Merge tag 'for-linus-20180210' of git://git.kernel.dk/linux-block
[sfrench/cifs-2.6.git] / drivers / md / bcache / super.c
1 /*
2  * bcache setup/teardown code, and some metadata io - read a superblock and
3  * figure out what to do with it.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "extents.h"
13 #include "request.h"
14 #include "writeback.h"
15
16 #include <linux/blkdev.h>
17 #include <linux/buffer_head.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/module.h>
23 #include <linux/random.h>
24 #include <linux/reboot.h>
25 #include <linux/sysfs.h>
26
27 MODULE_LICENSE("GPL");
28 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
29
30 static const char bcache_magic[] = {
31         0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
32         0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
33 };
34
35 static const char invalid_uuid[] = {
36         0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
37         0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
38 };
39
40 /* Default is -1; we skip past it for struct cached_dev's cache mode */
41 const char * const bch_cache_modes[] = {
42         "default",
43         "writethrough",
44         "writeback",
45         "writearound",
46         "none",
47         NULL
48 };
49
50 static struct kobject *bcache_kobj;
51 struct mutex bch_register_lock;
52 LIST_HEAD(bch_cache_sets);
53 static LIST_HEAD(uncached_devices);
54
55 static int bcache_major;
56 static DEFINE_IDA(bcache_device_idx);
57 static wait_queue_head_t unregister_wait;
58 struct workqueue_struct *bcache_wq;
59
60 #define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
61 /* limitation of partitions number on single bcache device */
62 #define BCACHE_MINORS           128
63 /* limitation of bcache devices number on single system */
64 #define BCACHE_DEVICE_IDX_MAX   ((1U << MINORBITS)/BCACHE_MINORS)
65
66 /* Superblock */
67
68 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
69                               struct page **res)
70 {
71         const char *err;
72         struct cache_sb *s;
73         struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
74         unsigned i;
75
76         if (!bh)
77                 return "IO error";
78
79         s = (struct cache_sb *) bh->b_data;
80
81         sb->offset              = le64_to_cpu(s->offset);
82         sb->version             = le64_to_cpu(s->version);
83
84         memcpy(sb->magic,       s->magic, 16);
85         memcpy(sb->uuid,        s->uuid, 16);
86         memcpy(sb->set_uuid,    s->set_uuid, 16);
87         memcpy(sb->label,       s->label, SB_LABEL_SIZE);
88
89         sb->flags               = le64_to_cpu(s->flags);
90         sb->seq                 = le64_to_cpu(s->seq);
91         sb->last_mount          = le32_to_cpu(s->last_mount);
92         sb->first_bucket        = le16_to_cpu(s->first_bucket);
93         sb->keys                = le16_to_cpu(s->keys);
94
95         for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
96                 sb->d[i] = le64_to_cpu(s->d[i]);
97
98         pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
99                  sb->version, sb->flags, sb->seq, sb->keys);
100
101         err = "Not a bcache superblock";
102         if (sb->offset != SB_SECTOR)
103                 goto err;
104
105         if (memcmp(sb->magic, bcache_magic, 16))
106                 goto err;
107
108         err = "Too many journal buckets";
109         if (sb->keys > SB_JOURNAL_BUCKETS)
110                 goto err;
111
112         err = "Bad checksum";
113         if (s->csum != csum_set(s))
114                 goto err;
115
116         err = "Bad UUID";
117         if (bch_is_zero(sb->uuid, 16))
118                 goto err;
119
120         sb->block_size  = le16_to_cpu(s->block_size);
121
122         err = "Superblock block size smaller than device block size";
123         if (sb->block_size << 9 < bdev_logical_block_size(bdev))
124                 goto err;
125
126         switch (sb->version) {
127         case BCACHE_SB_VERSION_BDEV:
128                 sb->data_offset = BDEV_DATA_START_DEFAULT;
129                 break;
130         case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
131                 sb->data_offset = le64_to_cpu(s->data_offset);
132
133                 err = "Bad data offset";
134                 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
135                         goto err;
136
137                 break;
138         case BCACHE_SB_VERSION_CDEV:
139         case BCACHE_SB_VERSION_CDEV_WITH_UUID:
140                 sb->nbuckets    = le64_to_cpu(s->nbuckets);
141                 sb->bucket_size = le16_to_cpu(s->bucket_size);
142
143                 sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
144                 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
145
146                 err = "Too many buckets";
147                 if (sb->nbuckets > LONG_MAX)
148                         goto err;
149
150                 err = "Not enough buckets";
151                 if (sb->nbuckets < 1 << 7)
152                         goto err;
153
154                 err = "Bad block/bucket size";
155                 if (!is_power_of_2(sb->block_size) ||
156                     sb->block_size > PAGE_SECTORS ||
157                     !is_power_of_2(sb->bucket_size) ||
158                     sb->bucket_size < PAGE_SECTORS)
159                         goto err;
160
161                 err = "Invalid superblock: device too small";
162                 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
163                         goto err;
164
165                 err = "Bad UUID";
166                 if (bch_is_zero(sb->set_uuid, 16))
167                         goto err;
168
169                 err = "Bad cache device number in set";
170                 if (!sb->nr_in_set ||
171                     sb->nr_in_set <= sb->nr_this_dev ||
172                     sb->nr_in_set > MAX_CACHES_PER_SET)
173                         goto err;
174
175                 err = "Journal buckets not sequential";
176                 for (i = 0; i < sb->keys; i++)
177                         if (sb->d[i] != sb->first_bucket + i)
178                                 goto err;
179
180                 err = "Too many journal buckets";
181                 if (sb->first_bucket + sb->keys > sb->nbuckets)
182                         goto err;
183
184                 err = "Invalid superblock: first bucket comes before end of super";
185                 if (sb->first_bucket * sb->bucket_size < 16)
186                         goto err;
187
188                 break;
189         default:
190                 err = "Unsupported superblock version";
191                 goto err;
192         }
193
194         sb->last_mount = get_seconds();
195         err = NULL;
196
197         get_page(bh->b_page);
198         *res = bh->b_page;
199 err:
200         put_bh(bh);
201         return err;
202 }
203
204 static void write_bdev_super_endio(struct bio *bio)
205 {
206         struct cached_dev *dc = bio->bi_private;
207         /* XXX: error checking */
208
209         closure_put(&dc->sb_write);
210 }
211
212 static void __write_super(struct cache_sb *sb, struct bio *bio)
213 {
214         struct cache_sb *out = page_address(bio_first_page_all(bio));
215         unsigned i;
216
217         bio->bi_iter.bi_sector  = SB_SECTOR;
218         bio->bi_iter.bi_size    = SB_SIZE;
219         bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META);
220         bch_bio_map(bio, NULL);
221
222         out->offset             = cpu_to_le64(sb->offset);
223         out->version            = cpu_to_le64(sb->version);
224
225         memcpy(out->uuid,       sb->uuid, 16);
226         memcpy(out->set_uuid,   sb->set_uuid, 16);
227         memcpy(out->label,      sb->label, SB_LABEL_SIZE);
228
229         out->flags              = cpu_to_le64(sb->flags);
230         out->seq                = cpu_to_le64(sb->seq);
231
232         out->last_mount         = cpu_to_le32(sb->last_mount);
233         out->first_bucket       = cpu_to_le16(sb->first_bucket);
234         out->keys               = cpu_to_le16(sb->keys);
235
236         for (i = 0; i < sb->keys; i++)
237                 out->d[i] = cpu_to_le64(sb->d[i]);
238
239         out->csum = csum_set(out);
240
241         pr_debug("ver %llu, flags %llu, seq %llu",
