Merge tag 'riscv-for-linus-4.19-mw0' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / drivers / md / bcache / util.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2
3 #ifndef _BCACHE_UTIL_H
4 #define _BCACHE_UTIL_H
5
6 #include <linux/blkdev.h>
7 #include <linux/errno.h>
8 #include <linux/kernel.h>
9 #include <linux/sched/clock.h>
10 #include <linux/llist.h>
11 #include <linux/ratelimit.h>
12 #include <linux/vmalloc.h>
13 #include <linux/workqueue.h>
14
15 #include "closure.h"
16
17 #define PAGE_SECTORS            (PAGE_SIZE / 512)
18
19 struct closure;
20
21 #ifdef CONFIG_BCACHE_DEBUG
22
23 #define EBUG_ON(cond)                   BUG_ON(cond)
24 #define atomic_dec_bug(v)       BUG_ON(atomic_dec_return(v) < 0)
25 #define atomic_inc_bug(v, i)    BUG_ON(atomic_inc_return(v) <= i)
26
27 #else /* DEBUG */
28
29 #define EBUG_ON(cond)                   do { if (cond); } while (0)
30 #define atomic_dec_bug(v)       atomic_dec(v)
31 #define atomic_inc_bug(v, i)    atomic_inc(v)
32
33 #endif
34
35 #define DECLARE_HEAP(type, name)                                        \
36         struct {                                                        \
37                 size_t size, used;                                      \
38                 type *data;                                             \
39         } name
40
41 #define init_heap(heap, _size, gfp)                                     \
42 ({                                                                      \
43         size_t _bytes;                                                  \
44         (heap)->used = 0;                                               \
45         (heap)->size = (_size);                                         \
46         _bytes = (heap)->size * sizeof(*(heap)->data);                  \
47         (heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL);            \
48         (heap)->data;                                                   \
49 })
50
51 #define free_heap(heap)                                                 \
52 do {                                                                    \
53         kvfree((heap)->data);                                           \
54         (heap)->data = NULL;                                            \
55 } while (0)
56
57 #define heap_swap(h, i, j)      swap((h)->data[i], (h)->data[j])
58
59 #define heap_sift(h, i, cmp)                                            \
60 do {                                                                    \
61         size_t _r, _j = i;                                              \
62                                                                         \
63         for (; _j * 2 + 1 < (h)->used; _j = _r) {                       \
64                 _r = _j * 2 + 1;                                        \
65                 if (_r + 1 < (h)->used &&                               \
66                     cmp((h)->data[_r], (h)->data[_r + 1]))              \
67                         _r++;                                           \
68                                                                         \
69                 if (cmp((h)->data[_r], (h)->data[_j]))                  \
70                         break;                                          \
71                 heap_swap(h, _r, _j);                                   \
72         }                                                               \
73 } while (0)
74
75 #define heap_sift_down(h, i, cmp)                                       \
76 do {                                                                    \
77         while (i) {                                                     \
78                 size_t p = (i - 1) / 2;                                 \
79                 if (cmp((h)->data[i], (h)->data[p]))                    \
80                         break;                                          \
81                 heap_swap(h, i, p);                                     \
82                 i = p;                                                  \
83         }                                                               \
84 } while (0)
85
86 #define heap_add(h, d, cmp)                                             \
87 ({                                                                      \
88         bool _r = !heap_full(h);                                        \
89         if (_r) {                                                       \
90                 size_t _i = (h)->used++;                                \
91                 (h)->data[_i] = d;                                      \
92                                                                         \
93                 heap_sift_down(h, _i, cmp);                             \
94                 heap_sift(h, _i, cmp);                                  \
95         }                                                               \
96         _r;                                                             \
97 })
98
99 #define heap_pop(h, d, cmp)                                             \
100 ({                                                                      \
101         bool _r = (h)->used;                                            \
102         if (_r) {                                                       \
103                 (d) = (h)->data[0];                                     \
104                 (h)->used--;                                            \
105                 heap_swap(h, 0, (h)->used);                             \
106                 heap_sift(h, 0, cmp);                                   \
107         }                                                               \
108         _r;                                                             \
109 })
110
111 #define heap_peek(h)    ((h)->used ? (h)->data[0] : NULL)
112
113 #define heap_full(h)    ((h)->used == (h)->size)
114
115 #define heap_empty(h)   ((h)->used == 0)
116
117 #define DECLARE_FIFO(type, name)                                        \
118         struct {                                                        \
119                 size_t front, back, size, mask;                         \
120                 type *data;                                             \
121         } name
122
123 #define fifo_for_each(c, fifo, iter)                                    \
124         for (iter = (fifo)->front;                                      \
125              c = (fifo)->data[iter], iter != (fifo)->back;              \
126              iter = (iter + 1) & (fifo)->mask)
127
128 #define __init_fifo(fifo, gfp)                                          \
