dma-mapping: use unsigned long for dma_attrs
[sfrench/cifs-2.6.git] / drivers / iommu / intel-iommu.c
1 /*
2  * Copyright © 2006-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * Authors: David Woodhouse <dwmw2@infradead.org>,
14  *          Ashok Raj <ashok.raj@intel.com>,
15  *          Shaohua Li <shaohua.li@intel.com>,
16  *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17  *          Fenghua Yu <fenghua.yu@intel.com>
18  *          Joerg Roedel <jroedel@suse.de>
19  */
20
21 #define pr_fmt(fmt)     "DMAR: " fmt
22
23 #include <linux/init.h>
24 #include <linux/bitmap.h>
25 #include <linux/debugfs.h>
26 #include <linux/export.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/memory.h>
36 #include <linux/cpu.h>
37 #include <linux/timer.h>
38 #include <linux/io.h>
39 #include <linux/iova.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/tboot.h>
44 #include <linux/dmi.h>
45 #include <linux/pci-ats.h>
46 #include <linux/memblock.h>
47 #include <linux/dma-contiguous.h>
48 #include <linux/crash_dump.h>
49 #include <asm/irq_remapping.h>
50 #include <asm/cacheflush.h>
51 #include <asm/iommu.h>
52
53 #include "irq_remapping.h"
54
55 #define ROOT_SIZE               VTD_PAGE_SIZE
56 #define CONTEXT_SIZE            VTD_PAGE_SIZE
57
58 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
59 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
60 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
61 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
62
63 #define IOAPIC_RANGE_START      (0xfee00000)
64 #define IOAPIC_RANGE_END        (0xfeefffff)
65 #define IOVA_START_ADDR         (0x1000)
66
67 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
68
69 #define MAX_AGAW_WIDTH 64
70 #define MAX_AGAW_PFN_WIDTH      (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
71
72 #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
73 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
74
75 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
76    to match. That way, we can use 'unsigned long' for PFNs with impunity. */
77 #define DOMAIN_MAX_PFN(gaw)     ((unsigned long) min_t(uint64_t, \
78                                 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
79 #define DOMAIN_MAX_ADDR(gaw)    (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
80
81 /* IO virtual address start page frame number */
82 #define IOVA_START_PFN          (1)
83
84 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
85 #define DMA_32BIT_PFN           IOVA_PFN(DMA_BIT_MASK(32))
86 #define DMA_64BIT_PFN           IOVA_PFN(DMA_BIT_MASK(64))
87
88 /* page table handling */
89 #define LEVEL_STRIDE            (9)
90 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
91
92 /*
93  * This bitmap is used to advertise the page sizes our hardware support
94  * to the IOMMU core, which will then use this information to split
95  * physically contiguous memory regions it is mapping into page sizes
96  * that we support.
97  *
98  * Traditionally the IOMMU core just handed us the mappings directly,
99  * after making sure the size is an order of a 4KiB page and that the
100  * mapping has natural alignment.
101  *
102  * To retain this behavior, we currently advertise that we support
103  * all page sizes that are an order of 4KiB.
104  *
105  * If at some point we'd like to utilize the IOMMU core's new behavior,
106  * we could change this to advertise the real page sizes we support.
107  */
108 #define INTEL_IOMMU_PGSIZES     (~0xFFFUL)
109
110 static inline int agaw_to_level(int agaw)
111 {
112         return agaw + 2;
113 }
114
115 static inline int agaw_to_width(int agaw)
116 {
117         return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
118 }
119
120 static inline int width_to_agaw(int width)
121 {
122         return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
123 }
124
125 static inline unsigned int level_to_offset_bits(int level)
126 {
127         return (level - 1) * LEVEL_STRIDE;
128 }
129
130 static inline int pfn_level_offset(unsigned long pfn, int level)
131 {
132         return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
133 }
134
135 static inline unsigned long level_mask(int level)
136 {
137         return -1UL << level_to_offset_bits(level);
138 }
139
140 static inline unsigned long level_size(int level)
141 {
142         return 1UL << level_to_offset_bits(level);
143 }
144
145 static inline unsigned long align_to_level(unsigned long pfn, int level)
146 {
147         return (pfn + level_size(level) - 1) & level_mask(level);
148 }
149
150 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
151 {
152         return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
153 }
154
155 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
156    are never going to work. */
157 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
158 {
159         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
160 }
161
162 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
163 {
164         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
165 }
166 static inline unsigned long page_to_dma_pfn(struct page *pg)
167 {
168         return mm_to_dma_pfn(page_to_pfn(pg));
169 }
170 static inline unsigned long virt_to_dma_pfn(void *p)
171 {
172         return page_to_dma_pfn(virt_to_page(p));
173 }
174
175 /* global iommu list, set NULL for ignored DMAR units */
176 static struct intel_iommu **g_iommus;
177
178 static void __init check_tylersburg_isoch(void);
179 static int rwbf_quirk;
180
181 /*
182  * set to 1 to panic kernel if can't successfully enable VT-d
183  * (used when kernel is launched w/ TXT)
184  */
185 static int force_on = 0;
186
187 /*
188  * 0: Present
189  * 1-11: Reserved
190  * 12-63: Context Ptr (12 - (haw-1))
191  * 64-127: Reserved
192  */
193 struct root_entry {
194         u64     lo;
195         u64     hi;
196 };
197 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
198
199 /*
200  * Take a root_entry and return the Lower Context Table Pointer (LCTP)
201  * if marked present.
202  */
203 static phys_addr_t root_entry_lctp(struct root_entry *re)
204 {
205         if (!(re->lo & 1))
206                 return 0;
207
208         return re->lo & VTD_PAGE_MASK;
209 }
210
211 /*
212  * Take a root_entry and return the Upper Context Table Pointer (UCTP)
213  * if marked present.
214  */
215 static phys_addr_t root_entry_uctp(struct root_entry *re)
216 {
217         if (!(re->hi & 1))
218                 return 0;
219
220         return re->hi & VTD_PAGE_MASK;
221 }
222 /*
223  * low 64 bits:
224  * 0: present
225  * 1: fault processing disable
226  * 2-3: translation type
227  * 12-63: address space root
228  * high 64 bits:
229  * 0-2: address width
230  * 3-6: aval
231  * 8-23: domain id
232  */
233 struct context_entry {
234         u64 lo;
235         u64 hi;
236 };
237
238 static inline void context_clear_pasid_enable(struct context_entry *context)
239 {
240         context->lo &= ~(1ULL << 11);
241 }
242
243 static inline bool context_pasid_enabled(struct context_entry *context)
244 {
245         return !!(context->lo & (1ULL << 11));
246 }
247
248 static inline void context_set_copied(struct context_entry *context)
249 {
250         context->hi |= (1ull << 3);
251 }
252
253 static inline bool context_copied(struct context_entry *context)
254 {
255         return !!(context->hi & (1ULL << 3));
256 }
257
258 static inline bool __context_present(struct context_entry *context)
259 {
260         return (context->lo & 1);
261 }
262
263 static inline bool context_present(struct context_entry *context)
264 {
265         return context_pasid_enabled(context) ?
266              __context_present(context) :
267              __context_present(context) && !context_copied(context);
268 }
269
270 static inline void context_set_present(struct context_entry *context)
271 {
272         context->lo |= 1;
273 }
274
275 static inline void context_set_fault_enable(struct context_entry *context)
276 {
277         context->lo &= (((u64)-1) << 2) | 1;
278 }
279
280 static inline void context_set_translation_type(struct context_entry *context,
281                                                 unsigned long value)
282 {
283         context->lo &= (((u64)-1) << 4) | 3;
284         context->lo |= (value & 3) << 2;
285 }
286
287 static inline void context_set_address_root(struct context_entry *context,
288                                             unsigned long value)
289 {
290         context->lo &= ~VTD_PAGE_MASK;
291         context->lo |= value & VTD_PAGE_MASK;
292 }
293
294 static inline void context_set_address_width(struct context_entry *context,
295                                              unsigned long value)
296 {
297         context->hi |= value & 7;
298 }
299
300 static inline void context_set_domain_id(struct context_entry *context,
301                                          unsigned long value)
302 {
303         context->hi |= (value & ((1 << 16) - 1)) << 8;
304 }
305
306 static inline int context_domain_id(struct context_entry *c)
307 {
308         return((c->hi >> 8) & 0xffff);
309 }
310
311 static inline void context_clear_entry(struct context_entry *context)
312 {
313         context->lo = 0;
314         context->hi = 0;
315 }
316
317 /*
318  * 0: readable
319  * 1: writable
320  * 2-6: reserved
321  * 7: super page
322  * 8-10: available
323  * 11: snoop behavior
324  * 12-63: Host physcial address
325  */
326 struct dma_pte {
327         u64 val;
328 };
329
330 static inline void dma_clear_pte(struct dma_pte *pte)
331 {
332         pte->val = 0;
333 }
334
335 static inline u64 dma_pte_addr(struct dma_pte *pte)
336 {
337 #ifdef CONFIG_64BIT
338         return pte->val & VTD_PAGE_MASK;
339 #else
340         /* Must have a full atomic 64-bit read */
341         return  __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
342 #endif
343 }
344
345 static inline bool dma_pte_present(struct dma_pte *pte)
346 {
347         return (pte->val & 3) != 0;
348 }
349
350 static inline bool dma_pte_superpage(struct dma_pte *pte)
351 {
352         return (pte->val & DMA_PTE_LARGE_PAGE);
353 }
354
355 static inline int first_pte_in_page(struct dma_pte *pte)
356 {
357         return !((unsigned long)pte & ~VTD_PAGE_MASK);
358 }
359
360 /*
361  * This domain is a statically identity mapping domain.
362  *      1. This domain creats a static 1:1 mapping to all usable memory.
363  *      2. It maps to each iommu if successful.
364  *      3. Each iommu mapps to this domain if successful.
365  */
366 static struct dmar_domain *si_domain;
367 static int hw_pass_through = 1;
368
369 /*
370  * Domain represents a virtual machine, more than one devices
371  * across iommus may be owned in one domain, e.g. kvm guest.
372  */
373 #define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 0)
374
375 /* si_domain contains mulitple devices */
376 #define DOMAIN_FLAG_STATIC_IDENTITY     (1 << 1)
377
378 #define for_each_domain_iommu(idx, domain)                      \
379         for (idx = 0; idx < g_num_of_iommus; idx++)             \
380                 if (domain->iommu_refcnt[idx])
381
382 struct dmar_domain {
383         int     nid;                    /* node id */
384
385         unsigned        iommu_refcnt[DMAR_UNITS_SUPPORTED];
386                                         /* Refcount of devices per iommu */
387
388
389         u16             iommu_did[DMAR_UNITS_SUPPORTED];
390                                         /* Domain ids per IOMMU. Use u16 since
391                                          * domain ids are 16 bit wide according
392                                          * to VT-d spec, section 9.3 */
393
394         bool has_iotlb_device;
395         struct list_head devices;       /* all devices' list */
396         struct iova_domain iovad;       /* iova's that belong to this domain */
397
398         struct dma_pte  *pgd;           /* virtual address */
399         int             gaw;            /* max guest address width */
400
401         /* adjusted guest address width, 0 is level 2 30-bit */
402         int             agaw;
403
404         int             flags;          /* flags to find out type of domain */
405
406         int             iommu_coherency;/* indicate coherency of iommu access */
407         int             iommu_snooping; /* indicate snooping control feature*/
408         int             iommu_count;    /* reference count of iommu */
409         int             iommu_superpage;/* Level of superpages supported:
410                                            0 == 4KiB (no superpages), 1 == 2MiB,
411                                            2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
412         u64             max_addr;       /* maximum mapped address */
413
414         struct iommu_domain domain;     /* generic domain data structure for
415                                            iommu core */
416 };
417
418 /* PCI domain-device relationship */
419 struct device_domain_info {
420         struct list_head link;  /* link to domain siblings */
421         struct list_head global; /* link to global list */
422         u8 bus;                 /* PCI bus number */
423         u8 devfn;               /* PCI devfn number */
424         u8 pasid_supported:3;
425         u8 pasid_enabled:1;
426         u8 pri_supported:1;
427         u8 pri_enabled:1;
428         u8 ats_supported:1;
429         u8 ats_enabled:1;
430         u8 ats_qdep;
431         struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
432         struct intel_iommu *iommu; /* IOMMU used by this device */
433         struct dmar_domain *domain; /* pointer to domain */
434 };
435
436 struct dmar_rmrr_unit {
437         struct list_head list;          /* list of rmrr units   */
438         struct acpi_dmar_header *hdr;   /* ACPI header          */
439         u64     base_address;           /* reserved base address*/
440         u64     end_address;            /* reserved end address */
441         struct dmar_dev_scope *devices; /* target devices */
442         int     devices_cnt;            /* target device count */
443 };
444
445 struct dmar_atsr_unit {
446         struct list_head list;          /* list of ATSR units */
447         struct acpi_dmar_header *hdr;   /* ACPI header */
448         struct dmar_dev_scope *devices; /* target devices */
449         int devices_cnt;                /* target device count */
450         u8 include_all:1;               /* include all ports */
451 };
452
453 static LIST_HEAD(dmar_atsr_units);
454 static LIST_HEAD(dmar_rmrr_units);
455
456 #define for_each_rmrr_units(rmrr) \
457         list_for_each_entry(rmrr, &dmar_rmrr_units, list)
458
459 static void flush_unmaps_timeout(unsigned long data);
460
461 struct deferred_flush_entry {
462         unsigned long iova_pfn;
463         unsigned long nrpages;
464         struct dmar_domain *domain;
465         struct page *freelist;
466 };
467
468 #define HIGH_WATER_MARK 250
469 struct deferred_flush_table {
470         int next;
471         struct deferred_flush_entry entries[HIGH_WATER_MARK];
472 };
473
474 struct deferred_flush_data {
475         spinlock_t lock;
476         int timer_on;
477         struct timer_list timer;
478         long size;
479         struct deferred_flush_table *tables;
480 };
481
482 DEFINE_PER_CPU(struct deferred_flush_data, deferred_flush);
483
484 /* bitmap for indexing intel_iommus */
485 static int g_num_of_iommus;
486
487 static void domain_exit(struct dmar_domain *domain);
488 static void domain_remove_dev_info(struct dmar_domain *domain);
489 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
490                                      struct device *dev);
491 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
492 static void domain_context_clear(struct intel_iommu *iommu,
493                                  struct device *dev);
494 static int domain_detach_iommu(struct dmar_domain *domain,
495                                struct intel_iommu *iommu);
496
497 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
498 int dmar_disabled = 0;
499 #else
500 int dmar_disabled = 1;
501 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
502
503 int intel_iommu_enabled = 0;
504 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
505
506 static int dmar_map_gfx = 1;
507 static int dmar_forcedac;
508 static int intel_iommu_strict;
509 static int intel_iommu_superpage = 1;
510 static int intel_iommu_ecs = 1;
511 static int intel_iommu_pasid28;
512 static int iommu_identity_mapping;
513
514 #define IDENTMAP_ALL            1
515 #define IDENTMAP_GFX            2
516 #define IDENTMAP_AZALIA         4
517
518 /* Broadwell and Skylake have broken ECS support — normal so-called "second
519  * level" translation of DMA requests-without-PASID doesn't actually happen
520  * unless you also set the NESTE bit in an extended context-entry. Which of
521  * course means that SVM doesn't work because it's trying to do nested
522  * translation of the physical addresses it finds in the process page tables,
523  * through the IOVA->phys mapping found in the "second level" page tables.
