Merge git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi-rc-fixes-2.6
[sfrench/cifs-2.6.git] / drivers / isdn / hardware / mISDN / hfcmulti.c
1 /*
2  * hfcmulti.c  low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
3  *
4  * Author       Andreas Eversberg (jolly@eversberg.eu)
5  * ported to mqueue mechanism:
6  *              Peter Sprenger (sprengermoving-bytes.de)
7  *
8  * inspired by existing hfc-pci driver:
9  * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
10  * Copyright 2008  by Karsten Keil (kkeil@suse.de)
11  * Copyright 2008  by Andreas Eversberg (jolly@eversberg.eu)
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  *
27  *
28  * Thanks to Cologne Chip AG for this great controller!
29  */
30
31 /*
32  * module parameters:
33  * type:
34  *      By default (0), the card is automatically detected.
35  *      Or use the following combinations:
36  *      Bit 0-7   = 0x00001 = HFC-E1 (1 port)
37  * or   Bit 0-7   = 0x00004 = HFC-4S (4 ports)
38  * or   Bit 0-7   = 0x00008 = HFC-8S (8 ports)
39  *      Bit 8     = 0x00100 = uLaw (instead of aLaw)
40  *      Bit 9     = 0x00200 = Disable DTMF detect on all B-channels via hardware
41  *      Bit 10    = spare
42  *      Bit 11    = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
43  * or   Bit 12    = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
44  *      Bit 13    = spare
45  *      Bit 14    = 0x04000 = Use external ram (128K)
46  *      Bit 15    = 0x08000 = Use external ram (512K)
47  *      Bit 16    = 0x10000 = Use 64 timeslots instead of 32
48  * or   Bit 17    = 0x20000 = Use 128 timeslots instead of anything else
49  *      Bit 18    = spare
50  *      Bit 19    = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
51  * (all other bits are reserved and shall be 0)
52  *      example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
53  *               bus (PCM master)
54  *
55  * port: (optional or required for all ports on all installed cards)
56  *      HFC-4S/HFC-8S only bits:
57  *      Bit 0     = 0x001 = Use master clock for this S/T interface
58  *                          (ony once per chip).
59  *      Bit 1     = 0x002 = transmitter line setup (non capacitive mode)
60  *                          Don't use this unless you know what you are doing!
61  *      Bit 2     = 0x004 = Disable E-channel. (No E-channel processing)
62  *      example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
63  *               received from port 1
64  *
65  *      HFC-E1 only bits:
66  *      Bit 0     = 0x0001 = interface: 0=copper, 1=optical
67  *      Bit 1     = 0x0002 = reserved (later for 32 B-channels transparent mode)
68  *      Bit 2     = 0x0004 = Report LOS
69  *      Bit 3     = 0x0008 = Report AIS
70  *      Bit 4     = 0x0010 = Report SLIP
71  *      Bit 5     = 0x0020 = Report RDI
72  *      Bit 8     = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
73  *                           mode instead.
74  *      Bit 9     = 0x0200 = Force get clock from interface, even in NT mode.
75  * or   Bit 10    = 0x0400 = Force put clock to interface, even in TE mode.
76  *      Bit 11    = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
77  *                           (E1 only)
78  *      Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
79  *                           for default.
80  * (all other bits are reserved and shall be 0)
81  *
82  * debug:
83  *      NOTE: only one debug value must be given for all cards
84  *      enable debugging (see hfc_multi.h for debug options)
85  *
86  * poll:
87  *      NOTE: only one poll value must be given for all cards
88  *      Give the number of samples for each fifo process.
89  *      By default 128 is used. Decrease to reduce delay, increase to
90  *      reduce cpu load. If unsure, don't mess with it!
91  *      Valid is 8, 16, 32, 64, 128, 256.
92  *
93  * pcm:
94  *      NOTE: only one pcm value must be given for every card.
95  *      The PCM bus id tells the mISDNdsp module about the connected PCM bus.
96  *      By default (0), the PCM bus id is 100 for the card that is PCM master.
97  *      If multiple cards are PCM master (because they are not interconnected),
98  *      each card with PCM master will have increasing PCM id.
99  *      All PCM busses with the same ID are expected to be connected and have
100  *      common time slots slots.
101  *      Only one chip of the PCM bus must be master, the others slave.
102  *      -1 means no support of PCM bus not even.
103  *      Omit this value, if all cards are interconnected or none is connected.
104  *      If unsure, don't give this parameter.
105  *
106  * dslot:
107  *      NOTE: only one poll value must be given for every card.
108  *      Also this value must be given for non-E1 cards. If omitted, the E1
109  *      card has D-channel on time slot 16, which is default.
110  *      If 1..15 or 17..31, an alternate time slot is used for D-channel.
111  *      In this case, the application must be able to handle this.
112  *      If -1 is given, the D-channel is disabled and all 31 slots can be used
113  *      for B-channel. (only for specific applications)
114  *      If you don't know how to use it, you don't need it!
115  *
116  * iomode:
117  *      NOTE: only one mode value must be given for every card.
118  *      -> See hfc_multi.h for HFC_IO_MODE_* values
119  *      By default, the IO mode is pci memory IO (MEMIO).
120  *      Some cards requre specific IO mode, so it cannot be changed.
121  *      It may be usefull to set IO mode to register io (REGIO) to solve
122  *      PCI bridge problems.
123  *      If unsure, don't give this parameter.
124  *
125  * clockdelay_nt:
126  *      NOTE: only one clockdelay_nt value must be given once for all cards.
127  *      Give the value of the clock control register (A_ST_CLK_DLY)
128  *      of the S/T interfaces in NT mode.
129  *      This register is needed for the TBR3 certification, so don't change it.
130  *
131  * clockdelay_te:
132  *      NOTE: only one clockdelay_te value must be given once
133  *      Give the value of the clock control register (A_ST_CLK_DLY)
134  *      of the S/T interfaces in TE mode.
135  *      This register is needed for the TBR3 certification, so don't change it.
136  *
137  * clock:
138  *      NOTE: only one clock value must be given once
139  *      Selects interface with clock source for mISDN and applications.
140  *      Set to card number starting with 1. Set to -1 to disable.
141  *      By default, the first card is used as clock source.
142  */
143
144 /*
145  * debug register access (never use this, it will flood your system log)
146  * #define HFC_REGISTER_DEBUG
147  */
148
149 #define HFC_MULTI_VERSION       "2.03"
150
151 #include <linux/module.h>
152 #include <linux/pci.h>
153 #include <linux/delay.h>
154 #include <linux/mISDNhw.h>
155 #include <linux/mISDNdsp.h>
156
157 /*
158 #define IRQCOUNT_DEBUG
159 #define IRQ_DEBUG
160 */
161
162 #include "hfc_multi.h"
163 #ifdef ECHOPREP
164 #include "gaintab.h"
165 #endif
166
167 #define MAX_CARDS       8
168 #define MAX_PORTS       (8 * MAX_CARDS)
169
170 static LIST_HEAD(HFClist);
171 static spinlock_t HFClock; /* global hfc list lock */
172
173 static void ph_state_change(struct dchannel *);
174
175 static struct hfc_multi *syncmaster;
176 static int plxsd_master; /* if we have a master card (yet) */
177 static spinlock_t plx_lock; /* may not acquire other lock inside */
178
179 #define TYP_E1          1
180 #define TYP_4S          4
181 #define TYP_8S          8
182
183 static int poll_timer = 6;      /* default = 128 samples = 16ms */
184 /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
185 static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30  };
186 #define CLKDEL_TE       0x0f    /* CLKDEL in TE mode */
187 #define CLKDEL_NT       0x6c    /* CLKDEL in NT mode
188                                    (0x60 MUST be included!) */
189
190 #define DIP_4S  0x1             /* DIP Switches for Beronet 1S/2S/4S cards */
191 #define DIP_8S  0x2             /* DIP Switches for Beronet 8S+ cards */
192 #define DIP_E1  0x3             /* DIP Switches for Beronet E1 cards */
193
194 /*
195  * module stuff
196  */
197
198 static uint     type[MAX_CARDS];
199 static int      pcm[MAX_CARDS];
200 static int      dslot[MAX_CARDS];
201 static uint     iomode[MAX_CARDS];
202 static uint     port[MAX_PORTS];
203 static uint     debug;
204 static uint     poll;
205 static int      clock;
206 static uint     timer;
207 static uint     clockdelay_te = CLKDEL_TE;
208 static uint     clockdelay_nt = CLKDEL_NT;
209
210 static int      HFC_cnt, Port_cnt, PCM_cnt = 99;
211
212 MODULE_AUTHOR("Andreas Eversberg");
213 MODULE_LICENSE("GPL");
214 MODULE_VERSION(HFC_MULTI_VERSION);
215 module_param(debug, uint, S_IRUGO | S_IWUSR);
216 module_param(poll, uint, S_IRUGO | S_IWUSR);
217 module_param(clock, int, S_IRUGO | S_IWUSR);
218 module_param(timer, uint, S_IRUGO | S_IWUSR);
219 module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
220 module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
221 module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
222 module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR);
223 module_param_array(dslot, int, NULL, S_IRUGO | S_IWUSR);
224 module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
225 module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
226
227 #ifdef HFC_REGISTER_DEBUG
228 #define HFC_outb(hc, reg, val) \
229         (hc->HFC_outb(hc, reg, val, __func__, __LINE__))
230 #define HFC_outb_nodebug(hc, reg, val) \
231         (hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
232 #define HFC_inb(hc, reg) \
233         (hc->HFC_inb(hc, reg, __func__, __LINE__))
234 #define HFC_inb_nodebug(hc, reg) \
235         (hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
236 #define HFC_inw(hc, reg) \
237         (hc->HFC_inw(hc, reg, __func__, __LINE__))
238 #define HFC_inw_nodebug(hc, reg) \
239         (hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
240 #define HFC_wait(hc) \
241         (hc->HFC_wait(hc, __func__, __LINE__))
242 #define HFC_wait_nodebug(hc) \
243         (hc->HFC_wait_nodebug(hc, __func__, __LINE__))
244 #else
245 #define HFC_outb(hc, reg, val)          (hc->HFC_outb(hc, reg, val))
246 #define HFC_outb_nodebug(hc, reg, val)  (hc->HFC_outb_nodebug(hc, reg, val))
247 #define HFC_inb(hc, reg)                (hc->HFC_inb(hc, reg))
248 #define HFC_inb_nodebug(hc, reg)        (hc->HFC_inb_nodebug(hc, reg))
249 #define HFC_inw(hc, reg)                (hc->HFC_inw(hc, reg))
250 #define HFC_inw_nodebug(hc, reg)        (hc->HFC_inw_nodebug(hc, reg))
251 #define HFC_wait(hc)                    (hc->HFC_wait(hc))
252 #define HFC_wait_nodebug(hc)            (hc->HFC_wait_nodebug(hc))
253 #endif
254
255 /* HFC_IO_MODE_PCIMEM */
256 static void
257 #ifdef HFC_REGISTER_DEBUG
258 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
259                 const char *function, int line)
260 #else
261 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
262 #endif
263 {
264         writeb(val, (hc->pci_membase)+reg);
265 }
266 static u_char
267 #ifdef HFC_REGISTER_DEBUG
268 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
269 #else
270 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
271 #endif
272 {
273         return readb((hc->pci_membase)+reg);
274 }
275 static u_short
276 #ifdef HFC_REGISTER_DEBUG
277 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
278 #else
279 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
280 #endif
281 {
282         return readw((hc->pci_membase)+reg);
283 }
284 static void
285 #ifdef HFC_REGISTER_DEBUG
286 HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
287 #else
288 HFC_wait_pcimem(struct hfc_multi *hc)
289 #endif
290 {
291         while (readb((hc->pci_membase)+R_STATUS) & V_BUSY);
292 }
293
294 /* HFC_IO_MODE_REGIO */
295 static void
296 #ifdef HFC_REGISTER_DEBUG
297 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
298         const char *function, int line)
299 #else
300 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
301 #endif
302 {
303         outb(reg, (hc->pci_iobase)+4);
304         outb(val, hc->pci_iobase);
305 }
306 static u_char
307 #ifdef HFC_REGISTER_DEBUG
308 HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
309 #else
310 HFC_inb_regio(struct hfc_multi *hc, u_char reg)
311 #endif
312 {
313         outb(reg, (hc->pci_iobase)+4);
314         return inb(hc->pci_iobase);
315 }
316 static u_short
317 #ifdef HFC_REGISTER_DEBUG
318 HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
319 #else
320 HFC_inw_regio(struct hfc_multi *hc, u_char reg)
321 #endif
322 {
323         outb(reg, (hc->pci_iobase)+4);
324         return inw(hc->pci_iobase);
325 }
326 static void
327 #ifdef HFC_REGISTER_DEBUG
328 HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
329 #else
330 HFC_wait_regio(struct hfc_multi *hc)
331 #endif
332 {
333         outb(R_STATUS, (hc->pci_iobase)+4);
334         while (inb(hc->pci_iobase) & V_BUSY);
335 }
336
337 #ifdef HFC_REGISTER_DEBUG
338 static void
339 HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
340                 const char *function, int line)
341 {
342         char regname[256] = "", bits[9] = "xxxxxxxx";
343         int i;
344
345         i = -1;
346         while (hfc_register_names[++i].name) {
347                 if (hfc_register_names[i].reg == reg)
348                         strcat(regname, hfc_register_names[i].name);
349         }
350         if (regname[0] == '\0')
351                 strcpy(regname, "register");
352
353         bits[7] = '0'+(!!(val&1));
354         bits[6] = '0'+(!!(val&2));
355         bits[5] = '0'+(!!(val&4));
356         bits[4] = '0'+(!!(val&8));
357         bits[3] = '0'+(!!(val&16));
358         bits[2] = '0'+(!!(val&32));
359         bits[1] = '0'+(!!(val&64));
360         bits[0] = '0'+(!!(val&128));
361         printk(KERN_DEBUG
362             "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
363             hc->id, reg, regname, val, bits, function, line);
364         HFC_outb_nodebug(hc, reg, val);
365 }
366 static u_char
367 HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
368 {
369         char regname[256] = "", bits[9] = "xxxxxxxx";
370         u_char val = HFC_inb_nodebug(hc, reg);
371         int i;
372
373         i = 0;
374         while (hfc_register_names[i++].name)
375                 ;
376         while (hfc_register_names[++i].name) {
377                 if (hfc_register_names[i].reg == reg)
378                         strcat(regname, hfc_register_names[i].name);
379         }
380         if (regname[0] == '\0')
381                 strcpy(regname, "register");
382
383         bits[7] = '0'+(!!(val&1));
384         bits[6] = '0'+(!!(val&2));
385         bits[5] = '0'+(!!(val&4));
386         bits[4] = '0'+(!!(val&8));
387         bits[3] = '0'+(!!(val&16));
388         bits[2] = '0'+(!!(val&32));
389         bits[1] = '0'+(!!(val&64));
390         bits[0] = '0'+(!!(val&128));
391         printk(KERN_DEBUG
392             "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
393             hc->id, reg, regname, val, bits, function, line);
394         return val;
395 }
396 static u_short
397 HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
398 {
399         char regname[256] = "";
400         u_short val = HFC_inw_nodebug(hc, reg);
401         int i;
402
403         i = 0;
404         while (hfc_register_names[i++].name)
405                 ;
406         while (hfc_register_names[++i].name) {
407                 if (hfc_register_names[i].reg == reg)
408                         strcat(regname, hfc_register_names[i].name);
409         }
410         if (regname[0] == '\0')
411                 strcpy(regname, "register");
412
413         printk(KERN_DEBUG
414             "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
415             hc->id, reg, regname, val, function, line);
416         return val;
417 }
418 static void
419 HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
420 {
421         printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
422             hc->id, function, line);
423         HFC_wait_nodebug(hc);
424 }
425 #endif
426
427 /* write fifo data (REGIO) */
428 static void
429 write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
430 {
431         outb(A_FIFO_DATA0, (hc->pci_iobase)+4);
432         while (len>>2) {
433                 outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase);
434                 data += 4;
435                 len -= 4;
436         }
437         while (len>>1) {
438                 outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase);
439                 data += 2;
440                 len -= 2;
441         }
442         while (len) {
443                 outb(*data, hc->pci_iobase);
444                 data++;
445                 len--;
446         }
447 }
448 /* write fifo data (PCIMEM) */
449 static void
450 write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
451 {
452         while (len>>2) {
453                 writel(cpu_to_le32(*(u32 *)data),
454                         hc->pci_membase + A_FIFO_DATA0);
455                 data += 4;
456                 len -= 4;
457         }
458         while (len>>1) {
459                 writew(cpu_to_le16(*(u16 *)data),
460                         hc->pci_membase + A_FIFO_DATA0);
461                 data += 2;
462                 len -= 2;
463         }
464         while (len) {
465                 writeb(*data, hc->pci_membase + A_FIFO_DATA0);
466                 data++;
467                 len--;
468         }
469 }
470 /* read fifo data (REGIO) */
471 static void
472 read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
473 {
474         outb(A_FIFO_DATA0, (hc->pci_iobase)+4);
475         while (len>>2) {
476                 *(u32 *)data = le32_to_cpu(inl(hc->pci_iobase));
477                 data += 4;
478                 len -= 4;
479         }
480         while (len>>1) {
481                 *(u16 *)data = le16_to_cpu(inw(hc->pci_iobase));
482                 data += 2;
483                 len -= 2;
484         }
485         while (len) {
486                 *data = inb(hc->pci_iobase);
487                 data++;
488                 len--;
489         }
490 }
491
492 /* read fifo data (PCIMEM) */
493 static void
494 read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
495 {
496         while (len>>2) {
497                 *(u32 *)data =
498                         le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0));
499                 data += 4;
500                 len -= 4;
501         }
502         while (len>>1) {
503                 *(u16 *)data =
504                         le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0));
505                 data += 2;
506                 len -= 2;
507         }
508         while (len) {
509                 *data = readb(hc->pci_membase + A_FIFO_DATA0);
510                 data++;
511                 len--;
512         }
513 }
514
515
516 static void
517 enable_hwirq(struct hfc_multi *hc)
518 {
519         hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
520         HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
521 }
522
523 static void
524 disable_hwirq(struct hfc_multi *hc)
525 {
526         hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
527         HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
528 }
529
530 #define NUM_EC 2
531 #define MAX_TDM_CHAN 32
532
533
534 inline void
535 enablepcibridge(struct hfc_multi *c)
536 {
537         HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
538 }
539
540 inline void
541 disablepcibridge(struct hfc_multi *c)
542 {
543         HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
544 }
545
546 inline unsigned char
547 readpcibridge(struct hfc_multi *hc, unsigned char address)
548 {
549         unsigned short cipv;
550         unsigned char data;
551
552         if (!hc->pci_iobase)
553                 return 0;
554
555         /* slow down a PCI read access by 1 PCI clock cycle */
556         HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/
557
558         if (address == 0)
559                 cipv = 0x4000;
560         else
561                 cipv = 0x5800;
562
563         /* select local bridge port address by writing to CIP port */
564         /* data = HFC_inb(c, cipv); * was _io before */
565         outw(cipv, hc->pci_iobase + 4);
566         data = inb(hc->pci_iobase);
567
568         /* restore R_CTRL for normal PCI read cycle speed */
569         HFC_outb(hc, R_CTRL, 0x0); /* was _io before */
570
571         return data;
572 }
573
574 inline void
575 writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
576 {
577         unsigned short cipv;
578         unsigned int datav;
579
580         if (!hc->pci_iobase)
581                 return;
582
583         if (address == 0)
584                 cipv = 0x4000;
585         else
586                 cipv = 0x5800;
587
588         /* select local bridge port address by writing to CIP port */
589         outw(cipv, hc->pci_iobase + 4);
590         /* define a 32 bit dword with 4 identical bytes for write sequence */
591         datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
592             ((__u32) data << 24);
593
594         /*
595          * write this 32 bit dword to the bridge data port
596          * this will initiate a write sequence of up to 4 writes to the same
597          * address on the local bus interface the number of write accesses
598          * is undefined but >=1 and depends on the next PCI transaction
599          * during write sequence on the local bus
600          */
601         outl(datav, hc->pci_iobase);
602 }
603
604 inline void
605 cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
606 {
607         /* Do data pin read low byte */
608         HFC_outb(hc, R_GPIO_OUT1, reg);
609 }
610
611 inline void
612 cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
613 {
614         cpld_set_reg(hc, reg);
615
616         enablepcibridge(hc);
617         writepcibridge(hc, 1, val);
618         disablepcibridge(hc);
619
620         return;
621 }
622
623 inline unsigned char
624 cpld_read_reg(struct hfc_multi *hc, unsigned char reg)
625 {
626         unsigned char bytein;
627
628         cpld_set_reg(hc, reg);
629
630         /* Do data pin read low byte */
631         HFC_outb(hc, R_GPIO_OUT1, reg);
632
633         enablepcibridge(hc);
634         bytein = readpcibridge(hc, 1);
635         disablepcibridge(hc);
636
637         return bytein;
638 }
639
640 inline void
641 vpm_write_address(struct hfc_multi *hc, unsigned short addr)
642 {
643         cpld_write_reg(hc, 0, 0xff & addr);
644         cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
645 }
646
647 inline unsigned short
648 vpm_read_address(struct hfc_multi *c)
649 {
650         unsigned short addr;
651         unsigned short highbit;
652
653         addr = cpld_read_reg(c, 0);
654         highbit = cpld_read_reg(c, 1);
655
656         addr = addr | (highbit << 8);
657
658         return addr & 0x1ff;
659 }
660
661 inline unsigned char
662 vpm_in(struct hfc_multi *c, int which, unsigned short addr)
663 {
664         unsigned char res;
665
666         vpm_write_address(c, addr);
667
668         if (!which)
669                 cpld_set_reg(c, 2);
670         else
671                 cpld_set_reg(c, 3);
672
673         enablepcibridge(c);
674         res = readpcibridge(c, 1);
675         disablepcibridge(c);
676
677         cpld_set_reg(c, 0);
678
679         return res;
680 }
681
682 inline void
683 vpm_out(struct hfc_multi *c, int which, unsigned short addr,
684     unsigned char data)
685 {
686         vpm_write_address(c, addr);
687
688         enablepcibridge(c);
689
690         if (!which)
691                 cpld_set_reg(c, 2);
692         else
693                 cpld_set_reg(c, 3);
694
695         writepcibridge(c, 1, data);
696
697         cpld_set_reg(c, 0);
698
699         disablepcibridge(c);
700
701         {
702         unsigned char regin;
703         regin = vpm_in(c, which, addr);
704         if (regin != data)
705                 printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
706                         "0x%x\n", data, addr, regin);
707         }
708
709 }
710
711
712 static void
713 vpm_init(struct hfc_multi *wc)
714 {
715         unsigned char reg;
716         unsigned int mask;
717         unsigned int i, x, y;
718         unsigned int ver;
719
720         for (x = 0; x < NUM_EC; x++) {
721                 /* Setup GPIO's */
722                 if (!x) {
723                         ver = vpm_in(wc, x, 0x1a0);
724                         printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
725                 }
726
727                 for (y = 0; y < 4; y++) {
728                         vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
729                         vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
730                         vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
731                 }
732
733                 /* Setup TDM path - sets fsync and tdm_clk as inputs */
734                 reg = vpm_in(wc, x, 0x1a3); /* misc_con */
735                 vpm_out(wc, x, 0x1a3, reg & ~2);
736
737                 /* Setup Echo length (256 taps) */
738                 vpm_out(wc, x, 0x022, 1);
739                 vpm_out(wc, x, 0x023, 0xff);
740
741                 /* Setup timeslots */
742                 vpm_out(wc, x, 0x02f, 0x00);
743                 mask = 0x02020202 << (x * 4);
744
745                 /* Setup the tdm channel masks for all chips */
746                 for (i = 0; i < 4; i++)
747                         vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);
748
749                 /* Setup convergence rate */
750                 printk(KERN_DEBUG "VPM: A-law mode\n");
751                 reg = 0x00 | 0x10 | 0x01;
752                 vpm_out(wc, x, 0x20, reg);
753                 printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
754                 /*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
755
756                 vpm_out(wc, x, 0x24, 0x02);
757                 reg = vpm_in(wc, x, 0x24);
758                 printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);
759
760                 /* Initialize echo cans */
761                 for (i = 0; i < MAX_TDM_CHAN; i++) {
762                         if (mask & (0x00000001 << i))
763                                 vpm_out(wc, x, i, 0x00);
764                 }
765
766                 /*
767                  * ARM arch at least disallows a udelay of
768                  * more than 2ms... it gives a fake "__bad_udelay"
769                  * reference at link-time.
