[PATCH] kvm: userspace interface
[sfrench/cifs-2.6.git] / drivers / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "vmx.h"
20 #include "kvm_vmx.h"
21 #include <linux/module.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <asm/io.h>
25
26 #include "segment_descriptor.h"
27
28 #define MSR_IA32_FEATURE_CONTROL                0x03a
29
30 MODULE_AUTHOR("Qumranet");
31 MODULE_LICENSE("GPL");
32
33 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
34 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
35
36 #ifdef __x86_64__
37 #define HOST_IS_64 1
38 #else
39 #define HOST_IS_64 0
40 #endif
41
42 static struct vmcs_descriptor {
43         int size;
44         int order;
45         u32 revision_id;
46 } vmcs_descriptor;
47
48 #define VMX_SEGMENT_FIELD(seg)                                  \
49         [VCPU_SREG_##seg] = {                                   \
50                 .selector = GUEST_##seg##_SELECTOR,             \
51                 .base = GUEST_##seg##_BASE,                     \
52                 .limit = GUEST_##seg##_LIMIT,                   \
53                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
54         }
55
56 static struct kvm_vmx_segment_field {
57         unsigned selector;
58         unsigned base;
59         unsigned limit;
60         unsigned ar_bytes;
61 } kvm_vmx_segment_fields[] = {
62         VMX_SEGMENT_FIELD(CS),
63         VMX_SEGMENT_FIELD(DS),
64         VMX_SEGMENT_FIELD(ES),
65         VMX_SEGMENT_FIELD(FS),
66         VMX_SEGMENT_FIELD(GS),
67         VMX_SEGMENT_FIELD(SS),
68         VMX_SEGMENT_FIELD(TR),
69         VMX_SEGMENT_FIELD(LDTR),
70 };
71
72 static const u32 vmx_msr_index[] = {
73 #ifdef __x86_64__
74         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
75 #endif
76         MSR_EFER, MSR_K6_STAR,
77 };
78 #define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index))
79
80 struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr);
81
82 static inline int is_page_fault(u32 intr_info)
83 {
84         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
85                              INTR_INFO_VALID_MASK)) ==
86                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
87 }
88
89 static inline int is_external_interrupt(u32 intr_info)
90 {
91         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
92                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
93 }
94
95 static void vmcs_clear(struct vmcs *vmcs)
96 {
97         u64 phys_addr = __pa(vmcs);
98         u8 error;
99
100         asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
101                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
102                       : "cc", "memory");
103         if (error)
104                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
105                        vmcs, phys_addr);
106 }
107
108 static void __vcpu_clear(void *arg)
109 {
110         struct kvm_vcpu *vcpu = arg;
111         int cpu = smp_processor_id();
112
113         if (vcpu->cpu == cpu)
114                 vmcs_clear(vcpu->vmcs);
115         if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
116                 per_cpu(current_vmcs, cpu) = NULL;
117 }
118
119 static unsigned long vmcs_readl(unsigned long field)
120 {
121         unsigned long value;
122
123         asm volatile (ASM_VMX_VMREAD_RDX_RAX
124                       : "=a"(value) : "d"(field) : "cc");
125         return value;
126 }
127
128 static u16 vmcs_read16(unsigned long field)
129 {
130         return vmcs_readl(field);
131 }
132
133 static u32 vmcs_read32(unsigned long field)
134 {
135         return vmcs_readl(field);
136 }
137
138 static u64 vmcs_read64(unsigned long field)
139 {
140 #ifdef __x86_64__
141         return vmcs_readl(field);
142 #else
143         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
144 #endif
145 }
146
147 static void vmcs_writel(unsigned long field, unsigned long value)
148 {
149         u8 error;
150
151         asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
152                        : "=q"(error) : "a"(value), "d"(field) : "cc" );
153         if (error)
154                 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
155                        field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
156 }
157
158 static void vmcs_write16(unsigned long field, u16 value)
159 {
160         vmcs_writel(field, value);
161 }
162
163 static void vmcs_write32(unsigned long field, u32 value)
164 {
165         vmcs_writel(field, value);
166 }
167
168 static void vmcs_write64(unsigned long field, u64 value)
169 {
170 #ifdef __x86_64__
171         vmcs_writel(field, value);
172 #else
173         vmcs_writel(field, value);
174         asm volatile ("");
175         vmcs_writel(field+1, value >> 32);
176 #endif
177 }
178
179 /*
180  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
181  * vcpu mutex is already taken.
182  */
183 static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu)
184 {
185         u64 phys_addr = __pa(vcpu->vmcs);
186         int cpu;
187
188         cpu = get_cpu();
189
190         if (vcpu->cpu != cpu) {
191                 smp_call_function(__vcpu_clear, vcpu, 0, 1);
192                 vcpu->launched = 0;
193         }
194
195         if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
196                 u8 error;
197
198                 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
199                 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
200                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
201                               : "cc");
202                 if (error)
203                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
204                                vcpu->vmcs, phys_addr);
205         }
206
207         if (vcpu->cpu != cpu) {
208                 struct descriptor_table dt;
209                 unsigned long sysenter_esp;
210
211                 vcpu->cpu = cpu;
212                 /*
213                  * Linux uses per-cpu TSS and GDT, so set these when switching
214                  * processors.
215                  */
216                 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
217                 get_gdt(&dt);
218                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
219
220                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
221                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
222         }
223         return vcpu;
224 }
225
226 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
227 {
228         put_cpu();
229 }
230
231 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
232 {
233         return vmcs_readl(GUEST_RFLAGS);
234 }
235
236 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
237 {
238         vmcs_writel(GUEST_RFLAGS, rflags);
239 }
240
241 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
242 {
243         unsigned long rip;
244         u32 interruptibility;
245
246         rip = vmcs_readl(GUEST_RIP);
247         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
248         vmcs_writel(GUEST_RIP, rip);
249
250         /*
251          * We emulated an instruction, so temporary interrupt blocking
252          * should be removed, if set.
253          */
254         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
255         if (interruptibility & 3)
256                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
257                              interruptibility & ~3);
258 }
259
260 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
261 {
262         printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
263                vmcs_readl(GUEST_RIP));
264         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
265         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
266                      GP_VECTOR |
267                      INTR_TYPE_EXCEPTION |
268                      INTR_INFO_DELIEVER_CODE_MASK |
269                      INTR_INFO_VALID_MASK);
270 }
271
272 /*
273  * reads and returns guest's timestamp counter "register"
274  * guest_tsc = host_tsc + tsc_offset    -- 21.3
275  */
276 static u64 guest_read_tsc(void)
277 {
278         u64 host_tsc, tsc_offset;
279
280         rdtscll(host_tsc);
281         tsc_offset = vmcs_read64(TSC_OFFSET);
282         return host_tsc + tsc_offset;
283 }
284
285 /*
286  * writes 'guest_tsc' into guest's timestamp counter "register"
287  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
288  */
289 static void guest_write_tsc(u64 guest_tsc)
290 {
291         u64 host_tsc;
292
293         rdtscll(host_tsc);
294         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
295 }
296
297 static void reload_tss(void)
298 {
299 #ifndef __x86_64__
300
301         /*
302          * VT restores TR but not its size.  Useless.