524  *
525  * The VT-d specification was retroactively changed to change the definition
526  * of the capability bits and pretend that Broadwell/Skylake never happened...
527  * but unfortunately the wrong bit was changed. It's ECS which is broken, but
528  * for some reason it was the PASID capability bit which was redefined (from
529  * bit 28 on BDW/SKL to bit 40 in future).
530  *
531  * So our test for ECS needs to eschew those implementations which set the old
532  * PASID capabiity bit 28, since those are the ones on which ECS is broken.
533  * Unless we are working around the 'pasid28' limitations, that is, by putting
534  * the device into passthrough mode for normal DMA and thus masking the bug.
535  */
536 #define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
537                             (intel_iommu_pasid28 || !ecap_broken_pasid(iommu->ecap)))
538 /* PASID support is thus enabled if ECS is enabled and *either* of the old
539  * or new capability bits are set. */
540 #define pasid_enabled(iommu) (ecs_enabled(iommu) &&                     \
541                               (ecap_pasid(iommu->ecap) || ecap_broken_pasid(iommu->ecap)))
542
543 int intel_iommu_gfx_mapped;
544 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
545
546 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
547 static DEFINE_SPINLOCK(device_domain_lock);
548 static LIST_HEAD(device_domain_list);
549
550 static const struct iommu_ops intel_iommu_ops;
551
552 static bool translation_pre_enabled(struct intel_iommu *iommu)
553 {
554         return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
555 }
556
557 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
558 {
559         iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
560 }
561
562 static void init_translation_status(struct intel_iommu *iommu)
563 {
564         u32 gsts;
565
566         gsts = readl(iommu->reg + DMAR_GSTS_REG);
567         if (gsts & DMA_GSTS_TES)
568                 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
569 }
570
571 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
572 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
573 {
574         return container_of(dom, struct dmar_domain, domain);
575 }
576
577 static int __init intel_iommu_setup(char *str)
578 {
579         if (!str)
580                 return -EINVAL;
581         while (*str) {
582                 if (!strncmp(str, "on", 2)) {
583                         dmar_disabled = 0;
584                         pr_info("IOMMU enabled\n");
585                 } else if (!strncmp(str, "off", 3)) {
586                         dmar_disabled = 1;
587                         pr_info("IOMMU disabled\n");
588                 } else if (!strncmp(str, "igfx_off", 8)) {
589                         dmar_map_gfx = 0;
590                         pr_info("Disable GFX device mapping\n");
591                 } else if (!strncmp(str, "forcedac", 8)) {
592                         pr_info("Forcing DAC for PCI devices\n");
593                         dmar_forcedac = 1;
594                 } else if (!strncmp(str, "strict", 6)) {
595                         pr_info("Disable batched IOTLB flush\n");
596                         intel_iommu_strict = 1;
597                 } else if (!strncmp(str, "sp_off", 6)) {
598                         pr_info("Disable supported super page\n");
599                         intel_iommu_superpage = 0;
600                 } else if (!strncmp(str, "ecs_off", 7)) {
601                         printk(KERN_INFO
602                                 "Intel-IOMMU: disable extended context table support\n");
603                         intel_iommu_ecs = 0;
604                 } else if (!strncmp(str, "pasid28", 7)) {
605                         printk(KERN_INFO
606                                 "Intel-IOMMU: enable pre-production PASID support\n");
607                         intel_iommu_pasid28 = 1;
608                         iommu_identity_mapping |= IDENTMAP_GFX;
609                 }
610
611                 str += strcspn(str, ",");
612                 while (*str == ',')
613                         str++;
614         }
615         return 0;
616 }
617 __setup("intel_iommu=", intel_iommu_setup);
618
619 static struct kmem_cache *iommu_domain_cache;
620 static struct kmem_cache *iommu_devinfo_cache;
621
622 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
623 {
624         struct dmar_domain **domains;
625         int idx = did >> 8;
626
627         domains = iommu->domains[idx];
628         if (!domains)
629                 return NULL;
630
631         return domains[did & 0xff];
632 }
633
634 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
635                              struct dmar_domain *domain)
636 {
637         struct dmar_domain **domains;
638         int idx = did >> 8;
639
640         if (!iommu->domains[idx]) {
641                 size_t size = 256 * sizeof(struct dmar_domain *);
642                 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
643         }
644
645         domains = iommu->domains[idx];
646         if (WARN_ON(!domains))
647                 return;
648         else
649                 domains[did & 0xff] = domain;
650 }
651
652 static inline void *alloc_pgtable_page(int node)
653 {
654         struct page *page;
655         void *vaddr = NULL;
656
657         page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
658         if (page)
659                 vaddr = page_address(page);
660         return vaddr;
661 }
662
663 static inline void free_pgtable_page(void *vaddr)
664 {
665         free_page((unsigned long)vaddr);
666 }
667
668 static inline void *alloc_domain_mem(void)
669 {
670         return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
671 }
672
673 static void free_domain_mem(void *vaddr)
674 {
675         kmem_cache_free(iommu_domain_cache, vaddr);
676 }
677
678 static inline void * alloc_devinfo_mem(void)
679 {
680         return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
681 }
682
683 static inline void free_devinfo_mem(void *vaddr)
684 {
685         kmem_cache_free(iommu_devinfo_cache, vaddr);
686 }
687
688 static inline int domain_type_is_vm(struct dmar_domain *domain)
689 {
690         return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
691 }
692
693 static inline int domain_type_is_si(struct dmar_domain *domain)
694 {
695         return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
696 }
697
698 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
699 {
700         return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
701                                 DOMAIN_FLAG_STATIC_IDENTITY);
702 }
703
704 static inline int domain_pfn_supported(struct dmar_domain *domain,
705                                        unsigned long pfn)
706 {
707         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
708
709         return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
710 }
711
712 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
713 {
714         unsigned long sagaw;
715         int agaw = -1;
716
717         sagaw = cap_sagaw(iommu->cap);
718         for (agaw = width_to_agaw(max_gaw);
719              agaw >= 0; agaw--) {
720                 if (test_bit(agaw, &sagaw))
721                         break;
722         }
723
724         return agaw;
725 }
726
727 /*
728  * Calculate max SAGAW for each iommu.
729  */
730 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
731 {
732         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
733 }
734
735 /*
736  * calculate agaw for each iommu.
737  * "SAGAW" may be different across iommus, use a default agaw, and
738  * get a supported less agaw for iommus that don't support the default agaw.
739  */
740 int iommu_calculate_agaw(struct intel_iommu *iommu)
741 {
742         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
743 }
744
745 /* This functionin only returns single iommu in a domain */
746 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
747 {
748         int iommu_id;
749
750         /* si_domain and vm domain should not get here. */
751         BUG_ON(domain_type_is_vm_or_si(domain));
752         for_each_domain_iommu(iommu_id, domain)
753                 break;
754
755         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
756                 return NULL;
757
758         return g_iommus[iommu_id];
759 }
760
761 static void domain_update_iommu_coherency(struct dmar_domain *domain)
762 {
763         struct dmar_drhd_unit *drhd;
764         struct intel_iommu *iommu;
765         bool found = false;
766         int i;
767
768         domain->iommu_coherency = 1;
769
770         for_each_domain_iommu(i, domain) {
771                 found = true;
772                 if (!ecap_coherent(g_iommus[i]->ecap)) {
773                         domain->iommu_coherency = 0;
774                         break;
775                 }
776         }
777         if (found)
778                 return;
779
780         /* No hardware attached; use lowest common denominator */
781         rcu_read_lock();
782         for_each_active_iommu(iommu, drhd) {
783                 if (!ecap_coherent(iommu->ecap)) {
784                         domain->iommu_coherency = 0;
785                         break;
786                 }
787         }
788         rcu_read_unlock();
789 }
790
791 static int domain_update_iommu_snooping(struct intel_iommu *skip)
792 {
793         struct dmar_drhd_unit *drhd;
794         struct intel_iommu *iommu;
795         int ret = 1;
796
797         rcu_read_lock();
798         for_each_active_iommu(iommu, drhd) {
799                 if (iommu != skip) {
800                         if (!ecap_sc_support(iommu->ecap)) {
801                                 ret = 0;
802                                 break;
803                         }
804                 }
805         }
806         rcu_read_unlock();
807
808         return ret;
809 }
810
811 static int domain_update_iommu_superpage(struct intel_iommu *skip)
812 {
813         struct dmar_drhd_unit *drhd;
814         struct intel_iommu *iommu;
815         int mask = 0xf;
816
817         if (!intel_iommu_superpage) {
818                 return 0;
819         }
820
821         /* set iommu_superpage to the smallest common denominator */
822         rcu_read_lock();
823         for_each_active_iommu(iommu, drhd) {
824                 if (iommu != skip) {
825                         mask &= cap_super_page_val(iommu->cap);
826                         if (!mask)
827                                 break;
828                 }
829         }
830         rcu_read_unlock();
831
832         return fls(mask);
833 }
834
835 /* Some capabilities may be different across iommus */
836 static void domain_update_iommu_cap(struct dmar_domain *domain)
837 {
838         domain_update_iommu_coherency(domain);
839         domain->iommu_snooping = domain_update_iommu_snooping(NULL);
840         domain->iommu_superpage = domain_update_iommu_superpage(NULL);
841 }
842
843 static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
844                                                        u8 bus, u8 devfn, int alloc)
845 {
846         struct root_entry *root = &iommu->root_entry[bus];
847         struct context_entry *context;
848         u64 *entry;
849
850         entry = &root->lo;
851         if (ecs_enabled(iommu)) {
852                 if (devfn >= 0x80) {
853                         devfn -= 0x80;
854                         entry = &root->hi;
855                 }
856                 devfn *= 2;
857         }
858         if (*entry & 1)
859                 context = phys_to_virt(*entry & VTD_PAGE_MASK);
860         else {
861                 unsigned long phy_addr;
862                 if (!alloc)
863                         return NULL;
864
865                 context = alloc_pgtable_page(iommu->node);
866                 if (!context)
867                         return NULL;
868
869                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
870                 phy_addr = virt_to_phys((void *)context);
871                 *entry = phy_addr | 1;
872                 __iommu_flush_cache(iommu, entry, sizeof(*entry));
873         }
874         return &context[devfn];
875 }
876
877 static int iommu_dummy(struct device *dev)
878 {
879         return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
880 }
881
882 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
883 {
884         struct dmar_drhd_unit *drhd = NULL;
885         struct intel_iommu *iommu;
886         struct device *tmp;
887         struct pci_dev *ptmp, *pdev = NULL;
888         u16 segment = 0;
889         int i;
890
891         if (iommu_dummy(dev))
892                 return NULL;
893
894         if (dev_is_pci(dev)) {
895                 pdev = to_pci_dev(dev);
896                 segment = pci_domain_nr(pdev->bus);
897         } else if (has_acpi_companion(dev))
898                 dev = &ACPI_COMPANION(dev)->dev;
899
900         rcu_read_lock();
901         for_each_active_iommu(iommu, drhd) {
902                 if (pdev && segment != drhd->segment)
903                         continue;
904
905                 for_each_active_dev_scope(drhd->devices,
906                                           drhd->devices_cnt, i, tmp) {
907                         if (tmp == dev) {
908                                 *bus = drhd->devices[i].bus;
909                                 *devfn = drhd->devices[i].devfn;
910                                 goto out;
911                         }
912
913                         if (!pdev || !dev_is_pci(tmp))
914                                 continue;
915
916                         ptmp = to_pci_dev(tmp);
917                         if (ptmp->subordinate &&
918                             ptmp->subordinate->number <= pdev->bus->number &&
919                             ptmp->subordinate->busn_res.end >= pdev->bus->number)
920                                 goto got_pdev;
921                 }
922
923                 if (pdev && drhd->include_all) {
924                 got_pdev:
925                         *bus = pdev->bus->number;
926                         *devfn = pdev->devfn;
927                         goto out;
928                 }
929         }
930         iommu = NULL;
931  out:
932         rcu_read_unlock();
933
934         return iommu;
935 }
936
937 static void domain_flush_cache(struct dmar_domain *domain,
938                                void *addr, int size)
939 {
940         if (!domain->iommu_coherency)
941                 clflush_cache_range(addr, size);
942 }
943
944 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
945 {
946         struct context_entry *context;
947         int ret = 0;
948         unsigned long flags;
949
950         spin_lock_irqsave(&iommu->lock, flags);
951         context = iommu_context_addr(iommu, bus, devfn, 0);
952         if (context)
953                 ret = context_present(context);
954         spin_unlock_irqrestore(&iommu->lock, flags);
955         return ret;
956 }
957
958 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
959 {
960         struct context_entry *context;
961         unsigned long flags;
962
963         spin_lock_irqsave(&iommu->lock, flags);
964         context = iommu_context_addr(iommu, bus, devfn, 0);
965         if (context) {
966                 context_clear_entry(context);
967                 __iommu_flush_cache(iommu, context, sizeof(*context));
968         }
969         spin_unlock_irqrestore(&iommu->lock, flags);
970 }
971
972 static void free_context_table(struct intel_iommu *iommu)
973 {
974         int i;
975         unsigned long flags;
976         struct context_entry *context;
977
978         spin_lock_irqsave(&iommu->lock, flags);
979         if (!iommu->root_entry) {
980                 goto out;
981         }
982         for (i = 0; i < ROOT_ENTRY_NR; i++) {
983                 context = iommu_context_addr(iommu, i, 0, 0);
984                 if (context)
985                         free_pgtable_page(context);
986
987                 if (!ecs_enabled(iommu))
988                         continue;
989
990                 context = iommu_context_addr(iommu, i, 0x80, 0);
991                 if (context)
992                         free_pgtable_page(context);
993
994         }
995         free_pgtable_page(iommu->root_entry);
996         iommu->root_entry = NULL;
997 out:
998         spin_unlock_irqrestore(&iommu->lock, flags);
999 }
1000
1001 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
1002                                       unsigned long pfn, int *target_level)
