Merge tag 'qcom-fixes-for-5.0-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / isdn / hardware / mISDN / hfcsusb.c
1 /* hfcsusb.c
2  * mISDN driver for Colognechip HFC-S USB chip
3  *
4  * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
5  * Copyright 2008 by Martin Bachem (info@bachem-it.com)
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  *
21  *
22  * module params
23  *   debug=<n>, default=0, with n=0xHHHHGGGG
24  *      H - l1 driver flags described in hfcsusb.h
25  *      G - common mISDN debug flags described at mISDNhw.h
26  *
27  *   poll=<n>, default 128
28  *     n : burst size of PH_DATA_IND at transparent rx data
29  *
30  * Revision: 0.3.3 (socket), 2008-11-05
31  */
32
33 #include <linux/module.h>
34 #include <linux/delay.h>
35 #include <linux/usb.h>
36 #include <linux/mISDNhw.h>
37 #include <linux/slab.h>
38 #include "hfcsusb.h"
39
40 static unsigned int debug;
41 static int poll = DEFAULT_TRANSP_BURST_SZ;
42
43 static LIST_HEAD(HFClist);
44 static DEFINE_RWLOCK(HFClock);
45
46
47 MODULE_AUTHOR("Martin Bachem");
48 MODULE_LICENSE("GPL");
49 module_param(debug, uint, S_IRUGO | S_IWUSR);
50 module_param(poll, int, 0);
51
52 static int hfcsusb_cnt;
53
54 /* some function prototypes */
55 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
56 static void release_hw(struct hfcsusb *hw);
57 static void reset_hfcsusb(struct hfcsusb *hw);
58 static void setPortMode(struct hfcsusb *hw);
59 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
60 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
61 static int  hfcsusb_setup_bch(struct bchannel *bch, int protocol);
62 static void deactivate_bchannel(struct bchannel *bch);
63 static void hfcsusb_ph_info(struct hfcsusb *hw);
64
65 /* start next background transfer for control channel */
66 static void
67 ctrl_start_transfer(struct hfcsusb *hw)
68 {
69         if (debug & DBG_HFC_CALL_TRACE)
70                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
71
72         if (hw->ctrl_cnt) {
73                 hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
74                 hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
75                 hw->ctrl_urb->transfer_buffer = NULL;
76                 hw->ctrl_urb->transfer_buffer_length = 0;
77                 hw->ctrl_write.wIndex =
78                         cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
79                 hw->ctrl_write.wValue =
80                         cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
81
82                 usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
83         }
84 }
85
86 /*
87  * queue a control transfer request to write HFC-S USB
88  * chip register using CTRL resuest queue
89  */
90 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
91 {
92         struct ctrl_buf *buf;
93
94         if (debug & DBG_HFC_CALL_TRACE)
95                 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
96                        hw->name, __func__, reg, val);
97
98         spin_lock(&hw->ctrl_lock);
99         if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
100                 spin_unlock(&hw->ctrl_lock);
101                 return 1;
102         }
103         buf = &hw->ctrl_buff[hw->ctrl_in_idx];
104         buf->hfcs_reg = reg;
105         buf->reg_val = val;
106         if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
107                 hw->ctrl_in_idx = 0;
108         if (++hw->ctrl_cnt == 1)
109                 ctrl_start_transfer(hw);
110         spin_unlock(&hw->ctrl_lock);
111
112         return 0;
113 }
114
115 /* control completion routine handling background control cmds */
116 static void
117 ctrl_complete(struct urb *urb)
118 {
119         struct hfcsusb *hw = (struct hfcsusb *) urb->context;
120
121         if (debug & DBG_HFC_CALL_TRACE)
122                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
123
124         urb->dev = hw->dev;
125         if (hw->ctrl_cnt) {
126                 hw->ctrl_cnt--; /* decrement actual count */
127                 if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
128                         hw->ctrl_out_idx = 0;   /* pointer wrap */
129
130                 ctrl_start_transfer(hw); /* start next transfer */
131         }
132 }
133
134 /* handle LED bits   */
135 static void
136 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
137 {
138         if (set_on) {
139                 if (led_bits < 0)
140                         hw->led_state &= ~abs(led_bits);
141                 else
142                         hw->led_state |= led_bits;
143         } else {
144                 if (led_bits < 0)
145                         hw->led_state |= abs(led_bits);
146                 else
147                         hw->led_state &= ~led_bits;
148         }
149 }
150
151 /* handle LED requests  */
152 static void
153 handle_led(struct hfcsusb *hw, int event)
154 {
155         struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
156                 hfcsusb_idtab[hw->vend_idx].driver_info;
157         __u8 tmpled;
158
159         if (driver_info->led_scheme == LED_OFF)
160                 return;
161         tmpled = hw->led_state;
162
163         switch (event) {
164         case LED_POWER_ON:
165                 set_led_bit(hw, driver_info->led_bits[0], 1);
166                 set_led_bit(hw, driver_info->led_bits[1], 0);
167                 set_led_bit(hw, driver_info->led_bits[2], 0);
168                 set_led_bit(hw, driver_info->led_bits[3], 0);
169                 break;
170         case LED_POWER_OFF:
171                 set_led_bit(hw, driver_info->led_bits[0], 0);
172                 set_led_bit(hw, driver_info->led_bits[1], 0);
173                 set_led_bit(hw, driver_info->led_bits[2], 0);
174                 set_led_bit(hw, driver_info->led_bits[3], 0);
175                 break;
176         case LED_S0_ON:
177                 set_led_bit(hw, driver_info->led_bits[1], 1);
178                 break;
179         case LED_S0_OFF:
180                 set_led_bit(hw, driver_info->led_bits[1], 0);
181                 break;
182         case LED_B1_ON:
183                 set_led_bit(hw, driver_info->led_bits[2], 1);
184                 break;
185         case LED_B1_OFF:
186                 set_led_bit(hw, driver_info->led_bits[2], 0);
187                 break;
188         case LED_B2_ON:
189                 set_led_bit(hw, driver_info->led_bits[3], 1);
190                 break;
191         case LED_B2_OFF:
192                 set_led_bit(hw, driver_info->led_bits[3], 0);
193                 break;
194         }
195
196         if (hw->led_state != tmpled) {
197                 if (debug & DBG_HFC_CALL_TRACE)
198                         printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
199                                hw->name, __func__,
200                                HFCUSB_P_DATA, hw->led_state);
201
202                 write_reg(hw, HFCUSB_P_DATA, hw->led_state);
203         }
204 }
205
206 /*
207  * Layer2 -> Layer 1 Bchannel data
208  */
209 static int
210 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
211 {
212         struct bchannel         *bch = container_of(ch, struct bchannel, ch);
213         struct hfcsusb          *hw = bch->hw;
214         int                     ret = -EINVAL;
215         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
216         u_long                  flags;
217
218         if (debug & DBG_HFC_CALL_TRACE)
219                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
220
221         switch (hh->prim) {
222         case PH_DATA_REQ:
223                 spin_lock_irqsave(&hw->lock, flags);
224                 ret = bchannel_senddata(bch, skb);
225                 spin_unlock_irqrestore(&hw->lock, flags);
226                 if (debug & DBG_HFC_CALL_TRACE)
227                         printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
228                                hw->name, __func__, ret);
229                 if (ret > 0)
230                         ret = 0;
231                 return ret;
232         case PH_ACTIVATE_REQ:
233                 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
234                         hfcsusb_start_endpoint(hw, bch->nr - 1);
235                         ret = hfcsusb_setup_bch(bch, ch->protocol);
236                 } else
237                         ret = 0;
238                 if (!ret)
239                         _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
240                                     0, NULL, GFP_KERNEL);
241                 break;
242         case PH_DEACTIVATE_REQ:
243                 deactivate_bchannel(bch);
244                 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
245                             0, NULL, GFP_KERNEL);
246                 ret = 0;
247                 break;
248         }
249         if (!ret)
250                 dev_kfree_skb(skb);
251         return ret;
252 }
253
254 /*
255  * send full D/B channel status information
256  * as MPH_INFORMATION_IND
257  */
258 static void
259 hfcsusb_ph_info(struct hfcsusb *hw)
260 {
261         struct ph_info *phi;
262         struct dchannel *dch = &hw->dch;
263         int i;
264
265         phi = kzalloc(struct_size(phi, bch, dch->dev.nrbchan), GFP_ATOMIC);
266         phi->dch.ch.protocol = hw->protocol;
267         phi->dch.ch.Flags = dch->Flags;
268         phi->dch.state = dch->state;
269         phi->dch.num_bch = dch->dev.nrbchan;
270         for (i = 0; i < dch->dev.nrbchan; i++) {
271                 phi->bch[i].protocol = hw->bch[i].ch.protocol;
272                 phi->bch[i].Flags = hw->bch[i].Flags;
273         }
274         _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
275                     sizeof(struct ph_info_dch) + dch->dev.nrbchan *
276                     sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
277         kfree(phi);
278 }
279
280 /*
281  * Layer2 -> Layer 1 Dchannel data
282  */
283 static int
284 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
285 {
286         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
287         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
288         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
289         struct hfcsusb          *hw = dch->hw;
290         int                     ret = -EINVAL;
291         u_long                  flags;
292
293         switch (hh->prim) {
294         case PH_DATA_REQ:
295                 if (debug & DBG_HFC_CALL_TRACE)
296                         printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
