Merge branch 'linux-5.3' of git://github.com/skeggsb/linux into drm-fixes
[sfrench/cifs-2.6.git] / drivers / iommu / intel-iommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2006-2014 Intel Corporation.
4  *
5  * Authors: David Woodhouse <dwmw2@infradead.org>,
6  *          Ashok Raj <ashok.raj@intel.com>,
7  *          Shaohua Li <shaohua.li@intel.com>,
8  *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
9  *          Fenghua Yu <fenghua.yu@intel.com>
10  *          Joerg Roedel <jroedel@suse.de>
11  */
12
13 #define pr_fmt(fmt)     "DMAR: " fmt
14 #define dev_fmt(fmt)    pr_fmt(fmt)
15
16 #include <linux/init.h>
17 #include <linux/bitmap.h>
18 #include <linux/debugfs.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/irq.h>
22 #include <linux/interrupt.h>
23 #include <linux/spinlock.h>
24 #include <linux/pci.h>
25 #include <linux/dmar.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/mempool.h>
28 #include <linux/memory.h>
29 #include <linux/cpu.h>
30 #include <linux/timer.h>
31 #include <linux/io.h>
32 #include <linux/iova.h>
33 #include <linux/iommu.h>
34 #include <linux/intel-iommu.h>
35 #include <linux/syscore_ops.h>
36 #include <linux/tboot.h>
37 #include <linux/dmi.h>
38 #include <linux/pci-ats.h>
39 #include <linux/memblock.h>
40 #include <linux/dma-contiguous.h>
41 #include <linux/dma-direct.h>
42 #include <linux/crash_dump.h>
43 #include <linux/numa.h>
44 #include <asm/irq_remapping.h>
45 #include <asm/cacheflush.h>
46 #include <asm/iommu.h>
47
48 #include "irq_remapping.h"
49 #include "intel-pasid.h"
50
51 #define ROOT_SIZE               VTD_PAGE_SIZE
52 #define CONTEXT_SIZE            VTD_PAGE_SIZE
53
54 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
55 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
56 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
57 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
58
59 #define IOAPIC_RANGE_START      (0xfee00000)
60 #define IOAPIC_RANGE_END        (0xfeefffff)
61 #define IOVA_START_ADDR         (0x1000)
62
63 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
64
65 #define MAX_AGAW_WIDTH 64
66 #define MAX_AGAW_PFN_WIDTH      (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
67
68 #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
69 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
70
71 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
72    to match. That way, we can use 'unsigned long' for PFNs with impunity. */
73 #define DOMAIN_MAX_PFN(gaw)     ((unsigned long) min_t(uint64_t, \
74                                 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
75 #define DOMAIN_MAX_ADDR(gaw)    (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
76
77 /* IO virtual address start page frame number */
78 #define IOVA_START_PFN          (1)
79
80 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
81
82 /* page table handling */
83 #define LEVEL_STRIDE            (9)
84 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
85
86 /*
87  * This bitmap is used to advertise the page sizes our hardware support
88  * to the IOMMU core, which will then use this information to split
89  * physically contiguous memory regions it is mapping into page sizes
90  * that we support.
91  *
92  * Traditionally the IOMMU core just handed us the mappings directly,
93  * after making sure the size is an order of a 4KiB page and that the
94  * mapping has natural alignment.
95  *
96  * To retain this behavior, we currently advertise that we support
97  * all page sizes that are an order of 4KiB.
98  *
99  * If at some point we'd like to utilize the IOMMU core's new behavior,
100  * we could change this to advertise the real page sizes we support.
101  */
102 #define INTEL_IOMMU_PGSIZES     (~0xFFFUL)
103
104 static inline int agaw_to_level(int agaw)
105 {
106         return agaw + 2;
107 }
108
109 static inline int agaw_to_width(int agaw)
110 {
111         return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
112 }
113
114 static inline int width_to_agaw(int width)
115 {
116         return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
117 }
118
119 static inline unsigned int level_to_offset_bits(int level)
120 {
121         return (level - 1) * LEVEL_STRIDE;
122 }
123
124 static inline int pfn_level_offset(unsigned long pfn, int level)
125 {
126         return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
127 }
128
129 static inline unsigned long level_mask(int level)
130 {
131         return -1UL << level_to_offset_bits(level);
132 }
133
134 static inline unsigned long level_size(int level)
135 {
136         return 1UL << level_to_offset_bits(level);
137 }
138
139 static inline unsigned long align_to_level(unsigned long pfn, int level)
140 {
141         return (pfn + level_size(level) - 1) & level_mask(level);
142 }
143
144 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
145 {
146         return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
147 }
148
149 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
150    are never going to work. */
151 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
152 {
153         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
154 }
155
156 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
157 {
158         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
159 }
160 static inline unsigned long page_to_dma_pfn(struct page *pg)
161 {
162         return mm_to_dma_pfn(page_to_pfn(pg));
163 }
164 static inline unsigned long virt_to_dma_pfn(void *p)
165 {
166         return page_to_dma_pfn(virt_to_page(p));
167 }
168
169 /* global iommu list, set NULL for ignored DMAR units */
170 static struct intel_iommu **g_iommus;
171
172 static void __init check_tylersburg_isoch(void);
173 static int rwbf_quirk;
174
175 /*
176  * set to 1 to panic kernel if can't successfully enable VT-d
177  * (used when kernel is launched w/ TXT)
178  */
179 static int force_on = 0;
180 int intel_iommu_tboot_noforce;
181 static int no_platform_optin;
182
183 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
184
185 /*
186  * Take a root_entry and return the Lower Context Table Pointer (LCTP)
187  * if marked present.
188  */
189 static phys_addr_t root_entry_lctp(struct root_entry *re)
190 {
191         if (!(re->lo & 1))
192                 return 0;
193
194         return re->lo & VTD_PAGE_MASK;
195 }
196
197 /*
198  * Take a root_entry and return the Upper Context Table Pointer (UCTP)
199  * if marked present.
200  */
201 static phys_addr_t root_entry_uctp(struct root_entry *re)
202 {
203         if (!(re->hi & 1))
204                 return 0;
205
206         return re->hi & VTD_PAGE_MASK;
207 }
208
209 static inline void context_clear_pasid_enable(struct context_entry *context)
210 {
211         context->lo &= ~(1ULL << 11);
212 }
213
214 static inline bool context_pasid_enabled(struct context_entry *context)
215 {
216         return !!(context->lo & (1ULL << 11));
217 }
218
219 static inline void context_set_copied(struct context_entry *context)
220 {
221         context->hi |= (1ull << 3);
222 }
223
224 static inline bool context_copied(struct context_entry *context)
225 {
226         return !!(context->hi & (1ULL << 3));
227 }
228
229 static inline bool __context_present(struct context_entry *context)
230 {
231         return (context->lo & 1);
232 }
233
234 bool context_present(struct context_entry *context)
235 {
236         return context_pasid_enabled(context) ?
237              __context_present(context) :
238              __context_present(context) && !context_copied(context);
239 }
240
241 static inline void context_set_present(struct context_entry *context)
242 {
243         context->lo |= 1;
244 }
245
246 static inline void context_set_fault_enable(struct context_entry *context)
247 {
248         context->lo &= (((u64)-1) << 2) | 1;
249 }
250
251 static inline void context_set_translation_type(struct context_entry *context,
252                                                 unsigned long value)
253 {
254         context->lo &= (((u64)-1) << 4) | 3;
255         context->lo |= (value & 3) << 2;
256 }
257
258 static inline void context_set_address_root(struct context_entry *context,
259                                             unsigned long value)
260 {
261         context->lo &= ~VTD_PAGE_MASK;
262         context->lo |= value & VTD_PAGE_MASK;
263 }
264
265 static inline void context_set_address_width(struct context_entry *context,
266                                              unsigned long value)
267 {
268         context->hi |= value & 7;
269 }
270
271 static inline void context_set_domain_id(struct context_entry *context,
272                                          unsigned long value)
273 {
274         context->hi |= (value & ((1 << 16) - 1)) << 8;
275 }
276
277 static inline int context_domain_id(struct context_entry *c)
278 {
279         return((c->hi >> 8) & 0xffff);
280 }
281
282 static inline void context_clear_entry(struct context_entry *context)
283 {
284         context->lo = 0;
285         context->hi = 0;
286 }
287
288 /*
289  * This domain is a statically identity mapping domain.
290  *      1. This domain creats a static 1:1 mapping to all usable memory.
291  *      2. It maps to each iommu if successful.
292  *      3. Each iommu mapps to this domain if successful.
293  */
294 static struct dmar_domain *si_domain;
295 static int hw_pass_through = 1;
296
297 /* si_domain contains mulitple devices */
298 #define DOMAIN_FLAG_STATIC_IDENTITY             BIT(0)
299
300 /*
301  * This is a DMA domain allocated through the iommu domain allocation
302  * interface. But one or more devices belonging to this domain have
303  * been chosen to use a private domain. We should avoid to use the
304  * map/unmap/iova_to_phys APIs on it.
305  */
306 #define DOMAIN_FLAG_LOSE_CHILDREN               BIT(1)
307
308 #define for_each_domain_iommu(idx, domain)                      \
309         for (idx = 0; idx < g_num_of_iommus; idx++)             \
310                 if (domain->iommu_refcnt[idx])
311
312 struct dmar_rmrr_unit {
313         struct list_head list;          /* list of rmrr units   */
314         struct acpi_dmar_header *hdr;   /* ACPI header          */
315         u64     base_address;           /* reserved base address*/
316         u64     end_address;            /* reserved end address */
317         struct dmar_dev_scope *devices; /* target devices */
318         int     devices_cnt;            /* target device count */
319 };
320
321 struct dmar_atsr_unit {
322         struct list_head list;          /* list of ATSR units */
323         struct acpi_dmar_header *hdr;   /* ACPI header */
324         struct dmar_dev_scope *devices; /* target devices */
325         int devices_cnt;                /* target device count */
326         u8 include_all:1;               /* include all ports */
327 };
328
329 static LIST_HEAD(dmar_atsr_units);
330 static LIST_HEAD(dmar_rmrr_units);
331
332 #define for_each_rmrr_units(rmrr) \
333         list_for_each_entry(rmrr, &dmar_rmrr_units, list)
334
335 /* bitmap for indexing intel_iommus */
336 static int g_num_of_iommus;
337
338 static void domain_exit(struct dmar_domain *domain);
339 static void domain_remove_dev_info(struct dmar_domain *domain);
340 static void dmar_remove_one_dev_info(struct device *dev);
341 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
342 static int domain_detach_iommu(struct dmar_domain *domain,
343                                struct intel_iommu *iommu);
344 static bool device_is_rmrr_locked(struct device *dev);
345 static int intel_iommu_attach_device(struct iommu_domain *domain,
346                                      struct device *dev);
347
348 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
349 int dmar_disabled = 0;
350 #else
351 int dmar_disabled = 1;
352 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
353
354 int intel_iommu_sm;
355 int intel_iommu_enabled = 0;
356 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
357
358 static int dmar_map_gfx = 1;
359 static int dmar_forcedac;
360 static int intel_iommu_strict;
361 static int intel_iommu_superpage = 1;
362 static int iommu_identity_mapping;
363
364 #define IDENTMAP_ALL            1
365 #define IDENTMAP_GFX            2
366 #define IDENTMAP_AZALIA         4
367
368 int intel_iommu_gfx_mapped;
369 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
370
371 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
372 #define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2))
373 static DEFINE_SPINLOCK(device_domain_lock);
374 static LIST_HEAD(device_domain_list);
375
376 /*
377  * Iterate over elements in device_domain_list and call the specified
378  * callback @fn against each element.
379  */
380 int for_each_device_domain(int (*fn)(struct device_domain_info *info,
381                                      void *data), void *data)
382 {
383         int ret = 0;
384         unsigned long flags;
385         struct device_domain_info *info;
386
387         spin_lock_irqsave(&device_domain_lock, flags);
388         list_for_each_entry(info, &device_domain_list, global) {
389                 ret = fn(info, data);
390                 if (ret) {
391                         spin_unlock_irqrestore(&device_domain_lock, flags);
392                         return ret;
393                 }
394         }
395         spin_unlock_irqrestore(&device_domain_lock, flags);
396
397         return 0;
398 }
399
400 const struct iommu_ops intel_iommu_ops;
401
402 static bool translation_pre_enabled(struct intel_iommu *iommu)
403 {
404         return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
405 }
406
407 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
408 {
409         iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
410 }
411
412 static void init_translation_status(struct intel_iommu *iommu)
413 {
414         u32 gsts;
415
416         gsts = readl(iommu->reg + DMAR_GSTS_REG);
417         if (gsts & DMA_GSTS_TES)
418                 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
419 }
420
421 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
422 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
423 {
424         return container_of(dom, struct dmar_domain, domain);
425 }
426
427 static int __init intel_iommu_setup(char *str)
428 {
429         if (!str)
430                 return -EINVAL;
431         while (*str) {
432                 if (!strncmp(str, "on", 2)) {
433                         dmar_disabled = 0;
434                         pr_info("IOMMU enabled\n");
435                 } else if (!strncmp(str, "off", 3)) {
436                         dmar_disabled = 1;
437                         no_platform_optin = 1;
438                         pr_info("IOMMU disabled\n");
439                 } else if (!strncmp(str, "igfx_off", 8)) {
440                         dmar_map_gfx = 0;
441                         pr_info("Disable GFX device mapping\n");
442                 } else if (!strncmp(str, "forcedac", 8)) {
443                         pr_info("Forcing DAC for PCI devices\n");
444                         dmar_forcedac = 1;
445                 } else if (!strncmp(str, "strict", 6)) {
446                         pr_info("Disable batched IOTLB flush\n");
447                         intel_iommu_strict = 1;
448                 } else if (!strncmp(str, "sp_off", 6)) {
449                         pr_info("Disable supported super page\n");
450                         intel_iommu_superpage = 0;
451                 } else if (!strncmp(str, "sm_on", 5)) {
452                         pr_info("Intel-IOMMU: scalable mode supported\n");
453                         intel_iommu_sm = 1;
454                 } else if (!strncmp(str, "tboot_noforce", 13)) {
455                         printk(KERN_INFO
456                                 "Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
457                         intel_iommu_tboot_noforce = 1;
458                 }
459
460                 str += strcspn(str, ",");
461                 while (*str == ',')
462                         str++;
463         }
464         return 0;
465 }
466 __setup("intel_iommu=", intel_iommu_setup);
467
468 static struct kmem_cache *iommu_domain_cache;
469 static struct kmem_cache *iommu_devinfo_cache;
470
471 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
472 {
473         struct dmar_domain **domains;
474         int idx = did >> 8;
475
476         domains = iommu->domains[idx];
477         if (!domains)
478                 return NULL;
479
480         return domains[did & 0xff];
481 }
482
483 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
484                              struct dmar_domain *domain)
485 {
486         struct dmar_domain **domains;
487         int idx = did >> 8;
488
489         if (!iommu->domains[idx]) {
490                 size_t size = 256 * sizeof(struct dmar_domain *);
491                 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
492         }
493
494         domains = iommu->domains[idx];
495         if (WARN_ON(!domains))
496                 return;
497         else
498                 domains[did & 0xff] = domain;
499 }
500
501 void *alloc_pgtable_page(int node)
502 {
503         struct page *page;
504         void *vaddr = NULL;
505
506         page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
507         if (page)
508                 vaddr = page_address(page);
509         return vaddr;
510 }
511
512 void free_pgtable_page(void *vaddr)
513 {
514         free_page((unsigned long)vaddr);
515 }
516
517 static inline void *alloc_domain_mem(void)
518 {
519         return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
520 }
521
522 static void free_domain_mem(void *vaddr)
523 {
524         kmem_cache_free(iommu_domain_cache, vaddr);
525 }
526
527 static inline void * alloc_devinfo_mem(void)
528 {
529         return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
530 }
531
532 static inline void free_devinfo_mem(void *vaddr)
533 {
534         kmem_cache_free(iommu_devinfo_cache, vaddr);
535 }
536
537 static inline int domain_type_is_si(struct dmar_domain *domain)
538 {
539         return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
540 }
541
542 static inline int domain_pfn_supported(struct dmar_domain *domain,
543                                        unsigned long pfn)
544 {
545         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
546
547         return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
548 }
549
550 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
551 {
552         unsigned long sagaw;
553         int agaw = -1;
554
555         sagaw = cap_sagaw(iommu->cap);
556         for (agaw = width_to_agaw(max_gaw);
557              agaw >= 0; agaw--) {
558                 if (test_bit(agaw, &sagaw))
559                         break;
560         }
561
562         return agaw;
563 }
564
565 /*
566  * Calculate max SAGAW for each iommu.
567  */
568 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
569 {
570         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
571 }
572
573 /*
574  * calculate agaw for each iommu.
575  * "SAGAW" may be different across iommus, use a default agaw, and
576  * get a supported less agaw for iommus that don't support the default agaw.
