Merge remote-tracking branches 'asoc/topic/cs4271', 'asoc/topic/cs53l30', 'asoc/topic...
[sfrench/cifs-2.6.git] / drivers / md / dm-cache-policy-smq.c
1 /*
2  * Copyright (C) 2015 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-cache-background-tracker.h"
8 #include "dm-cache-policy-internal.h"
9 #include "dm-cache-policy.h"
10 #include "dm.h"
11
12 #include <linux/hash.h>
13 #include <linux/jiffies.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/vmalloc.h>
17 #include <linux/math64.h>
18
19 #define DM_MSG_PREFIX "cache-policy-smq"
20
21 /*----------------------------------------------------------------*/
22
23 /*
24  * Safe division functions that return zero on divide by zero.
25  */
26 static unsigned safe_div(unsigned n, unsigned d)
27 {
28         return d ? n / d : 0u;
29 }
30
31 static unsigned safe_mod(unsigned n, unsigned d)
32 {
33         return d ? n % d : 0u;
34 }
35
36 /*----------------------------------------------------------------*/
37
38 struct entry {
39         unsigned hash_next:28;
40         unsigned prev:28;
41         unsigned next:28;
42         unsigned level:6;
43         bool dirty:1;
44         bool allocated:1;
45         bool sentinel:1;
46         bool pending_work:1;
47
48         dm_oblock_t oblock;
49 };
50
51 /*----------------------------------------------------------------*/
52
53 #define INDEXER_NULL ((1u << 28u) - 1u)
54
55 /*
56  * An entry_space manages a set of entries that we use for the queues.
57  * The clean and dirty queues share entries, so this object is separate
58  * from the queue itself.
59  */
60 struct entry_space {
61         struct entry *begin;
62         struct entry *end;
63 };
64
65 static int space_init(struct entry_space *es, unsigned nr_entries)
66 {
67         if (!nr_entries) {
68                 es->begin = es->end = NULL;
69                 return 0;
70         }
71
72         es->begin = vzalloc(sizeof(struct entry) * nr_entries);
73         if (!es->begin)
74                 return -ENOMEM;
75
76         es->end = es->begin + nr_entries;
77         return 0;
78 }
79
80 static void space_exit(struct entry_space *es)
81 {
82         vfree(es->begin);
83 }
84
85 static struct entry *__get_entry(struct entry_space *es, unsigned block)
86 {
87         struct entry *e;
88
89         e = es->begin + block;
90         BUG_ON(e >= es->end);
91
92         return e;
93 }
94
95 static unsigned to_index(struct entry_space *es, struct entry *e)
96 {
97         BUG_ON(e < es->begin || e >= es->end);
98         return e - es->begin;
99 }
100
101 static struct entry *to_entry(struct entry_space *es, unsigned block)
102 {
103         if (block == INDEXER_NULL)
104                 return NULL;
105
106         return __get_entry(es, block);
107 }
108
109 /*----------------------------------------------------------------*/
110
111 struct ilist {
112         unsigned nr_elts;       /* excluding sentinel entries */
113         unsigned head, tail;
114 };
115
116 static void l_init(struct ilist *l)
117 {
118         l->nr_elts = 0;
119         l->head = l->tail = INDEXER_NULL;
120 }
121
122 static struct entry *l_head(struct entry_space *es, struct ilist *l)
123 {
124         return to_entry(es, l->head);
125 }
126
127 static struct entry *l_tail(struct entry_space *es, struct ilist *l)
128 {
129         return to_entry(es, l->tail);
130 }
131
132 static struct entry *l_next(struct entry_space *es, struct entry *e)
133 {
134         return to_entry(es, e->next);
135 }
136
137 static struct entry *l_prev(struct entry_space *es, struct entry *e)
138 {
139         return to_entry(es, e->prev);
140 }
141
142 static bool l_empty(struct ilist *l)
143 {
144         return l->head == INDEXER_NULL;
145 }
146
147 static void l_add_head(struct entry_space *es, struct ilist *l, struct entry *e)
148 {
149         struct entry *head = l_head(es, l);
150
151         e->next = l->head;
152         e->prev = INDEXER_NULL;
153
154         if (head)
155                 head->prev = l->head = to_index(es, e);
156         else
157                 l->head = l->tail = to_index(es, e);
158
159         if (!e->sentinel)
160                 l->nr_elts++;
161 }
162
163 static void l_add_tail(struct entry_space *es, struct ilist *l, struct entry *e)
164 {
165         struct entry *tail = l_tail(es, l);
166
167         e->next = INDEXER_NULL;
168         e->prev = l->tail;
169
170         if (tail)
171                 tail->next = l->tail = to_index(es, e);
172         else
173                 l->head = l->tail = to_index(es, e);
174
175         if (!e->sentinel)
176                 l->nr_elts++;
177 }
178
179 static void l_add_before(struct entry_space *es, struct ilist *l,
180                          struct entry *old, struct entry *e)
181 {
182         struct entry *prev = l_prev(es, old);
183
184         if (!prev)
185                 l_add_head(es, l, e);
186
187         else {
188                 e->prev = old->prev;
189                 e->next = to_index(es, old);
190                 prev->next = old->prev = to_index(es, e);
191
192                 if (!e->sentinel)
193                         l->nr_elts++;
194         }
195 }
196
197 static void l_del(struct entry_space *es, struct ilist *l, struct entry *e)
198 {
199         struct entry *prev = l_prev(es, e);
200         struct entry *next = l_next(es, e);
201
202         if (prev)
203                 prev->next = e->next;
204         else
205                 l->head = e->next;
206
207         if (next)
208                 next->prev = e->prev;
209         else
210                 l->tail = e->prev;
211
212         if (!e->sentinel)
213                 l->nr_elts--;
214 }
215
216 static struct entry *l_pop_tail(struct entry_space *es, struct ilist *l)
217 {
218         struct entry *e;
219
220         for (e = l_tail(es, l); e; e = l_prev(es, e))
221                 if (!e->sentinel) {
222                         l_del(es, l, e);
223                         return e;
224                 }
225
226         return NULL;
227 }
228
229 /*----------------------------------------------------------------*/
230
231 /*
232  * The stochastic-multi-queue is a set of lru lists stacked into levels.
233  * Entries are moved up levels when they are used, which loosely orders the
234  * most accessed entries in the top levels and least in the bottom.  This
235  * structure is *much* better than a single lru list.
236  */
237 #define MAX_LEVELS 64u
238
239 struct queue {
240         struct entry_space *es;
241
242         unsigned nr_elts;
243         unsigned nr_levels;
244         struct ilist qs[MAX_LEVELS];
245
246         /*
247          * We maintain a count of the number of entries we would like in each
248          * level.
249          */
250         unsigned last_target_nr_elts;
251         unsigned nr_top_levels;
252         unsigned nr_in_top_levels;
253         unsigned target_count[MAX_LEVELS];
254 };
255
256 static void q_init(struct queue *q, struct entry_space *es, unsigned nr_levels)
257 {
258         unsigned i;
259
260         q->es = es;
261         q->nr_elts = 0;
262         q->nr_levels = nr_levels;
263
264         for (i = 0; i < q->nr_levels; i++) {
265                 l_init(q->qs + i);
266                 q->target_count[i] = 0u;
267         }
268
269         q->last_target_nr_elts = 0u;
270         q->nr_top_levels = 0u;
271         q->nr_in_top_levels = 0u;
272 }
273
274 static unsigned q_size(struct queue *q)
275 {
276         return q->nr_elts;
277 }
278
279 /*
280  * Insert an entry to the back of the given level.
