block: replace bi_bdev with a gendisk pointer and partitions index
[sfrench/cifs-2.6.git] / drivers / md / bcache / request.c
1 /*
2  * Main bcache entry point - handle a read or a write request and decide what to
3  * do with it; the make_request functions are called by the block layer.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14
15 #include <linux/module.h>
16 #include <linux/hash.h>
17 #include <linux/random.h>
18 #include <linux/backing-dev.h>
19
20 #include <trace/events/bcache.h>
21
22 #define CUTOFF_CACHE_ADD        95
23 #define CUTOFF_CACHE_READA      90
24
25 struct kmem_cache *bch_search_cache;
26
27 static void bch_data_insert_start(struct closure *);
28
29 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
30 {
31         return BDEV_CACHE_MODE(&dc->sb);
32 }
33
34 static bool verify(struct cached_dev *dc, struct bio *bio)
35 {
36         return dc->verify;
37 }
38
39 static void bio_csum(struct bio *bio, struct bkey *k)
40 {
41         struct bio_vec bv;
42         struct bvec_iter iter;
43         uint64_t csum = 0;
44
45         bio_for_each_segment(bv, bio, iter) {
46                 void *d = kmap(bv.bv_page) + bv.bv_offset;
47                 csum = bch_crc64_update(csum, d, bv.bv_len);
48                 kunmap(bv.bv_page);
49         }
50
51         k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
52 }
53
54 /* Insert data into cache */
55
56 static void bch_data_insert_keys(struct closure *cl)
57 {
58         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
59         atomic_t *journal_ref = NULL;
60         struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
61         int ret;
62
63         /*
64          * If we're looping, might already be waiting on
65          * another journal write - can't wait on more than one journal write at
66          * a time
67          *
68          * XXX: this looks wrong
69          */
70 #if 0
71         while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
72                 closure_sync(&s->cl);
73 #endif
74
75         if (!op->replace)
76                 journal_ref = bch_journal(op->c, &op->insert_keys,
77                                           op->flush_journal ? cl : NULL);
78
79         ret = bch_btree_insert(op->c, &op->insert_keys,
80                                journal_ref, replace_key);
81         if (ret == -ESRCH) {
82                 op->replace_collision = true;
83         } else if (ret) {
84                 op->status              = BLK_STS_RESOURCE;
85                 op->insert_data_done    = true;
86         }
87
88         if (journal_ref)
89                 atomic_dec_bug(journal_ref);
90
91         if (!op->insert_data_done) {
92                 continue_at(cl, bch_data_insert_start, op->wq);
93                 return;
94         }
95
96         bch_keylist_free(&op->insert_keys);
97         closure_return(cl);
98 }
99
100 static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
101                                struct cache_set *c)
102 {
103         size_t oldsize = bch_keylist_nkeys(l);
104         size_t newsize = oldsize + u64s;
105
106         /*
107          * The journalling code doesn't handle the case where the keys to insert
108          * is bigger than an empty write: If we just return -ENOMEM here,
109          * bio_insert() and bio_invalidate() will insert the keys created so far
110          * and finish the rest when the keylist is empty.
111          */
112         if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
113                 return -ENOMEM;
114
115         return __bch_keylist_realloc(l, u64s);
116 }
117
118 static void bch_data_invalidate(struct closure *cl)
119 {
120         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
121         struct bio *bio = op->bio;
122
123         pr_debug("invalidating %i sectors from %llu",
124                  bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
125
126         while (bio_sectors(bio)) {
127                 unsigned sectors = min(bio_sectors(bio),
128                                        1U << (KEY_SIZE_BITS - 1));
129
130                 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
131                         goto out;
132
133                 bio->bi_iter.bi_sector  += sectors;
134                 bio->bi_iter.bi_size    -= sectors << 9;
135
136                 bch_keylist_add(&op->insert_keys,
137                                 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
138         }
139
140         op->insert_data_done = true;
141         bio_put(bio);
142 out:
143         continue_at(cl, bch_data_insert_keys, op->wq);
144 }
145
146 static void bch_data_insert_error(struct closure *cl)
147 {
148         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
149
150         /*
151          * Our data write just errored, which means we've got a bunch of keys to
152          * insert that point to data that wasn't succesfully written.
153          *
154          * We don't have to insert those keys but we still have to invalidate
155          * that region of the cache - so, if we just strip off all the pointers
156          * from the keys we'll accomplish just that.