1003 {
1004         struct dma_pte *parent, *pte = NULL;
1005         int level = agaw_to_level(domain->agaw);
1006         int offset;
1007
1008         BUG_ON(!domain->pgd);
1009
1010         if (!domain_pfn_supported(domain, pfn))
1011                 /* Address beyond IOMMU's addressing capabilities. */
1012                 return NULL;
1013
1014         parent = domain->pgd;
1015
1016         while (1) {
1017                 void *tmp_page;
1018
1019                 offset = pfn_level_offset(pfn, level);
1020                 pte = &parent[offset];
1021                 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
1022                         break;
1023                 if (level == *target_level)
1024                         break;
1025
1026                 if (!dma_pte_present(pte)) {
1027                         uint64_t pteval;
1028
1029                         tmp_page = alloc_pgtable_page(domain->nid);
1030
1031                         if (!tmp_page)
1032                                 return NULL;
1033
1034                         domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
1035                         pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
1036                         if (cmpxchg64(&pte->val, 0ULL, pteval))
1037                                 /* Someone else set it while we were thinking; use theirs. */
1038                                 free_pgtable_page(tmp_page);
1039                         else
1040                                 domain_flush_cache(domain, pte, sizeof(*pte));
1041                 }
1042                 if (level == 1)
1043                         break;
1044
1045                 parent = phys_to_virt(dma_pte_addr(pte));
1046                 level--;
1047         }
1048
1049         if (!*target_level)
1050                 *target_level = level;
1051
1052         return pte;
1053 }
1054
1055
1056 /* return address's pte at specific level */
1057 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1058                                          unsigned long pfn,
1059                                          int level, int *large_page)
1060 {
1061         struct dma_pte *parent, *pte = NULL;
1062         int total = agaw_to_level(domain->agaw);
1063         int offset;
1064
1065         parent = domain->pgd;
1066         while (level <= total) {
1067                 offset = pfn_level_offset(pfn, total);
1068                 pte = &parent[offset];
1069                 if (level == total)
1070                         return pte;
1071
1072                 if (!dma_pte_present(pte)) {
1073                         *large_page = total;
1074                         break;
1075                 }
1076
1077                 if (dma_pte_superpage(pte)) {
1078                         *large_page = total;
1079                         return pte;
1080                 }
1081
1082                 parent = phys_to_virt(dma_pte_addr(pte));
1083                 total--;
1084         }
1085         return NULL;
1086 }
1087
1088 /* clear last level pte, a tlb flush should be followed */
1089 static void dma_pte_clear_range(struct dmar_domain *domain,
1090                                 unsigned long start_pfn,
1091                                 unsigned long last_pfn)
1092 {
1093         unsigned int large_page = 1;
1094         struct dma_pte *first_pte, *pte;
1095
1096         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1097         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1098         BUG_ON(start_pfn > last_pfn);
1099
1100         /* we don't need lock here; nobody else touches the iova range */
1101         do {
1102                 large_page = 1;
1103                 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1104                 if (!pte) {
1105                         start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1106                         continue;
1107                 }
1108                 do {
1109                         dma_clear_pte(pte);
1110                         start_pfn += lvl_to_nr_pages(large_page);
1111                         pte++;
1112                 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1113
1114                 domain_flush_cache(domain, first_pte,
1115                                    (void *)pte - (void *)first_pte);
1116
1117         } while (start_pfn && start_pfn <= last_pfn);
1118 }
1119
1120 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1121                                struct dma_pte *pte, unsigned long pfn,
1122                                unsigned long start_pfn, unsigned long last_pfn)
1123 {
1124         pfn = max(start_pfn, pfn);
1125         pte = &pte[pfn_level_offset(pfn, level)];
1126
1127         do {
1128                 unsigned long level_pfn;
1129                 struct dma_pte *level_pte;
1130
1131                 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1132                         goto next;
1133
1134                 level_pfn = pfn & level_mask(level - 1);
1135                 level_pte = phys_to_virt(dma_pte_addr(pte));
1136
1137                 if (level > 2)
1138                         dma_pte_free_level(domain, level - 1, level_pte,
1139                                            level_pfn, start_pfn, last_pfn);
1140
1141                 /* If range covers entire pagetable, free it */
1142                 if (!(start_pfn > level_pfn ||
1143                       last_pfn < level_pfn + level_size(level) - 1)) {
1144                         dma_clear_pte(pte);
1145                         domain_flush_cache(domain, pte, sizeof(*pte));
1146                         free_pgtable_page(level_pte);
1147                 }
1148 next:
1149                 pfn += level_size(level);
1150         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1151 }
1152
1153 /* clear last level (leaf) ptes and free page table pages. */
1154 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1155                                    unsigned long start_pfn,
1156                                    unsigned long last_pfn)
1157 {
1158         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1159         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1160         BUG_ON(start_pfn > last_pfn);
1161
1162         dma_pte_clear_range(domain, start_pfn, last_pfn);
1163
1164         /* We don't need lock here; nobody else touches the iova range */
1165         dma_pte_free_level(domain, agaw_to_level(domain->agaw),
1166                            domain->pgd, 0, start_pfn, last_pfn);
1167
1168         /* free pgd */
1169         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1170                 free_pgtable_page(domain->pgd);
1171                 domain->pgd = NULL;
1172         }
1173 }
1174
1175 /* When a page at a given level is being unlinked from its parent, we don't
1176    need to *modify* it at all. All we need to do is make a list of all the
1177    pages which can be freed just as soon as we've flushed the IOTLB and we
1178    know the hardware page-walk will no longer touch them.
1179    The 'pte' argument is the *parent* PTE, pointing to the page that is to
1180    be freed. */
1181 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1182                                             int level, struct dma_pte *pte,
1183                                             struct page *freelist)
1184 {
1185         struct page *pg;
1186
1187         pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1188         pg->freelist = freelist;
1189         freelist = pg;
1190
1191         if (level == 1)
1192                 return freelist;
1193
1194         pte = page_address(pg);
1195         do {
1196                 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1197                         freelist = dma_pte_list_pagetables(domain, level - 1,
1198                                                            pte, freelist);
1199                 pte++;
1200         } while (!first_pte_in_page(pte));
1201
1202         return freelist;
1203 }
1204
1205 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1206                                         struct dma_pte *pte, unsigned long pfn,
1207                                         unsigned long start_pfn,
1208                                         unsigned long last_pfn,
1209                                         struct page *freelist)
1210 {
1211         struct dma_pte *first_pte = NULL, *last_pte = NULL;
1212
1213         pfn = max(start_pfn, pfn);
1214         pte = &pte[pfn_level_offset(pfn, level)];
1215
1216         do {
1217                 unsigned long level_pfn;
1218
1219                 if (!dma_pte_present(pte))
1220                         goto next;
1221
1222                 level_pfn = pfn & level_mask(level);
1223
1224                 /* If range covers entire pagetable, free it */
1225                 if (start_pfn <= level_pfn &&
1226                     last_pfn >= level_pfn + level_size(level) - 1) {
1227                         /* These suborbinate page tables are going away entirely. Don't
1228                            bother to clear them; we're just going to *free* them. */
1229                         if (level > 1 && !dma_pte_superpage(pte))
1230                                 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1231
1232                         dma_clear_pte(pte);
1233                         if (!first_pte)
1234                                 first_pte = pte;
1235                         last_pte = pte;
1236                 } else if (level > 1) {
1237                         /* Recurse down into a level that isn't *entirely* obsolete */
1238                         freelist = dma_pte_clear_level(domain, level - 1,
1239                                                        phys_to_virt(dma_pte_addr(pte)),
1240                                                        level_pfn, start_pfn, last_pfn,
1241                                                        freelist);
1242                 }
1243 next:
1244                 pfn += level_size(level);
1245         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1246
1247         if (first_pte)
1248                 domain_flush_cache(domain, first_pte,
1249                                    (void *)++last_pte - (void *)first_pte);
1250
1251         return freelist;
1252 }
1253
1254 /* We can't just free the pages because the IOMMU may still be walking
1255    the page tables, and may have cached the intermediate levels. The
1256    pages can only be freed after the IOTLB flush has been done. */
1257 static struct page *domain_unmap(struct dmar_domain *domain,
1258                                  unsigned long start_pfn,
1259                                  unsigned long last_pfn)
1260 {
1261         struct page *freelist = NULL;
1262
1263         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1264         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1265         BUG_ON(start_pfn > last_pfn);
1266
1267         /* we don't need lock here; nobody else touches the iova range */
1268         freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1269                                        domain->pgd, 0, start_pfn, last_pfn, NULL);
1270
1271         /* free pgd */
1272         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1273                 struct page *pgd_page = virt_to_page(domain->pgd);
1274                 pgd_page->freelist = freelist;
1275                 freelist = pgd_page;
1276
1277                 domain->pgd = NULL;
1278         }
1279
1280         return freelist;
1281 }
1282
1283 static void dma_free_pagelist(struct page *freelist)
1284 {
1285         struct page *pg;
1286
1287         while ((pg = freelist)) {
1288                 freelist = pg->freelist;
1289                 free_pgtable_page(page_address(pg));
1290         }
1291 }
1292
1293 /* iommu handling */
1294 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1295 {
1296         struct root_entry *root;
1297         unsigned long flags;
1298
1299         root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1300         if (!root) {
1301                 pr_err("Allocating root entry for %s failed\n",
1302                         iommu->name);
1303                 return -ENOMEM;
1304         }
1305
1306         __iommu_flush_cache(iommu, root, ROOT_SIZE);
1307
1308         spin_lock_irqsave(&iommu->lock, flags);
1309         iommu->root_entry = root;
1310         spin_unlock_irqrestore(&iommu->lock, flags);
1311
1312         return 0;
1313 }
1314
1315 static void iommu_set_root_entry(struct intel_iommu *iommu)
1316 {
1317         u64 addr;
1318         u32 sts;
1319         unsigned long flag;
1320
1321         addr = virt_to_phys(iommu->root_entry);
1322         if (ecs_enabled(iommu))
1323                 addr |= DMA_RTADDR_RTT;
1324
1325         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1326         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1327
1328         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1329
1330         /* Make sure hardware complete it */
1331         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1332                       readl, (sts & DMA_GSTS_RTPS), sts);
1333
1334         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1335 }
1336
1337 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1338 {
1339         u32 val;
1340         unsigned long flag;
1341
1342         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1343                 return;
1344
1345         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1346         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1347
1348         /* Make sure hardware complete it */
1349         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1350                       readl, (!(val & DMA_GSTS_WBFS)), val);
1351
1352         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1353 }
1354
1355 /* return value determine if we need a write buffer flush */
1356 static void __iommu_flush_context(struct intel_iommu *iommu,
1357                                   u16 did, u16 source_id, u8 function_mask,
1358                                   u64 type)
1359 {
1360         u64 val = 0;
1361         unsigned long flag;
1362
1363         switch (type) {
1364         case DMA_CCMD_GLOBAL_INVL:
1365                 val = DMA_CCMD_GLOBAL_INVL;
1366                 break;
1367         case DMA_CCMD_DOMAIN_INVL:
1368                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1369                 break;
1370         case DMA_CCMD_DEVICE_INVL:
1371                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1372                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1373                 break;
1374         default:
1375                 BUG();
1376         }
1377         val |= DMA_CCMD_ICC;
1378
1379         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1380         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1381
1382         /* Make sure hardware complete it */
1383         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1384                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1385
1386         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1387 }
1388
1389 /* return value determine if we need a write buffer flush */
1390 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1391                                 u64 addr, unsigned int size_order, u64 type)
1392 {
1393         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1394         u64 val = 0, val_iva = 0;
1395         unsigned long flag;
1396
1397         switch (type) {
1398         case DMA_TLB_GLOBAL_FLUSH:
1399                 /* global flush doesn't need set IVA_REG */
1400                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1401                 break;
1402         case DMA_TLB_DSI_FLUSH:
1403                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1404                 break;
1405         case DMA_TLB_PSI_FLUSH:
1406                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1407                 /* IH bit is passed in as part of address */
1408                 val_iva = size_order | addr;
1409                 break;
1410         default:
1411                 BUG();
1412         }
1413         /* Note: set drain read/write */
1414 #if 0
1415         /*
1416          * This is probably to be super secure.. Looks like we can
1417          * ignore it without any impact.