281  */
282 static void q_push(struct queue *q, struct entry *e)
283 {
284         BUG_ON(e->pending_work);
285
286         if (!e->sentinel)
287                 q->nr_elts++;
288
289         l_add_tail(q->es, q->qs + e->level, e);
290 }
291
292 static void q_push_front(struct queue *q, struct entry *e)
293 {
294         BUG_ON(e->pending_work);
295
296         if (!e->sentinel)
297                 q->nr_elts++;
298
299         l_add_head(q->es, q->qs + e->level, e);
300 }
301
302 static void q_push_before(struct queue *q, struct entry *old, struct entry *e)
303 {
304         BUG_ON(e->pending_work);
305
306         if (!e->sentinel)
307                 q->nr_elts++;
308
309         l_add_before(q->es, q->qs + e->level, old, e);
310 }
311
312 static void q_del(struct queue *q, struct entry *e)
313 {
314         l_del(q->es, q->qs + e->level, e);
315         if (!e->sentinel)
316                 q->nr_elts--;
317 }
318
319 /*
320  * Return the oldest entry of the lowest populated level.
321  */
322 static struct entry *q_peek(struct queue *q, unsigned max_level, bool can_cross_sentinel)
323 {
324         unsigned level;
325         struct entry *e;
326
327         max_level = min(max_level, q->nr_levels);
328
329         for (level = 0; level < max_level; level++)
330                 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) {
331                         if (e->sentinel) {
332                                 if (can_cross_sentinel)
333                                         continue;
334                                 else
335                                         break;
336                         }
337
338                         return e;
339                 }
340
341         return NULL;
342 }
343
344 static struct entry *q_pop(struct queue *q)
345 {
346         struct entry *e = q_peek(q, q->nr_levels, true);
347
348         if (e)
349                 q_del(q, e);
350
351         return e;
352 }
353
354 /*
355  * This function assumes there is a non-sentinel entry to pop.  It's only
356  * used by redistribute, so we know this is true.  It also doesn't adjust
357  * the q->nr_elts count.
358  */
359 static struct entry *__redist_pop_from(struct queue *q, unsigned level)
360 {
361         struct entry *e;
362
363         for (; level < q->nr_levels; level++)
364                 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e))
365                         if (!e->sentinel) {
366                                 l_del(q->es, q->qs + e->level, e);
367                                 return e;
368                         }
369
370         return NULL;
371 }
372
373 static void q_set_targets_subrange_(struct queue *q, unsigned nr_elts, unsigned lbegin, unsigned lend)
374 {
375         unsigned level, nr_levels, entries_per_level, remainder;
376
377         BUG_ON(lbegin > lend);
378         BUG_ON(lend > q->nr_levels);
379         nr_levels = lend - lbegin;
380         entries_per_level = safe_div(nr_elts, nr_levels);
381         remainder = safe_mod(nr_elts, nr_levels);
382
383         for (level = lbegin; level < lend; level++)
384                 q->target_count[level] =
385                         (level < (lbegin + remainder)) ? entries_per_level + 1u : entries_per_level;
386 }
387
388 /*
389  * Typically we have fewer elements in the top few levels which allows us
390  * to adjust the promote threshold nicely.
391  */
392 static void q_set_targets(struct queue *q)
393 {
394         if (q->last_target_nr_elts == q->nr_elts)
395                 return;
396
397         q->last_target_nr_elts = q->nr_elts;
398
399         if (q->nr_top_levels > q->nr_levels)
400                 q_set_targets_subrange_(q, q->nr_elts, 0, q->nr_levels);
401
402         else {
403                 q_set_targets_subrange_(q, q->nr_in_top_levels,
404                                         q->nr_levels - q->nr_top_levels, q->nr_levels);
405
406                 if (q->nr_in_top_levels < q->nr_elts)
407                         q_set_targets_subrange_(q, q->nr_elts - q->nr_in_top_levels,
408                                                 0, q->nr_levels - q->nr_top_levels);
409                 else
410                         q_set_targets_subrange_(q, 0, 0, q->nr_levels - q->nr_top_levels);
411         }
412 }
413
414 static void q_redistribute(struct queue *q)
415 {
416         unsigned target, level;
417         struct ilist *l, *l_above;
418         struct entry *e;
419
420         q_set_targets(q);
421
422         for (level = 0u; level < q->nr_levels - 1u; level++) {
423                 l = q->qs + level;
424                 target = q->target_count[level];
425
426                 /*
427                  * Pull down some entries from the level above.
428                  */
429                 while (l->nr_elts < target) {
430                         e = __redist_pop_from(q, level + 1u);
431                         if (!e) {
432                                 /* bug in nr_elts */
433                                 break;
434                         }
435
436                         e->level = level;
437                         l_add_tail(q->es, l, e);
438                 }
439
440                 /*
441                  * Push some entries up.
442                  */
443                 l_above = q->qs + level + 1u;
444                 while (l->nr_elts > target) {
445                         e = l_pop_tail(q->es, l);
446
447                         if (!e)
448                                 /* bug in nr_elts */
449                                 break;
450
451                         e->level = level + 1u;
452                         l_add_tail(q->es, l_above, e);
453                 }
454         }
455 }
456
457 static void q_requeue(struct queue *q, struct entry *e, unsigned extra_levels,
458                       struct entry *s1, struct entry *s2)
459 {
460         struct entry *de;
461         unsigned sentinels_passed = 0;
462         unsigned new_level = min(q->nr_levels - 1u, e->level + extra_levels);
463
464         /* try and find an entry to swap with */
465         if (extra_levels && (e->level < q->nr_levels - 1u)) {
466                 for (de = l_head(q->es, q->qs + new_level); de && de->sentinel; de = l_next(q->es, de))
467                         sentinels_passed++;
468
469                 if (de) {
470                         q_del(q, de);
471                         de->level = e->level;
472                         if (s1) {
473                                 switch (sentinels_passed) {
474                                 case 0:
475                                         q_push_before(q, s1, de);
476                                         break;
477
478                                 case 1:
479                                         q_push_before(q, s2, de);
480                                         break;
481
482                                 default:
483                                         q_push(q, de);
484                                 }
485                         } else
486                                 q_push(q, de);
487                 }
488         }
489
490         q_del(q, e);
491         e->level = new_level;
492         q_push(q, e);
493 }
494
495 /*----------------------------------------------------------------*/
496
497 #define FP_SHIFT 8
498 #define SIXTEENTH (1u << (FP_SHIFT - 4u))
499 #define EIGHTH (1u << (FP_SHIFT - 3u))
500
501 struct stats {
502         unsigned hit_threshold;
503         unsigned hits;
504         unsigned misses;
505 };
506
507 enum performance {
508         Q_POOR,
509         Q_FAIR,
510         Q_WELL
511 };
512
513 static void stats_init(struct stats *s, unsigned nr_levels)
514 {
515         s->hit_threshold = (nr_levels * 3u) / 4u;
516         s->hits = 0u;
517         s->misses = 0u;
518 }
519
520 static void stats_reset(struct stats *s)
521 {
522         s->hits = s->misses = 0u;
523 }
524
525 static void stats_level_accessed(struct stats *s, unsigned level)
526 {
527         if (level >= s->hit_threshold)
528                 s->hits++;
529         else
530                 s->misses++;
531 }
532
533 static void stats_miss(struct stats *s)
534 {
535         s->misses++;
536 }
537
538 /*
539  * There are times when we don't have any confidence in the hotspot queue.
540  * Such as when a fresh cache is created and the blocks have been spread
541  * out across the levels, or if an io load changes.  We detect this by
542  * seeing how often a lookup is in the top levels of the hotspot queue.
543  */
544 static enum performance stats_assess(struct stats *s)
545 {
546         unsigned confidence = safe_div(s->hits << FP_SHIFT, s->hits + s->misses);
547
548         if (confidence < SIXTEENTH)
549                 return Q_POOR;
550
551         else if (confidence < EIGHTH)
552                 return Q_FAIR;
553
554         else
555                 return Q_WELL;
556 }
557
558 /*----------------------------------------------------------------*/
559
560 struct smq_hash_table {
561         struct entry_space *es;
562         unsigned long long hash_bits;
563         unsigned *buckets;
564 };
565
566 /*
567  * All cache entries are stored in a chained hash table.  To save space we
568  * use indexing again, and only store indexes to the next entry.