242                  sb->version, sb->flags, sb->seq);
243
244         submit_bio(bio);
245 }
246
247 static void bch_write_bdev_super_unlock(struct closure *cl)
248 {
249         struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
250
251         up(&dc->sb_write_mutex);
252 }
253
254 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
255 {
256         struct closure *cl = &dc->sb_write;
257         struct bio *bio = &dc->sb_bio;
258
259         down(&dc->sb_write_mutex);
260         closure_init(cl, parent);
261
262         bio_reset(bio);
263         bio_set_dev(bio, dc->bdev);
264         bio->bi_end_io  = write_bdev_super_endio;
265         bio->bi_private = dc;
266
267         closure_get(cl);
268         __write_super(&dc->sb, bio);
269
270         closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
271 }
272
273 static void write_super_endio(struct bio *bio)
274 {
275         struct cache *ca = bio->bi_private;
276
277         /* is_read = 0 */
278         bch_count_io_errors(ca, bio->bi_status, 0,
279                             "writing superblock");
280         closure_put(&ca->set->sb_write);
281 }
282
283 static void bcache_write_super_unlock(struct closure *cl)
284 {
285         struct cache_set *c = container_of(cl, struct cache_set, sb_write);
286
287         up(&c->sb_write_mutex);
288 }
289
290 void bcache_write_super(struct cache_set *c)
291 {
292         struct closure *cl = &c->sb_write;
293         struct cache *ca;
294         unsigned i;
295
296         down(&c->sb_write_mutex);
297         closure_init(cl, &c->cl);
298
299         c->sb.seq++;
300
301         for_each_cache(ca, c, i) {
302                 struct bio *bio = &ca->sb_bio;
303
304                 ca->sb.version          = BCACHE_SB_VERSION_CDEV_WITH_UUID;
305                 ca->sb.seq              = c->sb.seq;
306                 ca->sb.last_mount       = c->sb.last_mount;
307
308                 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
309
310                 bio_reset(bio);
311                 bio_set_dev(bio, ca->bdev);
312                 bio->bi_end_io  = write_super_endio;
313                 bio->bi_private = ca;
314
315                 closure_get(cl);
316                 __write_super(&ca->sb, bio);
317         }
318
319         closure_return_with_destructor(cl, bcache_write_super_unlock);
320 }
321
322 /* UUID io */
323
324 static void uuid_endio(struct bio *bio)
325 {
326         struct closure *cl = bio->bi_private;
327         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
328
329         cache_set_err_on(bio->bi_status, c, "accessing uuids");
330         bch_bbio_free(bio, c);
331         closure_put(cl);
332 }
333
334 static void uuid_io_unlock(struct closure *cl)
335 {
336         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
337
338         up(&c->uuid_write_mutex);
339 }
340
341 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
342                     struct bkey *k, struct closure *parent)
343 {
344         struct closure *cl = &c->uuid_write;
345         struct uuid_entry *u;
346         unsigned i;
347         char buf[80];
348
349         BUG_ON(!parent);
350         down(&c->uuid_write_mutex);
351         closure_init(cl, parent);
352
353         for (i = 0; i < KEY_PTRS(k); i++) {
354                 struct bio *bio = bch_bbio_alloc(c);
355
356                 bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
357                 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
358
359                 bio->bi_end_io  = uuid_endio;
360                 bio->bi_private = cl;
361                 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
362                 bch_bio_map(bio, c->uuids);
363
364                 bch_submit_bbio(bio, c, k, i);
365
366                 if (op != REQ_OP_WRITE)
367                         break;
368         }
369
370         bch_extent_to_text(buf, sizeof(buf), k);
371         pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf);
372
373         for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
374                 if (!bch_is_zero(u->uuid, 16))
375                         pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
376                                  u - c->uuids, u->uuid, u->label,
377                                  u->first_reg, u->last_reg, u->invalidated);
378
379         closure_return_with_destructor(cl, uuid_io_unlock);
380 }
381
382 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
383 {
384         struct bkey *k = &j->uuid_bucket;
385
386         if (__bch_btree_ptr_invalid(c, k))
387                 return "bad uuid pointer";
388
389         bkey_copy(&c->uuid_bucket, k);
390         uuid_io(c, REQ_OP_READ, 0, k, cl);
391
392         if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
393                 struct uuid_entry_v0    *u0 = (void *) c->uuids;
394                 struct uuid_entry       *u1 = (void *) c->uuids;
395                 int i;
396
397                 closure_sync(cl);
398
399                 /*
400                  * Since the new uuid entry is bigger than the old, we have to
401                  * convert starting at the highest memory address and work down
402                  * in order to do it in place
403                  */
404
405                 for (i = c->nr_uuids - 1;
406                      i >= 0;
407                      --i) {
408                         memcpy(u1[i].uuid,      u0[i].uuid, 16);
409                         memcpy(u1[i].label,     u0[i].label, 32);
410
411                         u1[i].first_reg         = u0[i].first_reg;
412                         u1[i].last_reg          = u0[i].last_reg;
413                         u1[i].invalidated       = u0[i].invalidated;
414
415                         u1[i].flags     = 0;
416                         u1[i].sectors   = 0;
417                 }
418         }
419
420         return NULL;
421 }
422
423 static int __uuid_write(struct cache_set *c)
424 {
425         BKEY_PADDED(key) k;
426         struct closure cl;
427         closure_init_stack(&cl);
428
429         lockdep_assert_held(&bch_register_lock);
430
431         if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
432                 return 1;
433
434         SET_KEY_SIZE(&k.key, c->sb.bucket_size);
435         uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
436         closure_sync(&cl);
437
438         bkey_copy(&c->uuid_bucket, &k.key);
439         bkey_put(c, &k.key);
440         return 0;
441 }
442
443 int bch_uuid_write(struct cache_set *c)
444 {
445         int ret = __uuid_write(c);
446
447         if (!ret)
448                 bch_journal_meta(c, NULL);
449
450         return ret;
451 }
452
453 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
454 {
455         struct uuid_entry *u;
456
457         for (u = c->uuids;
458              u < c->uuids + c->nr_uuids; u++)
459                 if (!memcmp(u->uuid, uuid, 16))
460                         return u;
461
462         return NULL;
463 }
464
465 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
466 {
467         static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
468         return uuid_find(c, zero_uuid);
469 }
470
471 /*
472  * Bucket priorities/gens:
473  *
474  * For each bucket, we store on disk its
475    * 8 bit gen
476    * 16 bit priority
477  *
478  * See alloc.c for an explanation of the gen. The priority is used to implement
479  * lru (and in the future other) cache replacement policies; for most purposes
480  * it's just an opaque integer.
481  *
482  * The gens and the priorities don't have a whole lot to do with each other, and
483  * it's actually the gens that must be written out at specific times - it's no
484  * big deal if the priorities don't get written, if we lose them we just reuse
485  * buckets in suboptimal order.
486  *
487  * On disk they're stored in a packed array, and in as many buckets are required
488  * to fit them all. The buckets we use to store them form a list; the journal
489  * header points to the first bucket, the first bucket points to the second
490  * bucket, et cetera.
491  *
492  * This code is used by the allocation code; periodically (whenever it runs out
493  * of buckets to allocate from) the allocation code will invalidate some
494  * buckets, but it can't use those buckets until their new gens are safely on
495  * disk.