297                                hw->name, __func__);
298
299                 spin_lock_irqsave(&hw->lock, flags);
300                 ret = dchannel_senddata(dch, skb);
301                 spin_unlock_irqrestore(&hw->lock, flags);
302                 if (ret > 0) {
303                         ret = 0;
304                         queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
305                 }
306                 break;
307
308         case PH_ACTIVATE_REQ:
309                 if (debug & DBG_HFC_CALL_TRACE)
310                         printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
311                                hw->name, __func__,
312                                (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
313
314                 if (hw->protocol == ISDN_P_NT_S0) {
315                         ret = 0;
316                         if (test_bit(FLG_ACTIVE, &dch->Flags)) {
317                                 _queue_data(&dch->dev.D,
318                                             PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
319                                             NULL, GFP_ATOMIC);
320                         } else {
321                                 hfcsusb_ph_command(hw,
322                                                    HFC_L1_ACTIVATE_NT);
323                                 test_and_set_bit(FLG_L2_ACTIVATED,
324                                                  &dch->Flags);
325                         }
326                 } else {
327                         hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
328                         ret = l1_event(dch->l1, hh->prim);
329                 }
330                 break;
331
332         case PH_DEACTIVATE_REQ:
333                 if (debug & DBG_HFC_CALL_TRACE)
334                         printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
335                                hw->name, __func__);
336                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
337
338                 if (hw->protocol == ISDN_P_NT_S0) {
339                         hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
340                         spin_lock_irqsave(&hw->lock, flags);
341                         skb_queue_purge(&dch->squeue);
342                         if (dch->tx_skb) {
343                                 dev_kfree_skb(dch->tx_skb);
344                                 dch->tx_skb = NULL;
345                         }
346                         dch->tx_idx = 0;
347                         if (dch->rx_skb) {
348                                 dev_kfree_skb(dch->rx_skb);
349                                 dch->rx_skb = NULL;
350                         }
351                         test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
352                         spin_unlock_irqrestore(&hw->lock, flags);
353 #ifdef FIXME
354                         if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
355                                 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
356 #endif
357                         ret = 0;
358                 } else
359                         ret = l1_event(dch->l1, hh->prim);
360                 break;
361         case MPH_INFORMATION_REQ:
362                 hfcsusb_ph_info(hw);
363                 ret = 0;
364                 break;
365         }
366
367         return ret;
368 }
369
370 /*
371  * Layer 1 callback function
372  */
373 static int
374 hfc_l1callback(struct dchannel *dch, u_int cmd)
375 {
376         struct hfcsusb *hw = dch->hw;
377
378         if (debug & DBG_HFC_CALL_TRACE)
379                 printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
380                        hw->name, __func__, cmd);
381
382         switch (cmd) {
383         case INFO3_P8:
384         case INFO3_P10:
385         case HW_RESET_REQ:
386         case HW_POWERUP_REQ:
387                 break;
388
389         case HW_DEACT_REQ:
390                 skb_queue_purge(&dch->squeue);
391                 if (dch->tx_skb) {
392                         dev_kfree_skb(dch->tx_skb);
393                         dch->tx_skb = NULL;
394                 }
395                 dch->tx_idx = 0;
396                 if (dch->rx_skb) {
397                         dev_kfree_skb(dch->rx_skb);
398                         dch->rx_skb = NULL;
399                 }
400                 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
401                 break;
402         case PH_ACTIVATE_IND:
403                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
404                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
405                             GFP_ATOMIC);
406                 break;
407         case PH_DEACTIVATE_IND:
408                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
409                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
410                             GFP_ATOMIC);
411                 break;
412         default:
413                 if (dch->debug & DEBUG_HW)
414                         printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
415                                hw->name, __func__, cmd);
416                 return -1;
417         }
418         hfcsusb_ph_info(hw);
419         return 0;
420 }
421
422 static int
423 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
424               struct channel_req *rq)
425 {
426         int err = 0;
427
428         if (debug & DEBUG_HW_OPEN)
429                 printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
430                        hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
431                        __builtin_return_address(0));
432         if (rq->protocol == ISDN_P_NONE)
433                 return -EINVAL;
434
435         test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
436         test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
437         hfcsusb_start_endpoint(hw, HFC_CHAN_D);
438
439         /* E-Channel logging */
440         if (rq->adr.channel == 1) {
441                 if (hw->fifos[HFCUSB_PCM_RX].pipe) {
442                         hfcsusb_start_endpoint(hw, HFC_CHAN_E);
443                         set_bit(FLG_ACTIVE, &hw->ech.Flags);
444                         _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
445                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
446                 } else
447                         return -EINVAL;
448         }
449
450         if (!hw->initdone) {
451                 hw->protocol = rq->protocol;
452                 if (rq->protocol == ISDN_P_TE_S0) {
453                         err = create_l1(&hw->dch, hfc_l1callback);
454                         if (err)
455                                 return err;
456                 }
457                 setPortMode(hw);
458                 ch->protocol = rq->protocol;
459                 hw->initdone = 1;
460         } else {
461                 if (rq->protocol != ch->protocol)
462                         return -EPROTONOSUPPORT;
463         }
464
465         if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
466             ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
467                 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
468                             0, NULL, GFP_KERNEL);
469         rq->ch = ch;
470         if (!try_module_get(THIS_MODULE))
471                 printk(KERN_WARNING "%s: %s: cannot get module\n",
472                        hw->name, __func__);
473         return 0;
474 }
475
476 static int
477 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
478 {
479         struct bchannel         *bch;
480
481         if (rq->adr.channel == 0 || rq->adr.channel > 2)
482                 return -EINVAL;
483         if (rq->protocol == ISDN_P_NONE)
484                 return -EINVAL;
485
486         if (debug & DBG_HFC_CALL_TRACE)
487                 printk(KERN_DEBUG "%s: %s B%i\n",
488                        hw->name, __func__, rq->adr.channel);
489
490         bch = &hw->bch[rq->adr.channel - 1];
491         if (test_and_set_bit(FLG_OPEN, &bch->Flags))
492                 return -EBUSY; /* b-channel can be only open once */
493         bch->ch.protocol = rq->protocol;
494         rq->ch = &bch->ch;
495
496         if (!try_module_get(THIS_MODULE))
497                 printk(KERN_WARNING "%s: %s:cannot get module\n",
498                        hw->name, __func__);
499         return 0;
500 }
501
502 static int
503 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
504 {
505         int ret = 0;
506
507         if (debug & DBG_HFC_CALL_TRACE)
508                 printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
509                        hw->name, __func__, (cq->op), (cq->channel));
510
511         switch (cq->op) {
512         case MISDN_CTRL_GETOP:
513                 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
514                         MISDN_CTRL_DISCONNECT;
515                 break;
516         default:
517                 printk(KERN_WARNING "%s: %s: unknown Op %x\n",
518                        hw->name, __func__, cq->op);
519                 ret = -EINVAL;
520                 break;
521         }
522         return ret;
523 }
524
525 /*
526  * device control function
527  */
528 static int
529 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
530 {
531         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
532         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
533         struct hfcsusb          *hw = dch->hw;
534         struct channel_req      *rq;
535         int                     err = 0;
536
537         if (dch->debug & DEBUG_HW)
538                 printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
539                        hw->name, __func__, cmd, arg);
540         switch (cmd) {
541         case OPEN_CHANNEL:
542                 rq = arg;
543                 if ((rq->protocol == ISDN_P_TE_S0) ||
544                     (rq->protocol == ISDN_P_NT_S0))
545                         err = open_dchannel(hw, ch, rq);
546                 else
547                         err = open_bchannel(hw, rq);
548                 if (!err)
549                         hw->open++;
550                 break;
551         case CLOSE_CHANNEL:
552                 hw->open--;
553                 if (debug & DEBUG_HW_OPEN)
554                         printk(KERN_DEBUG
555                                "%s: %s: dev(%d) close from %p (open %d)\n",
556                                hw->name, __func__, hw->dch.dev.id,