770                  * long delays in kernel code are pretty sucky anyway
771                  * for now work around it using 5 x 2ms instead of 1 x 10ms
772                  */
773
774                 udelay(2000);
775                 udelay(2000);
776                 udelay(2000);
777                 udelay(2000);
778                 udelay(2000);
779
780                 /* Put in bypass mode */
781                 for (i = 0; i < MAX_TDM_CHAN; i++) {
782                         if (mask & (0x00000001 << i))
783                                 vpm_out(wc, x, i, 0x01);
784                 }
785
786                 /* Enable bypass */
787                 for (i = 0; i < MAX_TDM_CHAN; i++) {
788                         if (mask & (0x00000001 << i))
789                                 vpm_out(wc, x, 0x78 + i, 0x01);
790                 }
791
792         }
793 }
794
795 #ifdef UNUSED
796 static void
797 vpm_check(struct hfc_multi *hctmp)
798 {
799         unsigned char gpi2;
800
801         gpi2 = HFC_inb(hctmp, R_GPI_IN2);
802
803         if ((gpi2 & 0x3) != 0x3)
804                 printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
805 }
806 #endif /* UNUSED */
807
808
809 /*
810  * Interface to enable/disable the HW Echocan
811  *
812  * these functions are called within a spin_lock_irqsave on
813  * the channel instance lock, so we are not disturbed by irqs
814  *
815  * we can later easily change the interface to make  other
816  * things configurable, for now we configure the taps
817  *
818  */
819
820 static void
821 vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
822 {
823         unsigned int timeslot;
824         unsigned int unit;
825         struct bchannel *bch = hc->chan[ch].bch;
826 #ifdef TXADJ
827         int txadj = -4;
828         struct sk_buff *skb;
829 #endif
830         if (hc->chan[ch].protocol != ISDN_P_B_RAW)
831                 return;
832
833         if (!bch)
834                 return;
835
836 #ifdef TXADJ
837         skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
838                 sizeof(int), &txadj, GFP_ATOMIC);
839         if (skb)
840                 recv_Bchannel_skb(bch, skb);
841 #endif
842
843         timeslot = ((ch/4)*8) + ((ch%4)*4) + 1;
844         unit = ch % 4;
845
846         printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
847             taps, timeslot);
848
849         vpm_out(hc, unit, timeslot, 0x7e);
850 }
851
852 static void
853 vpm_echocan_off(struct hfc_multi *hc, int ch)
854 {
855         unsigned int timeslot;
856         unsigned int unit;
857         struct bchannel *bch = hc->chan[ch].bch;
858 #ifdef TXADJ
859         int txadj = 0;
860         struct sk_buff *skb;
861 #endif
862
863         if (hc->chan[ch].protocol != ISDN_P_B_RAW)
864                 return;
865
866         if (!bch)
867                 return;
868
869 #ifdef TXADJ
870         skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
871                 sizeof(int), &txadj, GFP_ATOMIC);
872         if (skb)
873                 recv_Bchannel_skb(bch, skb);
874 #endif
875
876         timeslot = ((ch/4)*8) + ((ch%4)*4) + 1;
877         unit = ch % 4;
878
879         printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
880             timeslot);
881         /* FILLME */
882         vpm_out(hc, unit, timeslot, 0x01);
883 }
884
885
886 /*
887  * Speech Design resync feature
888  * NOTE: This is called sometimes outside interrupt handler.
889  * We must lock irqsave, so no other interrupt (other card) will occurr!
890  * Also multiple interrupts may nest, so must lock each access (lists, card)!
891  */
892 static inline void
893 hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
894 {
895         struct hfc_multi *hc, *next, *pcmmaster = NULL;
896         void __iomem *plx_acc_32;
897         u_int pv;
898         u_long flags;
899
900         spin_lock_irqsave(&HFClock, flags);
901         spin_lock(&plx_lock); /* must be locked inside other locks */
902
903         if (debug & DEBUG_HFCMULTI_PLXSD)
904                 printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
905                         __func__, syncmaster);
906
907         /* select new master */
908         if (newmaster) {
909                 if (debug & DEBUG_HFCMULTI_PLXSD)
910                         printk(KERN_DEBUG "using provided controller\n");
911         } else {
912                 list_for_each_entry_safe(hc, next, &HFClist, list) {
913                         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
914                                 if (hc->syncronized) {
915                                         newmaster = hc;
916                                         break;
917                                 }
918                         }
919                 }
920         }
921
922         /* Disable sync of all cards */
923         list_for_each_entry_safe(hc, next, &HFClist, list) {
924                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
925                         plx_acc_32 = hc->plx_membase + PLX_GPIOC;
926                         pv = readl(plx_acc_32);
927                         pv &= ~PLX_SYNC_O_EN;
928                         writel(pv, plx_acc_32);
929                         if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
930                                 pcmmaster = hc;
931                                 if (hc->type == 1) {
932                                         if (debug & DEBUG_HFCMULTI_PLXSD)
933                                                 printk(KERN_DEBUG
934                                                         "Schedule SYNC_I\n");
935                                         hc->e1_resync |= 1; /* get SYNC_I */
936                                 }
937                         }
938                 }
939         }
940
941         if (newmaster) {
942                 hc = newmaster;
943                 if (debug & DEBUG_HFCMULTI_PLXSD)
944                         printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
945                                 "interface.\n", hc->id, hc);
946                 /* Enable new sync master */
947                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
948                 pv = readl(plx_acc_32);
949                 pv |= PLX_SYNC_O_EN;
950                 writel(pv, plx_acc_32);
951                 /* switch to jatt PLL, if not disabled by RX_SYNC */
952                 if (hc->type == 1 && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
953                         if (debug & DEBUG_HFCMULTI_PLXSD)
954                                 printk(KERN_DEBUG "Schedule jatt PLL\n");
955                         hc->e1_resync |= 2; /* switch to jatt */
956                 }
957         } else {
958                 if (pcmmaster) {
959                         hc = pcmmaster;
960                         if (debug & DEBUG_HFCMULTI_PLXSD)
961                                 printk(KERN_DEBUG
962                                         "id=%d (0x%p) = PCM master syncronized "
963                                         "with QUARTZ\n", hc->id, hc);
964                         if (hc->type == 1) {
965                                 /* Use the crystal clock for the PCM
966                                    master card */
967                                 if (debug & DEBUG_HFCMULTI_PLXSD)
968                                         printk(KERN_DEBUG
969                                             "Schedule QUARTZ for HFC-E1\n");
970                                 hc->e1_resync |= 4; /* switch quartz */
971                         } else {
972                                 if (debug & DEBUG_HFCMULTI_PLXSD)
973                                         printk(KERN_DEBUG
974                                             "QUARTZ is automatically "
975                                             "enabled by HFC-%dS\n", hc->type);
976                         }
977                         plx_acc_32 = hc->plx_membase + PLX_GPIOC;
978                         pv = readl(plx_acc_32);
979                         pv |= PLX_SYNC_O_EN;
980                         writel(pv, plx_acc_32);
981                 } else
982                         if (!rm)
983                                 printk(KERN_ERR "%s no pcm master, this MUST "
984                                         "not happen!\n", __func__);
985         }
986         syncmaster = newmaster;
987
988         spin_unlock(&plx_lock);
989         spin_unlock_irqrestore(&HFClock, flags);
990 }
991
992 /* This must be called AND hc must be locked irqsave!!! */
993 inline void
994 plxsd_checksync(struct hfc_multi *hc, int rm)
995 {
996         if (hc->syncronized) {
997                 if (syncmaster == NULL) {
998                         if (debug & DEBUG_HFCMULTI_PLXSD)
999                                 printk(KERN_WARNING "%s: GOT sync on card %d"
1000                                         " (id=%d)\n", __func__, hc->id + 1,
1001                                         hc->id);
1002                         hfcmulti_resync(hc, hc, rm);
1003                 }
1004         } else {
1005                 if (syncmaster == hc) {
1006                         if (debug & DEBUG_HFCMULTI_PLXSD)
1007                                 printk(KERN_WARNING "%s: LOST sync on card %d"
1008                                         " (id=%d)\n", __func__, hc->id + 1,
1009                                         hc->id);
1010                         hfcmulti_resync(hc, NULL, rm);
1011                 }
1012         }
1013 }
1014
1015
1016 /*
1017  * free hardware resources used by driver
1018  */
1019 static void
1020 release_io_hfcmulti(struct hfc_multi *hc)
1021 {
1022         void __iomem *plx_acc_32;
1023         u_int   pv;
1024         u_long  plx_flags;
1025
1026         if (debug & DEBUG_HFCMULTI_INIT)
1027                 printk(KERN_DEBUG "%s: entered\n", __func__);
1028
1029         /* soft reset also masks all interrupts */
1030         hc->hw.r_cirm |= V_SRES;
1031         HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1032         udelay(1000);
1033         hc->hw.r_cirm &= ~V_SRES;
1034         HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1035         udelay(1000); /* instead of 'wait' that may cause locking */
1036
1037         /* release Speech Design card, if PLX was initialized */
1038         if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
1039                 if (debug & DEBUG_HFCMULTI_PLXSD)
1040                         printk(KERN_DEBUG "%s: release PLXSD card %d\n",
1041                             __func__, hc->id + 1);
1042                 spin_lock_irqsave(&plx_lock, plx_flags);
1043                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1044                 writel(PLX_GPIOC_INIT, plx_acc_32);
1045                 pv = readl(plx_acc_32);
1046                 /* Termination off */
1047                 pv &= ~PLX_TERM_ON;
1048                 /* Disconnect the PCM */
1049                 pv |= PLX_SLAVE_EN_N;
1050                 pv &= ~PLX_MASTER_EN;
1051                 pv &= ~PLX_SYNC_O_EN;
1052                 /* Put the DSP in Reset */
1053                 pv &= ~PLX_DSP_RES_N;
1054                 writel(pv, plx_acc_32);
1055                 if (debug & DEBUG_HFCMULTI_INIT)
1056                         printk(KERN_WARNING "%s: PCM off: PLX_GPIO=%x\n",
1057                                 __func__, pv);
1058                 spin_unlock_irqrestore(&plx_lock, plx_flags);
1059         }
1060
1061         /* disable memory mapped ports / io ports */
1062         test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
1063         pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
1064         if (hc->pci_membase)
1065                 iounmap(hc->pci_membase);
1066         if (hc->plx_membase)
1067                 iounmap(hc->plx_membase);
1068         if (hc->pci_iobase)
1069                 release_region(hc->pci_iobase, 8);
1070
1071         if (hc->pci_dev) {
1072                 pci_disable_device(hc->pci_dev);
1073                 pci_set_drvdata(hc->pci_dev, NULL);
1074         }
1075         if (debug & DEBUG_HFCMULTI_INIT)
1076                 printk(KERN_DEBUG "%s: done\n", __func__);
1077 }
1078
1079 /*
1080  * function called to reset the HFC chip. A complete software reset of chip
1081  * and fifos is done. All configuration of the chip is done.
1082  */
1083
1084 static int
1085 init_chip(struct hfc_multi *hc)
1086 {
1087         u_long                  flags, val, val2 = 0, rev;
1088         int                     i, err = 0;
1089         u_char                  r_conf_en, rval;
1090         void __iomem            *plx_acc_32;
1091         u_int                   pv;
1092         u_long                  plx_flags, hfc_flags;
1093         int                     plx_count;
1094         struct hfc_multi        *pos, *next, *plx_last_hc;
1095
1096         spin_lock_irqsave(&hc->lock, flags);
1097         /* reset all registers */
1098         memset(&hc->hw, 0, sizeof(struct hfcm_hw));
1099
1100         /* revision check */
1101         if (debug & DEBUG_HFCMULTI_INIT)
1102                 printk(KERN_DEBUG "%s: entered\n", __func__);
1103         val = HFC_inb(hc, R_CHIP_ID)>>4;
1104         if (val != 0x8 && val != 0xc && val != 0xe) {
1105                 printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
1106                 err = -EIO;
1107                 goto out;
1108         }
1109         rev = HFC_inb(hc, R_CHIP_RV);
1110         printk(KERN_INFO
1111             "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1112             val, rev, (rev == 0) ? " (old FIFO handling)" : "");
1113         if (rev == 0) {
1114                 test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
1115                 printk(KERN_WARNING
1116                     "HFC_multi: NOTE: Your chip is revision 0, "
1117                     "ask Cologne Chip for update. Newer chips "
1118                     "have a better FIFO handling. Old chips "
1119                     "still work but may have slightly lower "
1120                     "HDLC transmit performance.\n");
1121         }
1122         if (rev > 1) {
1123                 printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
1124                     "consider chip revision = %ld. The chip / "
1125                     "bridge may not work.\n", rev);
1126         }
1127
1128         /* set s-ram size */
1129         hc->Flen = 0x10;
1130         hc->Zmin = 0x80;
1131         hc->Zlen = 384;
1132         hc->DTMFbase = 0x1000;
1133         if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
1134                 if (debug & DEBUG_HFCMULTI_INIT)
1135                         printk(KERN_DEBUG "%s: changing to 128K extenal RAM\n",
1136                             __func__);
1137                 hc->hw.r_ctrl |= V_EXT_RAM;
1138                 hc->hw.r_ram_sz = 1;
1139                 hc->Flen = 0x20;
1140                 hc->Zmin = 0xc0;
1141                 hc->Zlen = 1856;
1142                 hc->DTMFbase = 0x2000;
1143         }
1144         if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
1145                 if (debug & DEBUG_HFCMULTI_INIT)
1146                         printk(KERN_DEBUG "%s: changing to 512K extenal RAM\n",
1147                             __func__);
1148                 hc->hw.r_ctrl |= V_EXT_RAM;
1149                 hc->hw.r_ram_sz = 2;
1150                 hc->Flen = 0x20;
1151                 hc->Zmin = 0xc0;
1152                 hc->Zlen = 8000;
1153                 hc->DTMFbase = 0x2000;
1154         }
1155         hc->max_trans = poll << 1;
1156         if (hc->max_trans > hc->Zlen)
1157                 hc->max_trans = hc->Zlen;
1158
1159         /* Speech Design PLX bridge */
1160         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1161                 if (debug & DEBUG_HFCMULTI_PLXSD)
1162                         printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
1163                             __func__, hc->id + 1);
1164                 spin_lock_irqsave(&plx_lock, plx_flags);
1165                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1166                 writel(PLX_GPIOC_INIT, plx_acc_32);
1167                 pv = readl(plx_acc_32);
1168                 /* The first and the last cards are terminating the PCM bus */
1169                 pv |= PLX_TERM_ON; /* hc is currently the last */
1170                 /* Disconnect the PCM */
1171                 pv |= PLX_SLAVE_EN_N;
1172                 pv &= ~PLX_MASTER_EN;
1173                 pv &= ~PLX_SYNC_O_EN;
1174                 /* Put the DSP in Reset */
1175                 pv &= ~PLX_DSP_RES_N;
1176                 writel(pv, plx_acc_32);
1177                 spin_unlock_irqrestore(&plx_lock, plx_flags);
1178                 if (debug & DEBUG_HFCMULTI_INIT)
1179                         printk(KERN_WARNING "%s: slave/term: PLX_GPIO=%x\n",
1180                                 __func__, pv);
1181                 /*
1182                  * If we are the 3rd PLXSD card or higher, we must turn
1183                  * termination of last PLXSD card off.
1184                  */
1185                 spin_lock_irqsave(&HFClock, hfc_flags);
1186                 plx_count = 0;
1187                 plx_last_hc = NULL;
1188                 list_for_each_entry_safe(pos, next, &HFClist, list) {
1189                         if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
1190                                 plx_count++;
1191                                 if (pos != hc)
1192                                         plx_last_hc = pos;
1193                         }
1194                 }
1195                 if (plx_count >= 3) {
1196                         if (debug & DEBUG_HFCMULTI_PLXSD)
1197                                 printk(KERN_DEBUG "%s: card %d is between, so "
1198                                         "we disable termination\n",
1199                                     __func__, plx_last_hc->id + 1);
1200                         spin_lock_irqsave(&plx_lock, plx_flags);
1201                         plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC;
1202                         pv = readl(plx_acc_32);
1203                         pv &= ~PLX_TERM_ON;
1204                         writel(pv, plx_acc_32);
1205                         spin_unlock_irqrestore(&plx_lock, plx_flags);
1206                         if (debug & DEBUG_HFCMULTI_INIT)
1207                             printk(KERN_WARNING "%s: term off: PLX_GPIO=%x\n",
1208                                         __func__, pv);
1209                 }
1210                 spin_unlock_irqrestore(&HFClock, hfc_flags);
1211                 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1212         }
1213
1214         /* we only want the real Z2 read-pointer for revision > 0 */
1215         if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
1216                 hc->hw.r_ram_sz |= V_FZ_MD;
1217
1218         /* select pcm mode */
1219         if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1220                 if (debug & DEBUG_HFCMULTI_INIT)
1221                         printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
1222                             __func__);
1223         } else
1224         if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
1225                 if (debug & DEBUG_HFCMULTI_INIT)
1226                         printk(KERN_DEBUG "%s: setting PCM into master mode\n",
1227                             __func__);
1228                 hc->hw.r_pcm_md0 |= V_PCM_MD;
1229         } else {
1230                 if (debug & DEBUG_HFCMULTI_INIT)
1231                         printk(KERN_DEBUG "%s: performing PCM auto detect\n",
1232                             __func__);
1233         }
1234
1235         /* soft reset */
1236         HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
1237         HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1238         HFC_outb(hc, R_FIFO_MD, 0);
1239         hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES | V_RLD_EPR;
1240         HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1241         udelay(100);
1242         hc->hw.r_cirm = 0;
1243         HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1244         udelay(100);
1245         HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1246
1247         /* Speech Design PLX bridge pcm and sync mode */
1248         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1249                 spin_lock_irqsave(&plx_lock, plx_flags);
1250                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1251                 pv = readl(plx_acc_32);
1252                 /* Connect PCM */
1253                 if (hc->hw.r_pcm_md0 & V_PCM_MD) {
1254                         pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1255                         pv |= PLX_SYNC_O_EN;
1256                         if (debug & DEBUG_HFCMULTI_INIT)
1257                                 printk(KERN_WARNING "%s: master: PLX_GPIO=%x\n",
1258                                         __func__, pv);
1259                 } else {
1260                         pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
1261                         pv &= ~PLX_SYNC_O_EN;
1262                         if (debug & DEBUG_HFCMULTI_INIT)
1263                                 printk(KERN_WARNING "%s: slave: PLX_GPIO=%x\n",
1264                                         __func__, pv);
1265                 }
1266                 writel(pv, plx_acc_32);
1267                 spin_unlock_irqrestore(&plx_lock, plx_flags);
1268         }
1269
1270         /* PCM setup */
1271         HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
1272         if (hc->slots == 32)
1273                 HFC_outb(hc, R_PCM_MD1, 0x00);
1274         if (hc->slots == 64)
1275                 HFC_outb(hc, R_PCM_MD1, 0x10);
1276         if (hc->slots == 128)
1277                 HFC_outb(hc, R_PCM_MD1, 0x20);
1278         HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
1279         if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
1280                 HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
1281         else
1282                 HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
1283         HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1284         for (i = 0; i < 256; i++) {
1285                 HFC_outb_nodebug(hc, R_SLOT, i);
1286                 HFC_outb_nodebug(hc, A_SL_CFG, 0);
1287                 HFC_outb_nodebug(hc, A_CONF, 0);
1288                 hc->slot_owner[i] = -1;
1289         }
1290
1291         /* set clock speed */
1292         if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
1293                 if (debug & DEBUG_HFCMULTI_INIT)
1294                         printk(KERN_DEBUG
1295                             "%s: setting double clock\n", __func__);
1296                 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1297         }
1298
1299         /* B410P GPIO */
1300         if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1301                 printk(KERN_NOTICE "Setting GPIOs\n");
1302                 HFC_outb(hc, R_GPIO_SEL, 0x30);
1303                 HFC_outb(hc, R_GPIO_EN1, 0x3);
1304                 udelay(1000);
1305                 printk(KERN_NOTICE "calling vpm_init\n");
1306                 vpm_init(hc);
1307         }
1308
1309         /* check if R_F0_CNT counts (8 kHz frame count) */
1310         val = HFC_inb(hc, R_F0_CNTL);
1311         val += HFC_inb(hc, R_F0_CNTH) << 8;
1312         if (debug & DEBUG_HFCMULTI_INIT)
1313                 printk(KERN_DEBUG
1314                     "HFC_multi F0_CNT %ld after reset\n", val);
1315         spin_unlock_irqrestore(&hc->lock, flags);
1316         set_current_state(TASK_UNINTERRUPTIBLE);
1317         schedule_timeout((HZ/100)?:1); /* Timeout minimum 10ms */
1318         spin_lock_irqsave(&hc->lock, flags);
1319         val2 = HFC_inb(hc, R_F0_CNTL);
1320         val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1321         if (debug & DEBUG_HFCMULTI_INIT)
1322                 printk(KERN_DEBUG
1323                         "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1324                     val2);
1325         if (val2 >= val+8) { /* 1 ms */
1326                 /* it counts, so we keep the pcm mode */
1327                 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1328                         printk(KERN_INFO "controller is PCM bus MASTER\n");
1329                 else
1330                 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
1331                         printk(KERN_INFO "controller is PCM bus SLAVE\n");
1332                 else {
1333                         test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
1334                         printk(KERN_INFO "controller is PCM bus SLAVE "
1335                                 "(auto detected)\n");
1336                 }
1337         } else {
1338                 /* does not count */
1339                 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
1340 controller_fail:
1341                         printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
1342                             "pulse. Seems that controller fails.\n");
1343                         err = -EIO;
1344                         goto out;
1345                 }
1346                 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1347                         printk(KERN_INFO "controller is PCM bus SLAVE "
1348                                 "(ignoring missing PCM clock)\n");
1349                 } else {
1350                         /* only one pcm master */
1351                         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
1352                                 && plxsd_master) {
1353                                 printk(KERN_ERR "HFC_multi ERROR, no clock "
1354                                     "on another Speech Design card found. "
1355                                     "Please be sure to connect PCM cable.\n");
1356                                 err = -EIO;
1357                                 goto out;
1358                         }
1359                         /* retry with master clock */
1360                         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1361                                 spin_lock_irqsave(&plx_lock, plx_flags);
1362                                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1363                                 pv = readl(plx_acc_32);
1364                                 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1365                                 pv |= PLX_SYNC_O_EN;
1366                                 writel(pv, plx_acc_32);
1367                                 spin_unlock_irqrestore(&plx_lock, plx_flags);
1368                                 if (debug & DEBUG_HFCMULTI_INIT)
1369                                     printk(KERN_WARNING "%s: master: PLX_GPIO"
1370                                         "=%x\n", __func__, pv);
1371                         }
1372                         hc->hw.r_pcm_md0 |= V_PCM_MD;
1373                         HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1374                         spin_unlock_irqrestore(&hc->lock, flags);
1375                         set_current_state(TASK_UNINTERRUPTIBLE);
1376                         schedule_timeout((HZ/100)?:1); /* Timeout min. 10ms */
1377                         spin_lock_irqsave(&hc->lock, flags);
1378                         val2 = HFC_inb(hc, R_F0_CNTL);
1379                         val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1380                         if (debug & DEBUG_HFCMULTI_INIT)
1381                                 printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
1382                                         "10 ms (2nd try)\n", val2);
1383                         if (val2 >= val+8) { /* 1 ms */
1384                                 test_and_set_bit(HFC_CHIP_PCM_MASTER,
1385                                         &hc->chip);
1386                                 printk(KERN_INFO "controller is PCM bus MASTER "
1387                                         "(auto detected)\n");
1388                         } else
1389                                 goto controller_fail;
1390                 }
1391         }
1392
1393         /* Release the DSP Reset */
1394         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1395                 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1396                         plxsd_master = 1;
1397                 spin_lock_irqsave(&plx_lock, plx_flags);
1398                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1399                 pv = readl(plx_acc_32);
1400                 pv |=  PLX_DSP_RES_N;
1401                 writel(pv, plx_acc_32);
1402                 spin_unlock_irqrestore(&plx_lock, plx_flags);
1403                 if (debug & DEBUG_HFCMULTI_INIT)
1404                         printk(KERN_WARNING "%s: reset off: PLX_GPIO=%x\n",
1405                                 __func__, pv);
1406         }
1407
1408         /* pcm id */
1409         if (hc->pcm)
1410                 printk(KERN_INFO "controller has given PCM BUS ID %d\n",
1411                         hc->pcm);
1412         else {
1413                 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
1414                  || test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1415                         PCM_cnt++; /* SD has proprietary bridging */
1416                 }
1417                 hc->pcm = PCM_cnt;
1418                 printk(KERN_INFO "controller has PCM BUS ID %d "
1419                         "(auto selected)\n", hc->pcm);
1420         }
1421
1422         /* set up timer */