1418          */
1419         if (cap_read_drain(iommu->cap))
1420                 val |= DMA_TLB_READ_DRAIN;
1421 #endif
1422         if (cap_write_drain(iommu->cap))
1423                 val |= DMA_TLB_WRITE_DRAIN;
1424
1425         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1426         /* Note: Only uses first TLB reg currently */
1427         if (val_iva)
1428                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1429         dmar_writeq(iommu->reg + tlb_offset + 8, val);
1430
1431         /* Make sure hardware complete it */
1432         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1433                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1434
1435         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1436
1437         /* check IOTLB invalidation granularity */
1438         if (DMA_TLB_IAIG(val) == 0)
1439                 pr_err("Flush IOTLB failed\n");
1440         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1441                 pr_debug("TLB flush request %Lx, actual %Lx\n",
1442                         (unsigned long long)DMA_TLB_IIRG(type),
1443                         (unsigned long long)DMA_TLB_IAIG(val));
1444 }
1445
1446 static struct device_domain_info *
1447 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1448                          u8 bus, u8 devfn)
1449 {
1450         struct device_domain_info *info;
1451
1452         assert_spin_locked(&device_domain_lock);
1453
1454         if (!iommu->qi)
1455                 return NULL;
1456
1457         list_for_each_entry(info, &domain->devices, link)
1458                 if (info->iommu == iommu && info->bus == bus &&
1459                     info->devfn == devfn) {
1460                         if (info->ats_supported && info->dev)
1461                                 return info;
1462                         break;
1463                 }
1464
1465         return NULL;
1466 }
1467
1468 static void domain_update_iotlb(struct dmar_domain *domain)
1469 {
1470         struct device_domain_info *info;
1471         bool has_iotlb_device = false;
1472
1473         assert_spin_locked(&device_domain_lock);
1474
1475         list_for_each_entry(info, &domain->devices, link) {
1476                 struct pci_dev *pdev;
1477
1478                 if (!info->dev || !dev_is_pci(info->dev))
1479                         continue;
1480
1481                 pdev = to_pci_dev(info->dev);
1482                 if (pdev->ats_enabled) {
1483                         has_iotlb_device = true;
1484                         break;
1485                 }
1486         }
1487
1488         domain->has_iotlb_device = has_iotlb_device;
1489 }
1490
1491 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1492 {
1493         struct pci_dev *pdev;
1494
1495         assert_spin_locked(&device_domain_lock);
1496
1497         if (!info || !dev_is_pci(info->dev))
1498                 return;
1499
1500         pdev = to_pci_dev(info->dev);
1501
1502 #ifdef CONFIG_INTEL_IOMMU_SVM
1503         /* The PCIe spec, in its wisdom, declares that the behaviour of
1504            the device if you enable PASID support after ATS support is
1505            undefined. So always enable PASID support on devices which
1506            have it, even if we can't yet know if we're ever going to
1507            use it. */
1508         if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1509                 info->pasid_enabled = 1;
1510
1511         if (info->pri_supported && !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1512                 info->pri_enabled = 1;
1513 #endif
1514         if (info->ats_supported && !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1515                 info->ats_enabled = 1;
1516                 domain_update_iotlb(info->domain);
1517                 info->ats_qdep = pci_ats_queue_depth(pdev);
1518         }
1519 }
1520
1521 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1522 {
1523         struct pci_dev *pdev;
1524
1525         assert_spin_locked(&device_domain_lock);
1526
1527         if (!dev_is_pci(info->dev))
1528                 return;
1529
1530         pdev = to_pci_dev(info->dev);
1531
1532         if (info->ats_enabled) {
1533                 pci_disable_ats(pdev);
1534                 info->ats_enabled = 0;
1535                 domain_update_iotlb(info->domain);
1536         }
1537 #ifdef CONFIG_INTEL_IOMMU_SVM
1538         if (info->pri_enabled) {
1539                 pci_disable_pri(pdev);
1540                 info->pri_enabled = 0;
1541         }
1542         if (info->pasid_enabled) {
1543                 pci_disable_pasid(pdev);
1544                 info->pasid_enabled = 0;
1545         }
1546 #endif
1547 }
1548
1549 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1550                                   u64 addr, unsigned mask)
1551 {
1552         u16 sid, qdep;
1553         unsigned long flags;
1554         struct device_domain_info *info;
1555
1556         if (!domain->has_iotlb_device)
1557                 return;
1558
1559         spin_lock_irqsave(&device_domain_lock, flags);
1560         list_for_each_entry(info, &domain->devices, link) {
1561                 if (!info->ats_enabled)
1562                         continue;
1563
1564                 sid = info->bus << 8 | info->devfn;
1565                 qdep = info->ats_qdep;
1566                 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1567         }
1568         spin_unlock_irqrestore(&device_domain_lock, flags);
1569 }
1570
1571 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1572                                   struct dmar_domain *domain,
1573                                   unsigned long pfn, unsigned int pages,
1574                                   int ih, int map)
1575 {
1576         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1577         uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1578         u16 did = domain->iommu_did[iommu->seq_id];
1579
1580         BUG_ON(pages == 0);
1581
1582         if (ih)
1583                 ih = 1 << 6;
1584         /*
1585          * Fallback to domain selective flush if no PSI support or the size is
1586          * too big.
1587          * PSI requires page size to be 2 ^ x, and the base address is naturally
1588          * aligned to the size
1589          */
1590         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1591                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1592                                                 DMA_TLB_DSI_FLUSH);
1593         else
1594                 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1595                                                 DMA_TLB_PSI_FLUSH);
1596
1597         /*
1598          * In caching mode, changes of pages from non-present to present require
1599          * flush. However, device IOTLB doesn't need to be flushed in this case.
1600          */
1601         if (!cap_caching_mode(iommu->cap) || !map)
1602                 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1603                                       addr, mask);
1604 }
1605
1606 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1607 {
1608         u32 pmen;
1609         unsigned long flags;
1610
1611         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1612         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1613         pmen &= ~DMA_PMEN_EPM;
1614         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1615
1616         /* wait for the protected region status bit to clear */
1617         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1618                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1619
1620         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1621 }
1622
1623 static void iommu_enable_translation(struct intel_iommu *iommu)
1624 {
1625         u32 sts;
1626         unsigned long flags;
1627
1628         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1629         iommu->gcmd |= DMA_GCMD_TE;
1630         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1631
1632         /* Make sure hardware complete it */
1633         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1634                       readl, (sts & DMA_GSTS_TES), sts);
1635
1636         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1637 }
1638
1639 static void iommu_disable_translation(struct intel_iommu *iommu)
1640 {
1641         u32 sts;
1642         unsigned long flag;
1643
1644         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1645         iommu->gcmd &= ~DMA_GCMD_TE;
1646         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1647
1648         /* Make sure hardware complete it */
1649         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1650                       readl, (!(sts & DMA_GSTS_TES)), sts);
1651
1652         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1653 }
1654
1655
1656 static int iommu_init_domains(struct intel_iommu *iommu)
1657 {
1658         u32 ndomains, nlongs;
1659         size_t size;
1660
1661         ndomains = cap_ndoms(iommu->cap);
1662         pr_debug("%s: Number of Domains supported <%d>\n",
1663                  iommu->name, ndomains);
1664         nlongs = BITS_TO_LONGS(ndomains);
1665
1666         spin_lock_init(&iommu->lock);
1667
1668         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1669         if (!iommu->domain_ids) {
1670                 pr_err("%s: Allocating domain id array failed\n",
1671                        iommu->name);
1672                 return -ENOMEM;
1673         }
1674
1675         size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1676         iommu->domains = kzalloc(size, GFP_KERNEL);
1677
1678         if (iommu->domains) {
1679                 size = 256 * sizeof(struct dmar_domain *);
1680                 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1681         }
1682
1683         if (!iommu->domains || !iommu->domains[0]) {
1684                 pr_err("%s: Allocating domain array failed\n",
1685                        iommu->name);
1686                 kfree(iommu->domain_ids);
1687                 kfree(iommu->domains);
1688                 iommu->domain_ids = NULL;
1689                 iommu->domains    = NULL;
1690                 return -ENOMEM;
1691         }
1692
1693
1694
1695         /*
1696          * If Caching mode is set, then invalid translations are tagged
1697          * with domain-id 0, hence we need to pre-allocate it. We also
1698          * use domain-id 0 as a marker for non-allocated domain-id, so
1699          * make sure it is not used for a real domain.
