Merge tag 'acpi-4.20-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[sfrench/cifs-2.6.git] / drivers / iommu / ipmmu-vmsa.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * IPMMU VMSA
4  *
5  * Copyright (C) 2014 Renesas Electronics Corporation
6  */
7
8 #include <linux/bitmap.h>
9 #include <linux/delay.h>
10 #include <linux/dma-iommu.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/err.h>
13 #include <linux/export.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/iommu.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/of_device.h>
20 #include <linux/of_iommu.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/sizes.h>
24 #include <linux/slab.h>
25 #include <linux/sys_soc.h>
26
27 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
28 #include <asm/dma-iommu.h>
29 #include <asm/pgalloc.h>
30 #else
31 #define arm_iommu_create_mapping(...)   NULL
32 #define arm_iommu_attach_device(...)    -ENODEV
33 #define arm_iommu_release_mapping(...)  do {} while (0)
34 #define arm_iommu_detach_device(...)    do {} while (0)
35 #endif
36
37 #include "io-pgtable.h"
38
39 #define IPMMU_CTX_MAX 8
40
41 struct ipmmu_features {
42         bool use_ns_alias_offset;
43         bool has_cache_leaf_nodes;
44         unsigned int number_of_contexts;
45         bool setup_imbuscr;
46         bool twobit_imttbcr_sl0;
47         bool reserved_context;
48 };
49
50 struct ipmmu_vmsa_device {
51         struct device *dev;
52         void __iomem *base;
53         struct iommu_device iommu;
54         struct ipmmu_vmsa_device *root;
55         const struct ipmmu_features *features;
56         unsigned int num_utlbs;
57         unsigned int num_ctx;
58         spinlock_t lock;                        /* Protects ctx and domains[] */
59         DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
60         struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
61
62         struct iommu_group *group;
63         struct dma_iommu_mapping *mapping;
64 };
65
66 struct ipmmu_vmsa_domain {
67         struct ipmmu_vmsa_device *mmu;
68         struct iommu_domain io_domain;
69
70         struct io_pgtable_cfg cfg;
71         struct io_pgtable_ops *iop;
72
73         unsigned int context_id;
74         struct mutex mutex;                     /* Protects mappings */
75 };
76
77 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
78 {
79         return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
80 }
81
82 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
83 {
84         return dev->iommu_fwspec ? dev->iommu_fwspec->iommu_priv : NULL;
85 }
86
87 #define TLB_LOOP_TIMEOUT                100     /* 100us */
88
89 /* -----------------------------------------------------------------------------
90  * Registers Definition
91  */
92
93 #define IM_NS_ALIAS_OFFSET              0x800
94
95 #define IM_CTX_SIZE                     0x40
96
97 #define IMCTR                           0x0000
98 #define IMCTR_TRE                       (1 << 17)
99 #define IMCTR_AFE                       (1 << 16)
100 #define IMCTR_RTSEL_MASK                (3 << 4)
101 #define IMCTR_RTSEL_SHIFT               4
102 #define IMCTR_TREN                      (1 << 3)
103 #define IMCTR_INTEN                     (1 << 2)
104 #define IMCTR_FLUSH                     (1 << 1)
105 #define IMCTR_MMUEN                     (1 << 0)
106
107 #define IMCAAR                          0x0004
108
109 #define IMTTBCR                         0x0008
110 #define IMTTBCR_EAE                     (1 << 31)
111 #define IMTTBCR_PMB                     (1 << 30)
112 #define IMTTBCR_SH1_NON_SHAREABLE       (0 << 28)
113 #define IMTTBCR_SH1_OUTER_SHAREABLE     (2 << 28)
114 #define IMTTBCR_SH1_INNER_SHAREABLE     (3 << 28)
115 #define IMTTBCR_SH1_MASK                (3 << 28)
116 #define IMTTBCR_ORGN1_NC                (0 << 26)
117 #define IMTTBCR_ORGN1_WB_WA             (1 << 26)
118 #define IMTTBCR_ORGN1_WT                (2 << 26)
119 #define IMTTBCR_ORGN1_WB                (3 << 26)
120 #define IMTTBCR_ORGN1_MASK              (3 << 26)
121 #define IMTTBCR_IRGN1_NC                (0 << 24)
122 #define IMTTBCR_IRGN1_WB_WA             (1 << 24)
123 #define IMTTBCR_IRGN1_WT                (2 << 24)