569  */
570 static int h_init(struct smq_hash_table *ht, struct entry_space *es, unsigned nr_entries)
571 {
572         unsigned i, nr_buckets;
573
574         ht->es = es;
575         nr_buckets = roundup_pow_of_two(max(nr_entries / 4u, 16u));
576         ht->hash_bits = __ffs(nr_buckets);
577
578         ht->buckets = vmalloc(sizeof(*ht->buckets) * nr_buckets);
579         if (!ht->buckets)
580                 return -ENOMEM;
581
582         for (i = 0; i < nr_buckets; i++)
583                 ht->buckets[i] = INDEXER_NULL;
584
585         return 0;
586 }
587
588 static void h_exit(struct smq_hash_table *ht)
589 {
590         vfree(ht->buckets);
591 }
592
593 static struct entry *h_head(struct smq_hash_table *ht, unsigned bucket)
594 {
595         return to_entry(ht->es, ht->buckets[bucket]);
596 }
597
598 static struct entry *h_next(struct smq_hash_table *ht, struct entry *e)
599 {
600         return to_entry(ht->es, e->hash_next);
601 }
602
603 static void __h_insert(struct smq_hash_table *ht, unsigned bucket, struct entry *e)
604 {
605         e->hash_next = ht->buckets[bucket];
606         ht->buckets[bucket] = to_index(ht->es, e);
607 }
608
609 static void h_insert(struct smq_hash_table *ht, struct entry *e)
610 {
611         unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits);
612         __h_insert(ht, h, e);
613 }
614
615 static struct entry *__h_lookup(struct smq_hash_table *ht, unsigned h, dm_oblock_t oblock,
616                                 struct entry **prev)
617 {
618         struct entry *e;
619
620         *prev = NULL;
621         for (e = h_head(ht, h); e; e = h_next(ht, e)) {
622                 if (e->oblock == oblock)
623                         return e;
624
625                 *prev = e;
626         }
627
628         return NULL;
629 }
630
631 static void __h_unlink(struct smq_hash_table *ht, unsigned h,
632                        struct entry *e, struct entry *prev)
633 {
634         if (prev)
635                 prev->hash_next = e->hash_next;
636         else
637                 ht->buckets[h] = e->hash_next;
638 }
639
640 /*
641  * Also moves each entry to the front of the bucket.
642  */
643 static struct entry *h_lookup(struct smq_hash_table *ht, dm_oblock_t oblock)
644 {
645         struct entry *e, *prev;
646         unsigned h = hash_64(from_oblock(oblock), ht->hash_bits);
647
648         e = __h_lookup(ht, h, oblock, &prev);
649         if (e && prev) {
650                 /*
651                  * Move to the front because this entry is likely
652                  * to be hit again.
653                  */
654                 __h_unlink(ht, h, e, prev);
655                 __h_insert(ht, h, e);
656         }
657
658         return e;
659 }
660
661 static void h_remove(struct smq_hash_table *ht, struct entry *e)
662 {
663         unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits);
664         struct entry *prev;
665
666         /*
667          * The down side of using a singly linked list is we have to
668          * iterate the bucket to remove an item.
669          */
670         e = __h_lookup(ht, h, e->oblock, &prev);
671         if (e)
672                 __h_unlink(ht, h, e, prev);
673 }
674
675 /*----------------------------------------------------------------*/
676
677 struct entry_alloc {
678         struct entry_space *es;
679         unsigned begin;
680
681         unsigned nr_allocated;
682         struct ilist free;
683 };
684
685 static void init_allocator(struct entry_alloc *ea, struct entry_space *es,
686                            unsigned begin, unsigned end)
687 {
688         unsigned i;
689
690         ea->es = es;
691         ea->nr_allocated = 0u;
692         ea->begin = begin;
693
694         l_init(&ea->free);
695         for (i = begin; i != end; i++)
696                 l_add_tail(ea->es, &ea->free, __get_entry(ea->es, i));
697 }
698
699 static void init_entry(struct entry *e)
700 {
701         /*
702          * We can't memset because that would clear the hotspot and
703          * sentinel bits which remain constant.
704          */
705         e->hash_next = INDEXER_NULL;
706         e->next = INDEXER_NULL;
707         e->prev = INDEXER_NULL;
708         e->level = 0u;
709         e->dirty = true;        /* FIXME: audit */
710         e->allocated = true;
711         e->sentinel = false;
712         e->pending_work = false;
713 }
714
715 static struct entry *alloc_entry(struct entry_alloc *ea)
716 {
717         struct entry *e;
718
719         if (l_empty(&ea->free))
720                 return NULL;
721
722         e = l_pop_tail(ea->es, &ea->free);
723         init_entry(e);
724         ea->nr_allocated++;
725
726         return e;
727 }
728
729 /*
730  * This assumes the cblock hasn't already been allocated.
731  */
732 static struct entry *alloc_particular_entry(struct entry_alloc *ea, unsigned i)
733 {
734         struct entry *e = __get_entry(ea->es, ea->begin + i);
735
736         BUG_ON(e->allocated);
737
738         l_del(ea->es, &ea->free, e);
739         init_entry(e);
740         ea->nr_allocated++;
741
742         return e;
743 }
744
745 static void free_entry(struct entry_alloc *ea, struct entry *e)
746 {
747         BUG_ON(!ea->nr_allocated);
748         BUG_ON(!e->allocated);
749
750         ea->nr_allocated--;
751         e->allocated = false;
752         l_add_tail(ea->es, &ea->free, e);
753 }
754
755 static bool allocator_empty(struct entry_alloc *ea)
756 {
757         return l_empty(&ea->free);
758 }
759
760 static unsigned get_index(struct entry_alloc *ea, struct entry *e)
761 {
762         return to_index(ea->es, e) - ea->begin;
763 }
764
765 static struct entry *get_entry(struct entry_alloc *ea, unsigned index)
766 {
767         return __get_entry(ea->es, ea->begin + index);
768 }
769
770 /*----------------------------------------------------------------*/
771
772 #define NR_HOTSPOT_LEVELS 64u
773 #define NR_CACHE_LEVELS 64u
774
775 #define WRITEBACK_PERIOD (10ul * HZ)
776 #define DEMOTE_PERIOD (60ul * HZ)
777
778 #define HOTSPOT_UPDATE_PERIOD (HZ)
779 #define CACHE_UPDATE_PERIOD (60ul * HZ)
780
781 struct smq_policy {
782         struct dm_cache_policy policy;
783
784         /* protects everything */
785         spinlock_t lock;
786         dm_cblock_t cache_size;
787         sector_t cache_block_size;
788
789         sector_t hotspot_block_size;
790         unsigned nr_hotspot_blocks;
791         unsigned cache_blocks_per_hotspot_block;
792         unsigned hotspot_level_jump;
793
794         struct entry_space es;
795         struct entry_alloc writeback_sentinel_alloc;
796         struct entry_alloc demote_sentinel_alloc;
797         struct entry_alloc hotspot_alloc;
798         struct entry_alloc cache_alloc;
799
800         unsigned long *hotspot_hit_bits;
801         unsigned long *cache_hit_bits;
802
803         /*
804          * We maintain three queues of entries.  The cache proper,
805          * consisting of a clean and dirty queue, containing the currently
806          * active mappings.  The hotspot queue uses a larger block size to
807          * track blocks that are being hit frequently and potential
808          * candidates for promotion to the cache.
809          */
810         struct queue hotspot;
811         struct queue clean;
812         struct queue dirty;
813
814         struct stats hotspot_stats;
815         struct stats cache_stats;
816
817         /*
818          * Keeps track of time, incremented by the core.  We use this to
819          * avoid attributing multiple hits within the same tick.
