ic->journal_sections; i++) {
2669                                 struct scatterlist sg;
2670                                 struct skcipher_request *section_req;
2671                                 __u32 section_le = cpu_to_le32(i);
2672
2673                                 memset(iv, 0x00, ivsize);
2674                                 memset(crypt_data, 0x00, crypt_len);
2675                                 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
2676
2677                                 sg_init_one(&sg, crypt_data, crypt_len);
2678                                 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, iv);
2679                                 comp.comp = COMPLETION_INITIALIZER_ONSTACK(comp.comp);
2680                                 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2681                                 if (do_crypt(true, req, &comp))
2682                                         wait_for_completion(&comp.comp);
2683
2684                                 r = dm_integrity_failed(ic);
2685                                 if (r) {
2686                                         *error = "Unable to generate iv";
2687                                         goto bad;
2688                                 }
2689
2690                                 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2691                                 if (!section_req) {
2692                                         *error = "Unable to allocate crypt request";
2693                                         r = -ENOMEM;
2694                                         goto bad;
2695                                 }
2696                                 section_req->iv = kmalloc(ivsize * 2, GFP_KERNEL);
2697                                 if (!section_req->iv) {
2698                                         skcipher_request_free(section_req);
2699                                         *error = "Unable to allocate iv";
2700                                         r = -ENOMEM;
2701                                         goto bad;
2702                                 }
2703                                 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
2704                                 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
2705                                 ic->sk_requests[i] = section_req;
2706                                 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
2707                         }
2708                 }
2709         }
2710
2711         for (i = 0; i < N_COMMIT_IDS; i++) {
2712                 unsigned j;
2713 retest_commit_id:
2714                 for (j = 0; j < i; j++) {
2715                         if (ic->commit_ids[j] == ic->commit_ids[i]) {
2716                                 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
2717                                 goto retest_commit_id;
2718                         }
2719                 }
2720                 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
2721         }
2722
2723         journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
2724         if (journal_tree_size > ULONG_MAX) {
2725                 *error = "Journal doesn't fit into memory";
2726                 r = -ENOMEM;
2727                 goto bad;
2728         }
2729         ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
2730         if (!ic->journal_tree) {
2731                 *error = "Could not allocate memory for journal tree";
2732                 r = -ENOMEM;
2733         }
2734 bad:
2735         kfree(crypt_data);
2736         return r;
2737 }
2738
2739 /*
2740  * Construct a integrity mapping
2741  *
2742  * Arguments:
2743  *      device
2744  *      offset from the start of the device
2745  *      tag size
2746  *      D - direct writes, J - journal writes, R - recovery mode
2747  *      number of optional arguments
2748  *      optional arguments:
2749  *              journal_sectors
2750  *              interleave_sectors
2751  *              buffer_sectors
2752  *              journal_watermark
2753  *              commit_time
2754  *              internal_hash
2755  *              journal_crypt
2756  *              journal_mac
2757  *              block_size
2758  */
2759 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
2760 {
2761         struct dm_integrity_c *ic;
2762         char dummy;
2763         int r;
2764         unsigned extra_args;
2765         struct dm_arg_set as;
2766         static struct dm_arg _args[] = {
2767                 {0, 9, "Invalid number of feature args"},
2768         };
2769         unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
2770         bool should_write_sb;
2771         __u64 threshold;
2772         unsigned long long start;
2773
2774 #define DIRECT_ARGUMENTS        4
2775
2776         if (argc <= DIRECT_ARGUMENTS) {
2777                 ti->error = "Invalid argument count";
2778                 return -EINVAL;
2779         }
2780
2781         ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
2782         if (!ic) {
2783                 ti->error = "Cannot allocate integrity context";
2784                 return -ENOMEM;
2785         }
2786         ti->private = ic;
2787         ti->per_io_data_size = sizeof(struct dm_integrity_io);
2788
2789         ic->in_progress = RB_ROOT;
2790         init_waitqueue_head(&ic->endio_wait);
2791         bio_list_init(&ic->flush_bio_list);