1700          */
1701         set_bit(0, iommu->domain_ids);
1702
1703         return 0;
1704 }
1705
1706 static void disable_dmar_iommu(struct intel_iommu *iommu)
1707 {
1708         struct device_domain_info *info, *tmp;
1709         unsigned long flags;
1710
1711         if (!iommu->domains || !iommu->domain_ids)
1712                 return;
1713
1714         spin_lock_irqsave(&device_domain_lock, flags);
1715         list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1716                 struct dmar_domain *domain;
1717
1718                 if (info->iommu != iommu)
1719                         continue;
1720
1721                 if (!info->dev || !info->domain)
1722                         continue;
1723
1724                 domain = info->domain;
1725
1726                 dmar_remove_one_dev_info(domain, info->dev);
1727
1728                 if (!domain_type_is_vm_or_si(domain))
1729                         domain_exit(domain);
1730         }
1731         spin_unlock_irqrestore(&device_domain_lock, flags);
1732
1733         if (iommu->gcmd & DMA_GCMD_TE)
1734                 iommu_disable_translation(iommu);
1735 }
1736
1737 static void free_dmar_iommu(struct intel_iommu *iommu)
1738 {
1739         if ((iommu->domains) && (iommu->domain_ids)) {
1740                 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1741                 int i;
1742
1743                 for (i = 0; i < elems; i++)
1744                         kfree(iommu->domains[i]);
1745                 kfree(iommu->domains);
1746                 kfree(iommu->domain_ids);
1747                 iommu->domains = NULL;
1748                 iommu->domain_ids = NULL;
1749         }
1750
1751         g_iommus[iommu->seq_id] = NULL;
1752
1753         /* free context mapping */
1754         free_context_table(iommu);
1755
1756 #ifdef CONFIG_INTEL_IOMMU_SVM
1757         if (pasid_enabled(iommu)) {
1758                 if (ecap_prs(iommu->ecap))
1759                         intel_svm_finish_prq(iommu);
1760                 intel_svm_free_pasid_tables(iommu);
1761         }
1762 #endif
1763 }
1764
1765 static struct dmar_domain *alloc_domain(int flags)
1766 {
1767         struct dmar_domain *domain;
1768
1769         domain = alloc_domain_mem();
1770         if (!domain)
1771                 return NULL;
1772
1773         memset(domain, 0, sizeof(*domain));
1774         domain->nid = -1;
1775         domain->flags = flags;
1776         domain->has_iotlb_device = false;
1777         INIT_LIST_HEAD(&domain->devices);
1778
1779         return domain;
1780 }
1781
1782 /* Must be called with iommu->lock */
1783 static int domain_attach_iommu(struct dmar_domain *domain,
1784                                struct intel_iommu *iommu)
1785 {
1786         unsigned long ndomains;
1787         int num;
1788
1789         assert_spin_locked(&device_domain_lock);
1790         assert_spin_locked(&iommu->lock);
1791
1792         domain->iommu_refcnt[iommu->seq_id] += 1;
1793         domain->iommu_count += 1;
1794         if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1795                 ndomains = cap_ndoms(iommu->cap);
1796                 num      = find_first_zero_bit(iommu->domain_ids, ndomains);
1797
1798                 if (num >= ndomains) {
1799                         pr_err("%s: No free domain ids\n", iommu->name);
1800                         domain->iommu_refcnt[iommu->seq_id] -= 1;
1801                         domain->iommu_count -= 1;
1802                         return -ENOSPC;
1803                 }
1804
1805                 set_bit(num, iommu->domain_ids);
1806                 set_iommu_domain(iommu, num, domain);
1807
1808                 domain->iommu_did[iommu->seq_id] = num;
1809                 domain->nid                      = iommu->node;
1810
1811                 domain_update_iommu_cap(domain);
1812         }
1813
1814         return 0;
1815 }
1816
1817 static int domain_detach_iommu(struct dmar_domain *domain,
1818                                struct intel_iommu *iommu)
1819 {
1820         int num, count = INT_MAX;
1821
1822         assert_spin_locked(&device_domain_lock);
1823         assert_spin_locked(&iommu->lock);
1824
1825         domain->iommu_refcnt[iommu->seq_id] -= 1;
1826         count = --domain->iommu_count;
1827         if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1828                 num = domain->iommu_did[iommu->seq_id];
1829                 clear_bit(num, iommu->domain_ids);
1830                 set_iommu_domain(iommu, num, NULL);
1831
1832                 domain_update_iommu_cap(domain);
1833                 domain->iommu_did[iommu->seq_id] = 0;
1834         }
1835
1836         return count;
1837 }
1838
1839 static struct iova_domain reserved_iova_list;
1840 static struct lock_class_key reserved_rbtree_key;
1841
1842 static int dmar_init_reserved_ranges(void)
1843 {
1844         struct pci_dev *pdev = NULL;
1845         struct iova *iova;
1846         int i;
1847
1848         init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1849                         DMA_32BIT_PFN);
1850
1851         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1852                 &reserved_rbtree_key);
1853
1854         /* IOAPIC ranges shouldn't be accessed by DMA */
1855         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1856                 IOVA_PFN(IOAPIC_RANGE_END));
1857         if (!iova) {
1858                 pr_err("Reserve IOAPIC range failed\n");
1859                 return -ENODEV;
1860         }
1861
1862         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1863         for_each_pci_dev(pdev) {
1864                 struct resource *r;
1865
1866                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1867                         r = &pdev->resource[i];
1868                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1869                                 continue;
1870                         iova = reserve_iova(&reserved_iova_list,
1871                                             IOVA_PFN(r->start),
1872                                             IOVA_PFN(r->end));
1873                         if (!iova) {
1874                                 pr_err("Reserve iova failed\n");
1875                                 return -ENODEV;
1876                         }
1877                 }
1878         }
1879         return 0;
1880 }
1881
1882 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1883 {
1884         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1885 }
1886
1887 static inline int guestwidth_to_adjustwidth(int gaw)
1888 {
1889         int agaw;
1890         int r = (gaw - 12) % 9;
1891
1892         if (r == 0)
1893                 agaw = gaw;
1894         else
1895                 agaw = gaw + 9 - r;
1896         if (agaw > 64)
1897                 agaw = 64;
1898         return agaw;
1899 }
1900
1901 static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1902                        int guest_width)
1903 {
1904         int adjust_width, agaw;
1905         unsigned long sagaw;
1906
1907         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1908                         DMA_32BIT_PFN);
1909         domain_reserve_special_ranges(domain);
1910
1911         /* calculate AGAW */
1912         if (guest_width > cap_mgaw(iommu->cap))
1913                 guest_width = cap_mgaw(iommu->cap);
1914         domain->gaw = guest_width;
1915         adjust_width = guestwidth_to_adjustwidth(guest_width);
1916         agaw = width_to_agaw(adjust_width);
1917         sagaw = cap_sagaw(iommu->cap);
1918         if (!test_bit(agaw, &sagaw)) {
1919                 /* hardware doesn't support it, choose a bigger one */
1920                 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1921                 agaw = find_next_bit(&sagaw, 5, agaw);
1922                 if (agaw >= 5)
1923                         return -ENODEV;
1924         }
1925         domain->agaw = agaw;
1926
1927         if (ecap_coherent(iommu->ecap))
1928                 domain->iommu_coherency = 1;
1929         else
1930                 domain->iommu_coherency = 0;
1931
1932         if (ecap_sc_support(iommu->ecap))
1933                 domain->iommu_snooping = 1;
1934         else
1935                 domain->iommu_snooping = 0;
1936
1937         if (intel_iommu_superpage)
1938                 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1939         else
1940                 domain->iommu_superpage = 0;
1941
1942         domain->nid = iommu->node;
1943
1944         /* always allocate the top pgd */
1945         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1946         if (!domain->pgd)
1947                 return -ENOMEM;
1948         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1949         return 0;
1950 }
1951
1952 static void domain_exit(struct dmar_domain *domain)
1953 {
1954         struct page *freelist = NULL;
1955
1956         /* Domain 0 is reserved, so dont process it */
1957         if (!domain)
1958                 return;
1959
1960         /* Flush any lazy unmaps that may reference this domain */
1961         if (!intel_iommu_strict) {
1962                 int cpu;
1963
1964                 for_each_possible_cpu(cpu)
1965                         flush_unmaps_timeout(cpu);
1966         }
1967
1968         /* Remove associated devices and clear attached or cached domains */
1969         rcu_read_lock();
1970         domain_remove_dev_info(domain);
1971         rcu_read_unlock();
1972
1973         /* destroy iovas */
1974         put_iova_domain(&domain->iovad);
1975
1976         freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1977
1978         dma_free_pagelist(freelist);
1979
1980         free_domain_mem(domain);
1981 }
1982
1983 static int domain_context_mapping_one(struct dmar_domain *domain,
1984                                       struct intel_iommu *iommu,
1985                                       u8 bus, u8 devfn)
1986 {
1987         u16 did = domain->iommu_did[iommu->seq_id];
1988         int translation = CONTEXT_TT_MULTI_LEVEL;
1989         struct device_domain_info *info = NULL;
1990         struct context_entry *context;
1991         unsigned long flags;
1992         struct dma_pte *pgd;
1993         int ret, agaw;
1994
1995         WARN_ON(did == 0);
1996
1997         if (hw_pass_through && domain_type_is_si(domain))
1998                 translation = CONTEXT_TT_PASS_THROUGH;
1999
2000         pr_debug("Set context mapping for %02x:%02x.%d\n",
2001                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
2002
2003         BUG_ON(!domain->pgd);
2004
2005         spin_lock_irqsave(&device_domain_lock, flags);
2006         spin_lock(&iommu->lock);
2007
2008         ret = -ENOMEM;
2009         context = iommu_context_addr(iommu, bus, devfn, 1);
2010         if (!context)
2011                 goto out_unlock;
2012
2013         ret = 0;
2014         if (context_present(context))
2015                 goto out_unlock;
2016
2017         pgd = domain->pgd;
2018
2019         context_clear_entry(context);
2020         context_set_domain_id(context, did);
2021
2022         /*
2023          * Skip top levels of page tables for iommu which has less agaw
2024          * than default.  Unnecessary for PT mode.
2025          */
2026         if (translation != CONTEXT_TT_PASS_THROUGH) {
2027                 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
2028                         ret = -ENOMEM;
2029                         pgd = phys_to_virt(dma_pte_addr(pgd));
2030                         if (!dma_pte_present(pgd))
2031                                 goto out_unlock;
2032                 }
2033
2034                 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2035                 if (info && info->ats_supported)
2036                         translation = CONTEXT_TT_DEV_IOTLB;
2037                 else
2038                         translation = CONTEXT_TT_MULTI_LEVEL;
2039
2040                 context_set_address_root(context, virt_to_phys(pgd));
2041                 context_set_address_width(context, iommu->agaw);
2042         } else {
2043                 /*
2044                  * In pass through mode, AW must be programmed to
2045                  * indicate the largest AGAW value supported by
2046                  * hardware. And ASR is ignored by hardware.
2047                  */
2048                 context_set_address_width(context, iommu->msagaw);
2049         }
2050
2051         context_set_translation_type(context, translation);
2052         context_set_fault_enable(context);
2053         context_set_present(context);
2054         domain_flush_cache(domain, context, sizeof(*context));
2055
2056         /*
2057          * It's a non-present to present mapping. If hardware doesn't cache
2058          * non-present entry we only need to flush the write-buffer. If the
2059          * _does_ cache non-present entries, then it does so in the special
2060          * domain #0, which we have to flush:
2061          */
2062         if (cap_caching_mode(iommu->cap)) {
2063                 iommu->flush.flush_context(iommu, 0,
2064                                            (((u16)bus) << 8) | devfn,
2065                                            DMA_CCMD_MASK_NOBIT,
2066                                            DMA_CCMD_DEVICE_INVL);
2067                 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2068         } else {
2069                 iommu_flush_write_buffer(iommu);
2070         }
2071         iommu_enable_dev_iotlb(info);
2072
2073         ret = 0;
2074
2075 out_unlock:
2076         spin_unlock(&iommu->lock);
2077         spin_unlock_irqrestore(&device_domain_lock, flags);
2078
2079         return ret;
2080 }
2081
2082 struct domain_context_mapping_data {
2083         struct dmar_domain *domain;
2084         struct intel_iommu *iommu;
2085 };
2086
2087 static int domain_context_mapping_cb(struct pci_dev *pdev,
2088                                      u16 alias, void *opaque)
2089 {
2090         struct domain_context_mapping_data *data = opaque;
2091
2092         return domain_context_mapping_one(data->domain, data->iommu,
2093                                           PCI_BUS_NUM(alias), alias & 0xff);
2094 }
2095
2096 static int
2097 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2098 {
2099         struct intel_iommu *iommu;
2100         u8 bus, devfn;
2101         struct domain_context_mapping_data data;
2102
2103         iommu = device_to_iommu(dev, &bus, &devfn);
2104         if (!iommu)
2105                 return -ENODEV;
2106
2107         if (!dev_is_pci(dev))
2108                 return domain_context_mapping_one(domain, iommu, bus, devfn);
2109
2110         data.domain = domain;
2111         data.iommu = iommu;
2112
2113         return pci_for_each_dma_alias(to_pci_dev(dev),
2114                                       &domain_context_mapping_cb, &data);
2115 }
2116
2117 static int domain_context_mapped_cb(struct pci_dev *pdev,
2118                                     u16 alias, void *opaque)
2119 {
2120         struct intel_iommu *iommu = opaque;
2121
2122         return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2123 }
2124
2125 static int domain_context_mapped(struct device *dev)
2126 {
2127         struct intel_iommu *iommu;
2128         u8 bus, devfn;
2129
2130         iommu = device_to_iommu(dev, &bus, &devfn);
2131         if (!iommu)
2132                 return -ENODEV;
2133
2134         if (!dev_is_pci(dev))
2135                 return device_context_mapped(iommu, bus, devfn);
2136
2137         return !pci_for_each_dma_alias(to_pci_dev(dev),
2138                                        domain_context_mapped_cb, iommu);
2139 }
2140
2141 /* Returns a number of VTD pages, but aligned to MM page size */
2142 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2143                                             size_t size)
2144 {
2145         host_addr &= ~PAGE_MASK;
2146         return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2147 }
2148
2149 /* Return largest possible superpage level for a given mapping */
2150 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2151                                           unsigned long iov_pfn,
2152                                           unsigned long phy_pfn,
2153                                           unsigned long pages)
2154 {
2155         int support, level = 1;
2156         unsigned long pfnmerge;
2157
2158         support = domain->iommu_superpage;
2159
2160         /* To use a large page, the virtual *and* physical addresses
2161            must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2162            of them will mean we have to use smaller pages. So just
2163            merge them and check both at once. */
2164         pfnmerge = iov_pfn | phy_pfn;
2165
2166         while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2167                 pages >>= VTD_STRIDE_SHIFT;
2168                 if (!pages)
2169                         break;
2170                 pfnmerge >>= VTD_STRIDE_SHIFT;
2171                 level++;
2172                 support--;
2173         }
2174         return level;
2175 }
2176
2177 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2178                             struct scatterlist *sg, unsigned long phys_pfn,
2179                             unsigned long nr_pages, int prot)
2180 {
2181         struct dma_pte *first_pte = NULL, *pte = NULL;
2182         phys_addr_t uninitialized_var(pteval);
2183         unsigned long sg_res = 0;
2184         unsigned int largepage_lvl = 0;
2185         unsigned long lvl_pages = 0;
2186
2187         BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2188
2189         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2190                 return -EINVAL;
2191
2192         prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2193
2194         if (!sg) {
2195                 sg_res = nr_pages;
2196                 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2197         }
2198
2199         while (nr_pages > 0) {
2200                 uint64_t tmp;
2201
2202                 if (!sg_res) {
2203                         sg_res = aligned_nrpages(sg->offset, sg->length);
2204                         sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2205                         sg->dma_length = sg->length;
2206                         pteval = page_to_phys(sg_page(sg)) | prot;
2207                         phys_pfn = pteval >> VTD_PAGE_SHIFT;
2208                 }
2209
2210                 if (!pte) {
2211                         largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2212
2213                         first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2214                         if (!pte)
2215                                 return -ENOMEM;
2216                         /* It is large page*/
2217                         if (largepage_lvl > 1) {
2218                                 unsigned long nr_superpages, end_pfn;
2219
2220                                 pteval |= DMA_PTE_LARGE_PAGE;
2221                                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2222
2223                                 nr_superpages = sg_res / lvl_pages;
2224                                 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2225
2226                                 /*
2227                                  * Ensure that old small page tables are
2228                                  * removed to make room for superpage(s).