820          */
821         unsigned tick;
822
823         /*
824          * The hash tables allows us to quickly find an entry by origin
825          * block.
826          */
827         struct smq_hash_table table;
828         struct smq_hash_table hotspot_table;
829
830         bool current_writeback_sentinels;
831         unsigned long next_writeback_period;
832
833         bool current_demote_sentinels;
834         unsigned long next_demote_period;
835
836         unsigned write_promote_level;
837         unsigned read_promote_level;
838
839         unsigned long next_hotspot_period;
840         unsigned long next_cache_period;
841
842         struct background_tracker *bg_work;
843
844         bool migrations_allowed;
845 };
846
847 /*----------------------------------------------------------------*/
848
849 static struct entry *get_sentinel(struct entry_alloc *ea, unsigned level, bool which)
850 {
851         return get_entry(ea, which ? level : NR_CACHE_LEVELS + level);
852 }
853
854 static struct entry *writeback_sentinel(struct smq_policy *mq, unsigned level)
855 {
856         return get_sentinel(&mq->writeback_sentinel_alloc, level, mq->current_writeback_sentinels);
857 }
858
859 static struct entry *demote_sentinel(struct smq_policy *mq, unsigned level)
860 {
861         return get_sentinel(&mq->demote_sentinel_alloc, level, mq->current_demote_sentinels);
862 }
863
864 static void __update_writeback_sentinels(struct smq_policy *mq)
865 {
866         unsigned level;
867         struct queue *q = &mq->dirty;
868         struct entry *sentinel;
869
870         for (level = 0; level < q->nr_levels; level++) {
871                 sentinel = writeback_sentinel(mq, level);
872                 q_del(q, sentinel);
873                 q_push(q, sentinel);
874         }
875 }
876
877 static void __update_demote_sentinels(struct smq_policy *mq)
878 {
879         unsigned level;
880         struct queue *q = &mq->clean;
881         struct entry *sentinel;
882
883         for (level = 0; level < q->nr_levels; level++) {
884                 sentinel = demote_sentinel(mq, level);
885                 q_del(q, sentinel);
886                 q_push(q, sentinel);
887         }
888 }
889
890 static void update_sentinels(struct smq_policy *mq)
891 {
892         if (time_after(jiffies, mq->next_writeback_period)) {
893                 mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
894                 mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
895                 __update_writeback_sentinels(mq);
896         }
897
898         if (time_after(jiffies, mq->next_demote_period)) {
899                 mq->next_demote_period = jiffies + DEMOTE_PERIOD;
900                 mq->current_demote_sentinels = !mq->current_demote_sentinels;
901                 __update_demote_sentinels(mq);
902         }
903 }
904
905 static void __sentinels_init(struct smq_policy *mq)
906 {
907         unsigned level;
908         struct entry *sentinel;
909
910         for (level = 0; level < NR_CACHE_LEVELS; level++) {
911                 sentinel = writeback_sentinel(mq, level);
912                 sentinel->level = level;
913                 q_push(&mq->dirty, sentinel);
914
915                 sentinel = demote_sentinel(mq, level);
916                 sentinel->level = level;
917                 q_push(&mq->clean, sentinel);
918         }
919 }
920
921 static void sentinels_init(struct smq_policy *mq)
922 {
923         mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
924         mq->next_demote_period = jiffies + DEMOTE_PERIOD;
925
926         mq->current_writeback_sentinels = false;
927         mq->current_demote_sentinels = false;
928         __sentinels_init(mq);
929
930         mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
931         mq->current_demote_sentinels = !mq->current_demote_sentinels;
932         __sentinels_init(mq);
933 }
934
935 /*----------------------------------------------------------------*/
936
937 static void del_queue(struct smq_policy *mq, struct entry *e)
938 {
939         q_del(e->dirty ? &mq->dirty : &mq->clean, e);
940 }
941
942 static void push_queue(struct smq_policy *mq, struct entry *e)
943 {
944         if (e->dirty)
945                 q_push(&mq->dirty, e);
946         else
947                 q_push(&mq->clean, e);
948 }
949
950 // !h, !q, a -> h, q, a
951 static void push(struct smq_policy *mq, struct entry *e)
952 {
953         h_insert(&mq->table, e);
954         if (!e->pending_work)
955                 push_queue(mq, e);
956 }
957
958 static void push_queue_front(struct smq_policy *mq, struct entry *e)
959 {
960         if (e->dirty)
961                 q_push_front(&mq->dirty, e);
962         else
963                 q_push_front(&mq->clean, e);
964 }
965
966 static void push_front(struct smq_policy *mq, struct entry *e)
967 {
968         h_insert(&mq->table, e);
969         if (!e->pending_work)
970                 push_queue_front(mq, e);
971 }
972
973 static dm_cblock_t infer_cblock(struct smq_policy *mq, struct entry *e)
974 {
975         return to_cblock(get_index(&mq->cache_alloc, e));
976 }
977
978 static void requeue(struct smq_policy *mq, struct entry *e)
979 {
980         /*
981          * Pending work has temporarily been taken out of the queues.
982          */
983         if (e->pending_work)
984                 return;
985
986         if (!test_and_set_bit(from_cblock(infer_cblock(mq, e)), mq->cache_hit_bits)) {
987                 if (!e->dirty) {
988                         q_requeue(&mq->clean, e, 1u, NULL, NULL);
989                         return;
990                 }
991
992                 q_requeue(&mq->dirty, e, 1u,
993                           get_sentinel(&mq->writeback_sentinel_alloc, e->level, !mq->current_writeback_sentinels),
994                           get_sentinel(&mq->writeback_sentinel_alloc, e->level, mq->current_writeback_sentinels));
995         }
996 }
997
998 static unsigned default_promote_level(struct smq_policy *mq)
999 {
1000         /*
1001          * The promote level depends on the current performance of the
1002          * cache.
1003          *
1004          * If the cache is performing badly, then we can't afford
1005          * to promote much without causing performance to drop below that
1006          * of the origin device.
1007          *
1008          * If the cache is performing well, then we don't need to promote
1009          * much.  If it isn't broken, don't fix it.
1010          *
1011          * If the cache is middling then we promote more.
1012          *
1013          * This scheme reminds me of a graph of entropy vs probability of a
1014          * binary variable.
1015          */
1016         static unsigned table[] = {1, 1, 1, 2, 4, 6, 7, 8, 7, 6, 4, 4, 3, 3, 2, 2, 1};
1017
1018         unsigned hits = mq->cache_stats.hits;
1019         unsigned misses = mq->cache_stats.misses;
1020         unsigned index = safe_div(hits << 4u, hits + misses);
1021         return table[index];
1022 }
1023
1024 static void update_promote_levels(struct smq_policy *mq)
1025 {
1026         /*
1027          * If there are unused cache entries then we want to be really
1028          * eager to promote.
1029          */
1030         unsigned threshold_level = allocator_empty(&mq->cache_alloc) ?
1031                 default_promote_level(mq) : (NR_HOTSPOT_LEVELS / 2u);
1032
1033         threshold_level = max(threshold_level, NR_HOTSPOT_LEVELS);
1034
1035         /*
1036          * If the hotspot queue is performing badly then we have little
1037          * confidence that we know which blocks to promote.  So we cut down
1038          * the amount of promotions.
1039          */
1040         switch (stats_assess(&mq->hotspot_stats)) {
1041         case Q_POOR:
1042                 threshold_level /= 4u;
1043                 break;
1044
1045         case Q_FAIR:
1046                 threshold_level /= 2u;
1047                 break;
1048
1049         case Q_WELL:
1050                 break;
1051         }
1052
1053         mq->read_promote_level = NR_HOTSPOT_LEVELS - threshold_level;
1054         mq->write_promote_level = (NR_HOTSPOT_LEVELS - threshold_level);
1055 }
1056
1057 /*
1058  * If the hotspot queue is performing badly, then we try and move entries
1059  * around more quickly.