129 ({                                                                      \
130         size_t _allocated_size, _bytes;                                 \
131         BUG_ON(!(fifo)->size);                                          \
132                                                                         \
133         _allocated_size = roundup_pow_of_two((fifo)->size + 1);         \
134         _bytes = _allocated_size * sizeof(*(fifo)->data);               \
135                                                                         \
136         (fifo)->mask = _allocated_size - 1;                             \
137         (fifo)->front = (fifo)->back = 0;                               \
138                                                                         \
139         (fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL);            \
140         (fifo)->data;                                                   \
141 })
142
143 #define init_fifo_exact(fifo, _size, gfp)                               \
144 ({                                                                      \
145         (fifo)->size = (_size);                                         \
146         __init_fifo(fifo, gfp);                                         \
147 })
148
149 #define init_fifo(fifo, _size, gfp)                                     \
150 ({                                                                      \
151         (fifo)->size = (_size);                                         \
152         if ((fifo)->size > 4)                                           \
153                 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1;    \
154         __init_fifo(fifo, gfp);                                         \
155 })
156
157 #define free_fifo(fifo)                                                 \
158 do {                                                                    \
159         kvfree((fifo)->data);                                           \
160         (fifo)->data = NULL;                                            \
161 } while (0)
162
163 #define fifo_used(fifo)         (((fifo)->back - (fifo)->front) & (fifo)->mask)
164 #define fifo_free(fifo)         ((fifo)->size - fifo_used(fifo))
165
166 #define fifo_empty(fifo)        (!fifo_used(fifo))
167 #define fifo_full(fifo)         (!fifo_free(fifo))
168
169 #define fifo_front(fifo)        ((fifo)->data[(fifo)->front])
170 #define fifo_back(fifo)                                                 \
171         ((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
172
173 #define fifo_idx(fifo, p)       (((p) - &fifo_front(fifo)) & (fifo)->mask)
174
175 #define fifo_push_back(fifo, i)                                         \
176 ({                                                                      \
177         bool _r = !fifo_full((fifo));                                   \
178         if (_r) {                                                       \
179                 (fifo)->data[(fifo)->back++] = (i);                     \
180                 (fifo)->back &= (fifo)->mask;                           \
181         }                                                               \
182         _r;                                                             \
183 })
184
185 #define fifo_pop_front(fifo, i)                                         \
186 ({                                                                      \
187         bool _r = !fifo_empty((fifo));                                  \
188         if (_r) {                                                       \
189                 (i) = (fifo)->data[(fifo)->front++];                    \
190                 (fifo)->front &= (fifo)->mask;                          \
191         }                                                               \
192         _r;                                                             \
193 })
194
195 #define fifo_push_front(fifo, i)                                        \
196 ({                                                                      \
197         bool _r = !fifo_full((fifo));                                   \
198         if (_r) {                                                       \
199                 --(fifo)->front;                                        \
200                 (fifo)->front &= (fifo)->mask;                          \
201                 (fifo)->data[(fifo)->front] = (i);                      \
202         }                                                               \
203         _r;                                                             \
204 })
205
206 #define fifo_pop_back(fifo, i)                                          \
207 ({                                                                      \
208         bool _r = !fifo_empty((fifo));                                  \
209         if (_r) {                                                       \
210                 --(fifo)->back;                                         \
211                 (fifo)->back &= (fifo)->mask;                           \
212                 (i) = (fifo)->data[(fifo)->back]                        \
213         }                                                               \
214         _r;                                                             \
215 })
216
217 #define fifo_push(fifo, i)      fifo_push_back(fifo, (i))
218 #define fifo_pop(fifo, i)       fifo_pop_front(fifo, (i))
219
220 #define fifo_swap(l, r)                                                 \
221 do {                                                                    \
222         swap((l)->front, (r)->front);                                   \
223         swap((l)->back, (r)->back);                                     \
224         swap((l)->size, (r)->size);                                     \
225         swap((l)->mask, (r)->mask);                                     \
226         swap((l)->data, (r)->data);                                     \
227 } while (0)
228
229 #define fifo_move(dest, src)                                            \
230 do {                                                                    \
231         typeof(*((dest)->data)) _t;                                     \
232         while (!fifo_full(dest) &&                                      \
233                fifo_pop(src, _t))                                       \
234                 fifo_push(dest, _t);                                    \
235 } while (0)
236
237 /*
238  * Simple array based allocator - preallocates a number of elements and you can
239  * never allocate more than that, also has no locking.