303          */
304         struct descriptor_table gdt;
305         struct segment_descriptor *descs;
306
307         get_gdt(&gdt);
308         descs = (void *)gdt.base;
309         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
310         load_TR_desc();
311 #endif
312 }
313
314 /*
315  * Reads an msr value (of 'msr_index') into 'pdata'.
316  * Returns 0 on success, non-0 otherwise.
317  * Assumes vcpu_load() was already called.
318  */
319 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
320 {
321         u64 data;
322         struct vmx_msr_entry *msr;
323
324         if (!pdata) {
325                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
326                 return -EINVAL;
327         }
328
329         switch (msr_index) {
330 #ifdef __x86_64__
331         case MSR_FS_BASE:
332                 data = vmcs_readl(GUEST_FS_BASE);
333                 break;
334         case MSR_GS_BASE:
335                 data = vmcs_readl(GUEST_GS_BASE);
336                 break;
337         case MSR_EFER:
338                 data = vcpu->shadow_efer;
339                 break;
340 #endif
341         case MSR_IA32_TIME_STAMP_COUNTER:
342                 data = guest_read_tsc();
343                 break;
344         case MSR_IA32_SYSENTER_CS:
345                 data = vmcs_read32(GUEST_SYSENTER_CS);
346                 break;
347         case MSR_IA32_SYSENTER_EIP:
348                 data = vmcs_read32(GUEST_SYSENTER_EIP);
349                 break;
350         case MSR_IA32_SYSENTER_ESP:
351                 data = vmcs_read32(GUEST_SYSENTER_ESP);
352                 break;
353         case MSR_IA32_MC0_CTL:
354         case MSR_IA32_MCG_STATUS:
355         case MSR_IA32_MCG_CAP:
356         case MSR_IA32_MC0_MISC:
357         case MSR_IA32_MC0_MISC+4:
358         case MSR_IA32_MC0_MISC+8:
359         case MSR_IA32_MC0_MISC+12:
360         case MSR_IA32_MC0_MISC+16:
361         case MSR_IA32_UCODE_REV:
362                 /* MTRR registers */
363         case 0xfe:
364         case 0x200 ... 0x2ff:
365                 data = 0;
366                 break;
367         case MSR_IA32_APICBASE:
368                 data = vcpu->apic_base;
369                 break;
370         default:
371                 msr = find_msr_entry(vcpu, msr_index);
372                 if (!msr) {
373                         printk(KERN_ERR "kvm: unhandled rdmsr: %x\n", msr_index);
374                         return 1;
375                 }
376                 data = msr->data;
377                 break;
378         }
379
380         *pdata = data;
381         return 0;
382 }
383
384 /*
385  * Writes msr value into into the appropriate "register".
386  * Returns 0 on success, non-0 otherwise.
387  * Assumes vcpu_load() was already called.
388  */
389 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
390 {
391         struct vmx_msr_entry *msr;
392         switch (msr_index) {
393 #ifdef __x86_64__
394         case MSR_FS_BASE:
395                 vmcs_writel(GUEST_FS_BASE, data);
396                 break;
397         case MSR_GS_BASE:
398                 vmcs_writel(GUEST_GS_BASE, data);
399                 break;
400 #endif
401         case MSR_IA32_SYSENTER_CS:
402                 vmcs_write32(GUEST_SYSENTER_CS, data);
403                 break;
404         case MSR_IA32_SYSENTER_EIP:
405                 vmcs_write32(GUEST_SYSENTER_EIP, data);
406                 break;
407         case MSR_IA32_SYSENTER_ESP:
408                 vmcs_write32(GUEST_SYSENTER_ESP, data);
409                 break;
410 #ifdef __x86_64
411         case MSR_EFER:
412                 set_efer(vcpu, data);
413                 break;
414         case MSR_IA32_MC0_STATUS:
415                 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n"
416                             , __FUNCTION__, data);
417                 break;
418 #endif
419         case MSR_IA32_TIME_STAMP_COUNTER: {
420                 guest_write_tsc(data);
421                 break;
422         }
423         case MSR_IA32_UCODE_REV:
424         case MSR_IA32_UCODE_WRITE:
425         case 0x200 ... 0x2ff: /* MTRRs */
426                 break;
427         case MSR_IA32_APICBASE:
428                 vcpu->apic_base = data;
429                 break;
430         default:
431                 msr = find_msr_entry(vcpu, msr_index);
432                 if (!msr) {
433                         printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr_index);
434                         return 1;
435                 }
436                 msr->data = data;
437                 break;
438         }
439
440         return 0;
441 }
442
443 /*
444  * Sync the rsp and rip registers into the vcpu structure.  This allows
445  * registers to be accessed by indexing vcpu->regs.
446  */
447 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
448 {
449         vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
450         vcpu->rip = vmcs_readl(GUEST_RIP);
451 }
452
453 /*
454  * Syncs rsp and rip back into the vmcs.  Should be called after possible
455  * modification.
456  */
457 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
458 {
459         vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
460         vmcs_writel(GUEST_RIP, vcpu->rip);
461 }
462
463 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
464 {
465         unsigned long dr7 = 0x400;
466         u32 exception_bitmap;
467         int old_singlestep;
468
469         exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
470         old_singlestep = vcpu->guest_debug.singlestep;
471
472         vcpu->guest_debug.enabled = dbg->enabled;
473         if (vcpu->guest_debug.enabled) {
474                 int i;
475
476                 dr7 |= 0x200;  /* exact */
477                 for (i = 0; i < 4; ++i) {
478                         if (!dbg->breakpoints[i].enabled)
479                                 continue;
480                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
481                         dr7 |= 2 << (i*2);    /* global enable */
482                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
483                 }
484
485                 exception_bitmap |= (1u << 1);  /* Trap debug exceptions */
486
487                 vcpu->guest_debug.singlestep = dbg->singlestep;
488         } else {
489                 exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
490                 vcpu->guest_debug.singlestep = 0;
491         }
492
493         if (old_singlestep && !vcpu->guest_debug.singlestep) {
494                 unsigned long flags;
495
496                 flags = vmcs_readl(GUEST_RFLAGS);
497                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
498                 vmcs_writel(GUEST_RFLAGS, flags);
499         }
500
501         vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
502         vmcs_writel(GUEST_DR7, dr7);
503
504         return 0;
505 }
506
507 static __init int cpu_has_kvm_support(void)
508 {
509         unsigned long ecx = cpuid_ecx(1);
510         return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
511 }
512
513 static __init int vmx_disabled_by_bios(void)
514 {
515         u64 msr;
516
517         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
518         return (msr & 5) == 1; /* locked but not enabled */
519 }
520
521 static __init void hardware_enable(void *garbage)
522 {
523         int cpu = raw_smp_processor_id();
524         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
525         u64 old;
526
527         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
528         if ((old & 5) == 0)
529                 /* enable and lock */
530                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
531         write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
532         asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
533                       : "memory", "cc");
534 }
535
536 static void hardware_disable(void *garbage)
537 {
538         asm volatile (ASM_VMX_VMXOFF : : : "cc");
539 }
540
541 static __init void setup_vmcs_descriptor(void)
542 {
543         u32 vmx_msr_low, vmx_msr_high;
544
545         rdmsr(MSR_IA32_VMX_BASIC_MSR, vmx_msr_low, vmx_msr_high);
546         vmcs_descriptor.size = vmx_msr_high & 0x1fff;
547         vmcs_descriptor.order = get_order(vmcs_descriptor.size);
548         vmcs_descriptor.revision_id = vmx_msr_low;
549 };
550
551 static struct vmcs *alloc_vmcs_cpu(int cpu)
552 {
553         int node = cpu_to_node(cpu);
554         struct page *pages;
555         struct vmcs *vmcs;
556
557         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
558         if (!pages)
559                 return NULL;