157          */
158
159         struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
160
161         while (src != op->insert_keys.top) {
162                 struct bkey *n = bkey_next(src);
163
164                 SET_KEY_PTRS(src, 0);
165                 memmove(dst, src, bkey_bytes(src));
166
167                 dst = bkey_next(dst);
168                 src = n;
169         }
170
171         op->insert_keys.top = dst;
172
173         bch_data_insert_keys(cl);
174 }
175
176 static void bch_data_insert_endio(struct bio *bio)
177 {
178         struct closure *cl = bio->bi_private;
179         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
180
181         if (bio->bi_status) {
182                 /* TODO: We could try to recover from this. */
183                 if (op->writeback)
184                         op->status = bio->bi_status;
185                 else if (!op->replace)
186                         set_closure_fn(cl, bch_data_insert_error, op->wq);
187                 else
188                         set_closure_fn(cl, NULL, NULL);
189         }
190
191         bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
192 }
193
194 static void bch_data_insert_start(struct closure *cl)
195 {
196         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
197         struct bio *bio = op->bio, *n;
198
199         if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
200                 wake_up_gc(op->c);
201
202         if (op->bypass)
203                 return bch_data_invalidate(cl);
204
205         /*
206          * Journal writes are marked REQ_PREFLUSH; if the original write was a
207          * flush, it'll wait on the journal write.
208          */
209         bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
210
211         do {
212                 unsigned i;
213                 struct bkey *k;
214                 struct bio_set *split = op->c->bio_split;
215
216                 /* 1 for the device pointer and 1 for the chksum */
217                 if (bch_keylist_realloc(&op->insert_keys,
218                                         3 + (op->csum ? 1 : 0),
219                                         op->c)) {
220                         continue_at(cl, bch_data_insert_keys, op->wq);
221                         return;
222                 }
223
224                 k = op->insert_keys.top;
225                 bkey_init(k);
226                 SET_KEY_INODE(k, op->inode);
227                 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
228
229                 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
230                                        op->write_point, op->write_prio,
231                                        op->writeback))
232                         goto err;
233
234                 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
235
236                 n->bi_end_io    = bch_data_insert_endio;
237                 n->bi_private   = cl;
238
239                 if (op->writeback) {
240                         SET_KEY_DIRTY(k, true);
241
242                         for (i = 0; i < KEY_PTRS(k); i++)
243                                 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
244                                             GC_MARK_DIRTY);
245                 }
246
247                 SET_KEY_CSUM(k, op->csum);
248                 if (KEY_CSUM(k))
249                         bio_csum(n, k);
250
251                 trace_bcache_cache_insert(k);
252                 bch_keylist_push(&op->insert_keys);
253
254                 bio_set_op_attrs(n, REQ_OP_WRITE, 0);
255                 bch_submit_bbio(n, op->c, k, 0);
256         } while (n != bio);
257
258         op->insert_data_done = true;
259         continue_at(cl, bch_data_insert_keys, op->wq);
260         return;
261 err:
262         /* bch_alloc_sectors() blocks if s->writeback = true */
263         BUG_ON(op->writeback);
264
265         /*
266          * But if it's not a writeback write we'd rather just bail out if
267          * there aren't any buckets ready to write to - it might take awhile and
268          * we might be starving btree writes for gc or something.
269          */
270
271         if (!op->replace) {
272                 /*
273                  * Writethrough write: We can't complete the write until we've
274                  * updated the index. But we don't want to delay the write while
275                  * we wait for buckets to be freed up, so just invalidate the
276                  * rest of the write.
277                  */
278                 op->bypass = true;
279                 return bch_data_invalidate(cl);
280         } else {
281                 /*
282                  * From a cache miss, we can just insert the keys for the data
283                  * we have written or bail out if we didn't do anything.
284                  */
285                 op->insert_data_done = true;
286                 bio_put(bio);
287
288                 if (!bch_keylist_empty(&op->insert_keys))
289                         continue_at(cl, bch_data_insert_keys, op->wq);
290                 else
291                         closure_return(cl);
292         }
293 }
294
295 /**
296  * bch_data_insert - stick some data in the cache
297  *
298  * This is the starting point for any data to end up in a cache device; it could
299  * be from a normal write, or a writeback write, or a write to a flash only
300  * volume - it's also used by the moving garbage collector to compact data in
301  * mostly empty buckets.