577  */
578 int iommu_calculate_agaw(struct intel_iommu *iommu)
579 {
580         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
581 }
582
583 /* This functionin only returns single iommu in a domain */
584 struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
585 {
586         int iommu_id;
587
588         /* si_domain and vm domain should not get here. */
589         if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA))
590                 return NULL;
591
592         for_each_domain_iommu(iommu_id, domain)
593                 break;
594
595         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
596                 return NULL;
597
598         return g_iommus[iommu_id];
599 }
600
601 static void domain_update_iommu_coherency(struct dmar_domain *domain)
602 {
603         struct dmar_drhd_unit *drhd;
604         struct intel_iommu *iommu;
605         bool found = false;
606         int i;
607
608         domain->iommu_coherency = 1;
609
610         for_each_domain_iommu(i, domain) {
611                 found = true;
612                 if (!ecap_coherent(g_iommus[i]->ecap)) {
613                         domain->iommu_coherency = 0;
614                         break;
615                 }
616         }
617         if (found)
618                 return;
619
620         /* No hardware attached; use lowest common denominator */
621         rcu_read_lock();
622         for_each_active_iommu(iommu, drhd) {
623                 if (!ecap_coherent(iommu->ecap)) {
624                         domain->iommu_coherency = 0;
625                         break;
626                 }
627         }
628         rcu_read_unlock();
629 }
630
631 static int domain_update_iommu_snooping(struct intel_iommu *skip)
632 {
633         struct dmar_drhd_unit *drhd;
634         struct intel_iommu *iommu;
635         int ret = 1;
636
637         rcu_read_lock();
638         for_each_active_iommu(iommu, drhd) {
639                 if (iommu != skip) {
640                         if (!ecap_sc_support(iommu->ecap)) {
641                                 ret = 0;
642                                 break;
643                         }
644                 }
645         }
646         rcu_read_unlock();
647
648         return ret;
649 }
650
651 static int domain_update_iommu_superpage(struct intel_iommu *skip)
652 {
653         struct dmar_drhd_unit *drhd;
654         struct intel_iommu *iommu;
655         int mask = 0xf;
656
657         if (!intel_iommu_superpage) {
658                 return 0;
659         }
660
661         /* set iommu_superpage to the smallest common denominator */
662         rcu_read_lock();
663         for_each_active_iommu(iommu, drhd) {
664                 if (iommu != skip) {
665                         mask &= cap_super_page_val(iommu->cap);
666                         if (!mask)
667                                 break;
668                 }
669         }
670         rcu_read_unlock();
671
672         return fls(mask);
673 }
674
675 /* Some capabilities may be different across iommus */
676 static void domain_update_iommu_cap(struct dmar_domain *domain)
677 {
678         domain_update_iommu_coherency(domain);
679         domain->iommu_snooping = domain_update_iommu_snooping(NULL);
680         domain->iommu_superpage = domain_update_iommu_superpage(NULL);
681 }
682
683 struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
684                                          u8 devfn, int alloc)
685 {
686         struct root_entry *root = &iommu->root_entry[bus];
687         struct context_entry *context;
688         u64 *entry;
689
690         entry = &root->lo;
691         if (sm_supported(iommu)) {
692                 if (devfn >= 0x80) {
693                         devfn -= 0x80;
694                         entry = &root->hi;
695                 }
696                 devfn *= 2;
697         }
698         if (*entry & 1)
699                 context = phys_to_virt(*entry & VTD_PAGE_MASK);
700         else {
701                 unsigned long phy_addr;
702                 if (!alloc)
703                         return NULL;
704
705                 context = alloc_pgtable_page(iommu->node);
706                 if (!context)
707                         return NULL;
708
709                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
710                 phy_addr = virt_to_phys((void *)context);
711                 *entry = phy_addr | 1;
712                 __iommu_flush_cache(iommu, entry, sizeof(*entry));
713         }
714         return &context[devfn];
715 }
716
717 static int iommu_dummy(struct device *dev)
718 {
719         return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
720 }
721
722 /**
723  * is_downstream_to_pci_bridge - test if a device belongs to the PCI
724  *                               sub-hierarchy of a candidate PCI-PCI bridge
725  * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
726  * @bridge: the candidate PCI-PCI bridge
727  *
728  * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
729  */
730 static bool
731 is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
732 {
733         struct pci_dev *pdev, *pbridge;
734
735         if (!dev_is_pci(dev) || !dev_is_pci(bridge))
736                 return false;
737
738         pdev = to_pci_dev(dev);
739         pbridge = to_pci_dev(bridge);
740
741         if (pbridge->subordinate &&
742             pbridge->subordinate->number <= pdev->bus->number &&
743             pbridge->subordinate->busn_res.end >= pdev->bus->number)
744                 return true;
745
746         return false;
747 }
748
749 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
750 {
751         struct dmar_drhd_unit *drhd = NULL;
752         struct intel_iommu *iommu;
753         struct device *tmp;
754         struct pci_dev *pdev = NULL;
755         u16 segment = 0;
756         int i;
757
758         if (iommu_dummy(dev))
759                 return NULL;
760
761         if (dev_is_pci(dev)) {
762                 struct pci_dev *pf_pdev;
763
764                 pdev = to_pci_dev(dev);
765
766 #ifdef CONFIG_X86
767                 /* VMD child devices currently cannot be handled individually */
768                 if (is_vmd(pdev->bus))
769                         return NULL;
770 #endif
771
772                 /* VFs aren't listed in scope tables; we need to look up
773                  * the PF instead to find the IOMMU. */
774                 pf_pdev = pci_physfn(pdev);
775                 dev = &pf_pdev->dev;
776                 segment = pci_domain_nr(pdev->bus);
777         } else if (has_acpi_companion(dev))
778                 dev = &ACPI_COMPANION(dev)->dev;
779
780         rcu_read_lock();
781         for_each_active_iommu(iommu, drhd) {
782                 if (pdev && segment != drhd->segment)
783                         continue;
784
785                 for_each_active_dev_scope(drhd->devices,
786                                           drhd->devices_cnt, i, tmp) {
787                         if (tmp == dev) {
788                                 /* For a VF use its original BDF# not that of the PF
789                                  * which we used for the IOMMU lookup. Strictly speaking
790                                  * we could do this for all PCI devices; we only need to
791                                  * get the BDF# from the scope table for ACPI matches. */
792                                 if (pdev && pdev->is_virtfn)
793                                         goto got_pdev;
794
795                                 *bus = drhd->devices[i].bus;
796                                 *devfn = drhd->devices[i].devfn;
797                                 goto out;
798                         }
799
800                         if (is_downstream_to_pci_bridge(dev, tmp))
801                                 goto got_pdev;
802                 }
803
804                 if (pdev && drhd->include_all) {
805                 got_pdev:
806                         *bus = pdev->bus->number;
807                         *devfn = pdev->devfn;
808                         goto out;
809                 }
810         }
811         iommu = NULL;
812  out:
813         rcu_read_unlock();
814
815         return iommu;
816 }
817
818 static void domain_flush_cache(struct dmar_domain *domain,
819                                void *addr, int size)
820 {
821         if (!domain->iommu_coherency)
822                 clflush_cache_range(addr, size);
823 }
824
825 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
826 {
827         struct context_entry *context;
828         int ret = 0;
829         unsigned long flags;
830
831         spin_lock_irqsave(&iommu->lock, flags);
832         context = iommu_context_addr(iommu, bus, devfn, 0);
833         if (context)
834                 ret = context_present(context);
835         spin_unlock_irqrestore(&iommu->lock, flags);
836         return ret;
837 }
838
839 static void free_context_table(struct intel_iommu *iommu)
840 {
841         int i;
842         unsigned long flags;
843         struct context_entry *context;
844
845         spin_lock_irqsave(&iommu->lock, flags);
846         if (!iommu->root_entry) {
847                 goto out;
848         }
849         for (i = 0; i < ROOT_ENTRY_NR; i++) {
850                 context = iommu_context_addr(iommu, i, 0, 0);
851                 if (context)
852                         free_pgtable_page(context);
853
854                 if (!sm_supported(iommu))
855                         continue;
856
857                 context = iommu_context_addr(iommu, i, 0x80, 0);
858                 if (context)
859                         free_pgtable_page(context);
860
861         }
862         free_pgtable_page(iommu->root_entry);
863         iommu->root_entry = NULL;
864 out:
865         spin_unlock_irqrestore(&iommu->lock, flags);
866 }
867
868 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
869                                       unsigned long pfn, int *target_level)
870 {
871         struct dma_pte *parent, *pte;
872         int level = agaw_to_level(domain->agaw);
873         int offset;
874
875         BUG_ON(!domain->pgd);
876
877         if (!domain_pfn_supported(domain, pfn))
878                 /* Address beyond IOMMU's addressing capabilities. */
879                 return NULL;
880
881         parent = domain->pgd;
882
883         while (1) {
884                 void *tmp_page;
885
886                 offset = pfn_level_offset(pfn, level);
887                 pte = &parent[offset];
888                 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
889                         break;
890                 if (level == *target_level)
891                         break;
892
893                 if (!dma_pte_present(pte)) {
894                         uint64_t pteval;
895
896                         tmp_page = alloc_pgtable_page(domain->nid);
897
898                         if (!tmp_page)
899                                 return NULL;
900
901                         domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
902                         pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
903                         if (cmpxchg64(&pte->val, 0ULL, pteval))
904                                 /* Someone else set it while we were thinking; use theirs. */
905                                 free_pgtable_page(tmp_page);
906                         else
907                                 domain_flush_cache(domain, pte, sizeof(*pte));
908                 }
909                 if (level == 1)
910                         break;
911
912                 parent = phys_to_virt(dma_pte_addr(pte));
913                 level--;
914         }
915
916         if (!*target_level)
917                 *target_level = level;
918
919         return pte;
920 }
921
922 /* return address's pte at specific level */
923 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
924                                          unsigned long pfn,
925                                          int level, int *large_page)
926 {
927         struct dma_pte *parent, *pte;
928         int total = agaw_to_level(domain->agaw);
929         int offset;
930
931         parent = domain->pgd;
932         while (level <= total) {
933                 offset = pfn_level_offset(pfn, total);
934                 pte = &parent[offset];
935                 if (level == total)
936                         return pte;
937
938                 if (!dma_pte_present(pte)) {
939                         *large_page = total;
940                         break;
941                 }
942
943                 if (dma_pte_superpage(pte)) {
944                         *large_page = total;
945                         return pte;
946                 }
947
948                 parent = phys_to_virt(dma_pte_addr(pte));
949                 total--;
950         }
951         return NULL;
952 }
953
954 /* clear last level pte, a tlb flush should be followed */
955 static void dma_pte_clear_range(struct dmar_domain *domain,
956                                 unsigned long start_pfn,
957                                 unsigned long last_pfn)
958 {
959         unsigned int large_page;
960         struct dma_pte *first_pte, *pte;
961
962         BUG_ON(!domain_pfn_supported(domain, start_pfn));
963         BUG_ON(!domain_pfn_supported(domain, last_pfn));
964         BUG_ON(start_pfn > last_pfn);
965
966         /* we don't need lock here; nobody else touches the iova range */
967         do {
968                 large_page = 1;
969                 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
970                 if (!pte) {
971                         start_pfn = align_to_level(start_pfn + 1, large_page + 1);
972                         continue;
973                 }
974                 do {
975                         dma_clear_pte(pte);
976                         start_pfn += lvl_to_nr_pages(large_page);
977                         pte++;
978                 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
979
980                 domain_flush_cache(domain, first_pte,
981                                    (void *)pte - (void *)first_pte);
982
983         } while (start_pfn && start_pfn <= last_pfn);
984 }
985
986 static void dma_pte_free_level(struct dmar_domain *domain, int level,
987                                int retain_level, struct dma_pte *pte,
988                                unsigned long pfn, unsigned long start_pfn,
989                                unsigned long last_pfn)
990 {
991         pfn = max(start_pfn, pfn);
992         pte = &pte[pfn_level_offset(pfn, level)];
993
994         do {
995                 unsigned long level_pfn;
996                 struct dma_pte *level_pte;
997
998                 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
999                         goto next;
1000
1001                 level_pfn = pfn & level_mask(level);
1002                 level_pte = phys_to_virt(dma_pte_addr(pte));
1003
1004                 if (level > 2) {
1005                         dma_pte_free_level(domain, level - 1, retain_level,
1006                                            level_pte, level_pfn, start_pfn,
1007                                            last_pfn);
1008                 }
1009
1010                 /*
1011                  * Free the page table if we're below the level we want to
1012                  * retain and the range covers the entire table.
1013                  */
1014                 if (level < retain_level && !(start_pfn > level_pfn ||
1015                       last_pfn < level_pfn + level_size(level) - 1)) {
1016                         dma_clear_pte(pte);
1017                         domain_flush_cache(domain, pte, sizeof(*pte));
1018                         free_pgtable_page(level_pte);
1019                 }
1020 next:
1021                 pfn += level_size(level);
1022         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1023 }
1024
1025 /*
1026  * clear last level (leaf) ptes and free page table pages below the
1027  * level we wish to keep intact.
1028  */
1029 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1030                                    unsigned long start_pfn,
1031                                    unsigned long last_pfn,
1032                                    int retain_level)
1033 {
1034         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1035         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1036         BUG_ON(start_pfn > last_pfn);
1037
1038         dma_pte_clear_range(domain, start_pfn, last_pfn);
1039
1040         /* We don't need lock here; nobody else touches the iova range */
1041         dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1042                            domain->pgd, 0, start_pfn, last_pfn);
1043
1044         /* free pgd */
1045         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1046                 free_pgtable_page(domain->pgd);
1047                 domain->pgd = NULL;
1048         }
1049 }
1050
1051 /* When a page at a given level is being unlinked from its parent, we don't
1052    need to *modify* it at all. All we need to do is make a list of all the
1053    pages which can be freed just as soon as we've flushed the IOTLB and we
1054    know the hardware page-walk will no longer touch them.
1055    The 'pte' argument is the *parent* PTE, pointing to the page that is to
1056    be freed. */
1057 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1058                                             int level, struct dma_pte *pte,
1059                                             struct page *freelist)
1060 {
1061         struct page *pg;
1062
1063         pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1064         pg->freelist = freelist;
1065         freelist = pg;
1066
1067         if (level == 1)
1068                 return freelist;
1069
1070         pte = page_address(pg);
1071         do {
1072                 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1073                         freelist = dma_pte_list_pagetables(domain, level - 1,
1074                                                            pte, freelist);
1075                 pte++;
1076         } while (!first_pte_in_page(pte));
1077
1078         return freelist;
1079 }
1080
1081 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1082                                         struct dma_pte *pte, unsigned long pfn,
1083                                         unsigned long start_pfn,
1084                                         unsigned long last_pfn,
1085                                         struct page *freelist)
1086 {
1087         struct dma_pte *first_pte = NULL, *last_pte = NULL;
1088
1089         pfn = max(start_pfn, pfn);
1090         pte = &pte[pfn_level_offset(pfn, level)];
1091
1092         do {
1093                 unsigned long level_pfn;
1094
1095                 if (!dma_pte_present(pte))
1096                         goto next;
1097
1098                 level_pfn = pfn & level_mask(level);
1099
1100                 /* If range covers entire pagetable, free it */
1101                 if (start_pfn <= level_pfn &&
1102                     last_pfn >= level_pfn + level_size(level) - 1) {
1103                         /* These suborbinate page tables are going away entirely. Don't
1104                            bother to clear them; we're just going to *free* them. */
1105                         if (level > 1 && !dma_pte_superpage(pte))
1106                                 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1107
1108                         dma_clear_pte(pte);
1109                         if (!first_pte)
1110                                 first_pte = pte;
1111                         last_pte = pte;
1112                 } else if (level > 1) {
1113                         /* Recurse down into a level that isn't *entirely* obsolete */
1114                         freelist = dma_pte_clear_level(domain, level - 1,
1115                                                        phys_to_virt(dma_pte_addr(pte)),
1116                                                        level_pfn, start_pfn, last_pfn,
1117                                                        freelist);
1118                 }
1119 next:
1120                 pfn += level_size(level);
1121         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1122
1123         if (first_pte)
1124                 domain_flush_cache(domain, first_pte,
1125                                    (void *)++last_pte - (void *)first_pte);
1126
1127         return freelist;
1128 }
1129
1130 /* We can't just free the pages because the IOMMU may still be walking
1131    the page tables, and may have cached the intermediate levels. The
1132    pages can only be freed after the IOTLB flush has been done. */
1133 static struct page *domain_unmap(struct dmar_domain *domain,
1134                                  unsigned long start_pfn,
1135                                  unsigned long last_pfn)
1136 {
1137         struct page *freelist;
1138
1139         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1140         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1141         BUG_ON(start_pfn > last_pfn);
1142
1143         /* we don't need lock here; nobody else touches the iova range */
1144         freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1145                                        domain->pgd, 0, start_pfn, last_pfn, NULL);
1146
1147         /* free pgd */
1148         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1149                 struct page *pgd_page = virt_to_page(domain->pgd);
1150                 pgd_page->freelist = freelist;
1151                 freelist = pgd_page;
1152
1153                 domain->pgd = NULL;
1154         }
1155
1156         return freelist;
1157 }
1158
1159 static void dma_free_pagelist(struct page *freelist)
1160 {
1161         struct page *pg;
1162
1163         while ((pg = freelist)) {
1164                 freelist = pg->freelist;
1165                 free_pgtable_page(page_address(pg));
1166         }
1167 }
1168
1169 static void iova_entry_free(unsigned long data)
1170 {
1171         struct page *freelist = (struct page *)data;
1172
1173         dma_free_pagelist(freelist);
1174 }
1175
1176 /* iommu handling */
1177 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1178 {
1179         struct root_entry *root;
1180         unsigned long flags;
1181
1182         root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1183         if (!root) {
1184                 pr_err("Allocating root entry for %s failed\n",
1185                         iommu->name);
1186                 return -ENOMEM;
1187         }
1188
1189         __iommu_flush_cache(iommu, root, ROOT_SIZE);
1190
1191         spin_lock_irqsave(&iommu->lock, flags);
1192         iommu->root_entry = root;
1193         spin_unlock_irqrestore(&iommu->lock, flags);
1194
1195         return 0;
1196 }
1197
1198 static void iommu_set_root_entry(struct intel_iommu *iommu)
1199 {
1200         u64 addr;
1201         u32 sts;
1202         unsigned long flag;
1203
1204         addr = virt_to_phys(iommu->root_entry);
1205         if (sm_supported(iommu))
1206                 addr |= DMA_RTADDR_SMT;
1207
1208         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1209         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1210
1211         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1212
1213         /* Make sure hardware complete it */
1214         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1215                       readl, (sts & DMA_GSTS_RTPS), sts);
1216
1217         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1218 }
1219
1220 void iommu_flush_write_buffer(struct intel_iommu *iommu)
1221 {
1222         u32 val;
1223         unsigned long flag;
1224
1225         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1226                 return;
1227
1228         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1229         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1230
1231         /* Make sure hardware complete it */
1232         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1233                       readl, (!(val & DMA_GSTS_WBFS)), val);
1234
1235         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1236 }
1237
1238 /* return value determine if we need a write buffer flush */
1239 static void __iommu_flush_context(struct intel_iommu *iommu,
1240                                   u16 did, u16 source_id, u8 function_mask,
1241                                   u64 type)
1242 {
1243         u64 val = 0;
1244         unsigned long flag;
1245
1246         switch (type) {
1247         case DMA_CCMD_GLOBAL_INVL:
1248                 val = DMA_CCMD_GLOBAL_INVL;
1249                 break;
1250         case DMA_CCMD_DOMAIN_INVL:
1251                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1252                 break;
1253         case DMA_CCMD_DEVICE_INVL:
1254                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1255                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1256                 break;
1257         default:
1258                 BUG();
1259         }
1260         val |= DMA_CCMD_ICC;
1261
1262         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1263         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1264
1265         /* Make sure hardware complete it */
1266         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1267                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1268
1269         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1270 }
1271
1272 /* return value determine if we need a write buffer flush */
1273 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1274                                 u64 addr, unsigned int size_order, u64 type)
1275 {
1276         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1277         u64 val = 0, val_iva = 0;
1278         unsigned long flag;
1279
1280         switch (type) {
1281         case DMA_TLB_GLOBAL_FLUSH:
1282                 /* global flush doesn't need set IVA_REG */
1283                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1284                 break;
1285         case DMA_TLB_DSI_FLUSH:
1286                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1287                 break;
1288         case DMA_TLB_PSI_FLUSH:
1289                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1290                 /* IH bit is passed in as part of address */
1291                 val_iva = size_order | addr;
1292                 break;
1293         default:
1294                 BUG();
1295         }
1296         /* Note: set drain read/write */
1297 #if 0
1298         /*
1299          * This is probably to be super secure.. Looks like we can
1300          * ignore it without any impact.
1301          */
1302         if (cap_read_drain(iommu->cap))
1303                 val |= DMA_TLB_READ_DRAIN;
1304 #endif
1305         if (cap_write_drain(iommu->cap))
1306                 val |= DMA_TLB_WRITE_DRAIN;
1307
1308         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1309         /* Note: Only uses first TLB reg currently */
1310         if (val_iva)
1311                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1312         dmar_writeq(iommu->reg + tlb_offset + 8, val);
1313
1314         /* Make sure hardware complete it */
1315         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1316                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1317
1318         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1319
1320         /* check IOTLB invalidation granularity */
1321         if (DMA_TLB_IAIG(val) == 0)
1322                 pr_err("Flush IOTLB failed\n");
1323         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1324                 pr_debug("TLB flush request %Lx, actual %Lx\n",
1325                         (unsigned long long)DMA_TLB_IIRG(type),
1326                         (unsigned long long)DMA_TLB_IAIG(val));
1327 }
1328
1329 static struct device_domain_info *
1330 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1331                          u8 bus, u8 devfn)
1332 {
1333         struct device_domain_info *info;
1334
1335         assert_spin_locked(&device_domain_lock);
1336
1337         if (!iommu->qi)
1338                 return NULL;
1339
1340         list_for_each_entry(info, &domain->devices, link)
1341                 if (info->iommu == iommu && info->bus == bus &&
1342                     info->devfn == devfn) {
1343                         if (info->ats_supported && info->dev)
1344                                 return info;
1345                         break;
1346                 }
1347
1348         return NULL;
1349 }
1350
1351 static void domain_update_iotlb(struct dmar_domain *domain)
1352 {
1353         struct device_domain_info *info;
1354         bool has_iotlb_device = false;
1355
1356         assert_spin_locked(&device_domain_lock);
1357
1358         list_for_each_entry(info, &domain->devices, link) {
1359                 struct pci_dev *pdev;
1360
1361                 if (!info->dev || !dev_is_pci(info->dev))
1362                         continue;
1363
1364                 pdev = to_pci_dev(info->dev);
1365                 if (pdev->ats_enabled) {
1366                         has_iotlb_device = true;
1367                         break;
1368                 }
1369         }
1370
1371         domain->has_iotlb_device = has_iotlb_device;
1372 }
1373
1374 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1375 {
1376         struct pci_dev *pdev;
1377
1378         assert_spin_locked(&device_domain_lock);
1379
1380         if (!info || !dev_is_pci(info->dev))
1381                 return;
1382
1383         pdev = to_pci_dev(info->dev);
1384         /* For IOMMU that supports device IOTLB throttling (DIT), we assign
1385          * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
1386          * queue depth at PF level. If DIT is not set, PFSID will be treated as
1387          * reserved, which should be set to 0.
1388          */
1389         if (!ecap_dit(info->iommu->ecap))
1390                 info->pfsid = 0;
1391         else {
1392                 struct pci_dev *pf_pdev;
1393
1394                 /* pdev will be returned if device is not a vf */
1395                 pf_pdev = pci_physfn(pdev);
1396                 info->pfsid = pci_dev_id(pf_pdev);
1397         }
1398
1399 #ifdef CONFIG_INTEL_IOMMU_SVM
1400         /* The PCIe spec, in its wisdom, declares that the behaviour of
1401            the device if you enable PASID support after ATS support is
1402            undefined. So always enable PASID support on devices which
1403            have it, even if we can't yet know if we're ever going to
1404            use it. */
1405         if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1406                 info->pasid_enabled = 1;
1407
1408         if (info->pri_supported &&
1409             (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1)  &&
1410             !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1411                 info->pri_enabled = 1;
1412 #endif
1413         if (!pdev->untrusted && info->ats_supported &&
1414             pci_ats_page_aligned(pdev) &&
1415             !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1416                 info->ats_enabled = 1;
1417                 domain_update_iotlb(info->domain);
1418                 info->ats_qdep = pci_ats_queue_depth(pdev);
1419         }
1420 }
1421
1422 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1423 {
1424         struct pci_dev *pdev;
1425
1426         assert_spin_locked(&device_domain_lock);
1427
1428         if (!dev_is_pci(info->dev))
1429                 return;
1430
1431         pdev = to_pci_dev(info->dev);
1432
1433         if (info->ats_enabled) {
1434                 pci_disable_ats(pdev);
1435                 info->ats_enabled = 0;
1436                 domain_update_iotlb(info->domain);
1437         }
1438 #ifdef CONFIG_INTEL_IOMMU_SVM
1439         if (info->pri_enabled) {
1440                 pci_disable_pri(pdev);
1441                 info->pri_enabled = 0;
1442         }
1443         if (info->pasid_enabled) {
1444                 pci_disable_pasid(pdev);
1445                 info->pasid_enabled = 0;
1446         }
1447 #endif
1448 }
1449
1450 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1451                                   u64 addr, unsigned mask)
1452 {
1453         u16 sid, qdep;
1454         unsigned long flags;
1455         struct device_domain_info *info;
1456
1457         if (!domain->has_iotlb_device)
1458                 return;
1459
1460         spin_lock_irqsave(&device_domain_lock, flags);
1461         list_for_each_entry(info, &domain->devices, link) {
1462                 if (!info->ats_enabled)
1463                         continue;
1464
1465                 sid = info->bus << 8 | info->devfn;
1466                 qdep = info->ats_qdep;
1467                 qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
1468                                 qdep, addr, mask);
1469         }
1470         spin_unlock_irqrestore(&device_domain_lock, flags);
1471 }
1472
1473 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1474                                   struct dmar_domain *domain,
1475                                   unsigned long pfn, unsigned int pages,
1476                                   int ih, int map)
1477 {
1478         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1479         uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1480         u16 did = domain->iommu_did[iommu->seq_id];
1481
1482         BUG_ON(pages == 0);
1483
1484         if (ih)
1485                 ih = 1 << 6;
1486         /*
1487          * Fallback to domain selective flush if no PSI support or the size is
1488          * too big.
1489          * PSI requires page size to be 2 ^ x, and the base address is naturally
1490          * aligned to the size
1491          */
1492         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1493                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1494                                                 DMA_TLB_DSI_FLUSH);
1495         else
1496                 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1497                                                 DMA_TLB_PSI_FLUSH);
1498
1499         /*
1500          * In caching mode, changes of pages from non-present to present require
1501          * flush. However, device IOTLB doesn't need to be flushed in this case.
