Merge tag 'perf-urgent-for-mingo-4.14-20170928' of git://git.kernel.org/pub/scm/linux...
[sfrench/cifs-2.6.git] / drivers / md / dm-bufio.c
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8
9 #include "dm-bufio.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/sched/mm.h>
15 #include <linux/jiffies.h>
16 #include <linux/vmalloc.h>
17 #include <linux/shrinker.h>
18 #include <linux/module.h>
19 #include <linux/rbtree.h>
20 #include <linux/stacktrace.h>
21
22 #define DM_MSG_PREFIX "bufio"
23
24 /*
25  * Memory management policy:
26  *      Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
27  *      or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
28  *      Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
29  *      Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
30  *      dirty buffers.
31  */
32 #define DM_BUFIO_MIN_BUFFERS            8
33
34 #define DM_BUFIO_MEMORY_PERCENT         2
35 #define DM_BUFIO_VMALLOC_PERCENT        25
36 #define DM_BUFIO_WRITEBACK_PERCENT      75
37
38 /*
39  * Check buffer ages in this interval (seconds)
40  */
41 #define DM_BUFIO_WORK_TIMER_SECS        30
42
43 /*
44  * Free buffers when they are older than this (seconds)
45  */
46 #define DM_BUFIO_DEFAULT_AGE_SECS       300
47
48 /*
49  * The nr of bytes of cached data to keep around.
50  */
51 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
52
53 /*
54  * The number of bvec entries that are embedded directly in the buffer.
55  * If the chunk size is larger, dm-io is used to do the io.
56  */
57 #define DM_BUFIO_INLINE_VECS            16
58
59 /*
60  * Don't try to use kmem_cache_alloc for blocks larger than this.
61  * For explanation, see alloc_buffer_data below.
62  */
63 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT  (PAGE_SIZE >> 1)
64 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT   (PAGE_SIZE << (MAX_ORDER - 1))
65
66 /*
67  * Align buffer writes to this boundary.
68  * Tests show that SSDs have the highest IOPS when using 4k writes.
69  */
70 #define DM_BUFIO_WRITE_ALIGN            4096
71
72 /*
73  * dm_buffer->list_mode
74  */
75 #define LIST_CLEAN      0
76 #define LIST_DIRTY      1
77 #define LIST_SIZE       2
78
79 /*
80  * Linking of buffers:
81  *      All buffers are linked to cache_hash with their hash_list field.
82  *
83  *      Clean buffers that are not being written (B_WRITING not set)
84  *      are linked to lru[LIST_CLEAN] with their lru_list field.
85  *
86  *      Dirty and clean buffers that are being written are linked to
87  *      lru[LIST_DIRTY] with their lru_list field. When the write
88  *      finishes, the buffer cannot be relinked immediately (because we
89  *      are in an interrupt context and relinking requires process
90  *      context), so some clean-not-writing buffers can be held on
91  *      dirty_lru too.  They are later added to lru in the process
92  *      context.
93  */
94 struct dm_bufio_client {
95         struct mutex lock;
96
97         struct list_head lru[LIST_SIZE];
98         unsigned long n_buffers[LIST_SIZE];
99
100         struct block_device *bdev;
101         unsigned block_size;
102         unsigned char sectors_per_block_bits;
103         unsigned char pages_per_block_bits;
104         unsigned char blocks_per_page_bits;
105         unsigned aux_size;
106         void (*alloc_callback)(struct dm_buffer *);
107         void (*write_callback)(struct dm_buffer *);
108
109         struct dm_io_client *dm_io;
110
111         struct list_head reserved_buffers;
112         unsigned need_reserved_buffers;
113
114         unsigned minimum_buffers;
115
116         struct rb_root buffer_tree;
117         wait_queue_head_t free_buffer_wait;
118
119         sector_t start;
120
121         int async_write_error;
122
123         struct list_head client_list;
124         struct shrinker shrinker;
125 };
126
127 /*
128  * Buffer state bits.
129  */
130 #define B_READING       0
131 #define B_WRITING       1
132 #define B_DIRTY         2
133
134 /*
135  * Describes how the block was allocated:
136  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
137  * See the comment at alloc_buffer_data.
138  */
139 enum data_mode {
140         DATA_MODE_SLAB = 0,
141         DATA_MODE_GET_FREE_PAGES = 1,
142         DATA_MODE_VMALLOC = 2,
143         DATA_MODE_LIMIT = 3
144 };
145
146 struct dm_buffer {
147         struct rb_node node;
148         struct list_head lru_list;
149         sector_t block;
150         void *data;
151         enum data_mode data_mode;
152         unsigned char list_mode;                /* LIST_* */
153         unsigned hold_count;
154         blk_status_t read_error;
155         blk_status_t write_error;
156         unsigned long state;
157         unsigned long last_accessed;
158         unsigned dirty_start;
159         unsigned dirty_end;
160         unsigned write_start;
161         unsigned write_end;
162         struct dm_bufio_client *c;
163         struct list_head write_list;
164         struct bio bio;
165         struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
166 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
167 #define MAX_STACK 10
168         struct stack_trace stack_trace;
169         unsigned long stack_entries[MAX_STACK];
170 #endif
171 };
172
173 /*----------------------------------------------------------------*/
174
175 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
176 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
177
178 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
179 {
180         unsigned ret = c->blocks_per_page_bits - 1;
181
182         BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
183
184         return ret;
185 }
186
187 #define DM_BUFIO_CACHE(c)       (dm_bufio_caches[dm_bufio_cache_index(c)])
188 #define DM_BUFIO_CACHE_NAME(c)  (dm_bufio_cache_names[dm_bufio_cache_index(c)])
189
190 #define dm_bufio_in_request()   (!!current->bio_list)
191
192 static void dm_bufio_lock(struct dm_bufio_client *c)
193 {
194         mutex_lock_nested(&c->lock, dm_bufio_in_request());
195 }
196
197 static int dm_bufio_trylock(struct dm_bufio_client *c)
198 {
199         return mutex_trylock(&c->lock);
200 }
201
202 static void dm_bufio_unlock(struct dm_bufio_client *c)
203 {
204         mutex_unlock(&c->lock);
205 }
206
207 /*----------------------------------------------------------------*/
208
209 /*
210  * Default cache size: available memory divided by the ratio.
211  */
212 static unsigned long dm_bufio_default_cache_size;
213
214 /*
215  * Total cache size set by the user.
216  */
217 static unsigned long dm_bufio_cache_size;
218
219 /*
220  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
221  * at any time.  If it disagrees, the user has changed cache size.
222  */
223 static unsigned long dm_bufio_cache_size_latch;
224
225 static DEFINE_SPINLOCK(param_spinlock);
226
227 /*
228  * Buffers are freed after this timeout
229  */
230 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
231 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
232
233 static unsigned long dm_bufio_peak_allocated;
234 static unsigned long dm_bufio_allocated_kmem_cache;
235 static unsigned long dm_bufio_allocated_get_free_pages;
236 static unsigned long dm_bufio_allocated_vmalloc;
237 static unsigned long dm_bufio_current_allocated;
238
239 /*----------------------------------------------------------------*/
240
241 /*
242  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
243  */
244 static unsigned long dm_bufio_cache_size_per_client;
245
246 /*
247  * The current number of clients.
248  */
249 static int dm_bufio_client_count;
250
251 /*
252  * The list of all clients.
