Linux 6.9-rc4
[sfrench/cifs-2.6.git] / drivers / irqchip / irq-gic-v3-its.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/iommu.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING           (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375       (1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144       (1ULL << 2)
45 #define ITS_FLAGS_FORCE_NON_SHAREABLE           (1ULL << 3)
46
47 #define RD_LOCAL_LPI_ENABLED                    BIT(0)
48 #define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
49 #define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
50
51 static u32 lpi_id_bits;
52
53 /*
54  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
55  * deal with (one configuration byte per interrupt). PENDBASE has to
56  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
57  */
58 #define LPI_NRBITS              lpi_id_bits
59 #define LPI_PROPBASE_SZ         ALIGN(BIT(LPI_NRBITS), SZ_64K)
60 #define LPI_PENDBASE_SZ         ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
61
62 #define LPI_PROP_DEFAULT_PRIO   GICD_INT_DEF_PRI
63
64 /*
65  * Collection structure - just an ID, and a redistributor address to
66  * ping. We use one per CPU as a bag of interrupts assigned to this
67  * CPU.
68  */
69 struct its_collection {
70         u64                     target_address;
71         u16                     col_id;
72 };
73
74 /*
75  * The ITS_BASER structure - contains memory information, cached
76  * value of BASER register configuration and ITS page size.
77  */
78 struct its_baser {
79         void            *base;
80         u64             val;
81         u32             order;
82         u32             psz;
83 };
84
85 struct its_device;
86
87 /*
88  * The ITS structure - contains most of the infrastructure, with the
89  * top-level MSI domain, the command queue, the collections, and the
90  * list of devices writing to it.
91  *
92  * dev_alloc_lock has to be taken for device allocations, while the
93  * spinlock must be taken to parse data structures such as the device
94  * list.
95  */
96 struct its_node {
97         raw_spinlock_t          lock;
98         struct mutex            dev_alloc_lock;
99         struct list_head        entry;
100         void __iomem            *base;
101         void __iomem            *sgir_base;
102         phys_addr_t             phys_base;
103         struct its_cmd_block    *cmd_base;
104         struct its_cmd_block    *cmd_write;
105         struct its_baser        tables[GITS_BASER_NR_REGS];
106         struct its_collection   *collections;
107         struct fwnode_handle    *fwnode_handle;
108         u64                     (*get_msi_base)(struct its_device *its_dev);
109         u64                     typer;
110         u64                     cbaser_save;
111         u32                     ctlr_save;
112         u32                     mpidr;
113         struct list_head        its_device_list;
114         u64                     flags;
115         unsigned long           list_nr;
116         int                     numa_node;
117         unsigned int            msi_domain_flags;
118         u32                     pre_its_base; /* for Socionext Synquacer */
119         int                     vlpi_redist_offset;
120 };
121
122 #define is_v4(its)              (!!((its)->typer & GITS_TYPER_VLPIS))
123 #define is_v4_1(its)            (!!((its)->typer & GITS_TYPER_VMAPP))
124 #define device_ids(its)         (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
125
126 #define ITS_ITT_ALIGN           SZ_256
127
128 /* The maximum number of VPEID bits supported by VLPI commands */
129 #define ITS_MAX_VPEID_BITS                                              \
130         ({                                                              \
131                 int nvpeid = 16;                                        \
132                 if (gic_rdists->has_rvpeid &&                           \
133                     gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)          \
134                         nvpeid = 1 + (gic_rdists->gicd_typer2 &         \
135                                       GICD_TYPER2_VID);                 \
136                                                                         \
137                 nvpeid;                                                 \
138         })
139 #define ITS_MAX_VPEID           (1 << (ITS_MAX_VPEID_BITS))
140
141 /* Convert page order to size in bytes */
142 #define PAGE_ORDER_TO_SIZE(o)   (PAGE_SIZE << (o))
143
144 struct event_lpi_map {
145         unsigned long           *lpi_map;
146         u16                     *col_map;
147         irq_hw_number_t         lpi_base;
148         int                     nr_lpis;
149         raw_spinlock_t          vlpi_lock;
150         struct its_vm           *vm;
151         struct its_vlpi_map     *vlpi_maps;
152         int                     nr_vlpis;
153 };
154
155 /*
156  * The ITS view of a device - belongs to an ITS, owns an interrupt
157  * translation table, and a list of interrupts.  If it some of its
158  * LPIs are injected into a guest (GICv4), the event_map.vm field
159  * indicates which one.
160  */
161 struct its_device {
162         struct list_head        entry;
163         struct its_node         *its;
164         struct event_lpi_map    event_map;
165         void                    *itt;
166         u32                     nr_ites;
167         u32                     device_id;
168         bool                    shared;
169 };
170
171 static struct {
172         raw_spinlock_t          lock;
173         struct its_device       *dev;
174         struct its_vpe          **vpes;
175         int                     next_victim;
176 } vpe_proxy;
177
178 struct cpu_lpi_count {
179         atomic_t        managed;
180         atomic_t        unmanaged;
181 };
182
183 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
184
185 static LIST_HEAD(its_nodes);
186 static DEFINE_RAW_SPINLOCK(its_lock);
187 static struct rdists *gic_rdists;
188 static struct irq_domain *its_parent;
189
190 static unsigned long its_list_map;
191 static u16 vmovp_seq_num;
192 static DEFINE_RAW_SPINLOCK(vmovp_lock);
193
194 static DEFINE_IDA(its_vpeid_ida);
195
196 #define gic_data_rdist()                (raw_cpu_ptr(gic_rdists->rdist))
197 #define gic_data_rdist_cpu(cpu)         (per_cpu_ptr(gic_rdists->rdist, cpu))
198 #define gic_data_rdist_rd_base()        (gic_data_rdist()->rd_base)
199 #define gic_data_rdist_vlpi_base()      (gic_data_rdist_rd_base() + SZ_128K)
200
201 /*
202  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
203  * always have vSGIs mapped.
204  */
205 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
206 {
207         return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
208 }
209
210 static bool rdists_support_shareable(void)
211 {
212         return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE);
213 }
214
215 static u16 get_its_list(struct its_vm *vm)
216 {
217         struct its_node *its;
218         unsigned long its_list = 0;
219
220         list_for_each_entry(its, &its_nodes, entry) {
221                 if (!is_v4(its))
222                         continue;
223
224                 if (require_its_list_vmovp(vm, its))
225                         __set_bit(its->list_nr, &its_list);
226         }
227
228         return (u16)its_list;
229 }
230
231 static inline u32 its_get_event_id(struct irq_data *d)
232 {
233         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
234         return d->hwirq - its_dev->event_map.lpi_base;
235 }
236
237 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
238                                                u32 event)
239 {
240         struct its_node *its = its_dev->its;
241
242         return its->collections + its_dev->event_map.col_map[event];
243 }
244
245 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
246                                                u32 event)
247 {
248         if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
249                 return NULL;
250
251         return &its_dev->event_map.vlpi_maps[event];
252 }
253
254 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
255 {
256         if (irqd_is_forwarded_to_vcpu(d)) {
257                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
258                 u32 event = its_get_event_id(d);
259
260                 return dev_event_to_vlpi_map(its_dev, event);
261         }
262
263         return NULL;
264 }
265
266 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
267 {
268         raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
269         return vpe->col_idx;
270 }
271
272 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
273 {
274         raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
275 }
276
277 static struct irq_chip its_vpe_irq_chip;
278
279 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
280 {
281         struct its_vpe *vpe = NULL;
282         int cpu;
283
284         if (d->chip == &its_vpe_irq_chip) {
285                 vpe = irq_data_get_irq_chip_data(d);
286         } else {
287                 struct its_vlpi_map *map = get_vlpi_map(d);
288                 if (map)
289                         vpe = map->vpe;
290         }
291
292         if (vpe) {
293                 cpu = vpe_to_cpuid_lock(vpe, flags);
294         } else {
295                 /* Physical LPIs are already locked via the irq_desc lock */
296                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
297                 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
298                 /* Keep GCC quiet... */
299                 *flags = 0;
300         }
301
302         return cpu;
303 }
304
305 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
306 {
307         struct its_vpe *vpe = NULL;
308
309         if (d->chip == &its_vpe_irq_chip) {
310                 vpe = irq_data_get_irq_chip_data(d);
311         } else {
312                 struct its_vlpi_map *map = get_vlpi_map(d);
313                 if (map)
314                         vpe = map->vpe;
315         }
316
317         if (vpe)
318                 vpe_to_cpuid_unlock(vpe, flags);
319 }
320
321 static struct its_collection *valid_col(struct its_collection *col)
322 {
323         if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
324                 return NULL;
325
326         return col;
327 }
328
329 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
330 {
331         if (valid_col(its->collections + vpe->col_idx))
332                 return vpe;
333
334         return NULL;
335 }
336
337 /*
338  * ITS command descriptors - parameters to be encoded in a command
339  * block.
340  */
341 struct its_cmd_desc {
342         union {
343                 struct {
344                         struct its_device *dev;
345                         u32 event_id;
346                 } its_inv_cmd;
347
348                 struct {
349                         struct its_device *dev;
350                         u32 event_id;
351                 } its_clear_cmd;
352
353                 struct {
354                         struct its_device *dev;
355                         u32 event_id;
356                 } its_int_cmd;
357
358                 struct {
359                         struct its_device *dev;
360                         int valid;
361                 } its_mapd_cmd;
362
363                 struct {
364                         struct its_collection *col;
365                         int valid;
366                 } its_mapc_cmd;
367
368                 struct {
369                         struct its_device *dev;
370                         u32 phys_id;
371                         u32 event_id;
372                 } its_mapti_cmd;
373
374                 struct {
375                         struct its_device *dev;
376                         struct its_collection *col;
377                         u32 event_id;
378                 } its_movi_cmd;
379
380                 struct {
381                         struct its_device *dev;
382                         u32 event_id;
383                 } its_discard_cmd;
384
385                 struct {
386                         struct its_collection *col;
387                 } its_invall_cmd;
388
389                 struct {
390                         struct its_vpe *vpe;
391                 } its_vinvall_cmd;
392
393                 struct {
394                         struct its_vpe *vpe;
395                         struct its_collection *col;
396                         bool valid;
397                 } its_vmapp_cmd;
398
399                 struct {
400                         struct its_vpe *vpe;
401                         struct its_device *dev;
402                         u32 virt_id;
403                         u32 event_id;
404                         bool db_enabled;
405                 } its_vmapti_cmd;
406
407                 struct {
408                         struct its_vpe *vpe;
409                         struct its_device *dev;
410                         u32 event_id;
411                         bool db_enabled;
412                 } its_vmovi_cmd;
413
414                 struct {
415                         struct its_vpe *vpe;
416                         struct its_collection *col;
417                         u16 seq_num;
418                         u16 its_list;
419                 } its_vmovp_cmd;
420
421                 struct {
422                         struct its_vpe *vpe;
423                 } its_invdb_cmd;
424
425                 struct {
426                         struct its_vpe *vpe;
427                         u8 sgi;
428                         u8 priority;
429                         bool enable;
430                         bool group;
431                         bool clear;
432                 } its_vsgi_cmd;
433         };
434 };
435
436 /*
437  * The ITS command block, which is what the ITS actually parses.
438  */
439 struct its_cmd_block {
440         union {
441                 u64     raw_cmd[4];
442                 __le64  raw_cmd_le[4];
443         };
444 };
445
446 #define ITS_CMD_QUEUE_SZ                SZ_64K
447 #define ITS_CMD_QUEUE_NR_ENTRIES        (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
448
449 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
450                                                     struct its_cmd_block *,
451                                                     struct its_cmd_desc *);
452
453 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
454                                               struct its_cmd_block *,
455                                               struct its_cmd_desc *);
456
457 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
458 {
459         u64 mask = GENMASK_ULL(h, l);
460         *raw_cmd &= ~mask;
461         *raw_cmd |= (val << l) & mask;
462 }
463
464 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
465 {
466         its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
467 }
468
469 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
470 {
471         its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
472 }
473
474 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
475 {
476         its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
477 }
478
479 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
480 {
481         its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
482 }
483
484 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
485 {
486         its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
487 }
488
489 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
490 {
491         its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
492 }
493
494 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
495 {
496         its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
497 }
498
499 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
500 {
501         its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
502 }
503
504 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
505 {
506         its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
507 }
508
509 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
510 {
511         its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
512 }
513
514 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
515 {
516         its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
517 }
518
519 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
520 {
521         its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
522 }
523
524 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
525 {
526         its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
527 }
528
529 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
530 {
531         its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
532 }
533
534 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
535 {
536         its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
537 }
538
539 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
540 {
541         its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
542 }
543
544 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
545 {
546         its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
547 }
548
549 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
550 {
551         its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
552 }
553
554 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
555 {
556         its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
557 }
558
559 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
560 {
561         its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
562 }
563
564 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
565                                         u32 vpe_db_lpi)
566 {
567         its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
568 }
569
570 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
571                                         u32 vpe_db_lpi)
572 {
573         its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
574 }
575
576 static void its_encode_db(struct its_cmd_block *cmd, bool db)
577 {
578         its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
579 }
580
581 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
582 {
583         its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
584 }
585
586 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
587 {
588         its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
589 }
590
591 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
592 {
593         its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
594 }
595
596 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
597 {
598         its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
599 }
600
601 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
602 {
603         its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
604 }
605
606 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
607 {
608         /* Let's fixup BE commands */
609         cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
610         cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
611         cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
612         cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
613 }
614
615 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
616                                                  struct its_cmd_block *cmd,
617                                                  struct its_cmd_desc *desc)
618 {
619         unsigned long itt_addr;
620         u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
621
622         itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
623         itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
624
625         its_encode_cmd(cmd, GITS_CMD_MAPD);
626         its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
627         its_encode_size(cmd, size - 1);
628         its_encode_itt(cmd, itt_addr);
629         its_encode_valid(cmd, desc->its_mapd_cmd.valid);
630
631         its_fixup_cmd(cmd);
632
633         return NULL;
634 }
635
636 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
637                                                  struct its_cmd_block *cmd,
638                                                  struct its_cmd_desc *desc)
639 {
640         its_encode_cmd(cmd, GITS_CMD_MAPC);
641         its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
642         its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
643         its_encode_valid(cmd, desc->its_mapc_cmd.valid);
644
645         its_fixup_cmd(cmd);
646
647         return desc->its_mapc_cmd.col;
648 }
649
650 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
651                                                   struct its_cmd_block *cmd,
652                                                   struct its_cmd_desc *desc)
653 {
654         struct its_collection *col;
655
656         col = dev_event_to_col(desc->its_mapti_cmd.dev,
657                                desc->its_mapti_cmd.event_id);
658
659         its_encode_cmd(cmd, GITS_CMD_MAPTI);
660         its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
661         its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
662         its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
663         its_encode_collection(cmd, col->col_id);
664
665         its_fixup_cmd(cmd);
666
667         return valid_col(col);
668 }
669
670 static struct its_collection *its_build_movi_cmd(struct its_node *its,
671                                                  struct its_cmd_block *cmd,
672                                                  struct its_cmd_desc *desc)
673 {
674         struct its_collection *col;
675
676         col = dev_event_to_col(desc->its_movi_cmd.dev,
677                                desc->its_movi_cmd.event_id);
678
679         its_encode_cmd(cmd, GITS_CMD_MOVI);
680         its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
681         its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
682         its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
683
684         its_fixup_cmd(cmd);
685
686         return valid_col(col);
687 }
688
689 static struct its_collection *its_build_discard_cmd(struct its_node *its,
690                                                     struct its_cmd_block *cmd,
691                                                     struct its_cmd_desc *desc)
692 {
693         struct its_collection *col;
694
695         col = dev_event_to_col(desc->its_discard_cmd.dev,
696                                desc->its_discard_cmd.event_id);
697
698         its_encode_cmd(cmd, GITS_CMD_DISCARD);
699         its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
700         its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
701
702         its_fixup_cmd(cmd);
703
704         return valid_col(col);
705 }
706
707 static struct its_collection *its_build_inv_cmd(struct its_node *its,
708                                                 struct its_cmd_block *cmd,
709                                                 struct its_cmd_desc *desc)
710 {
711         struct its_collection *col;
712
713         col = dev_event_to_col(desc->its_inv_cmd.dev,
714                                desc->its_inv_cmd.event_id);
715
716         its_encode_cmd(cmd, GITS_CMD_INV);
717         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
718         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
719
720         its_fixup_cmd(cmd);
721
722         return valid_col(col);
723 }
724
725 static struct its_collection *its_build_int_cmd(struct its_node *its,
726                                                 struct its_cmd_block *cmd,
727                                                 struct its_cmd_desc *desc)
728 {
729         struct its_collection *col;
730
731         col = dev_event_to_col(desc->its_int_cmd.dev,
732                                desc->its_int_cmd.event_id);
733
734         its_encode_cmd(cmd, GITS_CMD_INT);
735         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
736         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
737
738         its_fixup_cmd(cmd);
739
740         return valid_col(col);
741 }
742
743 static struct its_collection *its_build_clear_cmd(struct its_node *its,
744                                                   struct its_cmd_block *cmd,
745                                                   struct its_cmd_desc *desc)
746 {
747         struct its_collection *col;
748
749         col = dev_event_to_col(desc->its_clear_cmd.dev,
750                                desc->its_clear_cmd.event_id);
751
752         its_encode_cmd(cmd, GITS_CMD_CLEAR);
753         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
754         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
755
756         its_fixup_cmd(cmd);
757
758         return valid_col(col);
759 }
760
761 static struct its_collection *its_build_invall_cmd(struct its_node *its,
762                                                    struct its_cmd_block *cmd,
763                                                    struct its_cmd_desc *desc)
764 {
765         its_encode_cmd(cmd, GITS_CMD_INVALL);
766         its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
767
768         its_fixup_cmd(cmd);
769
770         return desc->its_invall_cmd.col;
771 }
772
773 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
774                                              struct its_cmd_block *cmd,
775                                              struct its_cmd_desc *desc)
776 {
777         its_encode_cmd(cmd, GITS_CMD_VINVALL);
778         its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
779
780         its_fixup_cmd(cmd);
781
782         return valid_vpe(its, desc->its_vinvall_cmd.vpe);
783 }
784
785 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
786                                            struct its_cmd_block *cmd,
787                                            struct its_cmd_desc *desc)
788 {
789         struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe);
790         unsigned long vpt_addr, vconf_addr;
791         u64 target;
792         bool alloc;
793
794         its_encode_cmd(cmd, GITS_CMD_VMAPP);
795         its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
796         its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
797
798         if (!desc->its_vmapp_cmd.valid) {
799                 if (is_v4_1(its)) {
800                         alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
801                         its_encode_alloc(cmd, alloc);
802                         /*
803                          * Unmapping a VPE is self-synchronizing on GICv4.1,
804                          * no need to issue a VSYNC.
805                          */
806                         vpe = NULL;
807                 }
808
809                 goto out;
810         }
811
812         vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
813         target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
814
815         its_encode_target(cmd, target);
816         its_encode_vpt_addr(cmd, vpt_addr);
817         its_encode_vpt_size(cmd, LPI_NRBITS - 1);
818
819         if (!is_v4_1(its))
820                 goto out;
821
822         vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
823
824         alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
825
826         its_encode_alloc(cmd, alloc);
827
828         /*
829          * GICv4.1 provides a way to get the VLPI state, which needs the vPE
830          * to be unmapped first, and in this case, we may remap the vPE
831          * back while the VPT is not empty. So we can't assume that the
832          * VPT is empty on map. This is why we never advertise PTZ.