1502          */
1503         if (!cap_caching_mode(iommu->cap) || !map)
1504                 iommu_flush_dev_iotlb(domain, addr, mask);
1505 }
1506
1507 /* Notification for newly created mappings */
1508 static inline void __mapping_notify_one(struct intel_iommu *iommu,
1509                                         struct dmar_domain *domain,
1510                                         unsigned long pfn, unsigned int pages)
1511 {
1512         /* It's a non-present to present mapping. Only flush if caching mode */
1513         if (cap_caching_mode(iommu->cap))
1514                 iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
1515         else
1516                 iommu_flush_write_buffer(iommu);
1517 }
1518
1519 static void iommu_flush_iova(struct iova_domain *iovad)
1520 {
1521         struct dmar_domain *domain;
1522         int idx;
1523
1524         domain = container_of(iovad, struct dmar_domain, iovad);
1525
1526         for_each_domain_iommu(idx, domain) {
1527                 struct intel_iommu *iommu = g_iommus[idx];
1528                 u16 did = domain->iommu_did[iommu->seq_id];
1529
1530                 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
1531
1532                 if (!cap_caching_mode(iommu->cap))
1533                         iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1534                                               0, MAX_AGAW_PFN_WIDTH);
1535         }
1536 }
1537
1538 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1539 {
1540         u32 pmen;
1541         unsigned long flags;
1542
1543         if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
1544                 return;
1545
1546         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1547         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1548         pmen &= ~DMA_PMEN_EPM;
1549         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1550
1551         /* wait for the protected region status bit to clear */
1552         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1553                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1554
1555         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1556 }
1557
1558 static void iommu_enable_translation(struct intel_iommu *iommu)
1559 {
1560         u32 sts;
1561         unsigned long flags;
1562
1563         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1564         iommu->gcmd |= DMA_GCMD_TE;
1565         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1566
1567         /* Make sure hardware complete it */
1568         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1569                       readl, (sts & DMA_GSTS_TES), sts);
1570
1571         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1572 }
1573
1574 static void iommu_disable_translation(struct intel_iommu *iommu)
1575 {
1576         u32 sts;
1577         unsigned long flag;
1578
1579         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1580         iommu->gcmd &= ~DMA_GCMD_TE;
1581         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1582
1583         /* Make sure hardware complete it */
1584         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1585                       readl, (!(sts & DMA_GSTS_TES)), sts);
1586
1587         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1588 }
1589
1590 static int iommu_init_domains(struct intel_iommu *iommu)
1591 {
1592         u32 ndomains, nlongs;
1593         size_t size;
1594
1595         ndomains = cap_ndoms(iommu->cap);
1596         pr_debug("%s: Number of Domains supported <%d>\n",
1597                  iommu->name, ndomains);
1598         nlongs = BITS_TO_LONGS(ndomains);
1599
1600         spin_lock_init(&iommu->lock);
1601
1602         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1603         if (!iommu->domain_ids) {
1604                 pr_err("%s: Allocating domain id array failed\n",
1605                        iommu->name);
1606                 return -ENOMEM;
1607         }
1608
1609         size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1610         iommu->domains = kzalloc(size, GFP_KERNEL);
1611
1612         if (iommu->domains) {
1613                 size = 256 * sizeof(struct dmar_domain *);
1614                 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1615         }
1616
1617         if (!iommu->domains || !iommu->domains[0]) {
1618                 pr_err("%s: Allocating domain array failed\n",
1619                        iommu->name);
1620                 kfree(iommu->domain_ids);
1621                 kfree(iommu->domains);
1622                 iommu->domain_ids = NULL;
1623                 iommu->domains    = NULL;
1624                 return -ENOMEM;
1625         }
1626
1627         /*
1628          * If Caching mode is set, then invalid translations are tagged
1629          * with domain-id 0, hence we need to pre-allocate it. We also
1630          * use domain-id 0 as a marker for non-allocated domain-id, so
1631          * make sure it is not used for a real domain.
1632          */
1633         set_bit(0, iommu->domain_ids);
1634
1635         /*
1636          * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
1637          * entry for first-level or pass-through translation modes should
1638          * be programmed with a domain id different from those used for
1639          * second-level or nested translation. We reserve a domain id for
1640          * this purpose.
1641          */
1642         if (sm_supported(iommu))
1643                 set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);
1644
1645         return 0;
1646 }
1647
1648 static void disable_dmar_iommu(struct intel_iommu *iommu)
1649 {
1650         struct device_domain_info *info, *tmp;
1651         unsigned long flags;
1652
1653         if (!iommu->domains || !iommu->domain_ids)
1654                 return;
1655
1656         spin_lock_irqsave(&device_domain_lock, flags);
1657         list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1658                 if (info->iommu != iommu)
1659                         continue;
1660
1661                 if (!info->dev || !info->domain)
1662                         continue;
1663
1664                 __dmar_remove_one_dev_info(info);
1665         }
1666         spin_unlock_irqrestore(&device_domain_lock, flags);
1667
1668         if (iommu->gcmd & DMA_GCMD_TE)
1669                 iommu_disable_translation(iommu);
1670 }
1671
1672 static void free_dmar_iommu(struct intel_iommu *iommu)
1673 {
1674         if ((iommu->domains) && (iommu->domain_ids)) {
1675                 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1676                 int i;
1677
1678                 for (i = 0; i < elems; i++)
1679                         kfree(iommu->domains[i]);
1680                 kfree(iommu->domains);
1681                 kfree(iommu->domain_ids);
1682                 iommu->domains = NULL;
1683                 iommu->domain_ids = NULL;
1684         }
1685
1686         g_iommus[iommu->seq_id] = NULL;
1687
1688         /* free context mapping */
1689         free_context_table(iommu);
1690
1691 #ifdef CONFIG_INTEL_IOMMU_SVM
1692         if (pasid_supported(iommu)) {
1693                 if (ecap_prs(iommu->ecap))
1694                         intel_svm_finish_prq(iommu);
1695         }
1696 #endif
1697 }
1698
1699 static struct dmar_domain *alloc_domain(int flags)
1700 {
1701         struct dmar_domain *domain;
1702
1703         domain = alloc_domain_mem();
1704         if (!domain)
1705                 return NULL;
1706
1707         memset(domain, 0, sizeof(*domain));
1708         domain->nid = NUMA_NO_NODE;
1709         domain->flags = flags;
1710         domain->has_iotlb_device = false;
1711         INIT_LIST_HEAD(&domain->devices);
1712
1713         return domain;
1714 }
1715
1716 /* Must be called with iommu->lock */
1717 static int domain_attach_iommu(struct dmar_domain *domain,
1718                                struct intel_iommu *iommu)
1719 {
1720         unsigned long ndomains;
1721         int num;
1722
1723         assert_spin_locked(&device_domain_lock);
1724         assert_spin_locked(&iommu->lock);
1725
1726         domain->iommu_refcnt[iommu->seq_id] += 1;
1727         domain->iommu_count += 1;
1728         if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1729                 ndomains = cap_ndoms(iommu->cap);
1730                 num      = find_first_zero_bit(iommu->domain_ids, ndomains);
1731
1732                 if (num >= ndomains) {
1733                         pr_err("%s: No free domain ids\n", iommu->name);
1734                         domain->iommu_refcnt[iommu->seq_id] -= 1;
1735                         domain->iommu_count -= 1;
1736                         return -ENOSPC;
1737                 }
1738
1739                 set_bit(num, iommu->domain_ids);
1740                 set_iommu_domain(iommu, num, domain);
1741
1742                 domain->iommu_did[iommu->seq_id] = num;
1743                 domain->nid                      = iommu->node;
1744
1745                 domain_update_iommu_cap(domain);
1746         }
1747
1748         return 0;
1749 }
1750
1751 static int domain_detach_iommu(struct dmar_domain *domain,
1752                                struct intel_iommu *iommu)
1753 {
1754         int num, count;
1755
1756         assert_spin_locked(&device_domain_lock);
1757         assert_spin_locked(&iommu->lock);
1758
1759         domain->iommu_refcnt[iommu->seq_id] -= 1;
1760         count = --domain->iommu_count;
1761         if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1762                 num = domain->iommu_did[iommu->seq_id];
1763                 clear_bit(num, iommu->domain_ids);
1764                 set_iommu_domain(iommu, num, NULL);
1765
1766                 domain_update_iommu_cap(domain);
1767                 domain->iommu_did[iommu->seq_id] = 0;
1768         }
1769
1770         return count;
1771 }
1772
1773 static struct iova_domain reserved_iova_list;
1774 static struct lock_class_key reserved_rbtree_key;
1775
1776 static int dmar_init_reserved_ranges(void)
1777 {
1778         struct pci_dev *pdev = NULL;
1779         struct iova *iova;
1780         int i;
1781
1782         init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1783
1784         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1785                 &reserved_rbtree_key);
1786
1787         /* IOAPIC ranges shouldn't be accessed by DMA */
1788         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1789                 IOVA_PFN(IOAPIC_RANGE_END));
1790         if (!iova) {
1791                 pr_err("Reserve IOAPIC range failed\n");
1792                 return -ENODEV;
1793         }
1794
1795         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1796         for_each_pci_dev(pdev) {
1797                 struct resource *r;
1798
1799                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1800                         r = &pdev->resource[i];
1801                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1802                                 continue;
1803                         iova = reserve_iova(&reserved_iova_list,
1804                                             IOVA_PFN(r->start),
1805                                             IOVA_PFN(r->end));
1806                         if (!iova) {
1807                                 pci_err(pdev, "Reserve iova for %pR failed\n", r);
1808                                 return -ENODEV;
1809                         }
1810                 }
1811         }
1812         return 0;
1813 }
1814
1815 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1816 {
1817         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1818 }
1819
1820 static inline int guestwidth_to_adjustwidth(int gaw)
1821 {
1822         int agaw;
1823         int r = (gaw - 12) % 9;
1824
1825         if (r == 0)
1826                 agaw = gaw;
1827         else
1828                 agaw = gaw + 9 - r;
1829         if (agaw > 64)
1830                 agaw = 64;
1831         return agaw;
1832 }
1833
1834 static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1835                        int guest_width)
1836 {
1837         int adjust_width, agaw;
1838         unsigned long sagaw;
1839         int err;
1840
1841         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
1842
1843         err = init_iova_flush_queue(&domain->iovad,
1844                                     iommu_flush_iova, iova_entry_free);
1845         if (err)
1846                 return err;
1847
1848         domain_reserve_special_ranges(domain);
1849
1850         /* calculate AGAW */
1851         if (guest_width > cap_mgaw(iommu->cap))
1852                 guest_width = cap_mgaw(iommu->cap);
1853         domain->gaw = guest_width;
1854         adjust_width = guestwidth_to_adjustwidth(guest_width);
1855         agaw = width_to_agaw(adjust_width);
1856         sagaw = cap_sagaw(iommu->cap);
1857         if (!test_bit(agaw, &sagaw)) {
1858                 /* hardware doesn't support it, choose a bigger one */
1859                 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1860                 agaw = find_next_bit(&sagaw, 5, agaw);
1861                 if (agaw >= 5)
1862                         return -ENODEV;
1863         }
1864         domain->agaw = agaw;
1865
1866         if (ecap_coherent(iommu->ecap))
1867                 domain->iommu_coherency = 1;
1868         else
1869                 domain->iommu_coherency = 0;
1870
1871         if (ecap_sc_support(iommu->ecap))
1872                 domain->iommu_snooping = 1;
1873         else
1874                 domain->iommu_snooping = 0;
1875
1876         if (intel_iommu_superpage)
1877                 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1878         else
1879                 domain->iommu_superpage = 0;
1880
1881         domain->nid = iommu->node;
1882
1883         /* always allocate the top pgd */
1884         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1885         if (!domain->pgd)
1886                 return -ENOMEM;
1887         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1888         return 0;
1889 }
1890
1891 static void domain_exit(struct dmar_domain *domain)
1892 {
1893
1894         /* Remove associated devices and clear attached or cached domains */
1895         domain_remove_dev_info(domain);
1896
1897         /* destroy iovas */
1898         put_iova_domain(&domain->iovad);
1899
1900         if (domain->pgd) {
1901                 struct page *freelist;
1902
1903                 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1904                 dma_free_pagelist(freelist);
1905         }
1906
1907         free_domain_mem(domain);
1908 }
1909
1910 /*
1911  * Get the PASID directory size for scalable mode context entry.
1912  * Value of X in the PDTS field of a scalable mode context entry
1913  * indicates PASID directory with 2^(X + 7) entries.
1914  */
1915 static inline unsigned long context_get_sm_pds(struct pasid_table *table)
1916 {
1917         int pds, max_pde;
1918
1919         max_pde = table->max_pasid >> PASID_PDE_SHIFT;
1920         pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
1921         if (pds < 7)
1922                 return 0;
1923
1924         return pds - 7;
1925 }
1926
1927 /*
1928  * Set the RID_PASID field of a scalable mode context entry. The
1929  * IOMMU hardware will use the PASID value set in this field for
1930  * DMA translations of DMA requests without PASID.
1931  */
1932 static inline void
1933 context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
1934 {
1935         context->hi |= pasid & ((1 << 20) - 1);
1936         context->hi |= (1 << 20);
1937 }
1938
1939 /*
1940  * Set the DTE(Device-TLB Enable) field of a scalable mode context
1941  * entry.
1942  */
1943 static inline void context_set_sm_dte(struct context_entry *context)
1944 {
1945         context->lo |= (1 << 2);
1946 }
1947
1948 /*
1949  * Set the PRE(Page Request Enable) field of a scalable mode context
1950  * entry.
1951  */
1952 static inline void context_set_sm_pre(struct context_entry *context)
1953 {
1954         context->lo |= (1 << 4);
1955 }
1956
1957 /* Convert value to context PASID directory size field coding. */
1958 #define context_pdts(pds)       (((pds) & 0x7) << 9)
1959
1960 static int domain_context_mapping_one(struct dmar_domain *domain,
1961                                       struct intel_iommu *iommu,
1962                                       struct pasid_table *table,
1963                                       u8 bus, u8 devfn)
1964 {
1965         u16 did = domain->iommu_did[iommu->seq_id];
1966         int translation = CONTEXT_TT_MULTI_LEVEL;
1967         struct device_domain_info *info = NULL;
1968         struct context_entry *context;
1969         unsigned long flags;
1970         int ret;
1971
1972         WARN_ON(did == 0);
1973
1974         if (hw_pass_through && domain_type_is_si(domain))
1975                 translation = CONTEXT_TT_PASS_THROUGH;
1976
1977         pr_debug("Set context mapping for %02x:%02x.%d\n",
1978                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1979
1980         BUG_ON(!domain->pgd);
1981
1982         spin_lock_irqsave(&device_domain_lock, flags);
1983         spin_lock(&iommu->lock);
1984
1985         ret = -ENOMEM;
1986         context = iommu_context_addr(iommu, bus, devfn, 1);
1987         if (!context)
1988                 goto out_unlock;
1989
1990         ret = 0;
1991         if (context_present(context))
1992                 goto out_unlock;
1993
1994         /*
1995          * For kdump cases, old valid entries may be cached due to the
1996          * in-flight DMA and copied pgtable, but there is no unmapping
1997          * behaviour for them, thus we need an explicit cache flush for
1998          * the newly-mapped device. For kdump, at this point, the device
1999          * is supposed to finish reset at its driver probe stage, so no
2000          * in-flight DMA will exist, and we don't need to worry anymore
2001          * hereafter.
2002          */
2003         if (context_copied(context)) {
2004                 u16 did_old = context_domain_id(context);
2005
2006                 if (did_old < cap_ndoms(iommu->cap)) {
2007                         iommu->flush.flush_context(iommu, did_old,
2008                                                    (((u16)bus) << 8) | devfn,
2009                                                    DMA_CCMD_MASK_NOBIT,
2010                                                    DMA_CCMD_DEVICE_INVL);
2011                         iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
2012                                                  DMA_TLB_DSI_FLUSH);
2013                 }
2014         }
2015
2016         context_clear_entry(context);
2017
2018         if (sm_supported(iommu)) {
2019                 unsigned long pds;
2020
2021                 WARN_ON(!table);
2022
2023                 /* Setup the PASID DIR pointer: */
2024                 pds = context_get_sm_pds(table);
2025                 context->lo = (u64)virt_to_phys(table->table) |
2026                                 context_pdts(pds);
2027
2028                 /* Setup the RID_PASID field: */
2029                 context_set_sm_rid2pasid(context, PASID_RID2PASID);
2030
2031                 /*
2032                  * Setup the Device-TLB enable bit and Page request
2033                  * Enable bit:
2034                  */
2035                 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2036                 if (info && info->ats_supported)
2037                         context_set_sm_dte(context);
2038                 if (info && info->pri_supported)
2039                         context_set_sm_pre(context);
2040         } else {
2041                 struct dma_pte *pgd = domain->pgd;
2042                 int agaw;
2043
2044                 context_set_domain_id(context, did);
2045
2046                 if (translation != CONTEXT_TT_PASS_THROUGH) {
2047                         /*
2048                          * Skip top levels of page tables for iommu which has
2049                          * less agaw than default. Unnecessary for PT mode.
2050                          */
2051                         for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
2052                                 ret = -ENOMEM;
2053                                 pgd = phys_to_virt(dma_pte_addr(pgd));
2054                                 if (!dma_pte_present(pgd))
2055                                         goto out_unlock;
2056                         }
2057
2058                         info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2059                         if (info && info->ats_supported)
2060                                 translation = CONTEXT_TT_DEV_IOTLB;
2061                         else
2062                                 translation = CONTEXT_TT_MULTI_LEVEL;
2063
2064                         context_set_address_root(context, virt_to_phys(pgd));
2065                         context_set_address_width(context, agaw);
2066                 } else {
2067                         /*
2068                          * In pass through mode, AW must be programmed to
2069                          * indicate the largest AGAW value supported by
2070                          * hardware. And ASR is ignored by hardware.
2071                          */
2072                         context_set_address_width(context, iommu->msagaw);
2073                 }
2074
2075                 context_set_translation_type(context, translation);
2076         }
2077
2078         context_set_fault_enable(context);
2079         context_set_present(context);
2080         domain_flush_cache(domain, context, sizeof(*context));
2081
2082         /*
2083          * It's a non-present to present mapping. If hardware doesn't cache
2084          * non-present entry we only need to flush the write-buffer. If the
2085          * _does_ cache non-present entries, then it does so in the special
2086          * domain #0, which we have to flush:
2087          */
2088         if (cap_caching_mode(iommu->cap)) {
2089                 iommu->flush.flush_context(iommu, 0,
2090                                            (((u16)bus) << 8) | devfn,
2091                                            DMA_CCMD_MASK_NOBIT,
2092                                            DMA_CCMD_DEVICE_INVL);
2093                 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2094         } else {
2095                 iommu_flush_write_buffer(iommu);
2096         }
2097         iommu_enable_dev_iotlb(info);
2098
2099         ret = 0;
2100
2101 out_unlock:
2102         spin_unlock(&iommu->lock);
2103         spin_unlock_irqrestore(&device_domain_lock, flags);
2104
2105         return ret;
2106 }
2107
2108 static int
2109 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2110 {
2111         struct pasid_table *table;
2112         struct intel_iommu *iommu;
2113         u8 bus, devfn;
2114
2115         iommu = device_to_iommu(dev, &bus, &devfn);
2116         if (!iommu)
2117                 return -ENODEV;
2118
2119         table = intel_pasid_get_table(dev);
2120         return domain_context_mapping_one(domain, iommu, table, bus, devfn);
2121 }
2122
2123 static int domain_context_mapped_cb(struct pci_dev *pdev,
2124                                     u16 alias, void *opaque)
2125 {
2126         struct intel_iommu *iommu = opaque;
2127
2128         return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2129 }
2130
2131 static int domain_context_mapped(struct device *dev)
2132 {
2133         struct intel_iommu *iommu;
2134         u8 bus, devfn;
2135
2136         iommu = device_to_iommu(dev, &bus, &devfn);
2137         if (!iommu)
2138                 return -ENODEV;
2139
2140         if (!dev_is_pci(dev))
2141                 return device_context_mapped(iommu, bus, devfn);
2142
2143         return !pci_for_each_dma_alias(to_pci_dev(dev),
2144                                        domain_context_mapped_cb, iommu);
2145 }
2146
2147 /* Returns a number of VTD pages, but aligned to MM page size */
2148 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2149                                             size_t size)
2150 {
2151         host_addr &= ~PAGE_MASK;
2152         return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2153 }
2154
2155 /* Return largest possible superpage level for a given mapping */
2156 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2157                                           unsigned long iov_pfn,
2158                                           unsigned long phy_pfn,
2159                                           unsigned long pages)
2160 {
2161         int support, level = 1;
2162         unsigned long pfnmerge;
2163
2164         support = domain->iommu_superpage;
2165
2166         /* To use a large page, the virtual *and* physical addresses
2167            must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2168            of them will mean we have to use smaller pages. So just
2169            merge them and check both at once. */
2170         pfnmerge = iov_pfn | phy_pfn;
2171
2172         while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2173                 pages >>= VTD_STRIDE_SHIFT;
2174                 if (!pages)
2175                         break;
2176                 pfnmerge >>= VTD_STRIDE_SHIFT;
2177                 level++;
2178                 support--;
2179         }
2180         return level;
2181 }
2182
2183 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2184                             struct scatterlist *sg, unsigned long phys_pfn,
2185                             unsigned long nr_pages, int prot)
2186 {
2187         struct dma_pte *first_pte = NULL, *pte = NULL;
2188         phys_addr_t uninitialized_var(pteval);
2189         unsigned long sg_res = 0;
2190         unsigned int largepage_lvl = 0;
2191         unsigned long lvl_pages = 0;
2192
2193         BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2194
2195         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2196                 return -EINVAL;
2197
2198         prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2199
2200         if (!sg) {
2201                 sg_res = nr_pages;
2202                 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2203         }
2204
2205         while (nr_pages > 0) {
2206                 uint64_t tmp;
2207
2208                 if (!sg_res) {
2209                         unsigned int pgoff = sg->offset & ~PAGE_MASK;
2210
2211                         sg_res = aligned_nrpages(sg->offset, sg->length);
2212                         sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2213                         sg->dma_length = sg->length;
2214                         pteval = (sg_phys(sg) - pgoff) | prot;
2215                         phys_pfn = pteval >> VTD_PAGE_SHIFT;
2216                 }
2217
2218                 if (!pte) {
2219                         largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2220
2221                         first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2222                         if (!pte)
2223                                 return -ENOMEM;
2224                         /* It is large page*/
2225                         if (largepage_lvl > 1) {
2226                                 unsigned long nr_superpages, end_pfn;
2227
2228                                 pteval |= DMA_PTE_LARGE_PAGE;
2229                                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2230
2231                                 nr_superpages = sg_res / lvl_pages;
2232                                 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2233
2234                                 /*
2235                                  * Ensure that old small page tables are
2236                                  * removed to make room for superpage(s).