1423         HFC_outb(hc, R_TI_WD, poll_timer);
1424         hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
1425
1426         /* set E1 state machine IRQ */
1427         if (hc->type == 1)
1428                 hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
1429
1430         /* set DTMF detection */
1431         if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
1432                 if (debug & DEBUG_HFCMULTI_INIT)
1433                         printk(KERN_DEBUG "%s: enabling DTMF detection "
1434                             "for all B-channel\n", __func__);
1435                 hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
1436                 if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1437                         hc->hw.r_dtmf |= V_ULAW_SEL;
1438                 HFC_outb(hc, R_DTMF_N, 102 - 1);
1439                 hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
1440         }
1441
1442         /* conference engine */
1443         if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1444                 r_conf_en = V_CONF_EN | V_ULAW;
1445         else
1446                 r_conf_en = V_CONF_EN;
1447         HFC_outb(hc, R_CONF_EN, r_conf_en);
1448
1449         /* setting leds */
1450         switch (hc->leds) {
1451         case 1: /* HFC-E1 OEM */
1452                 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
1453                         HFC_outb(hc, R_GPIO_SEL, 0x32);
1454                 else
1455                         HFC_outb(hc, R_GPIO_SEL, 0x30);
1456
1457                 HFC_outb(hc, R_GPIO_EN1, 0x0f);
1458                 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1459
1460                 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1461                 break;
1462
1463         case 2: /* HFC-4S OEM */
1464         case 3:
1465                 HFC_outb(hc, R_GPIO_SEL, 0xf0);
1466                 HFC_outb(hc, R_GPIO_EN1, 0xff);
1467                 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1468                 break;
1469         }
1470
1471         /* set master clock */
1472         if (hc->masterclk >= 0) {
1473                 if (debug & DEBUG_HFCMULTI_INIT)
1474                         printk(KERN_DEBUG "%s: setting ST master clock "
1475                             "to port %d (0..%d)\n",
1476                             __func__, hc->masterclk, hc->ports-1);
1477                 hc->hw.r_st_sync = hc->masterclk | V_AUTO_SYNC;
1478                 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1479         }
1480
1481         /* setting misc irq */
1482         HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
1483         if (debug & DEBUG_HFCMULTI_INIT)
1484                 printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
1485                     hc->hw.r_irqmsk_misc);
1486
1487         /* RAM access test */
1488         HFC_outb(hc, R_RAM_ADDR0, 0);
1489         HFC_outb(hc, R_RAM_ADDR1, 0);
1490         HFC_outb(hc, R_RAM_ADDR2, 0);
1491         for (i = 0; i < 256; i++) {
1492                 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1493                 HFC_outb_nodebug(hc, R_RAM_DATA, ((i*3)&0xff));
1494         }
1495         for (i = 0; i < 256; i++) {
1496                 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1497                 HFC_inb_nodebug(hc, R_RAM_DATA);
1498                 rval = HFC_inb_nodebug(hc, R_INT_DATA);
1499                 if (rval != ((i * 3) & 0xff)) {
1500                         printk(KERN_DEBUG
1501                             "addr:%x val:%x should:%x\n", i, rval,
1502                             (i * 3) & 0xff);
1503                         err++;
1504                 }
1505         }
1506         if (err) {
1507                 printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
1508                 err = -EIO;
1509                 goto out;
1510         }
1511
1512         if (debug & DEBUG_HFCMULTI_INIT)
1513                 printk(KERN_DEBUG "%s: done\n", __func__);
1514 out:
1515         spin_unlock_irqrestore(&hc->lock, flags);
1516         return err;
1517 }
1518
1519
1520 /*
1521  * control the watchdog
1522  */
1523 static void
1524 hfcmulti_watchdog(struct hfc_multi *hc)
1525 {
1526         hc->wdcount++;
1527
1528         if (hc->wdcount > 10) {
1529                 hc->wdcount = 0;
1530                 hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
1531                     V_GPIO_OUT3 : V_GPIO_OUT2;
1532
1533         /* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1534                 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1535                 HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
1536         }
1537 }
1538
1539
1540
1541 /*
1542  * output leds
1543  */
1544 static void
1545 hfcmulti_leds(struct hfc_multi *hc)
1546 {
1547         unsigned long lled;
1548         unsigned long leddw;
1549         int i, state, active, leds;
1550         struct dchannel *dch;
1551         int led[4];
1552
1553         hc->ledcount += poll;
1554         if (hc->ledcount > 4096) {
1555                 hc->ledcount -= 4096;
1556                 hc->ledstate = 0xAFFEAFFE;
1557         }
1558
1559         switch (hc->leds) {
1560         case 1: /* HFC-E1 OEM */
1561                 /* 2 red blinking: NT mode deactivate
1562                  * 2 red steady:   TE mode deactivate
1563                  * left green:     L1 active
1564                  * left red:       frame sync, but no L1
1565                  * right green:    L2 active
1566                  */
1567                 if (hc->chan[hc->dslot].sync != 2) { /* no frame sync */
1568                         if (hc->chan[hc->dslot].dch->dev.D.protocol
1569                                 != ISDN_P_NT_E1) {
1570                                 led[0] = 1;
1571                                 led[1] = 1;
1572                         } else if (hc->ledcount>>11) {
1573                                 led[0] = 1;
1574                                 led[1] = 1;
1575                         } else {
1576                                 led[0] = 0;
1577                                 led[1] = 0;
1578                         }
1579                         led[2] = 0;
1580                         led[3] = 0;
1581                 } else { /* with frame sync */
1582                         /* TODO make it work */
1583                         led[0] = 0;
1584                         led[1] = 0;
1585                         led[2] = 0;
1586                         led[3] = 1;
1587                 }
1588                 leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
1589                         /* leds are inverted */
1590                 if (leds != (int)hc->ledstate) {
1591                         HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
1592                         hc->ledstate = leds;
1593                 }
1594                 break;
1595
1596         case 2: /* HFC-4S OEM */
1597                 /* red blinking = PH_DEACTIVATE NT Mode
1598                  * red steady   = PH_DEACTIVATE TE Mode
1599                  * green steady = PH_ACTIVATE
1600                  */
1601                 for (i = 0; i < 4; i++) {
1602                         state = 0;
1603                         active = -1;
1604                         dch = hc->chan[(i << 2) | 2].dch;
1605                         if (dch) {
1606                                 state = dch->state;
1607                                 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1608                                         active = 3;
1609                                 else
1610                                         active = 7;
1611                         }
1612                         if (state) {
1613                                 if (state == active) {
1614                                         led[i] = 1; /* led green */
1615                                 } else
1616                                         if (dch->dev.D.protocol == ISDN_P_TE_S0)
1617                                                 /* TE mode: led red */
1618                                                 led[i] = 2;
1619                                         else
1620                                                 if (hc->ledcount>>11)
1621                                                         /* led red */
1622                                                         led[i] = 2;
1623                                                 else
1624                                                         /* led off */
1625                                                         led[i] = 0;
1626                         } else
1627                                 led[i] = 0; /* led off */
1628                 }
1629                 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1630                         leds = 0;
1631                         for (i = 0; i < 4; i++) {
1632                                 if (led[i] == 1) {
1633                                         /*green*/
1634                                         leds |= (0x2 << (i * 2));
1635                                 } else if (led[i] == 2) {
1636                                         /*red*/
1637                                         leds |= (0x1 << (i * 2));
1638                                 }
1639                         }
1640                         if (leds != (int)hc->ledstate) {
1641                                 vpm_out(hc, 0, 0x1a8 + 3, leds);
1642                                 hc->ledstate = leds;
1643                         }
1644                 } else {
1645                         leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
1646                             ((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
1647                             ((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
1648                             ((led[0] & 1) << 6) | ((led[2] & 1) << 7);
1649                         if (leds != (int)hc->ledstate) {
1650                                 HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
1651                                 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
1652                                 hc->ledstate = leds;
1653                         }
1654                 }
1655                 break;
1656
1657         case 3: /* HFC 1S/2S Beronet */
1658                 /* red blinking = PH_DEACTIVATE NT Mode
1659                  * red steady   = PH_DEACTIVATE TE Mode
1660                  * green steady = PH_ACTIVATE
1661                  */
1662                 for (i = 0; i < 2; i++) {
1663                         state = 0;
1664                         active = -1;
1665                         dch = hc->chan[(i << 2) | 2].dch;
1666                         if (dch) {
1667                                 state = dch->state;
1668                                 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1669                                         active = 3;
1670                                 else
1671                                         active = 7;
1672                         }
1673                         if (state) {
1674                                 if (state == active) {
1675                                         led[i] = 1; /* led green */
1676                                 } else
1677                                         if (dch->dev.D.protocol == ISDN_P_TE_S0)
1678                                                 /* TE mode: led red */
1679                                                 led[i] = 2;
1680                                         else
1681                                                 if (hc->ledcount >> 11)
1682                                                         /* led red */
1683                                                         led[i] = 2;
1684                                                 else
1685                                                         /* led off */
1686                                                         led[i] = 0;
1687                         } else
1688                                 led[i] = 0; /* led off */
1689                 }
1690
1691
1692                 leds = (led[0] > 0) | ((led[1] > 0)<<1) | ((led[0]&1)<<2)
1693                         | ((led[1]&1)<<3);
1694                 if (leds != (int)hc->ledstate) {
1695                         HFC_outb_nodebug(hc, R_GPIO_EN1,
1696                             ((led[0] > 0) << 2) | ((led[1] > 0) << 3));
1697                         HFC_outb_nodebug(hc, R_GPIO_OUT1,
1698                             ((led[0] & 1) << 2) | ((led[1] & 1) << 3));
1699                         hc->ledstate = leds;
1700                 }
1701                 break;
1702         case 8: /* HFC 8S+ Beronet */
1703                 lled = 0;
1704
1705                 for (i = 0; i < 8; i++) {
1706                         state = 0;
1707                         active = -1;
1708                         dch = hc->chan[(i << 2) | 2].dch;
1709                         if (dch) {
1710                                 state = dch->state;
1711                                 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1712                                         active = 3;
1713                                 else
1714                                         active = 7;
1715                         }
1716                         if (state) {
1717                                 if (state == active) {
1718                                         lled |= 0 << i;
1719                                 } else
1720                                         if (hc->ledcount >> 11)
1721                                                 lled |= 0 << i;
1722                                         else
1723                                                 lled |= 1 << i;
1724                         } else
1725                                 lled |= 1 << i;
1726                 }
1727                 leddw = lled << 24 | lled << 16 | lled << 8 | lled;
1728                 if (leddw != hc->ledstate) {
1729                         /* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1730                         HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1731                         /* was _io before */
1732                         HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
1733                         outw(0x4000, hc->pci_iobase + 4);
1734                         outl(leddw, hc->pci_iobase);
1735                         HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1736                         hc->ledstate = leddw;
1737                 }
1738                 break;
1739         }
1740 }
1741 /*
1742  * read dtmf coefficients
1743  */
1744
1745 static void
1746 hfcmulti_dtmf(struct hfc_multi *hc)
1747 {
1748         s32             *coeff;
1749         u_int           mantissa;
1750         int             co, ch;
1751         struct bchannel *bch = NULL;
1752         u8              exponent;
1753         int             dtmf = 0;
1754         int             addr;
1755         u16             w_float;
1756         struct sk_buff  *skb;
1757         struct mISDNhead *hh;
1758
1759         if (debug & DEBUG_HFCMULTI_DTMF)
1760                 printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
1761         for (ch = 0; ch <= 31; ch++) {
1762                 /* only process enabled B-channels */
1763                 bch = hc->chan[ch].bch;
1764                 if (!bch)
1765                         continue;
1766                 if (!hc->created[hc->chan[ch].port])
1767                         continue;
1768                 if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1769                         continue;
1770                 if (debug & DEBUG_HFCMULTI_DTMF)
1771                         printk(KERN_DEBUG "%s: dtmf channel %d:",
1772                                 __func__, ch);
1773                 coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
1774                 dtmf = 1;
1775                 for (co = 0; co < 8; co++) {
1776                         /* read W(n-1) coefficient */
1777                         addr = hc->DTMFbase + ((co<<7) | (ch<<2));
1778                         HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
1779                         HFC_outb_nodebug(hc, R_RAM_ADDR1, addr>>8);
1780                         HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr>>16)
1781                                 | V_ADDR_INC);
1782                         w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1783                         w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1784                         if (debug & DEBUG_HFCMULTI_DTMF)
1785                                 printk(" %04x", w_float);
1786
1787                         /* decode float (see chip doc) */
1788                         mantissa = w_float & 0x0fff;
1789                         if (w_float & 0x8000)
1790                                 mantissa |= 0xfffff000;
1791                         exponent = (w_float>>12) & 0x7;
1792                         if (exponent) {
1793                                 mantissa ^= 0x1000;
1794                                 mantissa <<= (exponent-1);
1795                         }
1796
1797                         /* store coefficient */
1798                         coeff[co<<1] = mantissa;
1799
1800                         /* read W(n) coefficient */
1801                         w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1802                         w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1803                         if (debug & DEBUG_HFCMULTI_DTMF)
1804                                 printk(" %04x", w_float);
1805
1806                         /* decode float (see chip doc) */
1807                         mantissa = w_float & 0x0fff;
1808                         if (w_float & 0x8000)
1809                                 mantissa |= 0xfffff000;
1810                         exponent = (w_float>>12) & 0x7;
1811                         if (exponent) {
1812                                 mantissa ^= 0x1000;
1813                                 mantissa <<= (exponent-1);
1814                         }
1815
1816                         /* store coefficient */
1817                         coeff[(co<<1)|1] = mantissa;
1818                 }
1819                 if (debug & DEBUG_HFCMULTI_DTMF)
1820                         printk("%s: DTMF ready %08x %08x %08x %08x "
1821                             "%08x %08x %08x %08x\n", __func__,
1822                             coeff[0], coeff[1], coeff[2], coeff[3],
1823                             coeff[4], coeff[5], coeff[6], coeff[7]);
1824                 hc->chan[ch].coeff_count++;
1825                 if (hc->chan[ch].coeff_count == 8) {
1826                         hc->chan[ch].coeff_count = 0;
1827                         skb = mI_alloc_skb(512, GFP_ATOMIC);
1828                         if (!skb) {
1829                                 printk(KERN_WARNING "%s: No memory for skb\n",
1830                                     __func__);
1831                                 continue;
1832                         }
1833                         hh = mISDN_HEAD_P(skb);
1834                         hh->prim = PH_CONTROL_IND;
1835                         hh->id = DTMF_HFC_COEF;
1836                         memcpy(skb_put(skb, 512), hc->chan[ch].coeff, 512);
1837                         recv_Bchannel_skb(bch, skb);
1838                 }
1839         }
1840
1841         /* restart DTMF processing */
1842         hc->dtmf = dtmf;
1843         if (dtmf)
1844                 HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
1845 }
1846
1847
1848 /*
1849  * fill fifo as much as possible
1850  */
1851
1852 static void
1853 hfcmulti_tx(struct hfc_multi *hc, int ch)
1854 {
1855         int i, ii, temp, len = 0;
1856         int Zspace, z1, z2; /* must be int for calculation */
1857         int Fspace, f1, f2;
1858         u_char *d;
1859         int *txpending, slot_tx;
1860         struct  bchannel *bch;
1861         struct  dchannel *dch;
1862         struct  sk_buff **sp = NULL;
1863         int *idxp;
1864
1865         bch = hc->chan[ch].bch;
1866         dch = hc->chan[ch].dch;
1867         if ((!dch) && (!bch))
1868                 return;
1869
1870         txpending = &hc->chan[ch].txpending;
1871         slot_tx = hc->chan[ch].slot_tx;
1872         if (dch) {
1873                 if (!test_bit(FLG_ACTIVE, &dch->Flags))
1874                         return;
1875                 sp = &dch->tx_skb;
1876                 idxp = &dch->tx_idx;
1877         } else {
1878                 if (!test_bit(FLG_ACTIVE, &bch->Flags))
1879                         return;
1880                 sp = &bch->tx_skb;
1881                 idxp = &bch->tx_idx;
1882         }
1883         if (*sp)
1884                 len = (*sp)->len;
1885
1886         if ((!len) && *txpending != 1)
1887                 return; /* no data */
1888
1889         if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
1890             (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
1891             (hc->chan[ch].slot_rx < 0) &&
1892             (hc->chan[ch].slot_tx < 0))
1893                 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
1894         else
1895                 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
1896         HFC_wait_nodebug(hc);
1897
1898         if (*txpending == 2) {
1899                 /* reset fifo */
1900                 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
1901                 HFC_wait_nodebug(hc);
1902                 HFC_outb(hc, A_SUBCH_CFG, 0);
1903                 *txpending = 1;
1904         }
1905 next_frame:
1906         if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
1907                 f1 = HFC_inb_nodebug(hc, A_F1);
1908                 f2 = HFC_inb_nodebug(hc, A_F2);
1909                 while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
1910                         if (debug & DEBUG_HFCMULTI_FIFO)
1911                                 printk(KERN_DEBUG
1912                                     "%s(card %d): reread f2 because %d!=%d\n",
1913                                     __func__, hc->id + 1, temp, f2);
1914                         f2 = temp; /* repeat until F2 is equal */
1915                 }
1916                 Fspace = f2 - f1 - 1;
1917                 if (Fspace < 0)
1918                         Fspace += hc->Flen;
1919                 /*
1920                  * Old FIFO handling doesn't give us the current Z2 read
1921                  * pointer, so we cannot send the next frame before the fifo
1922                  * is empty. It makes no difference except for a slightly
1923                  * lower performance.
1924                  */
1925                 if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
1926                         if (f1 != f2)
1927                                 Fspace = 0;
1928                         else
1929                                 Fspace = 1;
1930                 }
1931                 /* one frame only for ST D-channels, to allow resending */
1932                 if (hc->type != 1 && dch) {
1933                         if (f1 != f2)
1934                                 Fspace = 0;
1935                 }
1936                 /* F-counter full condition */
1937                 if (Fspace == 0)
1938                         return;
1939         }
1940         z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
1941         z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
1942         while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
1943                 if (debug & DEBUG_HFCMULTI_FIFO)
1944                         printk(KERN_DEBUG "%s(card %d): reread z2 because "
1945                                 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
1946                 z2 = temp; /* repeat unti Z2 is equal */
1947         }
1948         Zspace = z2 - z1;
1949         if (Zspace <= 0)
1950                 Zspace += hc->Zlen;
1951         Zspace -= 4; /* keep not too full, so pointers will not overrun */
1952         /* fill transparent data only to maxinum transparent load (minus 4) */
1953         if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
1954                 Zspace = Zspace - hc->Zlen + hc->max_trans;
1955         if (Zspace <= 0) /* no space of 4 bytes */
1956                 return;
1957
1958         /* if no data */
1959         if (!len) {
1960                 if (z1 == z2) { /* empty */
1961                         /* if done with FIFO audio data during PCM connection */
1962                         if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
1963                             *txpending && slot_tx >= 0) {
1964                                 if (debug & DEBUG_HFCMULTI_MODE)
1965                                         printk(KERN_DEBUG
1966                                             "%s: reconnecting PCM due to no "
1967                                             "more FIFO data: channel %d "
1968                                             "slot_tx %d\n",
1969                                             __func__, ch, slot_tx);
1970                                 /* connect slot */
1971                                 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
1972                                     V_HDLC_TRP | V_IFF);
1973                                 HFC_outb_nodebug(hc, R_FIFO, ch<<1 | 1);
1974                                 HFC_wait_nodebug(hc);
1975                                 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
1976                                     V_HDLC_TRP | V_IFF);
1977                                 HFC_outb_nodebug(hc, R_FIFO, ch<<1);
1978                                 HFC_wait_nodebug(hc);
1979                         }
1980                         *txpending = 0;
1981                 }
1982                 return; /* no data */
1983         }
1984
1985         /* "fill fifo if empty" feature */
1986         if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags)
1987                 && !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) {
1988                 if (debug & DEBUG_HFCMULTI_FILL)
1989                         printk(KERN_DEBUG "%s: buffer empty, so we have "
1990                                 "underrun\n", __func__);
1991                 /* fill buffer, to prevent future underrun */
1992                 hc->write_fifo(hc, hc->silence_data, poll >> 1);
1993                 Zspace -= (poll >> 1);
1994         }
1995
1996         /* if audio data and connected slot */
1997         if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
1998                 && slot_tx >= 0) {
1999                 if (debug & DEBUG_HFCMULTI_MODE)
2000                         printk(KERN_DEBUG "%s: disconnecting PCM due to "
2001                             "FIFO data: channel %d slot_tx %d\n",
2002                             __func__, ch, slot_tx);
2003                 /* disconnect slot */
2004                 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 | V_HDLC_TRP | V_IFF);
2005                 HFC_outb_nodebug(hc, R_FIFO, ch<<1 | 1);
2006                 HFC_wait_nodebug(hc);
2007                 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 | V_HDLC_TRP | V_IFF);
2008                 HFC_outb_nodebug(hc, R_FIFO, ch<<1);
2009                 HFC_wait_nodebug(hc);
2010         }
2011         *txpending = 1;
2012
2013         /* show activity */
2014         hc->activity[hc->chan[ch].port] = 1;
2015
2016         /* fill fifo to what we have left */
2017         ii = len;
2018         if (dch || test_bit(FLG_HDLC, &bch->Flags))
2019                 temp = 1;
2020         else
2021                 temp = 0;
2022         i = *idxp;
2023         d = (*sp)->data + i;
2024         if (ii - i > Zspace)
2025                 ii = Zspace + i;
2026         if (debug & DEBUG_HFCMULTI_FIFO)
2027                 printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
2028                     "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2029                         __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
2030                         temp ? "HDLC":"TRANS");
2031
2032         /* Have to prep the audio data */
2033         hc->write_fifo(hc, d, ii - i);
2034         *idxp = ii;
2035
2036         /* if not all data has been written */
2037         if (ii != len) {
2038                 /* NOTE: fifo is started by the calling function */
2039                 return;
2040         }
2041
2042         /* if all data has been written, terminate frame */
2043         if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2044                 /* increment f-counter */
2045                 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2046                 HFC_wait_nodebug(hc);
2047         }
2048
2049         /* send confirm, since get_net_bframe will not do it with trans */
2050         if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2051                 confirm_Bsend(bch);
2052
2053         /* check for next frame */
2054         dev_kfree_skb(*sp);
2055         if (bch && get_next_bframe(bch)) { /* hdlc is confirmed here */
2056                 len = (*sp)->len;
2057                 goto next_frame;
2058         }
2059         if (dch && get_next_dframe(dch)) {
2060                 len = (*sp)->len;
2061                 goto next_frame;
2062         }
2063
2064         /*
2065          * now we have no more data, so in case of transparent,
2066          * we set the last byte in fifo to 'silence' in case we will get
2067          * no more data at all. this prevents sending an undefined value.