833          */
834         its_encode_ptz(cmd, false);
835         its_encode_vconf_addr(cmd, vconf_addr);
836         its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
837
838 out:
839         its_fixup_cmd(cmd);
840
841         return vpe;
842 }
843
844 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
845                                             struct its_cmd_block *cmd,
846                                             struct its_cmd_desc *desc)
847 {
848         u32 db;
849
850         if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
851                 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
852         else
853                 db = 1023;
854
855         its_encode_cmd(cmd, GITS_CMD_VMAPTI);
856         its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
857         its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
858         its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
859         its_encode_db_phys_id(cmd, db);
860         its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
861
862         its_fixup_cmd(cmd);
863
864         return valid_vpe(its, desc->its_vmapti_cmd.vpe);
865 }
866
867 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
868                                            struct its_cmd_block *cmd,
869                                            struct its_cmd_desc *desc)
870 {
871         u32 db;
872
873         if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
874                 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
875         else
876                 db = 1023;
877
878         its_encode_cmd(cmd, GITS_CMD_VMOVI);
879         its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
880         its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
881         its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
882         its_encode_db_phys_id(cmd, db);
883         its_encode_db_valid(cmd, true);
884
885         its_fixup_cmd(cmd);
886
887         return valid_vpe(its, desc->its_vmovi_cmd.vpe);
888 }
889
890 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
891                                            struct its_cmd_block *cmd,
892                                            struct its_cmd_desc *desc)
893 {
894         u64 target;
895
896         target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
897         its_encode_cmd(cmd, GITS_CMD_VMOVP);
898         its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
899         its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
900         its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
901         its_encode_target(cmd, target);
902
903         if (is_v4_1(its)) {
904                 its_encode_db(cmd, true);
905                 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
906         }
907
908         its_fixup_cmd(cmd);
909
910         return valid_vpe(its, desc->its_vmovp_cmd.vpe);
911 }
912
913 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
914                                           struct its_cmd_block *cmd,
915                                           struct its_cmd_desc *desc)
916 {
917         struct its_vlpi_map *map;
918
919         map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
920                                     desc->its_inv_cmd.event_id);
921
922         its_encode_cmd(cmd, GITS_CMD_INV);
923         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
924         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
925
926         its_fixup_cmd(cmd);
927
928         return valid_vpe(its, map->vpe);
929 }
930
931 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
932                                           struct its_cmd_block *cmd,
933                                           struct its_cmd_desc *desc)
934 {
935         struct its_vlpi_map *map;
936
937         map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
938                                     desc->its_int_cmd.event_id);
939
940         its_encode_cmd(cmd, GITS_CMD_INT);
941         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
942         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
943
944         its_fixup_cmd(cmd);
945
946         return valid_vpe(its, map->vpe);
947 }
948
949 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
950                                             struct its_cmd_block *cmd,
951                                             struct its_cmd_desc *desc)
952 {
953         struct its_vlpi_map *map;
954
955         map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
956                                     desc->its_clear_cmd.event_id);
957
958         its_encode_cmd(cmd, GITS_CMD_CLEAR);
959         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
960         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
961
962         its_fixup_cmd(cmd);
963
964         return valid_vpe(its, map->vpe);
965 }
966
967 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
968                                            struct its_cmd_block *cmd,
969                                            struct its_cmd_desc *desc)
970 {
971         if (WARN_ON(!is_v4_1(its)))
972                 return NULL;
973
974         its_encode_cmd(cmd, GITS_CMD_INVDB);
975         its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
976
977         its_fixup_cmd(cmd);
978
979         return valid_vpe(its, desc->its_invdb_cmd.vpe);
980 }
981
982 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
983                                           struct its_cmd_block *cmd,
984                                           struct its_cmd_desc *desc)
985 {
986         if (WARN_ON(!is_v4_1(its)))
987                 return NULL;
988
989         its_encode_cmd(cmd, GITS_CMD_VSGI);
990         its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
991         its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
992         its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
993         its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
994         its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
995         its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
996
997         its_fixup_cmd(cmd);
998
999         return valid_vpe(its, desc->its_vsgi_cmd.vpe);
1000 }
1001
1002 static u64 its_cmd_ptr_to_offset(struct its_node *its,
1003                                  struct its_cmd_block *ptr)
1004 {
1005         return (ptr - its->cmd_base) * sizeof(*ptr);
1006 }
1007
1008 static int its_queue_full(struct its_node *its)
1009 {
1010         int widx;
1011         int ridx;
1012
1013         widx = its->cmd_write - its->cmd_base;
1014         ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1015
1016         /* This is incredibly unlikely to happen, unless the ITS locks up. */
1017         if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1018                 return 1;
1019
1020         return 0;
1021 }
1022
1023 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1024 {
1025         struct its_cmd_block *cmd;
1026         u32 count = 1000000;    /* 1s! */
1027
1028         while (its_queue_full(its)) {
1029                 count--;
1030                 if (!count) {
1031                         pr_err_ratelimited("ITS queue not draining\n");
1032                         return NULL;
1033                 }
1034                 cpu_relax();
1035                 udelay(1);
1036         }
1037
1038         cmd = its->cmd_write++;
1039
1040         /* Handle queue wrapping */
1041         if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1042                 its->cmd_write = its->cmd_base;
1043
1044         /* Clear command  */
1045         cmd->raw_cmd[0] = 0;
1046         cmd->raw_cmd[1] = 0;
1047         cmd->raw_cmd[2] = 0;
1048         cmd->raw_cmd[3] = 0;
1049
1050         return cmd;
1051 }
1052
1053 static struct its_cmd_block *its_post_commands(struct its_node *its)
1054 {
1055         u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1056
1057         writel_relaxed(wr, its->base + GITS_CWRITER);
1058
1059         return its->cmd_write;
1060 }
1061
1062 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1063 {
1064         /*
1065          * Make sure the commands written to memory are observable by
1066          * the ITS.
1067          */
1068         if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1069                 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1070         else
1071                 dsb(ishst);
1072 }
1073
1074 static int its_wait_for_range_completion(struct its_node *its,
1075                                          u64    prev_idx,
1076                                          struct its_cmd_block *to)
1077 {
1078         u64 rd_idx, to_idx, linear_idx;
1079         u32 count = 1000000;    /* 1s! */
1080
1081         /* Linearize to_idx if the command set has wrapped around */
1082         to_idx = its_cmd_ptr_to_offset(its, to);
1083         if (to_idx < prev_idx)
1084                 to_idx += ITS_CMD_QUEUE_SZ;
1085
1086         linear_idx = prev_idx;
1087
1088         while (1) {
1089                 s64 delta;
1090
1091                 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1092
1093                 /*
1094                  * Compute the read pointer progress, taking the
1095                  * potential wrap-around into account.
1096                  */
1097                 delta = rd_idx - prev_idx;
1098                 if (rd_idx < prev_idx)
1099                         delta += ITS_CMD_QUEUE_SZ;
1100
1101                 linear_idx += delta;
1102                 if (linear_idx >= to_idx)
1103                         break;
1104
1105                 count--;
1106                 if (!count) {
1107                         pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1108                                            to_idx, linear_idx);
1109                         return -1;
1110                 }
1111                 prev_idx = rd_idx;
1112                 cpu_relax();
1113                 udelay(1);
1114         }
1115
1116         return 0;
1117 }
1118
1119 /* Warning, macro hell follows */
1120 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)       \
1121 void name(struct its_node *its,                                         \
1122           buildtype builder,                                            \
1123           struct its_cmd_desc *desc)                                    \
1124 {                                                                       \
1125         struct its_cmd_block *cmd, *sync_cmd, *next_cmd;                \
1126         synctype *sync_obj;                                             \
1127         unsigned long flags;                                            \
1128         u64 rd_idx;                                                     \
1129                                                                         \
1130         raw_spin_lock_irqsave(&its->lock, flags);                       \
1131                                                                         \
1132         cmd = its_allocate_entry(its);                                  \
1133         if (!cmd) {             /* We're soooooo screewed... */         \
1134                 raw_spin_unlock_irqrestore(&its->lock, flags);          \
1135                 return;                                                 \
1136         }                                                               \
1137         sync_obj = builder(its, cmd, desc);                             \
1138         its_flush_cmd(its, cmd);                                        \
1139                                                                         \
1140         if (sync_obj) {                                                 \
1141                 sync_cmd = its_allocate_entry(its);                     \
1142                 if (!sync_cmd)                                          \
1143                         goto post;                                      \
1144                                                                         \
1145                 buildfn(its, sync_cmd, sync_obj);                       \
1146                 its_flush_cmd(its, sync_cmd);                           \
1147         }                                                               \
1148                                                                         \
1149 post:                                                                   \
1150         rd_idx = readl_relaxed(its->base + GITS_CREADR);                \
1151         next_cmd = its_post_commands(its);                              \
1152         raw_spin_unlock_irqrestore(&its->lock, flags);                  \
1153                                                                         \
1154         if (its_wait_for_range_completion(its, rd_idx, next_cmd))       \
1155                 pr_err_ratelimited("ITS cmd %ps failed\n", builder);    \
1156 }
1157
1158 static void its_build_sync_cmd(struct its_node *its,
1159                                struct its_cmd_block *sync_cmd,
1160                                struct its_collection *sync_col)
1161 {
1162         its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1163         its_encode_target(sync_cmd, sync_col->target_address);
1164
1165         its_fixup_cmd(sync_cmd);
1166 }
1167
1168 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1169                              struct its_collection, its_build_sync_cmd)
1170
1171 static void its_build_vsync_cmd(struct its_node *its,
1172                                 struct its_cmd_block *sync_cmd,
1173                                 struct its_vpe *sync_vpe)
1174 {
1175         its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1176         its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1177
1178         its_fixup_cmd(sync_cmd);
1179 }
1180
1181 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1182                              struct its_vpe, its_build_vsync_cmd)
1183
1184 static void its_send_int(struct its_device *dev, u32 event_id)
1185 {
1186         struct its_cmd_desc desc;
1187
1188         desc.its_int_cmd.dev = dev;
1189         desc.its_int_cmd.event_id = event_id;
1190
1191         its_send_single_command(dev->its, its_build_int_cmd, &desc);
1192 }
1193
1194 static void its_send_clear(struct its_device *dev, u32 event_id)
1195 {
1196         struct its_cmd_desc desc;
1197
1198         desc.its_clear_cmd.dev = dev;
1199         desc.its_clear_cmd.event_id = event_id;
1200
1201         its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1202 }
1203
1204 static void its_send_inv(struct its_device *dev, u32 event_id)
1205 {
1206         struct its_cmd_desc desc;
1207
1208         desc.its_inv_cmd.dev = dev;
1209         desc.its_inv_cmd.event_id = event_id;
1210
1211         its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1212 }
1213
1214 static void its_send_mapd(struct its_device *dev, int valid)
1215 {
1216         struct its_cmd_desc desc;
1217
1218         desc.its_mapd_cmd.dev = dev;
1219         desc.its_mapd_cmd.valid = !!valid;
1220
1221         its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1222 }
1223
1224 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1225                           int valid)
1226 {
1227         struct its_cmd_desc desc;
1228
1229         desc.its_mapc_cmd.col = col;
1230         desc.its_mapc_cmd.valid = !!valid;
1231
1232         its_send_single_command(its, its_build_mapc_cmd, &desc);
1233 }
1234
1235 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1236 {
1237         struct its_cmd_desc desc;
1238
1239         desc.its_mapti_cmd.dev = dev;
1240         desc.its_mapti_cmd.phys_id = irq_id;
1241         desc.its_mapti_cmd.event_id = id;
1242
1243         its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1244 }
1245
1246 static void its_send_movi(struct its_device *dev,
1247                           struct its_collection *col, u32 id)
1248 {
1249         struct its_cmd_desc desc;
1250
1251         desc.its_movi_cmd.dev = dev;
1252         desc.its_movi_cmd.col = col;
1253         desc.its_movi_cmd.event_id = id;
1254
1255         its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1256 }
1257
1258 static void its_send_discard(struct its_device *dev, u32 id)
1259 {
1260         struct its_cmd_desc desc;
1261
1262         desc.its_discard_cmd.dev = dev;
1263         desc.its_discard_cmd.event_id = id;
1264
1265         its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1266 }
1267
1268 static void its_send_invall(struct its_node *its, struct its_collection *col)
1269 {
1270         struct its_cmd_desc desc;
1271
1272         desc.its_invall_cmd.col = col;
1273
1274         its_send_single_command(its, its_build_invall_cmd, &desc);
1275 }
1276
1277 static void its_send_vmapti(struct its_device *dev, u32 id)
1278 {
1279         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1280         struct its_cmd_desc desc;
1281
1282         desc.its_vmapti_cmd.vpe = map->vpe;
1283         desc.its_vmapti_cmd.dev = dev;
1284         desc.its_vmapti_cmd.virt_id = map->vintid;
1285         desc.its_vmapti_cmd.event_id = id;
1286         desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1287
1288         its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1289 }
1290
1291 static void its_send_vmovi(struct its_device *dev, u32 id)
1292 {
1293         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1294         struct its_cmd_desc desc;
1295
1296         desc.its_vmovi_cmd.vpe = map->vpe;
1297         desc.its_vmovi_cmd.dev = dev;
1298         desc.its_vmovi_cmd.event_id = id;
1299         desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1300
1301         its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1302 }
1303
1304 static void its_send_vmapp(struct its_node *its,
1305                            struct its_vpe *vpe, bool valid)
1306 {
1307         struct its_cmd_desc desc;
1308
1309         desc.its_vmapp_cmd.vpe = vpe;
1310         desc.its_vmapp_cmd.valid = valid;
1311         desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1312
1313         its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1314 }
1315
1316 static void its_send_vmovp(struct its_vpe *vpe)
1317 {
1318         struct its_cmd_desc desc = {};
1319         struct its_node *its;
1320         unsigned long flags;
1321         int col_id = vpe->col_idx;
1322
1323         desc.its_vmovp_cmd.vpe = vpe;
1324
1325         if (!its_list_map) {
1326                 its = list_first_entry(&its_nodes, struct its_node, entry);
1327                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1328                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1329                 return;
1330         }
1331
1332         /*
1333          * Yet another marvel of the architecture. If using the
1334          * its_list "feature", we need to make sure that all ITSs
1335          * receive all VMOVP commands in the same order. The only way
1336          * to guarantee this is to make vmovp a serialization point.
1337          *
1338          * Wall <-- Head.
1339          */
1340         raw_spin_lock_irqsave(&vmovp_lock, flags);
1341
1342         desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1343         desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1344
1345         /* Emit VMOVPs */
1346         list_for_each_entry(its, &its_nodes, entry) {
1347                 if (!is_v4(its))
1348                         continue;
1349
1350                 if (!require_its_list_vmovp(vpe->its_vm, its))
1351                         continue;
1352
1353                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1354                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1355         }
1356
1357         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1358 }
1359
1360 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1361 {
1362         struct its_cmd_desc desc;
1363
1364         desc.its_vinvall_cmd.vpe = vpe;
1365         its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1366 }
1367
1368 static void its_send_vinv(struct its_device *dev, u32 event_id)
1369 {
1370         struct its_cmd_desc desc;
1371
1372         /*
1373          * There is no real VINV command. This is just a normal INV,
1374          * with a VSYNC instead of a SYNC.
1375          */
1376         desc.its_inv_cmd.dev = dev;
1377         desc.its_inv_cmd.event_id = event_id;
1378
1379         its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1380 }
1381
1382 static void its_send_vint(struct its_device *dev, u32 event_id)
1383 {
1384         struct its_cmd_desc desc;
1385
1386         /*
1387          * There is no real VINT command. This is just a normal INT,
1388          * with a VSYNC instead of a SYNC.
1389          */
1390         desc.its_int_cmd.dev = dev;
1391         desc.its_int_cmd.event_id = event_id;
1392
1393         its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1394 }
1395
1396 static void its_send_vclear(struct its_device *dev, u32 event_id)
1397 {
1398         struct its_cmd_desc desc;
1399
1400         /*
1401          * There is no real VCLEAR command. This is just a normal CLEAR,
1402          * with a VSYNC instead of a SYNC.
1403          */
1404         desc.its_clear_cmd.dev = dev;
1405         desc.its_clear_cmd.event_id = event_id;
1406
1407         its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1408 }
1409
1410 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1411 {
1412         struct its_cmd_desc desc;
1413
1414         desc.its_invdb_cmd.vpe = vpe;
1415         its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1416 }
1417
1418 /*
1419  * irqchip functions - assumes MSI, mostly.
1420  */
1421 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1422 {
1423         struct its_vlpi_map *map = get_vlpi_map(d);
1424         irq_hw_number_t hwirq;
1425         void *va;
1426         u8 *cfg;
1427
1428         if (map) {
1429                 va = page_address(map->vm->vprop_page);
1430                 hwirq = map->vintid;
1431
1432                 /* Remember the updated property */
1433                 map->properties &= ~clr;
1434                 map->properties |= set | LPI_PROP_GROUP1;
1435         } else {
1436                 va = gic_rdists->prop_table_va;
1437                 hwirq = d->hwirq;
1438         }
1439
1440         cfg = va + hwirq - 8192;
1441         *cfg &= ~clr;
1442         *cfg |= set | LPI_PROP_GROUP1;
1443
1444         /*
1445          * Make the above write visible to the redistributors.
1446          * And yes, we're flushing exactly: One. Single. Byte.
1447          * Humpf...
1448          */
1449         if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1450                 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1451         else
1452                 dsb(ishst);
1453 }
1454
1455 static void wait_for_syncr(void __iomem *rdbase)
1456 {
1457         while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1458                 cpu_relax();
1459 }
1460
1461 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1462 {
1463         void __iomem *rdbase;
1464         unsigned long flags;
1465         int cpu;
1466
1467         /* Target the redistributor this LPI is currently routed to */
1468         cpu = irq_to_cpuid_lock(d, &flags);
1469         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1470
1471         rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1472         gic_write_lpir(val, rdbase + GICR_INVLPIR);
1473         wait_for_syncr(rdbase);
1474
1475         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1476         irq_to_cpuid_unlock(d, flags);
1477 }
1478
1479 static void direct_lpi_inv(struct irq_data *d)
1480 {
1481         struct its_vlpi_map *map = get_vlpi_map(d);
1482         u64 val;
1483
1484         if (map) {
1485                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1486
1487                 WARN_ON(!is_v4_1(its_dev->its));
1488
1489                 val  = GICR_INVLPIR_V;
1490                 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1491                 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1492         } else {
1493                 val = d->hwirq;
1494         }
1495
1496         __direct_lpi_inv(d, val);
1497 }
1498
1499 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1500 {
1501         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1502
1503         lpi_write_config(d, clr, set);
1504         if (gic_rdists->has_direct_lpi &&
1505             (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1506                 direct_lpi_inv(d);
1507         else if (!irqd_is_forwarded_to_vcpu(d))
1508                 its_send_inv(its_dev, its_get_event_id(d));
1509         else
1510                 its_send_vinv(its_dev, its_get_event_id(d));
1511 }
1512
1513 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1514 {
1515         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1516         u32 event = its_get_event_id(d);
1517         struct its_vlpi_map *map;
1518
1519         /*
1520          * GICv4.1 does away with the per-LPI nonsense, nothing to do
1521          * here.
1522          */
1523         if (is_v4_1(its_dev->its))
1524                 return;
1525
1526         map = dev_event_to_vlpi_map(its_dev, event);
1527
1528         if (map->db_enabled == enable)
1529                 return;
1530
1531         map->db_enabled = enable;
1532
1533         /*
1534          * More fun with the architecture:
1535          *
1536          * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1537          * value or to 1023, depending on the enable bit. But that
1538          * would be issuing a mapping for an /existing/ DevID+EventID
1539          * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1540          * to the /same/ vPE, using this opportunity to adjust the
1541          * doorbell. Mouahahahaha. We loves it, Precious.