253  */
254 static LIST_HEAD(dm_bufio_all_clients);
255
256 /*
257  * This mutex protects dm_bufio_cache_size_latch,
258  * dm_bufio_cache_size_per_client and dm_bufio_client_count
259  */
260 static DEFINE_MUTEX(dm_bufio_clients_lock);
261
262 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
263 static void buffer_record_stack(struct dm_buffer *b)
264 {
265         b->stack_trace.nr_entries = 0;
266         b->stack_trace.max_entries = MAX_STACK;
267         b->stack_trace.entries = b->stack_entries;
268         b->stack_trace.skip = 2;
269         save_stack_trace(&b->stack_trace);
270 }
271 #endif
272
273 /*----------------------------------------------------------------
274  * A red/black tree acts as an index for all the buffers.
275  *--------------------------------------------------------------*/
276 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
277 {
278         struct rb_node *n = c->buffer_tree.rb_node;
279         struct dm_buffer *b;
280
281         while (n) {
282                 b = container_of(n, struct dm_buffer, node);
283
284                 if (b->block == block)
285                         return b;
286
287                 n = (b->block < block) ? n->rb_left : n->rb_right;
288         }
289
290         return NULL;
291 }
292
293 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
294 {
295         struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
296         struct dm_buffer *found;
297
298         while (*new) {
299                 found = container_of(*new, struct dm_buffer, node);
300
301                 if (found->block == b->block) {
302                         BUG_ON(found != b);
303                         return;
304                 }
305
306                 parent = *new;
307                 new = (found->block < b->block) ?
308                         &((*new)->rb_left) : &((*new)->rb_right);
309         }
310
311         rb_link_node(&b->node, parent, new);
312         rb_insert_color(&b->node, &c->buffer_tree);
313 }
314
315 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
316 {
317         rb_erase(&b->node, &c->buffer_tree);
318 }
319
320 /*----------------------------------------------------------------*/
321
322 static void adjust_total_allocated(enum data_mode data_mode, long diff)
323 {
324         static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
325                 &dm_bufio_allocated_kmem_cache,
326                 &dm_bufio_allocated_get_free_pages,
327                 &dm_bufio_allocated_vmalloc,
328         };
329
330         spin_lock(&param_spinlock);
331
332         *class_ptr[data_mode] += diff;
333
334         dm_bufio_current_allocated += diff;
335
336         if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
337                 dm_bufio_peak_allocated = dm_bufio_current_allocated;
338
339         spin_unlock(&param_spinlock);
340 }
341
342 /*
343  * Change the number of clients and recalculate per-client limit.
344  */
345 static void __cache_size_refresh(void)
346 {
347         BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
348         BUG_ON(dm_bufio_client_count < 0);
349
350         dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
351
352         /*
353          * Use default if set to 0 and report the actual cache size used.
354          */
355         if (!dm_bufio_cache_size_latch) {
356                 (void)cmpxchg(&dm_bufio_cache_size, 0,
357                               dm_bufio_default_cache_size);
358                 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
359         }
360
361         dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
362                                          (dm_bufio_client_count ? : 1);
363 }
364
365 /*
366  * Allocating buffer data.
367  *
368  * Small buffers are allocated with kmem_cache, to use space optimally.
369  *
370  * For large buffers, we choose between get_free_pages and vmalloc.
371  * Each has advantages and disadvantages.
372  *
373  * __get_free_pages can randomly fail if the memory is fragmented.
374  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
375  * as low as 128M) so using it for caching is not appropriate.
376  *
377  * If the allocation may fail we use __get_free_pages. Memory fragmentation
378  * won't have a fatal effect here, but it just causes flushes of some other
379  * buffers and more I/O will be performed. Don't use __get_free_pages if it
380  * always fails (i.e. order >= MAX_ORDER).
381  *
382  * If the allocation shouldn't fail we use __vmalloc. This is only for the
383  * initial reserve allocation, so there's no risk of wasting all vmalloc
384  * space.
385  */
386 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
387                                enum data_mode *data_mode)
388 {
389         unsigned noio_flag;
390         void *ptr;
391
392         if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
393                 *data_mode = DATA_MODE_SLAB;
394                 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
395         }
396
397         if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
398             gfp_mask & __GFP_NORETRY) {
399                 *data_mode = DATA_MODE_GET_FREE_PAGES;
400                 return (void *)__get_free_pages(gfp_mask,
401                                                 c->pages_per_block_bits);
402         }
403
404         *data_mode = DATA_MODE_VMALLOC;
405
406         /*
407          * __vmalloc allocates the data pages and auxiliary structures with
408          * gfp_flags that were specified, but pagetables are always allocated
409          * with GFP_KERNEL, no matter what was specified as gfp_mask.
410          *
411          * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
412          * all allocations done by this process (including pagetables) are done
413          * as if GFP_NOIO was specified.
414          */
415
416         if (gfp_mask & __GFP_NORETRY)
417                 noio_flag = memalloc_noio_save();
418
419         ptr = __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
420
421         if (gfp_mask & __GFP_NORETRY)
422                 memalloc_noio_restore(noio_flag);
423
424         return ptr;
425 }
426
427 /*
428  * Free buffer's data.
429  */
430 static void free_buffer_data(struct dm_bufio_client *c,
431                              void *data, enum data_mode data_mode)
432 {
433         switch (data_mode) {
434         case DATA_MODE_SLAB:
435                 kmem_cache_free(DM_BUFIO_CACHE(c), data);
436                 break;
437
438         case DATA_MODE_GET_FREE_PAGES:
439                 free_pages((unsigned long)data, c->pages_per_block_bits);
440                 break;
441
442         case DATA_MODE_VMALLOC:
443                 vfree(data);
444                 break;
445
446         default:
447                 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
448                        data_mode);
449                 BUG();
450         }
451 }
452
453 /*
454  * Allocate buffer and its data.
455  */
456 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
457 {
458         struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
459                                       gfp_mask);
460
461         if (!b)
462                 return NULL;
463
464         b->c = c;
465
466         b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
467         if (!b->data) {
468                 kfree(b);
469                 return NULL;
470         }
471
472         adjust_total_allocated(b->data_mode, (long)c->block_size);
473
474 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
475         memset(&b->stack_trace, 0, sizeof(b->stack_trace));
476 #endif
477         return b;
478 }
479
480 /*
481  * Free buffer and its data.
482  */
483 static void free_buffer(struct dm_buffer *b)
484 {
485         struct dm_bufio_client *c = b->c;
486
487         adjust_total_allocated(b->data_mode, -(long)c->block_size);
488
489         free_buffer_data(c, b->data, b->data_mode);
490         kfree(b);
491 }
492
493 /*
494  * Link buffer to the hash list and clean or dirty queue.
495  */
496 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
497 {
498         struct dm_bufio_client *c = b->c;
499
500         c->n_buffers[dirty]++;
501         b->block = block;
502         b->list_mode = dirty;
503         list_add(&b->lru_list, &c->lru[dirty]);
504         __insert(b->c, b);
505         b->last_accessed = jiffies;
506 }
507
508 /*
509  * Unlink buffer from the hash list and dirty or clean queue.
510  */
511 static void __unlink_buffer(struct dm_buffer *b)
512 {
513         struct dm_bufio_client *c = b->c;
514
515         BUG_ON(!c->n_buffers[b->list_mode]);
516
517         c->n_buffers[b->list_mode]--;
518         __remove(b->c, b);
519         list_del(&b->lru_list);
520 }
521
522 /*
523  * Place the buffer to the head of dirty or clean LRU queue.