124 #define IMTTBCR_IRGN1_WB                (3 << 24)
125 #define IMTTBCR_IRGN1_MASK              (3 << 24)
126 #define IMTTBCR_TSZ1_MASK               (7 << 16)
127 #define IMTTBCR_TSZ1_SHIFT              16
128 #define IMTTBCR_SH0_NON_SHAREABLE       (0 << 12)
129 #define IMTTBCR_SH0_OUTER_SHAREABLE     (2 << 12)
130 #define IMTTBCR_SH0_INNER_SHAREABLE     (3 << 12)
131 #define IMTTBCR_SH0_MASK                (3 << 12)
132 #define IMTTBCR_ORGN0_NC                (0 << 10)
133 #define IMTTBCR_ORGN0_WB_WA             (1 << 10)
134 #define IMTTBCR_ORGN0_WT                (2 << 10)
135 #define IMTTBCR_ORGN0_WB                (3 << 10)
136 #define IMTTBCR_ORGN0_MASK              (3 << 10)
137 #define IMTTBCR_IRGN0_NC                (0 << 8)
138 #define IMTTBCR_IRGN0_WB_WA             (1 << 8)
139 #define IMTTBCR_IRGN0_WT                (2 << 8)
140 #define IMTTBCR_IRGN0_WB                (3 << 8)
141 #define IMTTBCR_IRGN0_MASK              (3 << 8)
142 #define IMTTBCR_SL0_LVL_2               (0 << 4)
143 #define IMTTBCR_SL0_LVL_1               (1 << 4)
144 #define IMTTBCR_TSZ0_MASK               (7 << 0)
145 #define IMTTBCR_TSZ0_SHIFT              O
146
147 #define IMTTBCR_SL0_TWOBIT_LVL_3        (0 << 6)
148 #define IMTTBCR_SL0_TWOBIT_LVL_2        (1 << 6)
149 #define IMTTBCR_SL0_TWOBIT_LVL_1        (2 << 6)
150
151 #define IMBUSCR                         0x000c
152 #define IMBUSCR_DVM                     (1 << 2)
153 #define IMBUSCR_BUSSEL_SYS              (0 << 0)
154 #define IMBUSCR_BUSSEL_CCI              (1 << 0)
155 #define IMBUSCR_BUSSEL_IMCAAR           (2 << 0)
156 #define IMBUSCR_BUSSEL_CCI_IMCAAR       (3 << 0)
157 #define IMBUSCR_BUSSEL_MASK             (3 << 0)
158
159 #define IMTTLBR0                        0x0010
160 #define IMTTUBR0                        0x0014
161 #define IMTTLBR1                        0x0018
162 #define IMTTUBR1                        0x001c
163
164 #define IMSTR                           0x0020
165 #define IMSTR_ERRLVL_MASK               (3 << 12)
166 #define IMSTR_ERRLVL_SHIFT              12
167 #define IMSTR_ERRCODE_TLB_FORMAT        (1 << 8)
168 #define IMSTR_ERRCODE_ACCESS_PERM       (4 << 8)
169 #define IMSTR_ERRCODE_SECURE_ACCESS     (5 << 8)
170 #define IMSTR_ERRCODE_MASK              (7 << 8)
171 #define IMSTR_MHIT                      (1 << 4)
172 #define IMSTR_ABORT                     (1 << 2)
173 #define IMSTR_PF                        (1 << 1)
174 #define IMSTR_TF                        (1 << 0)
175
176 #define IMMAIR0                         0x0028
177 #define IMMAIR1                         0x002c
178 #define IMMAIR_ATTR_MASK                0xff
179 #define IMMAIR_ATTR_DEVICE              0x04
180 #define IMMAIR_ATTR_NC                  0x44
181 #define IMMAIR_ATTR_WBRWA               0xff
182 #define IMMAIR_ATTR_SHIFT(n)            ((n) << 3)
183 #define IMMAIR_ATTR_IDX_NC              0
184 #define IMMAIR_ATTR_IDX_WBRWA           1
185 #define IMMAIR_ATTR_IDX_DEV             2
186
187 #define IMEAR                           0x0030
188
189 #define IMPCTR                          0x0200
190 #define IMPSTR                          0x0208
191 #define IMPEAR                          0x020c
192 #define IMPMBA(n)                       (0x0280 + ((n) * 4))
193 #define IMPMBD(n)                       (0x02c0 + ((n) * 4))
194
195 #define IMUCTR(n)                       ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
196 #define IMUCTR0(n)                      (0x0300 + ((n) * 16))
197 #define IMUCTR32(n)                     (0x0600 + (((n) - 32) * 16))
198 #define IMUCTR_FIXADDEN                 (1 << 31)
199 #define IMUCTR_FIXADD_MASK              (0xff << 16)
200 #define IMUCTR_FIXADD_SHIFT             16
201 #define IMUCTR_TTSEL_MMU(n)             ((n) << 4)
202 #define IMUCTR_TTSEL_PMB                (8 << 4)
203 #define IMUCTR_TTSEL_MASK               (15 << 4)
204 #define IMUCTR_FLUSH                    (1 << 1)
205 #define IMUCTR_MMUEN                    (1 << 0)
206
207 #define IMUASID(n)                      ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
208 #define IMUASID0(n)                     (0x0308 + ((n) * 16))
209 #define IMUASID32(n)                    (0x0608 + (((n) - 32) * 16))