496  */
497
498 static void prio_endio(struct bio *bio)
499 {
500         struct cache *ca = bio->bi_private;
501
502         cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
503         bch_bbio_free(bio, ca->set);
504         closure_put(&ca->prio);
505 }
506
507 static void prio_io(struct cache *ca, uint64_t bucket, int op,
508                     unsigned long op_flags)
509 {
510         struct closure *cl = &ca->prio;
511         struct bio *bio = bch_bbio_alloc(ca->set);
512
513         closure_init_stack(cl);
514
515         bio->bi_iter.bi_sector  = bucket * ca->sb.bucket_size;
516         bio_set_dev(bio, ca->bdev);
517         bio->bi_iter.bi_size    = bucket_bytes(ca);
518
519         bio->bi_end_io  = prio_endio;
520         bio->bi_private = ca;
521         bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
522         bch_bio_map(bio, ca->disk_buckets);
523
524         closure_bio_submit(bio, &ca->prio);
525         closure_sync(cl);
526 }
527
528 void bch_prio_write(struct cache *ca)
529 {
530         int i;
531         struct bucket *b;
532         struct closure cl;
533
534         closure_init_stack(&cl);
535
536         lockdep_assert_held(&ca->set->bucket_lock);
537
538         ca->disk_buckets->seq++;
539
540         atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
541                         &ca->meta_sectors_written);
542
543         //pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
544         //       fifo_used(&ca->free_inc), fifo_used(&ca->unused));
545
546         for (i = prio_buckets(ca) - 1; i >= 0; --i) {
547                 long bucket;
548                 struct prio_set *p = ca->disk_buckets;
549                 struct bucket_disk *d = p->data;
550                 struct bucket_disk *end = d + prios_per_bucket(ca);
551
552                 for (b = ca->buckets + i * prios_per_bucket(ca);
553                      b < ca->buckets + ca->sb.nbuckets && d < end;
554                      b++, d++) {
555                         d->prio = cpu_to_le16(b->prio);
556                         d->gen = b->gen;
557                 }
558
559                 p->next_bucket  = ca->prio_buckets[i + 1];
560                 p->magic        = pset_magic(&ca->sb);
561                 p->csum         = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
562
563                 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
564                 BUG_ON(bucket == -1);
565
566                 mutex_unlock(&ca->set->bucket_lock);
567                 prio_io(ca, bucket, REQ_OP_WRITE, 0);
568                 mutex_lock(&ca->set->bucket_lock);
569
570                 ca->prio_buckets[i] = bucket;
571                 atomic_dec_bug(&ca->buckets[bucket].pin);
572         }
573
574         mutex_unlock(&ca->set->bucket_lock);
575
576         bch_journal_meta(ca->set, &cl);
577         closure_sync(&cl);
578
579         mutex_lock(&ca->set->bucket_lock);
580
581         /*
582          * Don't want the old priorities to get garbage collected until after we
583          * finish writing the new ones, and they're journalled
584          */
585         for (i = 0; i < prio_buckets(ca); i++) {
586                 if (ca->prio_last_buckets[i])
587                         __bch_bucket_free(ca,
588                                 &ca->buckets[ca->prio_last_buckets[i]]);
589
590                 ca->prio_last_buckets[i] = ca->prio_buckets[i];
591         }
592 }
593
594 static void prio_read(struct cache *ca, uint64_t bucket)
595 {
596         struct prio_set *p = ca->disk_buckets;
597         struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
598         struct bucket *b;
599         unsigned bucket_nr = 0;
600
601         for (b = ca->buckets;
602              b < ca->buckets + ca->sb.nbuckets;
603              b++, d++) {
604                 if (d == end) {
605                         ca->prio_buckets[bucket_nr] = bucket;
606                         ca->prio_last_buckets[bucket_nr] = bucket;
607                         bucket_nr++;
608
609                         prio_io(ca, bucket, REQ_OP_READ, 0);
610
611                         if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
612                                 pr_warn("bad csum reading priorities");
613
614                         if (p->magic != pset_magic(&ca->sb))
615                                 pr_warn("bad magic reading priorities");
616
617                         bucket = p->next_bucket;
618                         d = p->data;
619                 }
620
621                 b->prio = le16_to_cpu(d->prio);
622                 b->gen = b->last_gc = d->gen;
623         }
624 }
625
626 /* Bcache device */
627
628 static int open_dev(struct block_device *b, fmode_t mode)
629 {
630         struct bcache_device *d = b->bd_disk->private_data;
631         if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
632                 return -ENXIO;
633
634         closure_get(&d->cl);
635         return 0;
636 }
637
638 static void release_dev(struct gendisk *b, fmode_t mode)
639 {
640         struct bcache_device *d = b->private_data;
641         closure_put(&d->cl);
642 }
643
644 static int ioctl_dev(struct block_device *b, fmode_t mode,
645                      unsigned int cmd, unsigned long arg)
646 {
647         struct bcache_device *d = b->bd_disk->private_data;
648         return d->ioctl(d, mode, cmd, arg);
649 }
650
651 static const struct block_device_operations bcache_ops = {
652         .open           = open_dev,
653         .release        = release_dev,
654         .ioctl          = ioctl_dev,
655         .owner          = THIS_MODULE,
656 };
657
658 void bcache_device_stop(struct bcache_device *d)
659 {
660         if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
661                 closure_queue(&d->cl);
662 }
663
664 static void bcache_device_unlink(struct bcache_device *d)
665 {
666         lockdep_assert_held(&bch_register_lock);
667
668         if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
669                 unsigned i;
670                 struct cache *ca;
671
672                 sysfs_remove_link(&d->c->kobj, d->name);
673                 sysfs_remove_link(&d->kobj, "cache");
674
675                 for_each_cache(ca, d->c, i)
676                         bd_unlink_disk_holder(ca->bdev, d->disk);
677         }
678 }
679
680 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
681                                const char *name)
682 {
683         unsigned i;
684         struct cache *ca;
685
686         for_each_cache(ca, d->c, i)
687                 bd_link_disk_holder(ca->bdev, d->disk);
688
689         snprintf(d->name, BCACHEDEVNAME_SIZE,
690                  "%s%u", name, d->id);
691
692         WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
693              sysfs_create_link(&c->kobj, &d->kobj, d->name),
694              "Couldn't create device <-> cache set symlinks");
695
696         clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
697 }
698
699 static void bcache_device_detach(struct bcache_device *d)
700 {
701         lockdep_assert_held(&bch_register_lock);
702
703         if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
704                 struct uuid_entry *u = d->c->uuids + d->id;
705
706                 SET_UUID_FLASH_ONLY(u, 0);
707                 memcpy(u->uuid, invalid_uuid, 16);
708                 u->invalidated = cpu_to_le32(get_seconds());
709                 bch_uuid_write(d->c);
710         }
711
712         bcache_device_unlink(d);
713
714         d->c->devices[d->id] = NULL;
715         closure_put(&d->c->caching);
716         d->c = NULL;
717 }
718
719 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
720                                  unsigned id)
721 {
722         d->id = id;
723         d->c = c;
724         c->devices[id] = d;
725
726         if (id >= c->devices_max_used)
727                 c->devices_max_used = id + 1;
728
729         closure_get(&c->caching);
730 }
731
732 static inline int first_minor_to_idx(int first_minor)
733 {
734         return (first_minor/BCACHE_MINORS);
735 }
736
737 static inline int idx_to_first_minor(int idx)
738 {
739         return (idx * BCACHE_MINORS);
740 }
741
742 static void bcache_device_free(struct bcache_device *d)
743 {
744         lockdep_assert_held(&bch_register_lock);
745
746         pr_info("%s stopped", d->disk->disk_name);
747
748         if (d->c)
749                 bcache_device_detach(d);
750         if (d->disk && d->disk->flags & GENHD_FL_UP)
751                 del_gendisk(d->disk);
752         if (d->disk && d->disk->queue)
753                 blk_cleanup_queue(d->disk->queue);
754         if (d->disk) {
755                 ida_simple_remove(&bcache_device_idx,
756                                   first_minor_to_idx(d->disk->first_minor));
757                 put_disk(d->disk);
758         }
759
760         if (d->bio_split)
761                 bioset_free(d->bio_split);
762         kvfree(d->full_dirty_stripes);
763         kvfree(d->stripe_sectors_dirty);
764
765         closure_debug_destroy(&d->cl);
766 }
767
768 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
769                               sector_t sectors)
770 {
771         struct request_queue *q;
772         size_t n;
773         int idx;
774
775         if (!d->stripe_size)
776                 d->stripe_size = 1 << 31;
777
778         d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
779
780         if (!d->nr_stripes ||
781             d->nr_stripes > INT_MAX ||
782             d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
783                 pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)",
784                         (unsigned)d->nr_stripes);
785                 return -ENOMEM;
786         }
787
788         n = d->nr_stripes * sizeof(atomic_t);
789         d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
790         if (!d->stripe_sectors_dirty)
791                 return -ENOMEM;
792
793         n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
794         d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
795         if (!d->full_dirty_stripes)