240  *
241  * Handy because if you know you only need a fixed number of elements you don't
242  * have to worry about memory allocation failure, and sometimes a mempool isn't
243  * what you want.
244  *
245  * We treat the free elements as entries in a singly linked list, and the
246  * freelist as a stack - allocating and freeing push and pop off the freelist.
247  */
248
249 #define DECLARE_ARRAY_ALLOCATOR(type, name, size)                       \
250         struct {                                                        \
251                 type    *freelist;                                      \
252                 type    data[size];                                     \
253         } name
254
255 #define array_alloc(array)                                              \
256 ({                                                                      \
257         typeof((array)->freelist) _ret = (array)->freelist;             \
258                                                                         \
259         if (_ret)                                                       \
260                 (array)->freelist = *((typeof((array)->freelist) *) _ret);\
261                                                                         \
262         _ret;                                                           \
263 })
264
265 #define array_free(array, ptr)                                          \
266 do {                                                                    \
267         typeof((array)->freelist) _ptr = ptr;                           \
268                                                                         \
269         *((typeof((array)->freelist) *) _ptr) = (array)->freelist;      \
270         (array)->freelist = _ptr;                                       \
271 } while (0)
272
273 #define array_allocator_init(array)                                     \
274 do {                                                                    \
275         typeof((array)->freelist) _i;                                   \
276                                                                         \
277         BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *));        \
278         (array)->freelist = NULL;                                       \
279                                                                         \
280         for (_i = (array)->data;                                        \
281              _i < (array)->data + ARRAY_SIZE((array)->data);            \
282              _i++)                                                      \
283                 array_free(array, _i);                                  \
284 } while (0)
285
286 #define array_freelist_empty(array)     ((array)->freelist == NULL)
287
288 #define ANYSINT_MAX(t)                                                  \
289         ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
290
291 int bch_strtoint_h(const char *, int *);
292 int bch_strtouint_h(const char *, unsigned int *);
293 int bch_strtoll_h(const char *, long long *);
294 int bch_strtoull_h(const char *, unsigned long long *);
295
296 static inline int bch_strtol_h(const char *cp, long *res)
297 {
298 #if BITS_PER_LONG == 32
299         return bch_strtoint_h(cp, (int *) res);
300 #else
301         return bch_strtoll_h(cp, (long long *) res);
302 #endif
303 }
304
305 static inline int bch_strtoul_h(const char *cp, long *res)
306 {
307 #if BITS_PER_LONG == 32
308         return bch_strtouint_h(cp, (unsigned int *) res);
309 #else
310         return bch_strtoull_h(cp, (unsigned long long *) res);
311 #endif
312 }
313
314 #define strtoi_h(cp, res)                                               \
315         (__builtin_types_compatible_p(typeof(*res), int)                \
316         ? bch_strtoint_h(cp, (void *) res)                              \
317         : __builtin_types_compatible_p(typeof(*res), long)              \
318         ? bch_strtol_h(cp, (void *) res)                                \
319         : __builtin_types_compatible_p(typeof(*res), long long)         \
320         ? bch_strtoll_h(cp, (void *) res)                               \
321         : __builtin_types_compatible_p(typeof(*res), unsigned int)      \
322         ? bch_strtouint_h(cp, (void *) res)                             \
323         : __builtin_types_compatible_p(typeof(*res), unsigned long)     \
324         ? bch_strtoul_h(cp, (void *) res)                               \
325         : __builtin_types_compatible_p(typeof(*res), unsigned long long)\
326         ? bch_strtoull_h(cp, (void *) res) : -EINVAL)
327
328 #define strtoul_safe(cp, var)                                           \
329 ({                                                                      \
330         unsigned long _v;                                               \
331         int _r = kstrtoul(cp, 10, &_v);                                 \
332         if (!_r)                                                        \
333                 var = _v;                                               \
334         _r;                                                             \
335 })
336
337 #define strtoul_safe_clamp(cp, var, min, max)                           \
338 ({                                                                      \
339         unsigned long _v;                                               \
340         int _r = kstrtoul(cp, 10, &_v);                                 \
341         if (!_r)                                                        \
342                 var = clamp_t(typeof(var), _v, min, max);               \
343         _r;                                                             \
344 })
345
346 #define snprint(buf, size, var)                                         \
347         snprintf(buf, size,                                             \
348                 __builtin_types_compatible_p(typeof(var), int)          \