557                                __builtin_return_address(0), hw->open);
558                 if (!hw->open) {
559                         hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
560                         if (hw->fifos[HFCUSB_PCM_RX].pipe)
561                                 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
562                         handle_led(hw, LED_POWER_ON);
563                 }
564                 module_put(THIS_MODULE);
565                 break;
566         case CONTROL_CHANNEL:
567                 err = channel_ctrl(hw, arg);
568                 break;
569         default:
570                 if (dch->debug & DEBUG_HW)
571                         printk(KERN_DEBUG "%s: %s: unknown command %x\n",
572                                hw->name, __func__, cmd);
573                 return -EINVAL;
574         }
575         return err;
576 }
577
578 /*
579  * S0 TE state change event handler
580  */
581 static void
582 ph_state_te(struct dchannel *dch)
583 {
584         struct hfcsusb *hw = dch->hw;
585
586         if (debug & DEBUG_HW) {
587                 if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
588                         printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
589                                HFC_TE_LAYER1_STATES[dch->state]);
590                 else
591                         printk(KERN_DEBUG "%s: %s: TE F%d\n",
592                                hw->name, __func__, dch->state);
593         }
594
595         switch (dch->state) {
596         case 0:
597                 l1_event(dch->l1, HW_RESET_IND);
598                 break;
599         case 3:
600                 l1_event(dch->l1, HW_DEACT_IND);
601                 break;
602         case 5:
603         case 8:
604                 l1_event(dch->l1, ANYSIGNAL);
605                 break;
606         case 6:
607                 l1_event(dch->l1, INFO2);
608                 break;
609         case 7:
610                 l1_event(dch->l1, INFO4_P8);
611                 break;
612         }
613         if (dch->state == 7)
614                 handle_led(hw, LED_S0_ON);
615         else
616                 handle_led(hw, LED_S0_OFF);
617 }
618
619 /*
620  * S0 NT state change event handler
621  */
622 static void
623 ph_state_nt(struct dchannel *dch)
624 {
625         struct hfcsusb *hw = dch->hw;
626
627         if (debug & DEBUG_HW) {
628                 if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
629                         printk(KERN_DEBUG "%s: %s: %s\n",
630                                hw->name, __func__,
631                                HFC_NT_LAYER1_STATES[dch->state]);
632
633                 else
634                         printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
635                                hw->name, __func__, dch->state);
636         }
637
638         switch (dch->state) {
639         case (1):
640                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
641                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
642                 hw->nt_timer = 0;
643                 hw->timers &= ~NT_ACTIVATION_TIMER;
644                 handle_led(hw, LED_S0_OFF);
645                 break;
646
647         case (2):
648                 if (hw->nt_timer < 0) {
649                         hw->nt_timer = 0;
650                         hw->timers &= ~NT_ACTIVATION_TIMER;
651                         hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
652                 } else {
653                         hw->timers |= NT_ACTIVATION_TIMER;
654                         hw->nt_timer = NT_T1_COUNT;
655                         /* allow G2 -> G3 transition */
656                         write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
657                 }
658                 break;
659         case (3):
660                 hw->nt_timer = 0;
661                 hw->timers &= ~NT_ACTIVATION_TIMER;
662                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
663                 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
664                             MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
665                 handle_led(hw, LED_S0_ON);
666                 break;
667         case (4):
668                 hw->nt_timer = 0;
669                 hw->timers &= ~NT_ACTIVATION_TIMER;
670                 break;
671         default:
672                 break;
673         }
674         hfcsusb_ph_info(hw);
675 }
676
677 static void
678 ph_state(struct dchannel *dch)
679 {
680         struct hfcsusb *hw = dch->hw;
681
682         if (hw->protocol == ISDN_P_NT_S0)
683                 ph_state_nt(dch);
684         else if (hw->protocol == ISDN_P_TE_S0)
685                 ph_state_te(dch);
686 }
687
688 /*
689  * disable/enable BChannel for desired protocoll
690  */
691 static int
692 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
693 {
694         struct hfcsusb *hw = bch->hw;
695         __u8 conhdlc, sctrl, sctrl_r;
696
697         if (debug & DEBUG_HW)
698                 printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
699                        hw->name, __func__, bch->state, protocol,
700                        bch->nr);
701
702         /* setup val for CON_HDLC */
703         conhdlc = 0;
704         if (protocol > ISDN_P_NONE)
705                 conhdlc = 8;    /* enable FIFO */
706
707         switch (protocol) {
708         case (-1):      /* used for init */
709                 bch->state = -1;
710                 /* fall through */
711         case (ISDN_P_NONE):
712                 if (bch->state == ISDN_P_NONE)
713                         return 0; /* already in idle state */
714                 bch->state = ISDN_P_NONE;
715                 clear_bit(FLG_HDLC, &bch->Flags);
716                 clear_bit(FLG_TRANSPARENT, &bch->Flags);
717                 break;
718         case (ISDN_P_B_RAW):
719                 conhdlc |= 2;
720                 bch->state = protocol;
721                 set_bit(FLG_TRANSPARENT, &bch->Flags);
722                 break;
723         case (ISDN_P_B_HDLC):
724                 bch->state = protocol;
725                 set_bit(FLG_HDLC, &bch->Flags);
726                 break;
727         default:
728                 if (debug & DEBUG_HW)
729                         printk(KERN_DEBUG "%s: %s: prot not known %x\n",
730                                hw->name, __func__, protocol);
731                 return -ENOPROTOOPT;
732         }
733
734         if (protocol >= ISDN_P_NONE) {
735                 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
736                 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
737                 write_reg(hw, HFCUSB_INC_RES_F, 2);
738                 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
739                 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
740                 write_reg(hw, HFCUSB_INC_RES_F, 2);
741
742                 sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
743                 sctrl_r = 0x0;
744                 if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
745                         sctrl |= 1;
746                         sctrl_r |= 1;
747                 }
748                 if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
749                         sctrl |= 2;
750                         sctrl_r |= 2;
751                 }
752                 write_reg(hw, HFCUSB_SCTRL, sctrl);
753                 write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
754
755                 if (protocol > ISDN_P_NONE)
756                         handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
757                 else
758                         handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
759                                    LED_B2_OFF);
760         }
761         hfcsusb_ph_info(hw);
762         return 0;
763 }
764
765 static void
766 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
767 {
768         if (debug & DEBUG_HW)
769                 printk(KERN_DEBUG "%s: %s: %x\n",
770                        hw->name, __func__, command);
771
772         switch (command) {
773         case HFC_L1_ACTIVATE_TE:
774                 /* force sending sending INFO1 */
775                 write_reg(hw, HFCUSB_STATES, 0x14);
776                 /* start l1 activation */
777                 write_reg(hw, HFCUSB_STATES, 0x04);
778                 break;
779
780         case HFC_L1_FORCE_DEACTIVATE_TE:
781                 write_reg(hw, HFCUSB_STATES, 0x10);
782                 write_reg(hw, HFCUSB_STATES, 0x03);
783                 break;
784
785         case HFC_L1_ACTIVATE_NT:
786                 if (hw->dch.state == 3)
787                         _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
788                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
789                 else
790                         write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
791                                   HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
792                 break;
793
794         case HFC_L1_DEACTIVATE_NT:
795                 write_reg(hw, HFCUSB_STATES,
796                           HFCUSB_DO_ACTION);
797                 break;
798         }
799 }
800
801 /*
802  * Layer 1 B-channel hardware access
803  */
804 static int
805 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
806 {
807         return mISDN_ctrl_bchannel(bch, cq);
808 }
809
810 /* collect data from incoming interrupt or isochron USB data */
811 static void
812 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
813                  int finish)
814 {
815         struct hfcsusb  *hw = fifo->hw;
816         struct sk_buff  *rx_skb = NULL;
817         int             maxlen = 0;
818         int             fifon = fifo->fifonum;
819         int             i;
820         int             hdlc = 0;
821         unsigned long   flags;
822
823         if (debug & DBG_HFC_CALL_TRACE)
824                 printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
825                        "dch(%p) bch(%p) ech(%p)\n",
826                        hw->name, __func__, fifon, len,
827                        fifo->dch, fifo->bch, fifo->ech);
828
829         if (!len)
830                 return;
831
832         if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
833                 printk(KERN_DEBUG "%s: %s: undefined channel\n",
834                        hw->name, __func__);
835                 return;
836         }
837
838         spin_lock_irqsave(&hw->lock, flags);
839         if (fifo->dch) {