560         vmcs = page_address(pages);
561         memset(vmcs, 0, vmcs_descriptor.size);
562         vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
563         return vmcs;
564 }
565
566 static struct vmcs *alloc_vmcs(void)
567 {
568         return alloc_vmcs_cpu(smp_processor_id());
569 }
570
571 static void free_vmcs(struct vmcs *vmcs)
572 {
573         free_pages((unsigned long)vmcs, vmcs_descriptor.order);
574 }
575
576 static __exit void free_kvm_area(void)
577 {
578         int cpu;
579
580         for_each_online_cpu(cpu)
581                 free_vmcs(per_cpu(vmxarea, cpu));
582 }
583
584 extern struct vmcs *alloc_vmcs_cpu(int cpu);
585
586 static __init int alloc_kvm_area(void)
587 {
588         int cpu;
589
590         for_each_online_cpu(cpu) {
591                 struct vmcs *vmcs;
592
593                 vmcs = alloc_vmcs_cpu(cpu);
594                 if (!vmcs) {
595                         free_kvm_area();
596                         return -ENOMEM;
597                 }
598
599                 per_cpu(vmxarea, cpu) = vmcs;
600         }
601         return 0;
602 }
603
604 static __init int hardware_setup(void)
605 {
606         setup_vmcs_descriptor();
607         return alloc_kvm_area();
608 }
609
610 static __exit void hardware_unsetup(void)
611 {
612         free_kvm_area();
613 }
614
615 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
616 {
617         if (vcpu->rmode.active)
618                 vmcs_write32(EXCEPTION_BITMAP, ~0);
619         else
620                 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
621 }
622
623 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
624 {
625         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
626
627         if (vmcs_readl(sf->base) == save->base) {
628                 vmcs_write16(sf->selector, save->selector);
629                 vmcs_writel(sf->base, save->base);
630                 vmcs_write32(sf->limit, save->limit);
631                 vmcs_write32(sf->ar_bytes, save->ar);
632         } else {
633                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
634                         << AR_DPL_SHIFT;
635                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
636         }
637 }
638
639 static void enter_pmode(struct kvm_vcpu *vcpu)
640 {
641         unsigned long flags;
642
643         vcpu->rmode.active = 0;
644
645         vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
646         vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
647         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
648
649         flags = vmcs_readl(GUEST_RFLAGS);
650         flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
651         flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
652         vmcs_writel(GUEST_RFLAGS, flags);
653
654         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
655                         (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
656
657         update_exception_bitmap(vcpu);
658
659         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
660         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
661         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
662         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
663
664         vmcs_write16(GUEST_SS_SELECTOR, 0);
665         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
666
667         vmcs_write16(GUEST_CS_SELECTOR,
668                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
669         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
670 }
671
672 static int rmode_tss_base(struct kvm* kvm)
673 {
674         gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
675         return base_gfn << PAGE_SHIFT;
676 }
677
678 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
679 {
680         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
681
682         save->selector = vmcs_read16(sf->selector);
683         save->base = vmcs_readl(sf->base);
684         save->limit = vmcs_read32(sf->limit);
685         save->ar = vmcs_read32(sf->ar_bytes);
686         vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
687         vmcs_write32(sf->limit, 0xffff);
688         vmcs_write32(sf->ar_bytes, 0xf3);
689 }
690
691 static void enter_rmode(struct kvm_vcpu *vcpu)
692 {
693         unsigned long flags;
694
695         vcpu->rmode.active = 1;
696
697         vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
698         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
699
700         vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
701         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
702
703         vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
704         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
705
706         flags = vmcs_readl(GUEST_RFLAGS);
707         vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
708
709         flags |= IOPL_MASK | X86_EFLAGS_VM;
710
711         vmcs_writel(GUEST_RFLAGS, flags);
712         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
713         update_exception_bitmap(vcpu);
714
715         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
716         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
717         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
718
719         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
720         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
721
722         fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
723         fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
724         fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
725         fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
726 }
727
728 #ifdef __x86_64__
729
730 static void enter_lmode(struct kvm_vcpu *vcpu)
731 {
732         u32 guest_tr_ar;
733
734         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
735         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
736                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
737                        __FUNCTION__);
738                 vmcs_write32(GUEST_TR_AR_BYTES,
739                              (guest_tr_ar & ~AR_TYPE_MASK)
740                              | AR_TYPE_BUSY_64_TSS);
741         }
742
743         vcpu->shadow_efer |= EFER_LMA;
744
745         find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
746         vmcs_write32(VM_ENTRY_CONTROLS,
747                      vmcs_read32(VM_ENTRY_CONTROLS)
748                      | VM_ENTRY_CONTROLS_IA32E_MASK);
749 }
750
751 static void exit_lmode(struct kvm_vcpu *vcpu)
752 {
753         vcpu->shadow_efer &= ~EFER_LMA;
754
755         vmcs_write32(VM_ENTRY_CONTROLS,
756                      vmcs_read32(VM_ENTRY_CONTROLS)
757                      & ~VM_ENTRY_CONTROLS_IA32E_MASK);
758 }
759
760 #endif
761
762 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
763 {
764         if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
765                 enter_pmode(vcpu);
766
767         if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
768                 enter_rmode(vcpu);
769
770 #ifdef __x86_64__
771         if (vcpu->shadow_efer & EFER_LME) {
772                 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
773                         enter_lmode(vcpu);
774                 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
775                         exit_lmode(vcpu);
776         }
777 #endif
778
779         vmcs_writel(CR0_READ_SHADOW, cr0);
780         vmcs_writel(GUEST_CR0,
781                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
782         vcpu->cr0 = cr0;
783 }
784
785 /*
786  * Used when restoring the VM to avoid corrupting segment registers
787  */
788 static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
789 {
790         vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
791         update_exception_bitmap(vcpu);
792         vmcs_writel(CR0_READ_SHADOW, cr0);
793         vmcs_writel(GUEST_CR0,
794                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
795         vcpu->cr0 = cr0;
796 }
797
798 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
799 {
800         vmcs_writel(GUEST_CR3, cr3);
801 }
802
803 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
804 {
805         vmcs_writel(CR4_READ_SHADOW, cr4);
806         vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
807                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
808         vcpu->cr4 = cr4;
809 }
810
811 #ifdef __x86_64__
812
813 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
814 {
815         struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