2068          */
2069         if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2070                 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
2071 }
2072
2073
2074 /* NOTE: only called if E1 card is in active state */
2075 static void
2076 hfcmulti_rx(struct hfc_multi *hc, int ch)
2077 {
2078         int temp;
2079         int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
2080         int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
2081         int again = 0;
2082         struct  bchannel *bch;
2083         struct  dchannel *dch;
2084         struct sk_buff  *skb, **sp = NULL;
2085         int     maxlen;
2086
2087         bch = hc->chan[ch].bch;
2088         dch = hc->chan[ch].dch;
2089         if ((!dch) && (!bch))
2090                 return;
2091         if (dch) {
2092                 if (!test_bit(FLG_ACTIVE, &dch->Flags))
2093                         return;
2094                 sp = &dch->rx_skb;
2095                 maxlen = dch->maxlen;
2096         } else {
2097                 if (!test_bit(FLG_ACTIVE, &bch->Flags))
2098                         return;
2099                 sp = &bch->rx_skb;
2100                 maxlen = bch->maxlen;
2101         }
2102 next_frame:
2103         /* on first AND before getting next valid frame, R_FIFO must be written
2104            to. */
2105         if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2106             (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
2107             (hc->chan[ch].slot_rx < 0) &&
2108             (hc->chan[ch].slot_tx < 0))
2109                 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch<<1) | 1);
2110         else
2111                 HFC_outb_nodebug(hc, R_FIFO, (ch<<1)|1);
2112         HFC_wait_nodebug(hc);
2113
2114         /* ignore if rx is off BUT change fifo (above) to start pending TX */
2115         if (hc->chan[ch].rx_off)
2116                 return;
2117
2118         if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2119                 f1 = HFC_inb_nodebug(hc, A_F1);
2120                 while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
2121                         if (debug & DEBUG_HFCMULTI_FIFO)
2122                                 printk(KERN_DEBUG
2123                                     "%s(card %d): reread f1 because %d!=%d\n",
2124                                     __func__, hc->id + 1, temp, f1);
2125                         f1 = temp; /* repeat until F1 is equal */
2126                 }
2127                 f2 = HFC_inb_nodebug(hc, A_F2);
2128         }
2129         z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2130         while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
2131                 if (debug & DEBUG_HFCMULTI_FIFO)
2132                         printk(KERN_DEBUG "%s(card %d): reread z2 because "
2133                                 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2134                 z1 = temp; /* repeat until Z1 is equal */
2135         }
2136         z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2137         Zsize = z1 - z2;
2138         if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
2139                 /* complete hdlc frame */
2140                 Zsize++;
2141         if (Zsize < 0)
2142                 Zsize += hc->Zlen;
2143         /* if buffer is empty */
2144         if (Zsize <= 0)
2145                 return;
2146
2147         if (*sp == NULL) {
2148                 *sp = mI_alloc_skb(maxlen + 3, GFP_ATOMIC);
2149                 if (*sp == NULL) {
2150                         printk(KERN_DEBUG "%s: No mem for rx_skb\n",
2151                             __func__);
2152                         return;
2153                 }
2154         }
2155         /* show activity */
2156         hc->activity[hc->chan[ch].port] = 1;
2157
2158         /* empty fifo with what we have */
2159         if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2160                 if (debug & DEBUG_HFCMULTI_FIFO)
2161                         printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
2162                             "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2163                             "got=%d (again %d)\n", __func__, hc->id + 1, ch,
2164                             Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
2165                             f1, f2, Zsize + (*sp)->len, again);
2166                 /* HDLC */
2167                 if ((Zsize + (*sp)->len) > (maxlen + 3)) {
2168                         if (debug & DEBUG_HFCMULTI_FIFO)
2169                                 printk(KERN_DEBUG
2170                                     "%s(card %d): hdlc-frame too large.\n",
2171                                     __func__, hc->id + 1);
2172                         skb_trim(*sp, 0);
2173                         HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
2174                         HFC_wait_nodebug(hc);
2175                         return;
2176                 }
2177
2178                 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2179
2180                 if (f1 != f2) {
2181                         /* increment Z2,F2-counter */
2182                         HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2183                         HFC_wait_nodebug(hc);
2184                         /* check size */
2185                         if ((*sp)->len < 4) {
2186                                 if (debug & DEBUG_HFCMULTI_FIFO)
2187                                         printk(KERN_DEBUG
2188                                             "%s(card %d): Frame below minimum "
2189                                             "size\n", __func__, hc->id + 1);
2190                                 skb_trim(*sp, 0);
2191                                 goto next_frame;
2192                         }
2193                         /* there is at least one complete frame, check crc */
2194                         if ((*sp)->data[(*sp)->len - 1]) {
2195                                 if (debug & DEBUG_HFCMULTI_CRC)
2196                                         printk(KERN_DEBUG
2197                                             "%s: CRC-error\n", __func__);
2198                                 skb_trim(*sp, 0);
2199                                 goto next_frame;
2200                         }
2201                         skb_trim(*sp, (*sp)->len - 3);
2202                         if ((*sp)->len < MISDN_COPY_SIZE) {
2203                                 skb = *sp;
2204                                 *sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2205                                 if (*sp) {
2206                                         memcpy(skb_put(*sp, skb->len),
2207                                             skb->data, skb->len);
2208                                         skb_trim(skb, 0);
2209                                 } else {
2210                                         printk(KERN_DEBUG "%s: No mem\n",
2211                                             __func__);
2212                                         *sp = skb;
2213                                         skb = NULL;
2214                                 }
2215                         } else {
2216                                 skb = NULL;
2217                         }
2218                         if (debug & DEBUG_HFCMULTI_FIFO) {
2219                                 printk(KERN_DEBUG "%s(card %d):",
2220                                         __func__, hc->id + 1);
2221                                 temp = 0;
2222                                 while (temp < (*sp)->len)
2223                                         printk(" %02x", (*sp)->data[temp++]);
2224                                 printk("\n");
2225                         }
2226                         if (dch)
2227                                 recv_Dchannel(dch);
2228                         else
2229                                 recv_Bchannel(bch);
2230                         *sp = skb;
2231                         again++;
2232                         goto next_frame;
2233                 }
2234                 /* there is an incomplete frame */
2235         } else {
2236                 /* transparent */
2237                 if (Zsize > skb_tailroom(*sp))
2238                         Zsize = skb_tailroom(*sp);
2239                 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2240                 if (((*sp)->len) < MISDN_COPY_SIZE) {
2241                         skb = *sp;
2242                         *sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2243                         if (*sp) {
2244                                 memcpy(skb_put(*sp, skb->len),
2245                                     skb->data, skb->len);
2246                                 skb_trim(skb, 0);
2247                         } else {
2248                                 printk(KERN_DEBUG "%s: No mem\n", __func__);
2249                                 *sp = skb;
2250                                 skb = NULL;
2251                         }
2252                 } else {
2253                         skb = NULL;
2254                 }
2255                 if (debug & DEBUG_HFCMULTI_FIFO)
2256                         printk(KERN_DEBUG
2257                             "%s(card %d): fifo(%d) reading %d bytes "
2258                             "(z1=%04x, z2=%04x) TRANS\n",
2259                                 __func__, hc->id + 1, ch, Zsize, z1, z2);
2260                 /* only bch is transparent */
2261                 recv_Bchannel(bch);
2262                 *sp = skb;
2263         }
2264 }
2265
2266
2267 /*
2268  * Interrupt handler
2269  */
2270 static void
2271 signal_state_up(struct dchannel *dch, int info, char *msg)
2272 {
2273         struct sk_buff  *skb;
2274         int             id, data = info;
2275
2276         if (debug & DEBUG_HFCMULTI_STATE)
2277                 printk(KERN_DEBUG "%s: %s\n", __func__, msg);
2278
2279         id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */
2280
2281         skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
2282                 GFP_ATOMIC);
2283         if (!skb)
2284                 return;
2285         recv_Dchannel_skb(dch, skb);
2286 }
2287
2288 static inline void
2289 handle_timer_irq(struct hfc_multi *hc)
2290 {
2291         int             ch, temp;
2292         struct dchannel *dch;
2293         u_long          flags;
2294
2295         /* process queued resync jobs */
2296         if (hc->e1_resync) {
2297                 /* lock, so e1_resync gets not changed */
2298                 spin_lock_irqsave(&HFClock, flags);
2299                 if (hc->e1_resync & 1) {
2300                         if (debug & DEBUG_HFCMULTI_PLXSD)
2301                                 printk(KERN_DEBUG "Enable SYNC_I\n");
2302                         HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
2303                         /* disable JATT, if RX_SYNC is set */
2304                         if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
2305                                 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
2306                 }
2307                 if (hc->e1_resync & 2) {
2308                         if (debug & DEBUG_HFCMULTI_PLXSD)
2309                                 printk(KERN_DEBUG "Enable jatt PLL\n");
2310                         HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
2311                 }
2312                 if (hc->e1_resync & 4) {
2313                         if (debug & DEBUG_HFCMULTI_PLXSD)
2314                                 printk(KERN_DEBUG
2315                                     "Enable QUARTZ for HFC-E1\n");
2316                         /* set jatt to quartz */
2317                         HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
2318                                 | V_JATT_OFF);
2319                         /* switch to JATT, in case it is not already */
2320                         HFC_outb(hc, R_SYNC_OUT, 0);
2321                 }
2322                 hc->e1_resync = 0;
2323                 spin_unlock_irqrestore(&HFClock, flags);
2324         }
2325
2326         if (hc->type != 1 || hc->e1_state == 1)
2327                 for (ch = 0; ch <= 31; ch++) {
2328                         if (hc->created[hc->chan[ch].port]) {
2329                                 hfcmulti_tx(hc, ch);
2330                                 /* fifo is started when switching to rx-fifo */
2331                                 hfcmulti_rx(hc, ch);
2332                                 if (hc->chan[ch].dch &&
2333                                     hc->chan[ch].nt_timer > -1) {
2334                                         dch = hc->chan[ch].dch;
2335                                         if (!(--hc->chan[ch].nt_timer)) {
2336                                                 schedule_event(dch,
2337                                                     FLG_PHCHANGE);
2338                                                 if (debug &
2339                                                     DEBUG_HFCMULTI_STATE)
2340                                                         printk(KERN_DEBUG
2341                                                             "%s: nt_timer at "
2342                                                             "state %x\n",
2343                                                             __func__,
2344                                                             dch->state);
2345                                         }
2346                                 }
2347                         }
2348                 }
2349         if (hc->type == 1 && hc->created[0]) {
2350                 dch = hc->chan[hc->dslot].dch;
2351                 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
2352                         /* LOS */
2353                         temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
2354                         if (!temp && hc->chan[hc->dslot].los)
2355                                 signal_state_up(dch, L1_SIGNAL_LOS_ON,
2356                                     "LOS detected");
2357                         if (temp && !hc->chan[hc->dslot].los)
2358                                 signal_state_up(dch, L1_SIGNAL_LOS_OFF,
2359                                     "LOS gone");
2360                         hc->chan[hc->dslot].los = temp;
2361                 }
2362                 if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dslot].cfg)) {
2363                         /* AIS */
2364                         temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
2365                         if (!temp && hc->chan[hc->dslot].ais)
2366                                 signal_state_up(dch, L1_SIGNAL_AIS_ON,
2367                                     "AIS detected");
2368                         if (temp && !hc->chan[hc->dslot].ais)
2369                                 signal_state_up(dch, L1_SIGNAL_AIS_OFF,
2370                                     "AIS gone");
2371                         hc->chan[hc->dslot].ais = temp;
2372                 }
2373                 if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dslot].cfg)) {
2374                         /* SLIP */
2375                         temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
2376                         if (!temp && hc->chan[hc->dslot].slip_rx)
2377                                 signal_state_up(dch, L1_SIGNAL_SLIP_RX,
2378                                     " bit SLIP detected RX");
2379                         hc->chan[hc->dslot].slip_rx = temp;
2380                         temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
2381                         if (!temp && hc->chan[hc->dslot].slip_tx)
2382                                 signal_state_up(dch, L1_SIGNAL_SLIP_TX,
2383                                     " bit SLIP detected TX");
2384                         hc->chan[hc->dslot].slip_tx = temp;
2385                 }
2386                 if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dslot].cfg)) {
2387                         /* RDI */
2388                         temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
2389                         if (!temp && hc->chan[hc->dslot].rdi)
2390                                 signal_state_up(dch, L1_SIGNAL_RDI_ON,
2391                                     "RDI detected");
2392                         if (temp && !hc->chan[hc->dslot].rdi)
2393                                 signal_state_up(dch, L1_SIGNAL_RDI_OFF,
2394                                     "RDI gone");
2395                         hc->chan[hc->dslot].rdi = temp;
2396                 }
2397                 temp = HFC_inb_nodebug(hc, R_JATT_DIR);
2398                 switch (hc->chan[hc->dslot].sync) {
2399                 case 0:
2400                         if ((temp & 0x60) == 0x60) {
2401                                 if (debug & DEBUG_HFCMULTI_SYNC)
2402                                         printk(KERN_DEBUG
2403                                             "%s: (id=%d) E1 now "
2404                                             "in clock sync\n",
2405                                             __func__, hc->id);
2406                                 HFC_outb(hc, R_RX_OFF,
2407                                     hc->chan[hc->dslot].jitter | V_RX_INIT);
2408                                 HFC_outb(hc, R_TX_OFF,
2409                                     hc->chan[hc->dslot].jitter | V_RX_INIT);
2410                                 hc->chan[hc->dslot].sync = 1;
2411                                 goto check_framesync;
2412                         }
2413                         break;
2414                 case 1:
2415                         if ((temp & 0x60) != 0x60) {
2416                                 if (debug & DEBUG_HFCMULTI_SYNC)
2417                                         printk(KERN_DEBUG
2418                                             "%s: (id=%d) E1 "
2419                                             "lost clock sync\n",
2420                                             __func__, hc->id);
2421                                 hc->chan[hc->dslot].sync = 0;
2422                                 break;
2423                         }
2424 check_framesync:
2425                         temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2426                         if (temp == 0x27) {
2427                                 if (debug & DEBUG_HFCMULTI_SYNC)
2428                                         printk(KERN_DEBUG
2429                                             "%s: (id=%d) E1 "
2430                                             "now in frame sync\n",
2431                                             __func__, hc->id);
2432                                 hc->chan[hc->dslot].sync = 2;
2433                         }
2434                         break;
2435                 case 2:
2436                         if ((temp & 0x60) != 0x60) {
2437                                 if (debug & DEBUG_HFCMULTI_SYNC)
2438                                         printk(KERN_DEBUG
2439                                             "%s: (id=%d) E1 lost "
2440                                             "clock & frame sync\n",
2441                                             __func__, hc->id);
2442                                 hc->chan[hc->dslot].sync = 0;
2443                                 break;
2444                         }
2445                         temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2446                         if (temp != 0x27) {
2447                                 if (debug & DEBUG_HFCMULTI_SYNC)
2448                                         printk(KERN_DEBUG
2449                                             "%s: (id=%d) E1 "
2450                                             "lost frame sync\n",
2451                                             __func__, hc->id);
2452                                 hc->chan[hc->dslot].sync = 1;
2453                         }
2454                         break;
2455                 }
2456         }
2457
2458         if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
2459                 hfcmulti_watchdog(hc);
2460
2461         if (hc->leds)
2462                 hfcmulti_leds(hc);
2463 }
2464
2465 static void
2466 ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
2467 {
2468         struct dchannel *dch;
2469         int             ch;
2470         int             active;
2471         u_char          st_status, temp;
2472
2473         /* state machine */
2474         for (ch = 0; ch <= 31; ch++) {
2475                 if (hc->chan[ch].dch) {
2476                         dch = hc->chan[ch].dch;
2477                         if (r_irq_statech & 1) {
2478                                 HFC_outb_nodebug(hc, R_ST_SEL,
2479                                         hc->chan[ch].port);
2480                                 /* undocumented: delay after R_ST_SEL */
2481                                 udelay(1);
2482                                 /* undocumented: status changes during read */
2483                                 st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
2484                                 while (st_status != (temp =
2485                                         HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
2486                                         if (debug & DEBUG_HFCMULTI_STATE)
2487                                                 printk(KERN_DEBUG "%s: reread "
2488                                                     "STATE because %d!=%d\n",
2489                                                     __func__, temp,
2490                                                     st_status);
2491                                         st_status = temp; /* repeat */
2492                                 }
2493
2494                                 /* Speech Design TE-sync indication */
2495                                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
2496                                         dch->dev.D.protocol == ISDN_P_TE_S0) {
2497                                         if (st_status & V_FR_SYNC_ST)
2498                                                 hc->syncronized |=
2499                                                     (1 << hc->chan[ch].port);
2500                                         else
2501                                                 hc->syncronized &=
2502                                                    ~(1 << hc->chan[ch].port);
2503                                 }
2504                                 dch->state = st_status & 0x0f;
2505                                 if (dch->dev.D.protocol == ISDN_P_NT_S0)
2506                                         active = 3;
2507                                 else
2508                                         active = 7;
2509                                 if (dch->state == active) {
2510                                         HFC_outb_nodebug(hc, R_FIFO,
2511                                                 (ch << 1) | 1);
2512                                         HFC_wait_nodebug(hc);
2513                                         HFC_outb_nodebug(hc,
2514                                                 R_INC_RES_FIFO, V_RES_F);
2515                                         HFC_wait_nodebug(hc);
2516                                         dch->tx_idx = 0;
2517                                 }
2518                                 schedule_event(dch, FLG_PHCHANGE);
2519                                 if (debug & DEBUG_HFCMULTI_STATE)
2520                                         printk(KERN_DEBUG
2521                                             "%s: S/T newstate %x port %d\n",
2522                                             __func__, dch->state,
2523                                             hc->chan[ch].port);
2524                         }
2525                         r_irq_statech >>= 1;
2526                 }
2527         }
2528         if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2529                 plxsd_checksync(hc, 0);
2530 }
2531
2532 static void
2533 fifo_irq(struct hfc_multi *hc, int block)
2534 {
2535         int     ch, j;
2536         struct dchannel *dch;
2537         struct bchannel *bch;
2538         u_char r_irq_fifo_bl;
2539
2540         r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
2541         j = 0;
2542         while (j < 8) {
2543                 ch = (block << 2) + (j >> 1);
2544                 dch = hc->chan[ch].dch;
2545                 bch = hc->chan[ch].bch;
2546                 if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
2547                         j += 2;
2548                         continue;
2549                 }
2550                 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2551                     test_bit(FLG_ACTIVE, &dch->Flags)) {
2552                         hfcmulti_tx(hc, ch);
2553                         /* start fifo */
2554                         HFC_outb_nodebug(hc, R_FIFO, 0);
2555                         HFC_wait_nodebug(hc);
2556                 }
2557                 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2558                     test_bit(FLG_ACTIVE, &bch->Flags)) {
2559                         hfcmulti_tx(hc, ch);
2560                         /* start fifo */
2561                         HFC_outb_nodebug(hc, R_FIFO, 0);
2562                         HFC_wait_nodebug(hc);
2563                 }
2564                 j++;
2565                 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2566                     test_bit(FLG_ACTIVE, &dch->Flags)) {
2567                         hfcmulti_rx(hc, ch);
2568                 }
2569                 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2570                     test_bit(FLG_ACTIVE, &bch->Flags)) {
2571                         hfcmulti_rx(hc, ch);
2572                 }
2573                 j++;
2574         }
2575 }
2576
2577 #ifdef IRQ_DEBUG
2578 int irqsem;
2579 #endif
2580 static irqreturn_t
2581 hfcmulti_interrupt(int intno, void *dev_id)
2582 {
2583 #ifdef IRQCOUNT_DEBUG
2584         static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
2585             iq5 = 0, iq6 = 0, iqcnt = 0;
2586 #endif
2587         struct hfc_multi        *hc = dev_id;
2588         struct dchannel         *dch;
2589         u_char                  r_irq_statech, status, r_irq_misc, r_irq_oview;
2590         int                     i;
2591         void __iomem            *plx_acc;
2592         u_short                 wval;
2593         u_char                  e1_syncsta, temp;
2594         u_long                  flags;
2595
2596         if (!hc) {
2597                 printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
2598                 return IRQ_NONE;
2599         }
2600
2601         spin_lock(&hc->lock);
2602
2603 #ifdef IRQ_DEBUG
2604         if (irqsem)
2605                 printk(KERN_ERR "irq for card %d during irq from "
2606                 "card %d, this is no bug.\n", hc->id + 1, irqsem);
2607         irqsem = hc->id + 1;
2608 #endif
2609
2610         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
2611                 spin_lock_irqsave(&plx_lock, flags);
2612                 plx_acc = hc->plx_membase + PLX_INTCSR;
2613                 wval = readw(plx_acc);
2614                 spin_unlock_irqrestore(&plx_lock, flags);
2615                 if (!(wval & PLX_INTCSR_LINTI1_STATUS))
2616                         goto irq_notforus;
2617         }
2618
2619         status = HFC_inb_nodebug(hc, R_STATUS);
2620         r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
2621 #ifdef IRQCOUNT_DEBUG
2622         if (r_irq_statech)
2623                 iq1++;
2624         if (status & V_DTMF_STA)
2625                 iq2++;
2626         if (status & V_LOST_STA)
2627                 iq3++;
2628         if (status & V_EXT_IRQSTA)
2629                 iq4++;
2630         if (status & V_MISC_IRQSTA)
2631                 iq5++;
2632         if (status & V_FR_IRQSTA)
2633                 iq6++;
2634         if (iqcnt++ > 5000) {
2635                 printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2636                     iq1, iq2, iq3, iq4, iq5, iq6);
2637                 iqcnt = 0;
2638         }
2639 #endif
2640
2641         if (!r_irq_statech &&
2642             !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
2643             V_MISC_IRQSTA | V_FR_IRQSTA))) {
2644                 /* irq is not for us */
2645                 goto irq_notforus;
2646         }
2647         hc->irqcnt++;
2648         if (r_irq_statech) {
2649                 if (hc->type != 1)
2650                         ph_state_irq(hc, r_irq_statech);
2651         }
2652         if (status & V_EXT_IRQSTA)
2653                 ; /* external IRQ */
2654         if (status & V_LOST_STA) {
2655                 /* LOST IRQ */
2656                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
2657         }
2658         if (status & V_MISC_IRQSTA) {
2659                 /* misc IRQ */
2660                 r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
2661                 r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */
2662                 if (r_irq_misc & V_STA_IRQ) {
2663                         if (hc->type == 1) {
2664                                 /* state machine */
2665                                 dch = hc->chan[hc->dslot].dch;
2666                                 e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
2667                                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
2668                                  && hc->e1_getclock) {
2669                                         if (e1_syncsta & V_FR_SYNC_E1)
2670                                                 hc->syncronized = 1;
2671                                         else
2672                                                 hc->syncronized = 0;
2673                                 }
2674                                 /* undocumented: status changes during read */
2675                                 dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA);
2676                                 while (dch->state != (temp =
2677                                         HFC_inb_nodebug(hc, R_E1_RD_STA))) {
2678                                         if (debug & DEBUG_HFCMULTI_STATE)
2679                                                 printk(KERN_DEBUG "%s: reread "
2680                                                     "STATE because %d!=%d\n",
2681                                                     __func__, temp,
2682                                                     dch->state);
2683                                         dch->state = temp; /* repeat */
2684                                 }
2685                                 dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA)
2686                                         & 0x7;
2687                                 schedule_event(dch, FLG_PHCHANGE);
2688                                 if (debug & DEBUG_HFCMULTI_STATE)
2689                                         printk(KERN_DEBUG
2690                                             "%s: E1 (id=%d) newstate %x\n",
2691                                             __func__, hc->id, dch->state);
2692                                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2693                                         plxsd_checksync(hc, 0);
2694                         }
2695                 }
2696                 if (r_irq_misc & V_TI_IRQ) {
2697                         if (hc->iclock_on)
2698                                 mISDN_clock_update(hc->iclock, poll, NULL);
2699                         handle_timer_irq(hc);
2700                 }
2701
2702                 if (r_irq_misc & V_DTMF_IRQ) {
2703                         hfcmulti_dtmf(hc);
2704                 }
2705                 if (r_irq_misc & V_IRQ_PROC) {
2706                         static int irq_proc_cnt;
2707                         if (!irq_proc_cnt++)
2708                                 printk(KERN_WARNING "%s: got V_IRQ_PROC -"
2709                                     " this should not happen\n", __func__);
2710                 }
2711
2712         }
2713         if (status & V_FR_IRQSTA) {
2714                 /* FIFO IRQ */
2715                 r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
2716                 for (i = 0; i < 8; i++) {
2717                         if (r_irq_oview & (1 << i))
2718                                 fifo_irq(hc, i);
2719                 }
2720         }
2721
2722 #ifdef IRQ_DEBUG
2723         irqsem = 0;
2724 #endif
2725         spin_unlock(&hc->lock);
2726         return IRQ_HANDLED;
2727
2728 irq_notforus:
2729 #ifdef IRQ_DEBUG
2730         irqsem = 0;
2731 #endif
2732         spin_unlock(&hc->lock);
2733         return IRQ_NONE;
2734 }
2735
2736
2737 /*
2738  * timer callback for D-chan busy resolution. Currently no function
2739  */
2740
2741 static void
2742 hfcmulti_dbusy_timer(struct hfc_multi *hc)
