Merge tag 'nfs-rdma-for-4.16-2' of git://git.linux-nfs.org/projects/anna/linux-nfs
[sfrench/cifs-2.6.git] / drivers / irqchip / irq-gic-v3-its.c
1 /*
2  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17
18 #include <linux/acpi.h>
19 #include <linux/acpi_iort.h>
20 #include <linux/bitmap.h>
21 #include <linux/cpu.h>
22 #include <linux/delay.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/interrupt.h>
25 #include <linux/irqdomain.h>
26 #include <linux/log2.h>
27 #include <linux/mm.h>
28 #include <linux/msi.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_pci.h>
33 #include <linux/of_platform.h>
34 #include <linux/percpu.h>
35 #include <linux/slab.h>
36
37 #include <linux/irqchip.h>
38 #include <linux/irqchip/arm-gic-v3.h>
39 #include <linux/irqchip/arm-gic-v4.h>
40
41 #include <asm/cputype.h>
42 #include <asm/exception.h>
43
44 #include "irq-gic-common.h"
45
46 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING           (1ULL << 0)
47 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375       (1ULL << 1)
48 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144       (1ULL << 2)
49
50 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING     (1 << 0)
51
52 static u32 lpi_id_bits;
53
54 /*
55  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
56  * deal with (one configuration byte per interrupt). PENDBASE has to
57  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
58  */
59 #define LPI_NRBITS              lpi_id_bits
60 #define LPI_PROPBASE_SZ         ALIGN(BIT(LPI_NRBITS), SZ_64K)
61 #define LPI_PENDBASE_SZ         ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
62
63 #define LPI_PROP_DEFAULT_PRIO   0xa0
64
65 /*
66  * Collection structure - just an ID, and a redistributor address to
67  * ping. We use one per CPU as a bag of interrupts assigned to this
68  * CPU.
69  */
70 struct its_collection {
71         u64                     target_address;
72         u16                     col_id;
73 };
74
75 /*
76  * The ITS_BASER structure - contains memory information, cached
77  * value of BASER register configuration and ITS page size.
78  */
79 struct its_baser {
80         void            *base;
81         u64             val;
82         u32             order;
83         u32             psz;
84 };
85
86 struct its_device;
87
88 /*
89  * The ITS structure - contains most of the infrastructure, with the
90  * top-level MSI domain, the command queue, the collections, and the
91  * list of devices writing to it.
92  */
93 struct its_node {
94         raw_spinlock_t          lock;
95         struct list_head        entry;
96         void __iomem            *base;
97         phys_addr_t             phys_base;
98         struct its_cmd_block    *cmd_base;
99         struct its_cmd_block    *cmd_write;
100         struct its_baser        tables[GITS_BASER_NR_REGS];
101         struct its_collection   *collections;
102         struct fwnode_handle    *fwnode_handle;
103         u64                     (*get_msi_base)(struct its_device *its_dev);
104         struct list_head        its_device_list;
105         u64                     flags;
106         unsigned long           list_nr;
107         u32                     ite_size;
108         u32                     device_ids;
109         int                     numa_node;
110         unsigned int            msi_domain_flags;
111         u32                     pre_its_base; /* for Socionext Synquacer */
112         bool                    is_v4;
113         int                     vlpi_redist_offset;
114 };
115
116 #define ITS_ITT_ALIGN           SZ_256
117
118 /* The maximum number of VPEID bits supported by VLPI commands */
119 #define ITS_MAX_VPEID_BITS      (16)
120 #define ITS_MAX_VPEID           (1 << (ITS_MAX_VPEID_BITS))
121
122 /* Convert page order to size in bytes */
123 #define PAGE_ORDER_TO_SIZE(o)   (PAGE_SIZE << (o))
124
125 struct event_lpi_map {
126         unsigned long           *lpi_map;
127         u16                     *col_map;
128         irq_hw_number_t         lpi_base;
129         int                     nr_lpis;
130         struct mutex            vlpi_lock;
131         struct its_vm           *vm;
132         struct its_vlpi_map     *vlpi_maps;
133         int                     nr_vlpis;
134 };
135
136 /*
137  * The ITS view of a device - belongs to an ITS, owns an interrupt
138  * translation table, and a list of interrupts.  If it some of its
139  * LPIs are injected into a guest (GICv4), the event_map.vm field
140  * indicates which one.
141  */
142 struct its_device {
143         struct list_head        entry;
144         struct its_node         *its;
145         struct event_lpi_map    event_map;
146         void                    *itt;
147         u32                     nr_ites;
148         u32                     device_id;
149 };
150
151 static struct {
152         raw_spinlock_t          lock;
153         struct its_device       *dev;
154         struct its_vpe          **vpes;
155         int                     next_victim;
156 } vpe_proxy;
157
158 static LIST_HEAD(its_nodes);
159 static DEFINE_SPINLOCK(its_lock);
160 static struct rdists *gic_rdists;
161 static struct irq_domain *its_parent;
162
163 static unsigned long its_list_map;
164 static u16 vmovp_seq_num;
165 static DEFINE_RAW_SPINLOCK(vmovp_lock);
166
167 static DEFINE_IDA(its_vpeid_ida);
168
169 #define gic_data_rdist()                (raw_cpu_ptr(gic_rdists->rdist))
170 #define gic_data_rdist_rd_base()        (gic_data_rdist()->rd_base)
171 #define gic_data_rdist_vlpi_base()      (gic_data_rdist_rd_base() + SZ_128K)
172
173 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
174                                                u32 event)
175 {
176         struct its_node *its = its_dev->its;
177
178         return its->collections + its_dev->event_map.col_map[event];
179 }
180
181 /*
182  * ITS command descriptors - parameters to be encoded in a command
183  * block.
184  */
185 struct its_cmd_desc {
186         union {
187                 struct {
188                         struct its_device *dev;
189                         u32 event_id;
190                 } its_inv_cmd;
191
192                 struct {
193                         struct its_device *dev;
194                         u32 event_id;
195                 } its_clear_cmd;
196
197                 struct {
198                         struct its_device *dev;
199                         u32 event_id;
200                 } its_int_cmd;
201
202                 struct {
203                         struct its_device *dev;
204                         int valid;
205                 } its_mapd_cmd;
206
207                 struct {
208                         struct its_collection *col;
209                         int valid;
210                 } its_mapc_cmd;
211
212                 struct {
213                         struct its_device *dev;
214                         u32 phys_id;
215                         u32 event_id;
216                 } its_mapti_cmd;
217
218                 struct {
219                         struct its_device *dev;
220                         struct its_collection *col;
221                         u32 event_id;
222                 } its_movi_cmd;
223
224                 struct {
225                         struct its_device *dev;
226                         u32 event_id;
227                 } its_discard_cmd;
228
229                 struct {
230                         struct its_collection *col;
231                 } its_invall_cmd;
232
233                 struct {
234                         struct its_vpe *vpe;
235                 } its_vinvall_cmd;
236
237                 struct {
238                         struct its_vpe *vpe;
239                         struct its_collection *col;
240                         bool valid;
241                 } its_vmapp_cmd;
242
243                 struct {
244                         struct its_vpe *vpe;
245                         struct its_device *dev;
246                         u32 virt_id;
247                         u32 event_id;
248                         bool db_enabled;
249                 } its_vmapti_cmd;
250
251                 struct {
252                         struct its_vpe *vpe;
253                         struct its_device *dev;
254                         u32 event_id;
255                         bool db_enabled;
256                 } its_vmovi_cmd;
257
258                 struct {
259                         struct its_vpe *vpe;
260                         struct its_collection *col;
261                         u16 seq_num;
262                         u16 its_list;
263                 } its_vmovp_cmd;
264         };
265 };
266
267 /*
268  * The ITS command block, which is what the ITS actually parses.
269  */
270 struct its_cmd_block {
271         u64     raw_cmd[4];
272 };
273
274 #define ITS_CMD_QUEUE_SZ                SZ_64K
275 #define ITS_CMD_QUEUE_NR_ENTRIES        (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
276
277 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
278                                                     struct its_cmd_block *,
279                                                     struct its_cmd_desc *);
280
281 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
282                                               struct its_cmd_block *,
283                                               struct its_cmd_desc *);
284
285 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
286 {
287         u64 mask = GENMASK_ULL(h, l);
288         *raw_cmd &= ~mask;
289         *raw_cmd |= (val << l) & mask;
290 }
291
292 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
293 {
294         its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
295 }
296
297 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
298 {
299         its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
300 }
301
302 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
303 {
304         its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
305 }
306
307 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
308 {
309         its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
310 }
311
312 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
313 {
314         its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
315 }
316
317 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
318 {
319         its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
320 }
321
322 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
323 {
324         its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
325 }
326
327 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
328 {
329         its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
330 }
331
332 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
333 {
334         its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
335 }
336
337 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
338 {
339         its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
340 }
341
342 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
343 {
344         its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
345 }
346
347 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
348 {
349         its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
350 }
351
352 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
353 {
354         its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
355 }
356
357 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
358 {
359         its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
360 }
361
362 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
363 {
364         its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
365 }
366
367 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
368 {
369         its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
370 }
371
372 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
373 {
374         its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
375 }
376
377 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
378 {
379         /* Let's fixup BE commands */
380         cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
381         cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
382         cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
383         cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
384 }
385
386 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
387                                                  struct its_cmd_block *cmd,
388                                                  struct its_cmd_desc *desc)
389 {
390         unsigned long itt_addr;
391         u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
392
393         itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
394         itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
395
396         its_encode_cmd(cmd, GITS_CMD_MAPD);
397         its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
398         its_encode_size(cmd, size - 1);
399         its_encode_itt(cmd, itt_addr);
400         its_encode_valid(cmd, desc->its_mapd_cmd.valid);
401
402         its_fixup_cmd(cmd);
403
404         return NULL;
405 }
406
407 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
408                                                  struct its_cmd_block *cmd,
409                                                  struct its_cmd_desc *desc)
410 {
411         its_encode_cmd(cmd, GITS_CMD_MAPC);
412         its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
413         its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
414         its_encode_valid(cmd, desc->its_mapc_cmd.valid);
415
416         its_fixup_cmd(cmd);
417
418         return desc->its_mapc_cmd.col;
419 }
420
421 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
422                                                   struct its_cmd_block *cmd,
423                                                   struct its_cmd_desc *desc)
424 {
425         struct its_collection *col;
426
427         col = dev_event_to_col(desc->its_mapti_cmd.dev,
428                                desc->its_mapti_cmd.event_id);
429
430         its_encode_cmd(cmd, GITS_CMD_MAPTI);
431         its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
432         its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
433         its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
434         its_encode_collection(cmd, col->col_id);
435
436         its_fixup_cmd(cmd);
437
438         return col;
439 }
440
441 static struct its_collection *its_build_movi_cmd(struct its_node *its,
442                                                  struct its_cmd_block *cmd,
443                                                  struct its_cmd_desc *desc)
444 {
445         struct its_collection *col;
446
447         col = dev_event_to_col(desc->its_movi_cmd.dev,
448                                desc->its_movi_cmd.event_id);
449
450         its_encode_cmd(cmd, GITS_CMD_MOVI);
451         its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
452         its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
453         its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
454
455         its_fixup_cmd(cmd);
456
457         return col;
458 }
459
460 static struct its_collection *its_build_discard_cmd(struct its_node *its,
461                                                     struct its_cmd_block *cmd,
462                                                     struct its_cmd_desc *desc)
463 {
464         struct its_collection *col;
465
466         col = dev_event_to_col(desc->its_discard_cmd.dev,
467                                desc->its_discard_cmd.event_id);
468
469         its_encode_cmd(cmd, GITS_CMD_DISCARD);
470         its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
471         its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
472
473         its_fixup_cmd(cmd);
474
475         return col;
476 }
477
478 static struct its_collection *its_build_inv_cmd(struct its_node *its,
479                                                 struct its_cmd_block *cmd,
480                                                 struct its_cmd_desc *desc)
481 {
482         struct its_collection *col;
483
484         col = dev_event_to_col(desc->its_inv_cmd.dev,
485                                desc->its_inv_cmd.event_id);
486
487         its_encode_cmd(cmd, GITS_CMD_INV);
488         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
489         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
490
491         its_fixup_cmd(cmd);
492
493         return col;
494 }
495
496 static struct its_collection *its_build_int_cmd(struct its_node *its,
497                                                 struct its_cmd_block *cmd,
498                                                 struct its_cmd_desc *desc)
499 {
500         struct its_collection *col;
501
502         col = dev_event_to_col(desc->its_int_cmd.dev,
503                                desc->its_int_cmd.event_id);
504
505         its_encode_cmd(cmd, GITS_CMD_INT);
506         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