816
817         vcpu->shadow_efer = efer;
818         if (efer & EFER_LMA) {
819                 vmcs_write32(VM_ENTRY_CONTROLS,
820                                      vmcs_read32(VM_ENTRY_CONTROLS) |
821                                      VM_ENTRY_CONTROLS_IA32E_MASK);
822                 msr->data = efer;
823
824         } else {
825                 vmcs_write32(VM_ENTRY_CONTROLS,
826                                      vmcs_read32(VM_ENTRY_CONTROLS) &
827                                      ~VM_ENTRY_CONTROLS_IA32E_MASK);
828
829                 msr->data = efer & ~EFER_LME;
830         }
831 }
832
833 #endif
834
835 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
836 {
837         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
838
839         return vmcs_readl(sf->base);
840 }
841
842 static void vmx_get_segment(struct kvm_vcpu *vcpu,
843                             struct kvm_segment *var, int seg)
844 {
845         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
846         u32 ar;
847
848         var->base = vmcs_readl(sf->base);
849         var->limit = vmcs_read32(sf->limit);
850         var->selector = vmcs_read16(sf->selector);
851         ar = vmcs_read32(sf->ar_bytes);
852         if (ar & AR_UNUSABLE_MASK)
853                 ar = 0;
854         var->type = ar & 15;
855         var->s = (ar >> 4) & 1;
856         var->dpl = (ar >> 5) & 3;
857         var->present = (ar >> 7) & 1;
858         var->avl = (ar >> 12) & 1;
859         var->l = (ar >> 13) & 1;
860         var->db = (ar >> 14) & 1;
861         var->g = (ar >> 15) & 1;
862         var->unusable = (ar >> 16) & 1;
863 }
864
865 static void vmx_set_segment(struct kvm_vcpu *vcpu,
866                             struct kvm_segment *var, int seg)
867 {
868         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
869         u32 ar;
870
871         vmcs_writel(sf->base, var->base);
872         vmcs_write32(sf->limit, var->limit);
873         vmcs_write16(sf->selector, var->selector);
874         if (var->unusable)
875                 ar = 1 << 16;
876         else {
877                 ar = var->type & 15;
878                 ar |= (var->s & 1) << 4;
879                 ar |= (var->dpl & 3) << 5;
880                 ar |= (var->present & 1) << 7;
881                 ar |= (var->avl & 1) << 12;
882                 ar |= (var->l & 1) << 13;
883                 ar |= (var->db & 1) << 14;
884                 ar |= (var->g & 1) << 15;
885         }
886         vmcs_write32(sf->ar_bytes, ar);
887 }
888
889 static int vmx_is_long_mode(struct kvm_vcpu *vcpu)
890 {
891         return vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_CONTROLS_IA32E_MASK;
892 }
893
894 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
895 {
896         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
897
898         *db = (ar >> 14) & 1;
899         *l = (ar >> 13) & 1;
900 }
901
902 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
903 {
904         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
905         dt->base = vmcs_readl(GUEST_IDTR_BASE);
906 }
907
908 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
909 {
910         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
911         vmcs_writel(GUEST_IDTR_BASE, dt->base);
912 }
913
914 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
915 {
916         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
917         dt->base = vmcs_readl(GUEST_GDTR_BASE);
918 }
919
920 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
921 {
922         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
923         vmcs_writel(GUEST_GDTR_BASE, dt->base);
924 }
925
926 static int init_rmode_tss(struct kvm* kvm)
927 {
928         struct page *p1, *p2, *p3;
929         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
930         char *page;
931
932         p1 = _gfn_to_page(kvm, fn++);
933         p2 = _gfn_to_page(kvm, fn++);
934         p3 = _gfn_to_page(kvm, fn);
935
936         if (!p1 || !p2 || !p3) {
937                 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
938                 return 0;
939         }
940
941         page = kmap_atomic(p1, KM_USER0);
942         memset(page, 0, PAGE_SIZE);
943         *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
944         kunmap_atomic(page, KM_USER0);
945
946         page = kmap_atomic(p2, KM_USER0);
947         memset(page, 0, PAGE_SIZE);
948         kunmap_atomic(page, KM_USER0);
949
950         page = kmap_atomic(p3, KM_USER0);
951         memset(page, 0, PAGE_SIZE);
952         *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
953         kunmap_atomic(page, KM_USER0);
954
955         return 1;
956 }
957
958 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
959 {
960         u32 msr_high, msr_low;
961
962         rdmsr(msr, msr_low, msr_high);
963
964         val &= msr_high;
965         val |= msr_low;
966         vmcs_write32(vmcs_field, val);
967 }
968
969 static void seg_setup(int seg)
970 {
971         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
972
973         vmcs_write16(sf->selector, 0);
974         vmcs_writel(sf->base, 0);
975         vmcs_write32(sf->limit, 0xffff);
976         vmcs_write32(sf->ar_bytes, 0x93);
977 }
978
979 /*
980  * Sets up the vmcs for emulated real mode.
981  */
982 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
983 {
984         u32 host_sysenter_cs;
985         u32 junk;
986         unsigned long a;
987         struct descriptor_table dt;
988         int i;
989         int ret = 0;
990         int nr_good_msrs;
991         extern asmlinkage void kvm_vmx_return(void);
992
993         if (!init_rmode_tss(vcpu->kvm)) {
994                 ret = -ENOMEM;
995                 goto out;
996         }
997
998         memset(vcpu->regs, 0, sizeof(vcpu->regs));
999         vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
1000         vcpu->cr8 = 0;
1001         vcpu->apic_base = 0xfee00000 |
1002                         /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
1003                         MSR_IA32_APICBASE_ENABLE;
1004
1005         fx_init(vcpu);
1006
1007         /*
1008          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1009          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
1010          */
1011         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1012         vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1013         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1014         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1015
1016         seg_setup(VCPU_SREG_DS);
1017         seg_setup(VCPU_SREG_ES);
1018         seg_setup(VCPU_SREG_FS);
1019         seg_setup(VCPU_SREG_GS);
1020         seg_setup(VCPU_SREG_SS);
1021
1022         vmcs_write16(GUEST_TR_SELECTOR, 0);
1023         vmcs_writel(GUEST_TR_BASE, 0);
1024         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1025         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1026
1027         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1028         vmcs_writel(GUEST_LDTR_BASE, 0);
1029         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1030         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1031
1032         vmcs_write32(GUEST_SYSENTER_CS, 0);
1033         vmcs_writel(GUEST_SYSENTER_ESP, 0);
1034         vmcs_writel(GUEST_SYSENTER_EIP, 0);
1035
1036         vmcs_writel(GUEST_RFLAGS, 0x02);
1037         vmcs_writel(GUEST_RIP, 0xfff0);
1038         vmcs_writel(GUEST_RSP, 0);
1039
1040         vmcs_writel(GUEST_CR3, 0);
1041
1042         //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1043         vmcs_writel(GUEST_DR7, 0x400);
1044
1045         vmcs_writel(GUEST_GDTR_BASE, 0);
1046         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1047
1048         vmcs_writel(GUEST_IDTR_BASE, 0);
1049         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1050
1051         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1052         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1053         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1054
1055         /* I/O */
1056         vmcs_write64(IO_BITMAP_A, 0);
1057         vmcs_write64(IO_BITMAP_B, 0);
1058
1059         guest_write_tsc(0);
1060
1061         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1062
1063         /* Special registers */
1064         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1065
1066         /* Control */
1067         vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS_MSR,
1068                                PIN_BASED_VM_EXEC_CONTROL,
1069                                PIN_BASED_EXT_INTR_MASK   /* 20.6.1 */