302  *
303  * It first writes the data to the cache, creating a list of keys to be inserted
304  * (if the data had to be fragmented there will be multiple keys); after the
305  * data is written it calls bch_journal, and after the keys have been added to
306  * the next journal write they're inserted into the btree.
307  *
308  * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
309  * and op->inode is used for the key inode.
310  *
311  * If s->bypass is true, instead of inserting the data it invalidates the
312  * region of the cache represented by s->cache_bio and op->inode.
313  */
314 void bch_data_insert(struct closure *cl)
315 {
316         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
317
318         trace_bcache_write(op->c, op->inode, op->bio,
319                            op->writeback, op->bypass);
320
321         bch_keylist_init(&op->insert_keys);
322         bio_get(op->bio);
323         bch_data_insert_start(cl);
324 }
325
326 /* Congested? */
327
328 unsigned bch_get_congested(struct cache_set *c)
329 {
330         int i;
331         long rand;
332
333         if (!c->congested_read_threshold_us &&
334             !c->congested_write_threshold_us)
335                 return 0;
336
337         i = (local_clock_us() - c->congested_last_us) / 1024;
338         if (i < 0)
339                 return 0;
340
341         i += atomic_read(&c->congested);
342         if (i >= 0)
343                 return 0;
344
345         i += CONGESTED_MAX;
346
347         if (i > 0)
348                 i = fract_exp_two(i, 6);
349
350         rand = get_random_int();
351         i -= bitmap_weight(&rand, BITS_PER_LONG);
352
353         return i > 0 ? i : 1;
354 }
355
356 static void add_sequential(struct task_struct *t)
357 {
358         ewma_add(t->sequential_io_avg,
359                  t->sequential_io, 8, 0);
360
361         t->sequential_io = 0;
362 }
363
364 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
365 {
366         return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
367 }
368
369 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
370 {
371         struct cache_set *c = dc->disk.c;
372         unsigned mode = cache_mode(dc, bio);
373         unsigned sectors, congested = bch_get_congested(c);
374         struct task_struct *task = current;
375         struct io *i;
376
377         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
378             c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
379             (bio_op(bio) == REQ_OP_DISCARD))
380                 goto skip;
381
382         if (mode == CACHE_MODE_NONE ||
383             (mode == CACHE_MODE_WRITEAROUND &&
384              op_is_write(bio_op(bio))))
385                 goto skip;
386
387         if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
388             bio_sectors(bio) & (c->sb.block_size - 1)) {
389                 pr_debug("skipping unaligned io");
390                 goto skip;
391         }
392
393         if (bypass_torture_test(dc)) {
394                 if ((get_random_int() & 3) == 3)
395                         goto skip;
396                 else
397                         goto rescale;
398         }
399
400         if (!congested && !dc->sequential_cutoff)
401                 goto rescale;
402
403         if (!congested &&
404             mode == CACHE_MODE_WRITEBACK &&
405             op_is_write(bio->bi_opf) &&
406             op_is_sync(bio->bi_opf))
407                 goto rescale;
408
409         spin_lock(&dc->io_lock);
410
411         hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
412                 if (i->last == bio->bi_iter.bi_sector &&
413                     time_before(jiffies, i->jiffies))
414                         goto found;
415
416         i = list_first_entry(&dc->io_lru, struct io, lru);
417
418         add_sequential(task);
419         i->sequential = 0;
420 found:
421         if (i->sequential + bio->bi_iter.bi_size > i->sequential)
422                 i->sequential   += bio->bi_iter.bi_size;
423
424         i->last                  = bio_end_sector(bio);
425         i->jiffies               = jiffies + msecs_to_jiffies(5000);
426         task->sequential_io      = i->sequential;
427
428         hlist_del(&i->hash);
429         hlist_add_head(&i->hash, iohash(dc, i->last));
430         list_move_tail(&i->lru, &dc->io_lru);
431
432         spin_unlock(&dc->io_lock);
433
434         sectors = max(task->sequential_io,
435                       task->sequential_io_avg) >> 9;
436
437         if (dc->sequential_cutoff &&
438             sectors >= dc->sequential_cutoff >> 9) {
439                 trace_bcache_bypass_sequential(bio);
440                 goto skip;
441         }
442
443         if (congested && sectors >= congested) {
444                 trace_bcache_bypass_congested(bio);
445                 goto skip;
446         }
447
448 rescale:
449         bch_rescale_priorities(c, bio_sectors(bio));
450         return false;
451 skip:
452         bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
453         return true;
454 }
455
456 /* Cache lookup */
457
458 struct search {
459         /* Stack frame for bio_complete */
460         struct closure          cl;
461
462         struct bbio             bio;
463         struct bio              *orig_bio;
464         struct bio              *cache_miss;
465         struct bcache_device    *d;
466
467         unsigned                insert_bio_sectors;
468         unsigned                recoverable:1;
469         unsigned                write:1;
470         unsigned                read_dirty_data:1;
471
472         unsigned long           start_time;
473
474         struct btree_op         op;
475         struct data_insert_op   iop;
476 };
477
478 static void bch_cache_read_endio(struct bio *bio)
479 {
480         struct bbio *b = container_of(bio, struct bbio, bio);
481         struct closure *cl = bio->bi_private;
482         struct search *s = container_of(cl, struct search, cl);
483
484         /*
485          * If the bucket was reused while our bio was in flight, we might have
486          * read the wrong data. Set s->error but not error so it doesn't get
487          * counted against the cache device, but we'll still reread the data
488          * from the backing device.