524  */
525 static void __relink_lru(struct dm_buffer *b, int dirty)
526 {
527         struct dm_bufio_client *c = b->c;
528
529         BUG_ON(!c->n_buffers[b->list_mode]);
530
531         c->n_buffers[b->list_mode]--;
532         c->n_buffers[dirty]++;
533         b->list_mode = dirty;
534         list_move(&b->lru_list, &c->lru[dirty]);
535         b->last_accessed = jiffies;
536 }
537
538 /*----------------------------------------------------------------
539  * Submit I/O on the buffer.
540  *
541  * Bio interface is faster but it has some problems:
542  *      the vector list is limited (increasing this limit increases
543  *      memory-consumption per buffer, so it is not viable);
544  *
545  *      the memory must be direct-mapped, not vmalloced;
546  *
547  *      the I/O driver can reject requests spuriously if it thinks that
548  *      the requests are too big for the device or if they cross a
549  *      controller-defined memory boundary.
550  *
551  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
552  * it is not vmalloced, try using the bio interface.
553  *
554  * If the buffer is big, if it is vmalloced or if the underlying device
555  * rejects the bio because it is too large, use dm-io layer to do the I/O.
556  * The dm-io layer splits the I/O into multiple requests, avoiding the above
557  * shortcomings.
558  *--------------------------------------------------------------*/
559
560 /*
561  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
562  * that the request was handled directly with bio interface.
563  */
564 static void dmio_complete(unsigned long error, void *context)
565 {
566         struct dm_buffer *b = context;
567
568         b->bio.bi_status = error ? BLK_STS_IOERR : 0;
569         b->bio.bi_end_io(&b->bio);
570 }
571
572 static void use_dmio(struct dm_buffer *b, int rw, sector_t sector,
573                      unsigned n_sectors, unsigned offset, bio_end_io_t *end_io)
574 {
575         int r;
576         struct dm_io_request io_req = {
577                 .bi_op = rw,
578                 .bi_op_flags = 0,
579                 .notify.fn = dmio_complete,
580                 .notify.context = b,
581                 .client = b->c->dm_io,
582         };
583         struct dm_io_region region = {
584                 .bdev = b->c->bdev,
585                 .sector = sector,
586                 .count = n_sectors,
587         };
588
589         if (b->data_mode != DATA_MODE_VMALLOC) {
590                 io_req.mem.type = DM_IO_KMEM;
591                 io_req.mem.ptr.addr = (char *)b->data + offset;
592         } else {
593                 io_req.mem.type = DM_IO_VMA;
594                 io_req.mem.ptr.vma = (char *)b->data + offset;
595         }
596
597         b->bio.bi_end_io = end_io;
598
599         r = dm_io(&io_req, 1, &region, NULL);
600         if (r) {
601                 b->bio.bi_status = errno_to_blk_status(r);
602                 end_io(&b->bio);
603         }
604 }
605
606 static void inline_endio(struct bio *bio)
607 {
608         bio_end_io_t *end_fn = bio->bi_private;
609         blk_status_t status = bio->bi_status;
610
611         /*
612          * Reset the bio to free any attached resources
613          * (e.g. bio integrity profiles).
614          */
615         bio_reset(bio);
616
617         bio->bi_status = status;
618         end_fn(bio);
619 }
620
621 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t sector,
622                            unsigned n_sectors, unsigned offset, bio_end_io_t *end_io)
623 {
624         char *ptr;
625         unsigned len;
626
627         bio_init(&b->bio, b->bio_vec, DM_BUFIO_INLINE_VECS);
628         b->bio.bi_iter.bi_sector = sector;
629         bio_set_dev(&b->bio, b->c->bdev);
630         b->bio.bi_end_io = inline_endio;
631         /*
632          * Use of .bi_private isn't a problem here because
633          * the dm_buffer's inline bio is local to bufio.
634          */
635         b->bio.bi_private = end_io;
636         bio_set_op_attrs(&b->bio, rw, 0);
637
638         ptr = (char *)b->data + offset;
639         len = n_sectors << SECTOR_SHIFT;
640
641         do {
642                 unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
643                 if (!bio_add_page(&b->bio, virt_to_page(ptr), this_step,
644                                   offset_in_page(ptr))) {
645                         BUG_ON(b->c->block_size <= PAGE_SIZE);
646                         use_dmio(b, rw, sector, n_sectors, offset, end_io);
647                         return;
648                 }
649
650                 len -= this_step;
651                 ptr += this_step;
652         } while (len > 0);
653
654         submit_bio(&b->bio);
655 }
656
657 static void submit_io(struct dm_buffer *b, int rw, bio_end_io_t *end_io)
658 {
659         unsigned n_sectors;
660         sector_t sector;
661         unsigned offset, end;
662
663         sector = (b->block << b->c->sectors_per_block_bits) + b->c->start;
664
665         if (rw != WRITE) {
666                 n_sectors = 1 << b->c->sectors_per_block_bits;
667                 offset = 0;
668         } else {
669                 if (b->c->write_callback)
670                         b->c->write_callback(b);
671                 offset = b->write_start;
672                 end = b->write_end;
673                 offset &= -DM_BUFIO_WRITE_ALIGN;
674                 end += DM_BUFIO_WRITE_ALIGN - 1;
675                 end &= -DM_BUFIO_WRITE_ALIGN;
676                 if (unlikely(end > b->c->block_size))
677                         end = b->c->block_size;
678
679                 sector += offset >> SECTOR_SHIFT;
680                 n_sectors = (end - offset) >> SECTOR_SHIFT;
681         }
682
683         if (n_sectors <= ((DM_BUFIO_INLINE_VECS * PAGE_SIZE) >> SECTOR_SHIFT) &&
684             b->data_mode != DATA_MODE_VMALLOC)
685                 use_inline_bio(b, rw, sector, n_sectors, offset, end_io);
686         else
687                 use_dmio(b, rw, sector, n_sectors, offset, end_io);
688 }
689
690 /*----------------------------------------------------------------
691  * Writing dirty buffers
692  *--------------------------------------------------------------*/
693
694 /*
695  * The endio routine for write.
696  *
697  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
698  * it.
699  */
700 static void write_endio(struct bio *bio)
701 {
702         struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
703
704         b->write_error = bio->bi_status;
705         if (unlikely(bio->bi_status)) {
706                 struct dm_bufio_client *c = b->c;
707
708                 (void)cmpxchg(&c->async_write_error, 0,
709                                 blk_status_to_errno(bio->bi_status));
710         }
711
712         BUG_ON(!test_bit(B_WRITING, &b->state));
713
714         smp_mb__before_atomic();
715         clear_bit(B_WRITING, &b->state);
716         smp_mb__after_atomic();
717
718         wake_up_bit(&b->state, B_WRITING);
719 }
720
721 /*
722  * Initiate a write on a dirty buffer, but don't wait for it.
723  *
724  * - If the buffer is not dirty, exit.
725  * - If there some previous write going on, wait for it to finish (we can't
726  *   have two writes on the same buffer simultaneously).
727  * - Submit our write and don't wait on it. We set B_WRITING indicating
728  *   that there is a write in progress.