796                 return -ENOMEM;
797
798         idx = ida_simple_get(&bcache_device_idx, 0,
799                                 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
800         if (idx < 0)
801                 return idx;
802
803         if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio),
804                                            BIOSET_NEED_BVECS |
805                                            BIOSET_NEED_RESCUER)) ||
806             !(d->disk = alloc_disk(BCACHE_MINORS))) {
807                 ida_simple_remove(&bcache_device_idx, idx);
808                 return -ENOMEM;
809         }
810
811         set_capacity(d->disk, sectors);
812         snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
813
814         d->disk->major          = bcache_major;
815         d->disk->first_minor    = idx_to_first_minor(idx);
816         d->disk->fops           = &bcache_ops;
817         d->disk->private_data   = d;
818
819         q = blk_alloc_queue(GFP_KERNEL);
820         if (!q)
821                 return -ENOMEM;
822
823         blk_queue_make_request(q, NULL);
824         d->disk->queue                  = q;
825         q->queuedata                    = d;
826         q->backing_dev_info->congested_data = d;
827         q->limits.max_hw_sectors        = UINT_MAX;
828         q->limits.max_sectors           = UINT_MAX;
829         q->limits.max_segment_size      = UINT_MAX;
830         q->limits.max_segments          = BIO_MAX_PAGES;
831         blk_queue_max_discard_sectors(q, UINT_MAX);
832         q->limits.discard_granularity   = 512;
833         q->limits.io_min                = block_size;
834         q->limits.logical_block_size    = block_size;
835         q->limits.physical_block_size   = block_size;
836         set_bit(QUEUE_FLAG_NONROT,      &d->disk->queue->queue_flags);
837         clear_bit(QUEUE_FLAG_ADD_RANDOM, &d->disk->queue->queue_flags);
838         set_bit(QUEUE_FLAG_DISCARD,     &d->disk->queue->queue_flags);
839
840         blk_queue_write_cache(q, true, true);
841
842         return 0;
843 }
844
845 /* Cached device */
846
847 static void calc_cached_dev_sectors(struct cache_set *c)
848 {
849         uint64_t sectors = 0;
850         struct cached_dev *dc;
851
852         list_for_each_entry(dc, &c->cached_devs, list)
853                 sectors += bdev_sectors(dc->bdev);
854
855         c->cached_dev_sectors = sectors;
856 }
857
858 void bch_cached_dev_run(struct cached_dev *dc)
859 {
860         struct bcache_device *d = &dc->disk;
861         char buf[SB_LABEL_SIZE + 1];
862         char *env[] = {
863                 "DRIVER=bcache",
864                 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
865                 NULL,
866                 NULL,
867         };
868
869         memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
870         buf[SB_LABEL_SIZE] = '\0';
871         env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
872
873         if (atomic_xchg(&dc->running, 1)) {
874                 kfree(env[1]);
875                 kfree(env[2]);
876                 return;
877         }
878
879         if (!d->c &&
880             BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
881                 struct closure cl;
882                 closure_init_stack(&cl);
883
884                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
885                 bch_write_bdev_super(dc, &cl);
886                 closure_sync(&cl);
887         }
888
889         add_disk(d->disk);
890         bd_link_disk_holder(dc->bdev, dc->disk.disk);
891         /* won't show up in the uevent file, use udevadm monitor -e instead
892          * only class / kset properties are persistent */
893         kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
894         kfree(env[1]);
895         kfree(env[2]);
896
897         if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
898             sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
899                 pr_debug("error creating sysfs link");
900 }
901
902 static void cached_dev_detach_finish(struct work_struct *w)
903 {
904         struct cached_dev *dc = container_of(w, struct cached_dev, detach);
905         char buf[BDEVNAME_SIZE];
906         struct closure cl;
907         closure_init_stack(&cl);
908
909         BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
910         BUG_ON(refcount_read(&dc->count));
911
912         mutex_lock(&bch_register_lock);
913
914         cancel_delayed_work_sync(&dc->writeback_rate_update);
915         if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
916                 kthread_stop(dc->writeback_thread);
917                 dc->writeback_thread = NULL;
918         }
919
920         memset(&dc->sb.set_uuid, 0, 16);
921         SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
922
923         bch_write_bdev_super(dc, &cl);
924         closure_sync(&cl);
925
926         bcache_device_detach(&dc->disk);
927         list_move(&dc->list, &uncached_devices);
928
929         clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
930         clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
931
932         mutex_unlock(&bch_register_lock);
933
934         pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
935
936         /* Drop ref we took in cached_dev_detach() */
937         closure_put(&dc->disk.cl);
938 }
939
940 void bch_cached_dev_detach(struct cached_dev *dc)
941 {
942         lockdep_assert_held(&bch_register_lock);
943
944         if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
945                 return;
946
947         if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
948                 return;
949
950         /*
951          * Block the device from being closed and freed until we're finished
952          * detaching
953          */
954         closure_get(&dc->disk.cl);
955
956         bch_writeback_queue(dc);
957         cached_dev_put(dc);
958 }
959
960 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
961                           uint8_t *set_uuid)
962 {
963         uint32_t rtime = cpu_to_le32(get_seconds());
964         struct uuid_entry *u;
965         char buf[BDEVNAME_SIZE];
966
967         bdevname(dc->bdev, buf);
968
969         if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
970             (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
971                 return -ENOENT;
972
973         if (dc->disk.c) {
974                 pr_err("Can't attach %s: already attached", buf);
975                 return -EINVAL;
976         }
977
978         if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
979                 pr_err("Can't attach %s: shutting down", buf);
980                 return -EINVAL;
981         }
982
983         if (dc->sb.block_size < c->sb.block_size) {
984                 /* Will die */
985                 pr_err("Couldn't attach %s: block size less than set's block size",
986                        buf);
987                 return -EINVAL;
988         }
989
990         u = uuid_find(c, dc->sb.uuid);
991
992         if (u &&
993             (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
994              BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
995                 memcpy(u->uuid, invalid_uuid, 16);
996                 u->invalidated = cpu_to_le32(get_seconds());
997                 u = NULL;
998         }
999
1000         if (!u) {
1001                 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1002                         pr_err("Couldn't find uuid for %s in set", buf);
1003                         return -ENOENT;
1004                 }
1005
1006                 u = uuid_find_empty(c);
1007                 if (!u) {
1008                         pr_err("Not caching %s, no room for UUID", buf);
1009                         return -EINVAL;
1010                 }
1011         }
1012
1013         /* Deadlocks since we're called via sysfs...
1014         sysfs_remove_file(&dc->kobj, &sysfs_attach);
1015          */
1016
1017         if (bch_is_zero(u->uuid, 16)) {
1018                 struct closure cl;
1019                 closure_init_stack(&cl);
1020
1021                 memcpy(u->uuid, dc->sb.uuid, 16);
1022                 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1023                 u->first_reg = u->last_reg = rtime;
1024                 bch_uuid_write(c);
1025
1026                 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1027                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1028
1029                 bch_write_bdev_super(dc, &cl);
1030                 closure_sync(&cl);
1031         } else {
1032                 u->last_reg = rtime;
1033                 bch_uuid_write(c);
1034         }
1035
1036         bcache_device_attach(&dc->disk, c, u - c->uuids);
1037         list_move(&dc->list, &c->cached_devs);
1038         calc_cached_dev_sectors(c);
1039
1040         smp_wmb();
1041         /*
1042          * dc->c must be set before dc->count != 0 - paired with the mb in
1043          * cached_dev_get()
1044          */
1045         refcount_set(&dc->count, 1);
1046
1047         /* Block writeback thread, but spawn it */
1048         down_write(&dc->writeback_lock);
1049         if (bch_cached_dev_writeback_start(dc)) {
1050                 up_write(&dc->writeback_lock);
1051                 return -ENOMEM;
1052         }
1053
1054         if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1055                 bch_sectors_dirty_init(&dc->disk);
1056                 atomic_set(&dc->has_dirty, 1);
1057                 refcount_inc(&dc->count);
1058                 bch_writeback_queue(dc);
1059         }
1060
1061         bch_cached_dev_run(dc);
1062         bcache_device_link(&dc->disk, c, "bdev");
1063
1064         /* Allow the writeback thread to proceed */
1065         up_write(&dc->writeback_lock);
1066
1067         pr_info("Caching %s as %s on set %pU",
1068                 bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1069                 dc->disk.c->sb.set_uuid);
1070         return 0;
1071 }
1072
1073 void bch_cached_dev_release(struct kobject *kobj)
1074 {