507         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
508
509         its_fixup_cmd(cmd);
510
511         return col;
512 }
513
514 static struct its_collection *its_build_clear_cmd(struct its_node *its,
515                                                   struct its_cmd_block *cmd,
516                                                   struct its_cmd_desc *desc)
517 {
518         struct its_collection *col;
519
520         col = dev_event_to_col(desc->its_clear_cmd.dev,
521                                desc->its_clear_cmd.event_id);
522
523         its_encode_cmd(cmd, GITS_CMD_CLEAR);
524         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
525         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
526
527         its_fixup_cmd(cmd);
528
529         return col;
530 }
531
532 static struct its_collection *its_build_invall_cmd(struct its_node *its,
533                                                    struct its_cmd_block *cmd,
534                                                    struct its_cmd_desc *desc)
535 {
536         its_encode_cmd(cmd, GITS_CMD_INVALL);
537         its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
538
539         its_fixup_cmd(cmd);
540
541         return NULL;
542 }
543
544 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
545                                              struct its_cmd_block *cmd,
546                                              struct its_cmd_desc *desc)
547 {
548         its_encode_cmd(cmd, GITS_CMD_VINVALL);
549         its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
550
551         its_fixup_cmd(cmd);
552
553         return desc->its_vinvall_cmd.vpe;
554 }
555
556 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
557                                            struct its_cmd_block *cmd,
558                                            struct its_cmd_desc *desc)
559 {
560         unsigned long vpt_addr;
561         u64 target;
562
563         vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
564         target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
565
566         its_encode_cmd(cmd, GITS_CMD_VMAPP);
567         its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
568         its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
569         its_encode_target(cmd, target);
570         its_encode_vpt_addr(cmd, vpt_addr);
571         its_encode_vpt_size(cmd, LPI_NRBITS - 1);
572
573         its_fixup_cmd(cmd);
574
575         return desc->its_vmapp_cmd.vpe;
576 }
577
578 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
579                                             struct its_cmd_block *cmd,
580                                             struct its_cmd_desc *desc)
581 {
582         u32 db;
583
584         if (desc->its_vmapti_cmd.db_enabled)
585                 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
586         else
587                 db = 1023;
588
589         its_encode_cmd(cmd, GITS_CMD_VMAPTI);
590         its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
591         its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
592         its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
593         its_encode_db_phys_id(cmd, db);
594         its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
595
596         its_fixup_cmd(cmd);
597
598         return desc->its_vmapti_cmd.vpe;
599 }
600
601 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
602                                            struct its_cmd_block *cmd,
603                                            struct its_cmd_desc *desc)
604 {
605         u32 db;
606
607         if (desc->its_vmovi_cmd.db_enabled)
608                 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
609         else
610                 db = 1023;
611
612         its_encode_cmd(cmd, GITS_CMD_VMOVI);
613         its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
614         its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
615         its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
616         its_encode_db_phys_id(cmd, db);
617         its_encode_db_valid(cmd, true);
618
619         its_fixup_cmd(cmd);
620
621         return desc->its_vmovi_cmd.vpe;
622 }
623
624 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
625                                            struct its_cmd_block *cmd,
626                                            struct its_cmd_desc *desc)
627 {
628         u64 target;
629
630         target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
631         its_encode_cmd(cmd, GITS_CMD_VMOVP);
632         its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
633         its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
634         its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
635         its_encode_target(cmd, target);
636
637         its_fixup_cmd(cmd);
638
639         return desc->its_vmovp_cmd.vpe;
640 }
641
642 static u64 its_cmd_ptr_to_offset(struct its_node *its,
643                                  struct its_cmd_block *ptr)
644 {
645         return (ptr - its->cmd_base) * sizeof(*ptr);
646 }
647
648 static int its_queue_full(struct its_node *its)
649 {
650         int widx;
651         int ridx;
652
653         widx = its->cmd_write - its->cmd_base;
654         ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
655
656         /* This is incredibly unlikely to happen, unless the ITS locks up. */
657         if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
658                 return 1;
659
660         return 0;
661 }
662
663 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
664 {
665         struct its_cmd_block *cmd;
666         u32 count = 1000000;    /* 1s! */
667
668         while (its_queue_full(its)) {
669                 count--;
670                 if (!count) {
671                         pr_err_ratelimited("ITS queue not draining\n");
672                         return NULL;
673                 }
674                 cpu_relax();
675                 udelay(1);
676         }
677
678         cmd = its->cmd_write++;
679
680         /* Handle queue wrapping */
681         if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
682                 its->cmd_write = its->cmd_base;
683
684         /* Clear command  */
685         cmd->raw_cmd[0] = 0;
686         cmd->raw_cmd[1] = 0;
687         cmd->raw_cmd[2] = 0;
688         cmd->raw_cmd[3] = 0;
689
690         return cmd;
691 }
692
693 static struct its_cmd_block *its_post_commands(struct its_node *its)
694 {
695         u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
696
697         writel_relaxed(wr, its->base + GITS_CWRITER);
698
699         return its->cmd_write;
700 }
701
702 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
703 {
704         /*
705          * Make sure the commands written to memory are observable by
706          * the ITS.
707          */
708         if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
709                 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
710         else
711                 dsb(ishst);
712 }
713
714 static int its_wait_for_range_completion(struct its_node *its,
715                                          struct its_cmd_block *from,
716                                          struct its_cmd_block *to)
717 {
718         u64 rd_idx, from_idx, to_idx;
719         u32 count = 1000000;    /* 1s! */
720
721         from_idx = its_cmd_ptr_to_offset(its, from);
722         to_idx = its_cmd_ptr_to_offset(its, to);
723
724         while (1) {
725                 rd_idx = readl_relaxed(its->base + GITS_CREADR);
726
727                 /* Direct case */
728                 if (from_idx < to_idx && rd_idx >= to_idx)
729                         break;
730
731                 /* Wrapped case */
732                 if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx)
733                         break;
734
735                 count--;
736                 if (!count) {
737                         pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n",
738                                            from_idx, to_idx, rd_idx);
739                         return -1;
740                 }
741                 cpu_relax();
742                 udelay(1);
743         }
744
745         return 0;
746 }
747
748 /* Warning, macro hell follows */
749 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)       \
750 void name(struct its_node *its,                                         \
751           buildtype builder,                                            \
752           struct its_cmd_desc *desc)                                    \
753 {                                                                       \
754         struct its_cmd_block *cmd, *sync_cmd, *next_cmd;                \
755         synctype *sync_obj;                                             \
756         unsigned long flags;                                            \
757                                                                         \
758         raw_spin_lock_irqsave(&its->lock, flags);                       \
759                                                                         \
760         cmd = its_allocate_entry(its);                                  \
761         if (!cmd) {             /* We're soooooo screewed... */         \
762                 raw_spin_unlock_irqrestore(&its->lock, flags);          \
763                 return;                                                 \
764         }                                                               \
765         sync_obj = builder(its, cmd, desc);                             \
766         its_flush_cmd(its, cmd);                                        \
767                                                                         \
768         if (sync_obj) {                                                 \
769                 sync_cmd = its_allocate_entry(its);                     \
770                 if (!sync_cmd)                                          \
771                         goto post;                                      \
772                                                                         \
773                 buildfn(its, sync_cmd, sync_obj);                       \
774                 its_flush_cmd(its, sync_cmd);                           \
775         }                                                               \
776                                                                         \
777 post:                                                                   \
778         next_cmd = its_post_commands(its);                              \
779         raw_spin_unlock_irqrestore(&its->lock, flags);                  \
780                                                                         \
781         if (its_wait_for_range_completion(its, cmd, next_cmd))          \
782                 pr_err_ratelimited("ITS cmd %ps failed\n", builder);    \
783 }
784
785 static void its_build_sync_cmd(struct its_node *its,
786                                struct its_cmd_block *sync_cmd,
787                                struct its_collection *sync_col)
788 {
789         its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
790         its_encode_target(sync_cmd, sync_col->target_address);
791
792         its_fixup_cmd(sync_cmd);
793 }
794
795 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
796                              struct its_collection, its_build_sync_cmd)
797
798 static void its_build_vsync_cmd(struct its_node *its,
799                                 struct its_cmd_block *sync_cmd,
800                                 struct its_vpe *sync_vpe)
801 {
802         its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
803         its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
804
805         its_fixup_cmd(sync_cmd);
806 }
807
808 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
809                              struct its_vpe, its_build_vsync_cmd)
810
811 static void its_send_int(struct its_device *dev, u32 event_id)
812 {
813         struct its_cmd_desc desc;
814
815         desc.its_int_cmd.dev = dev;
816         desc.its_int_cmd.event_id = event_id;
817
818         its_send_single_command(dev->its, its_build_int_cmd, &desc);
819 }
820
821 static void its_send_clear(struct its_device *dev, u32 event_id)
822 {
823         struct its_cmd_desc desc;
824
825         desc.its_clear_cmd.dev = dev;
826         desc.its_clear_cmd.event_id = event_id;
827
828         its_send_single_command(dev->its, its_build_clear_cmd, &desc);
829 }
830
831 static void its_send_inv(struct its_device *dev, u32 event_id)
832 {
833         struct its_cmd_desc desc;
834
835         desc.its_inv_cmd.dev = dev;
836         desc.its_inv_cmd.event_id = event_id;
837
838         its_send_single_command(dev->its, its_build_inv_cmd, &desc);
839 }
840
841 static void its_send_mapd(struct its_device *dev, int valid)
842 {
843         struct its_cmd_desc desc;
844
845         desc.its_mapd_cmd.dev = dev;
846         desc.its_mapd_cmd.valid = !!valid;
847
848         its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
849 }
850
851 static void its_send_mapc(struct its_node *its, struct its_collection *col,
852                           int valid)
853 {
854         struct its_cmd_desc desc;
855
856         desc.its_mapc_cmd.col = col;
857         desc.its_mapc_cmd.valid = !!valid;
858
859         its_send_single_command(its, its_build_mapc_cmd, &desc);
860 }
861
862 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
863 {
864         struct its_cmd_desc desc;
865
866         desc.its_mapti_cmd.dev = dev;
867         desc.its_mapti_cmd.phys_id = irq_id;
868         desc.its_mapti_cmd.event_id = id;
869
870         its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
871 }
872
873 static void its_send_movi(struct its_device *dev,
874                           struct its_collection *col, u32 id)
875 {
876         struct its_cmd_desc desc;
877
878         desc.its_movi_cmd.dev = dev;
879         desc.its_movi_cmd.col = col;
880         desc.its_movi_cmd.event_id = id;
881
882         its_send_single_command(dev->its, its_build_movi_cmd, &desc);
883 }
884
885 static void its_send_discard(struct its_device *dev, u32 id)
886 {
887         struct its_cmd_desc desc;
888
889         desc.its_discard_cmd.dev = dev;
890         desc.its_discard_cmd.event_id = id;
891
892         its_send_single_command(dev->its, its_build_discard_cmd, &desc);
893 }
894
895 static void its_send_invall(struct its_node *its, struct its_collection *col)
896 {
897         struct its_cmd_desc desc;
898
899         desc.its_invall_cmd.col = col;
900
901         its_send_single_command(its, its_build_invall_cmd, &desc);
902 }
903
904 static void its_send_vmapti(struct its_device *dev, u32 id)
905 {
906         struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
907         struct its_cmd_desc desc;
908
909         desc.its_vmapti_cmd.vpe = map->vpe;
910         desc.its_vmapti_cmd.dev = dev;
911         desc.its_vmapti_cmd.virt_id = map->vintid;
912         desc.its_vmapti_cmd.event_id = id;
913         desc.its_vmapti_cmd.db_enabled = map->db_enabled;
914
915         its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
916 }
917
918 static void its_send_vmovi(struct its_device *dev, u32 id)
919 {
920         struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
921         struct its_cmd_desc desc;
922
923         desc.its_vmovi_cmd.vpe = map->vpe;
924         desc.its_vmovi_cmd.dev = dev;
925         desc.its_vmovi_cmd.event_id = id;
926         desc.its_vmovi_cmd.db_enabled = map->db_enabled;
927
928         its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
929 }
930
931 static void its_send_vmapp(struct its_node *its,
932                            struct its_vpe *vpe, bool valid)
933 {
934         struct its_cmd_desc desc;
935
936         desc.its_vmapp_cmd.vpe = vpe;
937         desc.its_vmapp_cmd.valid = valid;
938         desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
939
940         its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
941 }
942
943 static void its_send_vmovp(struct its_vpe *vpe)
944 {
945         struct its_cmd_desc desc;
946         struct its_node *its;
947         unsigned long flags;
948         int col_id = vpe->col_idx;
949
950         desc.its_vmovp_cmd.vpe = vpe;
951         desc.its_vmovp_cmd.its_list = (u16)its_list_map;
952
953         if (!its_list_map) {
954                 its = list_first_entry(&its_nodes, struct its_node, entry);
955                 desc.its_vmovp_cmd.seq_num = 0;
956                 desc.its_vmovp_cmd.col = &its->collections[col_id];
957                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
958                 return;
959         }
960
961         /*
962          * Yet another marvel of the architecture. If using the
963          * its_list "feature", we need to make sure that all ITSs
964          * receive all VMOVP commands in the same order. The only way
965          * to guarantee this is to make vmovp a serialization point.