2792         init_waitqueue_head(&ic->copy_to_journal_wait);
2793         init_completion(&ic->crypto_backoff);
2794
2795         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
2796         if (r) {
2797                 ti->error = "Device lookup failed";
2798                 goto bad;
2799         }
2800
2801         if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
2802                 ti->error = "Invalid starting offset";
2803                 r = -EINVAL;
2804                 goto bad;
2805         }
2806         ic->start = start;
2807
2808         if (strcmp(argv[2], "-")) {
2809                 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
2810                         ti->error = "Invalid tag size";
2811                         r = -EINVAL;
2812                         goto bad;
2813                 }
2814         }
2815
2816         if (!strcmp(argv[3], "J") || !strcmp(argv[3], "D") || !strcmp(argv[3], "R"))
2817                 ic->mode = argv[3][0];
2818         else {
2819                 ti->error = "Invalid mode (expecting J, D, R)";
2820                 r = -EINVAL;
2821                 goto bad;
2822         }
2823
2824         ic->device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
2825         journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
2826                         ic->device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
2827         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
2828         buffer_sectors = DEFAULT_BUFFER_SECTORS;
2829         journal_watermark = DEFAULT_JOURNAL_WATERMARK;
2830         sync_msec = DEFAULT_SYNC_MSEC;
2831         ic->sectors_per_block = 1;
2832
2833         as.argc = argc - DIRECT_ARGUMENTS;
2834         as.argv = argv + DIRECT_ARGUMENTS;
2835         r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
2836         if (r)
2837                 goto bad;
2838
2839         while (extra_args--) {
2840                 const char *opt_string;
2841                 unsigned val;
2842                 opt_string = dm_shift_arg(&as);
2843                 if (!opt_string) {
2844                         r = -EINVAL;
2845                         ti->error = "Not enough feature arguments";
2846                         goto bad;
2847                 }
2848                 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
2849                         journal_sectors = val;
2850                 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
2851                         interleave_sectors = val;
2852                 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
2853                         buffer_sectors = val;
2854                 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
2855                         journal_watermark = val;
2856                 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
2857                         sync_msec = val;
2858                 else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
2859                         if (val < 1 << SECTOR_SHIFT ||
2860                             val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
2861                             (val & (val -1))) {
2862                                 r = -EINVAL;
2863                                 ti->error = "Invalid block_size argument";
2864                                 goto bad;
2865                         }
2866                         ic->sectors_per_block = val >> SECTOR_SHIFT;
2867                 } else if (!memcmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
2868                         r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
2869                                             "Invalid internal_hash argument");
2870                         if (r)
2871                                 goto bad;
2872                 } else if (!memcmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
2873                         r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
2874                                             "Invalid journal_crypt argument");
2875                         if (r)
2876                                 goto bad;
2877                 } else if (!memcmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
2878                         r = get_alg_and_key(opt_string, &ic->journal_mac_alg,  &ti->error,
2879                                             "Invalid journal_mac argument");
2880                         if (r)
2881                                 goto bad;
2882                 } else {
2883                         r = -EINVAL;
2884                         ti->error = "Invalid argument";
2885                         goto bad;
2886                 }
2887         }
2888
2889         r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
2890                     "Invalid internal hash", "Error setting internal hash key");
2891         if (r)
2892                 goto bad;
2893
2894         r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
2895                     "Invalid journal mac", "Error setting journal mac key");
2896         if (r)
2897                 goto bad;
2898
2899         if (!ic->tag_size) {
2900                 if (!ic->internal_hash) {
2901                         ti->error = "Unknown tag size";
2902                         r = -EINVAL;
2903                         goto bad;
2904                 }
2905                 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