840                 rx_skb = fifo->dch->rx_skb;
841                 maxlen = fifo->dch->maxlen;
842                 hdlc = 1;
843         }
844         if (fifo->bch) {
845                 if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
846                         fifo->bch->dropcnt += len;
847                         spin_unlock_irqrestore(&hw->lock, flags);
848                         return;
849                 }
850                 maxlen = bchannel_get_rxbuf(fifo->bch, len);
851                 rx_skb = fifo->bch->rx_skb;
852                 if (maxlen < 0) {
853                         if (rx_skb)
854                                 skb_trim(rx_skb, 0);
855                         pr_warning("%s.B%d: No bufferspace for %d bytes\n",
856                                    hw->name, fifo->bch->nr, len);
857                         spin_unlock_irqrestore(&hw->lock, flags);
858                         return;
859                 }
860                 maxlen = fifo->bch->maxlen;
861                 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
862         }
863         if (fifo->ech) {
864                 rx_skb = fifo->ech->rx_skb;
865                 maxlen = fifo->ech->maxlen;
866                 hdlc = 1;
867         }
868
869         if (fifo->dch || fifo->ech) {
870                 if (!rx_skb) {
871                         rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
872                         if (rx_skb) {
873                                 if (fifo->dch)
874                                         fifo->dch->rx_skb = rx_skb;
875                                 if (fifo->ech)
876                                         fifo->ech->rx_skb = rx_skb;
877                                 skb_trim(rx_skb, 0);
878                         } else {
879                                 printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
880                                        hw->name, __func__);
881                                 spin_unlock_irqrestore(&hw->lock, flags);
882                                 return;
883                         }
884                 }
885                 /* D/E-Channel SKB range check */
886                 if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
887                         printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
888                                "for fifo(%d) HFCUSB_D_RX\n",
889                                hw->name, __func__, fifon);
890                         skb_trim(rx_skb, 0);
891                         spin_unlock_irqrestore(&hw->lock, flags);
892                         return;
893                 }
894         }
895
896         skb_put_data(rx_skb, data, len);
897
898         if (hdlc) {
899                 /* we have a complete hdlc packet */
900                 if (finish) {
901                         if ((rx_skb->len > 3) &&
902                             (!(rx_skb->data[rx_skb->len - 1]))) {
903                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
904                                         printk(KERN_DEBUG "%s: %s: fifon(%i)"
905                                                " new RX len(%i): ",
906                                                hw->name, __func__, fifon,
907                                                rx_skb->len);
908                                         i = 0;
909                                         while (i < rx_skb->len)
910                                                 printk("%02x ",
911                                                        rx_skb->data[i++]);
912                                         printk("\n");
913                                 }
914
915                                 /* remove CRC & status */
916                                 skb_trim(rx_skb, rx_skb->len - 3);
917
918                                 if (fifo->dch)
919                                         recv_Dchannel(fifo->dch);
920                                 if (fifo->bch)
921                                         recv_Bchannel(fifo->bch, MISDN_ID_ANY,
922                                                       0);
923                                 if (fifo->ech)
924                                         recv_Echannel(fifo->ech,
925                                                       &hw->dch);
926                         } else {
927                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
928                                         printk(KERN_DEBUG
929                                                "%s: CRC or minlen ERROR fifon(%i) "
930                                                "RX len(%i): ",
931                                                hw->name, fifon, rx_skb->len);
932                                         i = 0;
933                                         while (i < rx_skb->len)
934                                                 printk("%02x ",
935                                                        rx_skb->data[i++]);
936                                         printk("\n");
937                                 }
938                                 skb_trim(rx_skb, 0);
939                         }
940                 }
941         } else {
942                 /* deliver transparent data to layer2 */
943                 recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
944         }
945         spin_unlock_irqrestore(&hw->lock, flags);
946 }
947
948 static void
949 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
950               void *buf, int num_packets, int packet_size, int interval,
951               usb_complete_t complete, void *context)
952 {
953         int k;
954
955         usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
956                           complete, context);
957
958         urb->number_of_packets = num_packets;
959         urb->transfer_flags = URB_ISO_ASAP;
960         urb->actual_length = 0;
961         urb->interval = interval;
962
963         for (k = 0; k < num_packets; k++) {
964                 urb->iso_frame_desc[k].offset = packet_size * k;
965                 urb->iso_frame_desc[k].length = packet_size;
966                 urb->iso_frame_desc[k].actual_length = 0;
967         }
968 }
969
970 /* receive completion routine for all ISO tx fifos   */
971 static void
972 rx_iso_complete(struct urb *urb)
973 {
974         struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
975         struct usb_fifo *fifo = context_iso_urb->owner_fifo;
976         struct hfcsusb *hw = fifo->hw;
977         int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
978                 status, iso_status, i;
979         __u8 *buf;
980         static __u8 eof[8];
981         __u8 s0_state;
982         unsigned long flags;
983
984         fifon = fifo->fifonum;
985         status = urb->status;
986
987         spin_lock_irqsave(&hw->lock, flags);
988         if (fifo->stop_gracefull) {
989                 fifo->stop_gracefull = 0;
990                 fifo->active = 0;
991                 spin_unlock_irqrestore(&hw->lock, flags);
992                 return;
993         }
994         spin_unlock_irqrestore(&hw->lock, flags);
995
996         /*
997          * ISO transfer only partially completed,
998          * look at individual frame status for details
999          */
1000         if (status == -EXDEV) {
1001                 if (debug & DEBUG_HW)
1002                         printk(KERN_DEBUG "%s: %s: with -EXDEV "
1003                                "urb->status %d, fifonum %d\n",
1004                                hw->name, __func__,  status, fifon);
1005
1006                 /* clear status, so go on with ISO transfers */
1007                 status = 0;
1008         }
1009
1010         s0_state = 0;
1011         if (fifo->active && !status) {
1012                 num_isoc_packets = iso_packets[fifon];
1013                 maxlen = fifo->usb_packet_maxlen;
1014
1015                 for (k = 0; k < num_isoc_packets; ++k) {
1016                         len = urb->iso_frame_desc[k].actual_length;
1017                         offset = urb->iso_frame_desc[k].offset;
1018                         buf = context_iso_urb->buffer + offset;
1019                         iso_status = urb->iso_frame_desc[k].status;
1020
1021                         if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1022                                 printk(KERN_DEBUG "%s: %s: "
1023                                        "ISO packet %i, status: %i\n",
1024                                        hw->name, __func__, k, iso_status);
1025                         }
1026
1027                         /* USB data log for every D ISO in */
1028                         if ((fifon == HFCUSB_D_RX) &&
1029                             (debug & DBG_HFC_USB_VERBOSE)) {
1030                                 printk(KERN_DEBUG
1031                                        "%s: %s: %d (%d/%d) len(%d) ",
1032                                        hw->name, __func__, urb->start_frame,
1033                                        k, num_isoc_packets - 1,
1034                                        len);
1035                                 for (i = 0; i < len; i++)
1036                                         printk("%x ", buf[i]);
1037                                 printk("\n");
1038                         }
1039
1040                         if (!iso_status) {
1041                                 if (fifo->last_urblen != maxlen) {
1042                                         /*
1043                                          * save fifo fill-level threshold bits
1044                                          * to use them later in TX ISO URB
1045                                          * completions
1046                                          */
1047                                         hw->threshold_mask = buf[1];
1048
1049                                         if (fifon == HFCUSB_D_RX)
1050                                                 s0_state = (buf[0] >> 4);
1051
1052                                         eof[fifon] = buf[0] & 1;
1053                                         if (len > 2)
1054                                                 hfcsusb_rx_frame(fifo, buf + 2,
1055                                                                  len - 2, (len < maxlen)
1056                                                                  ? eof[fifon] : 0);
1057                                 } else
1058                                         hfcsusb_rx_frame(fifo, buf, len,
1059                                                          (len < maxlen) ?