2743 {
2744 }
2745
2746
2747 /*
2748  * activate/deactivate hardware for selected channels and mode
2749  *
2750  * configure B-channel with the given protocol
2751  * ch eqals to the HFC-channel (0-31)
2752  * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2753  * for S/T, 1-31 for E1)
2754  * the hdlc interrupts will be set/unset
2755  */
2756 static int
2757 mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
2758     int bank_tx, int slot_rx, int bank_rx)
2759 {
2760         int flow_tx = 0, flow_rx = 0, routing = 0;
2761         int oslot_tx, oslot_rx;
2762         int conf;
2763
2764         if (ch < 0 || ch > 31)
2765                 return EINVAL;
2766         oslot_tx = hc->chan[ch].slot_tx;
2767         oslot_rx = hc->chan[ch].slot_rx;
2768         conf = hc->chan[ch].conf;
2769
2770         if (debug & DEBUG_HFCMULTI_MODE)
2771                 printk(KERN_DEBUG
2772                     "%s: card %d channel %d protocol %x slot old=%d new=%d "
2773                     "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2774                     __func__, hc->id, ch, protocol, oslot_tx, slot_tx,
2775                     bank_tx, oslot_rx, slot_rx, bank_rx);
2776
2777         if (oslot_tx >= 0 && slot_tx != oslot_tx) {
2778                 /* remove from slot */
2779                 if (debug & DEBUG_HFCMULTI_MODE)
2780                         printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
2781                             __func__, oslot_tx);
2782                 if (hc->slot_owner[oslot_tx<<1] == ch) {
2783                         HFC_outb(hc, R_SLOT, oslot_tx << 1);
2784                         HFC_outb(hc, A_SL_CFG, 0);
2785                         HFC_outb(hc, A_CONF, 0);
2786                         hc->slot_owner[oslot_tx<<1] = -1;
2787                 } else {
2788                         if (debug & DEBUG_HFCMULTI_MODE)
2789                                 printk(KERN_DEBUG
2790                                     "%s: we are not owner of this tx slot "
2791                                     "anymore, channel %d is.\n",
2792                                     __func__, hc->slot_owner[oslot_tx<<1]);
2793                 }
2794         }
2795
2796         if (oslot_rx >= 0 && slot_rx != oslot_rx) {
2797                 /* remove from slot */
2798                 if (debug & DEBUG_HFCMULTI_MODE)
2799                         printk(KERN_DEBUG
2800                             "%s: remove from slot %d (RX)\n",
2801                             __func__, oslot_rx);
2802                 if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
2803                         HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
2804                         HFC_outb(hc, A_SL_CFG, 0);
2805                         hc->slot_owner[(oslot_rx << 1) | 1] = -1;
2806                 } else {
2807                         if (debug & DEBUG_HFCMULTI_MODE)
2808                                 printk(KERN_DEBUG
2809                                     "%s: we are not owner of this rx slot "
2810                                     "anymore, channel %d is.\n",
2811                                     __func__,
2812                                     hc->slot_owner[(oslot_rx << 1) | 1]);
2813                 }
2814         }
2815
2816         if (slot_tx < 0) {
2817                 flow_tx = 0x80; /* FIFO->ST */
2818                 /* disable pcm slot */
2819                 hc->chan[ch].slot_tx = -1;
2820                 hc->chan[ch].bank_tx = 0;
2821         } else {
2822                 /* set pcm slot */
2823                 if (hc->chan[ch].txpending)
2824                         flow_tx = 0x80; /* FIFO->ST */
2825                 else
2826                         flow_tx = 0xc0; /* PCM->ST */
2827                 /* put on slot */
2828                 routing = bank_tx ? 0xc0 : 0x80;
2829                 if (conf >= 0 || bank_tx > 1)
2830                         routing = 0x40; /* loop */
2831                 if (debug & DEBUG_HFCMULTI_MODE)
2832                         printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2833                             " %d flow %02x routing %02x conf %d (TX)\n",
2834                             __func__, ch, slot_tx, bank_tx,
2835                             flow_tx, routing, conf);
2836                 HFC_outb(hc, R_SLOT, slot_tx << 1);
2837                 HFC_outb(hc, A_SL_CFG, (ch<<1) | routing);
2838                 HFC_outb(hc, A_CONF, (conf < 0) ? 0 : (conf | V_CONF_SL));
2839                 hc->slot_owner[slot_tx << 1] = ch;
2840                 hc->chan[ch].slot_tx = slot_tx;
2841                 hc->chan[ch].bank_tx = bank_tx;
2842         }
2843         if (slot_rx < 0) {
2844                 /* disable pcm slot */
2845                 flow_rx = 0x80; /* ST->FIFO */
2846                 hc->chan[ch].slot_rx = -1;
2847                 hc->chan[ch].bank_rx = 0;
2848         } else {
2849                 /* set pcm slot */
2850                 if (hc->chan[ch].txpending)
2851                         flow_rx = 0x80; /* ST->FIFO */
2852                 else
2853                         flow_rx = 0xc0; /* ST->(FIFO,PCM) */
2854                 /* put on slot */
2855                 routing = bank_rx?0x80:0xc0; /* reversed */
2856                 if (conf >= 0 || bank_rx > 1)
2857                         routing = 0x40; /* loop */
2858                 if (debug & DEBUG_HFCMULTI_MODE)
2859                         printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2860                             " %d flow %02x routing %02x conf %d (RX)\n",
2861                             __func__, ch, slot_rx, bank_rx,
2862                             flow_rx, routing, conf);
2863                 HFC_outb(hc, R_SLOT, (slot_rx<<1) | V_SL_DIR);
2864                 HFC_outb(hc, A_SL_CFG, (ch<<1) | V_CH_DIR | routing);
2865                 hc->slot_owner[(slot_rx<<1)|1] = ch;
2866                 hc->chan[ch].slot_rx = slot_rx;
2867                 hc->chan[ch].bank_rx = bank_rx;
2868         }
2869
2870         switch (protocol) {
2871         case (ISDN_P_NONE):
2872                 /* disable TX fifo */
2873                 HFC_outb(hc, R_FIFO, ch << 1);
2874                 HFC_wait(hc);
2875                 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
2876                 HFC_outb(hc, A_SUBCH_CFG, 0);
2877                 HFC_outb(hc, A_IRQ_MSK, 0);
2878                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2879                 HFC_wait(hc);
2880                 /* disable RX fifo */
2881                 HFC_outb(hc, R_FIFO, (ch<<1)|1);
2882                 HFC_wait(hc);
2883                 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
2884                 HFC_outb(hc, A_SUBCH_CFG, 0);
2885                 HFC_outb(hc, A_IRQ_MSK, 0);
2886                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2887                 HFC_wait(hc);
2888                 if (hc->chan[ch].bch && hc->type != 1) {
2889                         hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
2890                             ((ch & 0x3) == 0)? ~V_B1_EN: ~V_B2_EN;
2891                         HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2892                         /* undocumented: delay after R_ST_SEL */
2893                         udelay(1);
2894                         HFC_outb(hc, A_ST_CTRL0,
2895                             hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2896                 }
2897                 if (hc->chan[ch].bch) {
2898                         test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
2899                         test_and_clear_bit(FLG_TRANSPARENT,
2900                             &hc->chan[ch].bch->Flags);
2901                 }
2902                 break;
2903         case (ISDN_P_B_RAW): /* B-channel */
2904
2905                 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2906                     (hc->chan[ch].slot_rx < 0) &&
2907                     (hc->chan[ch].slot_tx < 0)) {
2908
2909                         printk(KERN_DEBUG
2910                             "Setting B-channel %d to echo cancelable "
2911                             "state on PCM slot %d\n", ch,
2912                             ((ch / 4) * 8) + ((ch % 4) * 4) + 1);
2913                         printk(KERN_DEBUG
2914                             "Enabling pass through for channel\n");
2915                         vpm_out(hc, ch, ((ch / 4) * 8) +
2916                             ((ch % 4) * 4) + 1, 0x01);
2917                         /* rx path */
2918                         /* S/T -> PCM */
2919                         HFC_outb(hc, R_FIFO, (ch << 1));
2920                         HFC_wait(hc);
2921                         HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
2922                         HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
2923                             ((ch % 4) * 4) + 1) << 1);
2924                         HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));
2925
2926                         /* PCM -> FIFO */
2927                         HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
2928                         HFC_wait(hc);
2929                         HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
2930                         HFC_outb(hc, A_SUBCH_CFG, 0);
2931                         HFC_outb(hc, A_IRQ_MSK, 0);
2932                         HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2933                         HFC_wait(hc);
2934                         HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
2935                             ((ch % 4) * 4) + 1) << 1) | 1);
2936                         HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);
2937
2938                         /* tx path */
2939                         /* PCM -> S/T */
2940                         HFC_outb(hc, R_FIFO, (ch << 1) | 1);
2941                         HFC_wait(hc);
2942                         HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
2943                         HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
2944                             ((ch % 4) * 4)) << 1) | 1);
2945                         HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);
2946
2947                         /* FIFO -> PCM */
2948                         HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
2949                         HFC_wait(hc);
2950                         HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
2951                         HFC_outb(hc, A_SUBCH_CFG, 0);
2952                         HFC_outb(hc, A_IRQ_MSK, 0);
2953                         HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2954                         HFC_wait(hc);
2955                         /* tx silence */
2956                         HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
2957                         HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
2958                             ((ch % 4) * 4)) << 1);
2959                         HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
2960                 } else {
2961                         /* enable TX fifo */
2962                         HFC_outb(hc, R_FIFO, ch << 1);
2963                         HFC_wait(hc);
2964                         HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
2965                             V_HDLC_TRP | V_IFF);
2966                         HFC_outb(hc, A_SUBCH_CFG, 0);
2967                         HFC_outb(hc, A_IRQ_MSK, 0);
2968                         HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2969                         HFC_wait(hc);
2970                         /* tx silence */
2971                         HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
2972                         /* enable RX fifo */
2973                         HFC_outb(hc, R_FIFO, (ch<<1)|1);
2974                         HFC_wait(hc);
2975                         HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 | V_HDLC_TRP);
2976                         HFC_outb(hc, A_SUBCH_CFG, 0);
2977                         HFC_outb(hc, A_IRQ_MSK, 0);
2978                         HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2979                         HFC_wait(hc);
2980                 }
2981                 if (hc->type != 1) {
2982                         hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
2983                             ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
2984                         HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2985                         /* undocumented: delay after R_ST_SEL */
2986                         udelay(1);
2987                         HFC_outb(hc, A_ST_CTRL0,
2988                             hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2989                 }
2990                 if (hc->chan[ch].bch)
2991                         test_and_set_bit(FLG_TRANSPARENT,
2992                             &hc->chan[ch].bch->Flags);
2993                 break;
2994         case (ISDN_P_B_HDLC): /* B-channel */
2995         case (ISDN_P_TE_S0): /* D-channel */
2996         case (ISDN_P_NT_S0):
2997         case (ISDN_P_TE_E1):
2998         case (ISDN_P_NT_E1):
2999                 /* enable TX fifo */
3000                 HFC_outb(hc, R_FIFO, ch<<1);
3001                 HFC_wait(hc);
3002                 if (hc->type == 1 || hc->chan[ch].bch) {
3003                         /* E1 or B-channel */
3004                         HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
3005                         HFC_outb(hc, A_SUBCH_CFG, 0);
3006                 } else {
3007                         /* D-Channel without HDLC fill flags */
3008                         HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
3009                         HFC_outb(hc, A_SUBCH_CFG, 2);
3010                 }
3011                 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3012                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3013                 HFC_wait(hc);
3014                 /* enable RX fifo */
3015                 HFC_outb(hc, R_FIFO, (ch<<1)|1);
3016                 HFC_wait(hc);
3017                 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
3018                 if (hc->type == 1 || hc->chan[ch].bch)
3019                         HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
3020                 else
3021                         HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
3022                 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3023                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3024                 HFC_wait(hc);
3025                 if (hc->chan[ch].bch) {
3026                         test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3027                         if (hc->type != 1) {
3028                                 hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3029                                   ((ch&0x3) == 0) ? V_B1_EN : V_B2_EN;
3030                                 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3031                                 /* undocumented: delay after R_ST_SEL */
3032                                 udelay(1);
3033                                 HFC_outb(hc, A_ST_CTRL0,
3034                                   hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3035                         }
3036                 }
3037                 break;
3038         default:
3039                 printk(KERN_DEBUG "%s: protocol not known %x\n",
3040                     __func__, protocol);
3041                 hc->chan[ch].protocol = ISDN_P_NONE;
3042                 return -ENOPROTOOPT;
3043         }
3044         hc->chan[ch].protocol = protocol;
3045         return 0;
3046 }
3047
3048
3049 /*
3050  * connect/disconnect PCM
3051  */
3052
3053 static void
3054 hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
3055     int slot_rx, int bank_rx)
3056 {
3057         if (slot_rx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
3058                 /* disable PCM */
3059                 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
3060                 return;
3061         }
3062
3063         /* enable pcm */
3064         mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
3065                 slot_rx, bank_rx);
3066 }
3067
3068 /*
3069  * set/disable conference
3070  */
3071
3072 static void
3073 hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
3074 {
3075         if (num >= 0 && num <= 7)
3076                 hc->chan[ch].conf = num;
3077         else
3078                 hc->chan[ch].conf = -1;
3079         mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
3080             hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
3081             hc->chan[ch].bank_rx);
3082 }
3083
3084
3085 /*
3086  * set/disable sample loop
3087  */
3088
3089 /* NOTE: this function is experimental and therefore disabled */
3090
3091 /*
3092  * Layer 1 callback function
3093  */
3094 static int
3095 hfcm_l1callback(struct dchannel *dch, u_int cmd)
3096 {
3097         struct hfc_multi        *hc = dch->hw;
3098         u_long  flags;
3099
3100         switch (cmd) {
3101         case INFO3_P8:
3102         case INFO3_P10:
3103                 break;
3104         case HW_RESET_REQ:
3105                 /* start activation */
3106                 spin_lock_irqsave(&hc->lock, flags);
3107                 if (hc->type == 1) {
3108                         if (debug & DEBUG_HFCMULTI_MSG)
3109                                 printk(KERN_DEBUG
3110                                     "%s: HW_RESET_REQ no BRI\n",
3111                                     __func__);
3112                 } else {
3113                         HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3114                         /* undocumented: delay after R_ST_SEL */
3115                         udelay(1);
3116                         HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
3117                         udelay(6); /* wait at least 5,21us */
3118                         HFC_outb(hc, A_ST_WR_STATE, 3);
3119                         HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT*3));
3120                                 /* activate */
3121                 }
3122                 spin_unlock_irqrestore(&hc->lock, flags);
3123                 l1_event(dch->l1, HW_POWERUP_IND);
3124                 break;
3125         case HW_DEACT_REQ:
3126                 /* start deactivation */
3127                 spin_lock_irqsave(&hc->lock, flags);
3128                 if (hc->type == 1) {
3129                         if (debug & DEBUG_HFCMULTI_MSG)
3130                                 printk(KERN_DEBUG
3131                                     "%s: HW_DEACT_REQ no BRI\n",
3132                                     __func__);
3133                 } else {
3134                         HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3135                         /* undocumented: delay after R_ST_SEL */
3136                         udelay(1);
3137                         HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT*2);
3138                                 /* deactivate */
3139                         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3140                                 hc->syncronized &=
3141                                    ~(1 << hc->chan[dch->slot].port);
3142                                 plxsd_checksync(hc, 0);
3143                         }
3144                 }
3145                 skb_queue_purge(&dch->squeue);
3146                 if (dch->tx_skb) {
3147                         dev_kfree_skb(dch->tx_skb);
3148                         dch->tx_skb = NULL;
3149                 }
3150                 dch->tx_idx = 0;
3151                 if (dch->rx_skb) {
3152                         dev_kfree_skb(dch->rx_skb);
3153                         dch->rx_skb = NULL;
3154                 }
3155                 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3156                 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3157                         del_timer(&dch->timer);
3158                 spin_unlock_irqrestore(&hc->lock, flags);
3159                 break;
3160         case HW_POWERUP_REQ:
3161                 spin_lock_irqsave(&hc->lock, flags);
3162                 if (hc->type == 1) {
3163                         if (debug & DEBUG_HFCMULTI_MSG)
3164                                 printk(KERN_DEBUG
3165                                     "%s: HW_POWERUP_REQ no BRI\n",
3166                                     __func__);
3167                 } else {
3168                         HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3169                         /* undocumented: delay after R_ST_SEL */
3170                         udelay(1);
3171                         HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
3172                         udelay(6); /* wait at least 5,21us */
3173                         HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
3174                 }
3175                 spin_unlock_irqrestore(&hc->lock, flags);
3176                 break;
3177         case PH_ACTIVATE_IND:
3178                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3179                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3180                         GFP_ATOMIC);
3181                 break;
3182         case PH_DEACTIVATE_IND:
3183                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3184                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3185                         GFP_ATOMIC);
3186                 break;
3187         default:
3188                 if (dch->debug & DEBUG_HW)
3189                         printk(KERN_DEBUG "%s: unknown command %x\n",
3190                             __func__, cmd);
3191                 return -1;
3192         }
3193         return 0;
3194 }
3195
3196 /*
3197  * Layer2 -> Layer 1 Transfer
3198  */
3199
3200 static int
3201 handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3202 {
3203         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
3204         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
3205         struct hfc_multi        *hc = dch->hw;
3206         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
3207         int                     ret = -EINVAL;
3208         unsigned int            id;
3209         u_long                  flags;
3210
3211         switch (hh->prim) {
3212         case PH_DATA_REQ:
3213                 if (skb->len < 1)
3214                         break;
3215                 spin_lock_irqsave(&hc->lock, flags);
3216                 ret = dchannel_senddata(dch, skb);
3217                 if (ret > 0) { /* direct TX */
3218                         id = hh->id; /* skb can be freed */
3219                         hfcmulti_tx(hc, dch->slot);
3220                         ret = 0;
3221                         /* start fifo */
3222                         HFC_outb(hc, R_FIFO, 0);
3223                         HFC_wait(hc);
3224                         spin_unlock_irqrestore(&hc->lock, flags);
3225                         queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3226                 } else
3227                         spin_unlock_irqrestore(&hc->lock, flags);
3228                 return ret;
3229         case PH_ACTIVATE_REQ:
3230                 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3231                         spin_lock_irqsave(&hc->lock, flags);
3232                         ret = 0;
3233                         if (debug & DEBUG_HFCMULTI_MSG)
3234                                 printk(KERN_DEBUG
3235                                     "%s: PH_ACTIVATE port %d (0..%d)\n",
3236                                     __func__, hc->chan[dch->slot].port,
3237                                     hc->ports-1);
3238                         /* start activation */
3239                         if (hc->type == 1) {
3240                                 ph_state_change(dch);
3241                                 if (debug & DEBUG_HFCMULTI_STATE)
3242                                         printk(KERN_DEBUG
3243                                             "%s: E1 report state %x \n",
3244                                             __func__, dch->state);
3245                         } else {
3246                                 HFC_outb(hc, R_ST_SEL,
3247                                     hc->chan[dch->slot].port);
3248                                 /* undocumented: delay after R_ST_SEL */
3249                                 udelay(1);
3250                                 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
3251                                     /* G1 */
3252                                 udelay(6); /* wait at least 5,21us */
3253                                 HFC_outb(hc, A_ST_WR_STATE, 1);
3254                                 HFC_outb(hc, A_ST_WR_STATE, 1 |
3255                                     (V_ST_ACT*3)); /* activate */
3256                                 dch->state = 1;
3257                         }
3258                         spin_unlock_irqrestore(&hc->lock, flags);
3259                 } else
3260                         ret = l1_event(dch->l1, hh->prim);
3261                 break;
3262         case PH_DEACTIVATE_REQ:
3263                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
3264                 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3265                         spin_lock_irqsave(&hc->lock, flags);
3266                         if (debug & DEBUG_HFCMULTI_MSG)
3267                                 printk(KERN_DEBUG
3268                                     "%s: PH_DEACTIVATE port %d (0..%d)\n",
3269                                     __func__, hc->chan[dch->slot].port,
3270                                     hc->ports-1);
3271                         /* start deactivation */
3272                         if (hc->type == 1) {
3273                                 if (debug & DEBUG_HFCMULTI_MSG)
3274                                         printk(KERN_DEBUG
3275                                             "%s: PH_DEACTIVATE no BRI\n",
3276                                             __func__);
3277                         } else {
3278                                 HFC_outb(hc, R_ST_SEL,
3279                                     hc->chan[dch->slot].port);
3280                                 /* undocumented: delay after R_ST_SEL */
3281                                 udelay(1);
3282                                 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3283                                     /* deactivate */
3284                                 dch->state = 1;
3285                         }
3286                         skb_queue_purge(&dch->squeue);
3287                         if (dch->tx_skb) {
3288                                 dev_kfree_skb(dch->tx_skb);
3289                                 dch->tx_skb = NULL;
3290                         }
3291                         dch->tx_idx = 0;
3292                         if (dch->rx_skb) {
3293                                 dev_kfree_skb(dch->rx_skb);
3294                                 dch->rx_skb = NULL;
3295                         }
3296                         test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3297                         if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3298                                 del_timer(&dch->timer);
3299 #ifdef FIXME
3300                         if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
3301                                 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
3302 #endif
3303                         ret = 0;
3304                         spin_unlock_irqrestore(&hc->lock, flags);
3305                 } else
3306                         ret = l1_event(dch->l1, hh->prim);
3307                 break;
3308         }
3309         if (!ret)
3310                 dev_kfree_skb(skb);
3311         return ret;
3312 }
3313
3314 static void
3315 deactivate_bchannel(struct bchannel *bch)
3316 {
3317         struct hfc_multi        *hc = bch->hw;
3318         u_long                  flags;
3319
3320         spin_lock_irqsave(&hc->lock, flags);
3321         if (test_and_clear_bit(FLG_TX_NEXT, &bch->Flags)) {
3322                 dev_kfree_skb(bch->next_skb);
3323                 bch->next_skb = NULL;
3324         }
3325         if (bch->tx_skb) {
3326                 dev_kfree_skb(bch->tx_skb);
3327                 bch->tx_skb = NULL;
3328         }
3329         bch->tx_idx = 0;
3330         if (bch->rx_skb) {
3331                 dev_kfree_skb(bch->rx_skb);
3332                 bch->rx_skb = NULL;
3333         }
3334         hc->chan[bch->slot].coeff_count = 0;
3335         test_and_clear_bit(FLG_ACTIVE, &bch->Flags);
3336         test_and_clear_bit(FLG_TX_BUSY, &bch->Flags);
3337         hc->chan[bch->slot].rx_off = 0;
3338         hc->chan[bch->slot].conf = -1;
3339         mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
3340         spin_unlock_irqrestore(&hc->lock, flags);
3341 }
3342
3343 static int
3344 handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3345 {
3346         struct bchannel         *bch = container_of(ch, struct bchannel, ch);
3347         struct hfc_multi        *hc = bch->hw;
3348         int                     ret = -EINVAL;
3349         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
3350         unsigned int            id;
3351         u_long                  flags;
3352
3353         switch (hh->prim) {
3354         case PH_DATA_REQ:
3355                 if (!skb->len)
3356                         break;
3357                 spin_lock_irqsave(&hc->lock, flags);
3358                 ret = bchannel_senddata(bch, skb);
3359                 if (ret > 0) { /* direct TX */
3360                         id = hh->id; /* skb can be freed */
3361                         hfcmulti_tx(hc, bch->slot);
3362                         ret = 0;
3363                         /* start fifo */
3364                         HFC_outb_nodebug(hc, R_FIFO, 0);
3365                         HFC_wait_nodebug(hc);
3366                         if (!test_bit(FLG_TRANSPARENT, &bch->Flags)) {
3367                                 spin_unlock_irqrestore(&hc->lock, flags);
3368                                 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3369                         } else
3370                                 spin_unlock_irqrestore(&hc->lock, flags);
3371                 } else
3372                         spin_unlock_irqrestore(&hc->lock, flags);
3373                 return ret;
3374         case PH_ACTIVATE_REQ:
3375                 if (debug & DEBUG_HFCMULTI_MSG)
3376                         printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
3377                                 __func__, bch->slot);
3378                 spin_lock_irqsave(&hc->lock, flags);
3379                 /* activate B-channel if not already activated */
3380                 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
3381                         hc->chan[bch->slot].txpending = 0;
3382                         ret = mode_hfcmulti(hc, bch->slot,
3383                                 ch->protocol,
3384                                 hc->chan[bch->slot].slot_tx,
3385                                 hc->chan[bch->slot].bank_tx,
3386                                 hc->chan[bch->slot].slot_rx,
3387                                 hc->chan[bch->slot].bank_rx);
3388                         if (!ret) {
3389                                 if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
3390                                         && test_bit(HFC_CHIP_DTMF, &hc->chip)) {
3391                                         /* start decoder */
3392                                         hc->dtmf = 1;
3393                                         if (debug & DEBUG_HFCMULTI_DTMF)
3394                                                 printk(KERN_DEBUG
3395                                                     "%s: start dtmf decoder\n",
3396                                                         __func__);
3397                                         HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
3398                                             V_RST_DTMF);
3399                                 }
3400                         }
3401                 } else
3402                         ret = 0;
3403                 spin_unlock_irqrestore(&hc->lock, flags);
3404                 if (!ret)
3405                         _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3406                                 GFP_KERNEL);
3407                 break;
3408         case PH_CONTROL_REQ:
3409                 spin_lock_irqsave(&hc->lock, flags);
3410                 switch (hh->id) {
3411                 case HFC_SPL_LOOP_ON: /* set sample loop */