1075         struct cached_dev *dc = container_of(kobj, struct cached_dev,
1076                                              disk.kobj);
1077         kfree(dc);
1078         module_put(THIS_MODULE);
1079 }
1080
1081 static void cached_dev_free(struct closure *cl)
1082 {
1083         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1084
1085         cancel_delayed_work_sync(&dc->writeback_rate_update);
1086         if (!IS_ERR_OR_NULL(dc->writeback_thread))
1087                 kthread_stop(dc->writeback_thread);
1088         if (dc->writeback_write_wq)
1089                 destroy_workqueue(dc->writeback_write_wq);
1090
1091         mutex_lock(&bch_register_lock);
1092
1093         if (atomic_read(&dc->running))
1094                 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1095         bcache_device_free(&dc->disk);
1096         list_del(&dc->list);
1097
1098         mutex_unlock(&bch_register_lock);
1099
1100         if (!IS_ERR_OR_NULL(dc->bdev))
1101                 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1102
1103         wake_up(&unregister_wait);
1104
1105         kobject_put(&dc->disk.kobj);
1106 }
1107
1108 static void cached_dev_flush(struct closure *cl)
1109 {
1110         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1111         struct bcache_device *d = &dc->disk;
1112
1113         mutex_lock(&bch_register_lock);
1114         bcache_device_unlink(d);
1115         mutex_unlock(&bch_register_lock);
1116
1117         bch_cache_accounting_destroy(&dc->accounting);
1118         kobject_del(&d->kobj);
1119
1120         continue_at(cl, cached_dev_free, system_wq);
1121 }
1122
1123 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1124 {
1125         int ret;
1126         struct io *io;
1127         struct request_queue *q = bdev_get_queue(dc->bdev);
1128
1129         __module_get(THIS_MODULE);
1130         INIT_LIST_HEAD(&dc->list);
1131         closure_init(&dc->disk.cl, NULL);
1132         set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1133         kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1134         INIT_WORK(&dc->detach, cached_dev_detach_finish);
1135         sema_init(&dc->sb_write_mutex, 1);
1136         INIT_LIST_HEAD(&dc->io_lru);
1137         spin_lock_init(&dc->io_lock);
1138         bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1139
1140         dc->sequential_cutoff           = 4 << 20;
1141
1142         for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1143                 list_add(&io->lru, &dc->io_lru);
1144                 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1145         }
1146
1147         dc->disk.stripe_size = q->limits.io_opt >> 9;
1148
1149         if (dc->disk.stripe_size)
1150                 dc->partial_stripes_expensive =
1151                         q->limits.raid_partial_stripes_expensive;
1152
1153         ret = bcache_device_init(&dc->disk, block_size,
1154                          dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1155         if (ret)
1156                 return ret;
1157
1158         dc->disk.disk->queue->backing_dev_info->ra_pages =
1159                 max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1160                     q->backing_dev_info->ra_pages);
1161
1162         bch_cached_dev_request_init(dc);
1163         bch_cached_dev_writeback_init(dc);
1164         return 0;
1165 }
1166
1167 /* Cached device - bcache superblock */
1168
1169 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1170                                  struct block_device *bdev,
1171                                  struct cached_dev *dc)
1172 {
1173         char name[BDEVNAME_SIZE];
1174         const char *err = "cannot allocate memory";
1175         struct cache_set *c;
1176
1177         memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1178         dc->bdev = bdev;
1179         dc->bdev->bd_holder = dc;
1180
1181         bio_init(&dc->sb_bio, dc->sb_bio.bi_inline_vecs, 1);
1182         bio_first_bvec_all(&dc->sb_bio)->bv_page = sb_page;
1183         get_page(sb_page);
1184
1185         if (cached_dev_init(dc, sb->block_size << 9))
1186                 goto err;
1187
1188         err = "error creating kobject";
1189         if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1190                         "bcache"))
1191                 goto err;
1192         if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1193                 goto err;
1194
1195         pr_info("registered backing device %s", bdevname(bdev, name));
1196
1197         list_add(&dc->list, &uncached_devices);
1198         list_for_each_entry(c, &bch_cache_sets, list)
1199                 bch_cached_dev_attach(dc, c, NULL);
1200
1201         if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1202             BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1203                 bch_cached_dev_run(dc);
1204
1205         return;
1206 err:
1207         pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1208         bcache_device_stop(&dc->disk);
1209 }
1210
1211 /* Flash only volumes */
1212
1213 void bch_flash_dev_release(struct kobject *kobj)
1214 {
1215         struct bcache_device *d = container_of(kobj, struct bcache_device,
1216                                                kobj);
1217         kfree(d);
1218 }
1219
1220 static void flash_dev_free(struct closure *cl)
1221 {
1222         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1223         mutex_lock(&bch_register_lock);
1224         bcache_device_free(d);
1225         mutex_unlock(&bch_register_lock);
1226         kobject_put(&d->kobj);
1227 }
1228
1229 static void flash_dev_flush(struct closure *cl)
1230 {
1231         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1232
1233         mutex_lock(&bch_register_lock);
1234         bcache_device_unlink(d);
1235         mutex_unlock(&bch_register_lock);
1236         kobject_del(&d->kobj);
1237         continue_at(cl, flash_dev_free, system_wq);
1238 }
1239
1240 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1241 {
1242         struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1243                                           GFP_KERNEL);
1244         if (!d)
1245                 return -ENOMEM;
1246
1247         closure_init(&d->cl, NULL);
1248         set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1249
1250         kobject_init(&d->kobj, &bch_flash_dev_ktype);
1251
1252         if (bcache_device_init(d, block_bytes(c), u->sectors))
1253                 goto err;
1254
1255         bcache_device_attach(d, c, u - c->uuids);
1256         bch_sectors_dirty_init(d);
1257         bch_flash_dev_request_init(d);
1258         add_disk(d->disk);
1259
1260         if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1261                 goto err;
1262
1263         bcache_device_link(d, c, "volume");
1264
1265         return 0;
1266 err:
1267         kobject_put(&d->kobj);
1268         return -ENOMEM;
1269 }
1270
1271 static int flash_devs_run(struct cache_set *c)
1272 {
1273         int ret = 0;
1274         struct uuid_entry *u;
1275
1276         for (u = c->uuids;
1277              u < c->uuids + c->devices_max_used && !ret;
1278              u++)
1279                 if (UUID_FLASH_ONLY(u))
1280                         ret = flash_dev_run(c, u);
1281
1282         return ret;
1283 }
1284
1285 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1286 {
1287         struct uuid_entry *u;
1288
1289         if (test_bit(CACHE_SET_STOPPING, &c->flags))
1290                 return -EINTR;
1291
1292         if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1293                 return -EPERM;
1294
1295         u = uuid_find_empty(c);
1296         if (!u) {
1297                 pr_err("Can't create volume, no room for UUID");
1298                 return -EINVAL;
1299         }
1300
1301         get_random_bytes(u->uuid, 16);
1302         memset(u->label, 0, 32);
1303         u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1304
1305         SET_UUID_FLASH_ONLY(u, 1);
1306         u->sectors = size >> 9;
1307
1308         bch_uuid_write(c);
1309
1310         return flash_dev_run(c, u);
1311 }
1312
1313 /* Cache set */
1314
1315 __printf(2, 3)
1316 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1317 {
1318         va_list args;
1319
1320         if (c->on_error != ON_ERROR_PANIC &&
1321             test_bit(CACHE_SET_STOPPING, &c->flags))
1322                 return false;
1323
1324         /* XXX: we can be called from atomic context
1325         acquire_console_sem();
1326         */
1327
1328         printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1329
1330         va_start(args, fmt);
1331         vprintk(fmt, args);
1332         va_end(args);
1333
1334         printk(", disabling caching\n");
1335
1336         if (c->on_error == ON_ERROR_PANIC)
1337                 panic("panic forced after error\n");
1338
1339         bch_cache_set_unregister(c);
1340         return true;
1341 }
1342
1343 void bch_cache_set_release(struct kobject *kobj)
1344 {
1345         struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1346         kfree(c);
1347         module_put(THIS_MODULE);
1348 }
1349
1350 static void cache_set_free(struct closure *cl)
1351 {
1352         struct cache_set *c = container_of(cl, struct cache_set, cl);
1353         struct cache *ca;
1354         unsigned i;
1355
1356         if (!IS_ERR_OR_NULL(c->debug))
1357                 debugfs_remove(c->debug);
1358
1359         bch_open_buckets_free(c);
1360         bch_btree_cache_free(c);
1361         bch_journal_free(c);
1362
1363         for_each_cache(ca, c, i)
1364                 if (ca) {
1365                         ca->set = NULL;
1366                         c->cache[ca->sb.nr_this_dev] = NULL;
1367                         kobject_put(&ca->kobj);
1368                 }
1369
1370         bch_bset_sort_state_free(&c->sort);
1371         free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1372
1373         if (c->moving_gc_wq)
1374                 destroy_workqueue(c->moving_gc_wq);
1375         if (c->bio_split)
1376                 bioset_free(c->bio_split);