729  */
730 static void __write_dirty_buffer(struct dm_buffer *b,
731                                  struct list_head *write_list)
732 {
733         if (!test_bit(B_DIRTY, &b->state))
734                 return;
735
736         clear_bit(B_DIRTY, &b->state);
737         wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
738
739         b->write_start = b->dirty_start;
740         b->write_end = b->dirty_end;
741
742         if (!write_list)
743                 submit_io(b, WRITE, write_endio);
744         else
745                 list_add_tail(&b->write_list, write_list);
746 }
747
748 static void __flush_write_list(struct list_head *write_list)
749 {
750         struct blk_plug plug;
751         blk_start_plug(&plug);
752         while (!list_empty(write_list)) {
753                 struct dm_buffer *b =
754                         list_entry(write_list->next, struct dm_buffer, write_list);
755                 list_del(&b->write_list);
756                 submit_io(b, WRITE, write_endio);
757                 cond_resched();
758         }
759         blk_finish_plug(&plug);
760 }
761
762 /*
763  * Wait until any activity on the buffer finishes.  Possibly write the
764  * buffer if it is dirty.  When this function finishes, there is no I/O
765  * running on the buffer and the buffer is not dirty.
766  */
767 static void __make_buffer_clean(struct dm_buffer *b)
768 {
769         BUG_ON(b->hold_count);
770
771         if (!b->state)  /* fast case */
772                 return;
773
774         wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
775         __write_dirty_buffer(b, NULL);
776         wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
777 }
778
779 /*
780  * Find some buffer that is not held by anybody, clean it, unlink it and
781  * return it.
782  */
783 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
784 {
785         struct dm_buffer *b;
786
787         list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
788                 BUG_ON(test_bit(B_WRITING, &b->state));
789                 BUG_ON(test_bit(B_DIRTY, &b->state));
790
791                 if (!b->hold_count) {
792                         __make_buffer_clean(b);
793                         __unlink_buffer(b);
794                         return b;
795                 }
796                 cond_resched();
797         }
798
799         list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
800                 BUG_ON(test_bit(B_READING, &b->state));
801
802                 if (!b->hold_count) {
803                         __make_buffer_clean(b);
804                         __unlink_buffer(b);
805                         return b;
806                 }
807                 cond_resched();
808         }
809
810         return NULL;
811 }
812
813 /*
814  * Wait until some other threads free some buffer or release hold count on
815  * some buffer.
816  *
817  * This function is entered with c->lock held, drops it and regains it
818  * before exiting.
819  */
820 static void __wait_for_free_buffer(struct dm_bufio_client *c)
821 {
822         DECLARE_WAITQUEUE(wait, current);
823
824         add_wait_queue(&c->free_buffer_wait, &wait);
825         set_current_state(TASK_UNINTERRUPTIBLE);
826         dm_bufio_unlock(c);
827
828         io_schedule();
829
830         remove_wait_queue(&c->free_buffer_wait, &wait);
831
832         dm_bufio_lock(c);
833 }
834
835 enum new_flag {
836         NF_FRESH = 0,
837         NF_READ = 1,
838         NF_GET = 2,
839         NF_PREFETCH = 3
840 };
841
842 /*
843  * Allocate a new buffer. If the allocation is not possible, wait until
844  * some other thread frees a buffer.
845  *
846  * May drop the lock and regain it.
847  */
848 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
849 {
850         struct dm_buffer *b;
851         bool tried_noio_alloc = false;
852
853         /*
854          * dm-bufio is resistant to allocation failures (it just keeps
855          * one buffer reserved in cases all the allocations fail).
856          * So set flags to not try too hard:
857          *      GFP_NOWAIT: don't wait; if we need to sleep we'll release our
858          *                  mutex and wait ourselves.
859          *      __GFP_NORETRY: don't retry and rather return failure
860          *      __GFP_NOMEMALLOC: don't use emergency reserves
861          *      __GFP_NOWARN: don't print a warning in case of failure
862          *
863          * For debugging, if we set the cache size to 1, no new buffers will
864          * be allocated.
865          */
866         while (1) {
867                 if (dm_bufio_cache_size_latch != 1) {
868                         b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
869                         if (b)
870                                 return b;
871                 }
872
873                 if (nf == NF_PREFETCH)
874                         return NULL;
875
876                 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
877                         dm_bufio_unlock(c);
878                         b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
879                         dm_bufio_lock(c);
880                         if (b)
881                                 return b;
882                         tried_noio_alloc = true;
883                 }
884
885                 if (!list_empty(&c->reserved_buffers)) {
886                         b = list_entry(c->reserved_buffers.next,
887                                        struct dm_buffer, lru_list);
888                         list_del(&b->lru_list);
889                         c->need_reserved_buffers++;
890
891                         return b;
892                 }
893
894                 b = __get_unclaimed_buffer(c);
895                 if (b)
896                         return b;
897
898                 __wait_for_free_buffer(c);
899         }
900 }
901
902 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
903 {
904         struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
905
906         if (!b)
907                 return NULL;
908
909         if (c->alloc_callback)
910                 c->alloc_callback(b);
911
912         return b;
913 }
914
915 /*
916  * Free a buffer and wake other threads waiting for free buffers.
917  */
918 static void __free_buffer_wake(struct dm_buffer *b)
919 {
920         struct dm_bufio_client *c = b->c;
921
922         if (!c->need_reserved_buffers)
923                 free_buffer(b);
924         else {
925                 list_add(&b->lru_list, &c->reserved_buffers);
926                 c->need_reserved_buffers--;
927         }
928
929         wake_up(&c->free_buffer_wait);
930 }
931
932 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
933                                         struct list_head *write_list)
934 {
935         struct dm_buffer *b, *tmp;
936
937         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
938                 BUG_ON(test_bit(B_READING, &b->state));
939
940                 if (!test_bit(B_DIRTY, &b->state) &&
941                     !test_bit(B_WRITING, &b->state)) {
942                         __relink_lru(b, LIST_CLEAN);
943                         continue;
944                 }
945
946                 if (no_wait && test_bit(B_WRITING, &b->state))
947                         return;
948
949                 __write_dirty_buffer(b, write_list);
950                 cond_resched();
951         }
952 }
953
954 /*
955  * Get writeback threshold and buffer limit for a given client.
956  */
957 static void __get_memory_limit(struct dm_bufio_client *c,
958                                unsigned long *threshold_buffers,
959                                unsigned long *limit_buffers)
960 {
961         unsigned long buffers;
962
963         if (unlikely(ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) {
964                 if (mutex_trylock(&dm_bufio_clients_lock)) {
965                         __cache_size_refresh();
966                         mutex_unlock(&dm_bufio_clients_lock);
967                 }
968         }
969
970         buffers = dm_bufio_cache_size_per_client >>
971                   (c->sectors_per_block_bits + SECTOR_SHIFT);
972
973         if (buffers < c->minimum_buffers)
974                 buffers = c->minimum_buffers;
975
976         *limit_buffers = buffers;
977         *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
978 }
979
980 /*
981  * Check if we're over watermark.
982  * If we are over threshold_buffers, start freeing buffers.
983  * If we're over "limit_buffers", block until we get under the limit.
984  */
985 static void __check_watermark(struct dm_bufio_client *c,
986                               struct list_head *write_list)
987 {
988         unsigned long threshold_buffers, limit_buffers;
989
990         __get_memory_limit(c, &threshold_buffers, &limit_buffers);
991
992         while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
993                limit_buffers) {
994
995                 struct dm_buffer *b = __get_unclaimed_buffer(c);
996
997                 if (!b)
998                         return;
999
1000                 __free_buffer_wake(b);
1001                 cond_resched();
1002         }
1003
1004         if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
1005                 __write_dirty_buffers_async(c, 1, write_list);
1006 }
1007
1008 /*----------------------------------------------------------------
1009  * Getting a buffer
1010  *--------------------------------------------------------------*/
1011
1012 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
1013                                      enum new_flag nf, int *need_submit,
1014                                      struct list_head *write_list)
1015 {
1016         struct dm_buffer *b, *new_b = NULL;
1017
1018         *need_submit = 0;
1019
1020         b = __find(c, block);
1021         if (b)
1022                 goto found_buffer;
1023
1024         if (nf == NF_GET)
1025                 return NULL;
1026
1027         new_b = __alloc_buffer_wait(c, nf);
1028         if (!new_b)
1029                 return NULL;
1030
1031         /*
1032          * We've had a period where the mutex was unlocked, so need to
1033          * recheck the hash table.