210 #define IMUASID_ASID8_MASK              (0xff << 8)
211 #define IMUASID_ASID8_SHIFT             8
212 #define IMUASID_ASID0_MASK              (0xff << 0)
213 #define IMUASID_ASID0_SHIFT             0
214
215 /* -----------------------------------------------------------------------------
216  * Root device handling
217  */
218
219 static struct platform_driver ipmmu_driver;
220
221 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
222 {
223         return mmu->root == mmu;
224 }
225
226 static int __ipmmu_check_device(struct device *dev, void *data)
227 {
228         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
229         struct ipmmu_vmsa_device **rootp = data;
230
231         if (ipmmu_is_root(mmu))
232                 *rootp = mmu;
233
234         return 0;
235 }
236
237 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
238 {
239         struct ipmmu_vmsa_device *root = NULL;
240
241         return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
242                                       __ipmmu_check_device) == 0 ? root : NULL;
243 }
244
245 /* -----------------------------------------------------------------------------
246  * Read/Write Access
247  */
248
249 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
250 {
251         return ioread32(mmu->base + offset);
252 }
253
254 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
255                         u32 data)
256 {
257         iowrite32(data, mmu->base + offset);
258 }
259
260 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
261                                unsigned int reg)
262 {
263         return ipmmu_read(domain->mmu->root,
264                           domain->context_id * IM_CTX_SIZE + reg);
265 }
266
267 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
268                                  unsigned int reg, u32 data)
269 {
270         ipmmu_write(domain->mmu->root,
271                     domain->context_id * IM_CTX_SIZE + reg, data);
272 }
273
274 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
275                                 unsigned int reg, u32 data)
276 {
277         if (domain->mmu != domain->mmu->root)
278                 ipmmu_write(domain->mmu,
279                             domain->context_id * IM_CTX_SIZE + reg, data);
280
281         ipmmu_write(domain->mmu->root,
282                     domain->context_id * IM_CTX_SIZE + reg, data);
283 }
284
285 /* -----------------------------------------------------------------------------
286  * TLB and microTLB Management
287  */
288
289 /* Wait for any pending TLB invalidations to complete */
290 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
291 {
292         unsigned int count = 0;
293
294         while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
295                 cpu_relax();
296                 if (++count == TLB_LOOP_TIMEOUT) {
297                         dev_err_ratelimited(domain->mmu->dev,
298                         "TLB sync timed out -- MMU may be deadlocked\n");
299                         return;
300                 }
301                 udelay(1);
302         }
303 }
304
305 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
306 {
307         u32 reg;
308
309         reg = ipmmu_ctx_read_root(domain, IMCTR);
310         reg |= IMCTR_FLUSH;
311         ipmmu_ctx_write_all(domain, IMCTR, reg);
312
313         ipmmu_tlb_sync(domain);
314 }
315
316 /*
317  * Enable MMU translation for the microTLB.
318  */
319 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
320                               unsigned int utlb)
321 {
322         struct ipmmu_vmsa_device *mmu = domain->mmu;
323
324         /*
325          * TODO: Reference-count the microTLB as several bus masters can be
326          * connected to the same microTLB.
327          */
328
329         /* TODO: What should we set the ASID to ? */
330         ipmmu_write(mmu, IMUASID(utlb), 0);
331         /* TODO: Do we need to flush the microTLB ? */
332         ipmmu_write(mmu, IMUCTR(utlb),
333                     IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
334                     IMUCTR_MMUEN);
335 }
336
337 /*
338  * Disable MMU translation for the microTLB.