2229                                  */
2230                                 dma_pte_free_pagetable(domain, iov_pfn, end_pfn);
2231                         } else {
2232                                 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2233                         }
2234
2235                 }
2236                 /* We don't need lock here, nobody else
2237                  * touches the iova range
2238                  */
2239                 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2240                 if (tmp) {
2241                         static int dumps = 5;
2242                         pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2243                                 iov_pfn, tmp, (unsigned long long)pteval);
2244                         if (dumps) {
2245                                 dumps--;
2246                                 debug_dma_dump_mappings(NULL);
2247                         }
2248                         WARN_ON(1);
2249                 }
2250
2251                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2252
2253                 BUG_ON(nr_pages < lvl_pages);
2254                 BUG_ON(sg_res < lvl_pages);
2255
2256                 nr_pages -= lvl_pages;
2257                 iov_pfn += lvl_pages;
2258                 phys_pfn += lvl_pages;
2259                 pteval += lvl_pages * VTD_PAGE_SIZE;
2260                 sg_res -= lvl_pages;
2261
2262                 /* If the next PTE would be the first in a new page, then we
2263                    need to flush the cache on the entries we've just written.
2264                    And then we'll need to recalculate 'pte', so clear it and
2265                    let it get set again in the if (!pte) block above.
2266
2267                    If we're done (!nr_pages) we need to flush the cache too.
2268
2269                    Also if we've been setting superpages, we may need to
2270                    recalculate 'pte' and switch back to smaller pages for the
2271                    end of the mapping, if the trailing size is not enough to
2272                    use another superpage (i.e. sg_res < lvl_pages). */
2273                 pte++;
2274                 if (!nr_pages || first_pte_in_page(pte) ||
2275                     (largepage_lvl > 1 && sg_res < lvl_pages)) {
2276                         domain_flush_cache(domain, first_pte,
2277                                            (void *)pte - (void *)first_pte);
2278                         pte = NULL;
2279                 }
2280
2281                 if (!sg_res && nr_pages)
2282                         sg = sg_next(sg);
2283         }
2284         return 0;
2285 }
2286
2287 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2288                                     struct scatterlist *sg, unsigned long nr_pages,
2289                                     int prot)
2290 {
2291         return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2292 }
2293
2294 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2295                                      unsigned long phys_pfn, unsigned long nr_pages,
2296                                      int prot)
2297 {
2298         return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2299 }
2300
2301 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2302 {
2303         if (!iommu)
2304                 return;
2305
2306         clear_context_table(iommu, bus, devfn);
2307         iommu->flush.flush_context(iommu, 0, 0, 0,
2308                                            DMA_CCMD_GLOBAL_INVL);
2309         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2310 }
2311
2312 static inline void unlink_domain_info(struct device_domain_info *info)
2313 {
2314         assert_spin_locked(&device_domain_lock);
2315         list_del(&info->link);
2316         list_del(&info->global);
2317         if (info->dev)
2318                 info->dev->archdata.iommu = NULL;
2319 }
2320
2321 static void domain_remove_dev_info(struct dmar_domain *domain)
2322 {
2323         struct device_domain_info *info, *tmp;
2324         unsigned long flags;
2325
2326         spin_lock_irqsave(&device_domain_lock, flags);
2327         list_for_each_entry_safe(info, tmp, &domain->devices, link)
2328                 __dmar_remove_one_dev_info(info);
2329         spin_unlock_irqrestore(&device_domain_lock, flags);
2330 }
2331
2332 /*
2333  * find_domain
2334  * Note: we use struct device->archdata.iommu stores the info
2335  */
2336 static struct dmar_domain *find_domain(struct device *dev)
2337 {
2338         struct device_domain_info *info;
2339
2340         /* No lock here, assumes no domain exit in normal case */
2341         info = dev->archdata.iommu;
2342         if (info)
2343                 return info->domain;
2344         return NULL;
2345 }
2346
2347 static inline struct device_domain_info *
2348 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2349 {
2350         struct device_domain_info *info;
2351
2352         list_for_each_entry(info, &device_domain_list, global)
2353                 if (info->iommu->segment == segment && info->bus == bus &&
2354                     info->devfn == devfn)
2355                         return info;
2356
2357         return NULL;
2358 }
2359
2360 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2361                                                     int bus, int devfn,
2362                                                     struct device *dev,
2363                                                     struct dmar_domain *domain)
2364 {
2365         struct dmar_domain *found = NULL;
2366         struct device_domain_info *info;
2367         unsigned long flags;
2368         int ret;
2369
2370         info = alloc_devinfo_mem();
2371         if (!info)
2372                 return NULL;
2373
2374         info->bus = bus;
2375         info->devfn = devfn;
2376         info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2377         info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2378         info->ats_qdep = 0;
2379         info->dev = dev;
2380         info->domain = domain;
2381         info->iommu = iommu;
2382
2383         if (dev && dev_is_pci(dev)) {
2384                 struct pci_dev *pdev = to_pci_dev(info->dev);
2385
2386                 if (ecap_dev_iotlb_support(iommu->ecap) &&
2387                     pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2388                     dmar_find_matched_atsr_unit(pdev))
2389                         info->ats_supported = 1;
2390
2391                 if (ecs_enabled(iommu)) {
2392                         if (pasid_enabled(iommu)) {
2393                                 int features = pci_pasid_features(pdev);
2394                                 if (features >= 0)
2395                                         info->pasid_supported = features | 1;
2396                         }
2397
2398                         if (info->ats_supported && ecap_prs(iommu->ecap) &&
2399                             pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2400                                 info->pri_supported = 1;
2401                 }
2402         }
2403
2404         spin_lock_irqsave(&device_domain_lock, flags);
2405         if (dev)
2406                 found = find_domain(dev);
2407
2408         if (!found) {
2409                 struct device_domain_info *info2;
2410                 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2411                 if (info2) {
2412                         found      = info2->domain;
2413                         info2->dev = dev;
2414                 }
2415         }
2416
2417         if (found) {
2418                 spin_unlock_irqrestore(&device_domain_lock, flags);
2419                 free_devinfo_mem(info);
2420                 /* Caller must free the original domain */
2421                 return found;
2422         }
2423
2424         spin_lock(&iommu->lock);
2425         ret = domain_attach_iommu(domain, iommu);
2426         spin_unlock(&iommu->lock);
2427
2428         if (ret) {
2429                 spin_unlock_irqrestore(&device_domain_lock, flags);
2430                 free_devinfo_mem(info);
2431                 return NULL;
2432         }
2433
2434         list_add(&info->link, &domain->devices);
2435         list_add(&info->global, &device_domain_list);
2436         if (dev)
2437                 dev->archdata.iommu = info;
2438         spin_unlock_irqrestore(&device_domain_lock, flags);
2439
2440         if (dev && domain_context_mapping(domain, dev)) {
2441                 pr_err("Domain context map for %s failed\n", dev_name(dev));
2442                 dmar_remove_one_dev_info(domain, dev);
2443                 return NULL;
2444         }
2445
2446         return domain;
2447 }
2448
2449 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2450 {
2451         *(u16 *)opaque = alias;
2452         return 0;
2453 }
2454
2455 /* domain is initialized */
2456 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2457 {
2458         struct device_domain_info *info = NULL;
2459         struct dmar_domain *domain, *tmp;
2460         struct intel_iommu *iommu;
2461         u16 req_id, dma_alias;
2462         unsigned long flags;
2463         u8 bus, devfn;
2464
2465         domain = find_domain(dev);
2466         if (domain)
2467                 return domain;
2468
2469         iommu = device_to_iommu(dev, &bus, &devfn);
2470         if (!iommu)
2471                 return NULL;
2472
2473         req_id = ((u16)bus << 8) | devfn;
2474
2475         if (dev_is_pci(dev)) {
2476                 struct pci_dev *pdev = to_pci_dev(dev);
2477
2478                 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2479
2480                 spin_lock_irqsave(&device_domain_lock, flags);
2481                 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2482                                                       PCI_BUS_NUM(dma_alias),
2483                                                       dma_alias & 0xff);
2484                 if (info) {
2485                         iommu = info->iommu;
2486                         domain = info->domain;
2487                 }
2488                 spin_unlock_irqrestore(&device_domain_lock, flags);
2489
2490                 /* DMA alias already has a domain, uses it */
2491                 if (info)
2492                         goto found_domain;
2493         }
2494
2495         /* Allocate and initialize new domain for the device */
2496         domain = alloc_domain(0);
2497         if (!domain)
2498                 return NULL;
2499         if (domain_init(domain, iommu, gaw)) {
2500                 domain_exit(domain);
2501                 return NULL;
2502         }
2503
2504         /* register PCI DMA alias device */
2505         if (dev_is_pci(dev) && req_id != dma_alias) {
2506                 tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2507                                                dma_alias & 0xff, NULL, domain);
2508
2509                 if (!tmp || tmp != domain) {
2510                         domain_exit(domain);
2511                         domain = tmp;
2512                 }
2513
2514                 if (!domain)
2515                         return NULL;
2516         }
2517
2518 found_domain:
2519         tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2520
2521         if (!tmp || tmp != domain) {
2522                 domain_exit(domain);
2523                 domain = tmp;
2524         }
2525
2526         return domain;
2527 }
2528
2529 static int iommu_domain_identity_map(struct dmar_domain *domain,
2530                                      unsigned long long start,
2531                                      unsigned long long end)
2532 {
2533         unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2534         unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2535
2536         if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2537                           dma_to_mm_pfn(last_vpfn))) {
2538                 pr_err("Reserving iova failed\n");
2539                 return -ENOMEM;
2540         }
2541
2542         pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2543         /*
2544          * RMRR range might have overlap with physical memory range,
2545          * clear it first
2546          */
2547         dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2548
2549         return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2550                                   last_vpfn - first_vpfn + 1,
2551                                   DMA_PTE_READ|DMA_PTE_WRITE);
2552 }
2553
2554 static int domain_prepare_identity_map(struct device *dev,
2555                                        struct dmar_domain *domain,
2556                                        unsigned long long start,
2557                                        unsigned long long end)
2558 {
2559         /* For _hardware_ passthrough, don't bother. But for software
2560            passthrough, we do it anyway -- it may indicate a memory
2561            range which is reserved in E820, so which didn't get set
2562            up to start with in si_domain */
2563         if (domain == si_domain && hw_pass_through) {
2564                 pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2565                         dev_name(dev), start, end);
2566                 return 0;
2567         }
2568
2569         pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2570                 dev_name(dev), start, end);
2571
2572         if (end < start) {
2573                 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2574                         "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2575                         dmi_get_system_info(DMI_BIOS_VENDOR),
2576                         dmi_get_system_info(DMI_BIOS_VERSION),
2577                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2578                 return -EIO;
2579         }
2580
2581         if (end >> agaw_to_width(domain->agaw)) {
2582                 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2583                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2584                      agaw_to_width(domain->agaw),
2585                      dmi_get_system_info(DMI_BIOS_VENDOR),
2586                      dmi_get_system_info(DMI_BIOS_VERSION),
2587                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2588                 return -EIO;
2589         }
2590
2591         return iommu_domain_identity_map(domain, start, end);
2592 }
2593
2594 static int iommu_prepare_identity_map(struct device *dev,
2595                                       unsigned long long start,
2596                                       unsigned long long end)
2597 {
2598         struct dmar_domain *domain;
2599         int ret;
2600
2601         domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2602         if (!domain)
2603                 return -ENOMEM;
2604
2605         ret = domain_prepare_identity_map(dev, domain, start, end);
2606         if (ret)
2607                 domain_exit(domain);
2608
2609         return ret;
2610 }
2611
2612 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2613                                          struct device *dev)
2614 {
2615         if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2616                 return 0;
2617         return iommu_prepare_identity_map(dev, rmrr->base_address,
2618                                           rmrr->end_address);
2619 }
2620
2621 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2622 static inline void iommu_prepare_isa(void)
2623 {
2624         struct pci_dev *pdev;
2625         int ret;
2626
2627         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2628         if (!pdev)
2629                 return;
2630
2631         pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2632         ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2633
2634         if (ret)
2635                 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2636
2637         pci_dev_put(pdev);
2638 }
2639 #else
2640 static inline void iommu_prepare_isa(void)
2641 {
2642         return;
2643 }
2644 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2645
2646 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2647
2648 static int __init si_domain_init(int hw)
2649 {
2650         int nid, ret = 0;
2651
2652         si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2653         if (!si_domain)
2654                 return -EFAULT;
2655
2656         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2657                 domain_exit(si_domain);
2658                 return -EFAULT;
2659         }
2660
2661         pr_debug("Identity mapping domain allocated\n");
2662
2663         if (hw)
2664                 return 0;
2665
2666         for_each_online_node(nid) {
2667                 unsigned long start_pfn, end_pfn;
2668                 int i;
2669
2670                 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2671                         ret = iommu_domain_identity_map(si_domain,
2672                                         PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2673                         if (ret)
2674                                 return ret;
2675                 }
2676         }
2677
2678         return 0;
2679 }
2680
2681 static int identity_mapping(struct device *dev)
2682 {
2683         struct device_domain_info *info;
2684
2685         if (likely(!iommu_identity_mapping))
2686                 return 0;
2687
2688         info = dev->archdata.iommu;
2689         if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2690                 return (info->domain == si_domain);
2691
2692         return 0;
2693 }
2694
2695 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2696 {
2697         struct dmar_domain *ndomain;
2698         struct intel_iommu *iommu;
2699         u8 bus, devfn;
2700
2701         iommu = device_to_iommu(dev, &bus, &devfn);
2702         if (!iommu)
2703                 return -ENODEV;
2704
2705         ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2706         if (ndomain != domain)
2707                 return -EBUSY;
2708
2709         return 0;
2710 }
2711
2712 static bool device_has_rmrr(struct device *dev)
2713 {
2714         struct dmar_rmrr_unit *rmrr;
2715         struct device *tmp;
2716         int i;
2717
2718         rcu_read_lock();
2719         for_each_rmrr_units(rmrr) {
2720                 /*
2721                  * Return TRUE if this RMRR contains the device that
2722                  * is passed in.