966          *
967          * Wall <-- Head.
968          */
969         raw_spin_lock_irqsave(&vmovp_lock, flags);
970
971         desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
972
973         /* Emit VMOVPs */
974         list_for_each_entry(its, &its_nodes, entry) {
975                 if (!its->is_v4)
976                         continue;
977
978                 if (!vpe->its_vm->vlpi_count[its->list_nr])
979                         continue;
980
981                 desc.its_vmovp_cmd.col = &its->collections[col_id];
982                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
983         }
984
985         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
986 }
987
988 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
989 {
990         struct its_cmd_desc desc;
991
992         desc.its_vinvall_cmd.vpe = vpe;
993         its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
994 }
995
996 /*
997  * irqchip functions - assumes MSI, mostly.
998  */
999
1000 static inline u32 its_get_event_id(struct irq_data *d)
1001 {
1002         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1003         return d->hwirq - its_dev->event_map.lpi_base;
1004 }
1005
1006 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1007 {
1008         irq_hw_number_t hwirq;
1009         struct page *prop_page;
1010         u8 *cfg;
1011
1012         if (irqd_is_forwarded_to_vcpu(d)) {
1013                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1014                 u32 event = its_get_event_id(d);
1015                 struct its_vlpi_map *map;
1016
1017                 prop_page = its_dev->event_map.vm->vprop_page;
1018                 map = &its_dev->event_map.vlpi_maps[event];
1019                 hwirq = map->vintid;
1020
1021                 /* Remember the updated property */
1022                 map->properties &= ~clr;
1023                 map->properties |= set | LPI_PROP_GROUP1;
1024         } else {
1025                 prop_page = gic_rdists->prop_page;
1026                 hwirq = d->hwirq;
1027         }
1028
1029         cfg = page_address(prop_page) + hwirq - 8192;
1030         *cfg &= ~clr;
1031         *cfg |= set | LPI_PROP_GROUP1;
1032
1033         /*
1034          * Make the above write visible to the redistributors.
1035          * And yes, we're flushing exactly: One. Single. Byte.
1036          * Humpf...
1037          */
1038         if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1039                 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1040         else
1041                 dsb(ishst);
1042 }
1043
1044 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1045 {
1046         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1047
1048         lpi_write_config(d, clr, set);
1049         its_send_inv(its_dev, its_get_event_id(d));
1050 }
1051
1052 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1053 {
1054         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1055         u32 event = its_get_event_id(d);
1056
1057         if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1058                 return;
1059
1060         its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1061
1062         /*
1063          * More fun with the architecture:
1064          *
1065          * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1066          * value or to 1023, depending on the enable bit. But that
1067          * would be issueing a mapping for an /existing/ DevID+EventID
1068          * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1069          * to the /same/ vPE, using this opportunity to adjust the
1070          * doorbell. Mouahahahaha. We loves it, Precious.
1071          */
1072         its_send_vmovi(its_dev, event);
1073 }
1074
1075 static void its_mask_irq(struct irq_data *d)
1076 {
1077         if (irqd_is_forwarded_to_vcpu(d))
1078                 its_vlpi_set_doorbell(d, false);
1079
1080         lpi_update_config(d, LPI_PROP_ENABLED, 0);
1081 }
1082
1083 static void its_unmask_irq(struct irq_data *d)
1084 {
1085         if (irqd_is_forwarded_to_vcpu(d))
1086                 its_vlpi_set_doorbell(d, true);
1087
1088         lpi_update_config(d, 0, LPI_PROP_ENABLED);
1089 }
1090
1091 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1092                             bool force)
1093 {
1094         unsigned int cpu;
1095         const struct cpumask *cpu_mask = cpu_online_mask;
1096         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1097         struct its_collection *target_col;
1098         u32 id = its_get_event_id(d);
1099
1100         /* A forwarded interrupt should use irq_set_vcpu_affinity */
1101         if (irqd_is_forwarded_to_vcpu(d))
1102                 return -EINVAL;
1103
1104        /* lpi cannot be routed to a redistributor that is on a foreign node */
1105         if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1106                 if (its_dev->its->numa_node >= 0) {
1107                         cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1108                         if (!cpumask_intersects(mask_val, cpu_mask))
1109                                 return -EINVAL;
1110                 }
1111         }
1112
1113         cpu = cpumask_any_and(mask_val, cpu_mask);
1114
1115         if (cpu >= nr_cpu_ids)
1116                 return -EINVAL;
1117
1118         /* don't set the affinity when the target cpu is same as current one */
1119         if (cpu != its_dev->event_map.col_map[id]) {
1120                 target_col = &its_dev->its->collections[cpu];
1121                 its_send_movi(its_dev, target_col, id);
1122                 its_dev->event_map.col_map[id] = cpu;
1123                 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1124         }
1125
1126         return IRQ_SET_MASK_OK_DONE;
1127 }
1128
1129 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1130 {
1131         struct its_node *its = its_dev->its;
1132
1133         return its->phys_base + GITS_TRANSLATER;
1134 }
1135
1136 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1137 {
1138         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1139         struct its_node *its;
1140         u64 addr;
1141
1142         its = its_dev->its;
1143         addr = its->get_msi_base(its_dev);
1144
1145         msg->address_lo         = lower_32_bits(addr);
1146         msg->address_hi         = upper_32_bits(addr);
1147         msg->data               = its_get_event_id(d);
1148
1149         iommu_dma_map_msi_msg(d->irq, msg);
1150 }
1151
1152 static int its_irq_set_irqchip_state(struct irq_data *d,
1153                                      enum irqchip_irq_state which,
1154                                      bool state)
1155 {
1156         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1157         u32 event = its_get_event_id(d);
1158
1159         if (which != IRQCHIP_STATE_PENDING)
1160                 return -EINVAL;
1161
1162         if (state)
1163                 its_send_int(its_dev, event);
1164         else
1165                 its_send_clear(its_dev, event);
1166
1167         return 0;
1168 }
1169
1170 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1171 {
1172         unsigned long flags;
1173
1174         /* Not using the ITS list? Everything is always mapped. */
1175         if (!its_list_map)
1176                 return;
1177
1178         raw_spin_lock_irqsave(&vmovp_lock, flags);
1179
1180         /*
1181          * If the VM wasn't mapped yet, iterate over the vpes and get
1182          * them mapped now.
1183          */
1184         vm->vlpi_count[its->list_nr]++;
1185
1186         if (vm->vlpi_count[its->list_nr] == 1) {
1187                 int i;
1188
1189                 for (i = 0; i < vm->nr_vpes; i++) {
1190                         struct its_vpe *vpe = vm->vpes[i];
1191                         struct irq_data *d = irq_get_irq_data(vpe->irq);
1192
1193                         /* Map the VPE to the first possible CPU */
1194                         vpe->col_idx = cpumask_first(cpu_online_mask);
1195                         its_send_vmapp(its, vpe, true);
1196                         its_send_vinvall(its, vpe);
1197                         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1198                 }
1199         }
1200
1201         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1202 }
1203
1204 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1205 {
1206         unsigned long flags;
1207
1208         /* Not using the ITS list? Everything is always mapped. */
1209         if (!its_list_map)
1210                 return;
1211
1212         raw_spin_lock_irqsave(&vmovp_lock, flags);
1213
1214         if (!--vm->vlpi_count[its->list_nr]) {
1215                 int i;
1216
1217                 for (i = 0; i < vm->nr_vpes; i++)
1218                         its_send_vmapp(its, vm->vpes[i], false);
1219         }
1220
1221         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1222 }
1223
1224 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1225 {
1226         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1227         u32 event = its_get_event_id(d);
1228         int ret = 0;
1229
1230         if (!info->map)
1231                 return -EINVAL;
1232
1233         mutex_lock(&its_dev->event_map.vlpi_lock);
1234
1235         if (!its_dev->event_map.vm) {
1236                 struct its_vlpi_map *maps;
1237
1238                 maps = kzalloc(sizeof(*maps) * its_dev->event_map.nr_lpis,
1239                                GFP_KERNEL);
1240                 if (!maps) {
1241                         ret = -ENOMEM;
1242                         goto out;
1243                 }
1244
1245                 its_dev->event_map.vm = info->map->vm;
1246                 its_dev->event_map.vlpi_maps = maps;
1247         } else if (its_dev->event_map.vm != info->map->vm) {
1248                 ret = -EINVAL;
1249                 goto out;
1250         }
1251
1252         /* Get our private copy of the mapping information */
1253         its_dev->event_map.vlpi_maps[event] = *info->map;
1254
1255         if (irqd_is_forwarded_to_vcpu(d)) {
1256                 /* Already mapped, move it around */
1257                 its_send_vmovi(its_dev, event);
1258         } else {
1259                 /* Ensure all the VPEs are mapped on this ITS */
1260                 its_map_vm(its_dev->its, info->map->vm);
1261
1262                 /*
1263                  * Flag the interrupt as forwarded so that we can
1264                  * start poking the virtual property table.
1265                  */
1266                 irqd_set_forwarded_to_vcpu(d);
1267
1268                 /* Write out the property to the prop table */
1269                 lpi_write_config(d, 0xff, info->map->properties);
1270
1271                 /* Drop the physical mapping */
1272                 its_send_discard(its_dev, event);
1273
1274                 /* and install the virtual one */
1275                 its_send_vmapti(its_dev, event);
1276
1277                 /* Increment the number of VLPIs */
1278                 its_dev->event_map.nr_vlpis++;
1279         }
1280
1281 out:
1282         mutex_unlock(&its_dev->event_map.vlpi_lock);
1283         return ret;
1284 }
1285
1286 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1287 {
1288         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1289         u32 event = its_get_event_id(d);
1290         int ret = 0;
1291
1292         mutex_lock(&its_dev->event_map.vlpi_lock);
1293
1294         if (!its_dev->event_map.vm ||
1295             !its_dev->event_map.vlpi_maps[event].vm) {
1296                 ret = -EINVAL;
1297                 goto out;
1298         }
1299
1300         /* Copy our mapping information to the incoming request */
1301         *info->map = its_dev->event_map.vlpi_maps[event];
1302
1303 out:
1304         mutex_unlock(&its_dev->event_map.vlpi_lock);
1305         return ret;
1306 }
1307
1308 static int its_vlpi_unmap(struct irq_data *d)
1309 {
1310         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1311         u32 event = its_get_event_id(d);
1312         int ret = 0;
1313
1314         mutex_lock(&its_dev->event_map.vlpi_lock);
1315
1316         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1317                 ret = -EINVAL;
1318                 goto out;
1319         }
1320
1321         /* Drop the virtual mapping */
1322         its_send_discard(its_dev, event);
1323
1324         /* and restore the physical one */
1325         irqd_clr_forwarded_to_vcpu(d);
1326         its_send_mapti(its_dev, d->hwirq, event);
1327         lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1328                                     LPI_PROP_ENABLED |
1329                                     LPI_PROP_GROUP1));
1330
1331         /* Potentially unmap the VM from this ITS */
1332         its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1333
1334         /*
1335          * Drop the refcount and make the device available again if
1336          * this was the last VLPI.
1337          */
1338         if (!--its_dev->event_map.nr_vlpis) {
1339                 its_dev->event_map.vm = NULL;
1340                 kfree(its_dev->event_map.vlpi_maps);
1341         }
1342
1343 out:
1344         mutex_unlock(&its_dev->event_map.vlpi_lock);
1345         return ret;
1346 }
1347
1348 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1349 {
1350         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1351
1352         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1353                 return -EINVAL;
1354
1355         if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1356                 lpi_update_config(d, 0xff, info->config);
1357         else
1358                 lpi_write_config(d, 0xff, info->config);
1359         its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1360
1361         return 0;
1362 }
1363
1364 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1365 {
1366         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1367         struct its_cmd_info *info = vcpu_info;
1368
1369         /* Need a v4 ITS */
1370         if (!its_dev->its->is_v4)
1371                 return -EINVAL;
1372
1373         /* Unmap request? */
1374         if (!info)
1375                 return its_vlpi_unmap(d);
1376
1377         switch (info->cmd_type) {
1378         case MAP_VLPI:
1379                 return its_vlpi_map(d, info);
1380
1381         case GET_VLPI:
1382                 return its_vlpi_get(d, info);
1383
1384         case PROP_UPDATE_VLPI:
1385         case PROP_UPDATE_AND_INV_VLPI:
1386                 return its_vlpi_prop_update(d, info);
1387
1388         default:
1389                 return -EINVAL;
1390         }
1391 }
1392
1393 static struct irq_chip its_irq_chip = {
1394         .name                   = "ITS",
1395         .irq_mask               = its_mask_irq,
1396         .irq_unmask             = its_unmask_irq,
1397         .irq_eoi                = irq_chip_eoi_parent,
1398         .irq_set_affinity       = its_set_affinity,
1399         .irq_compose_msi_msg    = its_irq_compose_msi_msg,
1400         .irq_set_irqchip_state  = its_irq_set_irqchip_state,
1401         .irq_set_vcpu_affinity  = its_irq_set_vcpu_affinity,
1402 };
1403
1404 /*
1405  * How we allocate LPIs:
1406  *
1407  * The GIC has id_bits bits for interrupt identifiers. From there, we
1408  * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
1409  * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
1410  * bits to the right.