1060  */
1061 static void update_level_jump(struct smq_policy *mq)
1062 {
1063         switch (stats_assess(&mq->hotspot_stats)) {
1064         case Q_POOR:
1065                 mq->hotspot_level_jump = 4u;
1066                 break;
1067
1068         case Q_FAIR:
1069                 mq->hotspot_level_jump = 2u;
1070                 break;
1071
1072         case Q_WELL:
1073                 mq->hotspot_level_jump = 1u;
1074                 break;
1075         }
1076 }
1077
1078 static void end_hotspot_period(struct smq_policy *mq)
1079 {
1080         clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1081         update_promote_levels(mq);
1082
1083         if (time_after(jiffies, mq->next_hotspot_period)) {
1084                 update_level_jump(mq);
1085                 q_redistribute(&mq->hotspot);
1086                 stats_reset(&mq->hotspot_stats);
1087                 mq->next_hotspot_period = jiffies + HOTSPOT_UPDATE_PERIOD;
1088         }
1089 }
1090
1091 static void end_cache_period(struct smq_policy *mq)
1092 {
1093         if (time_after(jiffies, mq->next_cache_period)) {
1094                 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1095
1096                 q_redistribute(&mq->dirty);
1097                 q_redistribute(&mq->clean);
1098                 stats_reset(&mq->cache_stats);
1099
1100                 mq->next_cache_period = jiffies + CACHE_UPDATE_PERIOD;
1101         }
1102 }
1103
1104 /*----------------------------------------------------------------*/
1105
1106 /*
1107  * Targets are given as a percentage.
1108  */
1109 #define CLEAN_TARGET 25u
1110 #define FREE_TARGET 25u
1111
1112 static unsigned percent_to_target(struct smq_policy *mq, unsigned p)
1113 {
1114         return from_cblock(mq->cache_size) * p / 100u;
1115 }
1116
1117 static bool clean_target_met(struct smq_policy *mq, bool idle)
1118 {
1119         /*
1120          * Cache entries may not be populated.  So we cannot rely on the
1121          * size of the clean queue.
1122          */
1123         if (idle) {
1124                 /*
1125                  * We'd like to clean everything.
1126                  */
1127                 return q_size(&mq->dirty) == 0u;
1128         }
1129
1130         /*
1131          * If we're busy we don't worry about cleaning at all.
1132          */
1133         return true;
1134 }
1135
1136 static bool free_target_met(struct smq_policy *mq)
1137 {
1138         unsigned nr_free;
1139
1140         nr_free = from_cblock(mq->cache_size) - mq->cache_alloc.nr_allocated;
1141         return (nr_free + btracker_nr_demotions_queued(mq->bg_work)) >=
1142                 percent_to_target(mq, FREE_TARGET);
1143 }
1144
1145 /*----------------------------------------------------------------*/
1146
1147 static void mark_pending(struct smq_policy *mq, struct entry *e)
1148 {
1149         BUG_ON(e->sentinel);
1150         BUG_ON(!e->allocated);
1151         BUG_ON(e->pending_work);
1152         e->pending_work = true;
1153 }
1154
1155 static void clear_pending(struct smq_policy *mq, struct entry *e)
1156 {
1157         BUG_ON(!e->pending_work);
1158         e->pending_work = false;
1159 }
1160
1161 static void queue_writeback(struct smq_policy *mq)
1162 {
1163         int r;
1164         struct policy_work work;
1165         struct entry *e;
1166
1167         e = q_peek(&mq->dirty, mq->dirty.nr_levels, !mq->migrations_allowed);
1168         if (e) {
1169                 mark_pending(mq, e);
1170                 q_del(&mq->dirty, e);
1171
1172                 work.op = POLICY_WRITEBACK;
1173                 work.oblock = e->oblock;
1174                 work.cblock = infer_cblock(mq, e);
1175
1176                 r = btracker_queue(mq->bg_work, &work, NULL);
1177                 WARN_ON_ONCE(r); // FIXME: finish, I think we have to get rid of this race.
1178         }
1179 }
1180
1181 static void queue_demotion(struct smq_policy *mq)
1182 {
1183         struct policy_work work;
1184         struct entry *e;
1185
1186         if (unlikely(WARN_ON_ONCE(!mq->migrations_allowed)))
1187                 return;
1188
1189         e = q_peek(&mq->clean, mq->clean.nr_levels / 2, true);
1190         if (!e) {
1191                 if (!clean_target_met(mq, true))
1192                         queue_writeback(mq);
1193                 return;
1194         }
1195
1196         mark_pending(mq, e);
1197         q_del(&mq->clean, e);
1198
1199         work.op = POLICY_DEMOTE;
1200         work.oblock = e->oblock;
1201         work.cblock = infer_cblock(mq, e);
1202         btracker_queue(mq->bg_work, &work, NULL);
1203 }
1204
1205 static void queue_promotion(struct smq_policy *mq, dm_oblock_t oblock,
1206                             struct policy_work **workp)
1207 {
1208         struct entry *e;
1209         struct policy_work work;
1210
1211         if (!mq->migrations_allowed)
1212                 return;
1213
1214         if (allocator_empty(&mq->cache_alloc)) {
1215                 /*
1216                  * We always claim to be 'idle' to ensure some demotions happen
1217                  * with continuous loads.
1218                  */
1219                 if (!free_target_met(mq))
1220                         queue_demotion(mq);
1221                 return;
1222         }
1223
1224         if (btracker_promotion_already_present(mq->bg_work, oblock))
1225                 return;
1226
1227         /*
1228          * We allocate the entry now to reserve the cblock.  If the
1229          * background work is aborted we must remember to free it.
1230          */
1231         e = alloc_entry(&mq->cache_alloc);
1232         BUG_ON(!e);
1233         e->pending_work = true;
1234         work.op = POLICY_PROMOTE;
1235         work.oblock = oblock;
1236         work.cblock = infer_cblock(mq, e);
1237         btracker_queue(mq->bg_work, &work, workp);
1238 }
1239
1240 /*----------------------------------------------------------------*/
1241
1242 enum promote_result {
1243         PROMOTE_NOT,
1244         PROMOTE_TEMPORARY,
1245         PROMOTE_PERMANENT
1246 };
1247
1248 /*
1249  * Converts a boolean into a promote result.
1250  */
1251 static enum promote_result maybe_promote(bool promote)
1252 {
1253         return promote ? PROMOTE_PERMANENT : PROMOTE_NOT;
1254 }
1255
1256 static enum promote_result should_promote(struct smq_policy *mq, struct entry *hs_e,
1257                                           int data_dir, bool fast_promote)
1258 {
1259         if (data_dir == WRITE) {
1260                 if (!allocator_empty(&mq->cache_alloc) && fast_promote)
1261                         return PROMOTE_TEMPORARY;
1262
1263                 return maybe_promote(hs_e->level >= mq->write_promote_level);
1264         } else
1265                 return maybe_promote(hs_e->level >= mq->read_promote_level);
1266 }
1267
1268 static dm_oblock_t to_hblock(struct smq_policy *mq, dm_oblock_t b)
1269 {
1270         sector_t r = from_oblock(b);
1271         (void) sector_div(r, mq->cache_blocks_per_hotspot_block);
1272         return to_oblock(r);
1273 }
1274
1275 static struct entry *update_hotspot_queue(struct smq_policy *mq, dm_oblock_t b)
1276 {
1277         unsigned hi;
1278         dm_oblock_t hb = to_hblock(mq, b);
1279         struct entry *e = h_lookup(&mq->hotspot_table, hb);
1280
1281         if (e) {
1282                 stats_level_accessed(&mq->hotspot_stats, e->level);
1283
1284                 hi = get_index(&mq->hotspot_alloc, e);
1285                 q_requeue(&mq->hotspot, e,
1286                           test_and_set_bit(hi, mq->hotspot_hit_bits) ?