1070                                | PIN_BASED_NMI_EXITING   /* 20.6.1 */
1071                         );
1072         vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS_MSR,
1073                                CPU_BASED_VM_EXEC_CONTROL,
1074                                CPU_BASED_HLT_EXITING         /* 20.6.2 */
1075                                | CPU_BASED_CR8_LOAD_EXITING    /* 20.6.2 */
1076                                | CPU_BASED_CR8_STORE_EXITING   /* 20.6.2 */
1077                                | CPU_BASED_UNCOND_IO_EXITING   /* 20.6.2 */
1078                                | CPU_BASED_INVDPG_EXITING
1079                                | CPU_BASED_MOV_DR_EXITING
1080                                | CPU_BASED_USE_TSC_OFFSETING   /* 21.3 */
1081                         );
1082
1083         vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
1084         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1085         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1086         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
1087
1088         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
1089         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
1090         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
1091
1092         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
1093         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1094         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1095         vmcs_write16(HOST_FS_SELECTOR, read_fs());    /* 22.2.4 */
1096         vmcs_write16(HOST_GS_SELECTOR, read_gs());    /* 22.2.4 */
1097         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1098 #ifdef __x86_64__
1099         rdmsrl(MSR_FS_BASE, a);
1100         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1101         rdmsrl(MSR_GS_BASE, a);
1102         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1103 #else
1104         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1105         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1106 #endif
1107
1108         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
1109
1110         get_idt(&dt);
1111         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
1112
1113
1114         vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
1115
1116         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1117         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1118         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1119         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
1120         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1121         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
1122
1123         ret = -ENOMEM;
1124         vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1125         if (!vcpu->guest_msrs)
1126                 goto out;
1127         vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1128         if (!vcpu->host_msrs)
1129                 goto out_free_guest_msrs;
1130
1131         for (i = 0; i < NR_VMX_MSR; ++i) {
1132                 u32 index = vmx_msr_index[i];
1133                 u32 data_low, data_high;
1134                 u64 data;
1135                 int j = vcpu->nmsrs;
1136
1137                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1138                         continue;
1139                 data = data_low | ((u64)data_high << 32);
1140                 vcpu->host_msrs[j].index = index;
1141                 vcpu->host_msrs[j].reserved = 0;
1142                 vcpu->host_msrs[j].data = data;
1143                 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1144                 ++vcpu->nmsrs;
1145         }
1146         printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
1147
1148         nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
1149         vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
1150                     virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1151         vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
1152                     virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1153         vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
1154                     virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
1155         vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS_MSR, VM_EXIT_CONTROLS,
1156                                (HOST_IS_64 << 9));  /* 22.2,1, 20.7.1 */
1157         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
1158         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs);  /* 22.2.2 */
1159         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
1160
1161
1162         /* 22.2.1, 20.8.1 */
1163         vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS_MSR,
1164                                VM_ENTRY_CONTROLS, 0);
1165         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
1166
1167         vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1168         vmcs_writel(TPR_THRESHOLD, 0);
1169
1170         vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
1171         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1172
1173         vcpu->cr0 = 0x60000010;
1174         vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1175         vmx_set_cr4(vcpu, 0);
1176 #ifdef __x86_64__
1177         vmx_set_efer(vcpu, 0);
1178 #endif
1179
1180         return 0;
1181
1182 out_free_guest_msrs:
1183         kfree(vcpu->guest_msrs);
1184 out:
1185         return ret;
1186 }
1187
1188 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1189 {
1190         u16 ent[2];
1191         u16 cs;
1192         u16 ip;
1193         unsigned long flags;
1194         unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1195         u16 sp =  vmcs_readl(GUEST_RSP);
1196         u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1197
1198         if (sp > ss_limit || sp - 6 > sp) {
1199                 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1200                             __FUNCTION__,
1201                             vmcs_readl(GUEST_RSP),
1202                             vmcs_readl(GUEST_SS_BASE),
1203                             vmcs_read32(GUEST_SS_LIMIT));
1204                 return;
1205         }
1206
1207         if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1208                                                                 sizeof(ent)) {
1209                 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1210                 return;
1211         }
1212
1213         flags =  vmcs_readl(GUEST_RFLAGS);
1214         cs =  vmcs_readl(GUEST_CS_BASE) >> 4;
1215         ip =  vmcs_readl(GUEST_RIP);
1216
1217
1218         if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1219             kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1220             kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1221                 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1222                 return;
1223         }
1224
1225         vmcs_writel(GUEST_RFLAGS, flags &
1226                     ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1227         vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1228         vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1229         vmcs_writel(GUEST_RIP, ent[0]);
1230         vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1231 }
1232
1233 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1234 {
1235         int word_index = __ffs(vcpu->irq_summary);
1236         int bit_index = __ffs(vcpu->irq_pending[word_index]);
1237         int irq = word_index * BITS_PER_LONG + bit_index;
1238
1239         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1240         if (!vcpu->irq_pending[word_index])
1241                 clear_bit(word_index, &vcpu->irq_summary);
1242
1243         if (vcpu->rmode.active) {
1244                 inject_rmode_irq(vcpu, irq);
1245                 return;
1246         }
1247         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1248                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1249 }
1250
1251 static void kvm_try_inject_irq(struct kvm_vcpu *vcpu)
1252 {
1253         if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF)
1254             && (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0)
1255                 /*
1256                  * Interrupts enabled, and not blocked by sti or mov ss. Good.
1257                  */
1258                 kvm_do_inject_irq(vcpu);
1259         else
1260                 /*
1261                  * Interrupts blocked.  Wait for unblock.