1542          */
1543         its_send_vmovi(its_dev, event);
1544 }
1545
1546 static void its_mask_irq(struct irq_data *d)
1547 {
1548         if (irqd_is_forwarded_to_vcpu(d))
1549                 its_vlpi_set_doorbell(d, false);
1550
1551         lpi_update_config(d, LPI_PROP_ENABLED, 0);
1552 }
1553
1554 static void its_unmask_irq(struct irq_data *d)
1555 {
1556         if (irqd_is_forwarded_to_vcpu(d))
1557                 its_vlpi_set_doorbell(d, true);
1558
1559         lpi_update_config(d, 0, LPI_PROP_ENABLED);
1560 }
1561
1562 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1563 {
1564         if (irqd_affinity_is_managed(d))
1565                 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1566
1567         return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1568 }
1569
1570 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1571 {
1572         if (irqd_affinity_is_managed(d))
1573                 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1574         else
1575                 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1576 }
1577
1578 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1579 {
1580         if (irqd_affinity_is_managed(d))
1581                 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1582         else
1583                 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1584 }
1585
1586 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1587                                               const struct cpumask *cpu_mask)
1588 {
1589         unsigned int cpu = nr_cpu_ids, tmp;
1590         int count = S32_MAX;
1591
1592         for_each_cpu(tmp, cpu_mask) {
1593                 int this_count = its_read_lpi_count(d, tmp);
1594                 if (this_count < count) {
1595                         cpu = tmp;
1596                         count = this_count;
1597                 }
1598         }
1599
1600         return cpu;
1601 }
1602
1603 /*
1604  * As suggested by Thomas Gleixner in:
1605  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1606  */
1607 static int its_select_cpu(struct irq_data *d,
1608                           const struct cpumask *aff_mask)
1609 {
1610         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1611         static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1612         static struct cpumask __tmpmask;
1613         struct cpumask *tmpmask;
1614         unsigned long flags;
1615         int cpu, node;
1616         node = its_dev->its->numa_node;
1617         tmpmask = &__tmpmask;
1618
1619         raw_spin_lock_irqsave(&tmpmask_lock, flags);
1620
1621         if (!irqd_affinity_is_managed(d)) {
1622                 /* First try the NUMA node */
1623                 if (node != NUMA_NO_NODE) {
1624                         /*
1625                          * Try the intersection of the affinity mask and the
1626                          * node mask (and the online mask, just to be safe).
1627                          */
1628                         cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1629                         cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1630
1631                         /*
1632                          * Ideally, we would check if the mask is empty, and
1633                          * try again on the full node here.
1634                          *
1635                          * But it turns out that the way ACPI describes the
1636                          * affinity for ITSs only deals about memory, and
1637                          * not target CPUs, so it cannot describe a single
1638                          * ITS placed next to two NUMA nodes.
1639                          *
1640                          * Instead, just fallback on the online mask. This
1641                          * diverges from Thomas' suggestion above.
1642                          */
1643                         cpu = cpumask_pick_least_loaded(d, tmpmask);
1644                         if (cpu < nr_cpu_ids)
1645                                 goto out;
1646
1647                         /* If we can't cross sockets, give up */
1648                         if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1649                                 goto out;
1650
1651                         /* If the above failed, expand the search */
1652                 }
1653
1654                 /* Try the intersection of the affinity and online masks */
1655                 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1656
1657                 /* If that doesn't fly, the online mask is the last resort */
1658                 if (cpumask_empty(tmpmask))
1659                         cpumask_copy(tmpmask, cpu_online_mask);
1660
1661                 cpu = cpumask_pick_least_loaded(d, tmpmask);
1662         } else {
1663                 cpumask_copy(tmpmask, aff_mask);
1664
1665                 /* If we cannot cross sockets, limit the search to that node */
1666                 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1667                     node != NUMA_NO_NODE)
1668                         cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1669
1670                 cpu = cpumask_pick_least_loaded(d, tmpmask);
1671         }
1672 out:
1673         raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1674
1675         pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1676         return cpu;
1677 }
1678
1679 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1680                             bool force)
1681 {
1682         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1683         struct its_collection *target_col;
1684         u32 id = its_get_event_id(d);
1685         int cpu, prev_cpu;
1686
1687         /* A forwarded interrupt should use irq_set_vcpu_affinity */
1688         if (irqd_is_forwarded_to_vcpu(d))
1689                 return -EINVAL;
1690
1691         prev_cpu = its_dev->event_map.col_map[id];
1692         its_dec_lpi_count(d, prev_cpu);
1693
1694         if (!force)
1695                 cpu = its_select_cpu(d, mask_val);
1696         else
1697                 cpu = cpumask_pick_least_loaded(d, mask_val);
1698
1699         if (cpu < 0 || cpu >= nr_cpu_ids)
1700                 goto err;
1701
1702         /* don't set the affinity when the target cpu is same as current one */
1703         if (cpu != prev_cpu) {
1704                 target_col = &its_dev->its->collections[cpu];
1705                 its_send_movi(its_dev, target_col, id);
1706                 its_dev->event_map.col_map[id] = cpu;
1707                 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1708         }
1709
1710         its_inc_lpi_count(d, cpu);
1711
1712         return IRQ_SET_MASK_OK_DONE;
1713
1714 err:
1715         its_inc_lpi_count(d, prev_cpu);
1716         return -EINVAL;
1717 }
1718
1719 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1720 {
1721         struct its_node *its = its_dev->its;
1722
1723         return its->phys_base + GITS_TRANSLATER;
1724 }
1725
1726 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1727 {
1728         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1729         struct its_node *its;
1730         u64 addr;
1731
1732         its = its_dev->its;
1733         addr = its->get_msi_base(its_dev);
1734
1735         msg->address_lo         = lower_32_bits(addr);
1736         msg->address_hi         = upper_32_bits(addr);
1737         msg->data               = its_get_event_id(d);
1738
1739         iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1740 }
1741
1742 static int its_irq_set_irqchip_state(struct irq_data *d,
1743                                      enum irqchip_irq_state which,
1744                                      bool state)
1745 {
1746         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1747         u32 event = its_get_event_id(d);
1748
1749         if (which != IRQCHIP_STATE_PENDING)
1750                 return -EINVAL;
1751
1752         if (irqd_is_forwarded_to_vcpu(d)) {
1753                 if (state)
1754                         its_send_vint(its_dev, event);
1755                 else
1756                         its_send_vclear(its_dev, event);
1757         } else {
1758                 if (state)
1759                         its_send_int(its_dev, event);
1760                 else
1761                         its_send_clear(its_dev, event);
1762         }
1763
1764         return 0;
1765 }
1766
1767 static int its_irq_retrigger(struct irq_data *d)
1768 {
1769         return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1770 }
1771
1772 /*
1773  * Two favourable cases:
1774  *
1775  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1776  *     for vSGI delivery
1777  *
1778  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1779  *     and we're better off mapping all VPEs always
1780  *
1781  * If neither (a) nor (b) is true, then we map vPEs on demand.
1782  *
1783  */
1784 static bool gic_requires_eager_mapping(void)
1785 {
1786         if (!its_list_map || gic_rdists->has_rvpeid)
1787                 return true;
1788
1789         return false;
1790 }
1791
1792 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1793 {
1794         unsigned long flags;
1795
1796         if (gic_requires_eager_mapping())
1797                 return;
1798
1799         raw_spin_lock_irqsave(&vmovp_lock, flags);
1800
1801         /*
1802          * If the VM wasn't mapped yet, iterate over the vpes and get
1803          * them mapped now.
1804          */
1805         vm->vlpi_count[its->list_nr]++;
1806
1807         if (vm->vlpi_count[its->list_nr] == 1) {
1808                 int i;
1809
1810                 for (i = 0; i < vm->nr_vpes; i++) {
1811                         struct its_vpe *vpe = vm->vpes[i];
1812                         struct irq_data *d = irq_get_irq_data(vpe->irq);
1813
1814                         /* Map the VPE to the first possible CPU */
1815                         vpe->col_idx = cpumask_first(cpu_online_mask);
1816                         its_send_vmapp(its, vpe, true);
1817                         its_send_vinvall(its, vpe);
1818                         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1819                 }
1820         }
1821
1822         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1823 }
1824
1825 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1826 {
1827         unsigned long flags;
1828
1829         /* Not using the ITS list? Everything is always mapped. */
1830         if (gic_requires_eager_mapping())
1831                 return;
1832
1833         raw_spin_lock_irqsave(&vmovp_lock, flags);
1834
1835         if (!--vm->vlpi_count[its->list_nr]) {
1836                 int i;
1837
1838                 for (i = 0; i < vm->nr_vpes; i++)
1839                         its_send_vmapp(its, vm->vpes[i], false);
1840         }
1841
1842         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1843 }
1844
1845 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1846 {
1847         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1848         u32 event = its_get_event_id(d);
1849         int ret = 0;
1850
1851         if (!info->map)
1852                 return -EINVAL;
1853
1854         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1855
1856         if (!its_dev->event_map.vm) {
1857                 struct its_vlpi_map *maps;
1858
1859                 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1860                                GFP_ATOMIC);
1861                 if (!maps) {
1862                         ret = -ENOMEM;
1863                         goto out;
1864                 }
1865
1866                 its_dev->event_map.vm = info->map->vm;
1867                 its_dev->event_map.vlpi_maps = maps;
1868         } else if (its_dev->event_map.vm != info->map->vm) {
1869                 ret = -EINVAL;
1870                 goto out;
1871         }
1872
1873         /* Get our private copy of the mapping information */
1874         its_dev->event_map.vlpi_maps[event] = *info->map;
1875
1876         if (irqd_is_forwarded_to_vcpu(d)) {
1877                 /* Already mapped, move it around */
1878                 its_send_vmovi(its_dev, event);
1879         } else {
1880                 /* Ensure all the VPEs are mapped on this ITS */
1881                 its_map_vm(its_dev->its, info->map->vm);
1882
1883                 /*
1884                  * Flag the interrupt as forwarded so that we can
1885                  * start poking the virtual property table.
1886                  */
1887                 irqd_set_forwarded_to_vcpu(d);
1888
1889                 /* Write out the property to the prop table */
1890                 lpi_write_config(d, 0xff, info->map->properties);
1891
1892                 /* Drop the physical mapping */
1893                 its_send_discard(its_dev, event);
1894
1895                 /* and install the virtual one */
1896                 its_send_vmapti(its_dev, event);
1897
1898                 /* Increment the number of VLPIs */
1899                 its_dev->event_map.nr_vlpis++;
1900         }
1901
1902 out:
1903         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1904         return ret;
1905 }
1906
1907 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1908 {
1909         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1910         struct its_vlpi_map *map;
1911         int ret = 0;
1912
1913         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1914
1915         map = get_vlpi_map(d);
1916
1917         if (!its_dev->event_map.vm || !map) {
1918                 ret = -EINVAL;
1919                 goto out;
1920         }
1921
1922         /* Copy our mapping information to the incoming request */
1923         *info->map = *map;
1924
1925 out:
1926         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1927         return ret;
1928 }
1929
1930 static int its_vlpi_unmap(struct irq_data *d)
1931 {
1932         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1933         u32 event = its_get_event_id(d);
1934         int ret = 0;
1935
1936         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1937
1938         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1939                 ret = -EINVAL;
1940                 goto out;
1941         }
1942
1943         /* Drop the virtual mapping */
1944         its_send_discard(its_dev, event);
1945
1946         /* and restore the physical one */
1947         irqd_clr_forwarded_to_vcpu(d);
1948         its_send_mapti(its_dev, d->hwirq, event);
1949         lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1950                                     LPI_PROP_ENABLED |
1951                                     LPI_PROP_GROUP1));
1952
1953         /* Potentially unmap the VM from this ITS */
1954         its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1955
1956         /*
1957          * Drop the refcount and make the device available again if
1958          * this was the last VLPI.
1959          */
1960         if (!--its_dev->event_map.nr_vlpis) {
1961                 its_dev->event_map.vm = NULL;
1962                 kfree(its_dev->event_map.vlpi_maps);
1963         }
1964
1965 out:
1966         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1967         return ret;
1968 }
1969
1970 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1971 {
1972         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1973
1974         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1975                 return -EINVAL;
1976
1977         if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1978                 lpi_update_config(d, 0xff, info->config);
1979         else
1980                 lpi_write_config(d, 0xff, info->config);
1981         its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1982
1983         return 0;
1984 }
1985
1986 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1987 {
1988         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1989         struct its_cmd_info *info = vcpu_info;
1990
1991         /* Need a v4 ITS */
1992         if (!is_v4(its_dev->its))
1993                 return -EINVAL;
1994
1995         /* Unmap request? */
1996         if (!info)
1997                 return its_vlpi_unmap(d);
1998
1999         switch (info->cmd_type) {
2000         case MAP_VLPI:
2001                 return its_vlpi_map(d, info);
2002
2003         case GET_VLPI:
2004                 return its_vlpi_get(d, info);
2005
2006         case PROP_UPDATE_VLPI:
2007         case PROP_UPDATE_AND_INV_VLPI:
2008                 return its_vlpi_prop_update(d, info);
2009
2010         default:
2011                 return -EINVAL;
2012         }
2013 }
2014
2015 static struct irq_chip its_irq_chip = {
2016         .name                   = "ITS",
2017         .irq_mask               = its_mask_irq,
2018         .irq_unmask             = its_unmask_irq,
2019         .irq_eoi                = irq_chip_eoi_parent,
2020         .irq_set_affinity       = its_set_affinity,
2021         .irq_compose_msi_msg    = its_irq_compose_msi_msg,
2022         .irq_set_irqchip_state  = its_irq_set_irqchip_state,
2023         .irq_retrigger          = its_irq_retrigger,
2024         .irq_set_vcpu_affinity  = its_irq_set_vcpu_affinity,
2025 };
2026
2027
2028 /*
2029  * How we allocate LPIs:
2030  *
2031  * lpi_range_list contains ranges of LPIs that are to available to
2032  * allocate from. To allocate LPIs, just pick the first range that
2033  * fits the required allocation, and reduce it by the required
2034  * amount. Once empty, remove the range from the list.
2035  *
2036  * To free a range of LPIs, add a free range to the list, sort it and
2037  * merge the result if the new range happens to be adjacent to an
2038  * already free block.
2039  *
2040  * The consequence of the above is that allocation is cost is low, but
2041  * freeing is expensive. We assumes that freeing rarely occurs.
2042  */
2043 #define ITS_MAX_LPI_NRBITS      16 /* 64K LPIs */
2044
2045 static DEFINE_MUTEX(lpi_range_lock);
2046 static LIST_HEAD(lpi_range_list);
2047
2048 struct lpi_range {
2049         struct list_head        entry;
2050         u32                     base_id;
2051         u32                     span;
2052 };
2053
2054 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2055 {
2056         struct lpi_range *range;
2057
2058         range = kmalloc(sizeof(*range), GFP_KERNEL);
2059         if (range) {
2060                 range->base_id = base;
2061                 range->span = span;
2062         }
2063
2064         return range;
2065 }
2066
2067 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2068 {
2069         struct lpi_range *range, *tmp;
2070         int err = -ENOSPC;
2071
2072         mutex_lock(&lpi_range_lock);
2073
2074         list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2075                 if (range->span >= nr_lpis) {
2076                         *base = range->base_id;
2077                         range->base_id += nr_lpis;
2078                         range->span -= nr_lpis;
2079
2080                         if (range->span == 0) {
2081                                 list_del(&range->entry);
2082                                 kfree(range);
2083                         }
2084
2085                         err = 0;
2086                         break;
2087                 }
2088         }
2089
2090         mutex_unlock(&lpi_range_lock);
2091
2092         pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2093         return err;
2094 }
2095
2096 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2097 {
2098         if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2099                 return;
2100         if (a->base_id + a->span != b->base_id)
2101                 return;
2102         b->base_id = a->base_id;
2103         b->span += a->span;
2104         list_del(&a->entry);
2105         kfree(a);
2106 }
2107
2108 static int free_lpi_range(u32 base, u32 nr_lpis)
2109 {
2110         struct lpi_range *new, *old;
2111
2112         new = mk_lpi_range(base, nr_lpis);
2113         if (!new)
2114                 return -ENOMEM;
2115
2116         mutex_lock(&lpi_range_lock);
2117
2118         list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2119                 if (old->base_id < base)
2120                         break;
2121         }
2122         /*
2123          * old is the last element with ->base_id smaller than base,
2124          * so new goes right after it. If there are no elements with
2125          * ->base_id smaller than base, &old->entry ends up pointing
2126          * at the head of the list, and inserting new it the start of
2127          * the list is the right thing to do in that case as well.
2128          */
2129         list_add(&new->entry, &old->entry);
2130         /*
2131          * Now check if we can merge with the preceding and/or
2132          * following ranges.
2133          */
2134         merge_lpi_ranges(old, new);
2135         merge_lpi_ranges(new, list_next_entry(new, entry));
2136
2137         mutex_unlock(&lpi_range_lock);
2138         return 0;
2139 }
2140
2141 static int __init its_lpi_init(u32 id_bits)
2142 {
2143         u32 lpis = (1UL << id_bits) - 8192;
2144         u32 numlpis;
2145         int err;
2146
2147         numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2148
2149         if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2150                 lpis = numlpis;
2151                 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2152                         lpis);
2153         }
2154
2155         /*
2156          * Initializing the allocator is just the same as freeing the
2157          * full range of LPIs.
2158          */
2159         err = free_lpi_range(8192, lpis);
2160         pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2161         return err;
2162 }
2163
2164 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2165 {
2166         unsigned long *bitmap = NULL;
2167         int err = 0;
2168
2169         do {
2170                 err = alloc_lpi_range(nr_irqs, base);
2171                 if (!err)
2172                         break;
2173
2174                 nr_irqs /= 2;
2175         } while (nr_irqs > 0);
2176
2177         if (!nr_irqs)
2178                 err = -ENOSPC;
2179
2180         if (err)
2181                 goto out;
2182
2183         bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2184         if (!bitmap)
2185                 goto out;
2186
2187         *nr_ids = nr_irqs;
2188
2189 out:
2190         if (!bitmap)
2191                 *base = *nr_ids = 0;
2192
2193         return bitmap;
2194 }
2195
2196 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2197 {
2198         WARN_ON(free_lpi_range(base, nr_ids));
2199         bitmap_free(bitmap);
2200 }
2201
2202 static void gic_reset_prop_table(void *va)
2203 {
2204         /* Priority 0xa0, Group-1, disabled */
2205         memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2206
2207         /* Make sure the GIC will observe the written configuration */
2208         gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2209 }
2210
2211 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2212 {
2213         struct page *prop_page;
2214
2215         prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2216         if (!prop_page)
2217                 return NULL;
2218
2219         gic_reset_prop_table(page_address(prop_page));
2220
2221         return prop_page;
2222 }
2223
2224 static void its_free_prop_table(struct page *prop_page)
2225 {
2226         free_pages((unsigned long)page_address(prop_page),
2227                    get_order(LPI_PROPBASE_SZ));
2228 }
2229
2230 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2231 {
2232         phys_addr_t start, end, addr_end;
2233         u64 i;
2234
2235         /*
2236          * We don't bother checking for a kdump kernel as by
2237          * construction, the LPI tables are out of this kernel's
2238          * memory map.