1411  *
1412  * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
1413  */
1414 #define IRQS_PER_CHUNK_SHIFT    5
1415 #define IRQS_PER_CHUNK          (1 << IRQS_PER_CHUNK_SHIFT)
1416 #define ITS_MAX_LPI_NRBITS      16 /* 64K LPIs */
1417
1418 static unsigned long *lpi_bitmap;
1419 static u32 lpi_chunks;
1420 static DEFINE_SPINLOCK(lpi_lock);
1421
1422 static int its_lpi_to_chunk(int lpi)
1423 {
1424         return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
1425 }
1426
1427 static int its_chunk_to_lpi(int chunk)
1428 {
1429         return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
1430 }
1431
1432 static int __init its_lpi_init(u32 id_bits)
1433 {
1434         lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
1435
1436         lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
1437                              GFP_KERNEL);
1438         if (!lpi_bitmap) {
1439                 lpi_chunks = 0;
1440                 return -ENOMEM;
1441         }
1442
1443         pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
1444         return 0;
1445 }
1446
1447 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
1448 {
1449         unsigned long *bitmap = NULL;
1450         int chunk_id;
1451         int nr_chunks;
1452         int i;
1453
1454         nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
1455
1456         spin_lock(&lpi_lock);
1457
1458         do {
1459                 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
1460                                                       0, nr_chunks, 0);
1461                 if (chunk_id < lpi_chunks)
1462                         break;
1463
1464                 nr_chunks--;
1465         } while (nr_chunks > 0);
1466
1467         if (!nr_chunks)
1468                 goto out;
1469
1470         bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
1471                          GFP_ATOMIC);
1472         if (!bitmap)
1473                 goto out;
1474
1475         for (i = 0; i < nr_chunks; i++)
1476                 set_bit(chunk_id + i, lpi_bitmap);
1477
1478         *base = its_chunk_to_lpi(chunk_id);
1479         *nr_ids = nr_chunks * IRQS_PER_CHUNK;
1480
1481 out:
1482         spin_unlock(&lpi_lock);
1483
1484         if (!bitmap)
1485                 *base = *nr_ids = 0;
1486
1487         return bitmap;
1488 }
1489
1490 static void its_lpi_free_chunks(unsigned long *bitmap, int base, int nr_ids)
1491 {
1492         int lpi;
1493
1494         spin_lock(&lpi_lock);
1495
1496         for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
1497                 int chunk = its_lpi_to_chunk(lpi);
1498
1499                 BUG_ON(chunk > lpi_chunks);
1500                 if (test_bit(chunk, lpi_bitmap)) {
1501                         clear_bit(chunk, lpi_bitmap);
1502                 } else {
1503                         pr_err("Bad LPI chunk %d\n", chunk);
1504                 }
1505         }
1506
1507         spin_unlock(&lpi_lock);
1508
1509         kfree(bitmap);
1510 }
1511
1512 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1513 {
1514         struct page *prop_page;
1515
1516         prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1517         if (!prop_page)
1518                 return NULL;
1519
1520         /* Priority 0xa0, Group-1, disabled */
1521         memset(page_address(prop_page),
1522                LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
1523                LPI_PROPBASE_SZ);
1524
1525         /* Make sure the GIC will observe the written configuration */
1526         gic_flush_dcache_to_poc(page_address(prop_page), LPI_PROPBASE_SZ);
1527
1528         return prop_page;
1529 }
1530
1531 static void its_free_prop_table(struct page *prop_page)
1532 {
1533         free_pages((unsigned long)page_address(prop_page),
1534                    get_order(LPI_PROPBASE_SZ));
1535 }
1536
1537 static int __init its_alloc_lpi_tables(void)
1538 {
1539         phys_addr_t paddr;
1540
1541         lpi_id_bits = min_t(u32, gic_rdists->id_bits, ITS_MAX_LPI_NRBITS);
1542         gic_rdists->prop_page = its_allocate_prop_table(GFP_NOWAIT);
1543         if (!gic_rdists->prop_page) {
1544                 pr_err("Failed to allocate PROPBASE\n");
1545                 return -ENOMEM;
1546         }
1547
1548         paddr = page_to_phys(gic_rdists->prop_page);
1549         pr_info("GIC: using LPI property table @%pa\n", &paddr);
1550
1551         return its_lpi_init(lpi_id_bits);
1552 }
1553
1554 static const char *its_base_type_string[] = {
1555         [GITS_BASER_TYPE_DEVICE]        = "Devices",
1556         [GITS_BASER_TYPE_VCPU]          = "Virtual CPUs",
1557         [GITS_BASER_TYPE_RESERVED3]     = "Reserved (3)",
1558         [GITS_BASER_TYPE_COLLECTION]    = "Interrupt Collections",
1559         [GITS_BASER_TYPE_RESERVED5]     = "Reserved (5)",
1560         [GITS_BASER_TYPE_RESERVED6]     = "Reserved (6)",
1561         [GITS_BASER_TYPE_RESERVED7]     = "Reserved (7)",
1562 };
1563
1564 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1565 {
1566         u32 idx = baser - its->tables;
1567
1568         return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1569 }
1570
1571 static void its_write_baser(struct its_node *its, struct its_baser *baser,
1572                             u64 val)
1573 {
1574         u32 idx = baser - its->tables;
1575
1576         gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1577         baser->val = its_read_baser(its, baser);
1578 }
1579
1580 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1581                            u64 cache, u64 shr, u32 psz, u32 order,
1582                            bool indirect)
1583 {
1584         u64 val = its_read_baser(its, baser);
1585         u64 esz = GITS_BASER_ENTRY_SIZE(val);
1586         u64 type = GITS_BASER_TYPE(val);
1587         u64 baser_phys, tmp;
1588         u32 alloc_pages;
1589         void *base;
1590
1591 retry_alloc_baser:
1592         alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1593         if (alloc_pages > GITS_BASER_PAGES_MAX) {
1594                 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1595                         &its->phys_base, its_base_type_string[type],
1596                         alloc_pages, GITS_BASER_PAGES_MAX);
1597                 alloc_pages = GITS_BASER_PAGES_MAX;
1598                 order = get_order(GITS_BASER_PAGES_MAX * psz);
1599         }
1600
1601         base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1602         if (!base)
1603                 return -ENOMEM;
1604
1605         baser_phys = virt_to_phys(base);
1606
1607         /* Check if the physical address of the memory is above 48bits */
1608         if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1609
1610                 /* 52bit PA is supported only when PageSize=64K */
1611                 if (psz != SZ_64K) {
1612                         pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1613                         free_pages((unsigned long)base, order);
1614                         return -ENXIO;
1615                 }
1616
1617                 /* Convert 52bit PA to 48bit field */
1618                 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1619         }
1620
1621 retry_baser:
1622         val = (baser_phys                                        |
1623                 (type << GITS_BASER_TYPE_SHIFT)                  |
1624                 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)       |
1625                 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)    |
1626                 cache                                            |
1627                 shr                                              |
1628                 GITS_BASER_VALID);
1629
1630         val |=  indirect ? GITS_BASER_INDIRECT : 0x0;
1631
1632         switch (psz) {
1633         case SZ_4K:
1634                 val |= GITS_BASER_PAGE_SIZE_4K;
1635                 break;
1636         case SZ_16K:
1637                 val |= GITS_BASER_PAGE_SIZE_16K;
1638                 break;
1639         case SZ_64K:
1640                 val |= GITS_BASER_PAGE_SIZE_64K;
1641                 break;
1642         }
1643
1644         its_write_baser(its, baser, val);
1645         tmp = baser->val;
1646
1647         if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1648                 /*
1649                  * Shareability didn't stick. Just use
1650                  * whatever the read reported, which is likely
1651                  * to be the only thing this redistributor
1652                  * supports. If that's zero, make it
1653                  * non-cacheable as well.
1654                  */
1655                 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1656                 if (!shr) {
1657                         cache = GITS_BASER_nC;
1658                         gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1659                 }
1660                 goto retry_baser;
1661         }
1662
1663         if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1664                 /*
1665                  * Page size didn't stick. Let's try a smaller
1666                  * size and retry. If we reach 4K, then
1667                  * something is horribly wrong...
1668                  */
1669                 free_pages((unsigned long)base, order);
1670                 baser->base = NULL;
1671
1672                 switch (psz) {
1673                 case SZ_16K:
1674                         psz = SZ_4K;
1675                         goto retry_alloc_baser;
1676                 case SZ_64K:
1677                         psz = SZ_16K;
1678                         goto retry_alloc_baser;
1679                 }
1680         }
1681
1682         if (val != tmp) {
1683                 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1684                        &its->phys_base, its_base_type_string[type],
1685                        val, tmp);
1686                 free_pages((unsigned long)base, order);
1687                 return -ENXIO;
1688         }
1689
1690         baser->order = order;
1691         baser->base = base;
1692         baser->psz = psz;
1693         tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1694
1695         pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1696                 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1697                 its_base_type_string[type],
1698                 (unsigned long)virt_to_phys(base),
1699                 indirect ? "indirect" : "flat", (int)esz,
1700                 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1701
1702         return 0;
1703 }
1704
1705 static bool its_parse_indirect_baser(struct its_node *its,
1706                                      struct its_baser *baser,
1707                                      u32 psz, u32 *order, u32 ids)
1708 {
1709         u64 tmp = its_read_baser(its, baser);
1710         u64 type = GITS_BASER_TYPE(tmp);
1711         u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1712         u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1713         u32 new_order = *order;
1714         bool indirect = false;
1715
1716         /* No need to enable Indirection if memory requirement < (psz*2)bytes */
1717         if ((esz << ids) > (psz * 2)) {
1718                 /*
1719                  * Find out whether hw supports a single or two-level table by
1720                  * table by reading bit at offset '62' after writing '1' to it.
1721                  */
1722                 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1723                 indirect = !!(baser->val & GITS_BASER_INDIRECT);
1724
1725                 if (indirect) {
1726                         /*
1727                          * The size of the lvl2 table is equal to ITS page size
1728                          * which is 'psz'. For computing lvl1 table size,
1729                          * subtract ID bits that sparse lvl2 table from 'ids'
1730                          * which is reported by ITS hardware times lvl1 table
1731                          * entry size.
1732                          */
1733                         ids -= ilog2(psz / (int)esz);
1734                         esz = GITS_LVL1_ENTRY_SIZE;
1735                 }
1736         }
1737
1738         /*
1739          * Allocate as many entries as required to fit the
1740          * range of device IDs that the ITS can grok... The ID
1741          * space being incredibly sparse, this results in a
1742          * massive waste of memory if two-level device table
1743          * feature is not supported by hardware.