1262                  */
1263                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1264                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL)
1265                              | CPU_BASED_VIRTUAL_INTR_PENDING);
1266 }
1267
1268 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1269 {
1270         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1271
1272         set_debugreg(dbg->bp[0], 0);
1273         set_debugreg(dbg->bp[1], 1);
1274         set_debugreg(dbg->bp[2], 2);
1275         set_debugreg(dbg->bp[3], 3);
1276
1277         if (dbg->singlestep) {
1278                 unsigned long flags;
1279
1280                 flags = vmcs_readl(GUEST_RFLAGS);
1281                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1282                 vmcs_writel(GUEST_RFLAGS, flags);
1283         }
1284 }
1285
1286 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1287                                   int vec, u32 err_code)
1288 {
1289         if (!vcpu->rmode.active)
1290                 return 0;
1291
1292         if (vec == GP_VECTOR && err_code == 0)
1293                 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1294                         return 1;
1295         return 0;
1296 }
1297
1298 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1299 {
1300         u32 intr_info, error_code;
1301         unsigned long cr2, rip;
1302         u32 vect_info;
1303         enum emulation_result er;
1304
1305         vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1306         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1307
1308         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1309                                                 !is_page_fault(intr_info)) {
1310                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1311                        "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1312         }
1313
1314         if (is_external_interrupt(vect_info)) {
1315                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1316                 set_bit(irq, vcpu->irq_pending);
1317                 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1318         }
1319
1320         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1321                 asm ("int $2");
1322                 return 1;
1323         }
1324         error_code = 0;
1325         rip = vmcs_readl(GUEST_RIP);
1326         if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1327                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1328         if (is_page_fault(intr_info)) {
1329                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1330
1331                 spin_lock(&vcpu->kvm->lock);
1332                 if (!vcpu->mmu.page_fault(vcpu, cr2, error_code)) {
1333                         spin_unlock(&vcpu->kvm->lock);
1334                         return 1;
1335                 }
1336
1337                 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1338                 spin_unlock(&vcpu->kvm->lock);
1339
1340                 switch (er) {
1341                 case EMULATE_DONE:
1342                         return 1;
1343                 case EMULATE_DO_MMIO:
1344                         ++kvm_stat.mmio_exits;
1345                         kvm_run->exit_reason = KVM_EXIT_MMIO;
1346                         return 0;
1347                  case EMULATE_FAIL:
1348                         vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1349                         break;
1350                 default:
1351                         BUG();
1352                 }
1353         }
1354
1355         if (vcpu->rmode.active &&
1356             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1357                                                                 error_code))
1358                 return 1;
1359
1360         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1361                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1362                 return 0;
1363         }
1364         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1365         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1366         kvm_run->ex.error_code = error_code;
1367         return 0;
1368 }
1369
1370 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1371                                      struct kvm_run *kvm_run)
1372 {
1373         ++kvm_stat.irq_exits;
1374         return 1;
1375 }
1376
1377
1378 static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
1379 {
1380         u64 inst;
1381         gva_t rip;
1382         int countr_size;
1383         int i, n;
1384
1385         if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1386                 countr_size = 2;
1387         } else {
1388                 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1389
1390                 countr_size = (cs_ar & AR_L_MASK) ? 8:
1391                               (cs_ar & AR_DB_MASK) ? 4: 2;
1392         }
1393
1394         rip =  vmcs_readl(GUEST_RIP);
1395         if (countr_size != 8)
1396                 rip += vmcs_readl(GUEST_CS_BASE);
1397
1398         n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1399
1400         for (i = 0; i < n; i++) {
1401                 switch (((u8*)&inst)[i]) {
1402                 case 0xf0:
1403                 case 0xf2:
1404                 case 0xf3:
1405                 case 0x2e:
1406                 case 0x36:
1407                 case 0x3e:
1408                 case 0x26:
1409                 case 0x64:
1410                 case 0x65:
1411                 case 0x66:
1412                         break;
1413                 case 0x67:
1414                         countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1415                 default:
1416                         goto done;
1417                 }
1418         }
1419         return 0;
1420 done:
1421         countr_size *= 8;
1422         *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1423         return 1;
1424 }
1425
1426 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1427 {
1428         u64 exit_qualification;
1429
1430         ++kvm_stat.io_exits;
1431         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1432         kvm_run->exit_reason = KVM_EXIT_IO;
1433         if (exit_qualification & 8)
1434                 kvm_run->io.direction = KVM_EXIT_IO_IN;
1435         else
1436                 kvm_run->io.direction = KVM_EXIT_IO_OUT;
1437         kvm_run->io.size = (exit_qualification & 7) + 1;
1438         kvm_run->io.string = (exit_qualification & 16) != 0;
1439         kvm_run->io.string_down
1440                 = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1441         kvm_run->io.rep = (exit_qualification & 32) != 0;
1442         kvm_run->io.port = exit_qualification >> 16;
1443         if (kvm_run->io.string) {
1444                 if (!get_io_count(vcpu, &kvm_run->io.count))
1445                         return 1;
1446                 kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1447         } else
1448                 kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
1449         return 0;
1450 }
1451
1452 static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1453 {
1454         u64 address = vmcs_read64(EXIT_QUALIFICATION);
1455         int instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1456         spin_lock(&vcpu->kvm->lock);
1457         vcpu->mmu.inval_page(vcpu, address);
1458         spin_unlock(&vcpu->kvm->lock);
1459         vmcs_writel(GUEST_RIP, vmcs_readl(GUEST_RIP) + instruction_length);
1460         return 1;
1461 }
1462
1463 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1464 {
1465         u64 exit_qualification;
1466         int cr;
1467         int reg;
1468
1469         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1470         cr = exit_qualification & 15;
1471         reg = (exit_qualification >> 8) & 15;
1472         switch ((exit_qualification >> 4) & 3) {
1473         case 0: /* mov to cr */
1474                 switch (cr) {
1475                 case 0:
1476                         vcpu_load_rsp_rip(vcpu);
1477                         set_cr0(vcpu, vcpu->regs[reg]);
1478                         skip_emulated_instruction(vcpu);
1479                         return 1;
1480                 case 3:
1481                         vcpu_load_rsp_rip(vcpu);
1482                         set_cr3(vcpu, vcpu->regs[reg]);
1483                         skip_emulated_instruction(vcpu);
1484                         return 1;
1485                 case 4:
1486                         vcpu_load_rsp_rip(vcpu);
1487                         set_cr4(vcpu, vcpu->regs[reg]);
1488                         skip_emulated_instruction(vcpu);
1489                         return 1;
1490                 case 8:
1491                         vcpu_load_rsp_rip(vcpu);
1492                         set_cr8(vcpu, vcpu->regs[reg]);
1493                         skip_emulated_instruction(vcpu);
1494                         return 1;
1495                 };
1496                 break;
1497         case 1: /*mov from cr*/
1498                 switch (cr) {
1499                 case 3:
1500                         vcpu_load_rsp_rip(vcpu);
1501                         vcpu->regs[reg] = vcpu->cr3;
1502                         vcpu_put_rsp_rip(vcpu);
1503                         skip_emulated_instruction(vcpu);
1504                         return 1;
1505                 case 8:
1506                         printk(KERN_DEBUG "handle_cr: read CR8 "
1507                                "cpu erratum AA15\n");
1508                         vcpu_load_rsp_rip(vcpu);
1509                         vcpu->regs[reg] = vcpu->cr8;
1510                         vcpu_put_rsp_rip(vcpu);
1511                         skip_emulated_instruction(vcpu);
1512                         return 1;
1513                 }
1514                 break;
1515         case 3: /* lmsw */
1516                 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1517
1518                 skip_emulated_instruction(vcpu);
1519                 return 1;
1520         default:
1521                 break;
1522         }
1523         kvm_run->exit_reason = 0;
1524         printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1525                (int)(exit_qualification >> 4) & 3, cr);
1526         return 0;
1527 }
1528
1529 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1530 {
1531         u64 exit_qualification;
1532         unsigned long val;
1533         int dr, reg;
1534
1535         /*
1536          * FIXME: this code assumes the host is debugging the guest.
1537          *        need to deal with guest debugging itself too.
1538          */
1539         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1540         dr = exit_qualification & 7;
1541         reg = (exit_qualification >> 8) & 15;
1542         vcpu_load_rsp_rip(vcpu);
1543         if (exit_qualification & 16) {
1544                 /* mov from dr */
1545                 switch (dr) {
1546                 case 6:
1547                         val = 0xffff0ff0;
1548                         break;
1549                 case 7:
1550                         val = 0x400;
1551                         break;
1552                 default:
1553                         val = 0;
1554                 }
1555                 vcpu->regs[reg] = val;
1556         } else {
1557                 /* mov to dr */
1558         }
1559         vcpu_put_rsp_rip(vcpu);
1560         skip_emulated_instruction(vcpu);
1561         return 1;
1562 }
1563
1564 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1565 {
1566         kvm_run->exit_reason = KVM_EXIT_CPUID;
1567         return 0;
1568 }
1569
1570 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1571 {
1572         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1573         u64 data;
1574
1575         if (vmx_get_msr(vcpu, ecx, &data)) {
1576                 vmx_inject_gp(vcpu, 0);
1577                 return 1;
1578         }
1579
1580         /* FIXME: handling of bits 32:63 of rax, rdx */
1581         vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1582         vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1583         skip_emulated_instruction(vcpu);
1584         return 1;
1585 }
1586
1587 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1588 {
1589         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1590         u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1591                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1592
1593         if (vmx_set_msr(vcpu, ecx, data) != 0) {
1594                 vmx_inject_gp(vcpu, 0);
1595                 return 1;
1596         }
1597
1598         skip_emulated_instruction(vcpu);
1599         return 1;
1600 }
1601
1602 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1603                                    struct kvm_run *kvm_run)
1604 {
1605         /* Turn off interrupt window reporting. */
1606         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1607                      vmcs_read32(CPU_BASED_VM_EXEC_CONTROL)
1608                      & ~CPU_BASED_VIRTUAL_INTR_PENDING);
1609         return 1;
1610 }
1611
1612 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1613 {
1614         skip_emulated_instruction(vcpu);
1615         if (vcpu->irq_summary && (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF))
1616                 return 1;
1617
1618         kvm_run->exit_reason = KVM_EXIT_HLT;
1619         return 0;
1620 }
1621
1622 /*
1623  * The exit handlers return 1 if the exit was handled fully and guest execution
1624  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
1625  * to be done to userspace and return 0.