1034          */
1035         b = __find(c, block);
1036         if (b) {
1037                 __free_buffer_wake(new_b);
1038                 goto found_buffer;
1039         }
1040
1041         __check_watermark(c, write_list);
1042
1043         b = new_b;
1044         b->hold_count = 1;
1045         b->read_error = 0;
1046         b->write_error = 0;
1047         __link_buffer(b, block, LIST_CLEAN);
1048
1049         if (nf == NF_FRESH) {
1050                 b->state = 0;
1051                 return b;
1052         }
1053
1054         b->state = 1 << B_READING;
1055         *need_submit = 1;
1056
1057         return b;
1058
1059 found_buffer:
1060         if (nf == NF_PREFETCH)
1061                 return NULL;
1062         /*
1063          * Note: it is essential that we don't wait for the buffer to be
1064          * read if dm_bufio_get function is used. Both dm_bufio_get and
1065          * dm_bufio_prefetch can be used in the driver request routine.
1066          * If the user called both dm_bufio_prefetch and dm_bufio_get on
1067          * the same buffer, it would deadlock if we waited.
1068          */
1069         if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1070                 return NULL;
1071
1072         b->hold_count++;
1073         __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1074                      test_bit(B_WRITING, &b->state));
1075         return b;
1076 }
1077
1078 /*
1079  * The endio routine for reading: set the error, clear the bit and wake up
1080  * anyone waiting on the buffer.
1081  */
1082 static void read_endio(struct bio *bio)
1083 {
1084         struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1085
1086         b->read_error = bio->bi_status;
1087
1088         BUG_ON(!test_bit(B_READING, &b->state));
1089
1090         smp_mb__before_atomic();
1091         clear_bit(B_READING, &b->state);
1092         smp_mb__after_atomic();
1093
1094         wake_up_bit(&b->state, B_READING);
1095 }
1096
1097 /*
1098  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1099  * functions is similar except that dm_bufio_new doesn't read the
1100  * buffer from the disk (assuming that the caller overwrites all the data
1101  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1102  */
1103 static void *new_read(struct dm_bufio_client *c, sector_t block,
1104                       enum new_flag nf, struct dm_buffer **bp)
1105 {
1106         int need_submit;
1107         struct dm_buffer *b;
1108
1109         LIST_HEAD(write_list);
1110
1111         dm_bufio_lock(c);
1112         b = __bufio_new(c, block, nf, &need_submit, &write_list);
1113 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1114         if (b && b->hold_count == 1)
1115                 buffer_record_stack(b);
1116 #endif
1117         dm_bufio_unlock(c);
1118
1119         __flush_write_list(&write_list);
1120
1121         if (!b)
1122                 return NULL;
1123
1124         if (need_submit)
1125                 submit_io(b, READ, read_endio);
1126
1127         wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1128
1129         if (b->read_error) {
1130                 int error = blk_status_to_errno(b->read_error);
1131
1132                 dm_bufio_release(b);
1133
1134                 return ERR_PTR(error);
1135         }
1136
1137         *bp = b;
1138
1139         return b->data;
1140 }
1141
1142 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1143                    struct dm_buffer **bp)
1144 {
1145         return new_read(c, block, NF_GET, bp);
1146 }
1147 EXPORT_SYMBOL_GPL(dm_bufio_get);
1148
1149 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1150                     struct dm_buffer **bp)
1151 {
1152         BUG_ON(dm_bufio_in_request());
1153
1154         return new_read(c, block, NF_READ, bp);
1155 }
1156 EXPORT_SYMBOL_GPL(dm_bufio_read);
1157
1158 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1159                    struct dm_buffer **bp)
1160 {
1161         BUG_ON(dm_bufio_in_request());
1162
1163         return new_read(c, block, NF_FRESH, bp);
1164 }
1165 EXPORT_SYMBOL_GPL(dm_bufio_new);
1166
1167 void dm_bufio_prefetch(struct dm_bufio_client *c,
1168                        sector_t block, unsigned n_blocks)
1169 {
1170         struct blk_plug plug;
1171
1172         LIST_HEAD(write_list);
1173
1174         BUG_ON(dm_bufio_in_request());
1175
1176         blk_start_plug(&plug);
1177         dm_bufio_lock(c);
1178
1179         for (; n_blocks--; block++) {
1180                 int need_submit;
1181                 struct dm_buffer *b;
1182                 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1183                                 &write_list);
1184                 if (unlikely(!list_empty(&write_list))) {
1185                         dm_bufio_unlock(c);
1186                         blk_finish_plug(&plug);
1187                         __flush_write_list(&write_list);
1188                         blk_start_plug(&plug);
1189                         dm_bufio_lock(c);
1190                 }
1191                 if (unlikely(b != NULL)) {
1192                         dm_bufio_unlock(c);
1193
1194                         if (need_submit)
1195                                 submit_io(b, READ, read_endio);
1196                         dm_bufio_release(b);
1197
1198                         cond_resched();
1199
1200                         if (!n_blocks)
1201                                 goto flush_plug;
1202                         dm_bufio_lock(c);
1203                 }
1204         }
1205
1206         dm_bufio_unlock(c);
1207
1208 flush_plug:
1209         blk_finish_plug(&plug);
1210 }
1211 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1212
1213 void dm_bufio_release(struct dm_buffer *b)
1214 {
1215         struct dm_bufio_client *c = b->c;
1216
1217         dm_bufio_lock(c);
1218
1219         BUG_ON(!b->hold_count);
1220
1221         b->hold_count--;
1222         if (!b->hold_count) {
1223                 wake_up(&c->free_buffer_wait);
1224
1225                 /*
1226                  * If there were errors on the buffer, and the buffer is not
1227                  * to be written, free the buffer. There is no point in caching
1228                  * invalid buffer.
1229                  */
1230                 if ((b->read_error || b->write_error) &&
1231                     !test_bit(B_READING, &b->state) &&
1232                     !test_bit(B_WRITING, &b->state) &&
1233                     !test_bit(B_DIRTY, &b->state)) {
1234                         __unlink_buffer(b);
1235                         __free_buffer_wake(b);
1236                 }
1237         }
1238
1239         dm_bufio_unlock(c);
1240 }
1241 EXPORT_SYMBOL_GPL(dm_bufio_release);
1242
1243 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1244                                         unsigned start, unsigned end)
1245 {
1246         struct dm_bufio_client *c = b->c;
1247
1248         BUG_ON(start >= end);
1249         BUG_ON(end > b->c->block_size);
1250
1251         dm_bufio_lock(c);
1252
1253         BUG_ON(test_bit(B_READING, &b->state));
1254
1255         if (!test_and_set_bit(B_DIRTY, &b->state)) {
1256                 b->dirty_start = start;
1257                 b->dirty_end = end;
1258                 __relink_lru(b, LIST_DIRTY);
1259         } else {
1260                 if (start < b->dirty_start)
1261                         b->dirty_start = start;
1262                 if (end > b->dirty_end)
1263                         b->dirty_end = end;
1264         }
1265
1266         dm_bufio_unlock(c);
1267 }
1268 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1269
1270 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1271 {
1272         dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1273 }
1274 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1275
1276 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1277 {
1278         LIST_HEAD(write_list);
1279
1280         BUG_ON(dm_bufio_in_request());
1281
1282         dm_bufio_lock(c);
1283         __write_dirty_buffers_async(c, 0, &write_list);
1284         dm_bufio_unlock(c);
1285         __flush_write_list(&write_list);
1286 }
1287 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1288
1289 /*
1290  * For performance, it is essential that the buffers are written asynchronously
1291  * and simultaneously (so that the block layer can merge the writes) and then
1292  * waited upon.