2237                                  * We're adding new large pages, so make sure
2238                                  * we don't remove their parent tables.
2239                                  */
2240                                 dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
2241                                                        largepage_lvl + 1);
2242                         } else {
2243                                 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2244                         }
2245
2246                 }
2247                 /* We don't need lock here, nobody else
2248                  * touches the iova range
2249                  */
2250                 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2251                 if (tmp) {
2252                         static int dumps = 5;
2253                         pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2254                                 iov_pfn, tmp, (unsigned long long)pteval);
2255                         if (dumps) {
2256                                 dumps--;
2257                                 debug_dma_dump_mappings(NULL);
2258                         }
2259                         WARN_ON(1);
2260                 }
2261
2262                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2263
2264                 BUG_ON(nr_pages < lvl_pages);
2265                 BUG_ON(sg_res < lvl_pages);
2266
2267                 nr_pages -= lvl_pages;
2268                 iov_pfn += lvl_pages;
2269                 phys_pfn += lvl_pages;
2270                 pteval += lvl_pages * VTD_PAGE_SIZE;
2271                 sg_res -= lvl_pages;
2272
2273                 /* If the next PTE would be the first in a new page, then we
2274                    need to flush the cache on the entries we've just written.
2275                    And then we'll need to recalculate 'pte', so clear it and
2276                    let it get set again in the if (!pte) block above.
2277
2278                    If we're done (!nr_pages) we need to flush the cache too.
2279
2280                    Also if we've been setting superpages, we may need to
2281                    recalculate 'pte' and switch back to smaller pages for the
2282                    end of the mapping, if the trailing size is not enough to
2283                    use another superpage (i.e. sg_res < lvl_pages). */
2284                 pte++;
2285                 if (!nr_pages || first_pte_in_page(pte) ||
2286                     (largepage_lvl > 1 && sg_res < lvl_pages)) {
2287                         domain_flush_cache(domain, first_pte,
2288                                            (void *)pte - (void *)first_pte);
2289                         pte = NULL;
2290                 }
2291
2292                 if (!sg_res && nr_pages)
2293                         sg = sg_next(sg);
2294         }
2295         return 0;
2296 }
2297
2298 static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2299                           struct scatterlist *sg, unsigned long phys_pfn,
2300                           unsigned long nr_pages, int prot)
2301 {
2302         int iommu_id, ret;
2303         struct intel_iommu *iommu;
2304
2305         /* Do the real mapping first */
2306         ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
2307         if (ret)
2308                 return ret;
2309
2310         for_each_domain_iommu(iommu_id, domain) {
2311                 iommu = g_iommus[iommu_id];
2312                 __mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
2313         }
2314
2315         return 0;
2316 }
2317
2318 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2319                                     struct scatterlist *sg, unsigned long nr_pages,
2320                                     int prot)
2321 {
2322         return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2323 }
2324
2325 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2326                                      unsigned long phys_pfn, unsigned long nr_pages,
2327                                      int prot)
2328 {
2329         return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2330 }
2331
2332 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2333 {
2334         unsigned long flags;
2335         struct context_entry *context;
2336         u16 did_old;
2337
2338         if (!iommu)
2339                 return;
2340
2341         spin_lock_irqsave(&iommu->lock, flags);
2342         context = iommu_context_addr(iommu, bus, devfn, 0);
2343         if (!context) {
2344                 spin_unlock_irqrestore(&iommu->lock, flags);
2345                 return;
2346         }
2347         did_old = context_domain_id(context);
2348         context_clear_entry(context);
2349         __iommu_flush_cache(iommu, context, sizeof(*context));
2350         spin_unlock_irqrestore(&iommu->lock, flags);
2351         iommu->flush.flush_context(iommu,
2352                                    did_old,
2353                                    (((u16)bus) << 8) | devfn,
2354                                    DMA_CCMD_MASK_NOBIT,
2355                                    DMA_CCMD_DEVICE_INVL);
2356         iommu->flush.flush_iotlb(iommu,
2357                                  did_old,
2358                                  0,
2359                                  0,
2360                                  DMA_TLB_DSI_FLUSH);
2361 }
2362
2363 static inline void unlink_domain_info(struct device_domain_info *info)
2364 {
2365         assert_spin_locked(&device_domain_lock);
2366         list_del(&info->link);
2367         list_del(&info->global);
2368         if (info->dev)
2369                 info->dev->archdata.iommu = NULL;
2370 }
2371
2372 static void domain_remove_dev_info(struct dmar_domain *domain)
2373 {
2374         struct device_domain_info *info, *tmp;
2375         unsigned long flags;
2376
2377         spin_lock_irqsave(&device_domain_lock, flags);
2378         list_for_each_entry_safe(info, tmp, &domain->devices, link)
2379                 __dmar_remove_one_dev_info(info);
2380         spin_unlock_irqrestore(&device_domain_lock, flags);
2381 }
2382
2383 /*
2384  * find_domain
2385  * Note: we use struct device->archdata.iommu stores the info
2386  */
2387 static struct dmar_domain *find_domain(struct device *dev)
2388 {
2389         struct device_domain_info *info;
2390
2391         if (unlikely(dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO)) {
2392                 struct iommu_domain *domain;
2393
2394                 dev->archdata.iommu = NULL;
2395                 domain = iommu_get_domain_for_dev(dev);
2396                 if (domain)
2397                         intel_iommu_attach_device(domain, dev);
2398         }
2399
2400         /* No lock here, assumes no domain exit in normal case */
2401         info = dev->archdata.iommu;
2402
2403         if (likely(info))
2404                 return info->domain;
2405         return NULL;
2406 }
2407
2408 static inline struct device_domain_info *
2409 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2410 {
2411         struct device_domain_info *info;
2412
2413         list_for_each_entry(info, &device_domain_list, global)
2414                 if (info->iommu->segment == segment && info->bus == bus &&
2415                     info->devfn == devfn)
2416                         return info;
2417
2418         return NULL;
2419 }
2420
2421 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2422                                                     int bus, int devfn,
2423                                                     struct device *dev,
2424                                                     struct dmar_domain *domain)
2425 {
2426         struct dmar_domain *found = NULL;
2427         struct device_domain_info *info;
2428         unsigned long flags;
2429         int ret;
2430
2431         info = alloc_devinfo_mem();
2432         if (!info)
2433                 return NULL;
2434
2435         info->bus = bus;
2436         info->devfn = devfn;
2437         info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2438         info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2439         info->ats_qdep = 0;
2440         info->dev = dev;
2441         info->domain = domain;
2442         info->iommu = iommu;
2443         info->pasid_table = NULL;
2444         info->auxd_enabled = 0;
2445         INIT_LIST_HEAD(&info->auxiliary_domains);
2446
2447         if (dev && dev_is_pci(dev)) {
2448                 struct pci_dev *pdev = to_pci_dev(info->dev);
2449
2450                 if (!pdev->untrusted &&
2451                     !pci_ats_disabled() &&
2452                     ecap_dev_iotlb_support(iommu->ecap) &&
2453                     pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2454                     dmar_find_matched_atsr_unit(pdev))
2455                         info->ats_supported = 1;
2456
2457                 if (sm_supported(iommu)) {
2458                         if (pasid_supported(iommu)) {
2459                                 int features = pci_pasid_features(pdev);
2460                                 if (features >= 0)
2461                                         info->pasid_supported = features | 1;
2462                         }
2463
2464                         if (info->ats_supported && ecap_prs(iommu->ecap) &&
2465                             pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2466                                 info->pri_supported = 1;
2467                 }
2468         }
2469
2470         spin_lock_irqsave(&device_domain_lock, flags);
2471         if (dev)
2472                 found = find_domain(dev);
2473
2474         if (!found) {
2475                 struct device_domain_info *info2;
2476                 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2477                 if (info2) {
2478                         found      = info2->domain;
2479                         info2->dev = dev;
2480                 }
2481         }
2482
2483         if (found) {
2484                 spin_unlock_irqrestore(&device_domain_lock, flags);
2485                 free_devinfo_mem(info);
2486                 /* Caller must free the original domain */
2487                 return found;
2488         }
2489
2490         spin_lock(&iommu->lock);
2491         ret = domain_attach_iommu(domain, iommu);
2492         spin_unlock(&iommu->lock);
2493
2494         if (ret) {
2495                 spin_unlock_irqrestore(&device_domain_lock, flags);
2496                 free_devinfo_mem(info);
2497                 return NULL;
2498         }
2499
2500         list_add(&info->link, &domain->devices);
2501         list_add(&info->global, &device_domain_list);
2502         if (dev)
2503                 dev->archdata.iommu = info;
2504         spin_unlock_irqrestore(&device_domain_lock, flags);
2505
2506         /* PASID table is mandatory for a PCI device in scalable mode. */
2507         if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
2508                 ret = intel_pasid_alloc_table(dev);
2509                 if (ret) {
2510                         dev_err(dev, "PASID table allocation failed\n");
2511                         dmar_remove_one_dev_info(dev);
2512                         return NULL;
2513                 }
2514
2515                 /* Setup the PASID entry for requests without PASID: */
2516                 spin_lock(&iommu->lock);
2517                 if (hw_pass_through && domain_type_is_si(domain))
2518                         ret = intel_pasid_setup_pass_through(iommu, domain,
2519                                         dev, PASID_RID2PASID);
2520                 else
2521                         ret = intel_pasid_setup_second_level(iommu, domain,
2522                                         dev, PASID_RID2PASID);
2523                 spin_unlock(&iommu->lock);
2524                 if (ret) {
2525                         dev_err(dev, "Setup RID2PASID failed\n");
2526                         dmar_remove_one_dev_info(dev);
2527                         return NULL;
2528                 }
2529         }
2530
2531         if (dev && domain_context_mapping(domain, dev)) {
2532                 dev_err(dev, "Domain context map failed\n");
2533                 dmar_remove_one_dev_info(dev);
2534                 return NULL;
2535         }
2536
2537         return domain;
2538 }
2539
2540 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2541 {
2542         *(u16 *)opaque = alias;
2543         return 0;
2544 }
2545
2546 static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2547 {
2548         struct device_domain_info *info;
2549         struct dmar_domain *domain = NULL;
2550         struct intel_iommu *iommu;
2551         u16 dma_alias;
2552         unsigned long flags;
2553         u8 bus, devfn;
2554
2555         iommu = device_to_iommu(dev, &bus, &devfn);
2556         if (!iommu)
2557                 return NULL;
2558
2559         if (dev_is_pci(dev)) {
2560                 struct pci_dev *pdev = to_pci_dev(dev);
2561
2562                 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2563
2564                 spin_lock_irqsave(&device_domain_lock, flags);
2565                 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2566                                                       PCI_BUS_NUM(dma_alias),
2567                                                       dma_alias & 0xff);
2568                 if (info) {
2569                         iommu = info->iommu;
2570                         domain = info->domain;
2571                 }
2572                 spin_unlock_irqrestore(&device_domain_lock, flags);
2573
2574                 /* DMA alias already has a domain, use it */
2575                 if (info)
2576                         goto out;
2577         }
2578
2579         /* Allocate and initialize new domain for the device */
2580         domain = alloc_domain(0);
2581         if (!domain)
2582                 return NULL;
2583         if (domain_init(domain, iommu, gaw)) {
2584                 domain_exit(domain);
2585                 return NULL;
2586         }
2587
2588 out:
2589         return domain;
2590 }
2591
2592 static struct dmar_domain *set_domain_for_dev(struct device *dev,
2593                                               struct dmar_domain *domain)
2594 {
2595         struct intel_iommu *iommu;
2596         struct dmar_domain *tmp;
2597         u16 req_id, dma_alias;
2598         u8 bus, devfn;
2599
2600         iommu = device_to_iommu(dev, &bus, &devfn);
2601         if (!iommu)
2602                 return NULL;
2603
2604         req_id = ((u16)bus << 8) | devfn;
2605
2606         if (dev_is_pci(dev)) {
2607                 struct pci_dev *pdev = to_pci_dev(dev);
2608
2609                 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2610
2611                 /* register PCI DMA alias device */
2612                 if (req_id != dma_alias) {
2613                         tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2614                                         dma_alias & 0xff, NULL, domain);
2615
2616                         if (!tmp || tmp != domain)
2617                                 return tmp;
2618                 }
2619         }
2620
2621         tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2622         if (!tmp || tmp != domain)
2623                 return tmp;
2624
2625         return domain;
2626 }
2627
2628 static int iommu_domain_identity_map(struct dmar_domain *domain,
2629                                      unsigned long long start,
2630                                      unsigned long long end)
2631 {
2632         unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2633         unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2634
2635         if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2636                           dma_to_mm_pfn(last_vpfn))) {
2637                 pr_err("Reserving iova failed\n");
2638                 return -ENOMEM;
2639         }
2640
2641         pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2642         /*
2643          * RMRR range might have overlap with physical memory range,
2644          * clear it first
2645          */
2646         dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2647
2648         return __domain_mapping(domain, first_vpfn, NULL,
2649                                 first_vpfn, last_vpfn - first_vpfn + 1,
2650                                 DMA_PTE_READ|DMA_PTE_WRITE);
2651 }
2652
2653 static int domain_prepare_identity_map(struct device *dev,
2654                                        struct dmar_domain *domain,
2655                                        unsigned long long start,
2656                                        unsigned long long end)
2657 {
2658         /* For _hardware_ passthrough, don't bother. But for software
2659            passthrough, we do it anyway -- it may indicate a memory
2660            range which is reserved in E820, so which didn't get set
2661            up to start with in si_domain */
2662         if (domain == si_domain && hw_pass_through) {
2663                 dev_warn(dev, "Ignoring identity map for HW passthrough [0x%Lx - 0x%Lx]\n",
2664                          start, end);
2665                 return 0;
2666         }
2667
2668         dev_info(dev, "Setting identity map [0x%Lx - 0x%Lx]\n", start, end);
2669
2670         if (end < start) {
2671                 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2672                         "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2673                         dmi_get_system_info(DMI_BIOS_VENDOR),
2674                         dmi_get_system_info(DMI_BIOS_VERSION),
2675                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2676                 return -EIO;
2677         }
2678
2679         if (end >> agaw_to_width(domain->agaw)) {
2680                 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2681                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2682                      agaw_to_width(domain->agaw),
2683                      dmi_get_system_info(DMI_BIOS_VENDOR),
2684                      dmi_get_system_info(DMI_BIOS_VERSION),
2685                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2686                 return -EIO;
2687         }
2688
2689         return iommu_domain_identity_map(domain, start, end);
2690 }
2691
2692 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2693
2694 static int __init si_domain_init(int hw)
2695 {
2696         struct dmar_rmrr_unit *rmrr;
2697         struct device *dev;
2698         int i, nid, ret;
2699
2700         si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2701         if (!si_domain)
2702                 return -EFAULT;
2703
2704         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2705                 domain_exit(si_domain);
2706                 return -EFAULT;
2707         }
2708
2709         if (hw)
2710                 return 0;
2711
2712         for_each_online_node(nid) {
2713                 unsigned long start_pfn, end_pfn;
2714                 int i;
2715
2716                 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2717                         ret = iommu_domain_identity_map(si_domain,
2718                                         PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2719                         if (ret)
2720                                 return ret;
2721                 }
2722         }
2723
2724         /*
2725          * Normally we use DMA domains for devices which have RMRRs. But we
2726          * loose this requirement for graphic and usb devices. Identity map
2727          * the RMRRs for graphic and USB devices so that they could use the
2728          * si_domain.
2729          */
2730         for_each_rmrr_units(rmrr) {
2731                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2732                                           i, dev) {
2733                         unsigned long long start = rmrr->base_address;
2734                         unsigned long long end = rmrr->end_address;
2735
2736                         if (device_is_rmrr_locked(dev))
2737                                 continue;
2738
2739                         if (WARN_ON(end < start ||
2740                                     end >> agaw_to_width(si_domain->agaw)))
2741                                 continue;
2742
2743                         ret = iommu_domain_identity_map(si_domain, start, end);
2744                         if (ret)
2745                                 return ret;
2746                 }
2747         }
2748
2749         return 0;
2750 }
2751
2752 static int identity_mapping(struct device *dev)
2753 {
2754         struct device_domain_info *info;
2755
2756         info = dev->archdata.iommu;
2757         if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2758                 return (info->domain == si_domain);
2759
2760         return 0;
2761 }
2762
2763 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2764 {
2765         struct dmar_domain *ndomain;
2766         struct intel_iommu *iommu;
2767         u8 bus, devfn;
2768
2769         iommu = device_to_iommu(dev, &bus, &devfn);
2770         if (!iommu)
2771                 return -ENODEV;
2772
2773         ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2774         if (ndomain != domain)
2775                 return -EBUSY;
2776
2777         return 0;
2778 }
2779
2780 static bool device_has_rmrr(struct device *dev)
2781 {
2782         struct dmar_rmrr_unit *rmrr;
2783         struct device *tmp;
2784         int i;
2785
2786         rcu_read_lock();
2787         for_each_rmrr_units(rmrr) {
2788                 /*
2789                  * Return TRUE if this RMRR contains the device that
2790                  * is passed in.
2791                  */
2792                 for_each_active_dev_scope(rmrr->devices,
2793                                           rmrr->devices_cnt, i, tmp)
2794                         if (tmp == dev ||
2795                             is_downstream_to_pci_bridge(dev, tmp)) {
2796                                 rcu_read_unlock();
2797                                 return true;
2798                         }
2799         }
2800         rcu_read_unlock();
2801         return false;
2802 }
2803
2804 /**
2805  * device_rmrr_is_relaxable - Test whether the RMRR of this device
2806  * is relaxable (ie. is allowed to be not enforced under some conditions)
2807  * @dev: device handle
2808  *
2809  * We assume that PCI USB devices with RMRRs have them largely
2810  * for historical reasons and that the RMRR space is not actively used post
2811  * boot.  This exclusion may change if vendors begin to abuse it.
2812  *
2813  * The same exception is made for graphics devices, with the requirement that
2814  * any use of the RMRR regions will be torn down before assigning the device
2815  * to a guest.
2816  *
2817  * Return: true if the RMRR is relaxable, false otherwise
2818  */
2819 static bool device_rmrr_is_relaxable(struct device *dev)
2820 {
2821         struct pci_dev *pdev;
2822
2823         if (!dev_is_pci(dev))
2824                 return false;
2825
2826         pdev = to_pci_dev(dev);
2827         if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2828                 return true;
2829         else
2830                 return false;
2831 }
2832
2833 /*
2834  * There are a couple cases where we need to restrict the functionality of
2835  * devices associated with RMRRs.  The first is when evaluating a device for
2836  * identity mapping because problems exist when devices are moved in and out
2837  * of domains and their respective RMRR information is lost.  This means that
2838  * a device with associated RMRRs will never be in a "passthrough" domain.
2839  * The second is use of the device through the IOMMU API.  This interface
2840  * expects to have full control of the IOVA space for the device.  We cannot
2841  * satisfy both the requirement that RMRR access is maintained and have an
2842  * unencumbered IOVA space.  We also have no ability to quiesce the device's
2843  * use of the RMRR space or even inform the IOMMU API user of the restriction.
2844  * We therefore prevent devices associated with an RMRR from participating in
2845  * the IOMMU API, which eliminates them from device assignment.
2846  *
2847  * In both cases, devices which have relaxable RMRRs are not concerned by this
2848  * restriction. See device_rmrr_is_relaxable comment.
2849  */
2850 static bool device_is_rmrr_locked(struct device *dev)
2851 {
2852         if (!device_has_rmrr(dev))
2853                 return false;
2854
2855         if (device_rmrr_is_relaxable(dev))
2856                 return false;
2857
2858         return true;
2859 }
2860
2861 /*
2862  * Return the required default domain type for a specific device.
2863  *
2864  * @dev: the device in query
2865  * @startup: true if this is during early boot
2866  *
2867  * Returns:
2868  *  - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
2869  *  - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
2870  *  - 0: both identity and dynamic domains work for this device
2871  */
2872 static int device_def_domain_type(struct device *dev)
2873 {
2874         if (dev_is_pci(dev)) {
2875                 struct pci_dev *pdev = to_pci_dev(dev);
2876
2877                 if (device_is_rmrr_locked(dev))
2878                         return IOMMU_DOMAIN_DMA;
2879
2880                 /*
2881                  * Prevent any device marked as untrusted from getting
2882                  * placed into the statically identity mapping domain.
2883                  */
2884                 if (pdev->untrusted)
2885                         return IOMMU_DOMAIN_DMA;
2886
2887                 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2888                         return IOMMU_DOMAIN_IDENTITY;
2889
2890                 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2891                         return IOMMU_DOMAIN_IDENTITY;
2892
2893                 /*
2894                  * We want to start off with all devices in the 1:1 domain, and
2895                  * take them out later if we find they can't access all of memory.
2896                  *
2897                  * However, we can't do this for PCI devices behind bridges,
2898                  * because all PCI devices behind the same bridge will end up
2899                  * with the same source-id on their transactions.
2900                  *
2901                  * Practically speaking, we can't change things around for these
2902                  * devices at run-time, because we can't be sure there'll be no
2903                  * DMA transactions in flight for any of their siblings.
2904                  *
2905                  * So PCI devices (unless they're on the root bus) as well as
2906                  * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2907                  * the 1:1 domain, just in _case_ one of their siblings turns out
2908                  * not to be able to map all of memory.
2909                  */
2910                 if (!pci_is_pcie(pdev)) {
2911                         if (!pci_is_root_bus(pdev->bus))
2912                                 return IOMMU_DOMAIN_DMA;
2913                         if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2914                                 return IOMMU_DOMAIN_DMA;
2915                 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2916                         return IOMMU_DOMAIN_DMA;
2917         } else {
2918                 if (device_has_rmrr(dev))
2919                         return IOMMU_DOMAIN_DMA;
2920         }
2921
2922         return (iommu_identity_mapping & IDENTMAP_ALL) ?