2723                  */
2724                 for_each_active_dev_scope(rmrr->devices,
2725                                           rmrr->devices_cnt, i, tmp)
2726                         if (tmp == dev) {
2727                                 rcu_read_unlock();
2728                                 return true;
2729                         }
2730         }
2731         rcu_read_unlock();
2732         return false;
2733 }
2734
2735 /*
2736  * There are a couple cases where we need to restrict the functionality of
2737  * devices associated with RMRRs.  The first is when evaluating a device for
2738  * identity mapping because problems exist when devices are moved in and out
2739  * of domains and their respective RMRR information is lost.  This means that
2740  * a device with associated RMRRs will never be in a "passthrough" domain.
2741  * The second is use of the device through the IOMMU API.  This interface
2742  * expects to have full control of the IOVA space for the device.  We cannot
2743  * satisfy both the requirement that RMRR access is maintained and have an
2744  * unencumbered IOVA space.  We also have no ability to quiesce the device's
2745  * use of the RMRR space or even inform the IOMMU API user of the restriction.
2746  * We therefore prevent devices associated with an RMRR from participating in
2747  * the IOMMU API, which eliminates them from device assignment.
2748  *
2749  * In both cases we assume that PCI USB devices with RMRRs have them largely
2750  * for historical reasons and that the RMRR space is not actively used post
2751  * boot.  This exclusion may change if vendors begin to abuse it.
2752  *
2753  * The same exception is made for graphics devices, with the requirement that
2754  * any use of the RMRR regions will be torn down before assigning the device
2755  * to a guest.
2756  */
2757 static bool device_is_rmrr_locked(struct device *dev)
2758 {
2759         if (!device_has_rmrr(dev))
2760                 return false;
2761
2762         if (dev_is_pci(dev)) {
2763                 struct pci_dev *pdev = to_pci_dev(dev);
2764
2765                 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2766                         return false;
2767         }
2768
2769         return true;
2770 }
2771
2772 static int iommu_should_identity_map(struct device *dev, int startup)
2773 {
2774
2775         if (dev_is_pci(dev)) {
2776                 struct pci_dev *pdev = to_pci_dev(dev);
2777
2778                 if (device_is_rmrr_locked(dev))
2779                         return 0;
2780
2781                 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2782                         return 1;
2783
2784                 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2785                         return 1;
2786
2787                 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2788                         return 0;
2789
2790                 /*
2791                  * We want to start off with all devices in the 1:1 domain, and
2792                  * take them out later if we find they can't access all of memory.
2793                  *
2794                  * However, we can't do this for PCI devices behind bridges,
2795                  * because all PCI devices behind the same bridge will end up
2796                  * with the same source-id on their transactions.
2797                  *
2798                  * Practically speaking, we can't change things around for these
2799                  * devices at run-time, because we can't be sure there'll be no
2800                  * DMA transactions in flight for any of their siblings.
2801                  *
2802                  * So PCI devices (unless they're on the root bus) as well as
2803                  * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2804                  * the 1:1 domain, just in _case_ one of their siblings turns out
2805                  * not to be able to map all of memory.
2806                  */
2807                 if (!pci_is_pcie(pdev)) {
2808                         if (!pci_is_root_bus(pdev->bus))
2809                                 return 0;
2810                         if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2811                                 return 0;
2812                 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2813                         return 0;
2814         } else {
2815                 if (device_has_rmrr(dev))
2816                         return 0;
2817         }
2818
2819         /*
2820          * At boot time, we don't yet know if devices will be 64-bit capable.
2821          * Assume that they will — if they turn out not to be, then we can
2822          * take them out of the 1:1 domain later.
2823          */
2824         if (!startup) {
2825                 /*
2826                  * If the device's dma_mask is less than the system's memory
2827                  * size then this is not a candidate for identity mapping.
2828                  */
2829                 u64 dma_mask = *dev->dma_mask;
2830
2831                 if (dev->coherent_dma_mask &&
2832                     dev->coherent_dma_mask < dma_mask)
2833                         dma_mask = dev->coherent_dma_mask;
2834
2835                 return dma_mask >= dma_get_required_mask(dev);
2836         }
2837
2838         return 1;
2839 }
2840
2841 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2842 {
2843         int ret;
2844
2845         if (!iommu_should_identity_map(dev, 1))
2846                 return 0;
2847
2848         ret = domain_add_dev_info(si_domain, dev);
2849         if (!ret)
2850                 pr_info("%s identity mapping for device %s\n",
2851                         hw ? "Hardware" : "Software", dev_name(dev));
2852         else if (ret == -ENODEV)
2853                 /* device not associated with an iommu */
2854                 ret = 0;
2855
2856         return ret;
2857 }
2858
2859
2860 static int __init iommu_prepare_static_identity_mapping(int hw)
2861 {
2862         struct pci_dev *pdev = NULL;
2863         struct dmar_drhd_unit *drhd;
2864         struct intel_iommu *iommu;
2865         struct device *dev;
2866         int i;
2867         int ret = 0;
2868
2869         for_each_pci_dev(pdev) {
2870                 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2871                 if (ret)
2872                         return ret;
2873         }
2874
2875         for_each_active_iommu(iommu, drhd)
2876                 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2877                         struct acpi_device_physical_node *pn;
2878                         struct acpi_device *adev;
2879
2880                         if (dev->bus != &acpi_bus_type)
2881                                 continue;
2882
2883                         adev= to_acpi_device(dev);
2884                         mutex_lock(&adev->physical_node_lock);
2885                         list_for_each_entry(pn, &adev->physical_node_list, node) {
2886                                 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2887                                 if (ret)
2888                                         break;
2889                         }
2890                         mutex_unlock(&adev->physical_node_lock);
2891                         if (ret)
2892                                 return ret;
2893                 }
2894
2895         return 0;
2896 }
2897
2898 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2899 {
2900         /*
2901          * Start from the sane iommu hardware state.
2902          * If the queued invalidation is already initialized by us
2903          * (for example, while enabling interrupt-remapping) then
2904          * we got the things already rolling from a sane state.
2905          */
2906         if (!iommu->qi) {
2907                 /*
2908                  * Clear any previous faults.
2909                  */
2910                 dmar_fault(-1, iommu);
2911                 /*
2912                  * Disable queued invalidation if supported and already enabled
2913                  * before OS handover.
2914                  */
2915                 dmar_disable_qi(iommu);
2916         }
2917
2918         if (dmar_enable_qi(iommu)) {
2919                 /*
2920                  * Queued Invalidate not enabled, use Register Based Invalidate
2921                  */
2922                 iommu->flush.flush_context = __iommu_flush_context;
2923                 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2924                 pr_info("%s: Using Register based invalidation\n",
2925                         iommu->name);
2926         } else {
2927                 iommu->flush.flush_context = qi_flush_context;
2928                 iommu->flush.flush_iotlb = qi_flush_iotlb;
2929                 pr_info("%s: Using Queued invalidation\n", iommu->name);
2930         }
2931 }
2932
2933 static int copy_context_table(struct intel_iommu *iommu,
2934                               struct root_entry *old_re,
2935                               struct context_entry **tbl,
2936                               int bus, bool ext)
2937 {
2938         int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2939         struct context_entry *new_ce = NULL, ce;
2940         struct context_entry *old_ce = NULL;
2941         struct root_entry re;
2942         phys_addr_t old_ce_phys;
2943
2944         tbl_idx = ext ? bus * 2 : bus;
2945         memcpy(&re, old_re, sizeof(re));
2946
2947         for (devfn = 0; devfn < 256; devfn++) {
2948                 /* First calculate the correct index */
2949                 idx = (ext ? devfn * 2 : devfn) % 256;
2950
2951                 if (idx == 0) {
2952                         /* First save what we may have and clean up */
2953                         if (new_ce) {
2954                                 tbl[tbl_idx] = new_ce;
2955                                 __iommu_flush_cache(iommu, new_ce,
2956                                                     VTD_PAGE_SIZE);
2957                                 pos = 1;
2958                         }
2959
2960                         if (old_ce)
2961                                 iounmap(old_ce);
2962
2963                         ret = 0;
2964                         if (devfn < 0x80)
2965                                 old_ce_phys = root_entry_lctp(&re);
2966                         else
2967                                 old_ce_phys = root_entry_uctp(&re);
2968
2969                         if (!old_ce_phys) {
2970                                 if (ext && devfn == 0) {
2971                                         /* No LCTP, try UCTP */
2972                                         devfn = 0x7f;
2973                                         continue;
2974                                 } else {
2975                                         goto out;
2976                                 }
2977                         }
2978
2979                         ret = -ENOMEM;
2980                         old_ce = memremap(old_ce_phys, PAGE_SIZE,
2981                                         MEMREMAP_WB);
2982                         if (!old_ce)
2983                                 goto out;
2984
2985                         new_ce = alloc_pgtable_page(iommu->node);
2986                         if (!new_ce)
2987                                 goto out_unmap;
2988
2989                         ret = 0;
2990                 }
2991
2992                 /* Now copy the context entry */
2993                 memcpy(&ce, old_ce + idx, sizeof(ce));
2994
2995                 if (!__context_present(&ce))
2996                         continue;
2997
2998                 did = context_domain_id(&ce);
2999                 if (did >= 0 && did < cap_ndoms(iommu->cap))
3000                         set_bit(did, iommu->domain_ids);
3001
3002                 /*
3003                  * We need a marker for copied context entries. This
3004                  * marker needs to work for the old format as well as
3005                  * for extended context entries.
3006                  *
3007                  * Bit 67 of the context entry is used. In the old
3008                  * format this bit is available to software, in the
3009                  * extended format it is the PGE bit, but PGE is ignored
3010                  * by HW if PASIDs are disabled (and thus still
3011                  * available).
3012                  *
3013                  * So disable PASIDs first and then mark the entry
3014                  * copied. This means that we don't copy PASID
3015                  * translations from the old kernel, but this is fine as
3016                  * faults there are not fatal.
3017                  */
3018                 context_clear_pasid_enable(&ce);
3019                 context_set_copied(&ce);
3020
3021                 new_ce[idx] = ce;
3022         }
3023
3024         tbl[tbl_idx + pos] = new_ce;
3025
3026         __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3027
3028 out_unmap:
3029         memunmap(old_ce);
3030
3031 out:
3032         return ret;
3033 }
3034
3035 static int copy_translation_tables(struct intel_iommu *iommu)
3036 {
3037         struct context_entry **ctxt_tbls;
3038         struct root_entry *old_rt;
3039         phys_addr_t old_rt_phys;
3040         int ctxt_table_entries;
3041         unsigned long flags;
3042         u64 rtaddr_reg;
3043         int bus, ret;
3044         bool new_ext, ext;
3045
3046         rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3047         ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3048         new_ext    = !!ecap_ecs(iommu->ecap);
3049
3050         /*
3051          * The RTT bit can only be changed when translation is disabled,
3052          * but disabling translation means to open a window for data
3053          * corruption. So bail out and don't copy anything if we would
3054          * have to change the bit.