2239          */
2240         if (is_kdump_kernel())
2241                 return true;
2242
2243         addr_end = addr + size - 1;
2244
2245         for_each_reserved_mem_range(i, &start, &end) {
2246                 if (addr >= start && addr_end <= end)
2247                         return true;
2248         }
2249
2250         /* Not found, not a good sign... */
2251         pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2252                 &addr, &addr_end);
2253         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2254         return false;
2255 }
2256
2257 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2258 {
2259         if (efi_enabled(EFI_CONFIG_TABLES))
2260                 return efi_mem_reserve_persistent(addr, size);
2261
2262         return 0;
2263 }
2264
2265 static int __init its_setup_lpi_prop_table(void)
2266 {
2267         if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2268                 u64 val;
2269
2270                 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2271                 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2272
2273                 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2274                 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2275                                                      LPI_PROPBASE_SZ,
2276                                                      MEMREMAP_WB);
2277                 gic_reset_prop_table(gic_rdists->prop_table_va);
2278         } else {
2279                 struct page *page;
2280
2281                 lpi_id_bits = min_t(u32,
2282                                     GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2283                                     ITS_MAX_LPI_NRBITS);
2284                 page = its_allocate_prop_table(GFP_NOWAIT);
2285                 if (!page) {
2286                         pr_err("Failed to allocate PROPBASE\n");
2287                         return -ENOMEM;
2288                 }
2289
2290                 gic_rdists->prop_table_pa = page_to_phys(page);
2291                 gic_rdists->prop_table_va = page_address(page);
2292                 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2293                                           LPI_PROPBASE_SZ));
2294         }
2295
2296         pr_info("GICv3: using LPI property table @%pa\n",
2297                 &gic_rdists->prop_table_pa);
2298
2299         return its_lpi_init(lpi_id_bits);
2300 }
2301
2302 static const char *its_base_type_string[] = {
2303         [GITS_BASER_TYPE_DEVICE]        = "Devices",
2304         [GITS_BASER_TYPE_VCPU]          = "Virtual CPUs",
2305         [GITS_BASER_TYPE_RESERVED3]     = "Reserved (3)",
2306         [GITS_BASER_TYPE_COLLECTION]    = "Interrupt Collections",
2307         [GITS_BASER_TYPE_RESERVED5]     = "Reserved (5)",
2308         [GITS_BASER_TYPE_RESERVED6]     = "Reserved (6)",
2309         [GITS_BASER_TYPE_RESERVED7]     = "Reserved (7)",
2310 };
2311
2312 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2313 {
2314         u32 idx = baser - its->tables;
2315
2316         return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2317 }
2318
2319 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2320                             u64 val)
2321 {
2322         u32 idx = baser - its->tables;
2323
2324         gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2325         baser->val = its_read_baser(its, baser);
2326 }
2327
2328 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2329                            u64 cache, u64 shr, u32 order, bool indirect)
2330 {
2331         u64 val = its_read_baser(its, baser);
2332         u64 esz = GITS_BASER_ENTRY_SIZE(val);
2333         u64 type = GITS_BASER_TYPE(val);
2334         u64 baser_phys, tmp;
2335         u32 alloc_pages, psz;
2336         struct page *page;
2337         void *base;
2338
2339         psz = baser->psz;
2340         alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2341         if (alloc_pages > GITS_BASER_PAGES_MAX) {
2342                 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2343                         &its->phys_base, its_base_type_string[type],
2344                         alloc_pages, GITS_BASER_PAGES_MAX);
2345                 alloc_pages = GITS_BASER_PAGES_MAX;
2346                 order = get_order(GITS_BASER_PAGES_MAX * psz);
2347         }
2348
2349         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2350         if (!page)
2351                 return -ENOMEM;
2352
2353         base = (void *)page_address(page);
2354         baser_phys = virt_to_phys(base);
2355
2356         /* Check if the physical address of the memory is above 48bits */
2357         if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2358
2359                 /* 52bit PA is supported only when PageSize=64K */
2360                 if (psz != SZ_64K) {
2361                         pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2362                         free_pages((unsigned long)base, order);
2363                         return -ENXIO;
2364                 }
2365
2366                 /* Convert 52bit PA to 48bit field */
2367                 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2368         }
2369
2370 retry_baser:
2371         val = (baser_phys                                        |
2372                 (type << GITS_BASER_TYPE_SHIFT)                  |
2373                 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)       |
2374                 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)    |
2375                 cache                                            |
2376                 shr                                              |
2377                 GITS_BASER_VALID);
2378
2379         val |=  indirect ? GITS_BASER_INDIRECT : 0x0;
2380
2381         switch (psz) {
2382         case SZ_4K:
2383                 val |= GITS_BASER_PAGE_SIZE_4K;
2384                 break;
2385         case SZ_16K:
2386                 val |= GITS_BASER_PAGE_SIZE_16K;
2387                 break;
2388         case SZ_64K:
2389                 val |= GITS_BASER_PAGE_SIZE_64K;
2390                 break;
2391         }
2392
2393         if (!shr)
2394                 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2395
2396         its_write_baser(its, baser, val);
2397         tmp = baser->val;
2398
2399         if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2400                 /*
2401                  * Shareability didn't stick. Just use
2402                  * whatever the read reported, which is likely
2403                  * to be the only thing this redistributor
2404                  * supports. If that's zero, make it
2405                  * non-cacheable as well.
2406                  */
2407                 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2408                 if (!shr)
2409                         cache = GITS_BASER_nC;
2410
2411                 goto retry_baser;
2412         }
2413
2414         if (val != tmp) {
2415                 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2416                        &its->phys_base, its_base_type_string[type],
2417                        val, tmp);
2418                 free_pages((unsigned long)base, order);
2419                 return -ENXIO;
2420         }
2421
2422         baser->order = order;
2423         baser->base = base;
2424         baser->psz = psz;
2425         tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2426
2427         pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2428                 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2429                 its_base_type_string[type],
2430                 (unsigned long)virt_to_phys(base),
2431                 indirect ? "indirect" : "flat", (int)esz,
2432                 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2433
2434         return 0;
2435 }
2436
2437 static bool its_parse_indirect_baser(struct its_node *its,
2438                                      struct its_baser *baser,
2439                                      u32 *order, u32 ids)
2440 {
2441         u64 tmp = its_read_baser(its, baser);
2442         u64 type = GITS_BASER_TYPE(tmp);
2443         u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2444         u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2445         u32 new_order = *order;
2446         u32 psz = baser->psz;
2447         bool indirect = false;
2448
2449         /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2450         if ((esz << ids) > (psz * 2)) {
2451                 /*
2452                  * Find out whether hw supports a single or two-level table by
2453                  * table by reading bit at offset '62' after writing '1' to it.
2454                  */
2455                 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2456                 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2457
2458                 if (indirect) {
2459                         /*
2460                          * The size of the lvl2 table is equal to ITS page size
2461                          * which is 'psz'. For computing lvl1 table size,
2462                          * subtract ID bits that sparse lvl2 table from 'ids'
2463                          * which is reported by ITS hardware times lvl1 table
2464                          * entry size.
2465                          */
2466                         ids -= ilog2(psz / (int)esz);
2467                         esz = GITS_LVL1_ENTRY_SIZE;
2468                 }
2469         }
2470
2471         /*
2472          * Allocate as many entries as required to fit the
2473          * range of device IDs that the ITS can grok... The ID
2474          * space being incredibly sparse, this results in a
2475          * massive waste of memory if two-level device table
2476          * feature is not supported by hardware.
2477          */
2478         new_order = max_t(u32, get_order(esz << ids), new_order);
2479         if (new_order > MAX_PAGE_ORDER) {
2480                 new_order = MAX_PAGE_ORDER;
2481                 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2482                 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2483                         &its->phys_base, its_base_type_string[type],
2484                         device_ids(its), ids);
2485         }
2486
2487         *order = new_order;
2488
2489         return indirect;
2490 }
2491
2492 static u32 compute_common_aff(u64 val)
2493 {
2494         u32 aff, clpiaff;
2495
2496         aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2497         clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2498
2499         return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2500 }
2501
2502 static u32 compute_its_aff(struct its_node *its)
2503 {
2504         u64 val;
2505         u32 svpet;
2506
2507         /*
2508          * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2509          * the resulting affinity. We then use that to see if this match
2510          * our own affinity.
2511          */
2512         svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2513         val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2514         val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2515         return compute_common_aff(val);
2516 }
2517
2518 static struct its_node *find_sibling_its(struct its_node *cur_its)
2519 {
2520         struct its_node *its;
2521         u32 aff;
2522
2523         if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2524                 return NULL;
2525
2526         aff = compute_its_aff(cur_its);
2527
2528         list_for_each_entry(its, &its_nodes, entry) {
2529                 u64 baser;
2530
2531                 if (!is_v4_1(its) || its == cur_its)
2532                         continue;
2533
2534                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2535                         continue;
2536
2537                 if (aff != compute_its_aff(its))
2538                         continue;
2539
2540                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2541                 baser = its->tables[2].val;
2542                 if (!(baser & GITS_BASER_VALID))
2543                         continue;
2544
2545                 return its;
2546         }
2547
2548         return NULL;
2549 }
2550
2551 static void its_free_tables(struct its_node *its)
2552 {
2553         int i;
2554
2555         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2556                 if (its->tables[i].base) {
2557                         free_pages((unsigned long)its->tables[i].base,
2558                                    its->tables[i].order);
2559                         its->tables[i].base = NULL;
2560                 }
2561         }
2562 }
2563
2564 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2565 {
2566         u64 psz = SZ_64K;
2567
2568         while (psz) {
2569                 u64 val, gpsz;
2570
2571                 val = its_read_baser(its, baser);
2572                 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2573
2574                 switch (psz) {
2575                 case SZ_64K:
2576                         gpsz = GITS_BASER_PAGE_SIZE_64K;
2577                         break;
2578                 case SZ_16K:
2579                         gpsz = GITS_BASER_PAGE_SIZE_16K;
2580                         break;
2581                 case SZ_4K:
2582                 default:
2583                         gpsz = GITS_BASER_PAGE_SIZE_4K;
2584                         break;
2585                 }
2586
2587                 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2588
2589                 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2590                 its_write_baser(its, baser, val);
2591
2592                 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2593                         break;
2594
2595                 switch (psz) {
2596                 case SZ_64K:
2597                         psz = SZ_16K;
2598                         break;
2599                 case SZ_16K:
2600                         psz = SZ_4K;
2601                         break;
2602                 case SZ_4K:
2603                 default:
2604                         return -1;
2605                 }
2606         }
2607
2608         baser->psz = psz;
2609         return 0;
2610 }
2611
2612 static int its_alloc_tables(struct its_node *its)
2613 {
2614         u64 shr = GITS_BASER_InnerShareable;
2615         u64 cache = GITS_BASER_RaWaWb;
2616         int err, i;
2617
2618         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2619                 /* erratum 24313: ignore memory access type */
2620                 cache = GITS_BASER_nCnB;
2621
2622         if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
2623                 cache = GITS_BASER_nC;
2624                 shr = 0;
2625         }
2626
2627         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2628                 struct its_baser *baser = its->tables + i;
2629                 u64 val = its_read_baser(its, baser);
2630                 u64 type = GITS_BASER_TYPE(val);
2631                 bool indirect = false;
2632                 u32 order;
2633
2634                 if (type == GITS_BASER_TYPE_NONE)
2635                         continue;
2636
2637                 if (its_probe_baser_psz(its, baser)) {
2638                         its_free_tables(its);
2639                         return -ENXIO;
2640                 }
2641
2642                 order = get_order(baser->psz);
2643
2644                 switch (type) {
2645                 case GITS_BASER_TYPE_DEVICE:
2646                         indirect = its_parse_indirect_baser(its, baser, &order,
2647                                                             device_ids(its));
2648                         break;
2649
2650                 case GITS_BASER_TYPE_VCPU:
2651                         if (is_v4_1(its)) {
2652                                 struct its_node *sibling;
2653
2654                                 WARN_ON(i != 2);
2655                                 if ((sibling = find_sibling_its(its))) {
2656                                         *baser = sibling->tables[2];
2657                                         its_write_baser(its, baser, baser->val);
2658                                         continue;
2659                                 }
2660                         }
2661
2662                         indirect = its_parse_indirect_baser(its, baser, &order,
2663                                                             ITS_MAX_VPEID_BITS);
2664                         break;
2665                 }
2666
2667                 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2668                 if (err < 0) {
2669                         its_free_tables(its);
2670                         return err;
2671                 }
2672
2673                 /* Update settings which will be used for next BASERn */
2674                 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2675                 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2676         }
2677
2678         return 0;
2679 }
2680
2681 static u64 inherit_vpe_l1_table_from_its(void)
2682 {
2683         struct its_node *its;
2684         u64 val;
2685         u32 aff;
2686
2687         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2688         aff = compute_common_aff(val);
2689
2690         list_for_each_entry(its, &its_nodes, entry) {
2691                 u64 baser, addr;
2692
2693                 if (!is_v4_1(its))
2694                         continue;
2695
2696                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2697                         continue;
2698
2699                 if (aff != compute_its_aff(its))
2700                         continue;
2701
2702                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2703                 baser = its->tables[2].val;
2704                 if (!(baser & GITS_BASER_VALID))
2705                         continue;
2706
2707                 /* We have a winner! */
2708                 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2709
2710                 val  = GICR_VPROPBASER_4_1_VALID;
2711                 if (baser & GITS_BASER_INDIRECT)
2712                         val |= GICR_VPROPBASER_4_1_INDIRECT;
2713                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2714                                   FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2715                 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2716                 case GIC_PAGE_SIZE_64K:
2717                         addr = GITS_BASER_ADDR_48_to_52(baser);
2718                         break;
2719                 default:
2720                         addr = baser & GENMASK_ULL(47, 12);
2721                         break;
2722                 }
2723                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2724                 if (rdists_support_shareable()) {
2725                         val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2726                                           FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2727                         val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2728                                           FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2729                 }
2730                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2731
2732                 return val;
2733         }
2734
2735         return 0;
2736 }
2737
2738 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2739 {
2740         u32 aff;
2741         u64 val;
2742         int cpu;
2743
2744         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2745         aff = compute_common_aff(val);
2746
2747         for_each_possible_cpu(cpu) {
2748                 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2749
2750                 if (!base || cpu == smp_processor_id())
2751                         continue;
2752
2753                 val = gic_read_typer(base + GICR_TYPER);
2754                 if (aff != compute_common_aff(val))
2755                         continue;
2756
2757                 /*
2758                  * At this point, we have a victim. This particular CPU
2759                  * has already booted, and has an affinity that matches
2760                  * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2761                  * Make sure we don't write the Z bit in that case.
2762                  */
2763                 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2764                 val &= ~GICR_VPROPBASER_4_1_Z;
2765
2766                 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2767                 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2768
2769                 return val;
2770         }
2771
2772         return 0;
2773 }
2774
2775 static bool allocate_vpe_l2_table(int cpu, u32 id)
2776 {
2777         void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2778         unsigned int psz, esz, idx, npg, gpsz;
2779         u64 val;
2780         struct page *page;
2781         __le64 *table;
2782
2783         if (!gic_rdists->has_rvpeid)
2784                 return true;
2785
2786         /* Skip non-present CPUs */
2787         if (!base)
2788                 return true;
2789
2790         val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2791
2792         esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2793         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2794         npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2795
2796         switch (gpsz) {
2797         default:
2798                 WARN_ON(1);
2799                 fallthrough;
2800         case GIC_PAGE_SIZE_4K:
2801                 psz = SZ_4K;
2802                 break;
2803         case GIC_PAGE_SIZE_16K:
2804                 psz = SZ_16K;
2805                 break;
2806         case GIC_PAGE_SIZE_64K:
2807                 psz = SZ_64K;
2808                 break;
2809         }
2810
2811         /* Don't allow vpe_id that exceeds single, flat table limit */
2812         if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2813                 return (id < (npg * psz / (esz * SZ_8)));
2814
2815         /* Compute 1st level table index & check if that exceeds table limit */
2816         idx = id >> ilog2(psz / (esz * SZ_8));
2817         if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2818                 return false;
2819
2820         table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2821
2822         /* Allocate memory for 2nd level table */
2823         if (!table[idx]) {
2824                 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2825                 if (!page)
2826                         return false;
2827
2828                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2829                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2830                         gic_flush_dcache_to_poc(page_address(page), psz);
2831
2832                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2833
2834                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2835                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2836                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2837
2838                 /* Ensure updated table contents are visible to RD hardware */
2839                 dsb(sy);
2840         }
2841
2842         return true;
2843 }
2844
2845 static int allocate_vpe_l1_table(void)
2846 {
2847         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2848         u64 val, gpsz, npg, pa;
2849         unsigned int psz = SZ_64K;
2850         unsigned int np, epp, esz;
2851         struct page *page;
2852
2853         if (!gic_rdists->has_rvpeid)
2854                 return 0;
2855
2856         /*
2857          * if VPENDBASER.Valid is set, disable any previously programmed
2858          * VPE by setting PendingLast while clearing Valid. This has the
2859          * effect of making sure no doorbell will be generated and we can
2860          * then safely clear VPROPBASER.Valid.
2861          */
2862         if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2863                 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2864                                       vlpi_base + GICR_VPENDBASER);
2865
2866         /*
2867          * If we can inherit the configuration from another RD, let's do
2868          * so. Otherwise, we have to go through the allocation process. We
2869          * assume that all RDs have the exact same requirements, as
2870          * nothing will work otherwise.
2871          */
2872         val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2873         if (val & GICR_VPROPBASER_4_1_VALID)
2874                 goto out;
2875
2876         gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2877         if (!gic_data_rdist()->vpe_table_mask)
2878                 return -ENOMEM;
2879
2880         val = inherit_vpe_l1_table_from_its();
2881         if (val & GICR_VPROPBASER_4_1_VALID)
2882                 goto out;
2883
2884         /* First probe the page size */
2885         val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2886         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2887         val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2888         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2889         esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2890
2891         switch (gpsz) {
2892         default:
2893                 gpsz = GIC_PAGE_SIZE_4K;
2894                 fallthrough;
2895         case GIC_PAGE_SIZE_4K:
2896                 psz = SZ_4K;
2897                 break;
2898         case GIC_PAGE_SIZE_16K:
2899                 psz = SZ_16K;
2900                 break;
2901         case GIC_PAGE_SIZE_64K:
2902                 psz = SZ_64K;
2903                 break;
2904         }
2905
2906         /*
2907          * Start populating the register from scratch, including RO fields
2908          * (which we want to print in debug cases...)
2909          */
2910         val = 0;
2911         val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2912         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2913
2914         /* How many entries per GIC page? */
2915         esz++;
2916         epp = psz / (esz * SZ_8);
2917
2918         /*
2919          * If we need more than just a single L1 page, flag the table
2920          * as indirect and compute the number of required L1 pages.
2921          */
2922         if (epp < ITS_MAX_VPEID) {
2923                 int nl2;
2924
2925                 val |= GICR_VPROPBASER_4_1_INDIRECT;
2926
2927                 /* Number of L2 pages required to cover the VPEID space */
2928                 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2929
2930                 /* Number of L1 pages to point to the L2 pages */
2931                 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2932         } else {
2933                 npg = 1;
2934         }
2935
2936         val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2937
2938         /* Right, that's the number of CPU pages we need for L1 */
2939         np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2940
2941         pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2942                  np, npg, psz, epp, esz);
2943         page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2944         if (!page)
2945                 return -ENOMEM;
2946
2947         gic_data_rdist()->vpe_l1_base = page_address(page);
2948         pa = virt_to_phys(page_address(page));
2949         WARN_ON(!IS_ALIGNED(pa, psz));
2950
2951         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2952         if (rdists_support_shareable()) {
2953                 val |= GICR_VPROPBASER_RaWb;
2954                 val |= GICR_VPROPBASER_InnerShareable;
2955         }
2956         val |= GICR_VPROPBASER_4_1_Z;
2957         val |= GICR_VPROPBASER_4_1_VALID;
2958
2959 out:
2960         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2961         cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2962
2963         pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2964                  smp_processor_id(), val,
2965                  cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2966
2967         return 0;
2968 }
2969
2970 static int its_alloc_collections(struct its_node *its)
2971 {
2972         int i;
2973
2974         its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2975                                    GFP_KERNEL);
2976         if (!its->collections)
2977                 return -ENOMEM;
2978
2979         for (i = 0; i < nr_cpu_ids; i++)
2980                 its->collections[i].target_address = ~0ULL;
2981
2982         return 0;
2983 }
2984
2985 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2986 {
2987         struct page *pend_page;
2988
2989         pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2990                                 get_order(LPI_PENDBASE_SZ));
2991         if (!pend_page)
2992                 return NULL;
2993
2994         /* Make sure the GIC will observe the zero-ed page */
2995         gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2996
2997         return pend_page;
2998 }
2999
3000 static void its_free_pending_table(struct page *pt)
3001 {
3002         free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
3003 }
3004
3005 /*
3006  * Booting with kdump and LPIs enabled is generally fine. Any other
3007  * case is wrong in the absence of firmware/EFI support.