2923                         IOMMU_DOMAIN_IDENTITY : 0;
2924 }
2925
2926 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2927 {
2928         /*
2929          * Start from the sane iommu hardware state.
2930          * If the queued invalidation is already initialized by us
2931          * (for example, while enabling interrupt-remapping) then
2932          * we got the things already rolling from a sane state.
2933          */
2934         if (!iommu->qi) {
2935                 /*
2936                  * Clear any previous faults.
2937                  */
2938                 dmar_fault(-1, iommu);
2939                 /*
2940                  * Disable queued invalidation if supported and already enabled
2941                  * before OS handover.
2942                  */
2943                 dmar_disable_qi(iommu);
2944         }
2945
2946         if (dmar_enable_qi(iommu)) {
2947                 /*
2948                  * Queued Invalidate not enabled, use Register Based Invalidate
2949                  */
2950                 iommu->flush.flush_context = __iommu_flush_context;
2951                 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2952                 pr_info("%s: Using Register based invalidation\n",
2953                         iommu->name);
2954         } else {
2955                 iommu->flush.flush_context = qi_flush_context;
2956                 iommu->flush.flush_iotlb = qi_flush_iotlb;
2957                 pr_info("%s: Using Queued invalidation\n", iommu->name);
2958         }
2959 }
2960
2961 static int copy_context_table(struct intel_iommu *iommu,
2962                               struct root_entry *old_re,
2963                               struct context_entry **tbl,
2964                               int bus, bool ext)
2965 {
2966         int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2967         struct context_entry *new_ce = NULL, ce;
2968         struct context_entry *old_ce = NULL;
2969         struct root_entry re;
2970         phys_addr_t old_ce_phys;
2971
2972         tbl_idx = ext ? bus * 2 : bus;
2973         memcpy(&re, old_re, sizeof(re));
2974
2975         for (devfn = 0; devfn < 256; devfn++) {
2976                 /* First calculate the correct index */
2977                 idx = (ext ? devfn * 2 : devfn) % 256;
2978
2979                 if (idx == 0) {
2980                         /* First save what we may have and clean up */
2981                         if (new_ce) {
2982                                 tbl[tbl_idx] = new_ce;
2983                                 __iommu_flush_cache(iommu, new_ce,
2984                                                     VTD_PAGE_SIZE);
2985                                 pos = 1;
2986                         }
2987
2988                         if (old_ce)
2989                                 memunmap(old_ce);
2990
2991                         ret = 0;
2992                         if (devfn < 0x80)
2993                                 old_ce_phys = root_entry_lctp(&re);
2994                         else
2995                                 old_ce_phys = root_entry_uctp(&re);
2996
2997                         if (!old_ce_phys) {
2998                                 if (ext && devfn == 0) {
2999                                         /* No LCTP, try UCTP */
3000                                         devfn = 0x7f;
3001                                         continue;
3002                                 } else {
3003                                         goto out;
3004                                 }
3005                         }
3006
3007                         ret = -ENOMEM;
3008                         old_ce = memremap(old_ce_phys, PAGE_SIZE,
3009                                         MEMREMAP_WB);
3010                         if (!old_ce)
3011                                 goto out;
3012
3013                         new_ce = alloc_pgtable_page(iommu->node);
3014                         if (!new_ce)
3015                                 goto out_unmap;
3016
3017                         ret = 0;
3018                 }
3019
3020                 /* Now copy the context entry */
3021                 memcpy(&ce, old_ce + idx, sizeof(ce));
3022
3023                 if (!__context_present(&ce))
3024                         continue;
3025
3026                 did = context_domain_id(&ce);
3027                 if (did >= 0 && did < cap_ndoms(iommu->cap))
3028                         set_bit(did, iommu->domain_ids);
3029
3030                 /*
3031                  * We need a marker for copied context entries. This
3032                  * marker needs to work for the old format as well as
3033                  * for extended context entries.
3034                  *
3035                  * Bit 67 of the context entry is used. In the old
3036                  * format this bit is available to software, in the
3037                  * extended format it is the PGE bit, but PGE is ignored
3038                  * by HW if PASIDs are disabled (and thus still
3039                  * available).
3040                  *
3041                  * So disable PASIDs first and then mark the entry
3042                  * copied. This means that we don't copy PASID
3043                  * translations from the old kernel, but this is fine as
3044                  * faults there are not fatal.
3045                  */
3046                 context_clear_pasid_enable(&ce);
3047                 context_set_copied(&ce);
3048
3049                 new_ce[idx] = ce;
3050         }
3051
3052         tbl[tbl_idx + pos] = new_ce;
3053
3054         __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3055
3056 out_unmap:
3057         memunmap(old_ce);
3058
3059 out:
3060         return ret;
3061 }
3062
3063 static int copy_translation_tables(struct intel_iommu *iommu)
3064 {
3065         struct context_entry **ctxt_tbls;
3066         struct root_entry *old_rt;
3067         phys_addr_t old_rt_phys;
3068         int ctxt_table_entries;
3069         unsigned long flags;
3070         u64 rtaddr_reg;
3071         int bus, ret;
3072         bool new_ext, ext;
3073
3074         rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3075         ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3076         new_ext    = !!ecap_ecs(iommu->ecap);
3077
3078         /*
3079          * The RTT bit can only be changed when translation is disabled,
3080          * but disabling translation means to open a window for data
3081          * corruption. So bail out and don't copy anything if we would
3082          * have to change the bit.
3083          */
3084         if (new_ext != ext)
3085                 return -EINVAL;
3086
3087         old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3088         if (!old_rt_phys)
3089                 return -EINVAL;
3090
3091         old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3092         if (!old_rt)
3093                 return -ENOMEM;
3094
3095         /* This is too big for the stack - allocate it from slab */
3096         ctxt_table_entries = ext ? 512 : 256;
3097         ret = -ENOMEM;
3098         ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3099         if (!ctxt_tbls)
3100                 goto out_unmap;
3101
3102         for (bus = 0; bus < 256; bus++) {
3103                 ret = copy_context_table(iommu, &old_rt[bus],
3104                                          ctxt_tbls, bus, ext);
3105                 if (ret) {
3106                         pr_err("%s: Failed to copy context table for bus %d\n",
3107                                 iommu->name, bus);
3108                         continue;
3109                 }
3110         }
3111
3112         spin_lock_irqsave(&iommu->lock, flags);
3113
3114         /* Context tables are copied, now write them to the root_entry table */
3115         for (bus = 0; bus < 256; bus++) {
3116                 int idx = ext ? bus * 2 : bus;
3117                 u64 val;
3118
3119                 if (ctxt_tbls[idx]) {
3120                         val = virt_to_phys(ctxt_tbls[idx]) | 1;
3121                         iommu->root_entry[bus].lo = val;
3122                 }
3123
3124                 if (!ext || !ctxt_tbls[idx + 1])
3125                         continue;
3126
3127                 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3128                 iommu->root_entry[bus].hi = val;
3129         }
3130
3131         spin_unlock_irqrestore(&iommu->lock, flags);
3132
3133         kfree(ctxt_tbls);
3134
3135         __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3136
3137         ret = 0;
3138
3139 out_unmap:
3140         memunmap(old_rt);
3141
3142         return ret;
3143 }
3144
3145 static int __init init_dmars(void)
3146 {
3147         struct dmar_drhd_unit *drhd;
3148         struct intel_iommu *iommu;
3149         int ret;
3150
3151         /*
3152          * for each drhd
3153          *    allocate root
3154          *    initialize and program root entry to not present
3155          * endfor
3156          */
3157         for_each_drhd_unit(drhd) {
3158                 /*
3159                  * lock not needed as this is only incremented in the single
3160                  * threaded kernel __init code path all other access are read
3161                  * only
3162                  */
3163                 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3164                         g_num_of_iommus++;
3165                         continue;
3166                 }
3167                 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3168         }
3169
3170         /* Preallocate enough resources for IOMMU hot-addition */
3171         if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3172                 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3173
3174         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3175                         GFP_KERNEL);
3176         if (!g_iommus) {
3177                 pr_err("Allocating global iommu array failed\n");
3178                 ret = -ENOMEM;
3179                 goto error;
3180         }
3181
3182         for_each_iommu(iommu, drhd) {
3183                 if (drhd->ignored) {
3184                         iommu_disable_translation(iommu);
3185                         continue;
3186                 }
3187
3188                 /*
3189                  * Find the max pasid size of all IOMMU's in the system.
3190                  * We need to ensure the system pasid table is no bigger
3191                  * than the smallest supported.
3192                  */
3193                 if (pasid_supported(iommu)) {
3194                         u32 temp = 2 << ecap_pss(iommu->ecap);
3195
3196                         intel_pasid_max_id = min_t(u32, temp,
3197                                                    intel_pasid_max_id);
3198                 }
3199
3200                 g_iommus[iommu->seq_id] = iommu;
3201
3202                 intel_iommu_init_qi(iommu);
3203
3204                 ret = iommu_init_domains(iommu);
3205                 if (ret)
3206                         goto free_iommu;
3207
3208                 init_translation_status(iommu);
3209
3210                 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3211                         iommu_disable_translation(iommu);
3212                         clear_translation_pre_enabled(iommu);
3213                         pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3214                                 iommu->name);
3215                 }
3216
3217                 /*
3218                  * TBD:
3219                  * we could share the same root & context tables
3220                  * among all IOMMU's. Need to Split it later.
3221                  */
3222                 ret = iommu_alloc_root_entry(iommu);
3223                 if (ret)
3224                         goto free_iommu;
3225
3226                 if (translation_pre_enabled(iommu)) {
3227                         pr_info("Translation already enabled - trying to copy translation structures\n");
3228
3229                         ret = copy_translation_tables(iommu);
3230                         if (ret) {
3231                                 /*
3232                                  * We found the IOMMU with translation
3233                                  * enabled - but failed to copy over the
3234                                  * old root-entry table. Try to proceed
3235                                  * by disabling translation now and
3236                                  * allocating a clean root-entry table.
3237                                  * This might cause DMAR faults, but
3238                                  * probably the dump will still succeed.
3239                                  */
3240                                 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3241                                        iommu->name);
3242                                 iommu_disable_translation(iommu);
3243                                 clear_translation_pre_enabled(iommu);
3244                         } else {
3245                                 pr_info("Copied translation tables from previous kernel for %s\n",
3246                                         iommu->name);
3247                         }
3248                 }
3249
3250                 if (!ecap_pass_through(iommu->ecap))
3251                         hw_pass_through = 0;
3252 #ifdef CONFIG_INTEL_IOMMU_SVM
3253                 if (pasid_supported(iommu))
3254                         intel_svm_init(iommu);
3255 #endif
3256         }
3257
3258         /*
3259          * Now that qi is enabled on all iommus, set the root entry and flush
3260          * caches. This is required on some Intel X58 chipsets, otherwise the
3261          * flush_context function will loop forever and the boot hangs.
3262          */
3263         for_each_active_iommu(iommu, drhd) {
3264                 iommu_flush_write_buffer(iommu);
3265                 iommu_set_root_entry(iommu);
3266                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3267                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3268         }
3269
3270         if (iommu_pass_through)
3271                 iommu_identity_mapping |= IDENTMAP_ALL;
3272
3273 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3274         dmar_map_gfx = 0;
3275 #endif
3276
3277         if (!dmar_map_gfx)
3278                 iommu_identity_mapping |= IDENTMAP_GFX;
3279
3280         check_tylersburg_isoch();
3281
3282         ret = si_domain_init(hw_pass_through);
3283         if (ret)
3284                 goto free_iommu;
3285
3286         /*
3287          * for each drhd
3288          *   enable fault log
3289          *   global invalidate context cache
3290          *   global invalidate iotlb
3291          *   enable translation
3292          */
3293         for_each_iommu(iommu, drhd) {
3294                 if (drhd->ignored) {
3295                         /*
3296                          * we always have to disable PMRs or DMA may fail on
3297                          * this device
3298                          */
3299                         if (force_on)
3300                                 iommu_disable_protect_mem_regions(iommu);
3301                         continue;
3302                 }
3303
3304                 iommu_flush_write_buffer(iommu);
3305
3306 #ifdef CONFIG_INTEL_IOMMU_SVM
3307                 if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3308                         /*
3309                          * Call dmar_alloc_hwirq() with dmar_global_lock held,
3310                          * could cause possible lock race condition.
3311                          */
3312                         up_write(&dmar_global_lock);
3313                         ret = intel_svm_enable_prq(iommu);
3314                         down_write(&dmar_global_lock);
3315                         if (ret)
3316                                 goto free_iommu;
3317                 }
3318 #endif
3319                 ret = dmar_set_interrupt(iommu);
3320                 if (ret)
3321                         goto free_iommu;
3322         }
3323
3324         return 0;
3325
3326 free_iommu:
3327         for_each_active_iommu(iommu, drhd) {
3328                 disable_dmar_iommu(iommu);
3329                 free_dmar_iommu(iommu);
3330         }
3331
3332         kfree(g_iommus);
3333
3334 error:
3335         return ret;
3336 }
3337
3338 /* This takes a number of _MM_ pages, not VTD pages */
3339 static unsigned long intel_alloc_iova(struct device *dev,
3340                                      struct dmar_domain *domain,
3341                                      unsigned long nrpages, uint64_t dma_mask)
3342 {
3343         unsigned long iova_pfn;
3344
3345         /* Restrict dma_mask to the width that the iommu can handle */
3346         dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3347         /* Ensure we reserve the whole size-aligned region */
3348         nrpages = __roundup_pow_of_two(nrpages);
3349
3350         if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3351                 /*
3352                  * First try to allocate an io virtual address in
3353                  * DMA_BIT_MASK(32) and if that fails then try allocating
3354                  * from higher range
3355                  */
3356                 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3357                                            IOVA_PFN(DMA_BIT_MASK(32)), false);
3358                 if (iova_pfn)
3359                         return iova_pfn;
3360         }
3361         iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3362                                    IOVA_PFN(dma_mask), true);
3363         if (unlikely(!iova_pfn)) {
3364                 dev_err(dev, "Allocating %ld-page iova failed", nrpages);
3365                 return 0;
3366         }
3367
3368         return iova_pfn;
3369 }
3370
3371 static struct dmar_domain *get_private_domain_for_dev(struct device *dev)
3372 {
3373         struct dmar_domain *domain, *tmp;
3374         struct dmar_rmrr_unit *rmrr;
3375         struct device *i_dev;
3376         int i, ret;
3377
3378         /* Device shouldn't be attached by any domains. */
3379         domain = find_domain(dev);
3380         if (domain)
3381                 return NULL;
3382
3383         domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3384         if (!domain)
3385                 goto out;
3386
3387         /* We have a new domain - setup possible RMRRs for the device */
3388         rcu_read_lock();
3389         for_each_rmrr_units(rmrr) {
3390                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3391                                           i, i_dev) {
3392                         if (i_dev != dev)
3393                                 continue;
3394
3395                         ret = domain_prepare_identity_map(dev, domain,
3396                                                           rmrr->base_address,
3397                                                           rmrr->end_address);
3398                         if (ret)
3399                                 dev_err(dev, "Mapping reserved region failed\n");
3400                 }
3401         }
3402         rcu_read_unlock();
3403
3404         tmp = set_domain_for_dev(dev, domain);
3405         if (!tmp || domain != tmp) {
3406                 domain_exit(domain);
3407                 domain = tmp;
3408         }
3409
3410 out:
3411         if (!domain)
3412                 dev_err(dev, "Allocating domain failed\n");
3413         else
3414                 domain->domain.type = IOMMU_DOMAIN_DMA;
3415
3416         return domain;
3417 }
3418
3419 /* Check if the dev needs to go through non-identity map and unmap process.*/
3420 static bool iommu_need_mapping(struct device *dev)
3421 {
3422         int ret;
3423
3424         if (iommu_dummy(dev))
3425                 return false;
3426
3427         ret = identity_mapping(dev);
3428         if (ret) {
3429                 u64 dma_mask = *dev->dma_mask;
3430
3431                 if (dev->coherent_dma_mask && dev->coherent_dma_mask < dma_mask)
3432                         dma_mask = dev->coherent_dma_mask;
3433
3434                 if (dma_mask >= dma_get_required_mask(dev))
3435                         return false;
3436
3437                 /*
3438                  * 32 bit DMA is removed from si_domain and fall back to
3439                  * non-identity mapping.
3440                  */
3441                 dmar_remove_one_dev_info(dev);
3442                 ret = iommu_request_dma_domain_for_dev(dev);
3443                 if (ret) {
3444                         struct iommu_domain *domain;
3445                         struct dmar_domain *dmar_domain;
3446
3447                         domain = iommu_get_domain_for_dev(dev);
3448                         if (domain) {
3449                                 dmar_domain = to_dmar_domain(domain);
3450                                 dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
3451                         }
3452                         dmar_remove_one_dev_info(dev);
3453                         get_private_domain_for_dev(dev);
3454                 }
3455
3456                 dev_info(dev, "32bit DMA uses non-identity mapping\n");
3457         }
3458
3459         return true;
3460 }
3461
3462 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3463                                      size_t size, int dir, u64 dma_mask)
3464 {
3465         struct dmar_domain *domain;
3466         phys_addr_t start_paddr;
3467         unsigned long iova_pfn;
3468         int prot = 0;
3469         int ret;
3470         struct intel_iommu *iommu;
3471         unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3472
3473         BUG_ON(dir == DMA_NONE);
3474
3475         domain = find_domain(dev);
3476         if (!domain)
3477                 return DMA_MAPPING_ERROR;
3478
3479         iommu = domain_get_iommu(domain);
3480         size = aligned_nrpages(paddr, size);
3481
3482         iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3483         if (!iova_pfn)
3484                 goto error;
3485
3486         /*
3487          * Check if DMAR supports zero-length reads on write only
3488          * mappings..
3489          */
3490         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3491                         !cap_zlr(iommu->cap))
3492                 prot |= DMA_PTE_READ;
3493         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3494                 prot |= DMA_PTE_WRITE;
3495         /*
3496          * paddr - (paddr + size) might be partial page, we should map the whole
3497          * page.  Note: if two part of one page are separately mapped, we
3498          * might have two guest_addr mapping to the same host paddr, but this
3499          * is not a big problem
3500          */
3501         ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3502                                  mm_to_dma_pfn(paddr_pfn), size, prot);
3503         if (ret)
3504                 goto error;
3505
3506         start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3507         start_paddr += paddr & ~PAGE_MASK;
3508         return start_paddr;
3509
3510 error:
3511         if (iova_pfn)
3512                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3513         dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n",
3514                 size, (unsigned long long)paddr, dir);
3515         return DMA_MAPPING_ERROR;
3516 }
3517
3518 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3519                                  unsigned long offset, size_t size,
3520                                  enum dma_data_direction dir,
3521                                  unsigned long attrs)
3522 {
3523         if (iommu_need_mapping(dev))
3524                 return __intel_map_single(dev, page_to_phys(page) + offset,
3525                                 size, dir, *dev->dma_mask);
3526         return dma_direct_map_page(dev, page, offset, size, dir, attrs);
3527 }
3528
3529 static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr,
3530                                      size_t size, enum dma_data_direction dir,
3531                                      unsigned long attrs)
3532 {
3533         if (iommu_need_mapping(dev))
3534                 return __intel_map_single(dev, phys_addr, size, dir,
3535                                 *dev->dma_mask);
3536         return dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
3537 }
3538
3539 static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3540 {
3541         struct dmar_domain *domain;
3542         unsigned long start_pfn, last_pfn;
3543         unsigned long nrpages;
3544         unsigned long iova_pfn;
3545         struct intel_iommu *iommu;
3546         struct page *freelist;
3547         struct pci_dev *pdev = NULL;
3548
3549         domain = find_domain(dev);
3550         BUG_ON(!domain);
3551
3552         iommu = domain_get_iommu(domain);
3553
3554         iova_pfn = IOVA_PFN(dev_addr);
3555
3556         nrpages = aligned_nrpages(dev_addr, size);
3557         start_pfn = mm_to_dma_pfn(iova_pfn);
3558         last_pfn = start_pfn + nrpages - 1;
3559
3560         if (dev_is_pci(dev))
3561                 pdev = to_pci_dev(dev);
3562
3563         dev_dbg(dev, "Device unmapping: pfn %lx-%lx\n", start_pfn, last_pfn);
3564
3565         freelist = domain_unmap(domain, start_pfn, last_pfn);
3566
3567         if (intel_iommu_strict || (pdev && pdev->untrusted) ||
3568                         !has_iova_flush_queue(&domain->iovad)) {
3569                 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3570                                       nrpages, !freelist, 0);
3571                 /* free iova */
3572                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3573                 dma_free_pagelist(freelist);
3574         } else {
3575                 queue_iova(&domain->iovad, iova_pfn, nrpages,
3576                            (unsigned long)freelist);
3577                 /*
3578                  * queue up the release of the unmap to save the 1/6th of the
3579                  * cpu used up by the iotlb flush operation...