1060                                                          eof[fifon] : 0);
1061                                 fifo->last_urblen = len;
1062                         }
1063                 }
1064
1065                 /* signal S0 layer1 state change */
1066                 if ((s0_state) && (hw->initdone) &&
1067                     (s0_state != hw->dch.state)) {
1068                         hw->dch.state = s0_state;
1069                         schedule_event(&hw->dch, FLG_PHCHANGE);
1070                 }
1071
1072                 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1073                               context_iso_urb->buffer, num_isoc_packets,
1074                               fifo->usb_packet_maxlen, fifo->intervall,
1075                               (usb_complete_t)rx_iso_complete, urb->context);
1076                 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1077                 if (errcode < 0) {
1078                         if (debug & DEBUG_HW)
1079                                 printk(KERN_DEBUG "%s: %s: error submitting "
1080                                        "ISO URB: %d\n",
1081                                        hw->name, __func__, errcode);
1082                 }
1083         } else {
1084                 if (status && (debug & DBG_HFC_URB_INFO))
1085                         printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1086                                "urb->status %d, fifonum %d\n",
1087                                hw->name, __func__, status, fifon);
1088         }
1089 }
1090
1091 /* receive completion routine for all interrupt rx fifos */
1092 static void
1093 rx_int_complete(struct urb *urb)
1094 {
1095         int len, status, i;
1096         __u8 *buf, maxlen, fifon;
1097         struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1098         struct hfcsusb *hw = fifo->hw;
1099         static __u8 eof[8];
1100         unsigned long flags;
1101
1102         spin_lock_irqsave(&hw->lock, flags);
1103         if (fifo->stop_gracefull) {
1104                 fifo->stop_gracefull = 0;
1105                 fifo->active = 0;
1106                 spin_unlock_irqrestore(&hw->lock, flags);
1107                 return;
1108         }
1109         spin_unlock_irqrestore(&hw->lock, flags);
1110
1111         fifon = fifo->fifonum;
1112         if ((!fifo->active) || (urb->status)) {
1113                 if (debug & DBG_HFC_URB_ERROR)
1114                         printk(KERN_DEBUG
1115                                "%s: %s: RX-Fifo %i is going down (%i)\n",
1116                                hw->name, __func__, fifon, urb->status);
1117
1118                 fifo->urb->interval = 0; /* cancel automatic rescheduling */
1119                 return;
1120         }
1121         len = urb->actual_length;
1122         buf = fifo->buffer;
1123         maxlen = fifo->usb_packet_maxlen;
1124
1125         /* USB data log for every D INT in */
1126         if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1127                 printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1128                        hw->name, __func__, len);
1129                 for (i = 0; i < len; i++)
1130                         printk("%02x ", buf[i]);
1131                 printk("\n");
1132         }
1133
1134         if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1135                 /* the threshold mask is in the 2nd status byte */
1136                 hw->threshold_mask = buf[1];
1137
1138                 /* signal S0 layer1 state change */
1139                 if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1140                         hw->dch.state = (buf[0] >> 4);
1141                         schedule_event(&hw->dch, FLG_PHCHANGE);
1142                 }
1143
1144                 eof[fifon] = buf[0] & 1;
1145                 /* if we have more than the 2 status bytes -> collect data */
1146                 if (len > 2)
1147                         hfcsusb_rx_frame(fifo, buf + 2,
1148                                          urb->actual_length - 2,
1149                                          (len < maxlen) ? eof[fifon] : 0);
1150         } else {
1151                 hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1152                                  (len < maxlen) ? eof[fifon] : 0);
1153         }
1154         fifo->last_urblen = urb->actual_length;
1155
1156         status = usb_submit_urb(urb, GFP_ATOMIC);
1157         if (status) {
1158                 if (debug & DEBUG_HW)
1159                         printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1160                                hw->name, __func__);
1161         }
1162 }
1163
1164 /* transmit completion routine for all ISO tx fifos */
1165 static void
1166 tx_iso_complete(struct urb *urb)
1167 {
1168         struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1169         struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1170         struct hfcsusb *hw = fifo->hw;
1171         struct sk_buff *tx_skb;
1172         int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1173                 errcode, hdlc, i;
1174         int *tx_idx;
1175         int frame_complete, fifon, status, fillempty = 0;
1176         __u8 threshbit, *p;
1177         unsigned long flags;
1178
1179         spin_lock_irqsave(&hw->lock, flags);
1180         if (fifo->stop_gracefull) {
1181                 fifo->stop_gracefull = 0;
1182                 fifo->active = 0;
1183                 spin_unlock_irqrestore(&hw->lock, flags);
1184                 return;
1185         }
1186
1187         if (fifo->dch) {
1188                 tx_skb = fifo->dch->tx_skb;
1189                 tx_idx = &fifo->dch->tx_idx;
1190                 hdlc = 1;
1191         } else if (fifo->bch) {
1192                 tx_skb = fifo->bch->tx_skb;
1193                 tx_idx = &fifo->bch->tx_idx;
1194                 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1195                 if (!tx_skb && !hdlc &&
1196                     test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1197                         fillempty = 1;
1198         } else {
1199                 printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1200                        hw->name, __func__);
1201                 spin_unlock_irqrestore(&hw->lock, flags);
1202                 return;
1203         }
1204
1205         fifon = fifo->fifonum;
1206         status = urb->status;
1207
1208         tx_offset = 0;
1209
1210         /*
1211          * ISO transfer only partially completed,
1212          * look at individual frame status for details
1213          */
1214         if (status == -EXDEV) {
1215                 if (debug & DBG_HFC_URB_ERROR)
1216                         printk(KERN_DEBUG "%s: %s: "
1217                                "-EXDEV (%i) fifon (%d)\n",
1218                                hw->name, __func__, status, fifon);
1219
1220                 /* clear status, so go on with ISO transfers */
1221                 status = 0;
1222         }
1223
1224         if (fifo->active && !status) {
1225                 /* is FifoFull-threshold set for our channel? */
1226                 threshbit = (hw->threshold_mask & (1 << fifon));
1227                 num_isoc_packets = iso_packets[fifon];
1228
1229                 /* predict dataflow to avoid fifo overflow */
1230                 if (fifon >= HFCUSB_D_TX)
1231                         sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1232                 else
1233                         sink = (threshbit) ? SINK_MIN : SINK_MAX;
1234                 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1235                               context_iso_urb->buffer, num_isoc_packets,
1236                               fifo->usb_packet_maxlen, fifo->intervall,
1237                               (usb_complete_t)tx_iso_complete, urb->context);
1238                 memset(context_iso_urb->buffer, 0,
1239                        sizeof(context_iso_urb->buffer));
1240                 frame_complete = 0;
1241
1242                 for (k = 0; k < num_isoc_packets; ++k) {
1243                         /* analyze tx success of previous ISO packets */
1244                         if (debug & DBG_HFC_URB_ERROR) {
1245                                 errcode = urb->iso_frame_desc[k].status;
1246                                 if (errcode) {
1247                                         printk(KERN_DEBUG "%s: %s: "
1248                                                "ISO packet %i, status: %i\n",
1249                                                hw->name, __func__, k, errcode);
1250                                 }
1251                         }
1252
1253                         /* Generate next ISO Packets */
1254                         if (tx_skb)
1255                                 remain = tx_skb->len - *tx_idx;
1256                         else if (fillempty)
1257                                 remain = 15; /* > not complete */
1258                         else
1259                                 remain = 0;
1260
1261                         if (remain > 0) {
1262                                 fifo->bit_line -= sink;
1263                                 current_len = (0 - fifo->bit_line) / 8;
1264                                 if (current_len > 14)
1265                                         current_len = 14;
1266                                 if (current_len < 0)
1267                                         current_len = 0;
1268                                 if (remain < current_len)
1269                                         current_len = remain;
1270
1271                                 /* how much bit do we put on the line? */
1272                                 fifo->bit_line += current_len * 8;
1273
1274                                 context_iso_urb->buffer[tx_offset] = 0;
1275                                 if (current_len == remain) {
1276                                         if (hdlc) {
1277                                                 /* signal frame completion */
1278                                                 context_iso_urb->
1279                                                         buffer[tx_offset] = 1;
1280                                                 /* add 2 byte flags and 16bit
1281                                                  * CRC at end of ISDN frame */
1282                                                 fifo->bit_line += 32;
1283                                         }
1284                                         frame_complete = 1;
1285                                 }
1286
1287                                 /* copy tx data to iso-urb buffer */
1288                                 p = context_iso_urb->buffer + tx_offset + 1;
1289                                 if (fillempty) {
1290                                         memset(p, fifo->bch->fill[0],
1291                                                current_len);
1292                                 } else {
1293                                         memcpy(p, (tx_skb->data + *tx_idx),
1294                                                current_len);
1295                                         *tx_idx += current_len;
1296                                 }
1297                                 urb->iso_frame_desc[k].offset = tx_offset;
1298                                 urb->iso_frame_desc[k].length = current_len + 1;
1299
1300                                 /* USB data log for every D ISO out */
1301                                 if ((fifon == HFCUSB_D_RX) && !fillempty &&
1302                                     (debug & DBG_HFC_USB_VERBOSE)) {
1303                                         printk(KERN_DEBUG
1304                                                "%s: %s (%d/%d) offs(%d) len(%d) ",
1305                                                hw->name, __func__,
1306                                                k, num_isoc_packets - 1,
1307                                                urb->iso_frame_desc[k].offset,
1308                                                urb->iso_frame_desc[k].length);
1309
1310                                         for (i = urb->iso_frame_desc[k].offset;