3008  */
3009 static bool enabled_lpis_allowed(void)
3010 {
3011         phys_addr_t addr;
3012         u64 val;
3013
3014         /* Check whether the property table is in a reserved region */
3015         val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
3016         addr = val & GENMASK_ULL(51, 12);
3017
3018         return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
3019 }
3020
3021 static int __init allocate_lpi_tables(void)
3022 {
3023         u64 val;
3024         int err, cpu;
3025
3026         /*
3027          * If LPIs are enabled while we run this from the boot CPU,
3028          * flag the RD tables as pre-allocated if the stars do align.
3029          */
3030         val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3031         if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3032                 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3033                                       RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3034                 pr_info("GICv3: Using preallocated redistributor tables\n");
3035         }
3036
3037         err = its_setup_lpi_prop_table();
3038         if (err)
3039                 return err;
3040
3041         /*
3042          * We allocate all the pending tables anyway, as we may have a
3043          * mix of RDs that have had LPIs enabled, and some that
3044          * don't. We'll free the unused ones as each CPU comes online.
3045          */
3046         for_each_possible_cpu(cpu) {
3047                 struct page *pend_page;
3048
3049                 pend_page = its_allocate_pending_table(GFP_NOWAIT);
3050                 if (!pend_page) {
3051                         pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3052                         return -ENOMEM;
3053                 }
3054
3055                 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3056         }
3057
3058         return 0;
3059 }
3060
3061 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3062 {
3063         u32 count = 1000000;    /* 1s! */
3064         bool clean;
3065         u64 val;
3066
3067         do {
3068                 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3069                 clean = !(val & GICR_VPENDBASER_Dirty);
3070                 if (!clean) {
3071                         count--;
3072                         cpu_relax();
3073                         udelay(1);
3074                 }
3075         } while (!clean && count);
3076
3077         if (unlikely(!clean))
3078                 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3079
3080         return val;
3081 }
3082
3083 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3084 {
3085         u64 val;
3086
3087         /* Make sure we wait until the RD is done with the initial scan */
3088         val = read_vpend_dirty_clear(vlpi_base);
3089         val &= ~GICR_VPENDBASER_Valid;
3090         val &= ~clr;
3091         val |= set;
3092         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3093
3094         val = read_vpend_dirty_clear(vlpi_base);
3095         if (unlikely(val & GICR_VPENDBASER_Dirty))
3096                 val |= GICR_VPENDBASER_PendingLast;
3097
3098         return val;
3099 }
3100
3101 static void its_cpu_init_lpis(void)
3102 {
3103         void __iomem *rbase = gic_data_rdist_rd_base();
3104         struct page *pend_page;
3105         phys_addr_t paddr;
3106         u64 val, tmp;
3107
3108         if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3109                 return;
3110
3111         val = readl_relaxed(rbase + GICR_CTLR);
3112         if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3113             (val & GICR_CTLR_ENABLE_LPIS)) {
3114                 /*
3115                  * Check that we get the same property table on all
3116                  * RDs. If we don't, this is hopeless.
3117                  */
3118                 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3119                 paddr &= GENMASK_ULL(51, 12);
3120                 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3121                         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3122
3123                 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3124                 paddr &= GENMASK_ULL(51, 16);
3125
3126                 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3127                 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3128
3129                 goto out;
3130         }
3131
3132         pend_page = gic_data_rdist()->pend_page;
3133         paddr = page_to_phys(pend_page);
3134
3135         /* set PROPBASE */
3136         val = (gic_rdists->prop_table_pa |
3137                GICR_PROPBASER_InnerShareable |
3138                GICR_PROPBASER_RaWaWb |
3139                ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3140
3141         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3142         tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3143
3144         if (!rdists_support_shareable())
3145                 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3146
3147         if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3148                 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3149                         /*
3150                          * The HW reports non-shareable, we must
3151                          * remove the cacheability attributes as
3152                          * well.
3153                          */
3154                         val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3155                                  GICR_PROPBASER_CACHEABILITY_MASK);
3156                         val |= GICR_PROPBASER_nC;
3157                         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3158                 }
3159                 pr_info_once("GIC: using cache flushing for LPI property table\n");
3160                 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3161         }
3162
3163         /* set PENDBASE */
3164         val = (page_to_phys(pend_page) |
3165                GICR_PENDBASER_InnerShareable |
3166                GICR_PENDBASER_RaWaWb);
3167
3168         gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3169         tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3170
3171         if (!rdists_support_shareable())
3172                 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3173
3174         if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3175                 /*
3176                  * The HW reports non-shareable, we must remove the
3177                  * cacheability attributes as well.
3178                  */
3179                 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3180                          GICR_PENDBASER_CACHEABILITY_MASK);
3181                 val |= GICR_PENDBASER_nC;
3182                 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3183         }
3184
3185         /* Enable LPIs */
3186         val = readl_relaxed(rbase + GICR_CTLR);
3187         val |= GICR_CTLR_ENABLE_LPIS;
3188         writel_relaxed(val, rbase + GICR_CTLR);
3189
3190 out:
3191         if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3192                 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3193
3194                 /*
3195                  * It's possible for CPU to receive VLPIs before it is
3196                  * scheduled as a vPE, especially for the first CPU, and the
3197                  * VLPI with INTID larger than 2^(IDbits+1) will be considered
3198                  * as out of range and dropped by GIC.
3199                  * So we initialize IDbits to known value to avoid VLPI drop.
3200                  */
3201                 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3202                 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3203                         smp_processor_id(), val);
3204                 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3205
3206                 /*
3207                  * Also clear Valid bit of GICR_VPENDBASER, in case some
3208                  * ancient programming gets left in and has possibility of
3209                  * corrupting memory.
3210                  */
3211                 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3212         }
3213
3214         if (allocate_vpe_l1_table()) {
3215                 /*
3216                  * If the allocation has failed, we're in massive trouble.
3217                  * Disable direct injection, and pray that no VM was
3218                  * already running...
3219                  */
3220                 gic_rdists->has_rvpeid = false;
3221                 gic_rdists->has_vlpis = false;
3222         }
3223
3224         /* Make sure the GIC has seen the above */
3225         dsb(sy);
3226         gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3227         pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3228                 smp_processor_id(),
3229                 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3230                 "reserved" : "allocated",
3231                 &paddr);
3232 }
3233
3234 static void its_cpu_init_collection(struct its_node *its)
3235 {
3236         int cpu = smp_processor_id();
3237         u64 target;
3238
3239         /* avoid cross node collections and its mapping */
3240         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3241                 struct device_node *cpu_node;
3242
3243                 cpu_node = of_get_cpu_node(cpu, NULL);
3244                 if (its->numa_node != NUMA_NO_NODE &&
3245                         its->numa_node != of_node_to_nid(cpu_node))
3246                         return;
3247         }
3248
3249         /*
3250          * We now have to bind each collection to its target
3251          * redistributor.
3252          */
3253         if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3254                 /*
3255                  * This ITS wants the physical address of the
3256                  * redistributor.
3257                  */
3258                 target = gic_data_rdist()->phys_base;
3259         } else {
3260                 /* This ITS wants a linear CPU number. */
3261                 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3262                 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3263         }
3264
3265         /* Perform collection mapping */
3266         its->collections[cpu].target_address = target;
3267         its->collections[cpu].col_id = cpu;
3268
3269         its_send_mapc(its, &its->collections[cpu], 1);
3270         its_send_invall(its, &its->collections[cpu]);
3271 }
3272
3273 static void its_cpu_init_collections(void)
3274 {
3275         struct its_node *its;
3276
3277         raw_spin_lock(&its_lock);
3278
3279         list_for_each_entry(its, &its_nodes, entry)
3280                 its_cpu_init_collection(its);
3281
3282         raw_spin_unlock(&its_lock);
3283 }
3284
3285 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3286 {
3287         struct its_device *its_dev = NULL, *tmp;
3288         unsigned long flags;
3289
3290         raw_spin_lock_irqsave(&its->lock, flags);
3291
3292         list_for_each_entry(tmp, &its->its_device_list, entry) {
3293                 if (tmp->device_id == dev_id) {
3294                         its_dev = tmp;
3295                         break;
3296                 }
3297         }
3298
3299         raw_spin_unlock_irqrestore(&its->lock, flags);
3300
3301         return its_dev;
3302 }
3303
3304 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3305 {
3306         int i;
3307
3308         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3309                 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3310                         return &its->tables[i];
3311         }
3312
3313         return NULL;
3314 }
3315
3316 static bool its_alloc_table_entry(struct its_node *its,
3317                                   struct its_baser *baser, u32 id)
3318 {
3319         struct page *page;
3320         u32 esz, idx;
3321         __le64 *table;
3322
3323         /* Don't allow device id that exceeds single, flat table limit */
3324         esz = GITS_BASER_ENTRY_SIZE(baser->val);
3325         if (!(baser->val & GITS_BASER_INDIRECT))
3326                 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3327
3328         /* Compute 1st level table index & check if that exceeds table limit */
3329         idx = id >> ilog2(baser->psz / esz);
3330         if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3331                 return false;
3332
3333         table = baser->base;
3334
3335         /* Allocate memory for 2nd level table */
3336         if (!table[idx]) {
3337                 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3338                                         get_order(baser->psz));
3339                 if (!page)
3340                         return false;
3341
3342                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3343                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3344                         gic_flush_dcache_to_poc(page_address(page), baser->psz);
3345
3346                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3347
3348                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3349                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3350                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3351
3352                 /* Ensure updated table contents are visible to ITS hardware */
3353                 dsb(sy);
3354         }
3355
3356         return true;
3357 }
3358
3359 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3360 {
3361         struct its_baser *baser;
3362
3363         baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3364
3365         /* Don't allow device id that exceeds ITS hardware limit */
3366         if (!baser)
3367                 return (ilog2(dev_id) < device_ids(its));
3368
3369         return its_alloc_table_entry(its, baser, dev_id);
3370 }
3371
3372 static bool its_alloc_vpe_table(u32 vpe_id)
3373 {
3374         struct its_node *its;
3375         int cpu;
3376
3377         /*
3378          * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3379          * could try and only do it on ITSs corresponding to devices
3380          * that have interrupts targeted at this VPE, but the
3381          * complexity becomes crazy (and you have tons of memory
3382          * anyway, right?).
3383          */
3384         list_for_each_entry(its, &its_nodes, entry) {
3385                 struct its_baser *baser;
3386
3387                 if (!is_v4(its))
3388                         continue;
3389
3390                 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3391                 if (!baser)
3392                         return false;
3393
3394                 if (!its_alloc_table_entry(its, baser, vpe_id))
3395                         return false;
3396         }
3397
3398         /* Non v4.1? No need to iterate RDs and go back early. */
3399         if (!gic_rdists->has_rvpeid)
3400                 return true;
3401
3402         /*
3403          * Make sure the L2 tables are allocated for all copies of
3404          * the L1 table on *all* v4.1 RDs.
3405          */
3406         for_each_possible_cpu(cpu) {
3407                 if (!allocate_vpe_l2_table(cpu, vpe_id))
3408                         return false;
3409         }
3410
3411         return true;
3412 }
3413
3414 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3415                                             int nvecs, bool alloc_lpis)
3416 {
3417         struct its_device *dev;
3418         unsigned long *lpi_map = NULL;
3419         unsigned long flags;
3420         u16 *col_map = NULL;
3421         void *itt;
3422         int lpi_base;
3423         int nr_lpis;
3424         int nr_ites;
3425         int sz;
3426
3427         if (!its_alloc_device_table(its, dev_id))
3428                 return NULL;
3429
3430         if (WARN_ON(!is_power_of_2(nvecs)))
3431                 nvecs = roundup_pow_of_two(nvecs);
3432
3433         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3434         /*
3435          * Even if the device wants a single LPI, the ITT must be
3436          * sized as a power of two (and you need at least one bit...).
3437          */
3438         nr_ites = max(2, nvecs);
3439         sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3440         sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3441         itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3442         if (alloc_lpis) {
3443                 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3444                 if (lpi_map)
3445                         col_map = kcalloc(nr_lpis, sizeof(*col_map),
3446                                           GFP_KERNEL);
3447         } else {
3448                 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3449                 nr_lpis = 0;
3450                 lpi_base = 0;
3451         }
3452
3453         if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3454                 kfree(dev);
3455                 kfree(itt);
3456                 bitmap_free(lpi_map);
3457                 kfree(col_map);
3458                 return NULL;
3459         }
3460
3461         gic_flush_dcache_to_poc(itt, sz);
3462
3463         dev->its = its;
3464         dev->itt = itt;
3465         dev->nr_ites = nr_ites;
3466         dev->event_map.lpi_map = lpi_map;
3467         dev->event_map.col_map = col_map;
3468         dev->event_map.lpi_base = lpi_base;
3469         dev->event_map.nr_lpis = nr_lpis;
3470         raw_spin_lock_init(&dev->event_map.vlpi_lock);
3471         dev->device_id = dev_id;
3472         INIT_LIST_HEAD(&dev->entry);
3473
3474         raw_spin_lock_irqsave(&its->lock, flags);
3475         list_add(&dev->entry, &its->its_device_list);
3476         raw_spin_unlock_irqrestore(&its->lock, flags);
3477
3478         /* Map device to its ITT */
3479         its_send_mapd(dev, 1);
3480
3481         return dev;
3482 }
3483
3484 static void its_free_device(struct its_device *its_dev)
3485 {
3486         unsigned long flags;
3487
3488         raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3489         list_del(&its_dev->entry);
3490         raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3491         kfree(its_dev->event_map.col_map);
3492         kfree(its_dev->itt);
3493         kfree(its_dev);
3494 }
3495
3496 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3497 {
3498         int idx;
3499
3500         /* Find a free LPI region in lpi_map and allocate them. */
3501         idx = bitmap_find_free_region(dev->event_map.lpi_map,
3502                                       dev->event_map.nr_lpis,
3503                                       get_count_order(nvecs));
3504         if (idx < 0)
3505                 return -ENOSPC;
3506
3507         *hwirq = dev->event_map.lpi_base + idx;
3508
3509         return 0;
3510 }
3511
3512 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3513                            int nvec, msi_alloc_info_t *info)
3514 {
3515         struct its_node *its;
3516         struct its_device *its_dev;
3517         struct msi_domain_info *msi_info;
3518         u32 dev_id;
3519         int err = 0;
3520
3521         /*
3522          * We ignore "dev" entirely, and rely on the dev_id that has
3523          * been passed via the scratchpad. This limits this domain's
3524          * usefulness to upper layers that definitely know that they
3525          * are built on top of the ITS.
3526          */
3527         dev_id = info->scratchpad[0].ul;
3528
3529         msi_info = msi_get_domain_info(domain);
3530         its = msi_info->data;
3531
3532         if (!gic_rdists->has_direct_lpi &&
3533             vpe_proxy.dev &&
3534             vpe_proxy.dev->its == its &&
3535             dev_id == vpe_proxy.dev->device_id) {
3536                 /* Bad luck. Get yourself a better implementation */
3537                 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3538                           dev_id);
3539                 return -EINVAL;
3540         }
3541
3542         mutex_lock(&its->dev_alloc_lock);
3543         its_dev = its_find_device(its, dev_id);
3544         if (its_dev) {
3545                 /*
3546                  * We already have seen this ID, probably through
3547                  * another alias (PCI bridge of some sort). No need to
3548                  * create the device.
3549                  */
3550                 its_dev->shared = true;
3551                 pr_debug("Reusing ITT for devID %x\n", dev_id);
3552                 goto out;
3553         }
3554
3555         its_dev = its_create_device(its, dev_id, nvec, true);
3556         if (!its_dev) {
3557                 err = -ENOMEM;
3558                 goto out;
3559         }
3560
3561         if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3562                 its_dev->shared = true;
3563
3564         pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3565 out:
3566         mutex_unlock(&its->dev_alloc_lock);
3567         info->scratchpad[0].ptr = its_dev;
3568         return err;
3569 }
3570
3571 static struct msi_domain_ops its_msi_domain_ops = {
3572         .msi_prepare    = its_msi_prepare,
3573 };
3574
3575 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3576                                     unsigned int virq,
3577                                     irq_hw_number_t hwirq)
3578 {
3579         struct irq_fwspec fwspec;
3580
3581         if (irq_domain_get_of_node(domain->parent)) {
3582                 fwspec.fwnode = domain->parent->fwnode;
3583                 fwspec.param_count = 3;
3584                 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3585                 fwspec.param[1] = hwirq;
3586                 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3587         } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3588                 fwspec.fwnode = domain->parent->fwnode;
3589                 fwspec.param_count = 2;
3590                 fwspec.param[0] = hwirq;
3591                 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3592         } else {
3593                 return -EINVAL;
3594         }
3595
3596         return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3597 }
3598
3599 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3600                                 unsigned int nr_irqs, void *args)
3601 {
3602         msi_alloc_info_t *info = args;
3603         struct its_device *its_dev = info->scratchpad[0].ptr;
3604         struct its_node *its = its_dev->its;
3605         struct irq_data *irqd;
3606         irq_hw_number_t hwirq;
3607         int err;
3608         int i;
3609
3610         err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3611         if (err)
3612                 return err;
3613
3614         err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3615         if (err)
3616                 return err;
3617
3618         for (i = 0; i < nr_irqs; i++) {
3619                 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3620                 if (err)
3621                         return err;
3622
3623                 irq_domain_set_hwirq_and_chip(domain, virq + i,
3624                                               hwirq + i, &its_irq_chip, its_dev);
3625                 irqd = irq_get_irq_data(virq + i);
3626                 irqd_set_single_target(irqd);
3627                 irqd_set_affinity_on_activate(irqd);
3628                 irqd_set_resend_when_in_progress(irqd);
3629                 pr_debug("ID:%d pID:%d vID:%d\n",
3630                          (int)(hwirq + i - its_dev->event_map.lpi_base),
3631                          (int)(hwirq + i), virq + i);
3632         }
3633
3634         return 0;
3635 }
3636
3637 static int its_irq_domain_activate(struct irq_domain *domain,
3638                                    struct irq_data *d, bool reserve)
3639 {
3640         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3641         u32 event = its_get_event_id(d);
3642         int cpu;
3643
3644         cpu = its_select_cpu(d, cpu_online_mask);
3645         if (cpu < 0 || cpu >= nr_cpu_ids)
3646                 return -EINVAL;
3647
3648         its_inc_lpi_count(d, cpu);
3649         its_dev->event_map.col_map[event] = cpu;
3650         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3651
3652         /* Map the GIC IRQ and event to the device */
3653         its_send_mapti(its_dev, d->hwirq, event);
3654         return 0;
3655 }
3656
3657 static void its_irq_domain_deactivate(struct irq_domain *domain,
3658                                       struct irq_data *d)
3659 {
3660         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3661         u32 event = its_get_event_id(d);
3662
3663         its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3664         /* Stop the delivery of interrupts */
3665         its_send_discard(its_dev, event);
3666 }
3667
3668 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3669                                 unsigned int nr_irqs)
3670 {
3671         struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3672         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3673         struct its_node *its = its_dev->its;
3674         int i;
3675
3676         bitmap_release_region(its_dev->event_map.lpi_map,
3677                               its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3678                               get_count_order(nr_irqs));
3679
3680         for (i = 0; i < nr_irqs; i++) {
3681                 struct irq_data *data = irq_domain_get_irq_data(domain,
3682                                                                 virq + i);
3683                 /* Nuke the entry in the domain */
3684                 irq_domain_reset_irq_data(data);
3685         }
3686
3687         mutex_lock(&its->dev_alloc_lock);
3688
3689         /*
3690          * If all interrupts have been freed, start mopping the
3691          * floor. This is conditioned on the device not being shared.