489          */
490
491         if (bio->bi_status)
492                 s->iop.status = bio->bi_status;
493         else if (!KEY_DIRTY(&b->key) &&
494                  ptr_stale(s->iop.c, &b->key, 0)) {
495                 atomic_long_inc(&s->iop.c->cache_read_races);
496                 s->iop.status = BLK_STS_IOERR;
497         }
498
499         bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
500 }
501
502 /*
503  * Read from a single key, handling the initial cache miss if the key starts in
504  * the middle of the bio
505  */
506 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
507 {
508         struct search *s = container_of(op, struct search, op);
509         struct bio *n, *bio = &s->bio.bio;
510         struct bkey *bio_key;
511         unsigned ptr;
512
513         if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
514                 return MAP_CONTINUE;
515
516         if (KEY_INODE(k) != s->iop.inode ||
517             KEY_START(k) > bio->bi_iter.bi_sector) {
518                 unsigned bio_sectors = bio_sectors(bio);
519                 unsigned sectors = KEY_INODE(k) == s->iop.inode
520                         ? min_t(uint64_t, INT_MAX,
521                                 KEY_START(k) - bio->bi_iter.bi_sector)
522                         : INT_MAX;
523
524                 int ret = s->d->cache_miss(b, s, bio, sectors);
525                 if (ret != MAP_CONTINUE)
526                         return ret;
527
528                 /* if this was a complete miss we shouldn't get here */
529                 BUG_ON(bio_sectors <= sectors);
530         }
531
532         if (!KEY_SIZE(k))
533                 return MAP_CONTINUE;
534
535         /* XXX: figure out best pointer - for multiple cache devices */
536         ptr = 0;
537
538         PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
539
540         if (KEY_DIRTY(k))
541                 s->read_dirty_data = true;
542
543         n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
544                                       KEY_OFFSET(k) - bio->bi_iter.bi_sector),
545                            GFP_NOIO, s->d->bio_split);
546
547         bio_key = &container_of(n, struct bbio, bio)->key;
548         bch_bkey_copy_single_ptr(bio_key, k, ptr);
549
550         bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
551         bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
552
553         n->bi_end_io    = bch_cache_read_endio;
554         n->bi_private   = &s->cl;
555
556         /*
557          * The bucket we're reading from might be reused while our bio
558          * is in flight, and we could then end up reading the wrong
559          * data.
560          *
561          * We guard against this by checking (in cache_read_endio()) if
562          * the pointer is stale again; if so, we treat it as an error
563          * and reread from the backing device (but we don't pass that
564          * error up anywhere).