3412                         if (debug & DEBUG_HFCMULTI_MSG)
3413                         printk(KERN_DEBUG
3414                             "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3415                             __func__, skb->len);
3416                         ret = 0;
3417                         break;
3418                 case HFC_SPL_LOOP_OFF: /* set silence */
3419                         if (debug & DEBUG_HFCMULTI_MSG)
3420                                 printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
3421                                     __func__);
3422                         ret = 0;
3423                         break;
3424                 default:
3425                         printk(KERN_ERR
3426                              "%s: unknown PH_CONTROL_REQ info %x\n",
3427                              __func__, hh->id);
3428                         ret = -EINVAL;
3429                 }
3430                 spin_unlock_irqrestore(&hc->lock, flags);
3431                 break;
3432         case PH_DEACTIVATE_REQ:
3433                 deactivate_bchannel(bch); /* locked there */
3434                 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3435                         GFP_KERNEL);
3436                 ret = 0;
3437                 break;
3438         }
3439         if (!ret)
3440                 dev_kfree_skb(skb);
3441         return ret;
3442 }
3443
3444 /*
3445  * bchannel control function
3446  */
3447 static int
3448 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
3449 {
3450         int                     ret = 0;
3451         struct dsp_features     *features =
3452                 (struct dsp_features *)(*((u_long *)&cq->p1));
3453         struct hfc_multi        *hc = bch->hw;
3454         int                     slot_tx;
3455         int                     bank_tx;
3456         int                     slot_rx;
3457         int                     bank_rx;
3458         int                     num;
3459
3460         switch (cq->op) {
3461         case MISDN_CTRL_GETOP:
3462                 cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP
3463                         | MISDN_CTRL_RX_OFF | MISDN_CTRL_FILL_EMPTY;
3464                 break;
3465         case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
3466                 hc->chan[bch->slot].rx_off = !!cq->p1;
3467                 if (!hc->chan[bch->slot].rx_off) {
3468                         /* reset fifo on rx on */
3469                         HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
3470                         HFC_wait_nodebug(hc);
3471                         HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
3472                         HFC_wait_nodebug(hc);
3473                 }
3474                 if (debug & DEBUG_HFCMULTI_MSG)
3475                         printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
3476                             __func__, bch->nr, hc->chan[bch->slot].rx_off);
3477                 break;
3478         case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
3479                 test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
3480                 if (debug & DEBUG_HFCMULTI_MSG)
3481                         printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
3482                                 "off=%d)\n", __func__, bch->nr, !!cq->p1);
3483                 break;
3484         case MISDN_CTRL_HW_FEATURES: /* fill features structure */
3485                 if (debug & DEBUG_HFCMULTI_MSG)
3486                         printk(KERN_DEBUG "%s: HW_FEATURE request\n",
3487                             __func__);
3488                 /* create confirm */
3489                 features->hfc_id = hc->id;
3490                 if (test_bit(HFC_CHIP_DTMF, &hc->chip))
3491                         features->hfc_dtmf = 1;
3492                 features->hfc_loops = 0;
3493                 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
3494                         features->hfc_echocanhw = 1;
3495                 } else {
3496                         features->pcm_id = hc->pcm;
3497                         features->pcm_slots = hc->slots;
3498                         features->pcm_banks = 2;
3499                 }
3500                 break;
3501         case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
3502                 slot_tx = cq->p1 & 0xff;
3503                 bank_tx = cq->p1 >> 8;
3504                 slot_rx = cq->p2 & 0xff;
3505                 bank_rx = cq->p2 >> 8;
3506                 if (debug & DEBUG_HFCMULTI_MSG)
3507                         printk(KERN_DEBUG
3508                             "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3509                             "slot %d bank %d (RX)\n",
3510                             __func__, slot_tx, bank_tx,
3511                             slot_rx, bank_rx);
3512                 if (slot_tx < hc->slots && bank_tx <= 2 &&
3513                     slot_rx < hc->slots && bank_rx <= 2)
3514                         hfcmulti_pcm(hc, bch->slot,
3515                             slot_tx, bank_tx, slot_rx, bank_rx);
3516                 else {
3517                         printk(KERN_WARNING
3518                             "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3519                             "slot %d bank %d (RX) out of range\n",
3520                             __func__, slot_tx, bank_tx,
3521                             slot_rx, bank_rx);
3522                         ret = -EINVAL;
3523                 }
3524                 break;
3525         case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
3526                 if (debug & DEBUG_HFCMULTI_MSG)
3527                         printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
3528                             __func__);
3529                 hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
3530                 break;
3531         case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
3532                 num = cq->p1 & 0xff;
3533                 if (debug & DEBUG_HFCMULTI_MSG)
3534                         printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
3535                             __func__, num);
3536                 if (num <= 7)
3537                         hfcmulti_conf(hc, bch->slot, num);
3538                 else {
3539                         printk(KERN_WARNING
3540                             "%s: HW_CONF_JOIN conf %d out of range\n",
3541                             __func__, num);
3542                         ret = -EINVAL;
3543                 }
3544                 break;
3545         case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
3546                 if (debug & DEBUG_HFCMULTI_MSG)
3547                         printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
3548                 hfcmulti_conf(hc, bch->slot, -1);
3549                 break;
3550         case MISDN_CTRL_HFC_ECHOCAN_ON:
3551                 if (debug & DEBUG_HFCMULTI_MSG)
3552                         printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
3553                 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3554                         vpm_echocan_on(hc, bch->slot, cq->p1);
3555                 else
3556                         ret = -EINVAL;
3557                 break;
3558
3559         case MISDN_CTRL_HFC_ECHOCAN_OFF:
3560                 if (debug & DEBUG_HFCMULTI_MSG)
3561                         printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
3562                                 __func__);
3563                 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3564                         vpm_echocan_off(hc, bch->slot);
3565                 else
3566                         ret = -EINVAL;
3567                 break;
3568         default:
3569                 printk(KERN_WARNING "%s: unknown Op %x\n",
3570                     __func__, cq->op);
3571                 ret = -EINVAL;
3572                 break;
3573         }
3574         return ret;
3575 }
3576
3577 static int
3578 hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
3579 {
3580         struct bchannel         *bch = container_of(ch, struct bchannel, ch);
3581         struct hfc_multi        *hc = bch->hw;
3582         int                     err = -EINVAL;
3583         u_long  flags;
3584
3585         if (bch->debug & DEBUG_HW)
3586                 printk(KERN_DEBUG "%s: cmd:%x %p\n",
3587                     __func__, cmd, arg);
3588         switch (cmd) {
3589         case CLOSE_CHANNEL:
3590                 test_and_clear_bit(FLG_OPEN, &bch->Flags);
3591                 if (test_bit(FLG_ACTIVE, &bch->Flags))
3592                         deactivate_bchannel(bch); /* locked there */
3593                 ch->protocol = ISDN_P_NONE;
3594                 ch->peer = NULL;
3595                 module_put(THIS_MODULE);
3596                 err = 0;
3597                 break;
3598         case CONTROL_CHANNEL:
3599                 spin_lock_irqsave(&hc->lock, flags);
3600                 err = channel_bctrl(bch, arg);
3601                 spin_unlock_irqrestore(&hc->lock, flags);
3602                 break;
3603         default:
3604                 printk(KERN_WARNING "%s: unknown prim(%x)\n",
3605                         __func__, cmd);
3606         }
3607         return err;
3608 }
3609
3610 /*
3611  * handle D-channel events
3612  *
3613  * handle state change event
3614  */
3615 static void
3616 ph_state_change(struct dchannel *dch)
3617 {
3618         struct hfc_multi *hc;
3619         int ch, i;
3620
3621         if (!dch) {
3622                 printk(KERN_WARNING "%s: ERROR given dch is NULL\n",
3623                     __func__);
3624                 return;
3625         }
3626         hc = dch->hw;
3627         ch = dch->slot;
3628
3629         if (hc->type == 1) {
3630                 if (dch->dev.D.protocol == ISDN_P_TE_E1) {
3631                         if (debug & DEBUG_HFCMULTI_STATE)
3632                                 printk(KERN_DEBUG
3633                                     "%s: E1 TE (id=%d) newstate %x\n",
3634                                     __func__, hc->id, dch->state);
3635                 } else {
3636                         if (debug & DEBUG_HFCMULTI_STATE)
3637                                 printk(KERN_DEBUG
3638                                     "%s: E1 NT (id=%d) newstate %x\n",
3639                                     __func__, hc->id, dch->state);
3640                 }
3641                 switch (dch->state) {
3642                 case (1):
3643                         if (hc->e1_state != 1) {
3644                             for (i = 1; i <= 31; i++) {
3645                                 /* reset fifos on e1 activation */
3646                                 HFC_outb_nodebug(hc, R_FIFO, (i << 1) | 1);
3647                                 HFC_wait_nodebug(hc);
3648                                 HFC_outb_nodebug(hc,
3649                                         R_INC_RES_FIFO, V_RES_F);
3650                                 HFC_wait_nodebug(hc);
3651                             }
3652                         }
3653                         test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3654                         _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3655                             MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3656                         break;
3657
3658                 default:
3659                         if (hc->e1_state != 1)
3660                                 return;
3661                         test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3662                         _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3663                             MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3664                 }
3665                 hc->e1_state = dch->state;
3666         } else {
3667                 if (dch->dev.D.protocol == ISDN_P_TE_S0) {
3668                         if (debug & DEBUG_HFCMULTI_STATE)
3669                                 printk(KERN_DEBUG
3670                                     "%s: S/T TE newstate %x\n",
3671                                     __func__, dch->state);
3672                         switch (dch->state) {
3673                         case (0):
3674                                 l1_event(dch->l1, HW_RESET_IND);
3675                                 break;
3676                         case (3):
3677                                 l1_event(dch->l1, HW_DEACT_IND);
3678                                 break;
3679                         case (5):
3680                         case (8):
3681                                 l1_event(dch->l1, ANYSIGNAL);
3682                                 break;
3683                         case (6):
3684                                 l1_event(dch->l1, INFO2);
3685                                 break;
3686                         case (7):
3687                                 l1_event(dch->l1, INFO4_P8);
3688                                 break;
3689                         }
3690                 } else {
3691                         if (debug & DEBUG_HFCMULTI_STATE)
3692                                 printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
3693                                     __func__, dch->state);
3694                         switch (dch->state) {
3695                         case (2):
3696                                 if (hc->chan[ch].nt_timer == 0) {
3697                                         hc->chan[ch].nt_timer = -1;
3698                                         HFC_outb(hc, R_ST_SEL,
3699                                             hc->chan[ch].port);
3700                                         /* undocumented: delay after R_ST_SEL */
3701                                         udelay(1);
3702                                         HFC_outb(hc, A_ST_WR_STATE, 4 |
3703                                             V_ST_LD_STA); /* G4 */
3704                                         udelay(6); /* wait at least 5,21us */
3705                                         HFC_outb(hc, A_ST_WR_STATE, 4);
3706                                         dch->state = 4;
3707                                 } else {
3708                                         /* one extra count for the next event */
3709                                         hc->chan[ch].nt_timer =
3710                                             nt_t1_count[poll_timer] + 1;
3711                                         HFC_outb(hc, R_ST_SEL,
3712                                             hc->chan[ch].port);
3713                                         /* undocumented: delay after R_ST_SEL */
3714                                         udelay(1);
3715                                         /* allow G2 -> G3 transition */
3716                                         HFC_outb(hc, A_ST_WR_STATE, 2 |
3717                                             V_SET_G2_G3);
3718                                 }
3719                                 break;
3720                         case (1):
3721                                 hc->chan[ch].nt_timer = -1;
3722                                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3723                                 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3724                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3725                                 break;
3726                         case (4):
3727                                 hc->chan[ch].nt_timer = -1;
3728                                 break;
3729                         case (3):
3730                                 hc->chan[ch].nt_timer = -1;
3731                                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3732                                 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3733                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3734                                 break;
3735                         }
3736                 }
3737         }
3738 }
3739
3740 /*
3741  * called for card mode init message
3742  */
3743
3744 static void
3745 hfcmulti_initmode(struct dchannel *dch)
3746 {
3747         struct hfc_multi *hc = dch->hw;
3748         u_char          a_st_wr_state, r_e1_wr_sta;
3749         int             i, pt;
3750
3751         if (debug & DEBUG_HFCMULTI_INIT)
3752                 printk(KERN_DEBUG "%s: entered\n", __func__);
3753
3754         if (hc->type == 1) {
3755                 hc->chan[hc->dslot].slot_tx = -1;
3756                 hc->chan[hc->dslot].slot_rx = -1;
3757                 hc->chan[hc->dslot].conf = -1;
3758                 if (hc->dslot) {
3759                         mode_hfcmulti(hc, hc->dslot, dch->dev.D.protocol,
3760                                 -1, 0, -1, 0);
3761                         dch->timer.function = (void *) hfcmulti_dbusy_timer;
3762                         dch->timer.data = (long) dch;
3763                         init_timer(&dch->timer);
3764                 }
3765                 for (i = 1; i <= 31; i++) {
3766                         if (i == hc->dslot)
3767                                 continue;
3768                         hc->chan[i].slot_tx = -1;
3769                         hc->chan[i].slot_rx = -1;
3770                         hc->chan[i].conf = -1;
3771                         mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
3772                 }
3773                 /* E1 */
3774                 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
3775                         HFC_outb(hc, R_LOS0, 255); /* 2 ms */
3776                         HFC_outb(hc, R_LOS1, 255); /* 512 ms */
3777                 }
3778                 if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dslot].cfg)) {
3779                         HFC_outb(hc, R_RX0, 0);
3780                         hc->hw.r_tx0 = 0 | V_OUT_EN;
3781                 } else {
3782                         HFC_outb(hc, R_RX0, 1);
3783                         hc->hw.r_tx0 = 1 | V_OUT_EN;
3784                 }
3785                 hc->hw.r_tx1 = V_ATX | V_NTRI;
3786                 HFC_outb(hc, R_TX0, hc->hw.r_tx0);
3787                 HFC_outb(hc, R_TX1, hc->hw.r_tx1);
3788                 HFC_outb(hc, R_TX_FR0, 0x00);
3789                 HFC_outb(hc, R_TX_FR1, 0xf8);
3790
3791                 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
3792                         HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);
3793
3794                 HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);
3795
3796                 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
3797                         HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);
3798
3799                 if (dch->dev.D.protocol == ISDN_P_NT_E1) {
3800                         if (debug & DEBUG_HFCMULTI_INIT)
3801                                 printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
3802                                     __func__);
3803                         r_e1_wr_sta = 0; /* G0 */
3804                         hc->e1_getclock = 0;
3805                 } else {
3806                         if (debug & DEBUG_HFCMULTI_INIT)
3807                                 printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
3808                                     __func__);
3809                         r_e1_wr_sta = 0; /* F0 */
3810                         hc->e1_getclock = 1;
3811                 }
3812                 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
3813                         HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
3814                 else
3815                         HFC_outb(hc, R_SYNC_OUT, 0);
3816                 if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
3817                         hc->e1_getclock = 1;
3818                 if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
3819                         hc->e1_getclock = 0;
3820                 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
3821                         /* SLAVE (clock master) */
3822                         if (debug & DEBUG_HFCMULTI_INIT)
3823                                 printk(KERN_DEBUG
3824                                     "%s: E1 port is clock master "
3825                                     "(clock from PCM)\n", __func__);
3826                         HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
3827                 } else {
3828                         if (hc->e1_getclock) {
3829                                 /* MASTER (clock slave) */
3830                                 if (debug & DEBUG_HFCMULTI_INIT)
3831                                         printk(KERN_DEBUG
3832                                             "%s: E1 port is clock slave "
3833                                             "(clock to PCM)\n", __func__);
3834                                 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
3835                         } else {
3836                                 /* MASTER (clock master) */
3837                                 if (debug & DEBUG_HFCMULTI_INIT)
3838                                         printk(KERN_DEBUG "%s: E1 port is "
3839                                             "clock master "
3840                                             "(clock from QUARTZ)\n",
3841                                             __func__);
3842                                 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
3843                                     V_PCM_SYNC | V_JATT_OFF);
3844                                 HFC_outb(hc, R_SYNC_OUT, 0);
3845                         }
3846                 }
3847                 HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
3848                 HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
3849                 HFC_outb(hc, R_PWM0, 0x50);
3850                 HFC_outb(hc, R_PWM1, 0xff);
3851                 /* state machine setup */
3852                 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
3853                 udelay(6); /* wait at least 5,21us */
3854                 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
3855                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3856                         hc->syncronized = 0;
3857                         plxsd_checksync(hc, 0);
3858                 }
3859         } else {
3860                 i = dch->slot;
3861                 hc->chan[i].slot_tx = -1;
3862                 hc->chan[i].slot_rx = -1;
3863                 hc->chan[i].conf = -1;
3864                 mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
3865                 dch->timer.function = (void *)hfcmulti_dbusy_timer;
3866                 dch->timer.data = (long) dch;
3867                 init_timer(&dch->timer);
3868                 hc->chan[i - 2].slot_tx = -1;
3869                 hc->chan[i - 2].slot_rx = -1;
3870                 hc->chan[i - 2].conf = -1;
3871                 mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
3872                 hc->chan[i - 1].slot_tx = -1;
3873                 hc->chan[i - 1].slot_rx = -1;
3874                 hc->chan[i - 1].conf = -1;
3875                 mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
3876                 /* ST */
3877                 pt = hc->chan[i].port;
3878                 /* select interface */
3879                 HFC_outb(hc, R_ST_SEL, pt);
3880                 /* undocumented: delay after R_ST_SEL */
3881                 udelay(1);
3882                 if (dch->dev.D.protocol == ISDN_P_NT_S0) {
3883                         if (debug & DEBUG_HFCMULTI_INIT)
3884                                 printk(KERN_DEBUG
3885                                     "%s: ST port %d is NT-mode\n",
3886                                     __func__, pt);
3887                         /* clock delay */
3888                         HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
3889                         a_st_wr_state = 1; /* G1 */
3890                         hc->hw.a_st_ctrl0[pt] = V_ST_MD;
3891                 } else {
3892                         if (debug & DEBUG_HFCMULTI_INIT)
3893                                 printk(KERN_DEBUG
3894                                     "%s: ST port %d is TE-mode\n",
3895                                     __func__, pt);
3896                         /* clock delay */
3897                         HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
3898                         a_st_wr_state = 2; /* F2 */
3899                         hc->hw.a_st_ctrl0[pt] = 0;
3900                 }
3901                 if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
3902                         hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
3903                 /* line setup */
3904                 HFC_outb(hc, A_ST_CTRL0,  hc->hw.a_st_ctrl0[pt]);
3905                 /* disable E-channel */
3906                 if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
3907                     test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
3908                         HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
3909                 else
3910                         HFC_outb(hc, A_ST_CTRL1, 0);
3911                 /* enable B-channel receive */
3912                 HFC_outb(hc, A_ST_CTRL2,  V_B1_RX_EN | V_B2_RX_EN);
3913                 /* state machine setup */
3914                 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
3915                 udelay(6); /* wait at least 5,21us */
3916                 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
3917                 hc->hw.r_sci_msk |= 1 << pt;
3918                 /* state machine interrupts */
3919                 HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
3920                 /* unset sync on port */
3921                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3922                         hc->syncronized &=
3923                            ~(1 << hc->chan[dch->slot].port);
3924                         plxsd_checksync(hc, 0);
3925                 }
3926         }
3927         if (debug & DEBUG_HFCMULTI_INIT)
3928                 printk("%s: done\n", __func__);
3929 }
3930
3931
3932 static int
3933 open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
3934     struct channel_req *rq)
3935 {
3936         int     err = 0;
3937         u_long  flags;
3938
3939         if (debug & DEBUG_HW_OPEN)
3940                 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
3941                     dch->dev.id, __builtin_return_address(0));
3942         if (rq->protocol == ISDN_P_NONE)
3943                 return -EINVAL;
3944         if ((dch->dev.D.protocol != ISDN_P_NONE) &&
3945             (dch->dev.D.protocol != rq->protocol)) {
3946             if (debug & DEBUG_HFCMULTI_MODE)
3947                 printk(KERN_WARNING "%s: change protocol %x to %x\n",
3948                     __func__, dch->dev.D.protocol, rq->protocol);
3949         }
3950         if ((dch->dev.D.protocol == ISDN_P_TE_S0)
3951          && (rq->protocol != ISDN_P_TE_S0))
3952                 l1_event(dch->l1, CLOSE_CHANNEL);
3953         if (dch->dev.D.protocol != rq->protocol) {
3954                 if (rq->protocol == ISDN_P_TE_S0) {
3955                         err = create_l1(dch, hfcm_l1callback);
3956                         if (err)
3957                                 return err;
3958                 }
3959                 dch->dev.D.protocol = rq->protocol;
3960                 spin_lock_irqsave(&hc->lock, flags);
3961                 hfcmulti_initmode(dch);
3962                 spin_unlock_irqrestore(&hc->lock, flags);
3963         }
3964
3965         if (((rq->protocol == ISDN_P_NT_S0) && (dch->state == 3)) ||
3966             ((rq->protocol == ISDN_P_TE_S0) && (dch->state == 7)) ||
3967             ((rq->protocol == ISDN_P_NT_E1) && (dch->state == 1)) ||
3968             ((rq->protocol == ISDN_P_TE_E1) && (dch->state == 1))) {
3969                 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
3970                     0, NULL, GFP_KERNEL);
3971         }
3972         rq->ch = &dch->dev.D;
3973         if (!try_module_get(THIS_MODULE))
3974                 printk(KERN_WARNING "%s:cannot get module\n", __func__);
3975         return 0;
3976 }
3977
3978 static int
3979 open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
3980     struct channel_req *rq)
3981 {
3982         struct bchannel *bch;
3983         int             ch;
3984
3985         if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
3986                 return -EINVAL;
3987         if (rq->protocol == ISDN_P_NONE)
3988                 return -EINVAL;
3989         if (hc->type == 1)
3990                 ch = rq->adr.channel;
3991         else
3992                 ch = (rq->adr.channel - 1) + (dch->slot - 2);
3993         bch = hc->chan[ch].bch;
3994         if (!bch) {
3995                 printk(KERN_ERR "%s:internal error ch %d has no bch\n",
3996                     __func__, ch);
3997                 return -EINVAL;
3998         }
3999         if (test_and_set_bit(FLG_OPEN, &bch->Flags))
4000                 return -EBUSY; /* b-channel can be only open once */
4001         test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
4002         bch->ch.protocol = rq->protocol;
4003         hc->chan[ch].rx_off = 0;
4004         rq->ch = &bch->ch;
4005         if (!try_module_get(THIS_MODULE))
4006                 printk(KERN_WARNING "%s:cannot get module\n", __func__);
4007         return 0;
4008 }
4009
4010 /*
4011  * device control function
4012  */
4013 static int
4014 channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
4015 {
4016         int     ret = 0;
4017
4018         switch (cq->op) {
4019         case MISDN_CTRL_GETOP:
4020                 cq->op = 0;
4021                 break;
4022         default:
4023                 printk(KERN_WARNING "%s: unknown Op %x\n",
4024                     __func__, cq->op);
4025                 ret = -EINVAL;
4026                 break;
4027         }
4028         return ret;
4029 }
4030
4031 static int
4032 hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
4033 {
4034         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
4035         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
4036         struct hfc_multi        *hc = dch->hw;
4037         struct channel_req      *rq;
4038         int                     err = 0;
4039         u_long                  flags;
4040
4041         if (dch->debug & DEBUG_HW)
4042                 printk(KERN_DEBUG "%s: cmd:%x %p\n",
4043                     __func__, cmd, arg);
4044         switch (cmd) {
4045         case OPEN_CHANNEL:
4046                 rq = arg;
4047                 switch (rq->protocol) {
4048                 case ISDN_P_TE_S0:
4049                 case ISDN_P_NT_S0:
4050                         if (hc->type == 1) {
4051                                 err = -EINVAL;
4052                                 break;
4053                         }
4054                         err = open_dchannel(hc, dch, rq); /* locked there */
4055                         break;
4056                 case ISDN_P_TE_E1:
4057                 case ISDN_P_NT_E1:
4058                         if (hc->type != 1) {
4059                                 err = -EINVAL;
4060                                 break;
4061                         }
4062                         err = open_dchannel(hc, dch, rq); /* locked there */
4063                         break;
4064                 default:
4065                         spin_lock_irqsave(&hc->lock, flags);
4066                         err = open_bchannel(hc, dch, rq);
4067                         spin_unlock_irqrestore(&hc->lock, flags);
4068                 }
4069                 break;
4070         case CLOSE_CHANNEL:
4071                 if (debug & DEBUG_HW_OPEN)
4072                         printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
4073                             __func__, dch->dev.id,
4074                             __builtin_return_address(0));
4075                 module_put(THIS_MODULE);
4076                 break;
4077         case CONTROL_CHANNEL:
4078                 spin_lock_irqsave(&hc->lock, flags);
4079                 err = channel_dctrl(dch, arg);
4080                 spin_unlock_irqrestore(&hc->lock, flags);
4081                 break;
4082         default:
4083                 if (dch->debug & DEBUG_HW)
4084                         printk(KERN_DEBUG "%s: unknown command %x\n",
4085                             __func__, cmd);
4086                 err = -EINVAL;
4087         }
4088         return err;
4089 }
4090
4091 static int
4092 clockctl(void *priv, int enable)
4093 {
4094         struct hfc_multi *hc = priv;
4095
4096         hc->iclock_on = enable;
4097         return 0;
4098 }
4099
4100 /*
4101  * initialize the card
4102  */
4103
4104 /*
4105  * start timer irq, wait some time and check if we have interrupts.