1377         if (c->fill_iter)
1378                 mempool_destroy(c->fill_iter);
1379         if (c->bio_meta)
1380                 mempool_destroy(c->bio_meta);
1381         if (c->search)
1382                 mempool_destroy(c->search);
1383         kfree(c->devices);
1384
1385         mutex_lock(&bch_register_lock);
1386         list_del(&c->list);
1387         mutex_unlock(&bch_register_lock);
1388
1389         pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1390         wake_up(&unregister_wait);
1391
1392         closure_debug_destroy(&c->cl);
1393         kobject_put(&c->kobj);
1394 }
1395
1396 static void cache_set_flush(struct closure *cl)
1397 {
1398         struct cache_set *c = container_of(cl, struct cache_set, caching);
1399         struct cache *ca;
1400         struct btree *b;
1401         unsigned i;
1402
1403         bch_cache_accounting_destroy(&c->accounting);
1404
1405         kobject_put(&c->internal);
1406         kobject_del(&c->kobj);
1407
1408         if (c->gc_thread)
1409                 kthread_stop(c->gc_thread);
1410
1411         if (!IS_ERR_OR_NULL(c->root))
1412                 list_add(&c->root->list, &c->btree_cache);
1413
1414         /* Should skip this if we're unregistering because of an error */
1415         list_for_each_entry(b, &c->btree_cache, list) {
1416                 mutex_lock(&b->write_lock);
1417                 if (btree_node_dirty(b))
1418                         __bch_btree_node_write(b, NULL);
1419                 mutex_unlock(&b->write_lock);
1420         }
1421
1422         for_each_cache(ca, c, i)
1423                 if (ca->alloc_thread)
1424                         kthread_stop(ca->alloc_thread);
1425
1426         if (c->journal.cur) {
1427                 cancel_delayed_work_sync(&c->journal.work);
1428                 /* flush last journal entry if needed */
1429                 c->journal.work.work.func(&c->journal.work.work);
1430         }
1431
1432         closure_return(cl);
1433 }
1434
1435 static void __cache_set_unregister(struct closure *cl)
1436 {
1437         struct cache_set *c = container_of(cl, struct cache_set, caching);
1438         struct cached_dev *dc;
1439         size_t i;
1440
1441         mutex_lock(&bch_register_lock);
1442
1443         for (i = 0; i < c->devices_max_used; i++)
1444                 if (c->devices[i]) {
1445                         if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1446                             test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1447                                 dc = container_of(c->devices[i],
1448                                                   struct cached_dev, disk);
1449                                 bch_cached_dev_detach(dc);
1450                         } else {
1451                                 bcache_device_stop(c->devices[i]);
1452                         }
1453                 }
1454
1455         mutex_unlock(&bch_register_lock);
1456
1457         continue_at(cl, cache_set_flush, system_wq);
1458 }
1459
1460 void bch_cache_set_stop(struct cache_set *c)
1461 {
1462         if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1463                 closure_queue(&c->caching);
1464 }
1465
1466 void bch_cache_set_unregister(struct cache_set *c)
1467 {
1468         set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1469         bch_cache_set_stop(c);
1470 }
1471
1472 #define alloc_bucket_pages(gfp, c)                      \
1473         ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1474
1475 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1476 {
1477         int iter_size;
1478         struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1479         if (!c)
1480                 return NULL;
1481
1482         __module_get(THIS_MODULE);
1483         closure_init(&c->cl, NULL);
1484         set_closure_fn(&c->cl, cache_set_free, system_wq);
1485
1486         closure_init(&c->caching, &c->cl);
1487         set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1488
1489         /* Maybe create continue_at_noreturn() and use it here? */
1490         closure_set_stopped(&c->cl);
1491         closure_put(&c->cl);
1492
1493         kobject_init(&c->kobj, &bch_cache_set_ktype);
1494         kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1495
1496         bch_cache_accounting_init(&c->accounting, &c->cl);
1497
1498         memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1499         c->sb.block_size        = sb->block_size;
1500         c->sb.bucket_size       = sb->bucket_size;
1501         c->sb.nr_in_set         = sb->nr_in_set;
1502         c->sb.last_mount        = sb->last_mount;
1503         c->bucket_bits          = ilog2(sb->bucket_size);
1504         c->block_bits           = ilog2(sb->block_size);
1505         c->nr_uuids             = bucket_bytes(c) / sizeof(struct uuid_entry);
1506         c->devices_max_used     = 0;
1507         c->btree_pages          = bucket_pages(c);
1508         if (c->btree_pages > BTREE_MAX_PAGES)
1509                 c->btree_pages = max_t(int, c->btree_pages / 4,
1510                                        BTREE_MAX_PAGES);
1511
1512         sema_init(&c->sb_write_mutex, 1);
1513         mutex_init(&c->bucket_lock);
1514         init_waitqueue_head(&c->btree_cache_wait);
1515         init_waitqueue_head(&c->bucket_wait);
1516         init_waitqueue_head(&c->gc_wait);
1517         sema_init(&c->uuid_write_mutex, 1);
1518
1519         spin_lock_init(&c->btree_gc_time.lock);
1520         spin_lock_init(&c->btree_split_time.lock);
1521         spin_lock_init(&c->btree_read_time.lock);
1522
1523         bch_moving_init_cache_set(c);
1524
1525         INIT_LIST_HEAD(&c->list);
1526         INIT_LIST_HEAD(&c->cached_devs);
1527         INIT_LIST_HEAD(&c->btree_cache);
1528         INIT_LIST_HEAD(&c->btree_cache_freeable);
1529         INIT_LIST_HEAD(&c->btree_cache_freed);
1530         INIT_LIST_HEAD(&c->data_buckets);
1531
1532         c->search = mempool_create_slab_pool(32, bch_search_cache);
1533         if (!c->search)
1534                 goto err;
1535
1536         iter_size = (sb->bucket_size / sb->block_size + 1) *
1537                 sizeof(struct btree_iter_set);
1538
1539         if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1540             !(c->bio_meta = mempool_create_kmalloc_pool(2,
1541                                 sizeof(struct bbio) + sizeof(struct bio_vec) *
1542                                 bucket_pages(c))) ||
1543             !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1544             !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio),
1545                                            BIOSET_NEED_BVECS |
1546                                            BIOSET_NEED_RESCUER)) ||
1547             !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1548             !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1549                                                 WQ_MEM_RECLAIM, 0)) ||
1550             bch_journal_alloc(c) ||
1551             bch_btree_cache_alloc(c) ||
1552             bch_open_buckets_alloc(c) ||
1553             bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1554                 goto err;
1555
1556         c->congested_read_threshold_us  = 2000;
1557         c->congested_write_threshold_us = 20000;
1558         c->error_limit  = DEFAULT_IO_ERROR_LIMIT;
1559
1560         return c;
1561 err:
1562         bch_cache_set_unregister(c);
1563         return NULL;
1564 }
1565
1566 static void run_cache_set(struct cache_set *c)
1567 {
1568         const char *err = "cannot allocate memory";
1569         struct cached_dev *dc, *t;
1570         struct cache *ca;
1571         struct closure cl;
1572         unsigned i;
1573
1574         closure_init_stack(&cl);
1575
1576         for_each_cache(ca, c, i)
1577                 c->nbuckets += ca->sb.nbuckets;
1578         set_gc_sectors(c);
1579
1580         if (CACHE_SYNC(&c->sb)) {
1581                 LIST_HEAD(journal);
1582                 struct bkey *k;
1583                 struct jset *j;
1584
1585                 err = "cannot allocate memory for journal";
1586                 if (bch_journal_read(c, &journal))
1587                         goto err;
1588
1589                 pr_debug("btree_journal_read() done");
1590
1591                 err = "no journal entries found";
1592                 if (list_empty(&journal))
1593                         goto err;
1594
1595                 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1596
1597                 err = "IO error reading priorities";
1598                 for_each_cache(ca, c, i)
1599                         prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1600
1601                 /*
1602                  * If prio_read() fails it'll call cache_set_error and we'll
1603                  * tear everything down right away, but if we perhaps checked
1604                  * sooner we could avoid journal replay.
1605                  */
1606
1607                 k = &j->btree_root;
1608
1609                 err = "bad btree root";
1610                 if (__bch_btree_ptr_invalid(c, k))
1611                         goto err;
1612
1613                 err = "error reading btree root";
1614                 c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1615                 if (IS_ERR_OR_NULL(c->root))
1616                         goto err;
1617
1618                 list_del_init(&c->root->list);
1619                 rw_unlock(true, c->root);
1620
1621                 err = uuid_read(c, j, &cl);
1622                 if (err)
1623                         goto err;
1624
1625                 err = "error in recovery";
1626                 if (bch_btree_check(c))
1627                         goto err;
1628
1629                 bch_journal_mark(c, &journal);
1630                 bch_initial_gc_finish(c);
1631                 pr_debug("btree_check() done");
1632
1633                 /*
1634                  * bcache_journal_next() can't happen sooner, or
1635                  * btree_gc_finish() will give spurious errors about last_gc >
1636                  * gc_gen - this is a hack but oh well.