1287                           0u : mq->hotspot_level_jump,
1288                           NULL, NULL);
1289
1290         } else {
1291                 stats_miss(&mq->hotspot_stats);
1292
1293                 e = alloc_entry(&mq->hotspot_alloc);
1294                 if (!e) {
1295                         e = q_pop(&mq->hotspot);
1296                         if (e) {
1297                                 h_remove(&mq->hotspot_table, e);
1298                                 hi = get_index(&mq->hotspot_alloc, e);
1299                                 clear_bit(hi, mq->hotspot_hit_bits);
1300                         }
1301
1302                 }
1303
1304                 if (e) {
1305                         e->oblock = hb;
1306                         q_push(&mq->hotspot, e);
1307                         h_insert(&mq->hotspot_table, e);
1308                 }
1309         }
1310
1311         return e;
1312 }
1313
1314 /*----------------------------------------------------------------*/
1315
1316 /*
1317  * Public interface, via the policy struct.  See dm-cache-policy.h for a
1318  * description of these.
1319  */
1320
1321 static struct smq_policy *to_smq_policy(struct dm_cache_policy *p)
1322 {
1323         return container_of(p, struct smq_policy, policy);
1324 }
1325
1326 static void smq_destroy(struct dm_cache_policy *p)
1327 {
1328         struct smq_policy *mq = to_smq_policy(p);
1329
1330         btracker_destroy(mq->bg_work);
1331         h_exit(&mq->hotspot_table);
1332         h_exit(&mq->table);
1333         free_bitset(mq->hotspot_hit_bits);
1334         free_bitset(mq->cache_hit_bits);
1335         space_exit(&mq->es);
1336         kfree(mq);
1337 }
1338
1339 /*----------------------------------------------------------------*/
1340
1341 static int __lookup(struct smq_policy *mq, dm_oblock_t oblock, dm_cblock_t *cblock,
1342                     int data_dir, bool fast_copy,
1343                     struct policy_work **work, bool *background_work)
1344 {
1345         struct entry *e, *hs_e;
1346         enum promote_result pr;
1347
1348         *background_work = false;
1349
1350         e = h_lookup(&mq->table, oblock);
1351         if (e) {
1352                 stats_level_accessed(&mq->cache_stats, e->level);
1353
1354                 requeue(mq, e);
1355                 *cblock = infer_cblock(mq, e);
1356                 return 0;
1357
1358         } else {
1359                 stats_miss(&mq->cache_stats);
1360
1361                 /*
1362                  * The hotspot queue only gets updated with misses.
1363                  */
1364                 hs_e = update_hotspot_queue(mq, oblock);
1365
1366                 pr = should_promote(mq, hs_e, data_dir, fast_copy);
1367                 if (pr != PROMOTE_NOT) {
1368                         queue_promotion(mq, oblock, work);
1369                         *background_work = true;
1370                 }
1371
1372                 return -ENOENT;
1373         }
1374 }
1375
1376 static int smq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock,
1377                       int data_dir, bool fast_copy,
1378                       bool *background_work)
1379 {
1380         int r;
1381         unsigned long flags;
1382         struct smq_policy *mq = to_smq_policy(p);
1383
1384         spin_lock_irqsave(&mq->lock, flags);
1385         r = __lookup(mq, oblock, cblock,
1386                      data_dir, fast_copy,
1387                      NULL, background_work);
1388         spin_unlock_irqrestore(&mq->lock, flags);
1389
1390         return r;
1391 }
1392
1393 static int smq_lookup_with_work(struct dm_cache_policy *p,
1394                                 dm_oblock_t oblock, dm_cblock_t *cblock,
1395                                 int data_dir, bool fast_copy,
1396                                 struct policy_work **work)
1397 {
1398         int r;
1399         bool background_queued;
1400         unsigned long flags;
1401         struct smq_policy *mq = to_smq_policy(p);
1402
1403         spin_lock_irqsave(&mq->lock, flags);
1404         r = __lookup(mq, oblock, cblock, data_dir, fast_copy, work, &background_queued);
1405         spin_unlock_irqrestore(&mq->lock, flags);
1406
1407         return r;
1408 }
1409
1410 static int smq_get_background_work(struct dm_cache_policy *p, bool idle,
1411                                    struct policy_work **result)
1412 {
1413         int r;
1414         unsigned long flags;
1415         struct smq_policy *mq = to_smq_policy(p);
1416
1417         spin_lock_irqsave(&mq->lock, flags);
1418         r = btracker_issue(mq->bg_work, result);
1419         if (r == -ENODATA) {
1420                 if (!clean_target_met(mq, idle)) {
1421                         queue_writeback(mq);
1422                         r = btracker_issue(mq->bg_work, result);
1423                 }
1424         }
1425         spin_unlock_irqrestore(&mq->lock, flags);
1426
1427         return r;
1428 }
1429
1430 /*
1431  * We need to clear any pending work flags that have been set, and in the
1432  * case of promotion free the entry for the destination cblock.
1433  */
1434 static void __complete_background_work(struct smq_policy *mq,
1435                                        struct policy_work *work,
1436                                        bool success)
1437 {
1438         struct entry *e = get_entry(&mq->cache_alloc,
1439                                     from_cblock(work->cblock));
1440
1441         switch (work->op) {
1442         case POLICY_PROMOTE:
1443                 // !h, !q, a
1444                 clear_pending(mq, e);
1445                 if (success) {
1446                         e->oblock = work->oblock;
1447                         e->level = NR_CACHE_LEVELS - 1;
1448                         push(mq, e);
1449                         // h, q, a
1450                 } else {
1451                         free_entry(&mq->cache_alloc, e);
1452                         // !h, !q, !a
1453                 }
1454                 break;
1455
1456         case POLICY_DEMOTE:
1457                 // h, !q, a
1458                 if (success) {
1459                         h_remove(&mq->table, e);
1460                         free_entry(&mq->cache_alloc, e);
1461                         // !h, !q, !a
1462                 } else {
1463                         clear_pending(mq, e);
1464                         push_queue(mq, e);
1465                         // h, q, a
1466                 }
1467                 break;
1468
1469         case POLICY_WRITEBACK:
1470                 // h, !q, a
1471                 clear_pending(mq, e);
1472                 push_queue(mq, e);
1473                 // h, q, a
1474                 break;
1475         }
1476
1477         btracker_complete(mq->bg_work, work);
1478 }
1479
1480 static void smq_complete_background_work(struct dm_cache_policy *p,
1481                                          struct policy_work *work,
1482                                          bool success)
1483 {
1484         unsigned long flags;
1485         struct smq_policy *mq = to_smq_policy(p);
1486
1487         spin_lock_irqsave(&mq->lock, flags);
1488         __complete_background_work(mq, work, success);
1489         spin_unlock_irqrestore(&mq->lock, flags);
1490 }
1491
1492 // in_hash(oblock) -> in_hash(oblock)
1493 static void __smq_set_clear_dirty(struct smq_policy *mq, dm_cblock_t cblock, bool set)
1494 {
1495         struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1496
1497         if (e->pending_work)
1498                 e->dirty = set;
1499         else {
1500                 del_queue(mq, e);
1501                 e->dirty = set;
1502                 push_queue(mq, e);
1503         }
1504 }
1505
1506 static void smq_set_dirty(struct dm_cache_policy *p, dm_cblock_t cblock)
1507 {
1508         unsigned long flags;
1509         struct smq_policy *mq = to_smq_policy(p);
1510
1511         spin_lock_irqsave(&mq->lock, flags);
1512         __smq_set_clear_dirty(mq, cblock, true);
1513         spin_unlock_irqrestore(&mq->lock, flags);
1514 }
1515
1516 static void smq_clear_dirty(struct dm_cache_policy *p, dm_cblock_t cblock)
1517 {
1518         struct smq_policy *mq = to_smq_policy(p);
1519         unsigned long flags;
1520
1521         spin_lock_irqsave(&mq->lock, flags);
1522         __smq_set_clear_dirty(mq, cblock, false);
1523         spin_unlock_irqrestore(&mq->lock, flags);
1524 }
1525
1526 static unsigned random_level(dm_cblock_t cblock)
1527 {
1528         return hash_32(from_cblock(cblock), 9) & (NR_CACHE_LEVELS - 1);
1529 }
1530
1531 static int smq_load_mapping(struct dm_cache_policy *p,
1532                             dm_oblock_t oblock, dm_cblock_t cblock,
1533                             bool dirty, uint32_t hint, bool hint_valid)
1534 {
1535         struct smq_policy *mq = to_smq_policy(p);
1536         struct entry *e;
1537
1538         e = alloc_particular_entry(&mq->cache_alloc, from_cblock(cblock));
1539         e->oblock = oblock;
1540         e->dirty = dirty;
1541         e->level = hint_valid ? min(hint, NR_CACHE_LEVELS - 1) : random_level(cblock);
1542         e->pending_work = false;
1543
1544         /*
1545          * When we load mappings we push ahead of both sentinels in order to
1546          * allow demotions and cleaning to occur immediately.