1311                                              i < (urb->iso_frame_desc[k].offset
1312                                                   + urb->iso_frame_desc[k].length);
1313                                              i++)
1314                                                 printk("%x ",
1315                                                        context_iso_urb->buffer[i]);
1316
1317                                         printk(" skb->len(%i) tx-idx(%d)\n",
1318                                                tx_skb->len, *tx_idx);
1319                                 }
1320
1321                                 tx_offset += (current_len + 1);
1322                         } else {
1323                                 urb->iso_frame_desc[k].offset = tx_offset++;
1324                                 urb->iso_frame_desc[k].length = 1;
1325                                 /* we lower data margin every msec */
1326                                 fifo->bit_line -= sink;
1327                                 if (fifo->bit_line < BITLINE_INF)
1328                                         fifo->bit_line = BITLINE_INF;
1329                         }
1330
1331                         if (frame_complete) {
1332                                 frame_complete = 0;
1333
1334                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
1335                                         printk(KERN_DEBUG  "%s: %s: "
1336                                                "fifon(%i) new TX len(%i): ",
1337                                                hw->name, __func__,
1338                                                fifon, tx_skb->len);
1339                                         i = 0;
1340                                         while (i < tx_skb->len)
1341                                                 printk("%02x ",
1342                                                        tx_skb->data[i++]);
1343                                         printk("\n");
1344                                 }
1345
1346                                 dev_kfree_skb(tx_skb);
1347                                 tx_skb = NULL;
1348                                 if (fifo->dch && get_next_dframe(fifo->dch))
1349                                         tx_skb = fifo->dch->tx_skb;
1350                                 else if (fifo->bch &&
1351                                          get_next_bframe(fifo->bch))
1352                                         tx_skb = fifo->bch->tx_skb;
1353                         }
1354                 }
1355                 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1356                 if (errcode < 0) {
1357                         if (debug & DEBUG_HW)
1358                                 printk(KERN_DEBUG
1359                                        "%s: %s: error submitting ISO URB: %d \n",
1360                                        hw->name, __func__, errcode);
1361                 }
1362
1363                 /*
1364                  * abuse DChannel tx iso completion to trigger NT mode state
1365                  * changes tx_iso_complete is assumed to be called every
1366                  * fifo->intervall (ms)
1367                  */
1368                 if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1369                     && (hw->timers & NT_ACTIVATION_TIMER)) {
1370                         if ((--hw->nt_timer) < 0)
1371                                 schedule_event(&hw->dch, FLG_PHCHANGE);
1372                 }
1373
1374         } else {
1375                 if (status && (debug & DBG_HFC_URB_ERROR))
1376                         printk(KERN_DEBUG  "%s: %s: urb->status %s (%i)"
1377                                "fifonum=%d\n",
1378                                hw->name, __func__,
1379                                symbolic(urb_errlist, status), status, fifon);
1380         }
1381         spin_unlock_irqrestore(&hw->lock, flags);
1382 }
1383
1384 /*
1385  * allocs urbs and start isoc transfer with two pending urbs to avoid
1386  * gaps in the transfer chain
1387  */
1388 static int
1389 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1390                  usb_complete_t complete, int packet_size)
1391 {
1392         struct hfcsusb *hw = fifo->hw;
1393         int i, k, errcode;
1394
1395         if (debug)
1396                 printk(KERN_DEBUG "%s: %s: fifo %i\n",
1397                        hw->name, __func__, fifo->fifonum);
1398
1399         /* allocate Memory for Iso out Urbs */
1400         for (i = 0; i < 2; i++) {
1401                 if (!(fifo->iso[i].urb)) {
1402                         fifo->iso[i].urb =
1403                                 usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1404                         if (!(fifo->iso[i].urb)) {
1405                                 printk(KERN_DEBUG
1406                                        "%s: %s: alloc urb for fifo %i failed",
1407                                        hw->name, __func__, fifo->fifonum);
1408                         }
1409                         fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1410                         fifo->iso[i].indx = i;
1411
1412                         /* Init the first iso */
1413                         if (ISO_BUFFER_SIZE >=
1414                             (fifo->usb_packet_maxlen *
1415                              num_packets_per_urb)) {
1416                                 fill_isoc_urb(fifo->iso[i].urb,
1417                                               fifo->hw->dev, fifo->pipe,
1418                                               fifo->iso[i].buffer,
1419                                               num_packets_per_urb,
1420                                               fifo->usb_packet_maxlen,
1421                                               fifo->intervall, complete,
1422                                               &fifo->iso[i]);
1423                                 memset(fifo->iso[i].buffer, 0,
1424                                        sizeof(fifo->iso[i].buffer));
1425
1426                                 for (k = 0; k < num_packets_per_urb; k++) {
1427                                         fifo->iso[i].urb->
1428                                                 iso_frame_desc[k].offset =
1429                                                 k * packet_size;
1430                                         fifo->iso[i].urb->
1431                                                 iso_frame_desc[k].length =
1432                                                 packet_size;
1433                                 }
1434                         } else {
1435                                 printk(KERN_DEBUG
1436                                        "%s: %s: ISO Buffer size to small!\n",
1437                                        hw->name, __func__);
1438                         }
1439                 }
1440                 fifo->bit_line = BITLINE_INF;
1441
1442                 errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1443                 fifo->active = (errcode >= 0) ? 1 : 0;
1444                 fifo->stop_gracefull = 0;
1445                 if (errcode < 0) {
1446                         printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1447                                hw->name, __func__,
1448                                symbolic(urb_errlist, errcode), i);
1449                 }
1450         }
1451         return fifo->active;
1452 }
1453
1454 static void
1455 stop_iso_gracefull(struct usb_fifo *fifo)
1456 {
1457         struct hfcsusb *hw = fifo->hw;
1458         int i, timeout;
1459         u_long flags;
1460
1461         for (i = 0; i < 2; i++) {
1462                 spin_lock_irqsave(&hw->lock, flags);
1463                 if (debug)
1464                         printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1465                                hw->name, __func__, fifo->fifonum, i);
1466                 fifo->stop_gracefull = 1;
1467                 spin_unlock_irqrestore(&hw->lock, flags);
1468         }
1469
1470         for (i = 0; i < 2; i++) {
1471                 timeout = 3;
1472                 while (fifo->stop_gracefull && timeout--)
1473                         schedule_timeout_interruptible((HZ / 1000) * 16);
1474                 if (debug && fifo->stop_gracefull)
1475                         printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1476                                hw->name, __func__, fifo->fifonum, i);
1477         }
1478 }
1479
1480 static void
1481 stop_int_gracefull(struct usb_fifo *fifo)
1482 {
1483         struct hfcsusb *hw = fifo->hw;
1484         int timeout;
1485         u_long flags;
1486
1487         spin_lock_irqsave(&hw->lock, flags);
1488         if (debug)
1489                 printk(KERN_DEBUG "%s: %s for fifo %i\n",
1490                        hw->name, __func__, fifo->fifonum);
1491         fifo->stop_gracefull = 1;
1492         spin_unlock_irqrestore(&hw->lock, flags);
1493
1494         timeout = 3;
1495         while (fifo->stop_gracefull && timeout--)
1496                 schedule_timeout_interruptible((HZ / 1000) * 3);
1497         if (debug && fifo->stop_gracefull)
1498                 printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1499                        hw->name, __func__, fifo->fifonum);
1500 }
1501
1502 /* start the interrupt transfer for the given fifo */
1503 static void
1504 start_int_fifo(struct usb_fifo *fifo)
1505 {
1506         struct hfcsusb *hw = fifo->hw;
1507         int errcode;
1508
1509         if (debug)
1510                 printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1511                        hw->name, __func__, fifo->fifonum);
1512
1513         if (!fifo->urb) {
1514                 fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1515                 if (!fifo->urb)
1516                         return;
1517         }
1518         usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1519                          fifo->buffer, fifo->usb_packet_maxlen,
1520                          (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1521         fifo->active = 1;
1522         fifo->stop_gracefull = 0;
1523         errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1524         if (errcode) {
1525                 printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1526                        hw->name, __func__, errcode);
1527                 fifo->active = 0;
1528         }
1529 }
1530
1531 static void
1532 setPortMode(struct hfcsusb *hw)
1533 {
1534         if (debug & DEBUG_HW)
1535                 printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1536                        (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1537
1538         if (hw->protocol == ISDN_P_TE_S0) {
1539                 write_reg(hw, HFCUSB_SCTRL, 0x40);
1540                 write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1541                 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1542                 write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1543                 write_reg(hw, HFCUSB_STATES, 3);
1544         } else {
1545                 write_reg(hw, HFCUSB_SCTRL, 0x44);
1546                 write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1547                 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1548                 write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1549                 write_reg(hw, HFCUSB_STATES, 1);
1550         }
1551 }
1552
1553 static void
1554 reset_hfcsusb(struct hfcsusb *hw)
1555 {
1556         struct usb_fifo *fifo;
1557         int i;
1558
1559         if (debug & DEBUG_HW)
1560                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1561
1562         /* do Chip reset */
1563         write_reg(hw, HFCUSB_CIRM, 8);
1564
1565         /* aux = output, reset off */
1566         write_reg(hw, HFCUSB_CIRM, 0x10);
1567
1568         /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1569         write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1570                   ((hw->packet_size / 8) << 4));
1571