3580                  */
3581         }
3582 }
3583
3584 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3585                              size_t size, enum dma_data_direction dir,
3586                              unsigned long attrs)
3587 {
3588         if (iommu_need_mapping(dev))
3589                 intel_unmap(dev, dev_addr, size);
3590         else
3591                 dma_direct_unmap_page(dev, dev_addr, size, dir, attrs);
3592 }
3593
3594 static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr,
3595                 size_t size, enum dma_data_direction dir, unsigned long attrs)
3596 {
3597         if (iommu_need_mapping(dev))
3598                 intel_unmap(dev, dev_addr, size);
3599 }
3600
3601 static void *intel_alloc_coherent(struct device *dev, size_t size,
3602                                   dma_addr_t *dma_handle, gfp_t flags,
3603                                   unsigned long attrs)
3604 {
3605         struct page *page = NULL;
3606         int order;
3607
3608         if (!iommu_need_mapping(dev))
3609                 return dma_direct_alloc(dev, size, dma_handle, flags, attrs);
3610
3611         size = PAGE_ALIGN(size);
3612         order = get_order(size);
3613
3614         if (gfpflags_allow_blocking(flags)) {
3615                 unsigned int count = size >> PAGE_SHIFT;
3616
3617                 page = dma_alloc_from_contiguous(dev, count, order,
3618                                                  flags & __GFP_NOWARN);
3619         }
3620
3621         if (!page)
3622                 page = alloc_pages(flags, order);
3623         if (!page)
3624                 return NULL;
3625         memset(page_address(page), 0, size);
3626
3627         *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3628                                          DMA_BIDIRECTIONAL,
3629                                          dev->coherent_dma_mask);
3630         if (*dma_handle != DMA_MAPPING_ERROR)
3631                 return page_address(page);
3632         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3633                 __free_pages(page, order);
3634
3635         return NULL;
3636 }
3637
3638 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3639                                 dma_addr_t dma_handle, unsigned long attrs)
3640 {
3641         int order;
3642         struct page *page = virt_to_page(vaddr);
3643
3644         if (!iommu_need_mapping(dev))
3645                 return dma_direct_free(dev, size, vaddr, dma_handle, attrs);
3646
3647         size = PAGE_ALIGN(size);
3648         order = get_order(size);
3649
3650         intel_unmap(dev, dma_handle, size);
3651         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3652                 __free_pages(page, order);
3653 }
3654
3655 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3656                            int nelems, enum dma_data_direction dir,
3657                            unsigned long attrs)
3658 {
3659         dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3660         unsigned long nrpages = 0;
3661         struct scatterlist *sg;
3662         int i;
3663
3664         if (!iommu_need_mapping(dev))
3665                 return dma_direct_unmap_sg(dev, sglist, nelems, dir, attrs);
3666
3667         for_each_sg(sglist, sg, nelems, i) {
3668                 nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3669         }
3670
3671         intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3672 }
3673
3674 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3675                         enum dma_data_direction dir, unsigned long attrs)
3676 {
3677         int i;
3678         struct dmar_domain *domain;
3679         size_t size = 0;
3680         int prot = 0;
3681         unsigned long iova_pfn;
3682         int ret;
3683         struct scatterlist *sg;
3684         unsigned long start_vpfn;
3685         struct intel_iommu *iommu;
3686
3687         BUG_ON(dir == DMA_NONE);
3688         if (!iommu_need_mapping(dev))
3689                 return dma_direct_map_sg(dev, sglist, nelems, dir, attrs);
3690
3691         domain = find_domain(dev);
3692         if (!domain)
3693                 return 0;
3694
3695         iommu = domain_get_iommu(domain);
3696
3697         for_each_sg(sglist, sg, nelems, i)
3698                 size += aligned_nrpages(sg->offset, sg->length);
3699
3700         iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3701                                 *dev->dma_mask);
3702         if (!iova_pfn) {
3703                 sglist->dma_length = 0;
3704                 return 0;
3705         }
3706
3707         /*
3708          * Check if DMAR supports zero-length reads on write only
3709          * mappings..
3710          */
3711         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3712                         !cap_zlr(iommu->cap))
3713                 prot |= DMA_PTE_READ;
3714         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3715                 prot |= DMA_PTE_WRITE;
3716
3717         start_vpfn = mm_to_dma_pfn(iova_pfn);
3718
3719         ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3720         if (unlikely(ret)) {
3721                 dma_pte_free_pagetable(domain, start_vpfn,
3722                                        start_vpfn + size - 1,
3723                                        agaw_to_level(domain->agaw) + 1);
3724                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3725                 return 0;
3726         }
3727
3728         return nelems;
3729 }
3730
3731 static const struct dma_map_ops intel_dma_ops = {
3732         .alloc = intel_alloc_coherent,
3733         .free = intel_free_coherent,
3734         .map_sg = intel_map_sg,
3735         .unmap_sg = intel_unmap_sg,
3736         .map_page = intel_map_page,
3737         .unmap_page = intel_unmap_page,
3738         .map_resource = intel_map_resource,
3739         .unmap_resource = intel_unmap_resource,
3740         .dma_supported = dma_direct_supported,
3741 };
3742
3743 static inline int iommu_domain_cache_init(void)
3744 {
3745         int ret = 0;
3746
3747         iommu_domain_cache = kmem_cache_create("iommu_domain",
3748                                          sizeof(struct dmar_domain),
3749                                          0,
3750                                          SLAB_HWCACHE_ALIGN,
3751
3752                                          NULL);
3753         if (!iommu_domain_cache) {
3754                 pr_err("Couldn't create iommu_domain cache\n");
3755                 ret = -ENOMEM;
3756         }
3757
3758         return ret;
3759 }
3760
3761 static inline int iommu_devinfo_cache_init(void)
3762 {
3763         int ret = 0;
3764
3765         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3766                                          sizeof(struct device_domain_info),
3767                                          0,
3768                                          SLAB_HWCACHE_ALIGN,
3769                                          NULL);
3770         if (!iommu_devinfo_cache) {
3771                 pr_err("Couldn't create devinfo cache\n");
3772                 ret = -ENOMEM;
3773         }
3774
3775         return ret;
3776 }
3777
3778 static int __init iommu_init_mempool(void)
3779 {
3780         int ret;
3781         ret = iova_cache_get();
3782         if (ret)
3783                 return ret;
3784
3785         ret = iommu_domain_cache_init();
3786         if (ret)
3787                 goto domain_error;
3788
3789         ret = iommu_devinfo_cache_init();
3790         if (!ret)
3791                 return ret;
3792
3793         kmem_cache_destroy(iommu_domain_cache);
3794 domain_error:
3795         iova_cache_put();
3796
3797         return -ENOMEM;
3798 }
3799
3800 static void __init iommu_exit_mempool(void)
3801 {
3802         kmem_cache_destroy(iommu_devinfo_cache);
3803         kmem_cache_destroy(iommu_domain_cache);
3804         iova_cache_put();
3805 }
3806
3807 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3808 {
3809         struct dmar_drhd_unit *drhd;
3810         u32 vtbar;
3811         int rc;
3812
3813         /* We know that this device on this chipset has its own IOMMU.
3814          * If we find it under a different IOMMU, then the BIOS is lying
3815          * to us. Hope that the IOMMU for this device is actually
3816          * disabled, and it needs no translation...
3817          */
3818         rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3819         if (rc) {
3820                 /* "can't" happen */
3821                 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3822                 return;
3823         }
3824         vtbar &= 0xffff0000;
3825
3826         /* we know that the this iommu should be at offset 0xa000 from vtbar */
3827         drhd = dmar_find_matched_drhd_unit(pdev);
3828         if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3829                             TAINT_FIRMWARE_WORKAROUND,
3830                             "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3831                 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3832 }
3833 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3834
3835 static void __init init_no_remapping_devices(void)
3836 {
3837         struct dmar_drhd_unit *drhd;
3838         struct device *dev;
3839         int i;
3840
3841         for_each_drhd_unit(drhd) {
3842                 if (!drhd->include_all) {
3843                         for_each_active_dev_scope(drhd->devices,
3844                                                   drhd->devices_cnt, i, dev)
3845                                 break;
3846                         /* ignore DMAR unit if no devices exist */
3847                         if (i == drhd->devices_cnt)
3848                                 drhd->ignored = 1;
3849                 }
3850         }
3851
3852         for_each_active_drhd_unit(drhd) {
3853                 if (drhd->include_all)
3854                         continue;
3855
3856                 for_each_active_dev_scope(drhd->devices,
3857                                           drhd->devices_cnt, i, dev)
3858                         if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3859                                 break;
3860                 if (i < drhd->devices_cnt)
3861                         continue;
3862
3863                 /* This IOMMU has *only* gfx devices. Either bypass it or
3864                    set the gfx_mapped flag, as appropriate */
3865                 if (!dmar_map_gfx) {
3866                         drhd->ignored = 1;
3867                         for_each_active_dev_scope(drhd->devices,
3868                                                   drhd->devices_cnt, i, dev)
3869                                 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3870                 }
3871         }
3872 }
3873
3874 #ifdef CONFIG_SUSPEND
3875 static int init_iommu_hw(void)
3876 {
3877         struct dmar_drhd_unit *drhd;
3878         struct intel_iommu *iommu = NULL;
3879
3880         for_each_active_iommu(iommu, drhd)
3881                 if (iommu->qi)
3882                         dmar_reenable_qi(iommu);
3883
3884         for_each_iommu(iommu, drhd) {
3885                 if (drhd->ignored) {
3886                         /*
3887                          * we always have to disable PMRs or DMA may fail on
3888                          * this device
3889                          */
3890                         if (force_on)
3891                                 iommu_disable_protect_mem_regions(iommu);
3892                         continue;
3893                 }
3894
3895                 iommu_flush_write_buffer(iommu);
3896
3897                 iommu_set_root_entry(iommu);
3898
3899                 iommu->flush.flush_context(iommu, 0, 0, 0,
3900                                            DMA_CCMD_GLOBAL_INVL);
3901                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3902                 iommu_enable_translation(iommu);
3903                 iommu_disable_protect_mem_regions(iommu);
3904         }
3905
3906         return 0;
3907 }
3908
3909 static void iommu_flush_all(void)
3910 {
3911         struct dmar_drhd_unit *drhd;
3912         struct intel_iommu *iommu;
3913
3914         for_each_active_iommu(iommu, drhd) {
3915                 iommu->flush.flush_context(iommu, 0, 0, 0,
3916                                            DMA_CCMD_GLOBAL_INVL);
3917                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3918                                          DMA_TLB_GLOBAL_FLUSH);
3919         }
3920 }
3921
3922 static int iommu_suspend(void)
3923 {
3924         struct dmar_drhd_unit *drhd;
3925         struct intel_iommu *iommu = NULL;
3926         unsigned long flag;
3927
3928         for_each_active_iommu(iommu, drhd) {
3929                 iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
3930                                                  GFP_ATOMIC);
3931                 if (!iommu->iommu_state)
3932                         goto nomem;
3933         }
3934
3935         iommu_flush_all();
3936
3937         for_each_active_iommu(iommu, drhd) {
3938                 iommu_disable_translation(iommu);
3939
3940                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3941
3942                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3943                         readl(iommu->reg + DMAR_FECTL_REG);
3944                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3945                         readl(iommu->reg + DMAR_FEDATA_REG);
3946                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3947                         readl(iommu->reg + DMAR_FEADDR_REG);
3948                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3949                         readl(iommu->reg + DMAR_FEUADDR_REG);
3950
3951                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3952         }
3953         return 0;
3954
3955 nomem:
3956         for_each_active_iommu(iommu, drhd)
3957                 kfree(iommu->iommu_state);
3958
3959         return -ENOMEM;
3960 }
3961
3962 static void iommu_resume(void)
3963 {
3964         struct dmar_drhd_unit *drhd;
3965         struct intel_iommu *iommu = NULL;
3966         unsigned long flag;
3967
3968         if (init_iommu_hw()) {
3969                 if (force_on)
3970                         panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3971                 else
3972                         WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3973                 return;
3974         }
3975
3976         for_each_active_iommu(iommu, drhd) {
3977
3978                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3979
3980                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3981                         iommu->reg + DMAR_FECTL_REG);
3982                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3983                         iommu->reg + DMAR_FEDATA_REG);
3984                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3985                         iommu->reg + DMAR_FEADDR_REG);
3986                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3987                         iommu->reg + DMAR_FEUADDR_REG);
3988
3989                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3990         }
3991
3992         for_each_active_iommu(iommu, drhd)
3993                 kfree(iommu->iommu_state);
3994 }
3995
3996 static struct syscore_ops iommu_syscore_ops = {
3997         .resume         = iommu_resume,
3998         .suspend        = iommu_suspend,
3999 };
4000
4001 static void __init init_iommu_pm_ops(void)
4002 {
4003         register_syscore_ops(&iommu_syscore_ops);
4004 }
4005
4006 #else
4007 static inline void init_iommu_pm_ops(void) {}
4008 #endif  /* CONFIG_PM */
4009
4010 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4011 {
4012         struct acpi_dmar_reserved_memory *rmrr;
4013         struct dmar_rmrr_unit *rmrru;
4014
4015         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4016         if (!rmrru)
4017                 goto out;
4018
4019         rmrru->hdr = header;
4020         rmrr = (struct acpi_dmar_reserved_memory *)header;
4021         rmrru->base_address = rmrr->base_address;
4022         rmrru->end_address = rmrr->end_address;
4023
4024         rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4025                                 ((void *)rmrr) + rmrr->header.length,
4026                                 &rmrru->devices_cnt);
4027         if (rmrru->devices_cnt && rmrru->devices == NULL)
4028                 goto free_rmrru;
4029
4030         list_add(&rmrru->list, &dmar_rmrr_units);
4031
4032         return 0;
4033 free_rmrru:
4034         kfree(rmrru);
4035 out:
4036         return -ENOMEM;
4037 }
4038
4039 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4040 {
4041         struct dmar_atsr_unit *atsru;
4042         struct acpi_dmar_atsr *tmp;
4043
4044         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4045                 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4046                 if (atsr->segment != tmp->segment)
4047                         continue;
4048                 if (atsr->header.length != tmp->header.length)
4049                         continue;
4050                 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4051                         return atsru;
4052         }
4053
4054         return NULL;
4055 }
4056
4057 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4058 {
4059         struct acpi_dmar_atsr *atsr;
4060         struct dmar_atsr_unit *atsru;
4061
4062         if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4063                 return 0;
4064
4065         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4066         atsru = dmar_find_atsr(atsr);
4067         if (atsru)
4068                 return 0;
4069
4070         atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4071         if (!atsru)
4072                 return -ENOMEM;
4073
4074         /*
4075          * If memory is allocated from slab by ACPI _DSM method, we need to
4076          * copy the memory content because the memory buffer will be freed
4077          * on return.
4078          */
4079         atsru->hdr = (void *)(atsru + 1);
4080         memcpy(atsru->hdr, hdr, hdr->length);
4081         atsru->include_all = atsr->flags & 0x1;
4082         if (!atsru->include_all) {
4083                 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4084                                 (void *)atsr + atsr->header.length,
4085                                 &atsru->devices_cnt);
4086                 if (atsru->devices_cnt && atsru->devices == NULL) {
4087                         kfree(atsru);
4088                         return -ENOMEM;
4089                 }
4090         }
4091
4092         list_add_rcu(&atsru->list, &dmar_atsr_units);
4093
4094         return 0;
4095 }
4096
4097 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4098 {
4099         dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4100         kfree(atsru);
4101 }
4102
4103 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4104 {
4105         struct acpi_dmar_atsr *atsr;
4106         struct dmar_atsr_unit *atsru;
4107
4108         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4109         atsru = dmar_find_atsr(atsr);
4110         if (atsru) {
4111                 list_del_rcu(&atsru->list);
4112                 synchronize_rcu();
4113                 intel_iommu_free_atsr(atsru);
4114         }
4115
4116         return 0;
4117 }
4118
4119 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4120 {
4121         int i;
4122         struct device *dev;
4123         struct acpi_dmar_atsr *atsr;
4124         struct dmar_atsr_unit *atsru;
4125
4126         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4127         atsru = dmar_find_atsr(atsr);
4128         if (!atsru)
4129                 return 0;
4130
4131         if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4132                 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4133                                           i, dev)
4134                         return -EBUSY;
4135         }
4136
4137         return 0;
4138 }
4139
4140 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4141 {
4142         int sp, ret;
4143         struct intel_iommu *iommu = dmaru->iommu;
4144
4145         if (g_iommus[iommu->seq_id])
4146                 return 0;
4147
4148         if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4149                 pr_warn("%s: Doesn't support hardware pass through.\n",
4150                         iommu->name);
4151                 return -ENXIO;
4152         }
4153         if (!ecap_sc_support(iommu->ecap) &&
4154             domain_update_iommu_snooping(iommu)) {
4155                 pr_warn("%s: Doesn't support snooping.\n",
4156                         iommu->name);
4157                 return -ENXIO;
4158         }
4159         sp = domain_update_iommu_superpage(iommu) - 1;
4160         if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4161                 pr_warn("%s: Doesn't support large page.\n",
4162                         iommu->name);
4163                 return -ENXIO;
4164         }
4165
4166         /*
4167          * Disable translation if already enabled prior to OS handover.
4168          */
4169         if (iommu->gcmd & DMA_GCMD_TE)
4170                 iommu_disable_translation(iommu);
4171
4172         g_iommus[iommu->seq_id] = iommu;
4173         ret = iommu_init_domains(iommu);
4174         if (ret == 0)
4175                 ret = iommu_alloc_root_entry(iommu);
4176         if (ret)
4177                 goto out;
4178
4179 #ifdef CONFIG_INTEL_IOMMU_SVM
4180         if (pasid_supported(iommu))
4181                 intel_svm_init(iommu);
4182 #endif
4183
4184         if (dmaru->ignored) {
4185                 /*
4186                  * we always have to disable PMRs or DMA may fail on this device
4187                  */
4188                 if (force_on)
4189                         iommu_disable_protect_mem_regions(iommu);
4190                 return 0;
4191         }
4192
4193         intel_iommu_init_qi(iommu);
4194         iommu_flush_write_buffer(iommu);
4195
4196 #ifdef CONFIG_INTEL_IOMMU_SVM
4197         if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
4198                 ret = intel_svm_enable_prq(iommu);
4199                 if (ret)
4200                         goto disable_iommu;
4201         }
4202 #endif
4203         ret = dmar_set_interrupt(iommu);
4204         if (ret)
4205                 goto disable_iommu;
4206
4207         iommu_set_root_entry(iommu);
4208         iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4209         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4210         iommu_enable_translation(iommu);
4211
4212         iommu_disable_protect_mem_regions(iommu);
4213         return 0;
4214
4215 disable_iommu:
4216         disable_dmar_iommu(iommu);
4217 out:
4218         free_dmar_iommu(iommu);
4219         return ret;
4220 }
4221
4222 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4223 {
4224         int ret = 0;
4225         struct intel_iommu *iommu = dmaru->iommu;
4226
4227         if (!intel_iommu_enabled)
4228                 return 0;
4229         if (iommu == NULL)
4230                 return -EINVAL;
4231
4232         if (insert) {
4233                 ret = intel_iommu_add(dmaru);
4234         } else {
4235                 disable_dmar_iommu(iommu);
4236                 free_dmar_iommu(iommu);
4237         }
4238
4239         return ret;
4240 }
4241
4242 static void intel_iommu_free_dmars(void)
4243 {
4244         struct dmar_rmrr_unit *rmrru, *rmrr_n;
4245         struct dmar_atsr_unit *atsru, *atsr_n;
4246
4247         list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4248                 list_del(&rmrru->list);
4249                 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4250                 kfree(rmrru);
4251         }
4252
4253         list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4254                 list_del(&atsru->list);
4255                 intel_iommu_free_atsr(atsru);
4256         }
4257 }
4258
4259 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4260 {
4261         int i, ret = 1;
4262         struct pci_bus *bus;
4263         struct pci_dev *bridge = NULL;
4264         struct device *tmp;
4265         struct acpi_dmar_atsr *atsr;
4266         struct dmar_atsr_unit *atsru;
4267
4268         dev = pci_physfn(dev);
4269         for (bus = dev->bus; bus; bus = bus->parent) {
4270                 bridge = bus->self;
4271                 /* If it's an integrated device, allow ATS */
4272                 if (!bridge)
4273                         return 1;
4274                 /* Connected via non-PCIe: no ATS */
4275                 if (!pci_is_pcie(bridge) ||
4276                     pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4277                         return 0;
4278                 /* If we found the root port, look it up in the ATSR */
4279                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4280                         break;
4281         }
4282
4283         rcu_read_lock();
4284         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4285                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4286                 if (atsr->segment != pci_domain_nr(dev->bus))
4287                         continue;
4288
4289                 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4290                         if (tmp == &bridge->dev)
4291                                 goto out;
4292
4293                 if (atsru->include_all)
4294                         goto out;
4295         }
4296         ret = 0;
4297 out:
4298         rcu_read_unlock();
4299
4300         return ret;
4301 }
4302
4303 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4304 {
4305         int ret;
4306         struct dmar_rmrr_unit *rmrru;
4307         struct dmar_atsr_unit *atsru;
4308         struct acpi_dmar_atsr *atsr;
4309         struct acpi_dmar_reserved_memory *rmrr;
4310
4311         if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4312                 return 0;
4313
4314         list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4315                 rmrr = container_of(rmrru->hdr,
4316                                     struct acpi_dmar_reserved_memory, header);
4317                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4318                         ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4319                                 ((void *)rmrr) + rmrr->header.length,
4320                                 rmrr->segment, rmrru->devices,
4321                                 rmrru->devices_cnt);
4322                         if (ret < 0)
4323                                 return ret;
4324                 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4325                         dmar_remove_dev_scope(info, rmrr->segment,
4326                                 rmrru->devices, rmrru->devices_cnt);
4327                 }
4328         }
4329
4330         list_for_each_entry(atsru, &dmar_atsr_units, list) {
4331                 if (atsru->include_all)
4332                         continue;
4333
4334                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4335                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4336                         ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4337                                         (void *)atsr + atsr->header.length,
4338                                         atsr->segment, atsru->devices,
4339                                         atsru->devices_cnt);
4340                         if (ret > 0)
4341                                 break;
4342                         else if (ret < 0)
4343                                 return ret;
4344                 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4345                         if (dmar_remove_dev_scope(info, atsr->segment,
4346                                         atsru->devices, atsru->devices_cnt))
4347                                 break;
4348                 }
4349         }
4350
4351         return 0;
4352 }
4353
4354 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4355                                        unsigned long val, void *v)
4356 {
4357         struct memory_notify *mhp = v;
4358         unsigned long long start, end;
4359         unsigned long start_vpfn, last_vpfn;
4360
4361         switch (val) {
4362         case MEM_GOING_ONLINE:
4363                 start = mhp->start_pfn << PAGE_SHIFT;
4364                 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4365                 if (iommu_domain_identity_map(si_domain, start, end)) {
4366                         pr_warn("Failed to build identity map for [%llx-%llx]\n",
4367                                 start, end);
4368                         return NOTIFY_BAD;
4369                 }
4370                 break;
4371
4372         case MEM_OFFLINE:
4373         case MEM_CANCEL_ONLINE:
4374                 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4375                 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4376                 while (start_vpfn <= last_vpfn) {
4377                         struct iova *iova;
4378                         struct dmar_drhd_unit *drhd;
4379                         struct intel_iommu *iommu;
4380                         struct page *freelist;
4381
4382                         iova = find_iova(&si_domain->iovad, start_vpfn);
4383                         if (iova == NULL) {
4384                                 pr_debug("Failed get IOVA for PFN %lx\n",
4385                                          start_vpfn);
4386                                 break;
4387                         }
4388
4389                         iova = split_and_remove_iova(&si_domain->iovad, iova,
4390                                                      start_vpfn, last_vpfn);
4391                         if (iova == NULL) {
4392                                 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4393                                         start_vpfn, last_vpfn);
4394                                 return NOTIFY_BAD;
4395                         }
4396
4397                         freelist = domain_unmap(si_domain, iova->pfn_lo,
4398                                                iova->pfn_hi);
4399
4400                         rcu_read_lock();
4401                         for_each_active_iommu(iommu, drhd)
4402                                 iommu_flush_iotlb_psi(iommu, si_domain,
4403                                         iova->pfn_lo, iova_size(iova),
4404                                         !freelist, 0);
4405                         rcu_read_unlock();
4406                         dma_free_pagelist(freelist);
4407
4408                         start_vpfn = iova->pfn_hi + 1;
4409                         free_iova_mem(iova);
4410                 }
4411                 break;
4412         }
4413
4414         return NOTIFY_OK;
4415 }
4416
4417 static struct notifier_block intel_iommu_memory_nb = {
4418         .notifier_call = intel_iommu_memory_notifier,
4419         .priority = 0
4420 };
4421
4422 static void free_all_cpu_cached_iovas(unsigned int cpu)
4423 {
4424         int i;
4425
4426         for (i = 0; i < g_num_of_iommus; i++) {
4427                 struct intel_iommu *iommu = g_iommus[i];
4428                 struct dmar_domain *domain;
4429                 int did;
4430
4431                 if (!iommu)
4432                         continue;
4433
4434                 for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4435                         domain = get_iommu_domain(iommu, (u16)did);
4436
4437                         if (!domain)
4438                                 continue;
4439                         free_cpu_cached_iovas(cpu, &domain->iovad);
4440                 }
4441         }
4442 }
4443
4444 static int intel_iommu_cpu_dead(unsigned int cpu)
4445 {
4446         free_all_cpu_cached_iovas(cpu);
4447         return 0;
4448 }
4449
4450 static void intel_disable_iommus(void)
4451 {
4452         struct intel_iommu *iommu = NULL;
4453         struct dmar_drhd_unit *drhd;
4454
4455         for_each_iommu(iommu, drhd)
4456                 iommu_disable_translation(iommu);
4457 }
4458
4459 static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
4460 {
4461         struct iommu_device *iommu_dev = dev_to_iommu_device(dev);
4462
4463         return container_of(iommu_dev, struct intel_iommu, iommu);
4464 }
4465
4466 static ssize_t intel_iommu_show_version(struct device *dev,
4467                                         struct device_attribute *attr,
4468                                         char *buf)
4469 {
4470         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4471         u32 ver = readl(iommu->reg + DMAR_VER_REG);
4472         return sprintf(buf, "%d:%d\n",
4473                        DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4474 }
4475 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4476
4477 static ssize_t intel_iommu_show_address(struct device *dev,
4478                                         struct device_attribute *attr,
4479                                         char *buf)
4480 {
4481         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4482         return sprintf(buf, "%llx\n", iommu->reg_phys);
4483 }
4484 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4485
4486 static ssize_t intel_iommu_show_cap(struct device *dev,
4487                                     struct device_attribute *attr,
4488                                     char *buf)
4489 {
4490         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4491         return sprintf(buf, "%llx\n", iommu->cap);
4492 }
4493 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4494
4495 static ssize_t intel_iommu_show_ecap(struct device *dev,
4496                                     struct device_attribute *attr,
4497                                     char *buf)
4498 {
4499         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4500         return sprintf(buf, "%llx\n", iommu->ecap);
4501 }
4502 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4503
4504 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4505                                       struct device_attribute *attr,
4506                                       char *buf)
4507 {
4508         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4509         return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4510 }
4511 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4512
4513 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4514                                            struct device_attribute *attr,
4515                                            char *buf)
4516 {
4517         struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4518         return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4519                                                   cap_ndoms(iommu->cap)));
4520 }
4521 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4522
4523 static struct attribute *intel_iommu_attrs[] = {
4524         &dev_attr_version.attr,
4525         &dev_attr_address.attr,
4526         &dev_attr_cap.attr,
4527         &dev_attr_ecap.attr,
4528         &dev_attr_domains_supported.attr,
4529         &dev_attr_domains_used.attr,
4530         NULL,
4531 };
4532
4533 static struct attribute_group intel_iommu_group = {
4534         .name = "intel-iommu",
4535         .attrs = intel_iommu_attrs,
4536 };
4537
4538 const struct attribute_group *intel_iommu_groups[] = {
4539         &intel_iommu_group,
4540         NULL,
4541 };
4542
4543 static int __init platform_optin_force_iommu(void)
4544 {
4545         struct pci_dev *pdev = NULL;
4546         bool has_untrusted_dev = false;
4547
4548         if (!dmar_platform_optin() || no_platform_optin)
4549                 return 0;
4550
4551         for_each_pci_dev(pdev) {
4552                 if (pdev->untrusted) {
4553                         has_untrusted_dev = true;
4554                         break;
4555                 }
4556         }
4557
4558         if (!has_untrusted_dev)
4559                 return 0;
4560
4561         if (no_iommu || dmar_disabled)
4562                 pr_info("Intel-IOMMU force enabled due to platform opt in\n");
4563
4564         /*
4565          * If Intel-IOMMU is disabled by default, we will apply identity
4566          * map for all devices except those marked as being untrusted.