565          */
566
567         __bch_submit_bbio(n, b->c);
568         return n == bio ? MAP_DONE : MAP_CONTINUE;
569 }
570
571 static void cache_lookup(struct closure *cl)
572 {
573         struct search *s = container_of(cl, struct search, iop.cl);
574         struct bio *bio = &s->bio.bio;
575         int ret;
576
577         bch_btree_op_init(&s->op, -1);
578
579         ret = bch_btree_map_keys(&s->op, s->iop.c,
580                                  &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
581                                  cache_lookup_fn, MAP_END_KEY);
582         if (ret == -EAGAIN) {
583                 continue_at(cl, cache_lookup, bcache_wq);
584                 return;
585         }
586
587         closure_return(cl);
588 }
589
590 /* Common code for the make_request functions */
591
592 static void request_endio(struct bio *bio)
593 {
594         struct closure *cl = bio->bi_private;
595
596         if (bio->bi_status) {
597                 struct search *s = container_of(cl, struct search, cl);
598                 s->iop.status = bio->bi_status;
599                 /* Only cache read errors are recoverable */
600                 s->recoverable = false;
601         }
602
603         bio_put(bio);
604         closure_put(cl);
605 }
606
607 static void bio_complete(struct search *s)
608 {
609         if (s->orig_bio) {
610                 struct request_queue *q = s->orig_bio->bi_disk->queue;
611                 generic_end_io_acct(q, bio_data_dir(s->orig_bio),
612                                     &s->d->disk->part0, s->start_time);
613
614                 trace_bcache_request_end(s->d, s->orig_bio);
615                 s->orig_bio->bi_status = s->iop.status;
616                 bio_endio(s->orig_bio);
617                 s->orig_bio = NULL;
618         }
619 }
620
621 static void do_bio_hook(struct search *s, struct bio *orig_bio)
622 {
623         struct bio *bio = &s->bio.bio;
624
625         bio_init(bio, NULL, 0);
626         __bio_clone_fast(bio, orig_bio);
627         bio->bi_end_io          = request_endio;
628         bio->bi_private         = &s->cl;
629
630         bio_cnt_set(bio, 3);
631 }
632
633 static void search_free(struct closure *cl)
634 {
635         struct search *s = container_of(cl, struct search, cl);
636         bio_complete(s);
637
638         if (s->iop.bio)
639                 bio_put(s->iop.bio);
640
641         closure_debug_destroy(cl);
642         mempool_free(s, s->d->c->search);
643 }
644
645 static inline struct search *search_alloc(struct bio *bio,
646                                           struct bcache_device *d)
647 {
648         struct search *s;
649
650         s = mempool_alloc(d->c->search, GFP_NOIO);
651
652         closure_init(&s->cl, NULL);
653         do_bio_hook(s, bio);
654
655         s->orig_bio             = bio;
656         s->cache_miss           = NULL;
657         s->d                    = d;
658         s->recoverable          = 1;
659         s->write                = op_is_write(bio_op(bio));
660         s->read_dirty_data      = 0;
661         s->start_time           = jiffies;
662
663         s->iop.c                = d->c;
664         s->iop.bio              = NULL;
665         s->iop.inode            = d->id;
666         s->iop.write_point      = hash_long((unsigned long) current, 16);
667         s->iop.write_prio       = 0;
668         s->iop.status           = 0;
669         s->iop.flags            = 0;
670         s->iop.flush_journal    = op_is_flush(bio->bi_opf);
671         s->iop.wq               = bcache_wq;
672
673         return s;
674 }
675
676 /* Cached devices */
677
678 static void cached_dev_bio_complete(struct closure *cl)
679 {
680         struct search *s = container_of(cl, struct search, cl);
681         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
682
683         search_free(cl);
684         cached_dev_put(dc);
685 }
686
687 /* Process reads */
688
689 static void cached_dev_cache_miss_done(struct closure *cl)
690 {
691         struct search *s = container_of(cl, struct search, cl);
692
693         if (s->iop.replace_collision)
694                 bch_mark_cache_miss_collision(s->iop.c, s->d);
695
696         if (s->iop.bio)
697                 bio_free_pages(s->iop.bio);
698
699         cached_dev_bio_complete(cl);
700 }
701
702 static void cached_dev_read_error(struct closure *cl)
703 {
704         struct search *s = container_of(cl, struct search, cl);
705         struct bio *bio = &s->bio.bio;
706
707         if (s->recoverable) {
708                 /* Retry from the backing device: */
709                 trace_bcache_read_retry(s->orig_bio);
710
711                 s->iop.status = 0;
712                 do_bio_hook(s, s->orig_bio);
713
714                 /* XXX: invalidate cache */
715
716                 closure_bio_submit(bio, cl);
717         }
718
719         continue_at(cl, cached_dev_cache_miss_done, NULL);
720 }
721
722 static void cached_dev_read_done(struct closure *cl)
723 {
724         struct search *s = container_of(cl, struct search, cl);
725         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
726
727         /*
728          * We had a cache miss; cache_bio now contains data ready to be inserted
729          * into the cache.