1293  *
1294  * Finally, we flush hardware disk cache.
1295  */
1296 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1297 {
1298         int a, f;
1299         unsigned long buffers_processed = 0;
1300         struct dm_buffer *b, *tmp;
1301
1302         LIST_HEAD(write_list);
1303
1304         dm_bufio_lock(c);
1305         __write_dirty_buffers_async(c, 0, &write_list);
1306         dm_bufio_unlock(c);
1307         __flush_write_list(&write_list);
1308         dm_bufio_lock(c);
1309
1310 again:
1311         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1312                 int dropped_lock = 0;
1313
1314                 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1315                         buffers_processed++;
1316
1317                 BUG_ON(test_bit(B_READING, &b->state));
1318
1319                 if (test_bit(B_WRITING, &b->state)) {
1320                         if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1321                                 dropped_lock = 1;
1322                                 b->hold_count++;
1323                                 dm_bufio_unlock(c);
1324                                 wait_on_bit_io(&b->state, B_WRITING,
1325                                                TASK_UNINTERRUPTIBLE);
1326                                 dm_bufio_lock(c);
1327                                 b->hold_count--;
1328                         } else
1329                                 wait_on_bit_io(&b->state, B_WRITING,
1330                                                TASK_UNINTERRUPTIBLE);
1331                 }
1332
1333                 if (!test_bit(B_DIRTY, &b->state) &&
1334                     !test_bit(B_WRITING, &b->state))
1335                         __relink_lru(b, LIST_CLEAN);
1336
1337                 cond_resched();
1338
1339                 /*
1340                  * If we dropped the lock, the list is no longer consistent,
1341                  * so we must restart the search.
1342                  *
1343                  * In the most common case, the buffer just processed is
1344                  * relinked to the clean list, so we won't loop scanning the
1345                  * same buffer again and again.
1346                  *
1347                  * This may livelock if there is another thread simultaneously
1348                  * dirtying buffers, so we count the number of buffers walked
1349                  * and if it exceeds the total number of buffers, it means that
1350                  * someone is doing some writes simultaneously with us.  In
1351                  * this case, stop, dropping the lock.
1352                  */
1353                 if (dropped_lock)
1354                         goto again;
1355         }
1356         wake_up(&c->free_buffer_wait);
1357         dm_bufio_unlock(c);
1358
1359         a = xchg(&c->async_write_error, 0);
1360         f = dm_bufio_issue_flush(c);
1361         if (a)
1362                 return a;
1363
1364         return f;
1365 }
1366 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1367
1368 /*
1369  * Use dm-io to send and empty barrier flush the device.
1370  */
1371 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1372 {
1373         struct dm_io_request io_req = {
1374                 .bi_op = REQ_OP_WRITE,
1375                 .bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1376                 .mem.type = DM_IO_KMEM,
1377                 .mem.ptr.addr = NULL,
1378                 .client = c->dm_io,
1379         };
1380         struct dm_io_region io_reg = {
1381                 .bdev = c->bdev,
1382                 .sector = 0,
1383                 .count = 0,
1384         };
1385
1386         BUG_ON(dm_bufio_in_request());
1387
1388         return dm_io(&io_req, 1, &io_reg, NULL);
1389 }
1390 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1391
1392 /*
1393  * We first delete any other buffer that may be at that new location.
1394  *
1395  * Then, we write the buffer to the original location if it was dirty.
1396  *
1397  * Then, if we are the only one who is holding the buffer, relink the buffer
1398  * in the hash queue for the new location.
1399  *
1400  * If there was someone else holding the buffer, we write it to the new
1401  * location but not relink it, because that other user needs to have the buffer
1402  * at the same place.
1403  */
1404 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1405 {
1406         struct dm_bufio_client *c = b->c;
1407         struct dm_buffer *new;
1408
1409         BUG_ON(dm_bufio_in_request());
1410
1411         dm_bufio_lock(c);
1412
1413 retry:
1414         new = __find(c, new_block);
1415         if (new) {
1416                 if (new->hold_count) {
1417                         __wait_for_free_buffer(c);
1418                         goto retry;
1419                 }
1420
1421                 /*
1422                  * FIXME: Is there any point waiting for a write that's going
1423                  * to be overwritten in a bit?
1424                  */
1425                 __make_buffer_clean(new);
1426                 __unlink_buffer(new);
1427                 __free_buffer_wake(new);
1428         }
1429
1430         BUG_ON(!b->hold_count);
1431         BUG_ON(test_bit(B_READING, &b->state));
1432
1433         __write_dirty_buffer(b, NULL);
1434         if (b->hold_count == 1) {
1435                 wait_on_bit_io(&b->state, B_WRITING,
1436                                TASK_UNINTERRUPTIBLE);
1437                 set_bit(B_DIRTY, &b->state);
1438                 b->dirty_start = 0;
1439                 b->dirty_end = c->block_size;
1440                 __unlink_buffer(b);
1441                 __link_buffer(b, new_block, LIST_DIRTY);
1442         } else {
1443                 sector_t old_block;
1444                 wait_on_bit_lock_io(&b->state, B_WRITING,
1445                                     TASK_UNINTERRUPTIBLE);
1446                 /*
1447                  * Relink buffer to "new_block" so that write_callback
1448                  * sees "new_block" as a block number.
1449                  * After the write, link the buffer back to old_block.
1450                  * All this must be done in bufio lock, so that block number
1451                  * change isn't visible to other threads.
1452                  */
1453                 old_block = b->block;
1454                 __unlink_buffer(b);
1455                 __link_buffer(b, new_block, b->list_mode);
1456                 submit_io(b, WRITE, write_endio);
1457                 wait_on_bit_io(&b->state, B_WRITING,
1458                                TASK_UNINTERRUPTIBLE);
1459                 __unlink_buffer(b);
1460                 __link_buffer(b, old_block, b->list_mode);
1461         }
1462
1463         dm_bufio_unlock(c);
1464         dm_bufio_release(b);
1465 }
1466 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1467
1468 /*
1469  * Free the given buffer.
1470  *
1471  * This is just a hint, if the buffer is in use or dirty, this function
1472  * does nothing.