4106  * if not, reset chip and try again.
4107  */
4108 static int
4109 init_card(struct hfc_multi *hc)
4110 {
4111         int     err = -EIO;
4112         u_long  flags;
4113         void    __iomem *plx_acc;
4114         u_long  plx_flags;
4115
4116         if (debug & DEBUG_HFCMULTI_INIT)
4117                 printk(KERN_DEBUG "%s: entered\n", __func__);
4118
4119         spin_lock_irqsave(&hc->lock, flags);
4120         /* set interrupts but leave global interrupt disabled */
4121         hc->hw.r_irq_ctrl = V_FIFO_IRQ;
4122         disable_hwirq(hc);
4123         spin_unlock_irqrestore(&hc->lock, flags);
4124
4125         if (request_irq(hc->pci_dev->irq, hfcmulti_interrupt, IRQF_SHARED,
4126             "HFC-multi", hc)) {
4127                 printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
4128                     hc->pci_dev->irq);
4129                 return -EIO;
4130         }
4131         hc->irq = hc->pci_dev->irq;
4132
4133         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4134                 spin_lock_irqsave(&plx_lock, plx_flags);
4135                 plx_acc = hc->plx_membase + PLX_INTCSR;
4136                 writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
4137                         plx_acc); /* enable PCI & LINT1 irq */
4138                 spin_unlock_irqrestore(&plx_lock, plx_flags);
4139         }
4140
4141         if (debug & DEBUG_HFCMULTI_INIT)
4142                 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4143                     __func__, hc->irq, hc->irqcnt);
4144         err = init_chip(hc);
4145         if (err)
4146                 goto error;
4147         /*
4148          * Finally enable IRQ output
4149          * this is only allowed, if an IRQ routine is allready
4150          * established for this HFC, so don't do that earlier
4151          */
4152         spin_lock_irqsave(&hc->lock, flags);
4153         enable_hwirq(hc);
4154         spin_unlock_irqrestore(&hc->lock, flags);
4155         /* printk(KERN_DEBUG "no master irq set!!!\n"); */
4156         set_current_state(TASK_UNINTERRUPTIBLE);
4157         schedule_timeout((100*HZ)/1000); /* Timeout 100ms */
4158         /* turn IRQ off until chip is completely initialized */
4159         spin_lock_irqsave(&hc->lock, flags);
4160         disable_hwirq(hc);
4161         spin_unlock_irqrestore(&hc->lock, flags);
4162         if (debug & DEBUG_HFCMULTI_INIT)
4163                 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4164                     __func__, hc->irq, hc->irqcnt);
4165         if (hc->irqcnt) {
4166                 if (debug & DEBUG_HFCMULTI_INIT)
4167                         printk(KERN_DEBUG "%s: done\n", __func__);
4168
4169                 return 0;
4170         }
4171         if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
4172                 printk(KERN_INFO "ignoring missing interrupts\n");
4173                 return 0;
4174         }
4175
4176         printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4177                 hc->irq);
4178
4179         err = -EIO;
4180
4181 error:
4182         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4183                 spin_lock_irqsave(&plx_lock, plx_flags);
4184                 plx_acc = hc->plx_membase + PLX_INTCSR;
4185                 writew(0x00, plx_acc); /*disable IRQs*/
4186                 spin_unlock_irqrestore(&plx_lock, plx_flags);
4187         }
4188
4189         if (debug & DEBUG_HFCMULTI_INIT)
4190                 printk(KERN_WARNING "%s: free irq %d\n", __func__, hc->irq);
4191         if (hc->irq) {
4192                 free_irq(hc->irq, hc);
4193                 hc->irq = 0;
4194         }
4195
4196         if (debug & DEBUG_HFCMULTI_INIT)
4197                 printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
4198         return err;
4199 }
4200
4201 /*
4202  * find pci device and set it up
4203  */
4204
4205 static int
4206 setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
4207                 const struct pci_device_id *ent)
4208 {
4209         struct hm_map   *m = (struct hm_map *)ent->driver_data;
4210
4211         printk(KERN_INFO
4212             "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4213             m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");
4214
4215         hc->pci_dev = pdev;
4216         if (m->clock2)
4217                 test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);
4218
4219         if (ent->device == 0xB410) {
4220                 test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
4221                 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4222                 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4223                 hc->slots = 32;
4224         }
4225
4226         if (hc->pci_dev->irq <= 0) {
4227                 printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
4228                 return -EIO;
4229         }
4230         if (pci_enable_device(hc->pci_dev)) {
4231                 printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
4232                 return -EIO;
4233         }
4234         hc->leds = m->leds;
4235         hc->ledstate = 0xAFFEAFFE;
4236         hc->opticalsupport = m->opticalsupport;
4237
4238         /* set memory access methods */
4239         if (m->io_mode) /* use mode from card config */
4240                 hc->io_mode = m->io_mode;
4241         switch (hc->io_mode) {
4242         case HFC_IO_MODE_PLXSD:
4243                 test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
4244                 hc->slots = 128; /* required */
4245                 /* fall through */
4246         case HFC_IO_MODE_PCIMEM:
4247                 hc->HFC_outb = HFC_outb_pcimem;
4248                 hc->HFC_inb = HFC_inb_pcimem;
4249                 hc->HFC_inw = HFC_inw_pcimem;
4250                 hc->HFC_wait = HFC_wait_pcimem;
4251                 hc->read_fifo = read_fifo_pcimem;
4252                 hc->write_fifo = write_fifo_pcimem;
4253                 break;
4254         case HFC_IO_MODE_REGIO:
4255                 hc->HFC_outb = HFC_outb_regio;
4256                 hc->HFC_inb = HFC_inb_regio;
4257                 hc->HFC_inw = HFC_inw_regio;
4258                 hc->HFC_wait = HFC_wait_regio;
4259                 hc->read_fifo = read_fifo_regio;
4260                 hc->write_fifo = write_fifo_regio;
4261                 break;
4262         default:
4263                 printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4264                 pci_disable_device(hc->pci_dev);
4265                 return -EIO;
4266         }
4267         hc->HFC_outb_nodebug = hc->HFC_outb;
4268         hc->HFC_inb_nodebug = hc->HFC_inb;
4269         hc->HFC_inw_nodebug = hc->HFC_inw;
4270         hc->HFC_wait_nodebug = hc->HFC_wait;
4271 #ifdef HFC_REGISTER_DEBUG
4272         hc->HFC_outb = HFC_outb_debug;
4273         hc->HFC_inb = HFC_inb_debug;
4274         hc->HFC_inw = HFC_inw_debug;
4275         hc->HFC_wait = HFC_wait_debug;
4276 #endif
4277         hc->pci_iobase = 0;
4278         hc->pci_membase = NULL;
4279         hc->plx_membase = NULL;
4280
4281         switch (hc->io_mode) {
4282         case HFC_IO_MODE_PLXSD:
4283                 hc->plx_origmembase =  hc->pci_dev->resource[0].start;
4284                 /* MEMBASE 1 is PLX PCI Bridge */
4285
4286                 if (!hc->plx_origmembase) {
4287                         printk(KERN_WARNING
4288                           "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4289                         pci_disable_device(hc->pci_dev);
4290                         return -EIO;
4291                 }
4292
4293                 hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
4294                 if (!hc->plx_membase) {
4295                         printk(KERN_WARNING
4296                             "HFC-multi: failed to remap plx address space. "
4297                             "(internal error)\n");
4298                         pci_disable_device(hc->pci_dev);
4299                         return -EIO;
4300                 }
4301                 printk(KERN_INFO
4302                     "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4303                     (u_long)hc->plx_membase, hc->plx_origmembase);
4304
4305                 hc->pci_origmembase =  hc->pci_dev->resource[2].start;
4306                     /* MEMBASE 1 is PLX PCI Bridge */
4307                 if (!hc->pci_origmembase) {
4308                         printk(KERN_WARNING
4309                             "HFC-multi: No IO-Memory for PCI card found\n");
4310                         pci_disable_device(hc->pci_dev);
4311                         return -EIO;
4312                 }
4313
4314                 hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
4315                 if (!hc->pci_membase) {
4316                         printk(KERN_WARNING "HFC-multi: failed to remap io "
4317                             "address space. (internal error)\n");
4318                         pci_disable_device(hc->pci_dev);
4319                         return -EIO;
4320                 }
4321
4322                 printk(KERN_INFO
4323                     "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4324                     "leds-type %d\n",
4325                     hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
4326                     hc->pci_dev->irq, HZ, hc->leds);
4327                 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4328                 break;
4329         case HFC_IO_MODE_PCIMEM:
4330                 hc->pci_origmembase = hc->pci_dev->resource[1].start;
4331                 if (!hc->pci_origmembase) {
4332                         printk(KERN_WARNING
4333                             "HFC-multi: No IO-Memory for PCI card found\n");
4334                         pci_disable_device(hc->pci_dev);
4335                         return -EIO;
4336                 }
4337
4338                 hc->pci_membase = ioremap(hc->pci_origmembase, 256);
4339                 if (!hc->pci_membase) {
4340                         printk(KERN_WARNING
4341                             "HFC-multi: failed to remap io address space. "
4342                             "(internal error)\n");
4343                         pci_disable_device(hc->pci_dev);
4344                         return -EIO;
4345                 }
4346                 printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d "
4347                     "HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
4348                     hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
4349                 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4350                 break;
4351         case HFC_IO_MODE_REGIO:
4352                 hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
4353                 if (!hc->pci_iobase) {
4354                         printk(KERN_WARNING
4355                                 "HFC-multi: No IO for PCI card found\n");
4356                         pci_disable_device(hc->pci_dev);
4357                         return -EIO;
4358                 }
4359
4360                 if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
4361                         printk(KERN_WARNING "HFC-multi: failed to request "
4362                             "address space at 0x%08lx (internal error)\n",
4363                             hc->pci_iobase);
4364                         pci_disable_device(hc->pci_dev);
4365                         return -EIO;
4366                 }
4367
4368                 printk(KERN_INFO
4369                     "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4370                     m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
4371                     hc->pci_dev->irq, HZ, hc->leds);
4372                 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
4373                 break;
4374         default:
4375                 printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4376                 pci_disable_device(hc->pci_dev);
4377                 return -EIO;
4378         }
4379
4380         pci_set_drvdata(hc->pci_dev, hc);
4381
4382         /* At this point the needed PCI config is done */
4383         /* fifos are still not enabled */
4384         return 0;
4385 }
4386
4387
4388 /*
4389  * remove port
4390  */
4391
4392 static void
4393 release_port(struct hfc_multi *hc, struct dchannel *dch)
4394 {
4395         int     pt, ci, i = 0;
4396         u_long  flags;
4397         struct bchannel *pb;
4398
4399         ci = dch->slot;
4400         pt = hc->chan[ci].port;
4401
4402         if (debug & DEBUG_HFCMULTI_INIT)
4403                 printk(KERN_DEBUG "%s: entered for port %d\n",
4404                         __func__, pt + 1);
4405
4406         if (pt >= hc->ports) {
4407                 printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
4408                      __func__, pt + 1);
4409                 return;
4410         }
4411
4412         if (debug & DEBUG_HFCMULTI_INIT)
4413                 printk(KERN_DEBUG "%s: releasing port=%d\n",
4414                     __func__, pt + 1);
4415
4416         if (dch->dev.D.protocol == ISDN_P_TE_S0)
4417                 l1_event(dch->l1, CLOSE_CHANNEL);
4418
4419         hc->chan[ci].dch = NULL;
4420
4421         if (hc->created[pt]) {
4422                 hc->created[pt] = 0;
4423                 mISDN_unregister_device(&dch->dev);
4424         }
4425
4426         spin_lock_irqsave(&hc->lock, flags);
4427
4428         if (dch->timer.function) {
4429                 del_timer(&dch->timer);
4430                 dch->timer.function = NULL;
4431         }
4432
4433         if (hc->type == 1) { /* E1 */
4434                 /* remove sync */
4435                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4436                         hc->syncronized = 0;
4437                         plxsd_checksync(hc, 1);
4438                 }
4439                 /* free channels */
4440                 for (i = 0; i <= 31; i++) {
4441                         if (hc->chan[i].bch) {
4442                                 if (debug & DEBUG_HFCMULTI_INIT)
4443                                         printk(KERN_DEBUG
4444                                             "%s: free port %d channel %d\n",
4445                                             __func__, hc->chan[i].port+1, i);
4446                                 pb = hc->chan[i].bch;
4447                                 hc->chan[i].bch = NULL;
4448                                 spin_unlock_irqrestore(&hc->lock, flags);
4449                                 mISDN_freebchannel(pb);
4450                                 kfree(pb);
4451                                 kfree(hc->chan[i].coeff);
4452                                 spin_lock_irqsave(&hc->lock, flags);
4453                         }
4454                 }
4455         } else {
4456                 /* remove sync */
4457                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4458                         hc->syncronized &=
4459                            ~(1 << hc->chan[ci].port);
4460                         plxsd_checksync(hc, 1);
4461                 }
4462                 /* free channels */
4463                 if (hc->chan[ci - 2].bch) {
4464                         if (debug & DEBUG_HFCMULTI_INIT)
4465                                 printk(KERN_DEBUG
4466                                     "%s: free port %d channel %d\n",
4467                                     __func__, hc->chan[ci - 2].port+1,
4468                                     ci - 2);
4469                         pb = hc->chan[ci - 2].bch;
4470                         hc->chan[ci - 2].bch = NULL;
4471                         spin_unlock_irqrestore(&hc->lock, flags);
4472                         mISDN_freebchannel(pb);
4473                         kfree(pb);
4474                         kfree(hc->chan[ci - 2].coeff);
4475                         spin_lock_irqsave(&hc->lock, flags);
4476                 }
4477                 if (hc->chan[ci - 1].bch) {
4478                         if (debug & DEBUG_HFCMULTI_INIT)
4479                                 printk(KERN_DEBUG
4480                                     "%s: free port %d channel %d\n",
4481                                     __func__, hc->chan[ci - 1].port+1,
4482                                     ci - 1);
4483                         pb = hc->chan[ci - 1].bch;
4484                         hc->chan[ci - 1].bch = NULL;
4485                         spin_unlock_irqrestore(&hc->lock, flags);
4486                         mISDN_freebchannel(pb);
4487                         kfree(pb);
4488                         kfree(hc->chan[ci - 1].coeff);
4489                         spin_lock_irqsave(&hc->lock, flags);
4490                 }
4491         }
4492
4493         spin_unlock_irqrestore(&hc->lock, flags);
4494
4495         if (debug & DEBUG_HFCMULTI_INIT)
4496                 printk(KERN_DEBUG "%s: free port %d channel D\n", __func__, pt);
4497         mISDN_freedchannel(dch);
4498         kfree(dch);
4499
4500         if (debug & DEBUG_HFCMULTI_INIT)
4501                 printk(KERN_DEBUG "%s: done!\n", __func__);
4502 }
4503
4504 static void
4505 release_card(struct hfc_multi *hc)
4506 {
4507         u_long  flags;
4508         int     ch;
4509
4510         if (debug & DEBUG_HFCMULTI_INIT)
4511                 printk(KERN_WARNING "%s: release card (%d) entered\n",
4512                     __func__, hc->id);
4513
4514         /* unregister clock source */
4515         if (hc->iclock)
4516                 mISDN_unregister_clock(hc->iclock);
4517
4518         /* disable irq */
4519         spin_lock_irqsave(&hc->lock, flags);
4520         disable_hwirq(hc);
4521         spin_unlock_irqrestore(&hc->lock, flags);
4522         udelay(1000);
4523
4524         /* dimm leds */
4525         if (hc->leds)
4526                 hfcmulti_leds(hc);
4527
4528         /* disable D-channels & B-channels */
4529         if (debug & DEBUG_HFCMULTI_INIT)
4530                 printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
4531                     __func__);
4532         for (ch = 0; ch <= 31; ch++) {
4533                 if (hc->chan[ch].dch)
4534                         release_port(hc, hc->chan[ch].dch);
4535         }
4536
4537         /* release hardware & irq */
4538         if (hc->irq) {
4539                 if (debug & DEBUG_HFCMULTI_INIT)
4540                         printk(KERN_WARNING "%s: free irq %d\n",
4541                             __func__, hc->irq);
4542                 free_irq(hc->irq, hc);
4543                 hc->irq = 0;
4544
4545         }
4546         release_io_hfcmulti(hc);
4547
4548         if (debug & DEBUG_HFCMULTI_INIT)
4549                 printk(KERN_WARNING "%s: remove instance from list\n",
4550                      __func__);
4551         list_del(&hc->list);
4552
4553         if (debug & DEBUG_HFCMULTI_INIT)
4554                 printk(KERN_WARNING "%s: delete instance\n", __func__);
4555         if (hc == syncmaster)
4556                 syncmaster = NULL;
4557         kfree(hc);
4558         if (debug & DEBUG_HFCMULTI_INIT)
4559                 printk(KERN_WARNING "%s: card successfully removed\n",
4560                     __func__);
4561 }
4562
4563 static int
4564 init_e1_port(struct hfc_multi *hc, struct hm_map *m)
4565 {
4566         struct dchannel *dch;
4567         struct bchannel *bch;
4568         int             ch, ret = 0;
4569         char            name[MISDN_MAX_IDLEN];
4570
4571         dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4572         if (!dch)
4573                 return -ENOMEM;
4574         dch->debug = debug;
4575         mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4576         dch->hw = hc;
4577         dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
4578         dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4579             (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4580         dch->dev.D.send = handle_dmsg;
4581         dch->dev.D.ctrl = hfcm_dctrl;
4582         dch->dev.nrbchan = (hc->dslot)?30:31;
4583         dch->slot = hc->dslot;
4584         hc->chan[hc->dslot].dch = dch;
4585         hc->chan[hc->dslot].port = 0;
4586         hc->chan[hc->dslot].nt_timer = -1;
4587         for (ch = 1; ch <= 31; ch++) {
4588                 if (ch == hc->dslot) /* skip dchannel */
4589                         continue;
4590                 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4591                 if (!bch) {
4592                         printk(KERN_ERR "%s: no memory for bchannel\n",
4593                             __func__);
4594                         ret = -ENOMEM;
4595                         goto free_chan;
4596                 }
4597                 hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
4598                 if (!hc->chan[ch].coeff) {
4599                         printk(KERN_ERR "%s: no memory for coeffs\n",
4600                             __func__);
4601                         ret = -ENOMEM;
4602                         kfree(bch);
4603                         goto free_chan;
4604                 }
4605                 bch->nr = ch;
4606                 bch->slot = ch;
4607                 bch->debug = debug;
4608                 mISDN_initbchannel(bch, MAX_DATA_MEM);
4609                 bch->hw = hc;
4610                 bch->ch.send = handle_bmsg;
4611                 bch->ch.ctrl = hfcm_bctrl;
4612                 bch->ch.nr = ch;
4613                 list_add(&bch->ch.list, &dch->dev.bchannels);
4614                 hc->chan[ch].bch = bch;
4615                 hc->chan[ch].port = 0;
4616                 set_channelmap(bch->nr, dch->dev.channelmap);
4617         }
4618         /* set optical line type */
4619         if (port[Port_cnt] & 0x001) {
4620                 if (!m->opticalsupport)  {
4621                         printk(KERN_INFO
4622                             "This board has no optical "
4623                             "support\n");
4624                 } else {
4625                         if (debug & DEBUG_HFCMULTI_INIT)
4626                                 printk(KERN_DEBUG
4627                                     "%s: PORT set optical "
4628                                     "interfacs: card(%d) "
4629                                     "port(%d)\n",
4630                                     __func__,
4631                                     HFC_cnt + 1, 1);
4632                         test_and_set_bit(HFC_CFG_OPTICAL,
4633                             &hc->chan[hc->dslot].cfg);
4634                 }
4635         }
4636         /* set LOS report */
4637         if (port[Port_cnt] & 0x004) {
4638                 if (debug & DEBUG_HFCMULTI_INIT)
4639                         printk(KERN_DEBUG "%s: PORT set "
4640                             "LOS report: card(%d) port(%d)\n",
4641                             __func__, HFC_cnt + 1, 1);
4642                 test_and_set_bit(HFC_CFG_REPORT_LOS,
4643                     &hc->chan[hc->dslot].cfg);
4644         }
4645         /* set AIS report */
4646         if (port[Port_cnt] & 0x008) {
4647                 if (debug & DEBUG_HFCMULTI_INIT)
4648                         printk(KERN_DEBUG "%s: PORT set "
4649                             "AIS report: card(%d) port(%d)\n",
4650                             __func__, HFC_cnt + 1, 1);
4651                 test_and_set_bit(HFC_CFG_REPORT_AIS,
4652                     &hc->chan[hc->dslot].cfg);
4653         }
4654         /* set SLIP report */
4655         if (port[Port_cnt] & 0x010) {
4656                 if (debug & DEBUG_HFCMULTI_INIT)
4657                         printk(KERN_DEBUG
4658                             "%s: PORT set SLIP report: "
4659                             "card(%d) port(%d)\n",
4660                             __func__, HFC_cnt + 1, 1);
4661                 test_and_set_bit(HFC_CFG_REPORT_SLIP,
4662                     &hc->chan[hc->dslot].cfg);
4663         }
4664         /* set RDI report */
4665         if (port[Port_cnt] & 0x020) {
4666                 if (debug & DEBUG_HFCMULTI_INIT)
4667                         printk(KERN_DEBUG
4668                             "%s: PORT set RDI report: "
4669                             "card(%d) port(%d)\n",
4670                             __func__, HFC_cnt + 1, 1);
4671                 test_and_set_bit(HFC_CFG_REPORT_RDI,
4672                     &hc->chan[hc->dslot].cfg);
4673         }
4674         /* set CRC-4 Mode */
4675         if (!(port[Port_cnt] & 0x100)) {
4676                 if (debug & DEBUG_HFCMULTI_INIT)
4677                         printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
4678                                 " card(%d) port(%d)\n",
4679                                 __func__, HFC_cnt + 1, 1);
4680                 test_and_set_bit(HFC_CFG_CRC4,
4681                     &hc->chan[hc->dslot].cfg);
4682         } else {
4683                 if (debug & DEBUG_HFCMULTI_INIT)
4684                         printk(KERN_DEBUG "%s: PORT turn off CRC4"
4685                                 " report: card(%d) port(%d)\n",
4686                                 __func__, HFC_cnt + 1, 1);
4687         }
4688         /* set forced clock */
4689         if (port[Port_cnt] & 0x0200) {
4690                 if (debug & DEBUG_HFCMULTI_INIT)
4691                         printk(KERN_DEBUG "%s: PORT force getting clock from "
4692                                 "E1: card(%d) port(%d)\n",
4693                                 __func__, HFC_cnt + 1, 1);
4694                 test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
4695         } else
4696         if (port[Port_cnt] & 0x0400) {
4697                 if (debug & DEBUG_HFCMULTI_INIT)
4698                         printk(KERN_DEBUG "%s: PORT force putting clock to "
4699                                 "E1: card(%d) port(%d)\n",
4700                                 __func__, HFC_cnt + 1, 1);
4701                 test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
4702         }
4703         /* set JATT PLL */
4704         if (port[Port_cnt] & 0x0800) {
4705                 if (debug & DEBUG_HFCMULTI_INIT)
4706                         printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
4707                                 "E1: card(%d) port(%d)\n",
4708                                 __func__, HFC_cnt + 1, 1);
4709                 test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
4710         }
4711         /* set elastic jitter buffer */
4712         if (port[Port_cnt] & 0x3000) {
4713                 hc->chan[hc->dslot].jitter = (port[Port_cnt]>>12) & 0x3;
4714                 if (debug & DEBUG_HFCMULTI_INIT)
4715                         printk(KERN_DEBUG
4716                             "%s: PORT set elastic "
4717                             "buffer to %d: card(%d) port(%d)\n",
4718                             __func__, hc->chan[hc->dslot].jitter,
4719                             HFC_cnt + 1, 1);
4720         } else