1547          */
1548         push_front(mq, e);
1549
1550         return 0;
1551 }
1552
1553 static int smq_invalidate_mapping(struct dm_cache_policy *p, dm_cblock_t cblock)
1554 {
1555         struct smq_policy *mq = to_smq_policy(p);
1556         struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1557
1558         if (!e->allocated)
1559                 return -ENODATA;
1560
1561         // FIXME: what if this block has pending background work?
1562         del_queue(mq, e);
1563         h_remove(&mq->table, e);
1564         free_entry(&mq->cache_alloc, e);
1565         return 0;
1566 }
1567
1568 static uint32_t smq_get_hint(struct dm_cache_policy *p, dm_cblock_t cblock)
1569 {
1570         struct smq_policy *mq = to_smq_policy(p);
1571         struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1572
1573         if (!e->allocated)
1574                 return 0;
1575
1576         return e->level;
1577 }
1578
1579 static dm_cblock_t smq_residency(struct dm_cache_policy *p)
1580 {
1581         dm_cblock_t r;
1582         unsigned long flags;
1583         struct smq_policy *mq = to_smq_policy(p);
1584
1585         spin_lock_irqsave(&mq->lock, flags);
1586         r = to_cblock(mq->cache_alloc.nr_allocated);
1587         spin_unlock_irqrestore(&mq->lock, flags);
1588
1589         return r;
1590 }
1591
1592 static void smq_tick(struct dm_cache_policy *p, bool can_block)
1593 {
1594         struct smq_policy *mq = to_smq_policy(p);
1595         unsigned long flags;
1596
1597         spin_lock_irqsave(&mq->lock, flags);
1598         mq->tick++;
1599         update_sentinels(mq);
1600         end_hotspot_period(mq);
1601         end_cache_period(mq);
1602         spin_unlock_irqrestore(&mq->lock, flags);
1603 }
1604
1605 static void smq_allow_migrations(struct dm_cache_policy *p, bool allow)
1606 {
1607         struct smq_policy *mq = to_smq_policy(p);
1608         mq->migrations_allowed = allow;
1609 }
1610
1611 /*
1612  * smq has no config values, but the old mq policy did.  To avoid breaking
1613  * software we continue to accept these configurables for the mq policy,
1614  * but they have no effect.
1615  */
1616 static int mq_set_config_value(struct dm_cache_policy *p,
1617                                const char *key, const char *value)
1618 {
1619         unsigned long tmp;
1620
1621         if (kstrtoul(value, 10, &tmp))
1622                 return -EINVAL;
1623
1624         if (!strcasecmp(key, "random_threshold") ||
1625             !strcasecmp(key, "sequential_threshold") ||
1626             !strcasecmp(key, "discard_promote_adjustment") ||
1627             !strcasecmp(key, "read_promote_adjustment") ||
1628             !strcasecmp(key, "write_promote_adjustment")) {
1629                 DMWARN("tunable '%s' no longer has any effect, mq policy is now an alias for smq", key);
1630                 return 0;
1631         }
1632
1633         return -EINVAL;
1634 }
1635
1636 static int mq_emit_config_values(struct dm_cache_policy *p, char *result,
1637                                  unsigned maxlen, ssize_t *sz_ptr)
1638 {
1639         ssize_t sz = *sz_ptr;
1640
1641         DMEMIT("10 random_threshold 0 "
1642                "sequential_threshold 0 "
1643                "discard_promote_adjustment 0 "
1644                "read_promote_adjustment 0 "
1645                "write_promote_adjustment 0 ");
1646
1647         *sz_ptr = sz;
1648         return 0;
1649 }
1650
1651 /* Init the policy plugin interface function pointers. */
1652 static void init_policy_functions(struct smq_policy *mq, bool mimic_mq)
1653 {
1654         mq->policy.destroy = smq_destroy;
1655         mq->policy.lookup = smq_lookup;
1656         mq->policy.lookup_with_work = smq_lookup_with_work;
1657         mq->policy.get_background_work = smq_get_background_work;
1658         mq->policy.complete_background_work = smq_complete_background_work;
1659         mq->policy.set_dirty = smq_set_dirty;
1660         mq->policy.clear_dirty = smq_clear_dirty;
1661         mq->policy.load_mapping = smq_load_mapping;
1662         mq->policy.invalidate_mapping = smq_invalidate_mapping;
1663         mq->policy.get_hint = smq_get_hint;
1664         mq->policy.residency = smq_residency;
1665         mq->policy.tick = smq_tick;
1666         mq->policy.allow_migrations = smq_allow_migrations;
1667
1668         if (mimic_mq) {
1669                 mq->policy.set_config_value = mq_set_config_value;
1670                 mq->policy.emit_config_values = mq_emit_config_values;
1671         }
1672 }
1673
1674 static bool too_many_hotspot_blocks(sector_t origin_size,
1675                                     sector_t hotspot_block_size,
1676                                     unsigned nr_hotspot_blocks)
1677 {
1678         return (hotspot_block_size * nr_hotspot_blocks) > origin_size;
1679 }
1680
1681 static void calc_hotspot_params(sector_t origin_size,
1682                                 sector_t cache_block_size,
1683                                 unsigned nr_cache_blocks,
1684                                 sector_t *hotspot_block_size,
1685                                 unsigned *nr_hotspot_blocks)
1686 {
1687         *hotspot_block_size = cache_block_size * 16u;
1688         *nr_hotspot_blocks = max(nr_cache_blocks / 4u, 1024u);
1689
1690         while ((*hotspot_block_size > cache_block_size) &&
1691                too_many_hotspot_blocks(origin_size, *hotspot_block_size, *nr_hotspot_blocks))
1692                 *hotspot_block_size /= 2u;
1693 }
1694
1695 static struct dm_cache_policy *__smq_create(dm_cblock_t cache_size,
1696                                             sector_t origin_size,
1697                                             sector_t cache_block_size,
1698                                             bool mimic_mq,
1699                                             bool migrations_allowed)
1700 {
1701         unsigned i;
1702         unsigned nr_sentinels_per_queue = 2u * NR_CACHE_LEVELS;
1703         unsigned total_sentinels = 2u * nr_sentinels_per_queue;
1704         struct smq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);
1705
1706         if (!mq)
1707                 return NULL;
1708
1709         init_policy_functions(mq, mimic_mq);
1710         mq->cache_size = cache_size;
1711         mq->cache_block_size = cache_block_size;
1712
1713         calc_hotspot_params(origin_size, cache_block_size, from_cblock(cache_size),
1714                             &mq->hotspot_block_size, &mq->nr_hotspot_blocks);
1715
1716         mq->cache_blocks_per_hotspot_block = div64_u64(mq->hotspot_block_size, mq->cache_block_size);
1717         mq->hotspot_level_jump = 1u;
1718         if (space_init(&mq->es, total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size))) {
1719                 DMERR("couldn't initialize entry space");
1720                 goto bad_pool_init;
1721         }
1722
1723         init_allocator(&mq->writeback_sentinel_alloc, &mq->es, 0, nr_sentinels_per_queue);
1724         for (i = 0; i < nr_sentinels_per_queue; i++)