1473  */
1474 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1475 {
1476         struct dm_buffer *b;
1477
1478         dm_bufio_lock(c);
1479
1480         b = __find(c, block);
1481         if (b && likely(!b->hold_count) && likely(!b->state)) {
1482                 __unlink_buffer(b);
1483                 __free_buffer_wake(b);
1484         }
1485
1486         dm_bufio_unlock(c);
1487 }
1488 EXPORT_SYMBOL(dm_bufio_forget);
1489
1490 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1491 {
1492         c->minimum_buffers = n;
1493 }
1494 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1495
1496 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1497 {
1498         return c->block_size;
1499 }
1500 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1501
1502 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1503 {
1504         return i_size_read(c->bdev->bd_inode) >>
1505                            (SECTOR_SHIFT + c->sectors_per_block_bits);
1506 }
1507 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1508
1509 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1510 {
1511         return b->block;
1512 }
1513 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1514
1515 void *dm_bufio_get_block_data(struct dm_buffer *b)
1516 {
1517         return b->data;
1518 }
1519 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1520
1521 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1522 {
1523         return b + 1;
1524 }
1525 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1526
1527 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1528 {
1529         return b->c;
1530 }
1531 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1532
1533 static void drop_buffers(struct dm_bufio_client *c)
1534 {
1535         struct dm_buffer *b;
1536         int i;
1537         bool warned = false;
1538
1539         BUG_ON(dm_bufio_in_request());
1540
1541         /*
1542          * An optimization so that the buffers are not written one-by-one.
1543          */
1544         dm_bufio_write_dirty_buffers_async(c);
1545
1546         dm_bufio_lock(c);
1547
1548         while ((b = __get_unclaimed_buffer(c)))
1549                 __free_buffer_wake(b);
1550
1551         for (i = 0; i < LIST_SIZE; i++)
1552                 list_for_each_entry(b, &c->lru[i], lru_list) {
1553                         WARN_ON(!warned);
1554                         warned = true;
1555                         DMERR("leaked buffer %llx, hold count %u, list %d",
1556                               (unsigned long long)b->block, b->hold_count, i);
1557 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1558                         print_stack_trace(&b->stack_trace, 1);
1559                         b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */
1560 #endif
1561                 }
1562
1563 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1564         while ((b = __get_unclaimed_buffer(c)))
1565                 __free_buffer_wake(b);
1566 #endif
1567
1568         for (i = 0; i < LIST_SIZE; i++)
1569                 BUG_ON(!list_empty(&c->lru[i]));
1570
1571         dm_bufio_unlock(c);
1572 }
1573
1574 /*
1575  * We may not be able to evict this buffer if IO pending or the client
1576  * is still using it.  Caller is expected to know buffer is too old.
1577  *
1578  * And if GFP_NOFS is used, we must not do any I/O because we hold
1579  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1580  * rerouted to different bufio client.
1581  */
1582 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1583 {
1584         if (!(gfp & __GFP_FS)) {
1585                 if (test_bit(B_READING, &b->state) ||
1586                     test_bit(B_WRITING, &b->state) ||
1587                     test_bit(B_DIRTY, &b->state))
1588                         return false;
1589         }
1590
1591         if (b->hold_count)
1592                 return false;
1593
1594         __make_buffer_clean(b);
1595         __unlink_buffer(b);
1596         __free_buffer_wake(b);
1597
1598         return true;
1599 }
1600
1601 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1602 {
1603         unsigned long retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes);
1604         return retain_bytes >> (c->sectors_per_block_bits + SECTOR_SHIFT);
1605 }
1606
1607 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1608                             gfp_t gfp_mask)
1609 {
1610         int l;
1611         struct dm_buffer *b, *tmp;
1612         unsigned long freed = 0;
1613         unsigned long count = nr_to_scan;
1614         unsigned long retain_target = get_retain_buffers(c);
1615
1616         for (l = 0; l < LIST_SIZE; l++) {
1617                 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1618                         if (__try_evict_buffer(b, gfp_mask))
1619                                 freed++;
1620                         if (!--nr_to_scan || ((count - freed) <= retain_target))
1621                                 return freed;
1622                         cond_resched();
1623                 }
1624         }
1625         return freed;
1626 }
1627
1628 static unsigned long
1629 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1630 {
1631         struct dm_bufio_client *c;
1632         unsigned long freed;
1633
1634         c = container_of(shrink, struct dm_bufio_client, shrinker);
1635         if (sc->gfp_mask & __GFP_FS)
1636                 dm_bufio_lock(c);
1637         else if (!dm_bufio_trylock(c))
1638                 return SHRINK_STOP;
1639
1640         freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1641         dm_bufio_unlock(c);
1642         return freed;
1643 }
1644
1645 static unsigned long
1646 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1647 {
1648         struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1649
1650         return ACCESS_ONCE(c->n_buffers[LIST_CLEAN]) + ACCESS_ONCE(c->n_buffers[LIST_DIRTY]);
1651 }
1652
1653 /*
1654  * Create the buffering interface
1655  */
1656 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1657                                                unsigned reserved_buffers, unsigned aux_size,
1658                                                void (*alloc_callback)(struct dm_buffer *),
1659                                                void (*write_callback)(struct dm_buffer *))
1660 {
1661         int r;
1662         struct dm_bufio_client *c;
1663         unsigned i;
1664
1665         BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1666                (block_size & (block_size - 1)));
1667
1668         c = kzalloc(sizeof(*c), GFP_KERNEL);
1669         if (!c) {
1670                 r = -ENOMEM;
1671                 goto bad_client;
1672         }
1673         c->buffer_tree = RB_ROOT;
1674
1675         c->bdev = bdev;
1676         c->block_size = block_size;
1677         c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1678         c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ?
1679                                   __ffs(block_size) - PAGE_SHIFT : 0;
1680         c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ?
1681                                   PAGE_SHIFT - __ffs(block_size) : 0);
1682
1683         c->aux_size = aux_size;
1684         c->alloc_callback = alloc_callback;
1685         c->write_callback = write_callback;
1686
1687         for (i = 0; i < LIST_SIZE; i++) {
1688                 INIT_LIST_HEAD(&c->lru[i]);
1689                 c->n_buffers[i] = 0;
1690         }
1691
1692         mutex_init(&c->lock);
1693         INIT_LIST_HEAD(&c->reserved_buffers);
1694         c->need_reserved_buffers = reserved_buffers;
1695
1696         c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1697
1698         init_waitqueue_head(&c->free_buffer_wait);
1699         c->async_write_error = 0;
1700
1701         c->dm_io = dm_io_client_create();
1702         if (IS_ERR(c->dm_io)) {
1703                 r = PTR_ERR(c->dm_io);
1704                 goto bad_dm_io;
1705         }
1706
1707         mutex_lock(&dm_bufio_clients_lock);
1708         if (c->blocks_per_page_bits) {
1709                 if (!DM_BUFIO_CACHE_NAME(c)) {
1710                         DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1711                         if (!DM_BUFIO_CACHE_NAME(c)) {
1712                                 r = -ENOMEM;
1713                                 mutex_unlock(&dm_bufio_clients_lock);
1714                                 goto bad_cache;
1715                         }
1716                 }
1717
1718                 if (!DM_BUFIO_CACHE(c)) {
1719                         DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1720                                                               c->block_size,
1721                                                               c->block_size, 0, NULL);
1722                         if (!DM_BUFIO_CACHE(c)) {
1723                                 r = -ENOMEM;
1724                                 mutex_unlock(&dm_bufio_clients_lock);
1725                                 goto bad_cache;
1726                         }
1727                 }
1728         }
1729         mutex_unlock(&dm_bufio_clients_lock);
1730
1731         while (c->need_reserved_buffers) {
1732                 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1733
1734                 if (!b) {
1735                         r = -ENOMEM;
1736                         goto bad_buffer;
1737                 }
1738                 __free_buffer_wake(b);
1739         }
1740
1741         mutex_lock(&dm_bufio_clients_lock);
1742         dm_bufio_client_count++;
1743         list_add(&c->client_list, &dm_bufio_all_clients);
1744         __cache_size_refresh();
1745         mutex_unlock(&dm_bufio_clients_lock);
1746
1747         c->shrinker.count_objects = dm_bufio_shrink_count;
1748         c->shrinker.scan_objects = dm_bufio_shrink_scan;
1749         c->shrinker.seeks = 1;
1750         c->shrinker.batch = 0;
1751         register_shrinker(&c->shrinker);
1752
1753         return c;
1754
1755 bad_buffer:
1756 bad_cache:
1757         while (!list_empty(&c->reserved_buffers)) {
1758                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1759                                                  struct dm_buffer, lru_list);
1760                 list_del(&b->lru_list);
1761                 free_buffer(b);
1762         }
1763         dm_io_client_destroy(c->dm_io);
1764 bad_dm_io:
1765         kfree(c);
1766 bad_client:
1767         return ERR_PTR(r);
1768 }
1769 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1770
1771 /*
1772  * Free the buffering interface.