4567          */
4568         if (dmar_disabled)
4569                 iommu_identity_mapping |= IDENTMAP_ALL;
4570
4571         dmar_disabled = 0;
4572 #if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
4573         swiotlb = 0;
4574 #endif
4575         no_iommu = 0;
4576
4577         return 1;
4578 }
4579
4580 static int __init probe_acpi_namespace_devices(void)
4581 {
4582         struct dmar_drhd_unit *drhd;
4583         /* To avoid a -Wunused-but-set-variable warning. */
4584         struct intel_iommu *iommu __maybe_unused;
4585         struct device *dev;
4586         int i, ret = 0;
4587
4588         for_each_active_iommu(iommu, drhd) {
4589                 for_each_active_dev_scope(drhd->devices,
4590                                           drhd->devices_cnt, i, dev) {
4591                         struct acpi_device_physical_node *pn;
4592                         struct iommu_group *group;
4593                         struct acpi_device *adev;
4594
4595                         if (dev->bus != &acpi_bus_type)
4596                                 continue;
4597
4598                         adev = to_acpi_device(dev);
4599                         mutex_lock(&adev->physical_node_lock);
4600                         list_for_each_entry(pn,
4601                                             &adev->physical_node_list, node) {
4602                                 group = iommu_group_get(pn->dev);
4603                                 if (group) {
4604                                         iommu_group_put(group);
4605                                         continue;
4606                                 }
4607
4608                                 pn->dev->bus->iommu_ops = &intel_iommu_ops;
4609                                 ret = iommu_probe_device(pn->dev);
4610                                 if (ret)
4611                                         break;
4612                         }
4613                         mutex_unlock(&adev->physical_node_lock);
4614
4615                         if (ret)
4616                                 return ret;
4617                 }
4618         }
4619
4620         return 0;
4621 }
4622
4623 int __init intel_iommu_init(void)
4624 {
4625         int ret = -ENODEV;
4626         struct dmar_drhd_unit *drhd;
4627         struct intel_iommu *iommu;
4628
4629         /*
4630          * Intel IOMMU is required for a TXT/tboot launch or platform
4631          * opt in, so enforce that.
4632          */
4633         force_on = tboot_force_iommu() || platform_optin_force_iommu();
4634
4635         if (iommu_init_mempool()) {
4636                 if (force_on)
4637                         panic("tboot: Failed to initialize iommu memory\n");
4638                 return -ENOMEM;
4639         }
4640
4641         down_write(&dmar_global_lock);
4642         if (dmar_table_init()) {
4643                 if (force_on)
4644                         panic("tboot: Failed to initialize DMAR table\n");
4645                 goto out_free_dmar;
4646         }
4647
4648         if (dmar_dev_scope_init() < 0) {
4649                 if (force_on)
4650                         panic("tboot: Failed to initialize DMAR device scope\n");
4651                 goto out_free_dmar;
4652         }
4653
4654         up_write(&dmar_global_lock);
4655
4656         /*
4657          * The bus notifier takes the dmar_global_lock, so lockdep will
4658          * complain later when we register it under the lock.
4659          */
4660         dmar_register_bus_notifier();
4661
4662         down_write(&dmar_global_lock);
4663
4664         if (no_iommu || dmar_disabled) {
4665                 /*
4666                  * We exit the function here to ensure IOMMU's remapping and
4667                  * mempool aren't setup, which means that the IOMMU's PMRs
4668                  * won't be disabled via the call to init_dmars(). So disable
4669                  * it explicitly here. The PMRs were setup by tboot prior to
4670                  * calling SENTER, but the kernel is expected to reset/tear
4671                  * down the PMRs.
4672                  */
4673                 if (intel_iommu_tboot_noforce) {
4674                         for_each_iommu(iommu, drhd)
4675                                 iommu_disable_protect_mem_regions(iommu);
4676                 }
4677
4678                 /*
4679                  * Make sure the IOMMUs are switched off, even when we
4680                  * boot into a kexec kernel and the previous kernel left
4681                  * them enabled
4682                  */
4683                 intel_disable_iommus();
4684                 goto out_free_dmar;
4685         }
4686
4687         if (list_empty(&dmar_rmrr_units))
4688                 pr_info("No RMRR found\n");
4689
4690         if (list_empty(&dmar_atsr_units))
4691                 pr_info("No ATSR found\n");
4692
4693         if (dmar_init_reserved_ranges()) {
4694                 if (force_on)
4695                         panic("tboot: Failed to reserve iommu ranges\n");
4696                 goto out_free_reserved_range;
4697         }
4698
4699         if (dmar_map_gfx)
4700                 intel_iommu_gfx_mapped = 1;
4701
4702         init_no_remapping_devices();
4703
4704         ret = init_dmars();
4705         if (ret) {
4706                 if (force_on)
4707                         panic("tboot: Failed to initialize DMARs\n");
4708                 pr_err("Initialization failed\n");
4709                 goto out_free_reserved_range;
4710         }
4711         up_write(&dmar_global_lock);
4712
4713 #if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
4714         swiotlb = 0;
4715 #endif
4716         dma_ops = &intel_dma_ops;
4717
4718         init_iommu_pm_ops();
4719
4720         for_each_active_iommu(iommu, drhd) {
4721                 iommu_device_sysfs_add(&iommu->iommu, NULL,
4722                                        intel_iommu_groups,
4723                                        "%s", iommu->name);
4724                 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
4725                 iommu_device_register(&iommu->iommu);
4726         }
4727
4728         bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4729         if (si_domain && !hw_pass_through)
4730                 register_memory_notifier(&intel_iommu_memory_nb);
4731         cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
4732                           intel_iommu_cpu_dead);
4733
4734         down_read(&dmar_global_lock);
4735         if (probe_acpi_namespace_devices())
4736                 pr_warn("ACPI name space devices didn't probe correctly\n");
4737         up_read(&dmar_global_lock);
4738
4739         /* Finally, we enable the DMA remapping hardware. */
4740         for_each_iommu(iommu, drhd) {
4741                 if (!drhd->ignored && !translation_pre_enabled(iommu))
4742                         iommu_enable_translation(iommu);
4743
4744                 iommu_disable_protect_mem_regions(iommu);
4745         }
4746         pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4747
4748         intel_iommu_enabled = 1;
4749         intel_iommu_debugfs_init();
4750
4751         return 0;
4752
4753 out_free_reserved_range:
4754         put_iova_domain(&reserved_iova_list);
4755 out_free_dmar:
4756         intel_iommu_free_dmars();
4757         up_write(&dmar_global_lock);
4758         iommu_exit_mempool();
4759         return ret;
4760 }
4761
4762 static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4763 {
4764         struct dmar_domain *domain;
4765         struct intel_iommu *iommu;
4766         unsigned long flags;
4767
4768         assert_spin_locked(&device_domain_lock);
4769
4770         if (WARN_ON(!info))
4771                 return;
4772
4773         iommu = info->iommu;
4774         domain = info->domain;
4775
4776         if (info->dev) {
4777                 if (dev_is_pci(info->dev) && sm_supported(iommu))
4778                         intel_pasid_tear_down_entry(iommu, info->dev,
4779                                         PASID_RID2PASID);
4780
4781                 iommu_disable_dev_iotlb(info);
4782                 domain_context_clear_one(iommu, info->bus, info->devfn);
4783                 intel_pasid_free_table(info->dev);
4784         }
4785
4786         unlink_domain_info(info);
4787
4788         spin_lock_irqsave(&iommu->lock, flags);
4789         domain_detach_iommu(domain, iommu);
4790         spin_unlock_irqrestore(&iommu->lock, flags);
4791
4792         /* free the private domain */
4793         if (domain->flags & DOMAIN_FLAG_LOSE_CHILDREN &&
4794             !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
4795             list_empty(&domain->devices))
4796                 domain_exit(info->domain);
4797
4798         free_devinfo_mem(info);
4799 }
4800
4801 static void dmar_remove_one_dev_info(struct device *dev)
4802 {
4803         struct device_domain_info *info;
4804         unsigned long flags;
4805
4806         spin_lock_irqsave(&device_domain_lock, flags);
4807         info = dev->archdata.iommu;
4808         if (info)
4809                 __dmar_remove_one_dev_info(info);
4810         spin_unlock_irqrestore(&device_domain_lock, flags);
4811 }
4812
4813 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4814 {
4815         int adjust_width;
4816
4817         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
4818         domain_reserve_special_ranges(domain);
4819
4820         /* calculate AGAW */
4821         domain->gaw = guest_width;
4822         adjust_width = guestwidth_to_adjustwidth(guest_width);
4823         domain->agaw = width_to_agaw(adjust_width);
4824
4825         domain->iommu_coherency = 0;
4826         domain->iommu_snooping = 0;
4827         domain->iommu_superpage = 0;
4828         domain->max_addr = 0;
4829
4830         /* always allocate the top pgd */
4831         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4832         if (!domain->pgd)
4833                 return -ENOMEM;
4834         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4835         return 0;
4836 }
4837
4838 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4839 {
4840         struct dmar_domain *dmar_domain;
4841         struct iommu_domain *domain;
4842
4843         switch (type) {
4844         case IOMMU_DOMAIN_DMA:
4845         /* fallthrough */
4846         case IOMMU_DOMAIN_UNMANAGED:
4847                 dmar_domain = alloc_domain(0);
4848                 if (!dmar_domain) {
4849                         pr_err("Can't allocate dmar_domain\n");
4850                         return NULL;
4851                 }
4852                 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4853                         pr_err("Domain initialization failed\n");
4854                         domain_exit(dmar_domain);
4855                         return NULL;
4856                 }
4857
4858                 if (type == IOMMU_DOMAIN_DMA &&
4859                     init_iova_flush_queue(&dmar_domain->iovad,
4860                                           iommu_flush_iova, iova_entry_free)) {
4861                         pr_warn("iova flush queue initialization failed\n");
4862                         intel_iommu_strict = 1;
4863                 }
4864
4865                 domain_update_iommu_cap(dmar_domain);
4866
4867                 domain = &dmar_domain->domain;
4868                 domain->geometry.aperture_start = 0;
4869                 domain->geometry.aperture_end   =
4870                                 __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4871                 domain->geometry.force_aperture = true;
4872
4873                 return domain;
4874         case IOMMU_DOMAIN_IDENTITY:
4875                 return &si_domain->domain;
4876         default:
4877                 return NULL;
4878         }
4879
4880         return NULL;
4881 }
4882
4883 static void intel_iommu_domain_free(struct iommu_domain *domain)
4884 {
4885         if (domain != &si_domain->domain)
4886                 domain_exit(to_dmar_domain(domain));
4887 }
4888
4889 /*
4890  * Check whether a @domain could be attached to the @dev through the
4891  * aux-domain attach/detach APIs.
4892  */
4893 static inline bool
4894 is_aux_domain(struct device *dev, struct iommu_domain *domain)
4895 {
4896         struct device_domain_info *info = dev->archdata.iommu;
4897
4898         return info && info->auxd_enabled &&
4899                         domain->type == IOMMU_DOMAIN_UNMANAGED;
4900 }
4901
4902 static void auxiliary_link_device(struct dmar_domain *domain,
4903                                   struct device *dev)
4904 {
4905         struct device_domain_info *info = dev->archdata.iommu;
4906
4907         assert_spin_locked(&device_domain_lock);
4908         if (WARN_ON(!info))
4909                 return;
4910
4911         domain->auxd_refcnt++;
4912         list_add(&domain->auxd, &info->auxiliary_domains);
4913 }
4914
4915 static void auxiliary_unlink_device(struct dmar_domain *domain,
4916                                     struct device *dev)
4917 {
4918         struct device_domain_info *info = dev->archdata.iommu;
4919
4920         assert_spin_locked(&device_domain_lock);
4921         if (WARN_ON(!info))
4922                 return;
4923
4924         list_del(&domain->auxd);
4925         domain->auxd_refcnt--;
4926
4927         if (!domain->auxd_refcnt && domain->default_pasid > 0)
4928                 intel_pasid_free_id(domain->default_pasid);
4929 }
4930
4931 static int aux_domain_add_dev(struct dmar_domain *domain,
4932                               struct device *dev)
4933 {
4934         int ret;
4935         u8 bus, devfn;
4936         unsigned long flags;
4937         struct intel_iommu *iommu;
4938
4939         iommu = device_to_iommu(dev, &bus, &devfn);
4940         if (!iommu)
4941                 return -ENODEV;
4942
4943         if (domain->default_pasid <= 0) {
4944                 int pasid;
4945
4946                 pasid = intel_pasid_alloc_id(domain, PASID_MIN,
4947                                              pci_max_pasids(to_pci_dev(dev)),
4948                                              GFP_KERNEL);
4949                 if (pasid <= 0) {
4950                         pr_err("Can't allocate default pasid\n");
4951                         return -ENODEV;
4952                 }
4953                 domain->default_pasid = pasid;
4954         }
4955
4956         spin_lock_irqsave(&device_domain_lock, flags);
4957         /*
4958          * iommu->lock must be held to attach domain to iommu and setup the
4959          * pasid entry for second level translation.