730          *
731          * First, we copy the data we just read from cache_bio's bounce buffers
732          * to the buffers the original bio pointed to:
733          */
734
735         if (s->iop.bio) {
736                 bio_reset(s->iop.bio);
737                 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
738                 bio_copy_dev(s->iop.bio, s->cache_miss);
739                 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
740                 bch_bio_map(s->iop.bio, NULL);
741
742                 bio_copy_data(s->cache_miss, s->iop.bio);
743
744                 bio_put(s->cache_miss);
745                 s->cache_miss = NULL;
746         }
747
748         if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
749                 bch_data_verify(dc, s->orig_bio);
750
751         bio_complete(s);
752
753         if (s->iop.bio &&
754             !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
755                 BUG_ON(!s->iop.replace);
756                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
757         }
758
759         continue_at(cl, cached_dev_cache_miss_done, NULL);
760 }
761
762 static void cached_dev_read_done_bh(struct closure *cl)
763 {
764         struct search *s = container_of(cl, struct search, cl);
765         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
766
767         bch_mark_cache_accounting(s->iop.c, s->d,
768                                   !s->cache_miss, s->iop.bypass);
769         trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
770
771         if (s->iop.status)
772                 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
773         else if (s->iop.bio || verify(dc, &s->bio.bio))
774                 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
775         else
776                 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
777 }
778
779 static int cached_dev_cache_miss(struct btree *b, struct search *s,
780                                  struct bio *bio, unsigned sectors)
781 {
782         int ret = MAP_CONTINUE;
783         unsigned reada = 0;
784         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
785         struct bio *miss, *cache_bio;
786
787         if (s->cache_miss || s->iop.bypass) {
788                 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
789                 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
790                 goto out_submit;
791         }
792
793         if (!(bio->bi_opf & REQ_RAHEAD) &&
794             !(bio->bi_opf & REQ_META) &&
795             s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
796                 reada = min_t(sector_t, dc->readahead >> 9,
797                               get_capacity(bio->bi_disk) - bio_end_sector(bio));
798
799         s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
800
801         s->iop.replace_key = KEY(s->iop.inode,
802                                  bio->bi_iter.bi_sector + s->insert_bio_sectors,
803                                  s->insert_bio_sectors);
804
805         ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
806         if (ret)
807                 return ret;
808
809         s->iop.replace = true;
810
811         miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
812
813         /* btree_search_recurse()'s btree iterator is no good anymore */
814         ret = miss == bio ? MAP_DONE : -EINTR;
815
816         cache_bio = bio_alloc_bioset(GFP_NOWAIT,
817                         DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
818                         dc->disk.bio_split);
819         if (!cache_bio)
820                 goto out_submit;
821
822         cache_bio->bi_iter.bi_sector    = miss->bi_iter.bi_sector;
823         bio_copy_dev(cache_bio, miss);
824         cache_bio->bi_iter.bi_size      = s->insert_bio_sectors << 9;
825
826         cache_bio->bi_end_io    = request_endio;
827         cache_bio->bi_private   = &s->cl;
828
829         bch_bio_map(cache_bio, NULL);
830         if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
831                 goto out_put;
832
833         if (reada)
834                 bch_mark_cache_readahead(s->iop.c, s->d);
835
836         s->cache_miss   = miss;
837         s->iop.bio      = cache_bio;
838         bio_get(cache_bio);
839         closure_bio_submit(cache_bio, &s->cl);
840
841         return ret;
842 out_put:
843         bio_put(cache_bio);
844 out_submit:
845         miss->bi_end_io         = request_endio;
846         miss->bi_private        = &s->cl;
847         closure_bio_submit(miss, &s->cl);
848         return ret;
849 }
850
851 static void cached_dev_read(struct cached_dev *dc, struct search *s)
852 {
853         struct closure *cl = &s->cl;
854
855         closure_call(&s->iop.cl, cache_lookup, NULL, cl);
856         continue_at(cl, cached_dev_read_done_bh, NULL);
857 }
858
859 /* Process writes */
860
861 static void cached_dev_write_complete(struct closure *cl)
862 {
863         struct search *s = container_of(cl, struct search, cl);
864         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
865
866         up_read_non_owner(&dc->writeback_lock);
867         cached_dev_bio_complete(cl);
868 }
869
870 static void cached_dev_write(struct cached_dev *dc, struct search *s)
871 {
872         struct closure *cl = &s->cl;
873         struct bio *bio = &s->bio.bio;
874         struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
875         struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
876
877         bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
878
879         down_read_non_owner(&dc->writeback_lock);
880         if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
881                 /*
882                  * We overlap with some dirty data undergoing background
883                  * writeback, force this write to writeback
884                  */
885                 s->iop.bypass = false;
886                 s->iop.writeback = true;
887         }
888
889         /*
890          * Discards aren't _required_ to do anything, so skipping if
891          * check_overlapping returned true is ok
892          *
893          * But check_overlapping drops dirty keys for which io hasn't started,
894          * so we still want to call it.