339  */
340 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
341                                unsigned int utlb)
342 {
343         struct ipmmu_vmsa_device *mmu = domain->mmu;
344
345         ipmmu_write(mmu, IMUCTR(utlb), 0);
346 }
347
348 static void ipmmu_tlb_flush_all(void *cookie)
349 {
350         struct ipmmu_vmsa_domain *domain = cookie;
351
352         ipmmu_tlb_invalidate(domain);
353 }
354
355 static void ipmmu_tlb_add_flush(unsigned long iova, size_t size,
356                                 size_t granule, bool leaf, void *cookie)
357 {
358         /* The hardware doesn't support selective TLB flush. */
359 }
360
361 static const struct iommu_gather_ops ipmmu_gather_ops = {
362         .tlb_flush_all = ipmmu_tlb_flush_all,
363         .tlb_add_flush = ipmmu_tlb_add_flush,
364         .tlb_sync = ipmmu_tlb_flush_all,
365 };
366
367 /* -----------------------------------------------------------------------------
368  * Domain/Context Management
369  */
370
371 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
372                                          struct ipmmu_vmsa_domain *domain)
373 {
374         unsigned long flags;
375         int ret;
376
377         spin_lock_irqsave(&mmu->lock, flags);
378
379         ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
380         if (ret != mmu->num_ctx) {
381                 mmu->domains[ret] = domain;
382                 set_bit(ret, mmu->ctx);
383         } else
384                 ret = -EBUSY;
385
386         spin_unlock_irqrestore(&mmu->lock, flags);
387
388         return ret;
389 }
390
391 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
392                                       unsigned int context_id)
393 {
394         unsigned long flags;
395
396         spin_lock_irqsave(&mmu->lock, flags);
397
398         clear_bit(context_id, mmu->ctx);
399         mmu->domains[context_id] = NULL;
400
401         spin_unlock_irqrestore(&mmu->lock, flags);
402 }
403
404 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
405 {
406         u64 ttbr;
407         u32 tmp;
408         int ret;
409
410         /*
411          * Allocate the page table operations.
412          *
413          * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
414          * access, Long-descriptor format" that the NStable bit being set in a
415          * table descriptor will result in the NStable and NS bits of all child
416          * entries being ignored and considered as being set. The IPMMU seems
417          * not to comply with this, as it generates a secure access page fault
418          * if any of the NStable and NS bits isn't set when running in
419          * non-secure mode.
420          */
421         domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
422         domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
423         domain->cfg.ias = 32;
424         domain->cfg.oas = 40;
425         domain->cfg.tlb = &ipmmu_gather_ops;
426         domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
427         domain->io_domain.geometry.force_aperture = true;
428         /*
429          * TODO: Add support for coherent walk through CCI with DVM and remove
430          * cache handling. For now, delegate it to the io-pgtable code.
431          */
432         domain->cfg.iommu_dev = domain->mmu->root->dev;
433
434         /*
435          * Find an unused context.
436          */
437         ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
438         if (ret < 0)
439                 return ret;
440
441         domain->context_id = ret;
442
443         domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
444                                            domain);
445         if (!domain->iop) {
446                 ipmmu_domain_free_context(domain->mmu->root,
447                                           domain->context_id);
448                 return -EINVAL;
449         }
450
451         /* TTBR0 */
452         ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
453         ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
454         ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
455
456         /*
457          * TTBCR
458          * We use long descriptors with inner-shareable WBWA tables and allocate
459          * the whole 32-bit VA space to TTBR0.
460          */
461         if (domain->mmu->features->twobit_imttbcr_sl0)
462                 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
463         else
464                 tmp = IMTTBCR_SL0_LVL_1;
465
466         ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE |
467                              IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
468                              IMTTBCR_IRGN0_WB_WA | tmp);
469
470         /* MAIR0 */
471         ipmmu_ctx_write_root(domain, IMMAIR0,
472                              domain->cfg.arm_lpae_s1_cfg.mair[0]);
473
474         /* IMBUSCR */
475         if (domain->mmu->features->setup_imbuscr)
476                 ipmmu_ctx_write_root(domain, IMBUSCR,
477                                      ipmmu_ctx_read_root(domain, IMBUSCR) &
478                                      ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
479
480         /*
481          * IMSTR
482          * Clear all interrupt flags.
483          */
484         ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
485
486         /*
487          * IMCTR
488          * Enable the MMU and interrupt generation. The long-descriptor
489          * translation table format doesn't use TEX remapping. Don't enable AF
490          * software management as we have no use for it. Flush the TLB as
491          * required when modifying the context registers.
492          */
493         ipmmu_ctx_write_all(domain, IMCTR,
494                             IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
495
496         return 0;
497 }
498
499 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
500 {
501         /*
502          * Disable the context. Flush the TLB as required when modifying the
503          * context registers.
504          *
505          * TODO: Is TLB flush really needed ?
506          */
507         ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
508         ipmmu_tlb_sync(domain);
509         ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
510 }
511
512 /* -----------------------------------------------------------------------------
513  * Fault Handling
514  */
515
516 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
517 {
518         const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
519         struct ipmmu_vmsa_device *mmu = domain->mmu;
520         u32 status;
521         u32 iova;
522
523         status = ipmmu_ctx_read_root(domain, IMSTR);
524         if (!(status & err_mask))
525                 return IRQ_NONE;
526
527         iova = ipmmu_ctx_read_root(domain, IMEAR);
528
529         /*
530          * Clear the error status flags. Unlike traditional interrupt flag
531          * registers that must be cleared by writing 1, this status register
532          * seems to require 0. The error address register must be read before,
533          * otherwise its value will be 0.