349                      ? "%i\n" :                                         \
350                 __builtin_types_compatible_p(typeof(var), unsigned)     \
351                      ? "%u\n" :                                         \
352                 __builtin_types_compatible_p(typeof(var), long)         \
353                      ? "%li\n" :                                        \
354                 __builtin_types_compatible_p(typeof(var), unsigned long)\
355                      ? "%lu\n" :                                        \
356                 __builtin_types_compatible_p(typeof(var), int64_t)      \
357                      ? "%lli\n" :                                       \
358                 __builtin_types_compatible_p(typeof(var), uint64_t)     \
359                      ? "%llu\n" :                                       \
360                 __builtin_types_compatible_p(typeof(var), const char *) \
361                      ? "%s\n" : "%i\n", var)
362
363 ssize_t bch_hprint(char *buf, int64_t v);
364
365 bool bch_is_zero(const char *p, size_t n);
366 int bch_parse_uuid(const char *s, char *uuid);
367
368 struct time_stats {
369         spinlock_t      lock;
370         /*
371          * all fields are in nanoseconds, averages are ewmas stored left shifted
372          * by 8
373          */
374         uint64_t        max_duration;
375         uint64_t        average_duration;
376         uint64_t        average_frequency;
377         uint64_t        last;
378 };
379
380 void bch_time_stats_update(struct time_stats *stats, uint64_t time);
381
382 static inline unsigned local_clock_us(void)
383 {
384         return local_clock() >> 10;
385 }
386
387 #define NSEC_PER_ns                     1L
388 #define NSEC_PER_us                     NSEC_PER_USEC
389 #define NSEC_PER_ms                     NSEC_PER_MSEC
390 #define NSEC_PER_sec                    NSEC_PER_SEC
391
392 #define __print_time_stat(stats, name, stat, units)                     \
393         sysfs_print(name ## _ ## stat ## _ ## units,                    \
394                     div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
395
396 #define sysfs_print_time_stats(stats, name,                             \
397                                frequency_units,                         \
398                                duration_units)                          \
399 do {                                                                    \
400         __print_time_stat(stats, name,                                  \
401                           average_frequency,    frequency_units);       \
402         __print_time_stat(stats, name,                                  \
403                           average_duration,     duration_units);        \
404         sysfs_print(name ## _ ##max_duration ## _ ## duration_units,    \
405                         div_u64((stats)->max_duration, NSEC_PER_ ## duration_units));\
406                                                                         \
407         sysfs_print(name ## _last_ ## frequency_units, (stats)->last    \
408                     ? div_s64(local_clock() - (stats)->last,            \
409                               NSEC_PER_ ## frequency_units)             \
410                     : -1LL);                                            \
411 } while (0)
412
413 #define sysfs_time_stats_attribute(name,                                \
414                                    frequency_units,                     \
415                                    duration_units)                      \
416 read_attribute(name ## _average_frequency_ ## frequency_units);         \
417 read_attribute(name ## _average_duration_ ## duration_units);           \
418 read_attribute(name ## _max_duration_ ## duration_units);               \
419 read_attribute(name ## _last_ ## frequency_units)
420
421 #define sysfs_time_stats_attribute_list(name,                           \
422                                         frequency_units,                \
423                                         duration_units)                 \
424 &sysfs_ ## name ## _average_frequency_ ## frequency_units,              \
425 &sysfs_ ## name ## _average_duration_ ## duration_units,                \
426 &sysfs_ ## name ## _max_duration_ ## duration_units,                    \
427 &sysfs_ ## name ## _last_ ## frequency_units,
428
429 #define ewma_add(ewma, val, weight, factor)                             \
430 ({                                                                      \
431         (ewma) *= (weight) - 1;                                         \
432         (ewma) += (val) << factor;                                      \
433         (ewma) /= (weight);                                             \
434         (ewma) >> factor;                                               \
435 })
436
437 struct bch_ratelimit {
438         /* Next time we want to do some work, in nanoseconds */
439         uint64_t                next;
440
441         /*
442          * Rate at which we want to do work, in units per second
443          * The units here correspond to the units passed to bch_next_delay()
444          */
445         atomic_long_t           rate;
446 };
447
448 static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
449 {
450         d->next = local_clock();
451 }
452
453 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
454
455 #define __DIV_SAFE(n, d, zero)                                          \
456 ({                                                                      \
457         typeof(n) _n = (n);                                             \
458         typeof(d) _d = (d);                                             \
459         _d ? _n / _d : zero;                                            \
460 })
461
462 #define DIV_SAFE(n, d)  __DIV_SAFE(n, d, 0)
463
464 #define container_of_or_null(ptr, type, member)                         \