1725                 get_entry(&mq->writeback_sentinel_alloc, i)->sentinel = true;
1726
1727         init_allocator(&mq->demote_sentinel_alloc, &mq->es, nr_sentinels_per_queue, total_sentinels);
1728         for (i = 0; i < nr_sentinels_per_queue; i++)
1729                 get_entry(&mq->demote_sentinel_alloc, i)->sentinel = true;
1730
1731         init_allocator(&mq->hotspot_alloc, &mq->es, total_sentinels,
1732                        total_sentinels + mq->nr_hotspot_blocks);
1733
1734         init_allocator(&mq->cache_alloc, &mq->es,
1735                        total_sentinels + mq->nr_hotspot_blocks,
1736                        total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size));
1737
1738         mq->hotspot_hit_bits = alloc_bitset(mq->nr_hotspot_blocks);
1739         if (!mq->hotspot_hit_bits) {
1740                 DMERR("couldn't allocate hotspot hit bitset");
1741                 goto bad_hotspot_hit_bits;
1742         }
1743         clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1744
1745         if (from_cblock(cache_size)) {
1746                 mq->cache_hit_bits = alloc_bitset(from_cblock(cache_size));
1747                 if (!mq->cache_hit_bits) {
1748                         DMERR("couldn't allocate cache hit bitset");
1749                         goto bad_cache_hit_bits;
1750                 }
1751                 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1752         } else
1753                 mq->cache_hit_bits = NULL;
1754
1755         mq->tick = 0;
1756         spin_lock_init(&mq->lock);
1757
1758         q_init(&mq->hotspot, &mq->es, NR_HOTSPOT_LEVELS);
1759         mq->hotspot.nr_top_levels = 8;
1760         mq->hotspot.nr_in_top_levels = min(mq->nr_hotspot_blocks / NR_HOTSPOT_LEVELS,
1761                                            from_cblock(mq->cache_size) / mq->cache_blocks_per_hotspot_block);
1762
1763         q_init(&mq->clean, &mq->es, NR_CACHE_LEVELS);
1764         q_init(&mq->dirty, &mq->es, NR_CACHE_LEVELS);
1765
1766         stats_init(&mq->hotspot_stats, NR_HOTSPOT_LEVELS);
1767         stats_init(&mq->cache_stats, NR_CACHE_LEVELS);
1768
1769         if (h_init(&mq->table, &mq->es, from_cblock(cache_size)))
1770                 goto bad_alloc_table;
1771
1772         if (h_init(&mq->hotspot_table, &mq->es, mq->nr_hotspot_blocks))
1773                 goto bad_alloc_hotspot_table;
1774
1775         sentinels_init(mq);
1776         mq->write_promote_level = mq->read_promote_level = NR_HOTSPOT_LEVELS;
1777
1778         mq->next_hotspot_period = jiffies;
1779         mq->next_cache_period = jiffies;
1780
1781         mq->bg_work = btracker_create(10240); /* FIXME: hard coded value */
1782         if (!mq->bg_work)
1783                 goto bad_btracker;
1784
1785         mq->migrations_allowed = migrations_allowed;
1786
1787         return &mq->policy;
1788
1789 bad_btracker:
1790         h_exit(&mq->hotspot_table);
1791 bad_alloc_hotspot_table:
1792         h_exit(&mq->table);
1793 bad_alloc_table:
1794         free_bitset(mq->cache_hit_bits);
1795 bad_cache_hit_bits:
1796         free_bitset(mq->hotspot_hit_bits);
1797 bad_hotspot_hit_bits:
1798         space_exit(&mq->es);
1799 bad_pool_init:
1800         kfree(mq);
1801
1802         return NULL;
1803 }
1804
1805 static struct dm_cache_policy *smq_create(dm_cblock_t cache_size,
1806                                           sector_t origin_size,
1807                                           sector_t cache_block_size)
1808 {
1809         return __smq_create(cache_size, origin_size, cache_block_size, false, true);
1810 }
1811
1812 static struct dm_cache_policy *mq_create(dm_cblock_t cache_size,
1813                                          sector_t origin_size,
1814                                          sector_t cache_block_size)
1815 {
1816         return __smq_create(cache_size, origin_size, cache_block_size, true, true);
1817 }
1818
1819 static struct dm_cache_policy *cleaner_create(dm_cblock_t cache_size,
1820                                               sector_t origin_size,
1821                                               sector_t cache_block_size)
1822 {
1823         return __smq_create(cache_size, origin_size, cache_block_size, false, false);
1824 }
1825
1826 /*----------------------------------------------------------------*/
1827
1828 static struct dm_cache_policy_type smq_policy_type = {
1829         .name = "smq",
1830         .version = {2, 0, 0},
1831         .hint_size = 4,
1832         .owner = THIS_MODULE,
1833         .create = smq_create
1834 };
1835
1836 static struct dm_cache_policy_type mq_policy_type = {
1837         .name = "mq",
1838         .version = {2, 0, 0},
1839         .hint_size = 4,
1840         .owner = THIS_MODULE,
1841         .create = mq_create,
1842 };
1843
1844 static struct dm_cache_policy_type cleaner_policy_type = {
1845         .name = "cleaner",
1846         .version = {2, 0, 0},
1847         .hint_size = 4,
1848         .owner = THIS_MODULE,
1849         .create = cleaner_create,
1850 };
1851
1852 static struct dm_cache_policy_type default_policy_type = {
1853         .name = "default",
1854         .version = {2, 0, 0},
1855         .hint_size = 4,
1856         .owner = THIS_MODULE,
1857         .create = smq_create,
1858         .real = &smq_policy_type
1859 };
1860
1861 static int __init smq_init(void)
1862 {
1863         int r;
1864
1865         r = dm_cache_policy_register(&smq_policy_type);
1866         if (r) {
1867                 DMERR("register failed %d", r);
1868                 return -ENOMEM;
1869         }
1870
1871         r = dm_cache_policy_register(&mq_policy_type);
1872         if (r) {
1873                 DMERR("register failed (as mq) %d", r);
1874                 goto out_mq;
1875         }
1876
1877         r = dm_cache_policy_register(&cleaner_policy_type);
1878         if (r) {
1879                 DMERR("register failed (as cleaner) %d", r);
1880                 goto out_cleaner;
1881         }
1882
1883         r = dm_cache_policy_register(&default_policy_type);
1884         if (r) {
1885                 DMERR("register failed (as default) %d", r);
1886                 goto out_default;
1887         }
1888
1889         return 0;
1890
1891 out_default:
1892         dm_cache_policy_unregister(&cleaner_policy_type);
1893 out_cleaner:
1894         dm_cache_policy_unregister(&mq_policy_type);
1895 out_mq:
1896         dm_cache_policy_unregister(&smq_policy_type);
1897
1898         return -ENOMEM;
1899 }
1900
1901 static void __exit smq_exit(void)
1902 {
1903         dm_cache_policy_unregister(&cleaner_policy_type);
1904         dm_cache_policy_unregister(&smq_policy_type);
1905         dm_cache_policy_unregister(&mq_policy_type);
1906         dm_cache_policy_unregister(&default_policy_type);
1907 }
1908
1909 module_init(smq_init);
1910 module_exit(smq_exit);
1911
1912 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1913 MODULE_LICENSE("GPL");
1914 MODULE_DESCRIPTION("smq cache policy");
1915
1916 MODULE_ALIAS("dm-cache-default");
1917 MODULE_ALIAS("dm-cache-mq");
1918 MODULE_ALIAS("dm-cache-cleaner");