534          */
535         ipmmu_ctx_write_root(domain, IMSTR, 0);
536
537         /* Log fatal errors. */
538         if (status & IMSTR_MHIT)
539                 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%08x\n",
540                                     iova);
541         if (status & IMSTR_ABORT)
542                 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%08x\n",
543                                     iova);
544
545         if (!(status & (IMSTR_PF | IMSTR_TF)))
546                 return IRQ_NONE;
547
548         /*
549          * Try to handle page faults and translation faults.
550          *
551          * TODO: We need to look up the faulty device based on the I/O VA. Use
552          * the IOMMU device for now.
553          */
554         if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
555                 return IRQ_HANDLED;
556
557         dev_err_ratelimited(mmu->dev,
558                             "Unhandled fault: status 0x%08x iova 0x%08x\n",
559                             status, iova);
560
561         return IRQ_HANDLED;
562 }
563
564 static irqreturn_t ipmmu_irq(int irq, void *dev)
565 {
566         struct ipmmu_vmsa_device *mmu = dev;
567         irqreturn_t status = IRQ_NONE;
568         unsigned int i;
569         unsigned long flags;
570
571         spin_lock_irqsave(&mmu->lock, flags);
572
573         /*
574          * Check interrupts for all active contexts.
575          */
576         for (i = 0; i < mmu->num_ctx; i++) {
577                 if (!mmu->domains[i])
578                         continue;
579                 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
580                         status = IRQ_HANDLED;
581         }
582
583         spin_unlock_irqrestore(&mmu->lock, flags);
584
585         return status;
586 }
587
588 /* -----------------------------------------------------------------------------
589  * IOMMU Operations
590  */
591
592 static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
593 {
594         struct ipmmu_vmsa_domain *domain;
595
596         domain = kzalloc(sizeof(*domain), GFP_KERNEL);
597         if (!domain)
598                 return NULL;
599
600         mutex_init(&domain->mutex);
601
602         return &domain->io_domain;
603 }
604
605 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
606 {
607         struct iommu_domain *io_domain = NULL;
608
609         switch (type) {
610         case IOMMU_DOMAIN_UNMANAGED:
611                 io_domain = __ipmmu_domain_alloc(type);
612                 break;
613
614         case IOMMU_DOMAIN_DMA:
615                 io_domain = __ipmmu_domain_alloc(type);
616                 if (io_domain && iommu_get_dma_cookie(io_domain)) {
617                         kfree(io_domain);
618                         io_domain = NULL;
619                 }
620                 break;
621         }
622
623         return io_domain;
624 }
625
626 static void ipmmu_domain_free(struct iommu_domain *io_domain)
627 {
628         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
629
630         /*
631          * Free the domain resources. We assume that all devices have already
632          * been detached.
633          */
634         iommu_put_dma_cookie(io_domain);
635         ipmmu_domain_destroy_context(domain);
636         free_io_pgtable_ops(domain->iop);
637         kfree(domain);
638 }
639
640 static int ipmmu_attach_device(struct iommu_domain *io_domain,
641                                struct device *dev)
642 {
643         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
644         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
645         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
646         unsigned int i;
647         int ret = 0;
648
649         if (!mmu) {
650                 dev_err(dev, "Cannot attach to IPMMU\n");
651                 return -ENXIO;
652         }
653
654         mutex_lock(&domain->mutex);
655
656         if (!domain->mmu) {
657                 /* The domain hasn't been used yet, initialize it. */
658                 domain->mmu = mmu;
659                 ret = ipmmu_domain_init_context(domain);
660                 if (ret < 0) {
661                         dev_err(dev, "Unable to initialize IPMMU context\n");
662                         domain->mmu = NULL;
663                 } else {
664                         dev_info(dev, "Using IPMMU context %u\n",
665                                  domain->context_id);
666                 }
667         } else if (domain->mmu != mmu) {
668                 /*
669                  * Something is wrong, we can't attach two devices using
670                  * different IOMMUs to the same domain.
671                  */
672                 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
673                         dev_name(mmu->dev), dev_name(domain->mmu->dev));
674                 ret = -EINVAL;
675         } else
676                 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
677
678         mutex_unlock(&domain->mutex);
679
680         if (ret < 0)
681                 return ret;
682
683         for (i = 0; i < fwspec->num_ids; ++i)
684                 ipmmu_utlb_enable(domain, fwspec->ids[i]);
685
686         return 0;
687 }
688
689 static void ipmmu_detach_device(struct iommu_domain *io_domain,
690                                 struct device *dev)
691 {
692         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
693         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
694         unsigned int i;
695
696         for (i = 0; i < fwspec->num_ids; ++i)
697                 ipmmu_utlb_disable(domain, fwspec->ids[i]);
698
699         /*
700          * TODO: Optimize by disabling the context when no device is attached.