3692          */
3693         if (!its_dev->shared &&
3694             bitmap_empty(its_dev->event_map.lpi_map,
3695                          its_dev->event_map.nr_lpis)) {
3696                 its_lpi_free(its_dev->event_map.lpi_map,
3697                              its_dev->event_map.lpi_base,
3698                              its_dev->event_map.nr_lpis);
3699
3700                 /* Unmap device/itt */
3701                 its_send_mapd(its_dev, 0);
3702                 its_free_device(its_dev);
3703         }
3704
3705         mutex_unlock(&its->dev_alloc_lock);
3706
3707         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3708 }
3709
3710 static const struct irq_domain_ops its_domain_ops = {
3711         .alloc                  = its_irq_domain_alloc,
3712         .free                   = its_irq_domain_free,
3713         .activate               = its_irq_domain_activate,
3714         .deactivate             = its_irq_domain_deactivate,
3715 };
3716
3717 /*
3718  * This is insane.
3719  *
3720  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3721  * likely), the only way to perform an invalidate is to use a fake
3722  * device to issue an INV command, implying that the LPI has first
3723  * been mapped to some event on that device. Since this is not exactly
3724  * cheap, we try to keep that mapping around as long as possible, and
3725  * only issue an UNMAP if we're short on available slots.
3726  *
3727  * Broken by design(tm).
3728  *
3729  * GICv4.1, on the other hand, mandates that we're able to invalidate
3730  * by writing to a MMIO register. It doesn't implement the whole of
3731  * DirectLPI, but that's good enough. And most of the time, we don't
3732  * even have to invalidate anything, as the redistributor can be told
3733  * whether to generate a doorbell or not (we thus leave it enabled,
3734  * always).
3735  */
3736 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3737 {
3738         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3739         if (gic_rdists->has_rvpeid)
3740                 return;
3741
3742         /* Already unmapped? */
3743         if (vpe->vpe_proxy_event == -1)
3744                 return;
3745
3746         its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3747         vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3748
3749         /*
3750          * We don't track empty slots at all, so let's move the
3751          * next_victim pointer if we can quickly reuse that slot
3752          * instead of nuking an existing entry. Not clear that this is
3753          * always a win though, and this might just generate a ripple
3754          * effect... Let's just hope VPEs don't migrate too often.
3755          */
3756         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3757                 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3758
3759         vpe->vpe_proxy_event = -1;
3760 }
3761
3762 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3763 {
3764         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3765         if (gic_rdists->has_rvpeid)
3766                 return;
3767
3768         if (!gic_rdists->has_direct_lpi) {
3769                 unsigned long flags;
3770
3771                 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3772                 its_vpe_db_proxy_unmap_locked(vpe);
3773                 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3774         }
3775 }
3776
3777 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3778 {
3779         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3780         if (gic_rdists->has_rvpeid)
3781                 return;
3782
3783         /* Already mapped? */
3784         if (vpe->vpe_proxy_event != -1)
3785                 return;
3786
3787         /* This slot was already allocated. Kick the other VPE out. */
3788         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3789                 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3790
3791         /* Map the new VPE instead */
3792         vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3793         vpe->vpe_proxy_event = vpe_proxy.next_victim;
3794         vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3795
3796         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3797         its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3798 }
3799
3800 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3801 {
3802         unsigned long flags;
3803         struct its_collection *target_col;
3804
3805         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3806         if (gic_rdists->has_rvpeid)
3807                 return;
3808
3809         if (gic_rdists->has_direct_lpi) {
3810                 void __iomem *rdbase;
3811
3812                 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3813                 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3814                 wait_for_syncr(rdbase);
3815
3816                 return;
3817         }
3818
3819         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3820
3821         its_vpe_db_proxy_map_locked(vpe);
3822
3823         target_col = &vpe_proxy.dev->its->collections[to];
3824         its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3825         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3826
3827         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3828 }
3829
3830 static int its_vpe_set_affinity(struct irq_data *d,
3831                                 const struct cpumask *mask_val,
3832                                 bool force)
3833 {
3834         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3835         struct cpumask common, *table_mask;
3836         unsigned long flags;
3837         int from, cpu;
3838
3839         /*
3840          * Changing affinity is mega expensive, so let's be as lazy as
3841          * we can and only do it if we really have to. Also, if mapped
3842          * into the proxy device, we need to move the doorbell
3843          * interrupt to its new location.
3844          *
3845          * Another thing is that changing the affinity of a vPE affects
3846          * *other interrupts* such as all the vLPIs that are routed to
3847          * this vPE. This means that the irq_desc lock is not enough to
3848          * protect us, and that we must ensure nobody samples vpe->col_idx
3849          * during the update, hence the lock below which must also be
3850          * taken on any vLPI handling path that evaluates vpe->col_idx.
3851          */
3852         from = vpe_to_cpuid_lock(vpe, &flags);
3853         table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3854
3855         /*
3856          * If we are offered another CPU in the same GICv4.1 ITS
3857          * affinity, pick this one. Otherwise, any CPU will do.
3858          */
3859         if (table_mask && cpumask_and(&common, mask_val, table_mask))
3860                 cpu = cpumask_test_cpu(from, &common) ? from : cpumask_first(&common);
3861         else
3862                 cpu = cpumask_first(mask_val);
3863
3864         if (from == cpu)
3865                 goto out;
3866
3867         vpe->col_idx = cpu;
3868
3869         its_send_vmovp(vpe);
3870         its_vpe_db_proxy_move(vpe, from, cpu);
3871
3872 out:
3873         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3874         vpe_to_cpuid_unlock(vpe, flags);
3875
3876         return IRQ_SET_MASK_OK_DONE;
3877 }
3878
3879 static void its_wait_vpt_parse_complete(void)
3880 {
3881         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3882         u64 val;
3883
3884         if (!gic_rdists->has_vpend_valid_dirty)
3885                 return;
3886
3887         WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3888                                                        val,
3889                                                        !(val & GICR_VPENDBASER_Dirty),
3890                                                        1, 500));
3891 }
3892
3893 static void its_vpe_schedule(struct its_vpe *vpe)
3894 {
3895         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3896         u64 val;
3897
3898         /* Schedule the VPE */
3899         val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3900                 GENMASK_ULL(51, 12);
3901         val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3902         if (rdists_support_shareable()) {
3903                 val |= GICR_VPROPBASER_RaWb;
3904                 val |= GICR_VPROPBASER_InnerShareable;
3905         }
3906         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3907
3908         val  = virt_to_phys(page_address(vpe->vpt_page)) &
3909                 GENMASK_ULL(51, 16);
3910         if (rdists_support_shareable()) {
3911                 val |= GICR_VPENDBASER_RaWaWb;
3912                 val |= GICR_VPENDBASER_InnerShareable;
3913         }
3914         /*
3915          * There is no good way of finding out if the pending table is
3916          * empty as we can race against the doorbell interrupt very
3917          * easily. So in the end, vpe->pending_last is only an
3918          * indication that the vcpu has something pending, not one
3919          * that the pending table is empty. A good implementation
3920          * would be able to read its coarse map pretty quickly anyway,
3921          * making this a tolerable issue.
3922          */
3923         val |= GICR_VPENDBASER_PendingLast;
3924         val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3925         val |= GICR_VPENDBASER_Valid;
3926         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3927 }
3928
3929 static void its_vpe_deschedule(struct its_vpe *vpe)
3930 {
3931         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3932         u64 val;
3933
3934         val = its_clear_vpend_valid(vlpi_base, 0, 0);
3935
3936         vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3937         vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3938 }
3939
3940 static void its_vpe_invall(struct its_vpe *vpe)
3941 {
3942         struct its_node *its;
3943
3944         list_for_each_entry(its, &its_nodes, entry) {
3945                 if (!is_v4(its))
3946                         continue;
3947
3948                 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3949                         continue;
3950
3951                 /*
3952                  * Sending a VINVALL to a single ITS is enough, as all
3953                  * we need is to reach the redistributors.
3954                  */
3955                 its_send_vinvall(its, vpe);
3956                 return;
3957         }
3958 }
3959
3960 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3961 {
3962         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3963         struct its_cmd_info *info = vcpu_info;
3964
3965         switch (info->cmd_type) {
3966         case SCHEDULE_VPE:
3967                 its_vpe_schedule(vpe);
3968                 return 0;
3969
3970         case DESCHEDULE_VPE:
3971                 its_vpe_deschedule(vpe);
3972                 return 0;
3973
3974         case COMMIT_VPE:
3975                 its_wait_vpt_parse_complete();
3976                 return 0;
3977
3978         case INVALL_VPE:
3979                 its_vpe_invall(vpe);
3980                 return 0;
3981
3982         default:
3983                 return -EINVAL;
3984         }
3985 }
3986
3987 static void its_vpe_send_cmd(struct its_vpe *vpe,
3988                              void (*cmd)(struct its_device *, u32))
3989 {
3990         unsigned long flags;
3991
3992         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3993
3994         its_vpe_db_proxy_map_locked(vpe);
3995         cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3996
3997         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3998 }
3999
4000 static void its_vpe_send_inv(struct irq_data *d)
4001 {
4002         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4003
4004         if (gic_rdists->has_direct_lpi)
4005                 __direct_lpi_inv(d, d->parent_data->hwirq);
4006         else
4007                 its_vpe_send_cmd(vpe, its_send_inv);
4008 }
4009
4010 static void its_vpe_mask_irq(struct irq_data *d)
4011 {
4012         /*
4013          * We need to unmask the LPI, which is described by the parent
4014          * irq_data. Instead of calling into the parent (which won't
4015          * exactly do the right thing, let's simply use the
4016          * parent_data pointer. Yes, I'm naughty.
4017          */
4018         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4019         its_vpe_send_inv(d);
4020 }
4021
4022 static void its_vpe_unmask_irq(struct irq_data *d)
4023 {
4024         /* Same hack as above... */
4025         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4026         its_vpe_send_inv(d);
4027 }
4028
4029 static int its_vpe_set_irqchip_state(struct irq_data *d,
4030                                      enum irqchip_irq_state which,
4031                                      bool state)
4032 {
4033         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4034
4035         if (which != IRQCHIP_STATE_PENDING)
4036                 return -EINVAL;
4037
4038         if (gic_rdists->has_direct_lpi) {
4039                 void __iomem *rdbase;
4040
4041                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4042                 if (state) {
4043                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4044                 } else {
4045                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4046                         wait_for_syncr(rdbase);
4047                 }
4048         } else {
4049                 if (state)
4050                         its_vpe_send_cmd(vpe, its_send_int);
4051                 else
4052                         its_vpe_send_cmd(vpe, its_send_clear);
4053         }
4054
4055         return 0;
4056 }
4057
4058 static int its_vpe_retrigger(struct irq_data *d)
4059 {
4060         return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4061 }
4062
4063 static struct irq_chip its_vpe_irq_chip = {
4064         .name                   = "GICv4-vpe",
4065         .irq_mask               = its_vpe_mask_irq,
4066         .irq_unmask             = its_vpe_unmask_irq,
4067         .irq_eoi                = irq_chip_eoi_parent,
4068         .irq_set_affinity       = its_vpe_set_affinity,
4069         .irq_retrigger          = its_vpe_retrigger,
4070         .irq_set_irqchip_state  = its_vpe_set_irqchip_state,
4071         .irq_set_vcpu_affinity  = its_vpe_set_vcpu_affinity,
4072 };
4073
4074 static struct its_node *find_4_1_its(void)
4075 {
4076         static struct its_node *its = NULL;
4077
4078         if (!its) {
4079                 list_for_each_entry(its, &its_nodes, entry) {
4080                         if (is_v4_1(its))
4081                                 return its;
4082                 }
4083
4084                 /* Oops? */
4085                 its = NULL;
4086         }
4087
4088         return its;
4089 }
4090
4091 static void its_vpe_4_1_send_inv(struct irq_data *d)
4092 {
4093         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4094         struct its_node *its;
4095
4096         /*
4097          * GICv4.1 wants doorbells to be invalidated using the
4098          * INVDB command in order to be broadcast to all RDs. Send
4099          * it to the first valid ITS, and let the HW do its magic.
4100          */
4101         its = find_4_1_its();
4102         if (its)
4103                 its_send_invdb(its, vpe);
4104 }
4105
4106 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4107 {
4108         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4109         its_vpe_4_1_send_inv(d);
4110 }
4111
4112 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4113 {
4114         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4115         its_vpe_4_1_send_inv(d);
4116 }
4117
4118 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4119                                  struct its_cmd_info *info)
4120 {
4121         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4122         u64 val = 0;
4123
4124         /* Schedule the VPE */
4125         val |= GICR_VPENDBASER_Valid;
4126         val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4127         val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4128         val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4129
4130         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4131 }
4132
4133 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4134                                    struct its_cmd_info *info)
4135 {
4136         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4137         u64 val;
4138
4139         if (info->req_db) {
4140                 unsigned long flags;
4141
4142                 /*
4143                  * vPE is going to block: make the vPE non-resident with
4144                  * PendingLast clear and DB set. The GIC guarantees that if
4145                  * we read-back PendingLast clear, then a doorbell will be
4146                  * delivered when an interrupt comes.
4147                  *
4148                  * Note the locking to deal with the concurrent update of
4149                  * pending_last from the doorbell interrupt handler that can
4150                  * run concurrently.
4151                  */
4152                 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4153                 val = its_clear_vpend_valid(vlpi_base,
4154                                             GICR_VPENDBASER_PendingLast,
4155                                             GICR_VPENDBASER_4_1_DB);
4156                 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4157                 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4158         } else {
4159                 /*
4160                  * We're not blocking, so just make the vPE non-resident
4161                  * with PendingLast set, indicating that we'll be back.
4162                  */
4163                 val = its_clear_vpend_valid(vlpi_base,
4164                                             0,
4165                                             GICR_VPENDBASER_PendingLast);
4166                 vpe->pending_last = true;
4167         }
4168 }
4169
4170 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4171 {
4172         void __iomem *rdbase;
4173         unsigned long flags;
4174         u64 val;
4175         int cpu;
4176
4177         val  = GICR_INVALLR_V;
4178         val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4179
4180         /* Target the redistributor this vPE is currently known on */
4181         cpu = vpe_to_cpuid_lock(vpe, &flags);
4182         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4183         rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4184         gic_write_lpir(val, rdbase + GICR_INVALLR);
4185
4186         wait_for_syncr(rdbase);
4187         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4188         vpe_to_cpuid_unlock(vpe, flags);
4189 }
4190
4191 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4192 {
4193         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4194         struct its_cmd_info *info = vcpu_info;
4195
4196         switch (info->cmd_type) {
4197         case SCHEDULE_VPE:
4198                 its_vpe_4_1_schedule(vpe, info);
4199                 return 0;
4200
4201         case DESCHEDULE_VPE:
4202                 its_vpe_4_1_deschedule(vpe, info);
4203                 return 0;
4204
4205         case COMMIT_VPE:
4206                 its_wait_vpt_parse_complete();
4207                 return 0;
4208
4209         case INVALL_VPE:
4210                 its_vpe_4_1_invall(vpe);
4211                 return 0;
4212
4213         default:
4214                 return -EINVAL;
4215         }
4216 }
4217
4218 static struct irq_chip its_vpe_4_1_irq_chip = {
4219         .name                   = "GICv4.1-vpe",
4220         .irq_mask               = its_vpe_4_1_mask_irq,
4221         .irq_unmask             = its_vpe_4_1_unmask_irq,
4222         .irq_eoi                = irq_chip_eoi_parent,
4223         .irq_set_affinity       = its_vpe_set_affinity,
4224         .irq_set_vcpu_affinity  = its_vpe_4_1_set_vcpu_affinity,
4225 };
4226
4227 static void its_configure_sgi(struct irq_data *d, bool clear)
4228 {
4229         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4230         struct its_cmd_desc desc;
4231
4232         desc.its_vsgi_cmd.vpe = vpe;
4233         desc.its_vsgi_cmd.sgi = d->hwirq;
4234         desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4235         desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4236         desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4237         desc.its_vsgi_cmd.clear = clear;
4238
4239         /*
4240          * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4241          * destination VPE is mapped there. Since we map them eagerly at
4242          * activation time, we're pretty sure the first GICv4.1 ITS will do.
4243          */
4244         its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4245 }
4246
4247 static void its_sgi_mask_irq(struct irq_data *d)
4248 {
4249         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4250
4251         vpe->sgi_config[d->hwirq].enabled = false;
4252         its_configure_sgi(d, false);
4253 }
4254
4255 static void its_sgi_unmask_irq(struct irq_data *d)
4256 {
4257         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4258
4259         vpe->sgi_config[d->hwirq].enabled = true;
4260         its_configure_sgi(d, false);
4261 }
4262
4263 static int its_sgi_set_affinity(struct irq_data *d,
4264                                 const struct cpumask *mask_val,
4265                                 bool force)
4266 {
4267         /*
4268          * There is no notion of affinity for virtual SGIs, at least
4269          * not on the host (since they can only be targeting a vPE).
4270          * Tell the kernel we've done whatever it asked for.
4271          */
4272         irq_data_update_effective_affinity(d, mask_val);
4273         return IRQ_SET_MASK_OK;
4274 }
4275
4276 static int its_sgi_set_irqchip_state(struct irq_data *d,
4277                                      enum irqchip_irq_state which,
4278                                      bool state)
4279 {
4280         if (which != IRQCHIP_STATE_PENDING)
4281                 return -EINVAL;
4282
4283         if (state) {
4284                 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4285                 struct its_node *its = find_4_1_its();
4286                 u64 val;
4287
4288                 val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4289                 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4290                 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4291         } else {
4292                 its_configure_sgi(d, true);
4293         }
4294
4295         return 0;
4296 }
4297
4298 static int its_sgi_get_irqchip_state(struct irq_data *d,
4299                                      enum irqchip_irq_state which, bool *val)
4300 {
4301         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4302         void __iomem *base;
4303         unsigned long flags;
4304         u32 count = 1000000;    /* 1s! */
4305         u32 status;
4306         int cpu;
4307
4308         if (which != IRQCHIP_STATE_PENDING)
4309                 return -EINVAL;
4310
4311         /*
4312          * Locking galore! We can race against two different events:
4313          *
4314          * - Concurrent vPE affinity change: we must make sure it cannot
4315          *   happen, or we'll talk to the wrong redistributor. This is
4316          *   identical to what happens with vLPIs.
4317          *
4318          * - Concurrent VSGIPENDR access: As it involves accessing two
4319          *   MMIO registers, this must be made atomic one way or another.