1773  * It is required that there are no references on any buffers.
1774  */
1775 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1776 {
1777         unsigned i;
1778
1779         drop_buffers(c);
1780
1781         unregister_shrinker(&c->shrinker);
1782
1783         mutex_lock(&dm_bufio_clients_lock);
1784
1785         list_del(&c->client_list);
1786         dm_bufio_client_count--;
1787         __cache_size_refresh();
1788
1789         mutex_unlock(&dm_bufio_clients_lock);
1790
1791         BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1792         BUG_ON(c->need_reserved_buffers);
1793
1794         while (!list_empty(&c->reserved_buffers)) {
1795                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1796                                                  struct dm_buffer, lru_list);
1797                 list_del(&b->lru_list);
1798                 free_buffer(b);
1799         }
1800
1801         for (i = 0; i < LIST_SIZE; i++)
1802                 if (c->n_buffers[i])
1803                         DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1804
1805         for (i = 0; i < LIST_SIZE; i++)
1806                 BUG_ON(c->n_buffers[i]);
1807
1808         dm_io_client_destroy(c->dm_io);
1809         kfree(c);
1810 }
1811 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1812
1813 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1814 {
1815         c->start = start;
1816 }
1817 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1818
1819 static unsigned get_max_age_hz(void)
1820 {
1821         unsigned max_age = ACCESS_ONCE(dm_bufio_max_age);
1822
1823         if (max_age > UINT_MAX / HZ)
1824                 max_age = UINT_MAX / HZ;
1825
1826         return max_age * HZ;
1827 }
1828
1829 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1830 {
1831         return time_after_eq(jiffies, b->last_accessed + age_hz);
1832 }
1833
1834 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1835 {
1836         struct dm_buffer *b, *tmp;
1837         unsigned long retain_target = get_retain_buffers(c);
1838         unsigned long count;
1839         LIST_HEAD(write_list);
1840
1841         dm_bufio_lock(c);
1842
1843         __check_watermark(c, &write_list);
1844         if (unlikely(!list_empty(&write_list))) {
1845                 dm_bufio_unlock(c);
1846                 __flush_write_list(&write_list);
1847                 dm_bufio_lock(c);
1848         }
1849
1850         count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1851         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1852                 if (count <= retain_target)
1853                         break;
1854
1855                 if (!older_than(b, age_hz))
1856                         break;
1857
1858                 if (__try_evict_buffer(b, 0))
1859                         count--;
1860
1861                 cond_resched();
1862         }
1863
1864         dm_bufio_unlock(c);
1865 }
1866
1867 static void cleanup_old_buffers(void)
1868 {
1869         unsigned long max_age_hz = get_max_age_hz();
1870         struct dm_bufio_client *c;
1871
1872         mutex_lock(&dm_bufio_clients_lock);
1873
1874         __cache_size_refresh();
1875
1876         list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1877                 __evict_old_buffers(c, max_age_hz);
1878
1879         mutex_unlock(&dm_bufio_clients_lock);
1880 }
1881
1882 static struct workqueue_struct *dm_bufio_wq;
1883 static struct delayed_work dm_bufio_work;
1884
1885 static void work_fn(struct work_struct *w)
1886 {
1887         cleanup_old_buffers();
1888
1889         queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1890                            DM_BUFIO_WORK_TIMER_SECS * HZ);
1891 }
1892
1893 /*----------------------------------------------------------------
1894  * Module setup
1895  *--------------------------------------------------------------*/
1896
1897 /*
1898  * This is called only once for the whole dm_bufio module.
1899  * It initializes memory limit.
1900  */
1901 static int __init dm_bufio_init(void)
1902 {
1903         __u64 mem;
1904
1905         dm_bufio_allocated_kmem_cache = 0;
1906         dm_bufio_allocated_get_free_pages = 0;
1907         dm_bufio_allocated_vmalloc = 0;
1908         dm_bufio_current_allocated = 0;
1909
1910         memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1911         memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1912
1913         mem = (__u64)((totalram_pages - totalhigh_pages) *
1914                       DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1915
1916         if (mem > ULONG_MAX)
1917                 mem = ULONG_MAX;
1918
1919 #ifdef CONFIG_MMU
1920         /*
1921          * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1922          * in fs/proc/internal.h
1923          */
1924         if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1925                 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1926 #endif
1927
1928         dm_bufio_default_cache_size = mem;
1929
1930         mutex_lock(&dm_bufio_clients_lock);
1931         __cache_size_refresh();
1932         mutex_unlock(&dm_bufio_clients_lock);
1933
1934         dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
1935         if (!dm_bufio_wq)
1936                 return -ENOMEM;
1937
1938         INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1939         queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1940                            DM_BUFIO_WORK_TIMER_SECS * HZ);
1941
1942         return 0;
1943 }
1944
1945 /*
1946  * This is called once when unloading the dm_bufio module.
1947  */
1948 static void __exit dm_bufio_exit(void)
1949 {
1950         int bug = 0;
1951         int i;
1952
1953         cancel_delayed_work_sync(&dm_bufio_work);
1954         destroy_workqueue(dm_bufio_wq);
1955
1956         for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++)
1957                 kmem_cache_destroy(dm_bufio_caches[i]);
1958
1959         for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1960                 kfree(dm_bufio_cache_names[i]);
1961
1962         if (dm_bufio_client_count) {
1963                 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1964                         __func__, dm_bufio_client_count);
1965                 bug = 1;
1966         }
1967
1968         if (dm_bufio_current_allocated) {
1969                 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1970                         __func__, dm_bufio_current_allocated);
1971                 bug = 1;
1972         }
1973
1974         if (dm_bufio_allocated_get_free_pages) {
1975                 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1976                        __func__, dm_bufio_allocated_get_free_pages);
1977                 bug = 1;
1978         }
1979
1980         if (dm_bufio_allocated_vmalloc) {
1981                 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1982                        __func__, dm_bufio_allocated_vmalloc);
1983                 bug = 1;
1984         }
1985
1986         BUG_ON(bug);
1987 }
1988
1989 module_init(dm_bufio_init)
1990 module_exit(dm_bufio_exit)
1991
1992 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1993 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1994
1995 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1996 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1997
1998 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
1999 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2000
2001 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
2002 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2003
2004 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
2005 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2006
2007 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
2008 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2009
2010 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
2011 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2012
2013 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
2014 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2015
2016 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2017 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2018 MODULE_LICENSE("GPL");