2906         }
2907         if (ic->tag_size > MAX_TAG_SIZE) {
2908                 ti->error = "Too big tag size";
2909                 r = -EINVAL;
2910                 goto bad;
2911         }
2912         if (!(ic->tag_size & (ic->tag_size - 1)))
2913                 ic->log2_tag_size = __ffs(ic->tag_size);
2914         else
2915                 ic->log2_tag_size = -1;
2916
2917         ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
2918         ic->autocommit_msec = sync_msec;
2919         setup_timer(&ic->autocommit_timer, autocommit_fn, (unsigned long)ic);
2920
2921         ic->io = dm_io_client_create();
2922         if (IS_ERR(ic->io)) {
2923                 r = PTR_ERR(ic->io);
2924                 ic->io = NULL;
2925                 ti->error = "Cannot allocate dm io";
2926                 goto bad;
2927         }
2928
2929         ic->journal_io_mempool = mempool_create_slab_pool(JOURNAL_IO_MEMPOOL, journal_io_cache);
2930         if (!ic->journal_io_mempool) {
2931                 r = -ENOMEM;
2932                 ti->error = "Cannot allocate mempool";
2933                 goto bad;
2934         }
2935
2936         ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
2937                                           WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
2938         if (!ic->metadata_wq) {
2939                 ti->error = "Cannot allocate workqueue";
2940                 r = -ENOMEM;
2941                 goto bad;
2942         }
2943
2944         /*
2945          * If this workqueue were percpu, it would cause bio reordering
2946          * and reduced performance.
2947          */
2948         ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
2949         if (!ic->wait_wq) {
2950                 ti->error = "Cannot allocate workqueue";
2951                 r = -ENOMEM;
2952                 goto bad;
2953         }
2954
2955         ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
2956         if (!ic->commit_wq) {
2957                 ti->error = "Cannot allocate workqueue";
2958                 r = -ENOMEM;
2959                 goto bad;
2960         }
2961         INIT_WORK(&ic->commit_work, integrity_commit);
2962
2963         if (ic->mode == 'J') {
2964                 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
2965                 if (!ic->writer_wq) {
2966                         ti->error = "Cannot allocate workqueue";
2967                         r = -ENOMEM;
2968                         goto bad;
2969                 }
2970                 INIT_WORK(&ic->writer_work, integrity_writer);
2971         }
2972
2973         ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
2974         if (!ic->sb) {
2975                 r = -ENOMEM;
2976                 ti->error = "Cannot allocate superblock area";
2977                 goto bad;
2978         }
2979
2980         r = sync_rw_sb(ic, REQ_OP_READ, 0);
2981         if (r) {
2982                 ti->error = "Error reading superblock";
2983                 goto bad;
2984         }
2985         should_write_sb = false;
2986         if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
2987                 if (ic->mode != 'R') {
2988                         if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
2989                                 r = -EINVAL;
2990                                 ti->error = "The device is not initialized";
2991                                 goto bad;
2992                         }
2993                 }
2994
2995                 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
2996                 if (r) {
2997                         ti->error = "Could not initialize superblock";
2998                         goto bad;
2999                 }
3000                 if (ic->mode != 'R')
3001                         should_write_sb = true;
3002         }
3003
3004         if (ic->sb->version != SB_VERSION) {
3005                 r = -EINVAL;
3006                 ti->error = "Unknown version";
3007                 goto bad;
3008         }
3009         if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
3010                 r = -EINVAL;
3011                 ti->error = "Tag size doesn't match the information in superblock";
3012                 goto bad;
3013         }
3014         if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
3015                 r = -EINVAL;
3016                 ti->error = "Block size doesn't match the information in superblock";
3017                 goto bad;
3018         }
3019         /* make sure that ti->max_io_len doesn't overflow */
3020         if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
3021             ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
3022                 r = -EINVAL;
3023                 ti->error = "Invalid interleave_sectors in the superblock";
3024                 goto bad;
3025         }
3026         ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3027         if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
3028                 /* test for overflow */
3029                 r = -EINVAL;
3030                 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
3031                 goto bad;
3032         }
3033         if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
3034                 r = -EINVAL;
3035                 ti->error = "Journal mac mismatch";
3036                 goto bad;
3037         }
3038         r =&nb