1744          */
1745         new_order = max_t(u32, get_order(esz << ids), new_order);
1746         if (new_order >= MAX_ORDER) {
1747                 new_order = MAX_ORDER - 1;
1748                 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1749                 pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1750                         &its->phys_base, its_base_type_string[type],
1751                         its->device_ids, ids);
1752         }
1753
1754         *order = new_order;
1755
1756         return indirect;
1757 }
1758
1759 static void its_free_tables(struct its_node *its)
1760 {
1761         int i;
1762
1763         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1764                 if (its->tables[i].base) {
1765                         free_pages((unsigned long)its->tables[i].base,
1766                                    its->tables[i].order);
1767                         its->tables[i].base = NULL;
1768                 }
1769         }
1770 }
1771
1772 static int its_alloc_tables(struct its_node *its)
1773 {
1774         u64 shr = GITS_BASER_InnerShareable;
1775         u64 cache = GITS_BASER_RaWaWb;
1776         u32 psz = SZ_64K;
1777         int err, i;
1778
1779         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1780                 /* erratum 24313: ignore memory access type */
1781                 cache = GITS_BASER_nCnB;
1782
1783         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1784                 struct its_baser *baser = its->tables + i;
1785                 u64 val = its_read_baser(its, baser);
1786                 u64 type = GITS_BASER_TYPE(val);
1787                 u32 order = get_order(psz);
1788                 bool indirect = false;
1789
1790                 switch (type) {
1791                 case GITS_BASER_TYPE_NONE:
1792                         continue;
1793
1794                 case GITS_BASER_TYPE_DEVICE:
1795                         indirect = its_parse_indirect_baser(its, baser,
1796                                                             psz, &order,
1797                                                             its->device_ids);
1798                 case GITS_BASER_TYPE_VCPU:
1799                         indirect = its_parse_indirect_baser(its, baser,
1800                                                             psz, &order,
1801                                                             ITS_MAX_VPEID_BITS);
1802                         break;
1803                 }
1804
1805                 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1806                 if (err < 0) {
1807                         its_free_tables(its);
1808                         return err;
1809                 }
1810
1811                 /* Update settings which will be used for next BASERn */
1812                 psz = baser->psz;
1813                 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1814                 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1815         }
1816
1817         return 0;
1818 }
1819
1820 static int its_alloc_collections(struct its_node *its)
1821 {
1822         its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
1823                                    GFP_KERNEL);
1824         if (!its->collections)
1825                 return -ENOMEM;
1826
1827         return 0;
1828 }
1829
1830 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
1831 {
1832         struct page *pend_page;
1833         /*
1834          * The pending pages have to be at least 64kB aligned,
1835          * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1836          */
1837         pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
1838                                 get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1839         if (!pend_page)
1840                 return NULL;
1841
1842         /* Make sure the GIC will observe the zero-ed page */
1843         gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1844
1845         return pend_page;
1846 }
1847
1848 static void its_free_pending_table(struct page *pt)
1849 {
1850         free_pages((unsigned long)page_address(pt),
1851                    get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1852 }
1853
1854 static void its_cpu_init_lpis(void)
1855 {
1856         void __iomem *rbase = gic_data_rdist_rd_base();
1857         struct page *pend_page;
1858         u64 val, tmp;
1859
1860         /* If we didn't allocate the pending table yet, do it now */
1861         pend_page = gic_data_rdist()->pend_page;
1862         if (!pend_page) {
1863                 phys_addr_t paddr;
1864
1865                 pend_page = its_allocate_pending_table(GFP_NOWAIT);
1866                 if (!pend_page) {
1867                         pr_err("Failed to allocate PENDBASE for CPU%d\n",
1868                                smp_processor_id());
1869                         return;
1870                 }
1871
1872                 paddr = page_to_phys(pend_page);
1873                 pr_info("CPU%d: using LPI pending table @%pa\n",
1874                         smp_processor_id(), &paddr);
1875                 gic_data_rdist()->pend_page = pend_page;
1876         }
1877
1878         /* Disable LPIs */
1879         val = readl_relaxed(rbase + GICR_CTLR);
1880         val &= ~GICR_CTLR_ENABLE_LPIS;
1881         writel_relaxed(val, rbase + GICR_CTLR);
1882
1883         /*
1884          * Make sure any change to the table is observable by the GIC.
1885          */
1886         dsb(sy);
1887
1888         /* set PROPBASE */
1889         val = (page_to_phys(gic_rdists->prop_page) |
1890                GICR_PROPBASER_InnerShareable |
1891                GICR_PROPBASER_RaWaWb |
1892                ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1893
1894         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1895         tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
1896
1897         if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1898                 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1899                         /*
1900                          * The HW reports non-shareable, we must
1901                          * remove the cacheability attributes as
1902                          * well.
1903                          */
1904                         val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1905                                  GICR_PROPBASER_CACHEABILITY_MASK);
1906                         val |= GICR_PROPBASER_nC;
1907                         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1908                 }
1909                 pr_info_once("GIC: using cache flushing for LPI property table\n");
1910                 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1911         }
1912
1913         /* set PENDBASE */
1914         val = (page_to_phys(pend_page) |
1915                GICR_PENDBASER_InnerShareable |
1916                GICR_PENDBASER_RaWaWb);
1917
1918         gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1919         tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
1920
1921         if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1922                 /*
1923                  * The HW reports non-shareable, we must remove the
1924                  * cacheability attributes as well.
1925                  */
1926                 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1927                          GICR_PENDBASER_CACHEABILITY_MASK);
1928                 val |= GICR_PENDBASER_nC;
1929                 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1930         }
1931
1932         /* Enable LPIs */
1933         val = readl_relaxed(rbase + GICR_CTLR);
1934         val |= GICR_CTLR_ENABLE_LPIS;
1935         writel_relaxed(val, rbase + GICR_CTLR);
1936
1937         /* Make sure the GIC has seen the above */
1938         dsb(sy);
1939 }
1940
1941 static void its_cpu_init_collection(void)
1942 {
1943         struct its_node *its;
1944         int cpu;
1945
1946         spin_lock(&its_lock);
1947         cpu = smp_processor_id();
1948
1949         list_for_each_entry(its, &its_nodes, entry) {
1950                 u64 target;
1951
1952                 /* avoid cross node collections and its mapping */
1953                 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1954                         struct device_node *cpu_node;
1955
1956                         cpu_node = of_get_cpu_node(cpu, NULL);
1957                         if (its->numa_node != NUMA_NO_NODE &&
1958                                 its->numa_node != of_node_to_nid(cpu_node))
1959                                 continue;
1960                 }
1961
1962                 /*
1963                  * We now have to bind each collection to its target
1964                  * redistributor.
1965                  */
1966                 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1967                         /*
1968                          * This ITS wants the physical address of the
1969                          * redistributor.
1970                          */
1971                         target = gic_data_rdist()->phys_base;
1972                 } else {
1973                         /*
1974                          * This ITS wants a linear CPU number.
1975                          */
1976                         target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
1977                         target = GICR_TYPER_CPU_NUMBER(target) << 16;
1978                 }
1979
1980                 /* Perform collection mapping */
1981                 its->collections[cpu].target_address = target;
1982                 its->collections[cpu].col_id = cpu;
1983
1984                 its_send_mapc(its, &its->collections[cpu], 1);
1985                 its_send_invall(its, &its->collections[cpu]);
1986         }
1987
1988         spin_unlock(&its_lock);
1989 }
1990
1991 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1992 {
1993         struct its_device *its_dev = NULL, *tmp;
1994         unsigned long flags;
1995
1996         raw_spin_lock_irqsave(&its->lock, flags);
1997
1998         list_for_each_entry(tmp, &its->its_device_list, entry) {
1999                 if (tmp->device_id == dev_id) {
2000                         its_dev = tmp;
2001                         break;
2002                 }
2003         }
2004
2005         raw_spin_unlock_irqrestore(&its->lock, flags);
2006
2007         return its_dev;
2008 }
2009
2010 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2011 {
2012         int i;
2013
2014         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2015                 if (GITS_BASER_TYPE(its->tables[i].val) == type)
2016                         return &its->tables[i];
2017         }
2018
2019         return NULL;
2020 }
2021
2022 static bool its_alloc_table_entry(struct its_baser *baser, u32 id)
2023 {
2024         struct page *page;
2025         u32 esz, idx;
2026         __le64 *table;
2027
2028         /* Don't allow device id that exceeds single, flat table limit */
2029         esz = GITS_BASER_ENTRY_SIZE(baser->val);
2030         if (!(baser->val & GITS_BASER_INDIRECT))
2031                 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2032
2033         /* Compute 1st level table index & check if that exceeds table limit */
2034         idx = id >> ilog2(baser->psz / esz);
2035         if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2036                 return false;
2037
2038         table = baser->base;
2039
2040         /* Allocate memory for 2nd level table */
2041         if (!table[idx]) {
2042                 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
2043                 if (!page)
2044                         return false;
2045
2046                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2047                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2048                         gic_flush_dcache_to_poc(page_address(page), baser->psz);
2049
2050                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2051
2052                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2053                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2054                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2055
2056                 /* Ensure updated table contents are visible to ITS hardware */
2057                 dsb(sy);
2058         }
2059
2060         return true;
2061 }
2062
2063 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2064 {
2065         struct its_baser *baser;
2066
2067         baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2068
2069         /* Don't allow device id that exceeds ITS hardware limit */
2070         if (!baser)
2071                 return (ilog2(dev_id) < its->device_ids);
2072
2073         return its_alloc_table_entry(baser, dev_id);
2074 }
2075
2076 static bool its_alloc_vpe_table(u32 vpe_id)
2077 {
2078         struct its_node *its;
2079
2080         /*
2081          * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2082          * could try and only do it on ITSs corresponding to devices
2083          * that have interrupts targeted at this VPE, but the
2084          * complexity becomes crazy (and you have tons of memory
2085          * anyway, right?).
2086          */
2087         list_for_each_entry(its, &its_nodes, entry) {
2088                 struct its_baser *baser;
2089
2090                 if (!its->is_v4)
2091                         continue;
2092
2093                 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2094                 if (!baser)
2095                         return false;
2096
2097                 if (!its_alloc_table_entry(baser, vpe_id))
2098                         return false;
2099         }
2100
2101         return true;
2102 }
2103
2104 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2105                                             int nvecs, bool alloc_lpis)
2106 {
2107         struct its_device *dev;
2108         unsigned long *lpi_map = NULL;
2109         unsigned long flags;
2110         u16 *col_map = NULL;
2111         void *itt;
2112         int lpi_base;
2113         int nr_lpis;
2114         int nr_ites;
2115         int sz;
2116
2117         if (!its_alloc_device_table(its, dev_id))
2118                 return NULL;
2119
2120         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2121         /*
2122          * At least one bit of EventID is being used, hence a minimum
2123          * of two entries. No, the architecture doesn't let you
2124          * express an ITT with a single entry.
2125          */
2126         nr_ites = max(2UL, roundup_pow_of_two(nvecs));
2127         sz = nr_ites * its->ite_size;
2128         sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2129         itt = kzalloc(sz, GFP_KERNEL);
2130         if (alloc_lpis) {
2131                 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
2132                 if (lpi_map)
2133                         col_map = kzalloc(sizeof(*col_map) * nr_lpis,
2134                                           GFP_KERNEL);
2135         } else {
2136                 col_map = kzalloc(sizeof(*col_map) * nr_ites, GFP_KERNEL);
2137                 nr_lpis = 0;
2138                 lpi_base = 0;
2139         }
2140
2141         if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2142                 kfree(dev);
2143                 kfree(itt);
2144                 kfree(lpi_map);
2145                 kfree(col_map);
2146                 return NULL;
2147         }
2148
2149         gic_flush_dcache_to_poc(itt, sz);
2150
2151         dev->its = its;
2152         dev->itt = itt;
2153         dev->nr_ites = nr_ites;
2154         dev->event_map.lpi_map = lpi_map;
2155         dev->event_map.col_map = col_map;
2156         dev->event_map.lpi_base = lpi_base;
2157         dev->event_map.nr_lpis = nr_lpis;
2158         mutex_init(&dev->event_map.vlpi_lock);
2159         dev->device_id = dev_id;
2160         INIT_LIST_HEAD(&dev->entry);
2161
2162         raw_spin_lock_irqsave(&its->lock, flags);
2163         list_add(&dev->entry, &its->its_device_list);
2164         raw_spin_unlock_irqrestore(&its->lock, flags);
2165
2166         /* Map device to its ITT */
2167         its_send_mapd(dev, 1);
2168
2169         return dev;
2170 }
2171
2172 static void its_free_device(struct its_device *its_dev)
2173 {
2174         unsigned long flags;
2175
2176         raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2177         list_del(&its_dev->entry);
2178         raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2179         kfree(its_dev->itt);
2180         kfree(its_dev);
2181 }
2182
2183 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
2184 {
2185         int idx;
2186
2187         idx = find_first_zero_bit(dev->event_map.lpi_map,
2188                                   dev->event_map.nr_lpis);
2189         if (idx == dev->event_map.nr_lpis)
2190                 return -ENOSPC;
2191
2192         *hwirq = dev->event_map.lpi_base + idx;
2193         set_bit(idx, dev->event_map.lpi_map);
2194
2195         return 0;
2196 }
2197
2198 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2199                            int nvec, msi_alloc_info_t *info)
2200 {
2201         struct its_node *its;
2202         struct its_device *its_dev;
2203         struct msi_domain_info *msi_info;
2204         u32 dev_id;
2205
2206         /*
2207          * We ignore "dev" entierely, and rely on the dev_id that has
2208          * been passed via the scratchpad. This limits this domain's
2209          * usefulness to upper layers that definitely know that they
2210          * are built on top of the ITS.
2211          */
2212         dev_id = info->scratchpad[0].ul;
2213
2214         msi_info = msi_get_domain_info(domain);
2215         its = msi_info->data;
2216
2217         if (!gic_rdists->has_direct_lpi &&
2218             vpe_proxy.dev &&
2219             vpe_proxy.dev->its == its &&
2220             dev_id == vpe_proxy.dev->device_id) {
2221                 /* Bad luck. Get yourself a better implementation */
2222                 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2223                           dev_id);
2224                 return -EINVAL;
2225         }
2226
2227         its_dev = its_find_device(its, dev_id);
2228         if (its_dev) {
2229                 /*
2230                  * We already have seen this ID, probably through
2231                  * another alias (PCI bridge of some sort). No need to
2232                  * create the device.