895          */
896         if (bio_op(bio) == REQ_OP_DISCARD)
897                 s->iop.bypass = true;
898
899         if (should_writeback(dc, s->orig_bio,
900                              cache_mode(dc, bio),
901                              s->iop.bypass)) {
902                 s->iop.bypass = false;
903                 s->iop.writeback = true;
904         }
905
906         if (s->iop.bypass) {
907                 s->iop.bio = s->orig_bio;
908                 bio_get(s->iop.bio);
909
910                 if ((bio_op(bio) != REQ_OP_DISCARD) ||
911                     blk_queue_discard(bdev_get_queue(dc->bdev)))
912                         closure_bio_submit(bio, cl);
913         } else if (s->iop.writeback) {
914                 bch_writeback_add(dc);
915                 s->iop.bio = bio;
916
917                 if (bio->bi_opf & REQ_PREFLUSH) {
918                         /* Also need to send a flush to the backing device */
919                         struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
920                                                              dc->disk.bio_split);
921
922                         bio_copy_dev(flush, bio);
923                         flush->bi_end_io = request_endio;
924                         flush->bi_private = cl;
925                         flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
926
927                         closure_bio_submit(flush, cl);
928                 }
929         } else {
930                 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
931
932                 closure_bio_submit(bio, cl);
933         }
934
935         closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
936         continue_at(cl, cached_dev_write_complete, NULL);
937 }
938
939 static void cached_dev_nodata(struct closure *cl)
940 {
941         struct search *s = container_of(cl, struct search, cl);
942         struct bio *bio = &s->bio.bio;
943
944         if (s->iop.flush_journal)
945                 bch_journal_meta(s->iop.c, cl);
946
947         /* If it's a flush, we send the flush to the backing device too */
948         closure_bio_submit(bio, cl);
949
950         continue_at(cl, cached_dev_bio_complete, NULL);
951 }
952
953 /* Cached devices - read & write stuff */
954
955 static blk_qc_t cached_dev_make_request(struct request_queue *q,
956                                         struct bio *bio)
957 {
958         struct search *s;
959         struct bcache_device *d = bio->bi_disk->private_data;
960         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
961         int rw = bio_data_dir(bio);
962
963         generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);
964
965         bio_set_dev(bio, dc->bdev);
966         bio->bi_iter.bi_sector += dc->sb.data_offset;
967
968         if (cached_dev_get(dc)) {
969                 s = search_alloc(bio, d);
970                 trace_bcache_request_start(s->d, bio);
971
972                 if (!bio->bi_iter.bi_size) {
973                         /*
974                          * can't call bch_journal_meta from under
975                          * generic_make_request
976                          */
977                         continue_at_nobarrier(&s->cl,
978                                               cached_dev_nodata,
979                                               bcache_wq);
980                 } else {
981                         s->iop.bypass = check_should_bypass(dc, bio);
982
983                         if (rw)
984                                 cached_dev_write(dc, s);
985                         else
986                                 cached_dev_read(dc, s);
987                 }
988         } else {
989                 if ((bio_op(bio) == REQ_OP_DISCARD) &&
990                     !blk_queue_discard(bdev_get_queue(dc->bdev)))
991                         bio_endio(bio);
992                 else
993                         generic_make_request(bio);
994         }
995
996         return BLK_QC_T_NONE;
997 }
998
999 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1000                             unsigned int cmd, unsigned long arg)
1001 {
1002         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1003         return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1004 }
1005
1006 static int cached_dev_congested(void *data, int bits)
1007 {
1008         struct bcache_device *d = data;
1009         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1010         struct request_queue *q = bdev_get_queue(dc->bdev);
1011         int ret = 0;
1012
1013         if (bdi_congested(q->backing_dev_info, bits))
1014                 return 1;
1015
1016         if (cached_dev_get(dc)) {
1017                 unsigned i;
1018                 struct cache *ca;