701          */
702 }
703
704 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
705                      phys_addr_t paddr, size_t size, int prot)
706 {
707         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
708
709         if (!domain)
710                 return -ENODEV;
711
712         return domain->iop->map(domain->iop, iova, paddr, size, prot);
713 }
714
715 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
716                           size_t size)
717 {
718         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
719
720         return domain->iop->unmap(domain->iop, iova, size);
721 }
722
723 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain)
724 {
725         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
726
727         if (domain->mmu)
728                 ipmmu_tlb_flush_all(domain);
729 }
730
731 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
732                                       dma_addr_t iova)
733 {
734         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
735
736         /* TODO: Is locking needed ? */
737
738         return domain->iop->iova_to_phys(domain->iop, iova);
739 }
740
741 static int ipmmu_init_platform_device(struct device *dev,
742                                       struct of_phandle_args *args)
743 {
744         struct platform_device *ipmmu_pdev;
745
746         ipmmu_pdev = of_find_device_by_node(args->np);
747         if (!ipmmu_pdev)
748                 return -ENODEV;
749
750         dev->iommu_fwspec->iommu_priv = platform_get_drvdata(ipmmu_pdev);
751         return 0;
752 }
753
754 static bool ipmmu_slave_whitelist(struct device *dev)
755 {
756         /* By default, do not allow use of IPMMU */
757         return false;
758 }
759
760 static const struct soc_device_attribute soc_rcar_gen3[] = {
761         { .soc_id = "r8a7795", },
762         { .soc_id = "r8a7796", },
763         { .soc_id = "r8a77965", },
764         { .soc_id = "r8a77970", },
765         { .soc_id = "r8a77995", },
766         { /* sentinel */ }
767 };
768
769 static int ipmmu_of_xlate(struct device *dev,
770                           struct of_phandle_args *spec)
771 {
772         /* For R-Car Gen3 use a white list to opt-in slave devices */
773         if (soc_device_match(soc_rcar_gen3) && !ipmmu_slave_whitelist(dev))
774                 return -ENODEV;
775
776         iommu_fwspec_add_ids(dev, spec->args, 1);
777
778         /* Initialize once - xlate() will call multiple times */
779         if (to_ipmmu(dev))
780                 return 0;
781
782         return ipmmu_init_platform_device(dev, spec);
783 }
784
785 static int ipmmu_init_arm_mapping(struct device *dev)
786 {
787         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
788         struct iommu_group *group;
789         int ret;
790
791         /* Create a device group and add the device to it. */
792         group = iommu_group_alloc();
793         if (IS_ERR(group)) {
794                 dev_err(dev, "Failed to allocate IOMMU group\n");
795                 return PTR_ERR(group);
796         }
797
798         ret = iommu_group_add_device(group, dev);
799         iommu_group_put(group);
800
801         if (ret < 0) {
802                 dev_err(dev, "Failed to add device to IPMMU group\n");
803                 return ret;
804         }
805
806         /*
807          * Create the ARM mapping, used by the ARM DMA mapping core to allocate
808          * VAs. This will allocate a corresponding IOMMU domain.
809          *
810          * TODO:
811          * - Create one mapping per context (TLB).
812          * - Make the mapping size configurable ? We currently use a 2GB mapping
813          *   at a 1GB offset to ensure that NULL VAs will fault.