2233                  */
2234                 pr_debug("Reusing ITT for devID %x\n", dev_id);
2235                 goto out;
2236         }
2237
2238         its_dev = its_create_device(its, dev_id, nvec, true);
2239         if (!its_dev)
2240                 return -ENOMEM;
2241
2242         pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2243 out:
2244         info->scratchpad[0].ptr = its_dev;
2245         return 0;
2246 }
2247
2248 static struct msi_domain_ops its_msi_domain_ops = {
2249         .msi_prepare    = its_msi_prepare,
2250 };
2251
2252 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2253                                     unsigned int virq,
2254                                     irq_hw_number_t hwirq)
2255 {
2256         struct irq_fwspec fwspec;
2257
2258         if (irq_domain_get_of_node(domain->parent)) {
2259                 fwspec.fwnode = domain->parent->fwnode;
2260                 fwspec.param_count = 3;
2261                 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2262                 fwspec.param[1] = hwirq;
2263                 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2264         } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2265                 fwspec.fwnode = domain->parent->fwnode;
2266                 fwspec.param_count = 2;
2267                 fwspec.param[0] = hwirq;
2268                 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2269         } else {
2270                 return -EINVAL;
2271         }
2272
2273         return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2274 }
2275
2276 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2277                                 unsigned int nr_irqs, void *args)
2278 {
2279         msi_alloc_info_t *info = args;
2280         struct its_device *its_dev = info->scratchpad[0].ptr;
2281         irq_hw_number_t hwirq;
2282         int err;
2283         int i;
2284
2285         for (i = 0; i < nr_irqs; i++) {
2286                 err = its_alloc_device_irq(its_dev, &hwirq);
2287                 if (err)
2288                         return err;
2289
2290                 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
2291                 if (err)
2292                         return err;
2293
2294                 irq_domain_set_hwirq_and_chip(domain, virq + i,
2295                                               hwirq, &its_irq_chip, its_dev);
2296                 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2297                 pr_debug("ID:%d pID:%d vID:%d\n",
2298                          (int)(hwirq - its_dev->event_map.lpi_base),
2299                          (int) hwirq, virq + i);
2300         }
2301
2302         return 0;
2303 }
2304
2305 static int its_irq_domain_activate(struct irq_domain *domain,
2306                                    struct irq_data *d, bool reserve)
2307 {
2308         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2309         u32 event = its_get_event_id(d);
2310         const struct cpumask *cpu_mask = cpu_online_mask;
2311         int cpu;
2312
2313         /* get the cpu_mask of local node */
2314         if (its_dev->its->numa_node >= 0)
2315                 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2316
2317         /* Bind the LPI to the first possible CPU */
2318         cpu = cpumask_first(cpu_mask);
2319         its_dev->event_map.col_map[event] = cpu;
2320         irq_data_update_effective_affinity(d, cpumask_of(cpu));
2321
2322         /* Map the GIC IRQ and event to the device */
2323         its_send_mapti(its_dev, d->hwirq, event);
2324         return 0;
2325 }
2326
2327 static void its_irq_domain_deactivate(struct irq_domain *domain,
2328                                       struct irq_data *d)
2329 {
2330         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2331         u32 event = its_get_event_id(d);
2332
2333         /* Stop the delivery of interrupts */
2334         its_send_discard(its_dev, event);
2335 }
2336
2337 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2338                                 unsigned int nr_irqs)
2339 {
2340         struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2341         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2342         int i;
2343
2344         for (i = 0; i < nr_irqs; i++) {
2345                 struct irq_data *data = irq_domain_get_irq_data(domain,
2346                                                                 virq + i);
2347                 u32 event = its_get_event_id(data);
2348
2349                 /* Mark interrupt index as unused */
2350                 clear_bit(event, its_dev->event_map.lpi_map);
2351
2352                 /* Nuke the entry in the domain */
2353                 irq_domain_reset_irq_data(data);
2354         }
2355
2356         /* If all interrupts have been freed, start mopping the floor */
2357         if (bitmap_empty(its_dev->event_map.lpi_map,
2358                          its_dev->event_map.nr_lpis)) {
2359                 its_lpi_free_chunks(its_dev->event_map.lpi_map,
2360                                     its_dev->event_map.lpi_base,
2361                                     its_dev->event_map.nr_lpis);
2362                 kfree(its_dev->event_map.col_map);
2363
2364                 /* Unmap device/itt */
2365                 its_send_mapd(its_dev, 0);
2366                 its_free_device(its_dev);
2367         }
2368
2369         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2370 }
2371
2372 static const struct irq_domain_ops its_domain_ops = {
2373         .alloc                  = its_irq_domain_alloc,
2374         .free                   = its_irq_domain_free,
2375         .activate               = its_irq_domain_activate,
2376         .deactivate             = its_irq_domain_deactivate,
2377 };
2378
2379 /*
2380  * This is insane.
2381  *
2382  * If a GICv4 doesn't implement Direct LPIs (which is extremely
2383  * likely), the only way to perform an invalidate is to use a fake
2384  * device to issue an INV command, implying that the LPI has first
2385  * been mapped to some event on that device. Since this is not exactly
2386  * cheap, we try to keep that mapping around as long as possible, and
2387  * only issue an UNMAP if we're short on available slots.
2388  *
2389  * Broken by design(tm).
2390  */
2391 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2392 {
2393         /* Already unmapped? */
2394         if (vpe->vpe_proxy_event == -1)
2395                 return;
2396
2397         its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2398         vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2399
2400         /*
2401          * We don't track empty slots at all, so let's move the
2402          * next_victim pointer if we can quickly reuse that slot
2403          * instead of nuking an existing entry. Not clear that this is
2404          * always a win though, and this might just generate a ripple
2405          * effect... Let's just hope VPEs don't migrate too often.
2406          */
2407         if (vpe_proxy.vpes[vpe_proxy.next_victim])
2408                 vpe_proxy.next_victim = vpe->vpe_proxy_event;
2409
2410         vpe->vpe_proxy_event = -1;
2411 }
2412
2413 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2414 {
2415         if (!gic_rdists->has_direct_lpi) {
2416                 unsigned long flags;
2417
2418                 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2419                 its_vpe_db_proxy_unmap_locked(vpe);
2420                 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2421         }
2422 }
2423
2424 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2425 {
2426         /* Already mapped? */
2427         if (vpe->vpe_proxy_event != -1)
2428                 return;
2429
2430         /* This slot was already allocated. Kick the other VPE out. */
2431         if (vpe_proxy.vpes[vpe_proxy.next_victim])
2432                 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2433
2434         /* Map the new VPE instead */
2435         vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2436         vpe->vpe_proxy_event = vpe_proxy.next_victim;
2437         vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2438
2439         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2440         its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2441 }
2442
2443 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2444 {
2445         unsigned long flags;
2446         struct its_collection *target_col;
2447
2448         if (gic_rdists->has_direct_lpi) {
2449                 void __iomem *rdbase;
2450
2451                 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2452                 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2453                 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2454                         cpu_relax();
2455
2456                 return;
2457         }
2458
2459         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2460
2461         its_vpe_db_proxy_map_locked(vpe);
2462
2463         target_col = &vpe_proxy.dev->its->collections[to];
2464         its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2465         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2466
2467         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2468 }
2469
2470 static int its_vpe_set_affinity(struct irq_data *d,
2471                                 const struct cpumask *mask_val,
2472                                 bool force)
2473 {
2474         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2475         int cpu = cpumask_first(mask_val);
2476
2477         /*
2478          * Changing affinity is mega expensive, so let's be as lazy as
2479          * we can and only do it if we really have to. Also, if mapped
2480          * into the proxy device, we need to move the doorbell
2481          * interrupt to its new location.
2482          */
2483         if (vpe->col_idx != cpu) {
2484                 int from = vpe->col_idx;
2485
2486                 vpe->col_idx = cpu;
2487                 its_send_vmovp(vpe);
2488                 its_vpe_db_proxy_move(vpe, from, cpu);
2489         }
2490
2491         irq_data_update_effective_affinity(d, cpumask_of(cpu));
2492
2493         return IRQ_SET_MASK_OK_DONE;
2494 }
2495
2496 static void its_vpe_schedule(struct its_vpe *vpe)
2497 {
2498         void * __iomem vlpi_base = gic_data_rdist_vlpi_base();
2499         u64 val;
2500
2501         /* Schedule the VPE */
2502         val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2503                 GENMASK_ULL(51, 12);
2504         val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2505         val |= GICR_VPROPBASER_RaWb;
2506         val |= GICR_VPROPBASER_InnerShareable;
2507         gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2508
2509         val  = virt_to_phys(page_address(vpe->vpt_page)) &
2510                 GENMASK_ULL(51, 16);
2511         val |= GICR_VPENDBASER_RaWaWb;
2512         val |= GICR_VPENDBASER_NonShareable;
2513         /*
2514          * There is no good way of finding out if the pending table is
2515          * empty as we can race against the doorbell interrupt very
2516          * easily. So in the end, vpe->pending_last is only an
2517          * indication that the vcpu has something pending, not one
2518          * that the pending table is empty. A good implementation
2519          * would be able to read its coarse map pretty quickly anyway,
2520          * making this a tolerable issue.
2521          */
2522         val |= GICR_VPENDBASER_PendingLast;
2523         val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2524         val |= GICR_VPENDBASER_Valid;
2525         gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2526 }
2527
2528 static void its_vpe_deschedule(struct its_vpe *vpe)
2529 {
2530         void * __iomem vlpi_base = gic_data_rdist_vlpi_base();
2531         u32 count = 1000000;    /* 1s! */
2532         bool clean;
2533         u64 val;
2534
2535         /* We're being scheduled out */
2536         val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2537         val &= ~GICR_VPENDBASER_Valid;
2538         gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2539
2540         do {
2541                 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2542                 clean = !(val & GICR_VPENDBASER_Dirty);
2543                 if (!clean) {
2544                         count--;
2545                         cpu_relax();
2546                         udelay(1);
2547                 }
2548         } while (!clean && count);
2549
2550         if (unlikely(!clean && !count)) {
2551                 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2552                 vpe->idai = false;
2553                 vpe->pending_last = true;
2554         } else {
2555                 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2556                 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2557         }
2558 }
2559
2560 static void its_vpe_invall(struct its_vpe *vpe)
2561 {
2562         struct its_node *its;
2563
2564         list_for_each_entry(its, &its_nodes, entry) {
2565                 if (!its->is_v4)
2566                         continue;
2567
2568                 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2569                         continue;
2570
2571                 /*
2572                  * Sending a VINVALL to a single ITS is enough, as all
2573                  * we need is to reach the redistributors.
2574                  */
2575                 its_send_vinvall(its, vpe);
2576                 return;
2577         }
2578 }
2579
2580 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2581 {
2582         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2583         struct its_cmd_info *info = vcpu_info;
2584
2585         switch (info->cmd_type) {
2586         case SCHEDULE_VPE:
2587                 its_vpe_schedule(vpe);
2588                 return 0;
2589
2590         case DESCHEDULE_VPE:
2591                 its_vpe_deschedule(vpe);
2592                 return 0;
2593
2594         case INVALL_VPE:
2595                 its_vpe_invall(vpe);
2596                 return 0;
2597
2598         default:
2599                 return -EINVAL;
2600         }
2601 }
2602
2603 static void its_vpe_send_cmd(struct its_vpe *vpe,
2604                              void (*cmd)(struct its_device *, u32))
2605 {
2606         unsigned long flags;
2607
2608         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2609
2610         its_vpe_db_proxy_map_locked(vpe);
2611         cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2612
2613         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2614 }
2615
2616 static void its_vpe_send_inv(struct irq_data *d)
2617 {
2618         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2619
2620         if (gic_rdists->has_direct_lpi) {
2621                 void __iomem *rdbase;
2622
2623                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2624                 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2625                 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2626                         cpu_relax();
2627         } else {
2628                 its_vpe_send_cmd(vpe, its_send_inv);
2629         }
2630 }
2631
2632 static void its_vpe_mask_irq(struct irq_data *d)
2633 {
2634         /*
2635          * We need to unmask the LPI, which is described by the parent
2636          * irq_data. Instead of calling into the parent (which won't
2637          * exactly do the right thing, let's simply use the
2638          * parent_data pointer. Yes, I'm naughty.