4960          */
4961         spin_lock(&iommu->lock);
4962         ret = domain_attach_iommu(domain, iommu);
4963         if (ret)
4964                 goto attach_failed;
4965
4966         /* Setup the PASID entry for mediated devices: */
4967         ret = intel_pasid_setup_second_level(iommu, domain, dev,
4968                                              domain->default_pasid);
4969         if (ret)
4970                 goto table_failed;
4971         spin_unlock(&iommu->lock);
4972
4973         auxiliary_link_device(domain, dev);
4974
4975         spin_unlock_irqrestore(&device_domain_lock, flags);
4976
4977         return 0;
4978
4979 table_failed:
4980         domain_detach_iommu(domain, iommu);
4981 attach_failed:
4982         spin_unlock(&iommu->lock);
4983         spin_unlock_irqrestore(&device_domain_lock, flags);
4984         if (!domain->auxd_refcnt && domain->default_pasid > 0)
4985                 intel_pasid_free_id(domain->default_pasid);
4986
4987         return ret;
4988 }
4989
4990 static void aux_domain_remove_dev(struct dmar_domain *domain,
4991                                   struct device *dev)
4992 {
4993         struct device_domain_info *info;
4994         struct intel_iommu *iommu;
4995         unsigned long flags;
4996
4997         if (!is_aux_domain(dev, &domain->domain))
4998                 return;
4999
5000         spin_lock_irqsave(&device_domain_lock, flags);
5001         info = dev->archdata.iommu;
5002         iommu = info->iommu;
5003
5004         auxiliary_unlink_device(domain, dev);
5005
5006         spin_lock(&iommu->lock);
5007         intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid);
5008         domain_detach_iommu(domain, iommu);
5009         spin_unlock(&iommu->lock);
5010
5011         spin_unlock_irqrestore(&device_domain_lock, flags);
5012 }
5013
5014 static int prepare_domain_attach_device(struct iommu_domain *domain,
5015                                         struct device *dev)
5016 {
5017         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5018         struct intel_iommu *iommu;
5019         int addr_width;
5020         u8 bus, devfn;
5021
5022         iommu = device_to_iommu(dev, &bus, &devfn);
5023         if (!iommu)
5024                 return -ENODEV;
5025
5026         /* check if this iommu agaw is sufficient for max mapped address */
5027         addr_width = agaw_to_width(iommu->agaw);
5028         if (addr_width > cap_mgaw(iommu->cap))
5029                 addr_width = cap_mgaw(iommu->cap);
5030
5031         if (dmar_domain->max_addr > (1LL << addr_width)) {
5032                 dev_err(dev, "%s: iommu width (%d) is not "
5033                         "sufficient for the mapped address (%llx)\n",
5034                         __func__, addr_width, dmar_domain->max_addr);
5035                 return -EFAULT;
5036         }
5037         dmar_domain->gaw = addr_width;
5038
5039         /*
5040          * Knock out extra levels of page tables if necessary
5041          */
5042         while (iommu->agaw < dmar_domain->agaw) {
5043                 struct dma_pte *pte;
5044
5045                 pte = dmar_domain->pgd;
5046                 if (dma_pte_present(pte)) {
5047                         dmar_domain->pgd = (struct dma_pte *)
5048                                 phys_to_virt(dma_pte_addr(pte));
5049                         free_pgtable_page(pte);
5050                 }
5051                 dmar_domain->agaw--;
5052         }
5053
5054         return 0;
5055 }
5056
5057 static int intel_iommu_attach_device(struct iommu_domain *domain,
5058                                      struct device *dev)
5059 {
5060         int ret;
5061
5062         if (domain->type == IOMMU_DOMAIN_UNMANAGED &&
5063             device_is_rmrr_locked(dev)) {
5064                 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
5065                 return -EPERM;
5066         }
5067
5068         if (is_aux_domain(dev, domain))
5069                 return -EPERM;
5070
5071         /* normally dev is not mapped */
5072         if (unlikely(domain_context_mapped(dev))) {
5073                 struct dmar_domain *old_domain;
5074
5075                 old_domain = find_domain(dev);
5076                 if (old_domain)
5077                         dmar_remove_one_dev_info(dev);
5078         }
5079
5080         ret = prepare_domain_attach_device(domain, dev);
5081         if (ret)
5082                 return ret;
5083
5084         return domain_add_dev_info(to_dmar_domain(domain), dev);
5085 }
5086
5087 static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
5088                                          struct device *dev)
5089 {
5090         int ret;
5091
5092         if (!is_aux_domain(dev, domain))
5093                 return -EPERM;
5094
5095         ret = prepare_domain_attach_device(domain, dev);
5096         if (ret)
5097                 return ret;
5098
5099         return aux_domain_add_dev(to_dmar_domain(domain), dev);
5100 }
5101
5102 static void intel_iommu_detach_device(struct iommu_domain *domain,
5103                                       struct device *dev)
5104 {
5105         dmar_remove_one_dev_info(dev);
5106 }
5107
5108 static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
5109                                           struct device *dev)
5110 {
5111         aux_domain_remove_dev(to_dmar_domain(domain), dev);
5112 }
5113
5114 static int intel_iommu_map(struct iommu_domain *domain,
5115                            unsigned long iova, phys_addr_t hpa,
5116                            size_t size, int iommu_prot)
5117 {
5118         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5119         u64 max_addr;
5120         int prot = 0;
5121         int ret;
5122
5123         if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
5124                 return -EINVAL;
5125
5126         if (iommu_prot & IOMMU_READ)
5127                 prot |= DMA_PTE_READ;
5128         if (iommu_prot & IOMMU_WRITE)
5129                 prot |= DMA_PTE_WRITE;
5130         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5131                 prot |= DMA_PTE_SNP;
5132
5133         max_addr = iova + size;
5134         if (dmar_domain->max_addr < max_addr) {
5135                 u64 end;
5136
5137                 /* check if minimum agaw is sufficient for mapped address */
5138                 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5139                 if (end < max_addr) {
5140                         pr_err("%s: iommu width (%d) is not "
5141                                "sufficient for the mapped address (%llx)\n",
5142                                __func__, dmar_domain->gaw, max_addr);
5143                         return -EFAULT;
5144                 }
5145                 dmar_domain->max_addr = max_addr;
5146         }
5147         /* Round up size to next multiple of PAGE_SIZE, if it and
5148            the low bits of hpa would take us onto the next page */
5149         size = aligned_nrpages(hpa, size);
5150         ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5151                                  hpa >> VTD_PAGE_SHIFT, size, prot);
5152         return ret;
5153 }
5154
5155 static size_t intel_iommu_unmap(struct iommu_domain *domain,
5156                                 unsigned long iova, size_t size)
5157 {
5158         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5159         struct page *freelist = NULL;
5160         unsigned long start_pfn, last_pfn;
5161         unsigned int npages;
5162         int iommu_id, level = 0;
5163
5164         /* Cope with horrid API which requires us to unmap more than the
5165            size argument if it happens to be a large-page mapping. */
5166         BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5167         if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
5168                 return 0;
5169
5170         if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5171                 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5172
5173         start_pfn = iova >> VTD_PAGE_SHIFT;
5174         last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5175
5176         freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5177
5178         npages = last_pfn - start_pfn + 1;
5179
5180         for_each_domain_iommu(iommu_id, dmar_domain)
5181                 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5182                                       start_pfn, npages, !freelist, 0);
5183
5184         dma_free_pagelist(freelist);
5185
5186         if (dmar_domain->max_addr == iova + size)
5187                 dmar_domain->max_addr = iova;
5188
5189         return size;
5190 }
5191
5192 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5193                                             dma_addr_t iova)
5194 {
5195         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5196         struct dma_pte *pte;
5197         int level = 0;
5198         u64 phys = 0;
5199
5200         if (dmar_domain->flags & DOMAIN_FLAG_LOSE_CHILDREN)
5201                 return 0;
5202
5203         pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5204         if (pte)
5205                 phys = dma_pte_addr(pte);
5206
5207         return phys;
5208 }
5209
5210 static inline bool scalable_mode_support(void)
5211 {
5212         struct dmar_drhd_unit *drhd;
5213         struct intel_iommu *iommu;
5214         bool ret = true;
5215
5216         rcu_read_lock();
5217         for_each_active_iommu(iommu, drhd) {
5218                 if (!sm_supported(iommu)) {
5219                         ret = false;
5220                         break;
5221                 }
5222         }
5223         rcu_read_unlock();
5224
5225         return ret;
5226 }
5227
5228 static inline bool iommu_pasid_support(void)
5229 {
5230         struct dmar_drhd_unit *drhd;
5231         struct intel_iommu *iommu;
5232         bool ret = true;
5233
5234         rcu_read_lock();
5235         for_each_active_iommu(iommu, drhd) {
5236                 if (!pasid_supported(iommu)) {
5237                         ret = false;
5238                         break;
5239                 }
5240         }
5241         rcu_read_unlock();
5242
5243         return ret;
5244 }
5245
5246 static bool intel_iommu_capable(enum iommu_cap cap)
5247 {
5248         if (cap == IOMMU_CAP_CACHE_COHERENCY)
5249                 return domain_update_iommu_snooping(NULL) == 1;
5250         if (cap == IOMMU_CAP_INTR_REMAP)
5251                 return irq_remapping_enabled == 1;
5252
5253         return false;
5254 }
5255
5256 static int intel_iommu_add_device(struct device *dev)
5257 {
5258         struct dmar_domain *dmar_domain;
5259         struct iommu_domain *domain;
5260         struct intel_iommu *iommu;
5261         struct iommu_group *group;
5262         u8 bus, devfn;
5263         int ret;
5264
5265         iommu = device_to_iommu(dev, &bus, &devfn);
5266         if (!iommu)
5267                 return -ENODEV;
5268
5269         iommu_device_link(&iommu->iommu, dev);
5270
5271         if (translation_pre_enabled(iommu))
5272                 dev->archdata.iommu = DEFER_DEVICE_DOMAIN_INFO;
5273
5274         group = iommu_group_get_for_dev(dev);
5275
5276         if (IS_ERR(group))
5277                 return PTR_ERR(group);
5278
5279         iommu_group_put(group);
5280
5281         domain = iommu_get_domain_for_dev(dev);
5282         dmar_domain = to_dmar_domain(domain);
5283         if (domain->type == IOMMU_DOMAIN_DMA) {
5284                 if (device_def_domain_type(dev) == IOMMU_DOMAIN_IDENTITY) {
5285                         ret = iommu_request_dm_for_dev(dev);
5286                         if (ret) {
5287                                 dmar_remove_one_dev_info(dev);
5288                                 dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
5289                                 domain_add_dev_info(si_domain, dev);
5290                                 dev_info(dev,
5291                                          "Device uses a private identity domain.\n");
5292                         }
5293                 }
5294         } else {
5295                 if (device_def_domain_type(dev) == IOMMU_DOMAIN_DMA) {
5296                         ret = iommu_request_dma_domain_for_dev(dev);
5297                         if (ret) {
5298                                 dmar_remove_one_dev_info(dev);
5299                                 dmar_domain->flags |= DOMAIN_FLAG_LOSE_CHILDREN;
5300                                 if (!get_private_domain_for_dev(dev)) {
5301                                         dev_warn(dev,
5302                                                  "Failed to get a private domain.\n");
5303                                         return -ENOMEM;
5304                                 }
5305
5306                                 dev_info(dev,
5307                                          "Device uses a private dma domain.\n");
5308                         }
5309                 }
5310         }
5311
5312         return 0;
5313 }
5314
5315 static void intel_iommu_remove_device(struct device *dev)
5316 {
5317         struct intel_iommu *iommu;
5318         u8 bus, devfn;
5319
5320         iommu = device_to_iommu(dev, &bus, &devfn);
5321         if (!iommu)
5322                 return;
5323
5324         dmar_remove_one_dev_info(dev);
5325
5326         iommu_group_remove_device(dev);
5327
5328         iommu_device_unlink(&iommu->iommu, dev);
5329 }
5330
5331 static void intel_iommu_get_resv_regions(struct device *device,
5332                                          struct list_head *head)
5333 {
5334         int prot = DMA_PTE_READ | DMA_PTE_WRITE;
5335         struct iommu_resv_region *reg;
5336         struct dmar_rmrr_unit *rmrr;
5337         struct device *i_dev;
5338         int i;
5339
5340         down_read(&dmar_global_lock);
5341         for_each_rmrr_units(rmrr) {
5342                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
5343                                           i, i_dev) {
5344                         struct iommu_resv_region *resv;
5345                         enum iommu_resv_type type;
5346                         size_t length;
5347
5348                         if (i_dev != device &&
5349                             !is_downstream_to_pci_bridge(device, i_dev))
5350                                 continue;
5351
5352                         length = rmrr->end_address - rmrr->base_address + 1;
5353
5354                         type = device_rmrr_is_relaxable(device) ?
5355                                 IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;
5356
5357                         resv = iommu_alloc_resv_region(rmrr->base_address,
5358                                                        length, prot, type);
5359                         if (!resv)
5360                                 break;
5361
5362                         list_add_tail(&resv->list, head);
5363                 }
5364         }
5365         up_read(&dmar_global_lock);
5366
5367 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
5368         if (dev_is_pci(device)) {
5369                 struct pci_dev *pdev = to_pci_dev(device);
5370
5371                 if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
5372                         reg = iommu_alloc_resv_region(0, 1UL << 24, 0,
5373                                                       IOMMU_RESV_DIRECT);
5374                         if (reg)
5375                                 list_add_tail(&reg->list, head);
5376                 }
5377         }
5378 #endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */
5379
5380         reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
5381                                       IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5382                                       0, IOMMU_RESV_MSI);
5383         if (!reg)
5384                 return;
5385         list_add_tail(&reg->list, head);
5386 }
5387
5388 static void intel_iommu_put_resv_regions(struct device *dev,
5389                                          struct list_head *head)
5390 {
5391         struct iommu_resv_region *entry, *next;
5392
5393         list_for_each_entry_safe(entry, next, head, list)
5394                 kfree(entry);
5395 }
5396
5397 int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
5398 {
5399         struct device_domain_info *info;
5400         struct context_entry *context;
5401         struct dmar_domain *domain;
5402         unsigned long flags;
5403         u64 ctx_lo;
5404         int ret;
5405
5406         domain = find_domain(dev);
5407         if (!domain)
5408                 return -EINVAL;
5409
5410         spin_lock_irqsave(&device_domain_lock, flags);
5411         spin_lock(&iommu->lock);
5412
5413         ret = -EINVAL;
5414         info = dev->archdata.iommu;
5415         if (!info || !info->pasid_supported)
5416                 goto out;
5417
5418         context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5419         if (WARN_ON(!context))
5420                 goto out;
5421
5422         ctx_lo = context[0].lo;
5423
5424         if (!(ctx_lo & CONTEXT_PASIDE)) {
5425                 ctx_lo |= CONTEXT_PASIDE;
5426                 context[0].lo = ctx_lo;
5427                 wmb();
5428                 iommu->flush.flush_context(iommu,
5429                                            domain->iommu_did[iommu->seq_id],
5430                                            PCI_DEVID(info->bus, info->devfn),
5431                                            DMA_CCMD_MASK_NOBIT,
5432                                            DMA_CCMD_DEVICE_INVL);
5433         }
5434
5435         /* Enable PASID support in the device, if it wasn't already */
5436         if (!info->pasid_enabled)
5437                 iommu_enable_dev_iotlb(info);
5438
5439         ret = 0;
5440
5441  out:
5442         spin_unlock(&iommu->lock);
5443         spin_unlock_irqrestore(&device_domain_lock, flags);
5444
5445         return ret;
5446 }
5447
5448 static void intel_iommu_apply_resv_region(struct device *dev,
5449                                           struct iommu_domain *domain,
5450                                           struct iommu_resv_region *region)
5451 {
5452         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5453         unsigned long start, end;
5454
5455         start = IOVA_PFN(region->start);
5456         end   = IOVA_PFN(region->start + region->length - 1);
5457
5458         WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end));
5459 }
5460
5461 #ifdef CONFIG_INTEL_IOMMU_SVM
5462 struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5463 {
5464         struct intel_iommu *iommu;
5465         u8 bus, devfn;
5466
5467         if (iommu_dummy(dev)) {
5468                 dev_warn(dev,
5469                          "No IOMMU translation for device; cannot enable SVM\n");
5470                 return NULL;
5471         }
5472
5473         iommu = device_to_iommu(dev, &bus, &devfn);
5474         if ((!iommu)) {
5475                 dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5476                 return NULL;
5477         }
5478
5479         return iommu;
5480 }
5481 #endif /* CONFIG_INTEL_IOMMU_SVM */
5482
5483 static int intel_iommu_enable_auxd(struct device *dev)
5484 {
5485         struct device_domain_info *info;
5486         struct intel_iommu *iommu;
5487         unsigned long flags;
5488         u8 bus, devfn;
5489         int ret;
5490
5491         iommu = device_to_iommu(dev, &bus, &devfn);
5492         if (!iommu || dmar_disabled)
5493                 return -EINVAL;
5494
5495         if (!sm_supported(iommu) || !pasid_supported(iommu))
5496                 return -EINVAL;
5497
5498         ret = intel_iommu_enable_pasid(iommu, dev);
5499         if (ret)
5500                 return -ENODEV;
5501
5502         spin_lock_irqsave(&device_domain_lock, flags);
5503         info = dev->archdata.iommu;
5504         info->auxd_enabled = 1;
5505         spin_unlock_irqrestore(&device_domain_lock, flags);
5506
5507         return 0;
5508 }
5509
5510 static int intel_iommu_disable_auxd(struct device *dev)
5511 {
5512         struct device_domain_info *info;
5513         unsigned long flags;
5514
5515         spin_lock_irqsave(&device_domain_lock, flags);
5516         info = dev->archdata.iommu;
5517         if (!WARN_ON(!info))
5518                 info->auxd_enabled = 0;
5519         spin_unlock_irqrestore(&device_domain_lock, flags);
5520
5521         return 0;
5522 }
5523
5524 /*
5525  * A PCI express designated vendor specific extended capability is defined
5526  * in the section 3.7 of Intel scalable I/O virtualization technical spec
5527  * for system software and tools to detect endpoint devices supporting the
5528  * Intel scalable IO virtualization without host driver dependency.
5529  *
5530  * Returns the address of the matching extended capability structure within
5531  * the device's PCI configuration space or 0 if the device does not support
5532  * it.
5533  */
5534 static int siov_find_pci_dvsec(struct pci_dev *pdev)
5535 {
5536         int pos;
5537         u16 vendor, id;
5538
5539         pos = pci_find_next_ext_capability(pdev, 0, 0x23);
5540         while (pos) {
5541                 pci_read_config_word(pdev, pos + 4, &vendor);
5542                 pci_read_config_word(pdev, pos + 8, &id);
5543                 if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
5544                         return pos;
5545
5546                 pos = pci_find_next_ext_capability(pdev, pos, 0x23);
5547         }
5548
5549         return 0;
5550 }
5551
5552 static bool
5553 intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
5554 {
5555         if (feat == IOMMU_DEV_FEAT_AUX) {
5556                 int ret;
5557
5558                 if (!dev_is_pci(dev) || dmar_disabled ||
5559                     !scalable_mode_support() || !iommu_pasid_support())
5560                         return false;
5561
5562                 ret = pci_pasid_features(to_pci_dev(dev));
5563                 if (ret < 0)
5564                         return false;
5565
5566                 return !!siov_find_pci_dvsec(to_pci_dev(dev));
5567         }
5568
5569         return false;
5570 }
5571
5572 static int
5573 intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
5574 {
5575         if (feat == IOMMU_DEV_FEAT_AUX)
5576                 return intel_iommu_enable_auxd(dev);
5577
5578         return -ENODEV;
5579 }
5580
5581 static int
5582 intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
5583 {
5584         if (feat == IOMMU_DEV_FEAT_AUX)
5585                 return intel_iommu_disable_auxd(dev);
5586
5587         return -ENODEV;
5588 }
5589
5590 static bool
5591 intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
5592 {
5593         struct device_domain_info *info = dev->archdata.iommu;
5594
5595         if (feat == IOMMU_DEV_FEAT_AUX)
5596                 return scalable_mode_support() && info && info->auxd_enabled;
5597
5598         return false;
5599 }
5600
5601 static int
5602 intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
5603 {
5604         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5605
5606         return dmar_domain->default_pasid > 0 ?
5607                         dmar_domain->default_pasid : -EINVAL;
5608 }
5609
5610 static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain,
5611                                            struct device *dev)
5612 {
5613         return dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO;
5614 }
5615
5616 const struct iommu_ops intel_iommu_ops = {
5617         .capable                = intel_iommu_capable,
5618         .domain_alloc           = intel_iommu_domain_alloc,
5619         .domain_free            = intel_iommu_domain_free,
5620         .attach_dev             = intel_iommu_attach_device,
5621         .detach_dev             = intel_iommu_detach_device,
5622         .aux_attach_dev         = intel_iommu_aux_attach_device,
5623         .aux_detach_dev         = intel_iommu_aux_detach_device,
5624         .aux_get_pasid          = intel_iommu_aux_get_pasid,
5625         .map                    = intel_iommu_map,
5626         .unmap                  = intel_iommu_unmap,
5627         .iova_to_phys           = intel_iommu_iova_to_phys,
5628         .add_device             = intel_iommu_add_device,
5629         .remove_device          = intel_iommu_remove_device,
5630         .get_resv_regions       = intel_iommu_get_resv_regions,
5631         .put_resv_regions       = intel_iommu_put_resv_regions,
5632         .apply_resv_region      = intel_iommu_apply_resv_region,
5633         .device_group           = pci_device_group,
5634         .dev_has_feat           = intel_iommu_dev_has_feat,
5635         .dev_feat_enabled       = intel_iommu_dev_feat_enabled,
5636         .dev_enable_feat        = intel_iommu_dev_enable_feat,
5637         .dev_disable_feat       = intel_iommu_dev_disable_feat,
5638         .is_attach_deferred     = intel_iommu_is_attach_deferred,
5639         .pgsize_bitmap          = INTEL_IOMMU_PGSIZES,
5640 };
5641
5642 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
5643 {
5644         /* G4x/GM45 integrated gfx dmar support is totally busted. */
5645         pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
5646         dmar_map_gfx = 0;
5647 }
5648
5649 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
5650 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
5651 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
5652 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
5653 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
5654 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
5655 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
5656
5657 static void quirk_iommu_rwbf(struct pci_dev *dev)
5658 {
5659         /*
5660          * Mobile 4 Series Chipset neglects to set RWBF capability,
5661          * but needs it. Same seems to hold for the desktop versions.
5662          */
5663         pci_info(dev, "Forcing write-buffer flush capability\n");
5664         rwbf_quirk = 1;
5665 }
5666
5667 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5668 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
5669 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
5670 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
5671 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
5672 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
5673 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5674
5675 #define GGC 0x52
5676 #define GGC_MEMORY_SIZE_MASK    (0xf << 8)
5677 #define GGC_MEMORY_SIZE_NONE    (0x0 << 8)
5678 #define GGC_MEMORY_SIZE_1M      (0x1 << 8)
5679 #define GGC_MEMORY_SIZE_2M      (0x3 << 8)
5680 #define GGC_MEMORY_VT_ENABLED   (0x8 << 8)
5681 #define GGC_MEMORY_SIZE_2M_VT   (0x9 << 8)
5682 #define GGC_MEMORY_SIZE_3M_VT   (0xa << 8)
5683 #define GGC_MEMORY_SIZE_4M_VT   (0xb << 8)
5684
5685 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5686 {
5687         unsigned short ggc;
5688
5689         if (pci_read_config_word(dev, GGC, &ggc))
5690                 return;
5691
5692         if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5693                 pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5694                 dmar_map_gfx = 0;
5695         } else if (dmar_map_gfx) {
5696                 /* we have to ensure the gfx device is idle before we flush */
5697                 pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
5698                 intel_iommu_strict = 1;
5699        }
5700 }
5701 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
5702 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
5703 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
5704 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
5705
5706 /* On Tylersburg chipsets, some BIOSes have been known to enable the
5707    ISOCH DMAR unit for the Azalia sound device, but not give it any
5708    TLB entries, which causes it to deadlock. Check for that.  We do
5709    this in a function called from init_dmars(), instead of in a PCI
5710    quirk, because we don't want to print the obnoxious "BIOS broken"
5711    message if VT-d is actually disabled.
5712 */
5713 static void __init check_tylersburg_isoch(void)
5714 {
5715         struct pci_dev *pdev;
5716         uint32_t vtisochctrl;
5717
5718         /* If there's no Azalia in the system anyway, forget it. */
5719         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
5720         if (!pdev)
5721                 return;
5722         pci_dev_put(pdev);
5723
5724         /* System Management Registers. Might be hidden, in which case
5725            we can't do the sanity check. But that's OK, because the
5726            known-broken BIOSes _don't_ actually hide it, so far. */
5727         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5728         if (!pdev)
5729                 return;
5730
5731         if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5732                 pci_dev_put(pdev);
5733                 return;
5734         }
5735
5736         pci_dev_put(pdev);
5737
5738         /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5739         if (vtisochctrl & 1)
5740                 return;
5741
5742         /* Drop all bits other than the number of TLB entries */
5743         vtisochctrl &= 0x1c;
5744
5745         /* If we have the recommended number of TLB entries (16), fine. */
5746         if (vtisochctrl == 0x10)
5747                 return;
5748
5749         /* Zero TLB entries? You get to ride the short bus to school. */
5750         if (!vtisochctrl) {
5751                 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5752                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5753                      dmi_get_system_info(DMI_BIOS_VENDOR),
5754                      dmi_get_system_info(DMI_BIOS_VERSION),
5755                      dmi_get_system_info(DMI_PRODUCT_VERSION));
5756                 iommu_identity_mapping |= IDENTMAP_AZALIA;
5757                 return;
5758         }
5759
5760         pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5761                vtisochctrl);
5762 }