1626  */
1627 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1628                                       struct kvm_run *kvm_run) = {
1629         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
1630         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
1631         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
1632         [EXIT_REASON_INVLPG]                  = handle_invlpg,
1633         [EXIT_REASON_CR_ACCESS]               = handle_cr,
1634         [EXIT_REASON_DR_ACCESS]               = handle_dr,
1635         [EXIT_REASON_CPUID]                   = handle_cpuid,
1636         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
1637         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
1638         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
1639         [EXIT_REASON_HLT]                     = handle_halt,
1640 };
1641
1642 static const int kvm_vmx_max_exit_handlers =
1643         sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1644
1645 /*
1646  * The guest has exited.  See if we can fix it or if we need userspace
1647  * assistance.
1648  */
1649 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1650 {
1651         u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1652         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1653
1654         if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1655                                 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1656                 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1657                        "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1658         kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1659         if (exit_reason < kvm_vmx_max_exit_handlers
1660             && kvm_vmx_exit_handlers[exit_reason])
1661                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1662         else {
1663                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1664                 kvm_run->hw.hardware_exit_reason = exit_reason;
1665         }
1666         return 0;
1667 }
1668
1669 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1670 {
1671         u8 fail;
1672         u16 fs_sel, gs_sel, ldt_sel;
1673         int fs_gs_ldt_reload_needed;
1674
1675 again:
1676         /*
1677          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1678          * allow segment selectors with cpl > 0 or ti == 1.
1679          */
1680         fs_sel = read_fs();
1681         gs_sel = read_gs();
1682         ldt_sel = read_ldt();
1683         fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
1684         if (!fs_gs_ldt_reload_needed) {
1685                 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1686                 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1687         } else {
1688                 vmcs_write16(HOST_FS_SELECTOR, 0);
1689                 vmcs_write16(HOST_GS_SELECTOR, 0);
1690         }
1691
1692 #ifdef __x86_64__
1693         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1694         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1695 #else
1696         vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
1697         vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
1698 #endif
1699
1700         if (vcpu->irq_summary &&
1701             !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1702                 kvm_try_inject_irq(vcpu);
1703
1704         if (vcpu->guest_debug.enabled)
1705                 kvm_guest_debug_pre(vcpu);
1706
1707         fx_save(vcpu->host_fx_image);
1708         fx_restore(vcpu->guest_fx_image);
1709
1710         save_msrs(vcpu->host_msrs, vcpu->nmsrs);
1711         load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1712
1713         asm (
1714                 /* Store host registers */
1715                 "pushf \n\t"
1716 #ifdef __x86_64__
1717                 "push %%rax; push %%rbx; push %%rdx;"
1718                 "push %%rsi; push %%rdi; push %%rbp;"
1719                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1720                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1721                 "push %%rcx \n\t"
1722                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1723 #else
1724                 "pusha; push %%ecx \n\t"
1725                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1726 #endif
1727                 /* Check if vmlaunch of vmresume is needed */
1728                 "cmp $0, %1 \n\t"
1729                 /* Load guest registers.  Don't clobber flags. */
1730 #ifdef __x86_64__
1731                 "mov %c[cr2](%3), %%rax \n\t"
1732                 "mov %%rax, %%cr2 \n\t"
1733                 "mov %c[rax](%3), %%rax \n\t"
1734                 "mov %c[rbx](%3), %%rbx \n\t"
1735                 "mov %c[rdx](%3), %%rdx \n\t"
1736                 "mov %c[rsi](%3), %%rsi \n\t"
1737                 "mov %c[rdi](%3), %%rdi \n\t"
1738                 "mov %c[rbp](%3), %%rbp \n\t"
1739                 "mov %c[r8](%3),  %%r8  \n\t"
1740                 "mov %c[r9](%3),  %%r9  \n\t"
1741                 "mov %c[r10](%3), %%r10 \n\t"
1742                 "mov %c[r11](%3), %%r11 \n\t"
1743                 "mov %c[r12](%3), %%r12 \n\t"
1744                 "mov %c[r13](%3), %%r13 \n\t"
1745                 "mov %c[r14](%3), %%r14 \n\t"
1746                 "mov %c[r15](%3), %%r15 \n\t"
1747                 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
1748 #else
1749                 "mov %c[cr2](%3), %%eax \n\t"
1750                 "mov %%eax,   %%cr2 \n\t"
1751                 "mov %c[rax](%3), %%eax \n\t"
1752                 "mov %c[rbx](%3), %%ebx \n\t"
1753                 "mov %c[rdx](%3), %%edx \n\t"
1754                 "mov %c[rsi](%3), %%esi \n\t"
1755                 "mov %c[rdi](%3), %%edi \n\t"
1756                 "mov %c[rbp](%3), %%ebp \n\t"
1757                 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
1758 #endif
1759                 /* Enter guest mode */
1760                 "jne launched \n\t"
1761                 ASM_VMX_VMLAUNCH "\n\t"
1762                 "jmp kvm_vmx_return \n\t"
1763                 "launched: " ASM_VMX_VMRESUME "\n\t"
1764                 ".globl kvm_vmx_return \n\t"
1765                 "kvm_vmx_return: "
1766                 /* Save guest registers, load host registers, keep flags */
1767 #ifdef __x86_64__
1768                 "xchg %3,     0(%%rsp) \n\t"
1769                 "mov %%rax, %c[rax](%3) \n\t"
1770                 "mov %%rbx, %c[rbx](%3) \n\t"
1771                 "pushq 0(%%rsp); popq %c[rcx](%3) \n\t"
1772                 "mov %%rdx, %c[rdx](%3) \n\t"
1773                 "mov %%rsi, %c[rsi](%3) \n\t"
1774                 "mov %%rdi, %c[rdi](%3) \n\t"
1775                 "mov %%rbp, %c[rbp](%3) \n\t"
1776                 "mov %%r8,  %c[r8](%3) \n\t"
1777                 "mov %%r9,  %c[r9](%3) \n\t"
1778                 "mov %%r10, %c[r10](%3) \n\t"
1779                 "mov %%r11, %c[r11](%3) \n\t"
1780                 "mov %%r12, %c[r12](%3) \n\t"
1781                 "mov %%r13, %c[r13](%3) \n\t"
1782                 "mov %%r14, %c[r14](%3) \n\t"
1783                 "mov %%r15, %c[r15](%3) \n\t"
1784                 "mov %%cr2, %%rax   \n\t"
1785                 "mov %%rax, %c[cr2](%3) \n\t"
1786                 "mov 0(%%rsp), %3 \n\t"
1787
1788                 "pop  %%rcx; pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
1789                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
1790                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
1791                 "pop  %%rdx; pop  %%rbx; pop  %%rax \n\t"
1792 #else
1793                 "xchg %3, 0(%%esp) \n\t"
1794                 "mov %%eax, %c[rax](%3) \n\t"
1795                 "mov %%ebx, %c[rbx](%3) \n\t"
1796                 "pushl 0(%%esp); popl %c[rcx](%3) \n\t"
1797                 "mov %%edx, %c[rdx](%3) \n\t"
1798                 "mov %%esi, %c[rsi](%3) \n\t"