4320          */
4321         cpu = vpe_to_cpuid_lock(vpe, &flags);
4322         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4323         base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4324         writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4325         do {
4326                 status = readl_relaxed(base + GICR_VSGIPENDR);
4327                 if (!(status & GICR_VSGIPENDR_BUSY))
4328                         goto out;
4329
4330                 count--;
4331                 if (!count) {
4332                         pr_err_ratelimited("Unable to get SGI status\n");
4333                         goto out;
4334                 }
4335                 cpu_relax();
4336                 udelay(1);
4337         } while (count);
4338
4339 out:
4340         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4341         vpe_to_cpuid_unlock(vpe, flags);
4342
4343         if (!count)
4344                 return -ENXIO;
4345
4346         *val = !!(status & (1 << d->hwirq));
4347
4348         return 0;
4349 }
4350
4351 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4352 {
4353         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4354         struct its_cmd_info *info = vcpu_info;
4355
4356         switch (info->cmd_type) {
4357         case PROP_UPDATE_VSGI:
4358                 vpe->sgi_config[d->hwirq].priority = info->priority;
4359                 vpe->sgi_config[d->hwirq].group = info->group;
4360                 its_configure_sgi(d, false);
4361                 return 0;
4362
4363         default:
4364                 return -EINVAL;
4365         }
4366 }
4367
4368 static struct irq_chip its_sgi_irq_chip = {
4369         .name                   = "GICv4.1-sgi",
4370         .irq_mask               = its_sgi_mask_irq,
4371         .irq_unmask             = its_sgi_unmask_irq,
4372         .irq_set_affinity       = its_sgi_set_affinity,
4373         .irq_set_irqchip_state  = its_sgi_set_irqchip_state,
4374         .irq_get_irqchip_state  = its_sgi_get_irqchip_state,
4375         .irq_set_vcpu_affinity  = its_sgi_set_vcpu_affinity,
4376 };
4377
4378 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4379                                     unsigned int virq, unsigned int nr_irqs,
4380                                     void *args)
4381 {
4382         struct its_vpe *vpe = args;
4383         int i;
4384
4385         /* Yes, we do want 16 SGIs */
4386         WARN_ON(nr_irqs != 16);
4387
4388         for (i = 0; i < 16; i++) {
4389                 vpe->sgi_config[i].priority = 0;
4390                 vpe->sgi_config[i].enabled = false;
4391                 vpe->sgi_config[i].group = false;
4392
4393                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4394                                               &its_sgi_irq_chip, vpe);
4395                 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4396         }
4397
4398         return 0;
4399 }
4400
4401 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4402                                     unsigned int virq,
4403                                     unsigned int nr_irqs)
4404 {
4405         /* Nothing to do */
4406 }
4407
4408 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4409                                        struct irq_data *d, bool reserve)
4410 {
4411         /* Write out the initial SGI configuration */
4412         its_configure_sgi(d, false);
4413         return 0;
4414 }
4415
4416 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4417                                           struct irq_data *d)
4418 {
4419         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4420
4421         /*
4422          * The VSGI command is awkward:
4423          *
4424          * - To change the configuration, CLEAR must be set to false,
4425          *   leaving the pending bit unchanged.
4426          * - To clear the pending bit, CLEAR must be set to true, leaving
4427          *   the configuration unchanged.
4428          *
4429          * You just can't do both at once, hence the two commands below.
4430          */
4431         vpe->sgi_config[d->hwirq].enabled = false;
4432         its_configure_sgi(d, false);
4433         its_configure_sgi(d, true);
4434 }
4435
4436 static const struct irq_domain_ops its_sgi_domain_ops = {
4437         .alloc          = its_sgi_irq_domain_alloc,
4438         .free           = its_sgi_irq_domain_free,
4439         .activate       = its_sgi_irq_domain_activate,
4440         .deactivate     = its_sgi_irq_domain_deactivate,
4441 };
4442
4443 static int its_vpe_id_alloc(void)
4444 {
4445         return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL);
4446 }
4447
4448 static void its_vpe_id_free(u16 id)
4449 {
4450         ida_free(&its_vpeid_ida, id);
4451 }
4452
4453 static int its_vpe_init(struct its_vpe *vpe)
4454 {
4455         struct page *vpt_page;
4456         int vpe_id;
4457
4458         /* Allocate vpe_id */
4459         vpe_id = its_vpe_id_alloc();
4460         if (vpe_id < 0)
4461                 return vpe_id;
4462
4463         /* Allocate VPT */
4464         vpt_page = its_allocate_pending_table(GFP_KERNEL);
4465         if (!vpt_page) {
4466                 its_vpe_id_free(vpe_id);
4467                 return -ENOMEM;
4468         }
4469
4470         if (!its_alloc_vpe_table(vpe_id)) {
4471                 its_vpe_id_free(vpe_id);
4472                 its_free_pending_table(vpt_page);
4473                 return -ENOMEM;
4474         }
4475
4476         raw_spin_lock_init(&vpe->vpe_lock);
4477         vpe->vpe_id = vpe_id;
4478         vpe->vpt_page = vpt_page;
4479         if (gic_rdists->has_rvpeid)
4480                 atomic_set(&vpe->vmapp_count, 0);
4481         else
4482                 vpe->vpe_proxy_event = -1;
4483
4484         return 0;
4485 }
4486
4487 static void its_vpe_teardown(struct its_vpe *vpe)
4488 {
4489         its_vpe_db_proxy_unmap(vpe);
4490         its_vpe_id_free(vpe->vpe_id);
4491         its_free_pending_table(vpe->vpt_page);
4492 }
4493
4494 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4495                                     unsigned int virq,
4496                                     unsigned int nr_irqs)
4497 {
4498         struct its_vm *vm = domain->host_data;
4499         int i;
4500
4501         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4502
4503         for (i = 0; i < nr_irqs; i++) {
4504                 struct irq_data *data = irq_domain_get_irq_data(domain,
4505                                                                 virq + i);
4506                 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4507
4508                 BUG_ON(vm != vpe->its_vm);
4509
4510                 clear_bit(data->hwirq, vm->db_bitmap);
4511                 its_vpe_teardown(vpe);
4512                 irq_domain_reset_irq_data(data);
4513         }
4514
4515         if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4516                 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4517                 its_free_prop_table(vm->vprop_page);
4518         }
4519 }
4520
4521 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4522                                     unsigned int nr_irqs, void *args)
4523 {
4524         struct irq_chip *irqchip = &its_vpe_irq_chip;
4525         struct its_vm *vm = args;
4526         unsigned long *bitmap;
4527         struct page *vprop_page;
4528         int base, nr_ids, i, err = 0;
4529
4530         BUG_ON(!vm);
4531
4532         bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4533         if (!bitmap)
4534                 return -ENOMEM;
4535
4536         if (nr_ids < nr_irqs) {
4537                 its_lpi_free(bitmap, base, nr_ids);
4538                 return -ENOMEM;
4539         }
4540
4541         vprop_page = its_allocate_prop_table(GFP_KERNEL);
4542         if (!vprop_page) {
4543                 its_lpi_free(bitmap, base, nr_ids);
4544                 return -ENOMEM;
4545         }
4546
4547         vm->db_bitmap = bitmap;
4548         vm->db_lpi_base = base;
4549         vm->nr_db_lpis = nr_ids;
4550         vm->vprop_page = vprop_page;
4551
4552         if (gic_rdists->has_rvpeid)
4553                 irqchip = &its_vpe_4_1_irq_chip;
4554
4555         for (i = 0; i < nr_irqs; i++) {
4556                 vm->vpes[i]->vpe_db_lpi = base + i;
4557                 err = its_vpe_init(vm->vpes[i]);
4558                 if (err)
4559                         break;
4560                 err = its_irq_gic_domain_alloc(domain, virq + i,
4561                                                vm->vpes[i]->vpe_db_lpi);
4562                 if (err)
4563                         break;
4564                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4565                                               irqchip, vm->vpes[i]);
4566                 set_bit(i, bitmap);
4567                 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4568         }
4569
4570         if (err) {
4571                 if (i > 0)
4572                         its_vpe_irq_domain_free(domain, virq, i);
4573
4574                 its_lpi_free(bitmap, base, nr_ids);
4575                 its_free_prop_table(vprop_page);
4576         }
4577
4578         return err;
4579 }
4580
4581 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4582                                        struct irq_data *d, bool reserve)
4583 {
4584         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4585         struct its_node *its;
4586
4587         /*
4588          * If we use the list map, we issue VMAPP on demand... Unless
4589          * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4590          * so that VSGIs can work.
4591          */
4592         if (!gic_requires_eager_mapping())
4593                 return 0;
4594
4595         /* Map the VPE to the first possible CPU */
4596         vpe->col_idx = cpumask_first(cpu_online_mask);
4597
4598         list_for_each_entry(its, &its_nodes, entry) {
4599                 if (!is_v4(its))
4600                         continue;
4601
4602                 its_send_vmapp(its, vpe, true);
4603                 its_send_vinvall(its, vpe);
4604         }
4605
4606         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4607
4608         return 0;
4609 }
4610
4611 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4612                                           struct irq_data *d)
4613 {
4614         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4615         struct its_node *its;
4616
4617         /*
4618          * If we use the list map on GICv4.0, we unmap the VPE once no
4619          * VLPIs are associated with the VM.
4620          */
4621         if (!gic_requires_eager_mapping())
4622                 return;
4623
4624         list_for_each_entry(its, &its_nodes, entry) {
4625                 if (!is_v4(its))
4626                         continue;
4627
4628                 its_send_vmapp(its, vpe, false);
4629         }
4630
4631         /*
4632          * There may be a direct read to the VPT after unmapping the
4633          * vPE, to guarantee the validity of this, we make the VPT
4634          * memory coherent with the CPU caches here.
4635          */
4636         if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4637                 gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4638                                         LPI_PENDBASE_SZ);
4639 }
4640
4641 static const struct irq_domain_ops its_vpe_domain_ops = {
4642         .alloc                  = its_vpe_irq_domain_alloc,
4643         .free                   = its_vpe_irq_domain_free,
4644         .activate               = its_vpe_irq_domain_activate,
4645         .deactivate             = its_vpe_irq_domain_deactivate,
4646 };
4647
4648 static int its_force_quiescent(void __iomem *base)
4649 {
4650         u32 count = 1000000;    /* 1s */
4651         u32 val;
4652
4653         val = readl_relaxed(base + GITS_CTLR);
4654         /*
4655          * GIC architecture specification requires the ITS to be both
4656          * disabled and quiescent for writes to GITS_BASER<n> or
4657          * GITS_CBASER to not have UNPREDICTABLE results.
4658          */
4659         if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4660                 return 0;
4661
4662         /* Disable the generation of all interrupts to this ITS */
4663         val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4664         writel_relaxed(val, base + GITS_CTLR);
4665
4666         /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4667         while (1) {
4668                 val = readl_relaxed(base + GITS_CTLR);
4669                 if (val & GITS_CTLR_QUIESCENT)
4670                         return 0;
4671
4672                 count--;
4673                 if (!count)
4674                         return -EBUSY;
4675
4676                 cpu_relax();
4677                 udelay(1);
4678         }
4679 }
4680
4681 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4682 {
4683         struct its_node *its = data;
4684
4685         /* erratum 22375: only alloc 8MB table size (20 bits) */
4686         its->typer &= ~GITS_TYPER_DEVBITS;
4687         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4688         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4689
4690         return true;
4691 }
4692
4693 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4694 {
4695         struct its_node *its = data;
4696
4697         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4698
4699         return true;
4700 }
4701
4702 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4703 {
4704         struct its_node *its = data;
4705
4706         /* On QDF2400, the size of the ITE is 16Bytes */
4707         its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4708         its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4709
4710         return true;
4711 }
4712
4713 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4714 {
4715         struct its_node *its = its_dev->its;
4716
4717         /*
4718          * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4719          * which maps 32-bit writes targeted at a separate window of
4720          * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4721          * with device ID taken from bits [device_id_bits + 1:2] of
4722          * the window offset.
4723          */
4724         return its->pre_its_base + (its_dev->device_id << 2);
4725 }
4726
4727 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4728 {
4729         struct its_node *its = data;
4730         u32 pre_its_window[2];
4731         u32 ids;
4732
4733         if (!fwnode_property_read_u32_array(its->fwnode_handle,
4734                                            "socionext,synquacer-pre-its",
4735                                            pre_its_window,
4736                                            ARRAY_SIZE(pre_its_window))) {
4737
4738                 its->pre_its_base = pre_its_window[0];
4739                 its->get_msi_base = its_irq_get_msi_base_pre_its;
4740
4741                 ids = ilog2(pre_its_window[1]) - 2;
4742                 if (device_ids(its) > ids) {
4743                         its->typer &= ~GITS_TYPER_DEVBITS;
4744                         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4745                 }
4746
4747                 /* the pre-ITS breaks isolation, so disable MSI remapping */
4748                 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4749                 return true;
4750         }
4751         return false;
4752 }
4753
4754 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4755 {
4756         struct its_node *its = data;
4757
4758         /*
4759          * Hip07 insists on using the wrong address for the VLPI
4760          * page. Trick it into doing the right thing...
4761          */
4762         its->vlpi_redist_offset = SZ_128K;
4763         return true;
4764 }
4765
4766 static bool __maybe_unused its_enable_rk3588001(void *data)
4767 {
4768         struct its_node *its = data;
4769
4770         if (!of_machine_is_compatible("rockchip,rk3588") &&
4771             !of_machine_is_compatible("rockchip,rk3588s"))
4772                 return false;
4773
4774         its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4775         gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4776
4777         return true;
4778 }
4779
4780 static bool its_set_non_coherent(void *data)
4781 {
4782         struct its_node *its = data;
4783
4784         its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4785         return true;
4786 }
4787
4788 static const struct gic_quirk its_quirks[] = {
4789 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4790         {
4791                 .desc   = "ITS: Cavium errata 22375, 24313",
4792                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4793                 .mask   = 0xffff0fff,
4794                 .init   = its_enable_quirk_cavium_22375,
4795         },
4796 #endif
4797 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4798         {
4799                 .desc   = "ITS: Cavium erratum 23144",
4800                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4801                 .mask   = 0xffff0fff,
4802                 .init   = its_enable_quirk_cavium_23144,
4803         },
4804 #endif
4805 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4806         {
4807                 .desc   = "ITS: QDF2400 erratum 0065",
4808                 .iidr   = 0x00001070, /* QDF2400 ITS rev 1.x */
4809                 .mask   = 0xffffffff,
4810                 .init   = its_enable_quirk_qdf2400_e0065,
4811         },
4812 #endif
4813 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4814         {
4815                 /*
4816                  * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4817                  * implementation, but with a 'pre-ITS' added that requires
4818                  * special handling in software.
4819                  */
4820                 .desc   = "ITS: Socionext Synquacer pre-ITS",
4821                 .iidr   = 0x0001143b,
4822                 .mask   = 0xffffffff,
4823                 .init   = its_enable_quirk_socionext_synquacer,
4824         },
4825 #endif
4826 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4827         {
4828                 .desc   = "ITS: Hip07 erratum 161600802",
4829                 .iidr   = 0x00000004,
4830                 .mask   = 0xffffffff,
4831                 .init   = its_enable_quirk_hip07_161600802,
4832         },
4833 #endif
4834 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4835         {
4836                 .desc   = "ITS: Rockchip erratum RK3588001",
4837                 .iidr   = 0x0201743b,
4838                 .mask   = 0xffffffff,
4839                 .init   = its_enable_rk3588001,
4840         },
4841 #endif
4842         {
4843                 .desc   = "ITS: non-coherent attribute",
4844                 .property = "dma-noncoherent",
4845                 .init   = its_set_non_coherent,
4846         },
4847         {
4848         }
4849 };
4850
4851 static void its_enable_quirks(struct its_node *its)
4852 {
4853         u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4854
4855         gic_enable_quirks(iidr, its_quirks, its);
4856
4857         if (is_of_node(its->fwnode_handle))
4858                 gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4859                                      its_quirks, its);
4860 }
4861
4862 static int its_save_disable(void)
4863 {
4864         struct its_node *its;
4865         int err = 0;
4866
4867         raw_spin_lock(&its_lock);
4868         list_for_each_entry(its, &its_nodes, entry) {
4869                 void __iomem *base;
4870
4871                 base = its->base;
4872                 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4873                 err = its_force_quiescent(base);
4874                 if (err) {
4875                         pr_err("ITS@%pa: failed to quiesce: %d\n",
4876                                &its->phys_base, err);
4877                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4878                         goto err;
4879                 }
4880
4881                 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4882         }
4883
4884 err:
4885         if (err) {
4886                 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4887                         void __iomem *base;
4888
4889                         base = its->base;
4890                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4891                 }
4892         }
4893         raw_spin_unlock(&its_lock);
4894
4895         return err;
4896 }
4897
4898 static void its_restore_enable(void)
4899 {
4900         struct its_node *its;
4901         int ret;
4902
4903         raw_spin_lock(&its_lock);
4904         list_for_each_entry(its, &its_nodes, entry) {
4905                 void __iomem *base;
4906                 int i;
4907
4908                 base = its->base;
4909
4910                 /*
4911                  * Make sure that the ITS is disabled. If it fails to quiesce,
4912                  * don't restore it since writing to CBASER or BASER<n>
4913                  * registers is undefined according to the GIC v3 ITS
4914                  * Specification.
4915                  *
4916                  * Firmware resuming with the ITS enabled is terminally broken.
4917                  */
4918                 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4919                 ret = its_force_quiescent(base);
4920                 if (ret) {
4921                         pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4922                                &its->phys_base, ret);
4923                         continue;
4924                 }
4925
4926                 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4927
4928                 /*
4929                  * Writing CBASER resets CREADR to 0, so make CWRITER and
4930                  * cmd_write line up with it.
4931                  */
4932                 its->cmd_write = its->cmd_base;
4933                 gits_write_cwriter(0, base + GITS_CWRITER);
4934
4935                 /* Restore GITS_BASER from the value cache. */
4936                 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4937                         struct its_baser *baser = &its->tables[i];
4938
4939                         if (!(baser->val & GITS_BASER_VALID))
4940                                 continue;
4941
4942                         its_write_baser(its, baser, baser->val);
4943                 }
4944                 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4945
4946                 /*
4947                  * Reinit the collection if it's stored in the ITS. This is
4948                  * indicated by the col_id being less than the HCC field.
4949                  * CID < HCC as specified in the GIC v3 Documentation.
4950                  */
4951                 if (its->collections[smp_processor_id()].col_id <
4952                     GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4953                         its_cpu_init_collection(its);
4954         }
4955         raw_spin_unlock(&its_lock);
4956 }
4957
4958 static struct syscore_ops its_syscore_ops = {
4959         .suspend = its_save_disable,
4960         .resume = its_restore_enable,
4961 };
4962
4963 static void __init __iomem *its_map_one(struct resource *res, int *err)
4964 {
4965         void __iomem *its_base;
4966         u32 val;
4967
4968         its_base = ioremap(res->start, SZ_64K);
4969         if (!its_base) {
4970                 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4971                 *err = -ENOMEM;
4972                 return NULL;
4973         }
4974
4975         val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4976         if (val != 0x30 && val != 0x40) {
4977                 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4978                 *err = -ENODEV;
4979                 goto out_unmap;
4980         }
4981
4982         *err = its_force_quiescent(its_base);
4983         if (*err) {
4984                 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4985                 goto out_unmap;
4986         }
4987
4988         return its_base;
4989
4990 out_unmap:
4991         iounmap(its_base);
4992         return NULL;
4993 }
4994
4995 static int its_init_domain(struct its_node *its)
4996 {
4997         struct irq_domain *inner_domain;
4998         struct msi_domain_info *info;
4999
5000         info = kzalloc(sizeof(*info), GFP_KERNEL);
5001         if (!info)
5002                 return -ENOMEM;
5003
5004         info->ops = &its_msi_domain_ops;
5005         info->data = its;
5006
5007         inner_domain = irq_domain_create_hierarchy(its_parent,
5008                                                    its->msi_domain_flags, 0,
5009                                                    its->fwnode_handle, &its_domain_ops,
5010                                                    info);
5011         if (!inner_domain) {
5012                 kfree(info);
5013                 return -ENOMEM;
5014         }
5015
5016         irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
5017
5018         return 0;
5019 }
5020
5021 static int its_init_vpe_domain(void)
5022 {
5023         struct its_node *its;
5024         u32 devid;
5025         int entries;
5026
5027         if (gic_rdists->has_direct_lpi) {
5028                 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5029                 return 0;
5030         }
5031
5032         /* Any ITS will do, even if not v4 */
5033         its = list_first_entry(&its_nodes, struct its_node, entry);
5034
5035         entries = roundup_pow_of_two(nr_cpu_ids);
5036         vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5037                                  GFP_KERNEL);
5038         if (!vpe_proxy.vpes)
5039                 return -ENOMEM;
5040
5041         /* Use the last possible DevID */
5042         devid = GENMASK(device_ids(its) - 1, 0);
5043         vpe_proxy.dev = its_create_device(its, devid, entries, false);
5044         if (!vpe_proxy.dev) {
5045                 kfree(vpe_proxy.vpes);
5046                 pr_err("ITS: Can't allocate GICv4 proxy device\n");
5047                 return -ENOMEM;
5048         }
5049
5050         BUG_ON(entries > vpe_proxy.dev->nr_ites);
5051
5052         raw_spin_lock_init(&vpe_proxy.lock);
5053         vpe_proxy.next_victim = 0;
5054         pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5055                 devid, vpe_proxy.dev->nr_ites);
5056
5057         return 0;
5058 }
5059
5060 static int __init its_compute_its_list_map(struct its_node *its)
5061 {
5062         int its_number;
5063         u32 ctlr;
5064
5065         /*
5066          * This is assumed to be done early enough that we're
5067          * guaranteed to be single-threaded, hence no
5068          * locking. Should this change, we should address
5069          * this.