1019
1020                 for_each_cache(ca, d->c, i) {
1021                         q = bdev_get_queue(ca->bdev);
1022                         ret |= bdi_congested(q->backing_dev_info, bits);
1023                 }
1024
1025                 cached_dev_put(dc);
1026         }
1027
1028         return ret;
1029 }
1030
1031 void bch_cached_dev_request_init(struct cached_dev *dc)
1032 {
1033         struct gendisk *g = dc->disk.disk;
1034
1035         g->queue->make_request_fn               = cached_dev_make_request;
1036         g->queue->backing_dev_info->congested_fn = cached_dev_congested;
1037         dc->disk.cache_miss                     = cached_dev_cache_miss;
1038         dc->disk.ioctl                          = cached_dev_ioctl;
1039 }
1040
1041 /* Flash backed devices */
1042
1043 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1044                                 struct bio *bio, unsigned sectors)
1045 {
1046         unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1047
1048         swap(bio->bi_iter.bi_size, bytes);
1049         zero_fill_bio(bio);
1050         swap(bio->bi_iter.bi_size, bytes);
1051
1052         bio_advance(bio, bytes);
1053
1054         if (!bio->bi_iter.bi_size)
1055                 return MAP_DONE;
1056
1057         return MAP_CONTINUE;
1058 }
1059
1060 static void flash_dev_nodata(struct closure *cl)
1061 {
1062         struct search *s = container_of(cl, struct search, cl);
1063
1064         if (s->iop.flush_journal)
1065                 bch_journal_meta(s->iop.c, cl);
1066
1067         continue_at(cl, search_free, NULL);
1068 }
1069
1070 static blk_qc_t flash_dev_make_request(struct request_queue *q,
1071                                              struct bio *bio)
1072 {
1073         struct search *s;
1074         struct closure *cl;
1075         struct bcache_device *d = bio->bi_disk->private_data;
1076         int rw = bio_data_dir(bio);
1077
1078         generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);
1079
1080         s = search_alloc(bio, d);
1081         cl = &s->cl;
1082         bio = &s->bio.bio;
1083
1084         trace_bcache_request_start(s->d, bio);
1085
1086         if (!bio->bi_iter.bi_size) {
1087                 /*
1088                  * can't call bch_journal_meta from under
1089                  * generic_make_request
1090                  */
1091                 continue_at_nobarrier(&s->cl,
1092                                       flash_dev_nodata,
1093                                       bcache_wq);
1094                 return BLK_QC_T_NONE;
1095         } else if (rw) {
1096                 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1097                                         &KEY(d->id, bio->bi_iter.bi_sector, 0),
1098                                         &KEY(d->id, bio_end_sector(bio), 0));
1099
1100                 s->iop.bypass           = (bio_op(bio) == REQ_OP_DISCARD) != 0;
1101                 s->iop.writeback        = true;
1102                 s->iop.bio              = bio;
1103
1104                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1105         } else {
1106                 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1107         }
1108
1109         continue_at(cl, search_free, NULL);
1110         return BLK_QC_T_NONE;
1111 }
1112
1113 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1114                            unsigned int cmd, unsigned long arg)
1115 {
1116         return -ENOTTY;
1117 }
1118
1119 static int flash_dev_congested(void *data, int bits)
1120 {
1121         struct bcache_device *d = data;
1122         struct request_queue *q;
1123         struct cache *ca;
1124         unsigned i;
1125         int ret = 0;
1126
1127         for_each_cache(ca, d->c, i) {
1128                 q = bdev_get_queue(ca->bdev);
1129                 ret |= bdi_congested(q->backing_dev_info, bits);
1130         }
1131
1132         return ret;
1133 }
1134
1135 void bch_flash_dev_request_init(struct bcache_device *d)
1136 {
1137         struct gendisk *g = d->disk;
1138
1139         g->queue->make_request_fn               = flash_dev_make_request;
1140         g->queue->backing_dev_info->congested_fn = flash_dev_congested;
1141         d->cache_miss                           = flash_dev_cache_miss;
1142         d->ioctl                                = flash_dev_ioctl;
1143 }
1144
1145 void bch_request_exit(void)
1146 {
1147         if (bch_search_cache)
1148                 kmem_cache_destroy(bch_search_cache);
1149 }
1150
1151 int __init bch_request_init(void)
1152 {
1153         bch_search_cache = KMEM_CACHE(search, 0);
1154         if (!bch_search_cache)
1155                 return -ENOMEM;
1156
1157         return 0;
1158 }