1637                  */
1638                 bch_journal_next(&c->journal);
1639
1640                 err = "error starting allocator thread";
1641                 for_each_cache(ca, c, i)
1642                         if (bch_cache_allocator_start(ca))
1643                                 goto err;
1644
1645                 /*
1646                  * First place it's safe to allocate: btree_check() and
1647                  * btree_gc_finish() have to run before we have buckets to
1648                  * allocate, and bch_bucket_alloc_set() might cause a journal
1649                  * entry to be written so bcache_journal_next() has to be called
1650                  * first.
1651                  *
1652                  * If the uuids were in the old format we have to rewrite them
1653                  * before the next journal entry is written:
1654                  */
1655                 if (j->version < BCACHE_JSET_VERSION_UUID)
1656                         __uuid_write(c);
1657
1658                 bch_journal_replay(c, &journal);
1659         } else {
1660                 pr_notice("invalidating existing data");
1661
1662                 for_each_cache(ca, c, i) {
1663                         unsigned j;
1664
1665                         ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1666                                               2, SB_JOURNAL_BUCKETS);
1667
1668                         for (j = 0; j < ca->sb.keys; j++)
1669                                 ca->sb.d[j] = ca->sb.first_bucket + j;
1670                 }
1671
1672                 bch_initial_gc_finish(c);
1673
1674                 err = "error starting allocator thread";
1675                 for_each_cache(ca, c, i)
1676                         if (bch_cache_allocator_start(ca))
1677                                 goto err;
1678
1679                 mutex_lock(&c->bucket_lock);
1680                 for_each_cache(ca, c, i)
1681                         bch_prio_write(ca);
1682                 mutex_unlock(&c->bucket_lock);
1683
1684                 err = "cannot allocate new UUID bucket";
1685                 if (__uuid_write(c))
1686                         goto err;
1687
1688                 err = "cannot allocate new btree root";
1689                 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1690                 if (IS_ERR_OR_NULL(c->root))
1691                         goto err;
1692
1693                 mutex_lock(&c->root->write_lock);
1694                 bkey_copy_key(&c->root->key, &MAX_KEY);
1695                 bch_btree_node_write(c->root, &cl);
1696                 mutex_unlock(&c->root->write_lock);
1697
1698                 bch_btree_set_root(c->root);
1699                 rw_unlock(true, c->root);
1700
1701                 /*
1702                  * We don't want to write the first journal entry until
1703                  * everything is set up - fortunately journal entries won't be
1704                  * written until the SET_CACHE_SYNC() here:
1705                  */
1706                 SET_CACHE_SYNC(&c->sb, true);
1707
1708                 bch_journal_next(&c->journal);
1709                 bch_journal_meta(c, &cl);
1710         }
1711
1712         err = "error starting gc thread";
1713         if (bch_gc_thread_start(c))
1714                 goto err;
1715
1716         closure_sync(&cl);
1717         c->sb.last_mount = get_seconds();
1718         bcache_write_super(c);
1719
1720         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1721                 bch_cached_dev_attach(dc, c, NULL);
1722
1723         flash_devs_run(c);
1724
1725         set_bit(CACHE_SET_RUNNING, &c->flags);
1726         return;
1727 err:
1728         closure_sync(&cl);
1729         /* XXX: test this, it's broken */
1730         bch_cache_set_error(c, "%s", err);
1731 }
1732
1733 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1734 {
1735         return ca->sb.block_size        == c->sb.block_size &&
1736                 ca->sb.bucket_size      == c->sb.bucket_size &&
1737                 ca->sb.nr_in_set        == c->sb.nr_in_set;
1738 }
1739
1740 static const char *register_cache_set(struct cache *ca)
1741 {
1742         char buf[12];
1743         const char *err = "cannot allocate memory";
1744         struct cache_set *c;
1745
1746         list_for_each_entry(c, &bch_cache_sets, list)
1747                 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1748                         if (c->cache[ca->sb.nr_this_dev])
1749                                 return "duplicate cache set member";
1750
1751                         if (!can_attach_cache(ca, c))
1752                                 return "cache sb does not match set";
1753
1754                         if (!CACHE_SYNC(&ca->sb))
1755                                 SET_CACHE_SYNC(&c->sb, false);
1756
1757                         goto found;
1758                 }
1759
1760         c = bch_cache_set_alloc(&ca->sb);
1761         if (!c)
1762                 return err;
1763
1764         err = "error creating kobject";
1765         if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1766             kobject_add(&c->internal, &c->kobj, "internal"))
1767                 goto err;
1768
1769         if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1770                 goto err;
1771
1772         bch_debug_init_cache_set(c);
1773
1774         list_add(&c->list, &bch_cache_sets);
1775 found:
1776         sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1777         if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1778             sysfs_create_link(&c->kobj, &ca->kobj, buf))
1779                 goto err;
1780
1781         if (ca->sb.seq > c->sb.seq) {
1782                 c->sb.version           = ca->sb.version;
1783                 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1784                 c->sb.flags             = ca->sb.flags;
1785                 c->sb.seq               = ca->sb.seq;
1786                 pr_debug("set version = %llu", c->sb.version);
1787         }
1788
1789         kobject_get(&ca->kobj);
1790         ca->set = c;
1791         ca->set->cache[ca->sb.nr_this_dev] = ca;
1792         c->cache_by_alloc[c->caches_loaded++] = ca;
1793
1794         if (c->caches_loaded == c->sb.nr_in_set)
1795                 run_cache_set(c);
1796
1797         return NULL;
1798 err:
1799         bch_cache_set_unregister(c);
1800         return err;
1801 }
1802
1803 /* Cache device */
1804
1805 void bch_cache_release(struct kobject *kobj)
1806 {
1807         struct cache *ca = container_of(kobj, struct cache, kobj);
1808         unsigned i;
1809
1810         if (ca->set) {
1811                 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1812                 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1813         }
1814
1815         free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1816         kfree(ca->prio_buckets);
1817         vfree(ca->buckets);
1818
1819         free_heap(&ca->heap);
1820         free_fifo(&ca->free_inc);
1821
1822         for (i = 0; i < RESERVE_NR; i++)
1823                 free_fifo(&ca->free[i]);
1824
1825         if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1826                 put_page(bio_first_page_all(&ca->sb_bio));
1827
1828         if (!IS_ERR_OR_NULL(ca->bdev))
1829                 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1830
1831         kfree(ca);
1832         module_put(THIS_MODULE);
1833 }
1834
1835 static int cache_alloc(struct cache *ca)
1836 {
1837         size_t free;
1838         size_t btree_buckets;
1839         struct bucket *b;
1840
1841         __module_get(THIS_MODULE);
1842         kobject_init(&ca->kobj, &bch_cache_ktype);
1843
1844         bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
1845
1846         /*
1847          * when ca->sb.njournal_buckets is not zero, journal exists,
1848          * and in bch_journal_replay(), tree node may split,
1849          * so bucket of RESERVE_BTREE type is needed,
1850          * the worst situation is all journal buckets are valid journal,
1851          * and all the keys need to replay,
1852          * so the number of  RESERVE_BTREE type buckets should be as much
1853          * as journal buckets
1854          */
1855         btree_buckets = ca->sb.njournal_buckets ?: 8;
1856         free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1857
1858         if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, GFP_KERNEL) ||
1859             !init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1860             !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1861             !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1862             !init_fifo(&ca->free_inc,   free << 2, GFP_KERNEL) ||
1863             !init_heap(&ca->heap,       free << 3, GFP_KERNEL) ||
1864             !(ca->buckets       = vzalloc(sizeof(struct bucket) *
1865                                           ca->sb.nbuckets)) ||
1866             !(ca->prio_buckets  = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1867                                           2, GFP_KERNEL)) ||
1868             !(ca->disk_buckets  = alloc_bucket_pages(GFP_KERNEL, ca)))
1869                 return -ENOMEM;
1870
1871         ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1872
1873         for_each_bucket(b, ca)
1874                 atomic_set(&b->pin, 0);
1875
1876         return 0;
1877 }
1878
1879 static int register_cache(struct cache_sb *sb, struct page *sb_page,
1880                                 struct block_device *bdev, struct cache *ca)
1881 {
1882         char name[BDEVNAME_SIZE];
1883         const char *err = NULL; /* must be set for any error case */
1884         int ret = 0;
1885