814          */
815         if (!mmu->mapping) {
816                 struct dma_iommu_mapping *mapping;
817
818                 mapping = arm_iommu_create_mapping(&platform_bus_type,
819                                                    SZ_1G, SZ_2G);
820                 if (IS_ERR(mapping)) {
821                         dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
822                         ret = PTR_ERR(mapping);
823                         goto error;
824                 }
825
826                 mmu->mapping = mapping;
827         }
828
829         /* Attach the ARM VA mapping to the device. */
830         ret = arm_iommu_attach_device(dev, mmu->mapping);
831         if (ret < 0) {
832                 dev_err(dev, "Failed to attach device to VA mapping\n");
833                 goto error;
834         }
835
836         return 0;
837
838 error:
839         iommu_group_remove_device(dev);
840         if (mmu->mapping)
841                 arm_iommu_release_mapping(mmu->mapping);
842
843         return ret;
844 }
845
846 static int ipmmu_add_device(struct device *dev)
847 {
848         struct iommu_group *group;
849
850         /*
851          * Only let through devices that have been verified in xlate()
852          */
853         if (!to_ipmmu(dev))
854                 return -ENODEV;
855
856         if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA))
857                 return ipmmu_init_arm_mapping(dev);
858
859         group = iommu_group_get_for_dev(dev);
860         if (IS_ERR(group))
861                 return PTR_ERR(group);
862
863         iommu_group_put(group);
864         return 0;
865 }
866
867 static void ipmmu_remove_device(struct device *dev)
868 {
869         arm_iommu_detach_device(dev);
870         iommu_group_remove_device(dev);
871 }
872
873 static struct iommu_group *ipmmu_find_group(struct device *dev)
874 {
875         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
876         struct iommu_group *group;
877
878         if (mmu->group)
879                 return iommu_group_ref_get(mmu->group);
880
881         group = iommu_group_alloc();
882         if (!IS_ERR(group))
883                 mmu->group = group;
884
885         return group;
886 }
887
888 static const struct iommu_ops ipmmu_ops = {
889         .domain_alloc = ipmmu_domain_alloc,
890         .domain_free = ipmmu_domain_free,
891         .attach_dev = ipmmu_attach_device,
892         .detach_dev = ipmmu_detach_device,
893         .map = ipmmu_map,
894         .unmap = ipmmu_unmap,
895         .flush_iotlb_all = ipmmu_iotlb_sync,
896         .iotlb_sync = ipmmu_iotlb_sync,
897         .iova_to_phys = ipmmu_iova_to_phys,
898         .add_device = ipmmu_add_device,
899         .remove_device = ipmmu_remove_device,
900         .device_group = ipmmu_find_group,
901         .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
902         .of_xlate = ipmmu_of_xlate,
903 };
904
905 /* -----------------------------------------------------------------------------
906  * Probe/remove and init
907  */
908
909 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
910 {
911         unsigned int i;
912
913         /* Disable all contexts. */
914         for (i = 0; i < mmu->num_ctx; ++i)
915                 ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
916 }
917
918 static const struct ipmmu_features ipmmu_features_default = {
919         .use_ns_alias_offset = true,
920         .has_cache_leaf_nodes = false,
921         .number_of_contexts = 1, /* software only tested with one context */
922         .setup_imbuscr = true,
923         .twobit_imttbcr_sl0 = false,
924         .reserved_context = false,
925 };
926
927 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
928         .use_ns_alias_offset = false,
929         .has_cache_leaf_nodes = true,
930         .number_of_contexts = 8,
931         .setup_imbuscr = false,
932         .twobit_imttbcr_sl0 = true,
933         .reserved_context = true,
934 };
935
936 static const struct of_device_id ipmmu_of_ids[] = {
937         {
938                 .compatible = "renesas,ipmmu-vmsa",
939                 .data = &ipmmu_features_default,
940         }, {
941                 .compatible = "renesas,ipmmu-r8a7795",
942                 .data = &ipmmu_features_rcar_gen3,
943         }, {
944                 .compatible = "renesas,ipmmu-r8a7796",
945                 .data = &ipmmu_features_rcar_gen3,
946         }, {
947                 .compatible = "renesas,ipmmu-r8a77965",
948                 .data = &ipmmu_features_rcar_gen3,
949         }, {
950                 .compatible = "renesas,ipmmu-r8a77970",
951                 .data = &ipmmu_features_rcar_gen3,
952         }, {
953                 .compatible = "renesas,ipmmu-r8a77995",
954                 .data = &ipmmu_features_rcar_gen3,
955         }, {
956                 /* Terminator */
957         },
958 };
959
960 MODULE_DEVICE_TABLE(of, ipmmu_of_ids);
961
962 static int ipmmu_probe(struct platform_device *pdev)
963 {
964         struct ipmmu_vmsa_device *mmu;
965         struct resource *res;
966         int irq;
967         int ret;
968
969         mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
970         if (!mmu) {
971                 dev_err(&pdev->dev, "cannot allocate device data\n");
972                 return -ENOMEM;
973         }
974
975         mmu->dev = &pdev->dev;
976         mmu->num_utlbs = 48;
977         spin_lock_init(&mmu->lock);
978         bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
979         mmu->features = of_device_get_match_data(&pdev->dev);
980         dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
981
982         /* Map I/O memory and request IRQ. */
983         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
984         mmu->base = devm_ioremap_resource(&pdev->dev, res);
985         if (IS_ERR(mmu->base))
986                 return PTR_ERR(mmu->base);
987
988         /*
989          * The IPMMU has two register banks, for secure and non-secure modes.
990          * The bank mapped at the beginning of the IPMMU address space
991          * corresponds to the running mode of the CPU. When running in secure
992          * mode the non-secure register bank is also available at an offset.