465 ({                                                                      \
466         typeof(ptr) _ptr = ptr;                                         \
467         _ptr ? container_of(_ptr, type, member) : NULL;                 \
468 })
469
470 #define RB_INSERT(root, new, member, cmp)                               \
471 ({                                                                      \
472         __label__ dup;                                                  \
473         struct rb_node **n = &(root)->rb_node, *parent = NULL;          \
474         typeof(new) this;                                               \
475         int res, ret = -1;                                              \
476                                                                         \
477         while (*n) {                                                    \
478                 parent = *n;                                            \
479                 this = container_of(*n, typeof(*(new)), member);        \
480                 res = cmp(new, this);                                   \
481                 if (!res)                                               \
482                         goto dup;                                       \
483                 n = res < 0                                             \
484                         ? &(*n)->rb_left                                \
485                         : &(*n)->rb_right;                              \
486         }                                                               \
487                                                                         \
488         rb_link_node(&(new)->member, parent, n);                        \
489         rb_insert_color(&(new)->member, root);                          \
490         ret = 0;                                                        \
491 dup:                                                                    \
492         ret;                                                            \
493 })
494
495 #define RB_SEARCH(root, search, member, cmp)                            \
496 ({                                                                      \
497         struct rb_node *n = (root)->rb_node;                            \
498         typeof(&(search)) this, ret = NULL;                             \
499         int res;                                                        \
500                                                                         \
501         while (n) {                                                     \
502                 this = container_of(n, typeof(search), member);         \
503                 res = cmp(&(search), this);                             \
504                 if (!res) {                                             \
505                         ret = this;                                     \
506                         break;                                          \
507                 }                                                       \
508                 n = res < 0                                             \
509                         ? n->rb_left                                    \
510                         : n->rb_right;                                  \
511         }                                                               \
512         ret;                                                            \
513 })
514
515 #define RB_GREATER(root, search, member, cmp)                           \
516 ({                                                                      \
517         struct rb_node *n = (root)->rb_node;                            \
518         typeof(&(search)) this, ret = NULL;                             \
519         int res;                                                        \
520                                                                         \
521         while (n) {                                                     \
522                 this = container_of(n, typeof(search), member);         \
523                 res = cmp(&(search), this);                             \
524                 if (res < 0) {                                          \
525                         ret = this;                                     \
526                         n = n->rb_left;                                 \
527                 } else                                                  \
528                         n = n->rb_right;                                \
529         }                                                               \
530         ret;                                                            \
531 })
532
533 #define RB_FIRST(root, type, member)                                    \
534         container_of_or_null(rb_first(root), type, member)
535
536 #define RB_LAST(root, type, member)                                     \
537         container_of_or_null(rb_last(root), type, member)
538
539 #define RB_NEXT(ptr, member)                                            \
540         container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
541
542 #define RB_PREV(ptr, member)                                            \
543         container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
544
545 /* Does linear interpolation between powers of two */
546 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
547 {
548         unsigned fract = x & ~(~0 << fract_bits);
549
550         x >>= fract_bits;
551         x   = 1 << x;
552         x  += (x * fract) >> fract_bits;
553
554         return x;
555 }
556
557 void bch_bio_map(struct bio *bio, void *base);
558 int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask);
559
560 static inline sector_t bdev_sectors(struct block_device *bdev)
561 {
562         return bdev->bd_inode->i_size >> 9;
563 }
564
565 uint64_t bch_crc64_update(uint64_t, const void *, size_t);
566 uint64_t bch_crc64(const void *, size_t);
567
568 #endif /* _BCACHE_UTIL_H */