4721                 hc->chan[hc->dslot].jitter = 2; /* default */
4722         snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
4723         ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4724         if (ret)
4725                 goto free_chan;
4726         hc->created[0] = 1;
4727         return ret;
4728 free_chan:
4729         release_port(hc, dch);
4730         return ret;
4731 }
4732
4733 static int
4734 init_multi_port(struct hfc_multi *hc, int pt)
4735 {
4736         struct dchannel *dch;
4737         struct bchannel *bch;
4738         int             ch, i, ret = 0;
4739         char            name[MISDN_MAX_IDLEN];
4740
4741         dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4742         if (!dch)
4743                 return -ENOMEM;
4744         dch->debug = debug;
4745         mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4746         dch->hw = hc;
4747         dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
4748         dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4749             (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4750         dch->dev.D.send = handle_dmsg;
4751         dch->dev.D.ctrl = hfcm_dctrl;
4752         dch->dev.nrbchan = 2;
4753         i = pt << 2;
4754         dch->slot = i + 2;
4755         hc->chan[i + 2].dch = dch;
4756         hc->chan[i + 2].port = pt;
4757         hc->chan[i + 2].nt_timer = -1;
4758         for (ch = 0; ch < dch->dev.nrbchan; ch++) {
4759                 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4760                 if (!bch) {
4761                         printk(KERN_ERR "%s: no memory for bchannel\n",
4762                             __func__);
4763                         ret = -ENOMEM;
4764                         goto free_chan;
4765                 }
4766                 hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
4767                 if (!hc->chan[i + ch].coeff) {
4768                         printk(KERN_ERR "%s: no memory for coeffs\n",
4769                             __func__);
4770                         ret = -ENOMEM;
4771                         kfree(bch);
4772                         goto free_chan;
4773                 }
4774                 bch->nr = ch + 1;
4775                 bch->slot = i + ch;
4776                 bch->debug = debug;
4777                 mISDN_initbchannel(bch, MAX_DATA_MEM);
4778                 bch->hw = hc;
4779                 bch->ch.send = handle_bmsg;
4780                 bch->ch.ctrl = hfcm_bctrl;
4781                 bch->ch.nr = ch + 1;
4782                 list_add(&bch->ch.list, &dch->dev.bchannels);
4783                 hc->chan[i + ch].bch = bch;
4784                 hc->chan[i + ch].port = pt;
4785                 set_channelmap(bch->nr, dch->dev.channelmap);
4786         }
4787         /* set master clock */
4788         if (port[Port_cnt] & 0x001) {
4789                 if (debug & DEBUG_HFCMULTI_INIT)
4790                         printk(KERN_DEBUG
4791                             "%s: PROTOCOL set master clock: "
4792                             "card(%d) port(%d)\n",
4793                             __func__, HFC_cnt + 1, pt + 1);
4794                 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
4795                         printk(KERN_ERR "Error: Master clock "
4796                             "for port(%d) of card(%d) is only"
4797                             " possible with TE-mode\n",
4798                             pt + 1, HFC_cnt + 1);
4799                         ret = -EINVAL;
4800                         goto free_chan;
4801                 }
4802                 if (hc->masterclk >= 0) {
4803                         printk(KERN_ERR "Error: Master clock "
4804                             "for port(%d) of card(%d) already "
4805                             "defined for port(%d)\n",
4806                             pt + 1, HFC_cnt + 1, hc->masterclk+1);
4807                         ret = -EINVAL;
4808                         goto free_chan;
4809                 }
4810                 hc->masterclk = pt;
4811         }
4812         /* set transmitter line to non capacitive */
4813         if (port[Port_cnt] & 0x002) {
4814                 if (debug & DEBUG_HFCMULTI_INIT)
4815                         printk(KERN_DEBUG
4816                             "%s: PROTOCOL set non capacitive "
4817                             "transmitter: card(%d) port(%d)\n",
4818                             __func__, HFC_cnt + 1, pt + 1);
4819                 test_and_set_bit(HFC_CFG_NONCAP_TX,
4820                     &hc->chan[i + 2].cfg);
4821         }
4822         /* disable E-channel */
4823         if (port[Port_cnt] & 0x004) {
4824         if (debug & DEBUG_HFCMULTI_INIT)
4825                         printk(KERN_DEBUG
4826                             "%s: PROTOCOL disable E-channel: "
4827                             "card(%d) port(%d)\n",
4828                             __func__, HFC_cnt + 1, pt + 1);
4829                 test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
4830                     &hc->chan[i + 2].cfg);
4831         }
4832         snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d",
4833                 hc->type, HFC_cnt + 1, pt + 1);
4834         ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4835         if (ret)
4836                 goto free_chan;
4837         hc->created[pt] = 1;
4838         return ret;
4839 free_chan:
4840         release_port(hc, dch);
4841         return ret;
4842 }
4843
4844 static int
4845 hfcmulti_init(struct pci_dev *pdev, const struct pci_device_id *ent)
4846 {
4847         struct hm_map   *m = (struct hm_map *)ent->driver_data;
4848         int             ret_err = 0;
4849         int             pt;
4850         struct hfc_multi        *hc;
4851         u_long          flags;
4852         u_char          dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
4853         int             i;
4854
4855         if (HFC_cnt >= MAX_CARDS) {
4856                 printk(KERN_ERR "too many cards (max=%d).\n",
4857                         MAX_CARDS);
4858                 return -EINVAL;
4859         }
4860         if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
4861                 printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
4862                     "type[%d] %d was supplied as module parameter\n",
4863                     m->vendor_name, m->card_name, m->type, HFC_cnt,
4864                     type[HFC_cnt] & 0xff);
4865                 printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
4866                         "first, to see cards and their types.");
4867                 return -EINVAL;
4868         }
4869         if (debug & DEBUG_HFCMULTI_INIT)
4870                 printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
4871                     __func__, m->vendor_name, m->card_name, m->type,
4872                     type[HFC_cnt]);
4873
4874         /* allocate card+fifo structure */
4875         hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
4876         if (!hc) {
4877                 printk(KERN_ERR "No kmem for HFC-Multi card\n");
4878                 return -ENOMEM;
4879         }
4880         spin_lock_init(&hc->lock);
4881         hc->mtyp = m;
4882         hc->type =  m->type;
4883         hc->ports = m->ports;
4884         hc->id = HFC_cnt;
4885         hc->pcm = pcm[HFC_cnt];
4886         hc->io_mode = iomode[HFC_cnt];
4887         if (dslot[HFC_cnt] < 0 && hc->type == 1) {
4888                 hc->dslot = 0;
4889                 printk(KERN_INFO "HFC-E1 card has disabled D-channel, but "
4890                         "31 B-channels\n");
4891         } if (dslot[HFC_cnt] > 0 && dslot[HFC_cnt] < 32 && hc->type == 1) {
4892                 hc->dslot = dslot[HFC_cnt];
4893                 printk(KERN_INFO "HFC-E1 card has alternating D-channel on "
4894                         "time slot %d\n", dslot[HFC_cnt]);
4895         } else
4896                 hc->dslot = 16;
4897
4898         /* set chip specific features */
4899         hc->masterclk = -1;
4900         if (type[HFC_cnt] & 0x100) {
4901                 test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
4902                 hc->silence = 0xff; /* ulaw silence */
4903         } else
4904                 hc->silence = 0x2a; /* alaw silence */
4905         if ((poll >> 1) > sizeof(hc->silence_data)) {
4906                 printk(KERN_ERR "HFCMULTI error: silence_data too small, "
4907                         "please fix\n");
4908                 return -EINVAL;
4909         }
4910         for (i = 0; i < (poll >> 1); i++)
4911                 hc->silence_data[i] = hc->silence;
4912
4913         if (!(type[HFC_cnt] & 0x200))
4914                 test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
4915
4916         if (type[HFC_cnt] & 0x800)
4917                 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4918         if (type[HFC_cnt] & 0x1000) {
4919                 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4920                 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4921         }
4922         if (type[HFC_cnt] & 0x4000)
4923                 test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
4924         if (type[HFC_cnt] & 0x8000)
4925                 test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
4926         hc->slots = 32;
4927         if (type[HFC_cnt] & 0x10000)
4928                 hc->slots = 64;
4929         if (type[HFC_cnt] & 0x20000)
4930                 hc->slots = 128;
4931         if (type[HFC_cnt] & 0x80000) {
4932                 test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
4933                 hc->wdcount = 0;
4934                 hc->wdbyte = V_GPIO_OUT2;
4935                 printk(KERN_NOTICE "Watchdog enabled\n");
4936         }
4937
4938         /* setup pci, hc->slots may change due to PLXSD */
4939         ret_err = setup_pci(hc, pdev, ent);
4940         if (ret_err) {
4941                 if (hc == syncmaster)
4942                         syncmaster = NULL;
4943                 kfree(hc);
4944                 return ret_err;
4945         }
4946
4947         /* crate channels */
4948         for (pt = 0; pt < hc->ports; pt++) {
4949                 if (Port_cnt >= MAX_PORTS) {
4950                         printk(KERN_ERR "too many ports (max=%d).\n",
4951                                 MAX_PORTS);
4952                         ret_err = -EINVAL;
4953                         goto free_card;
4954                 }
4955                 if (hc->type == 1)
4956                         ret_err = init_e1_port(hc, m);
4957                 else
4958                         ret_err = init_multi_port(hc, pt);
4959                 if (debug & DEBUG_HFCMULTI_INIT)
4960                         printk(KERN_DEBUG
4961                             "%s: Registering D-channel, card(%d) port(%d)"
4962                             "result %d\n",
4963                             __func__, HFC_cnt + 1, pt, ret_err);
4964
4965                 if (ret_err) {
4966                         while (pt) { /* release already registered ports */
4967                                 pt--;
4968                                 release_port(hc, hc->chan[(pt << 2) + 2].dch);
4969                         }
4970                         goto free_card;
4971                 }
4972                 Port_cnt++;
4973         }
4974
4975         /* disp switches */
4976         switch (m->dip_type) {
4977         case DIP_4S:
4978                 /*
4979                  * Get DIP setting for beroNet 1S/2S/4S cards
4980                  * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
4981                  * GPI 19/23 (R_GPI_IN2))
4982                  */
4983                 dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
4984                         ((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
4985                         (~HFC_inb(hc, R_GPI_IN2) & 0x08);
4986
4987                 /* Port mode (TE/NT) jumpers */
4988                 pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4)  & 0xf);
4989
4990                 if (test_bit(HFC_CHIP_B410P, &hc->chip))
4991                         pmj = ~pmj & 0xf;
4992
4993                 printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
4994                         m->vendor_name, m->card_name, dips, pmj);
4995                 break;
4996         case DIP_8S:
4997                 /*
4998                  * Get DIP Setting for beroNet 8S0+ cards
4999                  * Enable PCI auxbridge function
5000                  */
5001                 HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
5002                 /* prepare access to auxport */
5003                 outw(0x4000, hc->pci_iobase + 4);
5004                 /*
5005                  * some dummy reads are required to
5006                  * read valid DIP switch data
5007                  */
5008                 dips = inb(hc->pci_iobase);
5009                 dips = inb(hc->pci_iobase);
5010                 dips = inb(hc->pci_iobase);
5011                 dips = ~inb(hc->pci_iobase) & 0x3F;
5012                 outw(0x0, hc->pci_iobase + 4);
5013                 /* disable PCI auxbridge function */
5014                 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
5015                 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5016                     m->vendor_name, m->card_name, dips);
5017                 break;
5018         case DIP_E1:
5019                 /*
5020                  * get DIP Setting for beroNet E1 cards
5021                  * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
5022                  */
5023                 dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0)>>4;
5024                 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5025                     m->vendor_name, m->card_name, dips);
5026                 break;
5027         }
5028
5029         /* add to list */
5030         spin_lock_irqsave(&HFClock, flags);
5031         list_add_tail(&hc->list, &HFClist);
5032         spin_unlock_irqrestore(&HFClock, flags);
5033
5034         /* use as clock source */
5035         if (clock == HFC_cnt + 1)
5036                 hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc);
5037
5038         /* initialize hardware */
5039         ret_err = init_card(hc);
5040         if (ret_err) {
5041                 printk(KERN_ERR "init card returns %d\n", ret_err);
5042                 release_card(hc);
5043                 return ret_err;
5044         }
5045
5046         /* start IRQ and return */
5047         spin_lock_irqsave(&hc->lock, flags);
5048         enable_hwirq(hc);
5049         spin_unlock_irqrestore(&hc->lock, flags);
5050         return 0;
5051
5052 free_card:
5053         release_io_hfcmulti(hc);
5054         if (hc == syncmaster)
5055                 syncmaster = NULL;
5056         kfree(hc);
5057         return ret_err;
5058 }
5059
5060 static void __devexit hfc_remove_pci(struct pci_dev *pdev)
5061 {
5062         struct hfc_multi        *card = pci_get_drvdata(pdev);
5063         u_long                  flags;
5064
5065         if (debug)
5066                 printk(KERN_INFO "removing hfc_multi card vendor:%x "
5067                     "device:%x subvendor:%x subdevice:%x\n",
5068                     pdev->vendor, pdev->device,
5069                     pdev->subsystem_vendor, pdev->subsystem_device);
5070
5071         if (card) {
5072                 spin_lock_irqsave(&HFClock, flags);
5073                 release_card(card);
5074                 spin_unlock_irqrestore(&HFClock, flags);
5075         }  else {
5076                 if (debug)
5077                         printk(KERN_WARNING "%s: drvdata allready removed\n",
5078                             __func__);
5079         }
5080 }
5081
5082 #define VENDOR_CCD      "Cologne Chip AG"
5083 #define VENDOR_BN       "beroNet GmbH"
5084 #define VENDOR_DIG      "Digium Inc."
5085 #define VENDOR_JH       "Junghanns.NET GmbH"
5086 #define VENDOR_PRIM     "PrimuX"
5087
5088 static const struct hm_map hfcm_map[] = {
5089 /*0*/   {VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0},
5090 /*1*/   {VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0},
5091 /*2*/   {VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0},
5092 /*3*/   {VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0},
5093 /*4*/   {VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0},
5094 /*5*/   {VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0},
5095 /*6*/   {VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0},
5096 /*7*/   {VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0},
5097 /*8*/   {VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO},
5098 /*9*/   {VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0},
5099 /*10*/  {VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0},
5100 /*11*/  {VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0},
5101
5102 /*12*/  {VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0},
5103 /*13*/  {VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
5104                 HFC_IO_MODE_REGIO},
5105 /*14*/  {VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0},
5106 /*15*/  {VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0},
5107
5108 /*16*/  {VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0},
5109 /*17*/  {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0},
5110 /*18*/  {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0},
5111
5112 /*19*/  {VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0},
5113 /*20*/  {VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0},
5114 /*21*/  {VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0},
5115 /*22*/  {VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0},
5116
5117 /*23*/  {VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0},
5118 /*24*/  {VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0},
5119 /*25*/  {VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0},
5120
5121 /*26*/  {VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5122                 HFC_IO_MODE_PLXSD},
5123 /*27*/  {VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5124                 HFC_IO_MODE_PLXSD},
5125 /*28*/  {VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0},
5126 /*29*/  {VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0},
5127 /*30*/  {VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0},
5128 };
5129
5130 #undef H
5131 #define H(x)    ((unsigned long)&hfcm_map[x])
5132 static struct pci_device_id hfmultipci_ids[] __devinitdata = {
5133
5134         /* Cards with HFC-4S Chip */
5135         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5136                 PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
5137         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5138                 PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
5139         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5140                 PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
5141         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5142                 PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
5143         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5144                 PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
5145         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5146                 PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
5147         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5148                 PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
5149         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5150                 PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
5151         { PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
5152                 PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
5153         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5154                 PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
5155         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5156                 PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
5157         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5158                 PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
5159         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5160                 PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
5161         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5162                 PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */
5163
5164         /* Cards with HFC-8S Chip */
5165         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5166         PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
5167         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5168         PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
5169         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5170         PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
5171         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5172         PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */
5173         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5174                 PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST  */
5175         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5176                 PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST  */
5177         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5178                 PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
5179         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5180                 PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */
5181
5182
5183         /* Cards with HFC-E1 Chip */
5184         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5185                 PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
5186         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5187                 PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
5188         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5189                 PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
5190         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5191                 PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */
5192
5193         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5194                 PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
5195         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5196                 PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
5197         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5198                 PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */
5199
5200         { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5201                 PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
5202         { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5203                 PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
5204         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_ANY_ID, PCI_ANY_ID,
5205                 0, 0, 0},
5206         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_ANY_ID, PCI_ANY_ID,
5207                 0, 0, 0},
5208         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_ANY_ID, PCI_ANY_ID,
5209                 0, 0, 0},
5210         {0, }
5211 };
5212 #undef H
5213
5214 MODULE_DEVICE_TABLE(pci, hfmultipci_ids);
5215
5216 static int
5217 hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5218 {
5219         struct hm_map   *m = (struct hm_map *)ent->driver_data;
5220         int             ret;
5221
5222         if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && (
5223             ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
5224             ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
5225             ent->device == PCI_DEVICE_ID_CCD_HFCE1)) {
5226                 printk(KERN_ERR
5227                     "Unknown HFC multiport controller (vendor:%x device:%x "
5228                     "subvendor:%x subdevice:%x)\n", ent->vendor, ent->device,
5229                     ent->subvendor, ent->subdevice);
5230                 printk(KERN_ERR
5231                     "Please contact the driver maintainer for support.\n");
5232                 return -ENODEV;
5233         }
5234         ret = hfcmulti_init(pdev, ent);
5235         if (ret)
5236                 return ret;
5237         HFC_cnt++;
5238         printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5239         return 0;
5240 }
5241
5242 static struct pci_driver hfcmultipci_driver = {
5243         .name           = "hfc_multi",
5244         .probe          = hfcmulti_probe,
5245         .remove         = __devexit_p(hfc_remove_pci),
5246         .id_table       = hfmultipci_ids,
5247 };
5248
5249 static void __exit
5250 HFCmulti_cleanup(void)
5251 {
5252         struct hfc_multi *card, *next;
5253
5254         /* get rid of all devices of this driver */
5255         list_for_each_entry_safe(card, next, &HFClist, list)
5256                 release_card(card);
5257         pci_unregister_driver(&hfcmultipci_driver);
5258 }
5259
5260 static int __init
5261 HFCmulti_init(void)
5262 {
5263         int err;
5264
5265         printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION);
5266
5267 #ifdef IRQ_DEBUG
5268         printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
5269 #endif
5270
5271         spin_lock_init(&HFClock);
5272         spin_lock_init(&plx_lock);
5273
5274         if (debug & DEBUG_HFCMULTI_INIT)
5275                 printk(KERN_DEBUG "%s: init entered\n", __func__);
5276
5277         switch (poll) {
5278         case 0:
5279                 poll_timer = 6;
5280                 poll = 128;
5281                 break;
5282         case 8:
5283                 poll_timer = 2;
5284                 break;
5285         case 16:
5286                 poll_timer = 3;
5287                 break;
5288         case 32:
5289                 poll_timer = 4;
5290                 break;
5291         case 64:
5292                 poll_timer = 5;
5293                 break;
5294         case 128:
5295                 poll_timer = 6;
5296                 break;
5297         case 256:
5298                 poll_timer = 7;
5299                 break;
5300         default:
5301                 printk(KERN_ERR
5302                     "%s: Wrong poll value (%d).\n", __func__, poll);
5303                 err = -EINVAL;
5304                 return err;
5305
5306         }
5307
5308         if (!clock)
5309                 clock = 1;
5310
5311         err = pci_register_driver(&hfcmultipci_driver);
5312         if (err < 0) {
5313                 printk(KERN_ERR "error registering pci driver: %x\n", err);
5314                 return err;
5315         }
5316         return 0;
5317 }
5318
5319
5320 module_init(HFCmulti_init);
5321 module_exit(HFCmulti_cleanup);