1572         /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1573         write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1574
1575         /* enable PCM/GCI master mode */
1576         write_reg(hw, HFCUSB_MST_MODE1, 0);     /* set default values */
1577         write_reg(hw, HFCUSB_MST_MODE0, 1);     /* enable master mode */
1578
1579         /* init the fifos */
1580         write_reg(hw, HFCUSB_F_THRES,
1581                   (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1582
1583         fifo = hw->fifos;
1584         for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1585                 write_reg(hw, HFCUSB_FIFO, i);  /* select the desired fifo */
1586                 fifo[i].max_size =
1587                         (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1588                 fifo[i].last_urblen = 0;
1589
1590                 /* set 2 bit for D- & E-channel */
1591                 write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1592
1593                 /* enable all fifos */
1594                 if (i == HFCUSB_D_TX)
1595                         write_reg(hw, HFCUSB_CON_HDLC,
1596                                   (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1597                 else
1598                         write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1599                 write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1600         }
1601
1602         write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1603         handle_led(hw, LED_POWER_ON);
1604 }
1605
1606 /* start USB data pipes dependand on device's endpoint configuration */
1607 static void
1608 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1609 {
1610         /* quick check if endpoint already running */
1611         if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1612                 return;
1613         if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1614                 return;
1615         if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1616                 return;
1617         if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1618                 return;
1619
1620         /* start rx endpoints using USB INT IN method */
1621         if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1622                 start_int_fifo(hw->fifos + channel * 2 + 1);
1623
1624         /* start rx endpoints using USB ISO IN method */
1625         if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1626                 switch (channel) {
1627                 case HFC_CHAN_D:
1628                         start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1629                                          ISOC_PACKETS_D,
1630                                          (usb_complete_t)rx_iso_complete,
1631                                          16);
1632                         break;
1633                 case HFC_CHAN_E:
1634                         start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1635                                          ISOC_PACKETS_D,
1636                                          (usb_complete_t)rx_iso_complete,
1637                                          16);
1638                         break;
1639                 case HFC_CHAN_B1:
1640                         start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1641                                          ISOC_PACKETS_B,
1642                                          (usb_complete_t)rx_iso_complete,
1643                                          16);
1644                         break;
1645                 case HFC_CHAN_B2:
1646                         start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1647                                          ISOC_PACKETS_B,
1648                                          (usb_complete_t)rx_iso_complete,
1649                                          16);
1650                         break;
1651                 }
1652         }
1653
1654         /* start tx endpoints using USB ISO OUT method */
1655         switch (channel) {
1656         case HFC_CHAN_D:
1657                 start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1658                                  ISOC_PACKETS_B,
1659                                  (usb_complete_t)tx_iso_complete, 1);
1660                 break;
1661         case HFC_CHAN_B1:
1662                 start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1663                                  ISOC_PACKETS_D,
1664                                  (usb_complete_t)tx_iso_complete, 1);
1665                 break;
1666         case HFC_CHAN_B2:
1667                 start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1668                                  ISOC_PACKETS_B,
1669                                  (usb_complete_t)tx_iso_complete, 1);
1670                 break;
1671         }
1672 }
1673
1674 /* stop USB data pipes dependand on device's endpoint configuration */
1675 static void
1676 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1677 {
1678         /* quick check if endpoint currently running */
1679         if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1680                 return;
1681         if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1682                 return;
1683         if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1684                 return;
1685         if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1686                 return;
1687
1688         /* rx endpoints using USB INT IN method */
1689         if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1690                 stop_int_gracefull(hw->fifos + channel * 2 + 1);
1691
1692         /* rx endpoints using USB ISO IN method */
1693         if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1694                 stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1695
1696         /* tx endpoints using USB ISO OUT method */
1697         if (channel != HFC_CHAN_E)
1698                 stop_iso_gracefull(hw->fifos + channel * 2);
1699 }
1700
1701
1702 /* Hardware Initialization */
1703 static int
1704 setup_hfcsusb(struct hfcsusb *hw)
1705 {
1706         u_char b;
1707
1708         if (debug & DBG_HFC_CALL_TRACE)
1709                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1710
1711         /* check the chip id */
1712         if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) {
1713                 printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1714                        hw->name, __func__);
1715                 return 1;
1716         }
1717         if (b != HFCUSB_CHIPID) {
1718                 printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1719                        hw->name, __func__, b);
1720                 return 1;
1721         }
1722
1723         /* first set the needed config, interface and alternate */
1724         (void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1725
1726         hw->led_state = 0;
1727
1728         /* init the background machinery for control requests */
1729         hw->ctrl_read.bRequestType = 0xc0;
1730         hw->ctrl_read.bRequest = 1;
1731         hw->ctrl_read.wLength = cpu_to_le16(1);
1732         hw->ctrl_write.bRequestType = 0x40;
1733         hw->ctrl_write.bRequest = 0;
1734         hw->ctrl_write.wLength = 0;
1735         usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1736                              (u_char *)&hw->ctrl_write, NULL, 0,
1737                              (usb_complete_t)ctrl_complete, hw);
1738
1739         reset_hfcsusb(hw);
1740         return 0;
1741 }
1742
1743 static void
1744 release_hw(struct hfcsusb *hw)
1745 {
1746         if (debug & DBG_HFC_CALL_TRACE)
1747                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1748
1749         /*
1750          * stop all endpoints gracefully
1751          * TODO: mISDN_core should generate CLOSE_CHANNEL
1752          *       signals after calling mISDN_unregister_device()
1753          */
1754         hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1755         hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1756         hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1757         if (hw->fifos[HFCUSB_PCM_RX].pipe)
1758                 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1759         if (hw->protocol == ISDN_P_TE_S0)
1760                 l1_event(hw->dch.l1, CLOSE_CHANNEL);
1761
1762         mISDN_unregister_device(&hw->dch.dev);
1763         mISDN_freebchannel(&hw->bch[1]);
1764         mISDN_freebchannel(&hw->bch[0]);
1765         mISDN_freedchannel(&hw->dch);
1766
1767         if (hw->ctrl_urb) {
1768                 usb_kill_urb(hw->ctrl_urb);
1769                 usb_free_urb(hw->ctrl_urb);
1770                 hw->ctrl_urb = NULL;
1771         }
1772
1773         if (hw->intf)
1774                 usb_set_intfdata(hw->intf, NULL);
1775         list_del(&hw->list);
1776         kfree(hw);
1777         hw = NULL;
1778 }
1779
1780 static void
1781 deactivate_bchannel(struct bchannel *bch)
1782 {
1783         struct hfcsusb *hw = bch->hw;
1784         u_long flags;
1785
1786         if (bch->debug & DEBUG_HW)
1787                 printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1788                        hw->name, __func__, bch->nr);
1789
1790         spin_lock_irqsave(&hw->lock, flags);
1791         mISDN_clear_bchannel(bch);
1792         spin_unlock_irqrestore(&hw->lock, flags);
1793         hfcsusb_setup_bch(bch, ISDN_P_NONE);
1794         hfcsusb_stop_endpoint(hw, bch->nr - 1);
1795 }
1796
1797 /*
1798  * Layer 1 B-channel hardware access
1799  */
1800 static int
1801 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1802 {
1803         struct bchannel *bch = container_of(ch, struct bchannel, ch);
1804         int             ret = -EINVAL;
1805
1806         if (bch->debug & DEBUG_HW)
1807                 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1808
1809         switch (cmd) {
1810         case HW_TESTRX_RAW:
1811         case HW_TESTRX_HDLC:
1812         case HW_TESTRX_OFF:
1813                 ret = -EINVAL;
1814                 break;
1815
1816         case CLOSE_CHANNEL:
1817                 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1818                 deactivate_bchannel(bch);
1819                 ch->protocol = ISDN_P_NONE;
1820                 ch->peer = NULL;
1821                 module_put(THIS_MODULE);
1822                 ret = 0;
1823                 break;
1824         case CONTROL_CHANNEL:
1825                 ret = channel_bctrl(bch, arg);
1826                 break;
1827         default:
1828                 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1829                        __func__, cmd);
1830         }
1831         return ret;
1832 }
1833
1834 static int
1835 setup_instance(struct hfcsusb *hw, struct device *parent)
1836 {
1837         u_long  flags;
1838         int     err, i;
1839
1840         if (debug & DBG_HFC_CALL_TRACE)
1841                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1842
1843         spin_lock_init(&hw->ctrl_lock);
1844         spin_lock_init(&hw->lock);
1845
1846         mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1847         hw->dch.debug = debug & 0xFFFF;
1848         hw->dch.hw = hw;
1849         hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1850         hw->dch.dev.D.send = hfcusb_l2l1D;
1851         hw->dch.dev.D.ctrl = hfc_dctrl;
1852
1853         /* enable E-Channel logging */
1854         if (hw->fifos[HFCUSB_PCM_RX].pipe)
1855                 mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1856
1857         hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1858                 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1859         hw->dch.dev.nrbchan = 2;
1860         for (i = 0; i < 2; i++) {
1861                 hw->bch[i].nr = i + 1;
1862                 set_channelmap(i + 1, hw->dch.dev.channelmap);
1863                 hw->bch[i].debug = debug;
1864                 mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1865                 hw->bch[i].hw = hw;
1866                 hw->bch[i].ch.send = hfcusb_l2l1B;
1867                 hw->bch[i].ch.ctrl = hfc_bctrl;