1799                 "mov %%edi, %c[rdi](%3) \n\t"
1800                 "mov %%ebp, %c[rbp](%3) \n\t"
1801                 "mov %%cr2, %%eax  \n\t"
1802                 "mov %%eax, %c[cr2](%3) \n\t"
1803                 "mov 0(%%esp), %3 \n\t"
1804
1805                 "pop %%ecx; popa \n\t"
1806 #endif
1807                 "setbe %0 \n\t"
1808                 "popf \n\t"
1809               : "=g" (fail)
1810               : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
1811                 "c"(vcpu),
1812                 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
1813                 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1814                 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1815                 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1816                 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1817                 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1818                 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
1819 #ifdef __x86_64__
1820                 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1821                 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1822                 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1823                 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1824                 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1825                 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1826                 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1827                 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
1828 #endif
1829                 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
1830               : "cc", "memory" );
1831
1832         ++kvm_stat.exits;
1833
1834         save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1835         load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
1836
1837         fx_save(vcpu->guest_fx_image);
1838         fx_restore(vcpu->host_fx_image);
1839
1840 #ifndef __x86_64__
1841         asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
1842 #endif
1843
1844         kvm_run->exit_type = 0;
1845         if (fail) {
1846                 kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
1847                 kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
1848         } else {
1849                 if (fs_gs_ldt_reload_needed) {
1850                         load_ldt(ldt_sel);
1851                         load_fs(fs_sel);
1852                         /*
1853                          * If we have to reload gs, we must take care to
1854                          * preserve our gs base.
1855                          */
1856                         local_irq_disable();
1857                         load_gs(gs_sel);
1858 #ifdef __x86_64__
1859                         wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
1860 #endif
1861                         local_irq_enable();
1862
1863                         reload_tss();
1864                 }
1865                 vcpu->launched = 1;
1866                 kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
1867                 if (kvm_handle_exit(kvm_run, vcpu)) {
1868                         /* Give scheduler a change to reschedule. */
1869                         if (signal_pending(current)) {
1870                                 ++kvm_stat.signal_exits;
1871                                 return -EINTR;
1872                         }
1873                         kvm_resched(vcpu);
1874                         goto again;
1875                 }
1876         }
1877         return 0;
1878 }
1879
1880 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1881 {
1882         vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
1883 }
1884
1885 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
1886                                   unsigned long addr,
1887                                   u32 err_code)
1888 {
1889         u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1890
1891         ++kvm_stat.pf_guest;
1892
1893         if (is_page_fault(vect_info)) {
1894                 printk(KERN_DEBUG "inject_page_fault: "
1895                        "double fault 0x%lx @ 0x%lx\n",
1896                        addr, vmcs_readl(GUEST_RIP));
1897                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
1898                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1899                              DF_VECTOR |
1900                              INTR_TYPE_EXCEPTION |
1901                              INTR_INFO_DELIEVER_CODE_MASK |
1902                              INTR_INFO_VALID_MASK);
1903                 return;
1904         }
1905         vcpu->cr2 = addr;
1906         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
1907         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1908                      PF_VECTOR |
1909                      INTR_TYPE_EXCEPTION |
1910                      INTR_INFO_DELIEVER_CODE_MASK |
1911                      INTR_INFO_VALID_MASK);
1912
1913 }
1914
1915 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
1916 {
1917         if (vcpu->vmcs) {
1918                 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
1919                 free_vmcs(vcpu->vmcs);
1920                 vcpu->vmcs = NULL;
1921         }
1922 }
1923
1924 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
1925 {
1926         vmx_free_vmcs(vcpu);
1927 }
1928
1929 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
1930 {
1931         struct vmcs *vmcs;
1932
1933         vmcs = alloc_vmcs();
1934         if (!vmcs)
1935                 return -ENOMEM;
1936         vmcs_clear(vmcs);
1937         vcpu->vmcs = vmcs;
1938         vcpu->launched = 0;
1939         return 0;
1940 }
1941
1942 static struct kvm_arch_ops vmx_arch_ops = {
1943         .cpu_has_kvm_support = cpu_has_kvm_support,
1944         .disabled_by_bios = vmx_disabled_by_bios,
1945         .hardware_setup = hardware_setup,
1946         .hardware_unsetup = hardware_unsetup,
1947         .hardware_enable = hardware_enable,
1948         .hardware_disable = hardware_disable,
1949
1950         .vcpu_create = vmx_create_vcpu,
1951         .vcpu_free = vmx_free_vcpu,
1952
1953         .vcpu_load = vmx_vcpu_load,
1954         .vcpu_put = vmx_vcpu_put,
1955
1956         .set_guest_debug = set_guest_debug,
1957         .get_msr = vmx_get_msr,
1958         .set_msr = vmx_set_msr,
1959         .get_segment_base = vmx_get_segment_base,
1960         .get_segment = vmx_get_segment,
1961         .set_segment = vmx_set_segment,
1962         .is_long_mode = vmx_is_long_mode,
1963         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
1964         .set_cr0 = vmx_set_cr0,
1965         .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
1966         .set_cr3 = vmx_set_cr3,
1967         .set_cr4 = vmx_set_cr4,
1968 #ifdef __x86_64__
1969         .set_efer = vmx_set_efer,
1970 #endif
1971         .get_idt = vmx_get_idt,
1972         .set_idt = vmx_set_idt,
1973         .get_gdt = vmx_get_gdt,
1974         .set_gdt = vmx_set_gdt,
1975         .cache_regs = vcpu_load_rsp_rip,
1976         .decache_regs = vcpu_put_rsp_rip,
1977         .get_rflags = vmx_get_rflags,
1978         .set_rflags = vmx_set_rflags,
1979
1980         .tlb_flush = vmx_flush_tlb,
1981         .inject_page_fault = vmx_inject_page_fault,
1982
1983         .inject_gp = vmx_inject_gp,
1984
1985         .run = vmx_vcpu_run,
1986         .skip_emulated_instruction = skip_emulated_instruction,
1987         .vcpu_setup = vmx_vcpu_setup,
1988 };
1989
1990 static int __init vmx_init(void)
1991 {
1992         kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
1993         return 0;
1994 }
1995
1996 static void __exit vmx_exit(void)
1997 {
1998         kvm_exit_arch();
1999 }
2000
2001 module_init(vmx_init)
2002 module_exit(vmx_exit)