5070          */
5071         its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5072         if (its_number >= GICv4_ITS_LIST_MAX) {
5073                 pr_err("ITS@%pa: No ITSList entry available!\n",
5074                        &its->phys_base);
5075                 return -EINVAL;
5076         }
5077
5078         ctlr = readl_relaxed(its->base + GITS_CTLR);
5079         ctlr &= ~GITS_CTLR_ITS_NUMBER;
5080         ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5081         writel_relaxed(ctlr, its->base + GITS_CTLR);
5082         ctlr = readl_relaxed(its->base + GITS_CTLR);
5083         if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5084                 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5085                 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5086         }
5087
5088         if (test_and_set_bit(its_number, &its_list_map)) {
5089                 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5090                        &its->phys_base, its_number);
5091                 return -EINVAL;
5092         }
5093
5094         return its_number;
5095 }
5096
5097 static int __init its_probe_one(struct its_node *its)
5098 {
5099         u64 baser, tmp;
5100         struct page *page;
5101         u32 ctlr;
5102         int err;
5103
5104         its_enable_quirks(its);
5105
5106         if (is_v4(its)) {
5107                 if (!(its->typer & GITS_TYPER_VMOVP)) {
5108                         err = its_compute_its_list_map(its);
5109                         if (err < 0)
5110                                 goto out;
5111
5112                         its->list_nr = err;
5113
5114                         pr_info("ITS@%pa: Using ITS number %d\n",
5115                                 &its->phys_base, err);
5116                 } else {
5117                         pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5118                 }
5119
5120                 if (is_v4_1(its)) {
5121                         u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5122
5123                         its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5124                         if (!its->sgir_base) {
5125                                 err = -ENOMEM;
5126                                 goto out;
5127                         }
5128
5129                         its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5130
5131                         pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5132                                 &its->phys_base, its->mpidr, svpet);
5133                 }
5134         }
5135
5136         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5137                                 get_order(ITS_CMD_QUEUE_SZ));
5138         if (!page) {
5139                 err = -ENOMEM;
5140                 goto out_unmap_sgir;
5141         }
5142         its->cmd_base = (void *)page_address(page);
5143         its->cmd_write = its->cmd_base;
5144
5145         err = its_alloc_tables(its);
5146         if (err)
5147                 goto out_free_cmd;
5148
5149         err = its_alloc_collections(its);
5150         if (err)
5151                 goto out_free_tables;
5152
5153         baser = (virt_to_phys(its->cmd_base)    |
5154                  GITS_CBASER_RaWaWb             |
5155                  GITS_CBASER_InnerShareable     |
5156                  (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5157                  GITS_CBASER_VALID);
5158
5159         gits_write_cbaser(baser, its->base + GITS_CBASER);
5160         tmp = gits_read_cbaser(its->base + GITS_CBASER);
5161
5162         if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5163                 tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5164
5165         if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5166                 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5167                         /*
5168                          * The HW reports non-shareable, we must
5169                          * remove the cacheability attributes as
5170                          * well.
5171                          */
5172                         baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5173                                    GITS_CBASER_CACHEABILITY_MASK);
5174                         baser |= GITS_CBASER_nC;
5175                         gits_write_cbaser(baser, its->base + GITS_CBASER);
5176                 }
5177                 pr_info("ITS: using cache flushing for cmd queue\n");
5178                 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5179         }
5180
5181         gits_write_cwriter(0, its->base + GITS_CWRITER);
5182         ctlr = readl_relaxed(its->base + GITS_CTLR);
5183         ctlr |= GITS_CTLR_ENABLE;
5184         if (is_v4(its))
5185                 ctlr |= GITS_CTLR_ImDe;
5186         writel_relaxed(ctlr, its->base + GITS_CTLR);
5187
5188         err = its_init_domain(its);
5189         if (err)
5190                 goto out_free_tables;
5191
5192         raw_spin_lock(&its_lock);
5193         list_add(&its->entry, &its_nodes);
5194         raw_spin_unlock(&its_lock);
5195
5196         return 0;
5197
5198 out_free_tables:
5199         its_free_tables(its);
5200 out_free_cmd:
5201         free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5202 out_unmap_sgir:
5203         if (its->sgir_base)
5204                 iounmap(its->sgir_base);
5205 out:
5206         pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
5207         return err;
5208 }
5209
5210 static bool gic_rdists_supports_plpis(void)
5211 {
5212         return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5213 }
5214
5215 static int redist_disable_lpis(void)
5216 {
5217         void __iomem *rbase = gic_data_rdist_rd_base();
5218         u64 timeout = USEC_PER_SEC;
5219         u64 val;
5220
5221         if (!gic_rdists_supports_plpis()) {
5222                 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5223                 return -ENXIO;
5224         }
5225
5226         val = readl_relaxed(rbase + GICR_CTLR);
5227         if (!(val & GICR_CTLR_ENABLE_LPIS))
5228                 return 0;
5229
5230         /*
5231          * If coming via a CPU hotplug event, we don't need to disable
5232          * LPIs before trying to re-enable them. They are already
5233          * configured and all is well in the world.
5234          *
5235          * If running with preallocated tables, there is nothing to do.
5236          */
5237         if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5238             (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5239                 return 0;
5240
5241         /*
5242          * From that point on, we only try to do some damage control.
5243          */
5244         pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5245                 smp_processor_id());
5246         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5247
5248         /* Disable LPIs */
5249         val &= ~GICR_CTLR_ENABLE_LPIS;
5250         writel_relaxed(val, rbase + GICR_CTLR);
5251
5252         /* Make sure any change to GICR_CTLR is observable by the GIC */
5253         dsb(sy);
5254
5255         /*
5256          * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5257          * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5258          * Error out if we time out waiting for RWP to clear.
5259          */
5260         while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5261                 if (!timeout) {
5262                         pr_err("CPU%d: Timeout while disabling LPIs\n",
5263                                smp_processor_id());
5264                         return -ETIMEDOUT;
5265                 }
5266                 udelay(1);
5267                 timeout--;
5268         }
5269
5270         /*
5271          * After it has been written to 1, it is IMPLEMENTATION
5272          * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5273          * cleared to 0. Error out if clearing the bit failed.
5274          */
5275         if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5276                 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5277                 return -EBUSY;
5278         }
5279
5280         return 0;
5281 }
5282
5283 int its_cpu_init(void)
5284 {
5285         if (!list_empty(&its_nodes)) {
5286                 int ret;
5287
5288                 ret = redist_disable_lpis();
5289                 if (ret)
5290                         return ret;
5291
5292                 its_cpu_init_lpis();
5293                 its_cpu_init_collections();
5294         }
5295
5296         return 0;
5297 }
5298
5299 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5300 {
5301         cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5302         gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5303 }
5304
5305 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5306                     rdist_memreserve_cpuhp_cleanup_workfn);
5307
5308 static int its_cpu_memreserve_lpi(unsigned int cpu)
5309 {
5310         struct page *pend_page;
5311         int ret = 0;
5312
5313         /* This gets to run exactly once per CPU */
5314         if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5315                 return 0;
5316
5317         pend_page = gic_data_rdist()->pend_page;
5318         if (WARN_ON(!pend_page)) {
5319                 ret = -ENOMEM;
5320                 goto out;
5321         }
5322         /*
5323          * If the pending table was pre-programmed, free the memory we
5324          * preemptively allocated. Otherwise, reserve that memory for
5325          * later kexecs.
5326          */
5327         if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5328                 its_free_pending_table(pend_page);
5329                 gic_data_rdist()->pend_page = NULL;
5330         } else {
5331                 phys_addr_t paddr = page_to_phys(pend_page);
5332                 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5333         }
5334
5335 out:
5336         /* Last CPU being brought up gets to issue the cleanup */
5337         if (!IS_ENABLED(CONFIG_SMP) ||
5338             cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5339                 schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5340
5341         gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5342         return ret;
5343 }
5344
5345 /* Mark all the BASER registers as invalid before they get reprogrammed */
5346 static int __init its_reset_one(struct resource *res)
5347 {
5348         void __iomem *its_base;
5349         int err, i;
5350
5351         its_base = its_map_one(res, &err);
5352         if (!its_base)
5353                 return err;
5354
5355         for (i = 0; i < GITS_BASER_NR_REGS; i++)
5356                 gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5357
5358         iounmap(its_base);
5359         return 0;
5360 }
5361
5362 static const struct of_device_id its_device_id[] = {
5363         {       .compatible     = "arm,gic-v3-its",     },
5364         {},
5365 };
5366
5367 static struct its_node __init *its_node_init(struct resource *res,
5368                                              struct fwnode_handle *handle, int numa_node)
5369 {
5370         void __iomem *its_base;
5371         struct its_node *its;
5372         int err;
5373
5374         its_base = its_map_one(res, &err);
5375         if (!its_base)
5376                 return NULL;
5377
5378         pr_info("ITS %pR\n", res);
5379
5380         its = kzalloc(sizeof(*its), GFP_KERNEL);
5381         if (!its)
5382                 goto out_unmap;
5383
5384         raw_spin_lock_init(&its->lock);
5385         mutex_init(&its->dev_alloc_lock);
5386         INIT_LIST_HEAD(&its->entry);
5387         INIT_LIST_HEAD(&its->its_device_list);
5388
5389         its->typer = gic_read_typer(its_base + GITS_TYPER);
5390         its->base = its_base;
5391         its->phys_base = res->start;
5392         its->get_msi_base = its_irq_get_msi_base;
5393         its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5394
5395         its->numa_node = numa_node;
5396         its->fwnode_handle = handle;
5397
5398         return its;
5399
5400 out_unmap:
5401         iounmap(its_base);
5402         return NULL;
5403 }
5404
5405 static void its_node_destroy(struct its_node *its)
5406 {
5407         iounmap(its->base);
5408         kfree(its);
5409 }
5410
5411 static int __init its_of_probe(struct device_node *node)
5412 {
5413         struct device_node *np;
5414         struct resource res;
5415         int err;
5416
5417         /*
5418          * Make sure *all* the ITS are reset before we probe any, as
5419          * they may be sharing memory. If any of the ITS fails to
5420          * reset, don't even try to go any further, as this could
5421          * result in something even worse.
5422          */
5423         for (np = of_find_matching_node(node, its_device_id); np;
5424              np = of_find_matching_node(np, its_device_id)) {
5425                 if (!of_device_is_available(np) ||
5426                     !of_property_read_bool(np, "msi-controller") ||
5427                     of_address_to_resource(np, 0, &res))
5428                         continue;
5429
5430                 err = its_reset_one(&res);
5431                 if (err)
5432                         return err;
5433         }
5434
5435         for (np = of_find_matching_node(node, its_device_id); np;
5436              np = of_find_matching_node(np, its_device_id)) {
5437                 struct its_node *its;
5438
5439                 if (!of_device_is_available(np))
5440                         continue;
5441                 if (!of_property_read_bool(np, "msi-controller")) {
5442                         pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5443                                 np);
5444                         continue;
5445                 }
5446
5447                 if (of_address_to_resource(np, 0, &res)) {
5448                         pr_warn("%pOF: no regs?\n", np);
5449                         continue;
5450                 }
5451
5452
5453                 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5454                 if (!its)
5455                         return -ENOMEM;
5456
5457                 err = its_probe_one(its);
5458                 if (err)  {
5459                         its_node_destroy(its);
5460                         return err;
5461                 }
5462         }
5463         return 0;
5464 }
5465
5466 #ifdef CONFIG_ACPI
5467
5468 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5469
5470 #ifdef CONFIG_ACPI_NUMA
5471 struct its_srat_map {
5472         /* numa node id */
5473         u32     numa_node;
5474         /* GIC ITS ID */
5475         u32     its_id;
5476 };
5477
5478 static struct its_srat_map *its_srat_maps __initdata;
5479 static int its_in_srat __initdata;
5480
5481 static int __init acpi_get_its_numa_node(u32 its_id)
5482 {
5483         int i;
5484
5485         for (i = 0; i < its_in_srat; i++) {
5486                 if (its_id == its_srat_maps[i].its_id)
5487                         return its_srat_maps[i].numa_node;
5488         }
5489         return NUMA_NO_NODE;
5490 }
5491
5492 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5493                                           const unsigned long end)
5494 {
5495         return 0;
5496 }
5497
5498 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5499                          const unsigned long end)
5500 {
5501         int node;
5502         struct acpi_srat_gic_its_affinity *its_affinity;
5503
5504         its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5505         if (!its_affinity)
5506                 return -EINVAL;
5507
5508         if (its_affinity->header.length < sizeof(*its_affinity)) {
5509                 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5510                         its_affinity->header.length);
5511                 return -EINVAL;
5512         }
5513
5514         /*
5515          * Note that in theory a new proximity node could be created by this
5516          * entry as it is an SRAT resource allocation structure.
5517          * We do not currently support doing so.
5518          */
5519         node = pxm_to_node(its_affinity->proximity_domain);
5520
5521         if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5522                 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5523                 return 0;
5524         }
5525
5526         its_srat_maps[its_in_srat].numa_node = node;
5527         its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5528         its_in_srat++;
5529         pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5530                 its_affinity->proximity_domain, its_affinity->its_id, node);
5531
5532         return 0;
5533 }
5534
5535 static void __init acpi_table_parse_srat_its(void)
5536 {
5537         int count;
5538
5539         count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5540                         sizeof(struct acpi_table_srat),
5541                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5542                         gic_acpi_match_srat_its, 0);
5543         if (count <= 0)
5544                 return;
5545
5546         its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5547                                       GFP_KERNEL);
5548         if (!its_srat_maps)
5549                 return;
5550
5551         acpi_table_parse_entries(ACPI_SIG_SRAT,
5552                         sizeof(struct acpi_table_srat),
5553                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5554                         gic_acpi_parse_srat_its, 0);
5555 }
5556
5557 /* free the its_srat_maps after ITS probing */
5558 static void __init acpi_its_srat_maps_free(void)
5559 {
5560         kfree(its_srat_maps);
5561 }
5562 #else
5563 static void __init acpi_table_parse_srat_its(void)      { }
5564 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5565 static void __init acpi_its_srat_maps_free(void) { }
5566 #endif
5567
5568 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5569                                           const unsigned long end)
5570 {
5571         struct acpi_madt_generic_translator *its_entry;
5572         struct fwnode_handle *dom_handle;
5573         struct its_node *its;
5574         struct resource res;
5575         int err;
5576
5577         its_entry = (struct acpi_madt_generic_translator *)header;
5578         memset(&res, 0, sizeof(res));
5579         res.start = its_entry->base_address;
5580         res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5581         res.flags = IORESOURCE_MEM;
5582
5583         dom_handle = irq_domain_alloc_fwnode(&res.start);
5584         if (!dom_handle) {
5585                 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5586                        &res.start);
5587                 return -ENOMEM;
5588         }
5589
5590         err = iort_register_domain_token(its_entry->translation_id, res.start,
5591                                          dom_handle);
5592         if (err) {
5593                 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5594                        &res.start, its_entry->translation_id);
5595                 goto dom_err;
5596         }
5597
5598         its = its_node_init(&res, dom_handle,
5599                             acpi_get_its_numa_node(its_entry->translation_id));
5600         if (!its) {
5601                 err = -ENOMEM;
5602                 goto node_err;
5603         }
5604
5605         err = its_probe_one(its);
5606         if (!err)
5607                 return 0;
5608
5609 node_err:
5610         iort_deregister_domain_token(its_entry->translation_id);
5611 dom_err:
5612         irq_domain_free_fwnode(dom_handle);
5613         return err;
5614 }
5615
5616 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5617                                  const unsigned long end)
5618 {
5619         struct acpi_madt_generic_translator *its_entry;
5620         struct resource res;
5621
5622         its_entry = (struct acpi_madt_generic_translator *)header;
5623         res = (struct resource) {
5624                 .start  = its_entry->base_address,
5625                 .end    = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5626                 .flags  = IORESOURCE_MEM,
5627         };
5628
5629         return its_reset_one(&res);
5630 }
5631
5632 static void __init its_acpi_probe(void)
5633 {
5634         acpi_table_parse_srat_its();
5635         /*
5636          * Make sure *all* the ITS are reset before we probe any, as
5637          * they may be sharing memory. If any of the ITS fails to
5638          * reset, don't even try to go any further, as this could
5639          * result in something even worse.
5640          */
5641         if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5642                                   its_acpi_reset, 0) > 0)
5643                 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5644                                       gic_acpi_parse_madt_its, 0);
5645         acpi_its_srat_maps_free();
5646 }
5647 #else
5648 static void __init its_acpi_probe(void) { }
5649 #endif
5650
5651 int __init its_lpi_memreserve_init(void)
5652 {
5653         int state;
5654
5655         if (!efi_enabled(EFI_CONFIG_TABLES))
5656                 return 0;
5657
5658         if (list_empty(&its_nodes))
5659                 return 0;
5660
5661         gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5662         state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5663                                   "irqchip/arm/gicv3/memreserve:online",
5664                                   its_cpu_memreserve_lpi,
5665                                   NULL);
5666         if (state < 0)
5667                 return state;
5668
5669         gic_rdists->cpuhp_memreserve_state = state;
5670
5671         return 0;
5672 }
5673
5674 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5675                     struct irq_domain *parent_domain)
5676 {
5677         struct device_node *of_node;
5678         struct its_node *its;
5679         bool has_v4 = false;
5680         bool has_v4_1 = false;
5681         int err;
5682
5683         gic_rdists = rdists;
5684
5685         its_parent = parent_domain;
5686         of_node = to_of_node(handle);
5687         if (of_node)
5688                 its_of_probe(of_node);
5689         else
5690                 its_acpi_probe();
5691
5692         if (list_empty(&its_nodes)) {
5693                 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5694                 return -ENXIO;
5695         }
5696
5697         err = allocate_lpi_tables();
5698         if (err)
5699                 return err;
5700
5701         list_for_each_entry(its, &its_nodes, entry) {
5702                 has_v4 |= is_v4(its);
5703                 has_v4_1 |= is_v4_1(its);
5704         }
5705
5706         /* Don't bother with inconsistent systems */
5707         if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5708                 rdists->has_rvpeid = false;
5709
5710         if (has_v4 & rdists->has_vlpis) {
5711                 const struct irq_domain_ops *sgi_ops;
5712
5713                 if (has_v4_1)
5714                         sgi_ops = &its_sgi_domain_ops;
5715                 else
5716                         sgi_ops = NULL;
5717
5718                 if (its_init_vpe_domain() ||
5719                     its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5720                         rdists->has_vlpis = false;
5721                         pr_err("ITS: Disabling GICv4 support\n");
5722                 }
5723         }
5724
5725         register_syscore_ops(&its_syscore_ops);
5726
5727         return 0;
5728 }