1886         memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1887         ca->bdev = bdev;
1888         ca->bdev->bd_holder = ca;
1889
1890         bio_init(&ca->sb_bio, ca->sb_bio.bi_inline_vecs, 1);
1891         bio_first_bvec_all(&ca->sb_bio)->bv_page = sb_page;
1892         get_page(sb_page);
1893
1894         if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1895                 ca->discard = CACHE_DISCARD(&ca->sb);
1896
1897         ret = cache_alloc(ca);
1898         if (ret != 0) {
1899                 if (ret == -ENOMEM)
1900                         err = "cache_alloc(): -ENOMEM";
1901                 else
1902                         err = "cache_alloc(): unknown error";
1903                 goto err;
1904         }
1905
1906         if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache")) {
1907                 err = "error calling kobject_add";
1908                 ret = -ENOMEM;
1909                 goto out;
1910         }
1911
1912         mutex_lock(&bch_register_lock);
1913         err = register_cache_set(ca);
1914         mutex_unlock(&bch_register_lock);
1915
1916         if (err) {
1917                 ret = -ENODEV;
1918                 goto out;
1919         }
1920
1921         pr_info("registered cache device %s", bdevname(bdev, name));
1922
1923 out:
1924         kobject_put(&ca->kobj);
1925
1926 err:
1927         if (err)
1928                 pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1929
1930         return ret;
1931 }
1932
1933 /* Global interfaces/init */
1934
1935 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1936                                const char *, size_t);
1937
1938 kobj_attribute_write(register,          register_bcache);
1939 kobj_attribute_write(register_quiet,    register_bcache);
1940
1941 static bool bch_is_open_backing(struct block_device *bdev) {
1942         struct cache_set *c, *tc;
1943         struct cached_dev *dc, *t;
1944
1945         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1946                 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1947                         if (dc->bdev == bdev)
1948                                 return true;
1949         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1950                 if (dc->bdev == bdev)
1951                         return true;
1952         return false;
1953 }
1954
1955 static bool bch_is_open_cache(struct block_device *bdev) {
1956         struct cache_set *c, *tc;
1957         struct cache *ca;
1958         unsigned i;
1959
1960         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1961                 for_each_cache(ca, c, i)
1962                         if (ca->bdev == bdev)
1963                                 return true;
1964         return false;
1965 }
1966
1967 static bool bch_is_open(struct block_device *bdev) {
1968         return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1969 }
1970
1971 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1972                                const char *buffer, size_t size)
1973 {
1974         ssize_t ret = size;
1975         const char *err = "cannot allocate memory";
1976         char *path = NULL;
1977         struct cache_sb *sb = NULL;
1978         struct block_device *bdev = NULL;
1979         struct page *sb_page = NULL;
1980
1981         if (!try_module_get(THIS_MODULE))
1982                 return -EBUSY;
1983
1984         if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1985             !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1986                 goto err;
1987
1988         err = "failed to open device";
1989         bdev = blkdev_get_by_path(strim(path),
1990                                   FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1991                                   sb);
1992         if (IS_ERR(bdev)) {
1993                 if (bdev == ERR_PTR(-EBUSY)) {
1994                         bdev = lookup_bdev(strim(path));
1995                         mutex_lock(&bch_register_lock);
1996                         if (!IS_ERR(bdev) && bch_is_open(bdev))
1997                                 err = "device already registered";
1998                         else
1999                                 err = "device busy";
2000                         mutex_unlock(&bch_register_lock);
2001                         if (!IS_ERR(bdev))
2002                                 bdput(bdev);
2003                         if (attr == &ksysfs_register_quiet)
2004                                 goto out;
2005                 }
2006                 goto err;
2007         }
2008
2009         err = "failed to set blocksize";
2010         if (set_blocksize(bdev, 4096))
2011                 goto err_close;
2012
2013         err = read_super(sb, bdev, &sb_page);
2014         if (err)
2015                 goto err_close;
2016
2017         if (SB_IS_BDEV(sb)) {
2018                 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2019                 if (!dc)
2020                         goto err_close;
2021
2022                 mutex_lock(&bch_register_lock);
2023                 register_bdev(sb, sb_page, bdev, dc);
2024                 mutex_unlock(&bch_register_lock);
2025         } else {
2026                 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2027                 if (!ca)
2028                         goto err_close;
2029
2030                 if (register_cache(sb, sb_page, bdev, ca) != 0)
2031                         goto err_close;
2032         }
2033 out:
2034         if (sb_page)
2035                 put_page(sb_page);
2036         kfree(sb);
2037         kfree(path);
2038         module_put(THIS_MODULE);
2039         return ret;
2040
2041 err_close:
2042         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2043 err:
2044         pr_info("error opening %s: %s", path, err);
2045         ret = -EINVAL;
2046         goto out;
2047 }
2048
2049 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2050 {
2051         if (code == SYS_DOWN ||
2052             code == SYS_HALT ||
2053             code == SYS_POWER_OFF) {
2054                 DEFINE_WAIT(wait);
2055                 unsigned long start = jiffies;
2056                 bool stopped = false;
2057
2058                 struct cache_set *c, *tc;
2059                 struct cached_dev *dc, *tdc;
2060
2061                 mutex_lock(&bch_register_lock);
2062
2063                 if (list_empty(&bch_cache_sets) &&
2064                     list_empty(&uncached_devices))
2065                         goto out;
2066
2067                 pr_info("Stopping all devices:");
2068
2069                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2070                         bch_cache_set_stop(c);
2071
2072                 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2073                         bcache_device_stop(&dc->disk);
2074
2075                 /* What's a condition variable? */
2076                 while (1) {
2077                         long timeout = start + 2 * HZ - jiffies;
2078
2079                         stopped = list_empty(&bch_cache_sets) &&
2080                                 list_empty(&uncached_devices);
2081
2082                         if (timeout < 0 || stopped)
2083                                 break;
2084
2085                         prepare_to_wait(&unregister_wait, &wait,
2086                                         TASK_UNINTERRUPTIBLE);
2087
2088                         mutex_unlock(&bch_register_lock);
2089                         schedule_timeout(timeout);
2090                         mutex_lock(&bch_register_lock);
2091                 }
2092
2093                 finish_wait(&unregister_wait, &wait);
2094
2095                 if (stopped)
2096                         pr_info("All devices stopped");
2097                 else
2098                         pr_notice("Timeout waiting for devices to be closed");
2099 out:
2100                 mutex_unlock(&bch_register_lock);
2101         }
2102
2103         return NOTIFY_DONE;
2104 }
2105
2106 static struct notifier_block reboot = {
2107         .notifier_call  = bcache_reboot,
2108         .priority       = INT_MAX, /* before any real devices */
2109 };
2110
2111 static void bcache_exit(void)
2112 {
2113         bch_debug_exit();
2114         bch_request_exit();
2115         if (bcache_kobj)
2116                 kobject_put(bcache_kobj);
2117         if (bcache_wq)
2118                 destroy_workqueue(bcache_wq);
2119         if (bcache_major)
2120                 unregister_blkdev(bcache_major, "bcache");
2121         unregister_reboot_notifier(&reboot);
2122         mutex_destroy(&bch_register_lock);
2123 }
2124
2125 static int __init bcache_init(void)
2126 {
2127         static const struct attribute *files[] = {
2128                 &ksysfs_register.attr,
2129                 &ksysfs_register_quiet.attr,
2130                 NULL
2131         };
2132
2133         mutex_init(&bch_register_lock);
2134         init_waitqueue_head(&unregister_wait);
2135         register_reboot_notifier(&reboot);
2136         closure_debug_init();
2137
2138         bcache_major = register_blkdev(0, "bcache");
2139         if (bcache_major < 0) {
2140                 unregister_reboot_notifier(&reboot);
2141                 mutex_destroy(&bch_register_lock);
2142                 return bcache_major;
2143         }
2144
2145         if (!(bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0)) ||
2146             !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2147             bch_request_init() ||
2148             bch_debug_init(bcache_kobj) ||
2149             sysfs_create_files(bcache_kobj, files))
2150                 goto err;
2151
2152         return 0;
2153 err:
2154         bcache_exit();
2155         return -ENOMEM;
2156 }
2157
2158 module_exit(bcache_exit);
2159 module_init(bcache_init);