993          *
994          * Secure mode operation isn't clearly documented and is thus currently
995          * not implemented in the driver. Furthermore, preliminary tests of
996          * non-secure operation with the main register bank were not successful.
997          * Offset the registers base unconditionally to point to the non-secure
998          * alias space for now.
999          */
1000         if (mmu->features->use_ns_alias_offset)
1001                 mmu->base += IM_NS_ALIAS_OFFSET;
1002
1003         mmu->num_ctx = min_t(unsigned int, IPMMU_CTX_MAX,
1004                              mmu->features->number_of_contexts);
1005
1006         irq = platform_get_irq(pdev, 0);
1007
1008         /*
1009          * Determine if this IPMMU instance is a root device by checking for
1010          * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1011          */
1012         if (!mmu->features->has_cache_leaf_nodes ||
1013             !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1014                 mmu->root = mmu;
1015         else
1016                 mmu->root = ipmmu_find_root();
1017
1018         /*
1019          * Wait until the root device has been registered for sure.
1020          */
1021         if (!mmu->root)
1022                 return -EPROBE_DEFER;
1023
1024         /* Root devices have mandatory IRQs */
1025         if (ipmmu_is_root(mmu)) {
1026                 if (irq < 0) {
1027                         dev_err(&pdev->dev, "no IRQ found\n");
1028                         return irq;
1029                 }
1030
1031                 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1032                                        dev_name(&pdev->dev), mmu);
1033                 if (ret < 0) {
1034                         dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1035                         return ret;
1036                 }
1037
1038                 ipmmu_device_reset(mmu);
1039
1040                 if (mmu->features->reserved_context) {
1041                         dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1042                         set_bit(0, mmu->ctx);
1043                 }
1044         }
1045
1046         /*
1047          * Register the IPMMU to the IOMMU subsystem in the following cases:
1048          * - R-Car Gen2 IPMMU (all devices registered)
1049          * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1050          */
1051         if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1052                 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1053                                              dev_name(&pdev->dev));
1054                 if (ret)
1055                         return ret;
1056
1057                 iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
1058                 iommu_device_set_fwnode(&mmu->iommu,
1059                                         &pdev->dev.of_node->fwnode);
1060
1061                 ret = iommu_device_register(&mmu->iommu);
1062                 if (ret)
1063                         return ret;
1064
1065 #if defined(CONFIG_IOMMU_DMA)
1066                 if (!iommu_present(&platform_bus_type))
1067                         bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1068 #endif
1069         }
1070
1071         /*
1072          * We can't create the ARM mapping here as it requires the bus to have
1073          * an IOMMU, which only happens when bus_set_iommu() is called in
1074          * ipmmu_init() after the probe function returns.
1075          */
1076
1077         platform_set_drvdata(pdev, mmu);
1078
1079         return 0;
1080 }
1081
1082 static int ipmmu_remove(struct platform_device *pdev)
1083 {
1084         struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1085
1086         iommu_device_sysfs_remove(&mmu->iommu);
1087         iommu_device_unregister(&mmu->iommu);
1088
1089         arm_iommu_release_mapping(mmu->mapping);
1090
1091         ipmmu_device_reset(mmu);
1092
1093         return 0;
1094 }
1095
1096 static struct platform_driver ipmmu_driver = {
1097         .driver = {
1098                 .name = "ipmmu-vmsa",
1099                 .of_match_table = of_match_ptr(ipmmu_of_ids),
1100         },
1101         .probe = ipmmu_probe,
1102         .remove = ipmmu_remove,
1103 };
1104
1105 static int __init ipmmu_init(void)
1106 {
1107         struct device_node *np;
1108         static bool setup_done;
1109         int ret;
1110
1111         if (setup_done)
1112                 return 0;
1113
1114         np = of_find_matching_node(NULL, ipmmu_of_ids);
1115         if (!np)
1116                 return 0;
1117
1118         of_node_put(np);
1119
1120         ret = platform_driver_register(&ipmmu_driver);
1121         if (ret < 0)
1122                 return ret;
1123
1124 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1125         if (!iommu_present(&platform_bus_type))
1126                 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1127 #endif
1128
1129         setup_done = true;
1130         return 0;
1131 }
1132
1133 static void __exit ipmmu_exit(void)
1134 {
1135         return platform_driver_unregister(&ipmmu_driver);
1136 }
1137
1138 subsys_initcall(ipmmu_init);
1139 module_exit(ipmmu_exit);
1140
1141 MODULE_DESCRIPTION("IOMMU API for Renesas VMSA-compatible IPMMU");
1142 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1143 MODULE_LICENSE("GPL v2");