1868                 hw->bch[i].ch.nr = i + 1;
1869                 list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1870         }
1871
1872         hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1873         hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1874         hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1875         hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1876         hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1877         hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1878         hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1879         hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1880
1881         err = setup_hfcsusb(hw);
1882         if (err)
1883                 goto out;
1884
1885         snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1886                  hfcsusb_cnt + 1);
1887         printk(KERN_INFO "%s: registered as '%s'\n",
1888                DRIVER_NAME, hw->name);
1889
1890         err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1891         if (err)
1892                 goto out;
1893
1894         hfcsusb_cnt++;
1895         write_lock_irqsave(&HFClock, flags);
1896         list_add_tail(&hw->list, &HFClist);
1897         write_unlock_irqrestore(&HFClock, flags);
1898         return 0;
1899
1900 out:
1901         mISDN_freebchannel(&hw->bch[1]);
1902         mISDN_freebchannel(&hw->bch[0]);
1903         mISDN_freedchannel(&hw->dch);
1904         kfree(hw);
1905         return err;
1906 }
1907
1908 static int
1909 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1910 {
1911         struct hfcsusb                  *hw;
1912         struct usb_device               *dev = interface_to_usbdev(intf);
1913         struct usb_host_interface       *iface = intf->cur_altsetting;
1914         struct usb_host_interface       *iface_used = NULL;
1915         struct usb_host_endpoint        *ep;
1916         struct hfcsusb_vdata            *driver_info;
1917         int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1918                 probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1919                 ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1920                 alt_used = 0;
1921
1922         vend_idx = 0xffff;
1923         for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1924                 if ((le16_to_cpu(dev->descriptor.idVendor)
1925                      == hfcsusb_idtab[i].idVendor) &&
1926                     (le16_to_cpu(dev->descriptor.idProduct)
1927                      == hfcsusb_idtab[i].idProduct)) {
1928                         vend_idx = i;
1929                         continue;
1930                 }
1931         }
1932
1933         printk(KERN_DEBUG
1934                "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1935                __func__, ifnum, iface->desc.bAlternateSetting,
1936                intf->minor, vend_idx);
1937
1938         if (vend_idx == 0xffff) {
1939                 printk(KERN_WARNING
1940                        "%s: no valid vendor found in USB descriptor\n",
1941                        __func__);
1942                 return -EIO;
1943         }
1944         /* if vendor and product ID is OK, start probing alternate settings */
1945         alt_idx = 0;
1946         small_match = -1;
1947
1948         /* default settings */
1949         iso_packet_size = 16;
1950         packet_size = 64;
1951
1952         while (alt_idx < intf->num_altsetting) {
1953                 iface = intf->altsetting + alt_idx;
1954                 probe_alt_setting = iface->desc.bAlternateSetting;
1955                 cfg_used = 0;
1956
1957                 while (validconf[cfg_used][0]) {
1958                         cfg_found = 1;
1959                         vcf = validconf[cfg_used];
1960                         ep = iface->endpoint;
1961                         memcpy(cmptbl, vcf, 16 * sizeof(int));
1962
1963                         /* check for all endpoints in this alternate setting */
1964                         for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1965                                 ep_addr = ep->desc.bEndpointAddress;
1966
1967                                 /* get endpoint base */
1968                                 idx = ((ep_addr & 0x7f) - 1) * 2;
1969                                 if (ep_addr & 0x80)
1970                                         idx++;
1971                                 attr = ep->desc.bmAttributes;
1972
1973                                 if (cmptbl[idx] != EP_NOP) {
1974                                         if (cmptbl[idx] == EP_NUL)
1975                                                 cfg_found = 0;
1976                                         if (attr == USB_ENDPOINT_XFER_INT
1977                                             && cmptbl[idx] == EP_INT)
1978                                                 cmptbl[idx] = EP_NUL;
1979                                         if (attr == USB_ENDPOINT_XFER_BULK
1980                                             && cmptbl[idx] == EP_BLK)
1981                                                 cmptbl[idx] = EP_NUL;
1982                                         if (attr == USB_ENDPOINT_XFER_ISOC
1983                                             && cmptbl[idx] == EP_ISO)
1984                                                 cmptbl[idx] = EP_NUL;
1985
1986                                         if (attr == USB_ENDPOINT_XFER_INT &&
1987                                             ep->desc.bInterval < vcf[17]) {
1988                                                 cfg_found = 0;
1989                                         }
1990                                 }
1991                                 ep++;
1992                         }
1993
1994                         for (i = 0; i < 16; i++)
1995                                 if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
1996                                         cfg_found = 0;
1997
1998                         if (cfg_found) {
1999                                 if (small_match < cfg_used) {
2000                                         small_match = cfg_used;
2001                                         alt_used = probe_alt_setting;
2002                                         iface_used = iface;
2003                                 }
2004                         }
2005                         cfg_used++;
2006                 }
2007                 alt_idx++;
2008         }       /* (alt_idx < intf->num_altsetting) */
2009
2010         /* not found a valid USB Ta Endpoint config */
2011         if (small_match == -1)
2012                 return -EIO;
2013
2014         iface = iface_used;
2015         hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2016         if (!hw)
2017                 return -ENOMEM; /* got no mem */
2018         snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2019
2020         ep = iface->endpoint;
2021         vcf = validconf[small_match];
2022
2023         for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2024                 struct usb_fifo *f;
2025
2026                 ep_addr = ep->desc.bEndpointAddress;
2027                 /* get endpoint base */
2028                 idx = ((ep_addr & 0x7f) - 1) * 2;
2029                 if (ep_addr & 0x80)
2030                         idx++;
2031                 f = &hw->fifos[idx & 7];
2032
2033                 /* init Endpoints */
2034                 if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2035                         ep++;
2036                         continue;
2037                 }
2038                 switch (ep->desc.bmAttributes) {
2039                 case USB_ENDPOINT_XFER_INT:
2040                         f->pipe = usb_rcvintpipe(dev,
2041                                                  ep->desc.bEndpointAddress);
2042                         f->usb_transfer_mode = USB_INT;
2043                         packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2044                         break;
2045                 case USB_ENDPOINT_XFER_BULK:
2046                         if (ep_addr & 0x80)
2047                                 f->pipe = usb_rcvbulkpipe(dev,
2048                                                           ep->desc.bEndpointAddress);
2049                         else
2050                                 f->pipe = usb_sndbulkpipe(dev,
2051                                                           ep->desc.bEndpointAddress);
2052                         f->usb_transfer_mode = USB_BULK;
2053                         packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2054                         break;
2055                 case USB_ENDPOINT_XFER_ISOC:
2056                         if (ep_addr & 0x80)
2057                                 f->pipe = usb_rcvisocpipe(dev,
2058                                                           ep->desc.bEndpointAddress);
2059                         else
2060                                 f->pipe = usb_sndisocpipe(dev,
2061                                                           ep->desc.bEndpointAddress);
2062                         f->usb_transfer_mode = USB_ISOC;
2063                         iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2064                         break;
2065                 default:
2066                         f->pipe = 0;
2067                 }
2068
2069                 if (f->pipe) {
2070                         f->fifonum = idx & 7;
2071                         f->hw = hw;
2072                         f->usb_packet_maxlen =
2073                                 le16_to_cpu(ep->desc.wMaxPacketSize);
2074                         f->intervall = ep->desc.bInterval;
2075                 }
2076                 ep++;
2077         }
2078         hw->dev = dev; /* save device */
2079         hw->if_used = ifnum; /* save used interface */
2080         hw->alt_used = alt_used; /* and alternate config */
2081         hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2082         hw->cfg_used = vcf[16]; /* store used config */
2083         hw->vend_idx = vend_idx; /* store found vendor */
2084         hw->packet_size = packet_size;
2085         hw->iso_packet_size = iso_packet_size;
2086
2087         /* create the control pipes needed for register access */
2088         hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2089         hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2090
2091         driver_info = (struct hfcsusb_vdata *)
2092                       hfcsusb_idtab[vend_idx].driver_info;
2093
2094         hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2095         if (!hw->ctrl_urb) {
2096                 pr_warn("%s: No memory for control urb\n",
2097                         driver_info->vend_name);
2098                 kfree(hw);
2099                 return -ENOMEM;
2100         }
2101
2102         pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2103                 hw->name, __func__, driver_info->vend_name,
2104                 conf_str[small_match], ifnum, alt_used);
2105
2106         if (setup_instance(hw, dev->dev.parent))
2107                 return -EIO;
2108
2109         hw->intf = intf;
2110         usb_set_intfdata(hw->intf, hw);
2111         return 0;
2112 }
2113
2114 /* function called when an active device is removed */
2115 static void
2116 hfcsusb_disconnect(struct usb_interface *intf)
2117 {
2118         struct hfcsusb *hw = usb_get_intfdata(intf);
2119         struct hfcsusb *next;
2120         int cnt = 0;
2121
2122         printk(KERN_INFO "%s: device disconnected\n", hw->name);
2123
2124         handle_led(hw, LED_POWER_OFF);
2125         release_hw(hw);
2126
2127         list_for_each_entry_safe(hw, next, &HFClist, list)
2128                 cnt++;
2129         if (!cnt)
2130                 hfcsusb_cnt = 0;
2131
2132         usb_set_intfdata(intf, NULL);
2133 }
2134
2135 static struct usb_driver hfcsusb_drv = {
2136         .name = DRIVER_NAME,
2137         .id_table = hfcsusb_idtab,
2138         .probe = hfcsusb_probe,
2139         .disconnect = hfcsusb_disconnect,
2140         .disable_hub_initiated_lpm = 1,
2141 };
2142
2143 module_usb_driver(hfcsusb_drv);