2639          */
2640         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2641         its_vpe_send_inv(d);
2642 }
2643
2644 static void its_vpe_unmask_irq(struct irq_data *d)
2645 {
2646         /* Same hack as above... */
2647         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2648         its_vpe_send_inv(d);
2649 }
2650
2651 static int its_vpe_set_irqchip_state(struct irq_data *d,
2652                                      enum irqchip_irq_state which,
2653                                      bool state)
2654 {
2655         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2656
2657         if (which != IRQCHIP_STATE_PENDING)
2658                 return -EINVAL;
2659
2660         if (gic_rdists->has_direct_lpi) {
2661                 void __iomem *rdbase;
2662
2663                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2664                 if (state) {
2665                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2666                 } else {
2667                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2668                         while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2669                                 cpu_relax();
2670                 }
2671         } else {
2672                 if (state)
2673                         its_vpe_send_cmd(vpe, its_send_int);
2674                 else
2675                         its_vpe_send_cmd(vpe, its_send_clear);
2676         }
2677
2678         return 0;
2679 }
2680
2681 static struct irq_chip its_vpe_irq_chip = {
2682         .name                   = "GICv4-vpe",
2683         .irq_mask               = its_vpe_mask_irq,
2684         .irq_unmask             = its_vpe_unmask_irq,
2685         .irq_eoi                = irq_chip_eoi_parent,
2686         .irq_set_affinity       = its_vpe_set_affinity,
2687         .irq_set_irqchip_state  = its_vpe_set_irqchip_state,
2688         .irq_set_vcpu_affinity  = its_vpe_set_vcpu_affinity,
2689 };
2690
2691 static int its_vpe_id_alloc(void)
2692 {
2693         return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
2694 }
2695
2696 static void its_vpe_id_free(u16 id)
2697 {
2698         ida_simple_remove(&its_vpeid_ida, id);
2699 }
2700
2701 static int its_vpe_init(struct its_vpe *vpe)
2702 {
2703         struct page *vpt_page;
2704         int vpe_id;
2705
2706         /* Allocate vpe_id */
2707         vpe_id = its_vpe_id_alloc();
2708         if (vpe_id < 0)
2709                 return vpe_id;
2710
2711         /* Allocate VPT */
2712         vpt_page = its_allocate_pending_table(GFP_KERNEL);
2713         if (!vpt_page) {
2714                 its_vpe_id_free(vpe_id);
2715                 return -ENOMEM;
2716         }
2717
2718         if (!its_alloc_vpe_table(vpe_id)) {
2719                 its_vpe_id_free(vpe_id);
2720                 its_free_pending_table(vpe->vpt_page);
2721                 return -ENOMEM;
2722         }
2723
2724         vpe->vpe_id = vpe_id;
2725         vpe->vpt_page = vpt_page;
2726         vpe->vpe_proxy_event = -1;
2727
2728         return 0;
2729 }
2730
2731 static void its_vpe_teardown(struct its_vpe *vpe)
2732 {
2733         its_vpe_db_proxy_unmap(vpe);
2734         its_vpe_id_free(vpe->vpe_id);
2735         its_free_pending_table(vpe->vpt_page);
2736 }
2737
2738 static void its_vpe_irq_domain_free(struct irq_domain *domain,
2739                                     unsigned int virq,
2740                                     unsigned int nr_irqs)
2741 {
2742         struct its_vm *vm = domain->host_data;
2743         int i;
2744
2745         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2746
2747         for (i = 0; i < nr_irqs; i++) {
2748                 struct irq_data *data = irq_domain_get_irq_data(domain,
2749                                                                 virq + i);
2750                 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
2751
2752                 BUG_ON(vm != vpe->its_vm);
2753
2754                 clear_bit(data->hwirq, vm->db_bitmap);
2755                 its_vpe_teardown(vpe);
2756                 irq_domain_reset_irq_data(data);
2757         }
2758
2759         if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
2760                 its_lpi_free_chunks(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
2761                 its_free_prop_table(vm->vprop_page);
2762         }
2763 }
2764
2765 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2766                                     unsigned int nr_irqs, void *args)
2767 {
2768         struct its_vm *vm = args;
2769         unsigned long *bitmap;
2770         struct page *vprop_page;
2771         int base, nr_ids, i, err = 0;
2772
2773         BUG_ON(!vm);
2774
2775         bitmap = its_lpi_alloc_chunks(nr_irqs, &base, &nr_ids);
2776         if (!bitmap)
2777                 return -ENOMEM;
2778
2779         if (nr_ids < nr_irqs) {
2780                 its_lpi_free_chunks(bitmap, base, nr_ids);
2781                 return -ENOMEM;
2782         }
2783
2784         vprop_page = its_allocate_prop_table(GFP_KERNEL);
2785         if (!vprop_page) {
2786                 its_lpi_free_chunks(bitmap, base, nr_ids);
2787                 return -ENOMEM;
2788         }
2789
2790         vm->db_bitmap = bitmap;
2791         vm->db_lpi_base = base;
2792         vm->nr_db_lpis = nr_ids;
2793         vm->vprop_page = vprop_page;
2794
2795         for (i = 0; i < nr_irqs; i++) {
2796                 vm->vpes[i]->vpe_db_lpi = base + i;
2797                 err = its_vpe_init(vm->vpes[i]);
2798                 if (err)
2799                         break;
2800                 err = its_irq_gic_domain_alloc(domain, virq + i,
2801                                                vm->vpes[i]->vpe_db_lpi);
2802                 if (err)
2803                         break;
2804                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
2805                                               &its_vpe_irq_chip, vm->vpes[i]);
2806                 set_bit(i, bitmap);
2807         }
2808
2809         if (err) {
2810                 if (i > 0)
2811                         its_vpe_irq_domain_free(domain, virq, i - 1);
2812
2813                 its_lpi_free_chunks(bitmap, base, nr_ids);
2814                 its_free_prop_table(vprop_page);
2815         }
2816
2817         return err;
2818 }
2819
2820 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
2821                                        struct irq_data *d, bool reserve)
2822 {
2823         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2824         struct its_node *its;
2825
2826         /* If we use the list map, we issue VMAPP on demand... */
2827         if (its_list_map)
2828                 return 0;
2829
2830         /* Map the VPE to the first possible CPU */
2831         vpe->col_idx = cpumask_first(cpu_online_mask);
2832
2833         list_for_each_entry(its, &its_nodes, entry) {
2834                 if (!its->is_v4)
2835                         continue;
2836
2837                 its_send_vmapp(its, vpe, true);
2838                 its_send_vinvall(its, vpe);
2839         }
2840
2841         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
2842
2843         return 0;
2844 }
2845
2846 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
2847                                           struct irq_data *d)
2848 {
2849         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2850         struct its_node *its;
2851
2852         /*
2853          * If we use the list map, we unmap the VPE once no VLPIs are
2854          * associated with the VM.
2855          */
2856         if (its_list_map)
2857                 return;
2858
2859         list_for_each_entry(its, &its_nodes, entry) {
2860                 if (!its->is_v4)
2861                         continue;
2862
2863                 its_send_vmapp(its, vpe, false);
2864         }
2865 }
2866
2867 static const struct irq_domain_ops its_vpe_domain_ops = {
2868         .alloc                  = its_vpe_irq_domain_alloc,
2869         .free                   = its_vpe_irq_domain_free,
2870         .activate               = its_vpe_irq_domain_activate,
2871         .deactivate             = its_vpe_irq_domain_deactivate,
2872 };
2873
2874 static int its_force_quiescent(void __iomem *base)
2875 {
2876         u32 count = 1000000;    /* 1s */
2877         u32 val;
2878
2879         val = readl_relaxed(base + GITS_CTLR);
2880         /*
2881          * GIC architecture specification requires the ITS to be both
2882          * disabled and quiescent for writes to GITS_BASER<n> or
2883          * GITS_CBASER to not have UNPREDICTABLE results.
2884          */
2885         if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
2886                 return 0;
2887
2888         /* Disable the generation of all interrupts to this ITS */
2889         val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
2890         writel_relaxed(val, base + GITS_CTLR);
2891
2892         /* Poll GITS_CTLR and wait until ITS becomes quiescent */
2893         while (1) {
2894                 val = readl_relaxed(base + GITS_CTLR);
2895                 if (val & GITS_CTLR_QUIESCENT)
2896                         return 0;
2897
2898                 count--;
2899                 if (!count)
2900                         return -EBUSY;
2901
2902                 cpu_relax();
2903                 udelay(1);
2904         }
2905 }
2906
2907 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
2908 {
2909         struct its_node *its = data;
2910
2911         /* erratum 22375: only alloc 8MB table size */
2912         its->device_ids = 0x14;         /* 20 bits, 8MB */
2913         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
2914
2915         return true;
2916 }
2917
2918 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
2919 {
2920         struct its_node *its = data;
2921
2922         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
2923
2924         return true;
2925 }
2926
2927 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
2928 {
2929         struct its_node *its = data;
2930
2931         /* On QDF2400, the size of the ITE is 16Bytes */
2932         its->ite_size = 16;
2933
2934         return true;
2935 }
2936
2937 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
2938 {
2939         struct its_node *its = its_dev->its;
2940
2941         /*
2942          * The Socionext Synquacer SoC has a so-called 'pre-ITS',
2943          * which maps 32-bit writes targeted at a separate window of
2944          * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
2945          * with device ID taken from bits [device_id_bits + 1:2] of
2946          * the window offset.
2947          */
2948         return its->pre_its_base + (its_dev->device_id << 2);
2949 }
2950
2951 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
2952 {
2953         struct its_node *its = data;
2954         u32 pre_its_window[2];
2955         u32 ids;
2956
2957         if (!fwnode_property_read_u32_array(its->fwnode_handle,
2958                                            "socionext,synquacer-pre-its",
2959                                            pre_its_window,
2960                                            ARRAY_SIZE(pre_its_window))) {
2961
2962                 its->pre_its_base = pre_its_window[0];
2963                 its->get_msi_base = its_irq_get_msi_base_pre_its;
2964
2965                 ids = ilog2(pre_its_window[1]) - 2;
2966                 if (its->device_ids > ids)
2967                         its->device_ids = ids;
2968
2969                 /* the pre-ITS breaks isolation, so disable MSI remapping */
2970                 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
2971                 return true;
2972         }
2973         return false;
2974 }
2975
2976 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
2977 {
2978         struct its_node *its = data;
2979
2980         /*
2981          * Hip07 insists on using the wrong address for the VLPI
2982          * page. Trick it into doing the right thing...
2983          */
2984         its->vlpi_redist_offset = SZ_128K;
2985         return true;
2986 }
2987
2988 static const struct gic_quirk its_quirks[] = {
2989 #ifdef CONFIG_CAVIUM_ERRATUM_22375
2990         {
2991                 .desc   = "ITS: Cavium errata 22375, 24313",
2992                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
2993                 .mask   = 0xffff0fff,
2994                 .init   = its_enable_quirk_cavium_22375,
2995         },
2996 #endif
2997 #ifdef CONFIG_CAVIUM_ERRATUM_23144
2998         {
2999                 .desc   = "ITS: Cavium erratum 23144",
3000                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
3001                 .mask   = 0xffff0fff,
3002                 .init   = its_enable_quirk_cavium_23144,
3003         },
3004 #endif
3005 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3006         {
3007                 .desc   = "ITS: QDF2400 erratum 0065",
3008                 .iidr   = 0x00001070, /* QDF2400 ITS rev 1.x */
3009                 .mask   = 0xffffffff,
3010                 .init   = its_enable_quirk_qdf2400_e0065,
3011         },
3012 #endif
3013 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3014         {
3015                 /*
3016                  * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3017                  * implementation, but with a 'pre-ITS' added that requires
3018                  * special handling in software.
3019                  */
3020                 .desc   = "ITS: Socionext Synquacer pre-ITS",
3021                 .iidr   = 0x0001143b,
3022                 .mask   = 0xffffffff,
3023                 .init   = its_enable_quirk_socionext_synquacer,
3024         },
3025 #endif
3026 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3027         {
3028                 .desc   = "ITS: Hip07 erratum 161600802",
3029                 .iidr   = 0x00000004,
3030                 .mask   = 0xffffffff,
3031                 .init   = its_enable_quirk_hip07_161600802,
3032         },
3033 #endif
3034         {
3035         }
3036 };
3037
3038 static void its_enable_quirks(struct its_node *its)
3039 {
3040         u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3041
3042         gic_enable_quirks(iidr, its_quirks, its);
3043 }
3044
3045 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3046 {
3047         struct irq_domain *inner_domain;
3048         struct msi_domain_info *info;
3049
3050         info = kzalloc(sizeof(*info), GFP_KERNEL);
3051         if (!info)
3052                 return -ENOMEM;
3053
3054         inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3055         if (!inner_domain) {
3056                 kfree(info);
3057                 return -ENOMEM;
3058         }
3059
3060         inner_domain->parent = its_parent;
3061         irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3062         inner_domain->flags |= its->msi_domain_flags;
3063         info->ops = &its_msi_domain_ops;
3064         info->data = its;
3065         inner_domain->host_data = info;
3066
3067         return 0;
3068 }
3069
3070 static int its_init_vpe_domain(void)
3071 {
3072         struct its_node *its;
3073         u32 devid;
3074         int entries;
3075
3076         if (gic_rdists->has_direct_lpi) {
3077                 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3078                 return 0;
3079         }
3080
3081         /* Any ITS will do, even if not v4 */
3082         its = list_first_entry(&its_nodes, struct its_node, entry);
3083
3084         entries = roundup_pow_of_two(nr_cpu_ids);
3085         vpe_proxy.vpes = kzalloc(sizeof(*vpe_proxy.vpes) * entries,
3086                                  GFP_KERNEL);
3087         if (!vpe_proxy.vpes) {
3088                 pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3089                 return -ENOMEM;
3090         }
3091
3092         /* Use the last possible DevID */
3093         devid = GENMASK(its->device_ids - 1, 0);
3094         vpe_proxy.dev = its_create_device(its, devid, entries, false);
3095         if (!vpe_proxy.dev) {
3096                 kfree(vpe_proxy.vpes);
3097                 pr_err("ITS: Can't allocate GICv4 proxy device\n");
3098                 return -ENOMEM;
3099         }
3100
3101         BUG_ON(entries > vpe_proxy.dev->nr_ites);
3102
3103         raw_spin_lock_init(&vpe_proxy.lock);
3104         vpe_proxy.next_victim = 0;
3105         pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3106                 devid, vpe_proxy.dev->nr_ites);
3107
3108         return 0;
3109 }
3110
3111 static int __init its_compute_its_list_map(struct resource *res,
3112                                            void __iomem *its_base)
3113 {
3114         int its_number;
3115         u32 ctlr;
3116
3117         /*
3118          * This is assumed to be done early enough that we're
3119          * guaranteed to be single-threaded, hence no
3120          * locking. Should this change, we should address
3121          * this.
3122          */
3123         its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3124         if (its_number >= GICv4_ITS_LIST_MAX) {
3125                 pr_err("ITS@%pa: No ITSList entry available!\n",
3126                        &res->start);
3127                 return -EINVAL;
3128         }
3129
3130         ctlr = readl_relaxed(its_base + GITS_CTLR);
3131         ctlr &= ~GITS_CTLR_ITS_NUMBER;
3132         ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3133         writel_relaxed(ctlr, its_base + GITS_CTLR);
3134         ctlr = readl_relaxed(its_base + GITS_CTLR);
3135         if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3136                 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3137                 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3138         }
3139
3140         if (test_and_set_bit(its_number, &its_list_map)) {
3141                 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3142                        &res->start, its_number);
3143                 return -EINVAL;
3144         }
3145
3146         return its_number;
3147 }
3148
3149 static int __init its_probe_one(struct resource *res,
3150                                 struct fwnode_handle *handle, int numa_node)
3151 {
3152         struct its_node *its;
3153         void __iomem *its_base;
3154         u32 val, ctlr;
3155         u64 baser, tmp, typer;
3156         int err;
3157
3158         its_base = ioremap(res->start, resource_size(res));
3159         if (!its_base) {
3160                 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3161                 return -ENOMEM;
3162         }
3163
3164         val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3165         if (val != 0x30 && val != 0x40) {
3166                 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3167                 err = -ENODEV;
3168                 goto out_unmap;
3169         }
3170
3171         err = its_force_quiescent(its_base);
3172         if (err) {
3173                 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3174                 goto out_unmap;
3175         }
3176
3177         pr_info("ITS %pR\n", res);
3178
3179         its = kzalloc(sizeof(*its), GFP_KERNEL);
3180         if (!its) {
3181                 err = -ENOMEM;
3182                 goto out_unmap;
3183         }
3184
3185         raw_spin_lock_init(&its->lock);
3186         INIT_LIST_HEAD(&its->entry);
3187         INIT_LIST_HEAD(&its->its_device_list);
3188         typer = gic_read_typer(its_base + GITS_TYPER);
3189         its->base = its_base;
3190         its->phys_base = res->start;
3191         its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3192         its->device_ids = GITS_TYPER_DEVBITS(typer);
3193         its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3194         if (its->is_v4) {
3195                 if (!(typer & GITS_TYPER_VMOVP)) {
3196                         err = its_compute_its_list_map(res, its_base);
3197                         if (err < 0)
3198                                 goto out_free_its;
3199
3200                         its->list_nr = err;
3201
3202                         pr_info("ITS@%pa: Using ITS number %d\n",
3203                                 &res->start, err);
3204                 } else {
3205                         pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3206                 }
3207         }
3208
3209         its->numa_node = numa_node;
3210
3211         its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
3212                                                 get_order(ITS_CMD_QUEUE_SZ));
3213         if (!its->cmd_base) {
3214                 err = -ENOMEM;
3215                 goto out_free_its;
3216         }
3217         its->cmd_write = its->cmd_base;
3218         its->fwnode_handle = handle;
3219         its->get_msi_base = its_irq_get_msi_base;
3220         its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3221
3222         its_enable_quirks(its);
3223
3224         err = its_alloc_tables(its);
3225         if (err)
3226                 goto out_free_cmd;
3227
3228         err = its_alloc_collections(its);
3229         if (err)
3230                 goto out_free_tables;
3231
3232         baser = (virt_to_phys(its->cmd_base)    |
3233                  GITS_CBASER_RaWaWb             |
3234                  GITS_CBASER_InnerShareable     |
3235                  (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
3236                  GITS_CBASER_VALID);
3237
3238         gits_write_cbaser(baser, its->base + GITS_CBASER);
3239         tmp = gits_read_cbaser(its->base + GITS_CBASER);
3240
3241         if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3242                 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3243                         /*
3244                          * The HW reports non-shareable, we must
3245                          * remove the cacheability attributes as
3246                          * well.
3247                          */
3248                         baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3249                                    GITS_CBASER_CACHEABILITY_MASK);
3250                         baser |= GITS_CBASER_nC;
3251                         gits_write_cbaser(baser, its->base + GITS_CBASER);
3252                 }
3253                 pr_info("ITS: using cache flushing for cmd queue\n");
3254                 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3255         }
3256
3257         gits_write_cwriter(0, its->base + GITS_CWRITER);
3258         ctlr = readl_relaxed(its->base + GITS_CTLR);
3259         ctlr |= GITS_CTLR_ENABLE;
3260         if (its->is_v4)
3261                 ctlr |= GITS_CTLR_ImDe;
3262         writel_relaxed(ctlr, its->base + GITS_CTLR);
3263
3264         err = its_init_domain(handle, its);
3265         if (err)
3266                 goto out_free_tables;
3267
3268         spin_lock(&its_lock);
3269         list_add(&its->entry, &its_nodes);
3270         spin_unlock(&its_lock);
3271
3272         return 0;
3273
3274 out_free_tables:
3275         its_free_tables(its);
3276 out_free_cmd:
3277         free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3278 out_free_its:
3279         kfree(its);
3280 out_unmap:
3281         iounmap(its_base);
3282         pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3283         return err;
3284 }
3285
3286 static bool gic_rdists_supports_plpis(void)
3287 {
3288         return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3289 }
3290
3291 int its_cpu_init(void)
3292 {
3293         if (!list_empty(&its_nodes)) {
3294                 if (!gic_rdists_supports_plpis()) {
3295                         pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3296                         return -ENXIO;
3297                 }
3298                 its_cpu_init_lpis();
3299                 its_cpu_init_collection();
3300         }
3301
3302         return 0;
3303 }
3304
3305 static const struct of_device_id its_device_id[] = {
3306         {       .compatible     = "arm,gic-v3-its",     },
3307         {},
3308 };
3309
3310 static int __init its_of_probe(struct device_node *node)
3311 {
3312         struct device_node *np;
3313         struct resource res;
3314
3315         for (np = of_find_matching_node(node, its_device_id); np;
3316              np = of_find_matching_node(np, its_device_id)) {
3317                 if (!of_property_read_bool(np, "msi-controller")) {
3318                         pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3319                                 np);
3320                         continue;
3321                 }
3322
3323                 if (of_address_to_resource(np, 0, &res)) {
3324                         pr_warn("%pOF: no regs?\n", np);
3325                         continue;
3326                 }
3327
3328                 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3329         }
3330         return 0;
3331 }
3332
3333 #ifdef CONFIG_ACPI
3334
3335 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3336
3337 #ifdef CONFIG_ACPI_NUMA
3338 struct its_srat_map {
3339         /* numa node id */
3340         u32     numa_node;
3341         /* GIC ITS ID */
3342         u32     its_id;
3343 };
3344
3345 static struct its_srat_map *its_srat_maps __initdata;
3346 static int its_in_srat __initdata;
3347
3348 static int __init acpi_get_its_numa_node(u32 its_id)
3349 {
3350         int i;
3351
3352         for (i = 0; i < its_in_srat; i++) {
3353                 if (its_id == its_srat_maps[i].its_id)
3354                         return its_srat_maps[i].numa_node;
3355         }
3356         return NUMA_NO_NODE;
3357 }
3358
3359 static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header,
3360                                           const unsigned long end)
3361 {
3362         return 0;
3363 }
3364
3365 static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header,
3366                          const unsigned long end)
3367 {
3368         int node;
3369         struct acpi_srat_gic_its_affinity *its_affinity;
3370
3371         its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3372         if (!its_affinity)
3373                 return -EINVAL;
3374
3375         if (its_affinity->header.length < sizeof(*its_affinity)) {
3376                 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3377                         its_affinity->header.length);
3378                 return -EINVAL;
3379         }
3380
3381         node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3382
3383         if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3384                 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3385                 return 0;
3386         }
3387
3388         its_srat_maps[its_in_srat].numa_node = node;
3389         its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3390         its_in_srat++;
3391         pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3392                 its_affinity->proximity_domain, its_affinity->its_id, node);
3393
3394         return 0;
3395 }
3396
3397 static void __init acpi_table_parse_srat_its(void)
3398 {
3399         int count;
3400
3401         count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3402                         sizeof(struct acpi_table_srat),
3403                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3404                         gic_acpi_match_srat_its, 0);
3405         if (count <= 0)
3406                 return;
3407
3408         its_srat_maps = kmalloc(count * sizeof(struct its_srat_map),
3409                                 GFP_KERNEL);
3410         if (!its_srat_maps) {
3411                 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3412                 return;
3413         }
3414
3415         acpi_table_parse_entries(ACPI_SIG_SRAT,
3416                         sizeof(struct acpi_table_srat),
3417                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3418                         gic_acpi_parse_srat_its, 0);
3419 }
3420
3421 /* free the its_srat_maps after ITS probing */
3422 static void __init acpi_its_srat_maps_free(void)
3423 {
3424         kfree(its_srat_maps);
3425 }
3426 #else
3427 static void __init acpi_table_parse_srat_its(void)      { }
3428 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
3429 static void __init acpi_its_srat_maps_free(void) { }
3430 #endif
3431
3432 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
3433                                           const unsigned long end)
3434 {
3435         struct acpi_madt_generic_translator *its_entry;
3436         struct fwnode_handle *dom_handle;
3437         struct resource res;
3438         int err;
3439
3440         its_entry = (struct acpi_madt_generic_translator *)header;
3441         memset(&res, 0, sizeof(res));
3442         res.start = its_entry->base_address;
3443         res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3444         res.flags = IORESOURCE_MEM;
3445
3446         dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
3447         if (!dom_handle) {
3448                 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3449                        &res.start);
3450                 return -ENOMEM;
3451         }
3452
3453         err = iort_register_domain_token(its_entry->translation_id, dom_handle);
3454         if (err) {
3455                 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3456                        &res.start, its_entry->translation_id);
3457                 goto dom_err;
3458         }
3459
3460         err = its_probe_one(&res, dom_handle,
3461                         acpi_get_its_numa_node(its_entry->translation_id));
3462         if (!err)
3463                 return 0;
3464
3465         iort_deregister_domain_token(its_entry->translation_id);
3466 dom_err:
3467         irq_domain_free_fwnode(dom_handle);
3468         return err;
3469 }
3470
3471 static void __init its_acpi_probe(void)
3472 {
3473         acpi_table_parse_srat_its();
3474         acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3475                               gic_acpi_parse_madt_its, 0);
3476         acpi_its_srat_maps_free();
3477 }
3478 #else
3479 static void __init its_acpi_probe(void) { }
3480 #endif
3481
3482 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3483                     struct irq_domain *parent_domain)
3484 {
3485         struct device_node *of_node;
3486         struct its_node *its;
3487         bool has_v4 = false;
3488         int err;
3489
3490         its_parent = parent_domain;
3491         of_node = to_of_node(handle);
3492         if (of_node)
3493                 its_of_probe(of_node);
3494         else
3495                 its_acpi_probe();
3496
3497         if (list_empty(&its_nodes)) {
3498                 pr_warn("ITS: No ITS available, not enabling LPIs\n");
3499                 return -ENXIO;
3500         }
3501
3502         gic_rdists = rdists;
3503         err = its_alloc_lpi_tables();
3504         if (err)
3505                 return err;
3506
3507         list_for_each_entry(its, &its_nodes, entry)
3508                 has_v4 |= its->is_v4;
3509
3510         if (has_v4 & rdists->has_vlpis) {
3511                 if (its_init_vpe_domain() ||
3512                     its_init_v4(parent_domain, &its_vpe_domain_ops)) {
3513                         rdists->has_vlpis = false;
3514                         pr_err("ITS: Disabling GICv4 support\n");
3515                 }
3516         }
3517
3518         return 0;
3519 }