3055          */
3056         if (new_ext != ext)
3057                 return -EINVAL;
3058
3059         old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3060         if (!old_rt_phys)
3061                 return -EINVAL;
3062
3063         old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3064         if (!old_rt)
3065                 return -ENOMEM;
3066
3067         /* This is too big for the stack - allocate it from slab */
3068         ctxt_table_entries = ext ? 512 : 256;
3069         ret = -ENOMEM;
3070         ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
3071         if (!ctxt_tbls)
3072                 goto out_unmap;
3073
3074         for (bus = 0; bus < 256; bus++) {
3075                 ret = copy_context_table(iommu, &old_rt[bus],
3076                                          ctxt_tbls, bus, ext);
3077                 if (ret) {
3078                         pr_err("%s: Failed to copy context table for bus %d\n",
3079                                 iommu->name, bus);
3080                         continue;
3081                 }
3082         }
3083
3084         spin_lock_irqsave(&iommu->lock, flags);
3085
3086         /* Context tables are copied, now write them to the root_entry table */
3087         for (bus = 0; bus < 256; bus++) {
3088                 int idx = ext ? bus * 2 : bus;
3089                 u64 val;
3090
3091                 if (ctxt_tbls[idx]) {
3092                         val = virt_to_phys(ctxt_tbls[idx]) | 1;
3093                         iommu->root_entry[bus].lo = val;
3094                 }
3095
3096                 if (!ext || !ctxt_tbls[idx + 1])
3097                         continue;
3098
3099                 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3100                 iommu->root_entry[bus].hi = val;
3101         }
3102
3103         spin_unlock_irqrestore(&iommu->lock, flags);
3104
3105         kfree(ctxt_tbls);
3106
3107         __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3108
3109         ret = 0;
3110
3111 out_unmap:
3112         memunmap(old_rt);
3113
3114         return ret;
3115 }
3116
3117 static int __init init_dmars(void)
3118 {
3119         struct dmar_drhd_unit *drhd;
3120         struct dmar_rmrr_unit *rmrr;
3121         bool copied_tables = false;
3122         struct device *dev;
3123         struct intel_iommu *iommu;
3124         int i, ret, cpu;
3125
3126         /*
3127          * for each drhd
3128          *    allocate root
3129          *    initialize and program root entry to not present
3130          * endfor
3131          */
3132         for_each_drhd_unit(drhd) {
3133                 /*
3134                  * lock not needed as this is only incremented in the single
3135                  * threaded kernel __init code path all other access are read
3136                  * only
3137                  */
3138                 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3139                         g_num_of_iommus++;
3140                         continue;
3141                 }
3142                 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3143         }
3144
3145         /* Preallocate enough resources for IOMMU hot-addition */
3146         if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3147                 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3148
3149         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3150                         GFP_KERNEL);
3151         if (!g_iommus) {
3152                 pr_err("Allocating global iommu array failed\n");
3153                 ret = -ENOMEM;
3154                 goto error;
3155         }
3156
3157         for_each_possible_cpu(cpu) {
3158                 struct deferred_flush_data *dfd = per_cpu_ptr(&deferred_flush,
3159                                                               cpu);
3160
3161                 dfd->tables = kzalloc(g_num_of_iommus *
3162                                       sizeof(struct deferred_flush_table),
3163                                       GFP_KERNEL);
3164                 if (!dfd->tables) {
3165                         ret = -ENOMEM;
3166                         goto free_g_iommus;
3167                 }
3168
3169                 spin_lock_init(&dfd->lock);
3170                 setup_timer(&dfd->timer, flush_unmaps_timeout, cpu);
3171         }
3172
3173         for_each_active_iommu(iommu, drhd) {
3174                 g_iommus[iommu->seq_id] = iommu;
3175
3176                 intel_iommu_init_qi(iommu);
3177
3178                 ret = iommu_init_domains(iommu);
3179                 if (ret)
3180                         goto free_iommu;
3181
3182                 init_translation_status(iommu);
3183
3184                 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3185                         iommu_disable_translation(iommu);
3186                         clear_translation_pre_enabled(iommu);
3187                         pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3188                                 iommu->name);
3189                 }
3190
3191                 /*
3192                  * TBD:
3193                  * we could share the same root & context tables
3194                  * among all IOMMU's. Need to Split it later.
3195                  */
3196                 ret = iommu_alloc_root_entry(iommu);
3197                 if (ret)
3198                         goto free_iommu;
3199
3200                 if (translation_pre_enabled(iommu)) {
3201                         pr_info("Translation already enabled - trying to copy translation structures\n");
3202
3203                         ret = copy_translation_tables(iommu);
3204                         if (ret) {
3205                                 /*
3206                                  * We found the IOMMU with translation
3207                                  * enabled - but failed to copy over the
3208                                  * old root-entry table. Try to proceed
3209                                  * by disabling translation now and
3210                                  * allocating a clean root-entry table.
3211                                  * This might cause DMAR faults, but
3212                                  * probably the dump will still succeed.
3213                                  */
3214                                 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3215                                        iommu->name);
3216                                 iommu_disable_translation(iommu);
3217                                 clear_translation_pre_enabled(iommu);
3218                         } else {
3219                                 pr_info("Copied translation tables from previous kernel for %s\n",
3220                                         iommu->name);
3221                                 copied_tables = true;
3222                         }
3223                 }
3224
3225                 if (!ecap_pass_through(iommu->ecap))
3226                         hw_pass_through = 0;
3227 #ifdef CONFIG_INTEL_IOMMU_SVM
3228                 if (pasid_enabled(iommu))
3229                         intel_svm_alloc_pasid_tables(iommu);
3230 #endif
3231         }
3232
3233         /*
3234          * Now that qi is enabled on all iommus, set the root entry and flush
3235          * caches. This is required on some Intel X58 chipsets, otherwise the
3236          * flush_context function will loop forever and the boot hangs.
3237          */
3238         for_each_active_iommu(iommu, drhd) {
3239                 iommu_flush_write_buffer(iommu);
3240                 iommu_set_root_entry(iommu);
3241                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3242                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3243         }
3244
3245         if (iommu_pass_through)
3246                 iommu_identity_mapping |= IDENTMAP_ALL;
3247
3248 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3249         iommu_identity_mapping |= IDENTMAP_GFX;
3250 #endif
3251
3252         if (iommu_identity_mapping) {
3253                 ret = si_domain_init(hw_pass_through);
3254                 if (ret)
3255                         goto free_iommu;
3256         }
3257
3258         check_tylersburg_isoch();
3259
3260         /*
3261          * If we copied translations from a previous kernel in the kdump
3262          * case, we can not assign the devices to domains now, as that
3263          * would eliminate the old mappings. So skip this part and defer
3264          * the assignment to device driver initialization time.
3265          */
3266         if (copied_tables)
3267                 goto domains_done;
3268
3269         /*
3270          * If pass through is not set or not enabled, setup context entries for
3271          * identity mappings for rmrr, gfx, and isa and may fall back to static
3272          * identity mapping if iommu_identity_mapping is set.
3273          */
3274         if (iommu_identity_mapping) {
3275                 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3276                 if (ret) {
3277                         pr_crit("Failed to setup IOMMU pass-through\n");
3278                         goto free_iommu;
3279                 }
3280         }
3281         /*
3282          * For each rmrr
3283          *   for each dev attached to rmrr
3284          *   do
3285          *     locate drhd for dev, alloc domain for dev
3286          *     allocate free domain
3287          *     allocate page table entries for rmrr
3288          *     if context not allocated for bus
3289          *           allocate and init context
3290          *           set present in root table for this bus
3291          *     init context with domain, translation etc
3292          *    endfor
3293          * endfor
3294          */
3295         pr_info("Setting RMRR:\n");
3296         for_each_rmrr_units(rmrr) {
3297                 /* some BIOS lists non-exist devices in DMAR table. */
3298                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3299                                           i, dev) {
3300                         ret = iommu_prepare_rmrr_dev(rmrr, dev);
3301                         if (ret)
3302                                 pr_err("Mapping reserved region failed\n");
3303                 }
3304         }
3305
3306         iommu_prepare_isa();
3307
3308 domains_done:
3309
3310         /*
3311          * for each drhd
3312          *   enable fault log
3313          *   global invalidate context cache
3314          *   global invalidate iotlb
3315          *   enable translation
3316          */
3317         for_each_iommu(iommu, drhd) {
3318                 if (drhd->ignored) {
3319                         /*
3320                          * we always have to disable PMRs or DMA may fail on
3321                          * this device
3322                          */
3323                         if (force_on)
3324                                 iommu_disable_protect_mem_regions(iommu);
3325                         continue;
3326                 }
3327
3328                 iommu_flush_write_buffer(iommu);
3329
3330 #ifdef CONFIG_INTEL_IOMMU_SVM
3331                 if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
3332                         ret = intel_svm_enable_prq(iommu);
3333                         if (ret)
3334                                 goto free_iommu;
3335                 }
3336 #endif
3337                 ret = dmar_set_interrupt(iommu);
3338                 if (ret)
3339                         goto free_iommu;
3340
3341                 if (!translation_pre_enabled(iommu))
3342                         iommu_enable_translation(iommu);
3343
3344                 iommu_disable_protect_mem_regions(iommu);
3345         }
3346
3347         return 0;
3348
3349 free_iommu:
3350         for_each_active_iommu(iommu, drhd) {
3351                 disable_dmar_iommu(iommu);
3352                 free_dmar_iommu(iommu);
3353         }
3354 free_g_iommus:
3355         for_each_possible_cpu(cpu)
3356                 kfree(per_cpu_ptr(&deferred_flush, cpu)->tables);
3357         kfree(g_iommus);
3358 error:
3359         return ret;
3360 }
3361
3362 /* This takes a number of _MM_ pages, not VTD pages */
3363 static unsigned long intel_alloc_iova(struct device *dev,
3364                                      struct dmar_domain *domain,
3365                                      unsigned long nrpages, uint64_t dma_mask)
3366 {
3367         unsigned long iova_pfn = 0;
3368
3369         /* Restrict dma_mask to the width that the iommu can handle */
3370         dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3371         /* Ensure we reserve the whole size-aligned region */
3372         nrpages = __roundup_pow_of_two(nrpages);
3373
3374         if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3375                 /*
3376                  * First try to allocate an io virtual address in
3377                  * DMA_BIT_MASK(32) and if that fails then try allocating
3378                  * from higher range
3379                  */
3380                 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3381                                            IOVA_PFN(DMA_BIT_MASK(32)));
3382                 if (iova_pfn)
3383                         return iova_pfn;
3384         }
3385         iova_pfn = alloc_iova_fast(&domain->iovad, nrpages, IOVA_PFN(dma_mask));
3386         if (unlikely(!iova_pfn)) {
3387                 pr_err("Allocating %ld-page iova for %s failed",
3388                        nrpages, dev_name(dev));
3389                 return 0;
3390         }
3391
3392         return iova_pfn;
3393 }
3394
3395 static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
3396 {
3397         struct dmar_rmrr_unit *rmrr;
3398         struct dmar_domain *domain;
3399         struct device *i_dev;
3400         int i, ret;
3401
3402         domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3403         if (!domain) {
3404                 pr_err("Allocating domain for %s failed\n",
3405                        dev_name(dev));
3406                 return NULL;
3407         }
3408
3409         /* We have a new domain - setup possible RMRRs for the device */
3410         rcu_read_lock();
3411         for_each_rmrr_units(rmrr) {
3412                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3413                                           i, i_dev) {
3414                         if (i_dev != dev)
3415                                 continue;
3416
3417                         ret = domain_prepare_identity_map(dev, domain,
3418                                                           rmrr->base_address,
3419                                                           rmrr->end_address);
3420                         if (ret)
3421                                 dev_err(dev, "Mapping reserved region failed\n");
3422                 }
3423         }
3424         rcu_read_unlock();
3425
3426         return domain;
3427 }
3428
3429 static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3430 {
3431         struct device_domain_info *info;
3432
3433         /* No lock here, assumes no domain exit in normal case */
3434         info = dev->archdata.iommu;
3435         if (likely(info))
3436                 return info->domain;
3437
3438         return __get_valid_domain_for_dev(dev);
3439 }
3440
3441 /* Check if the dev needs to go through non-identity map and unmap process.*/
3442 static int iommu_no_mapping(struct device *dev)
3443 {
3444         int found;
3445
3446         if (iommu_dummy(dev))
3447                 return 1;
3448
3449         if (!iommu_identity_mapping)
3450                 return 0;
3451
3452         found = identity_mapping(dev);
3453         if (found) {
3454                 if (iommu_should_identity_map(dev, 0))
3455                         return 1;
3456                 else {
3457                         /*
3458                          * 32 bit DMA is removed from si_domain and fall back
3459                          * to non-identity mapping.
3460                          */
3461                         dmar_remove_one_dev_info(si_domain, dev);
3462                         pr_info("32bit %s uses non-identity mapping\n",
3463                                 dev_name(dev));
3464                         return 0;
3465                 }
3466         } else {
3467                 /*
3468                  * In case of a detached 64 bit DMA device from vm, the device
3469                  * is put into si_domain for identity mapping.
3470                  */
3471                 if (iommu_should_identity_map(dev, 0)) {
3472                         int ret;
3473                         ret = domain_add_dev_info(si_domain, dev);
3474                         if (!ret) {
3475                                 pr_info("64bit %s uses identity mapping\n",
3476                                         dev_name(dev));
3477                                 return 1;
3478                         }
3479                 }
3480         }
3481
3482         return 0;
3483 }
3484
3485 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3486                                      size_t size, int dir, u64 dma_mask)
3487 {
3488         struct dmar_domain *domain;
3489         phys_addr_t start_paddr;
3490         unsigned long iova_pfn;
3491         int prot = 0;
3492         int ret;
3493         struct intel_iommu *iommu;
3494         unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3495
3496         BUG_ON(dir == DMA_NONE);
3497
3498         if (iommu_no_mapping(dev))
3499                 return paddr;
3500
3501         domain = get_valid_domain_for_dev(dev);
3502         if (!domain)
3503                 return 0;
3504
3505         iommu = domain_get_iommu(domain);
3506         size = aligned_nrpages(paddr, size);
3507
3508         iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3509         if (!iova_pfn)
3510                 goto error;
3511
3512         /*
3513          * Check if DMAR supports zero-length reads on write only
3514          * mappings..
3515          */
3516         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3517                         !cap_zlr(iommu->cap))
3518                 prot |= DMA_PTE_READ;
3519         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3520                 prot |= DMA_PTE_WRITE;
3521         /*
3522          * paddr - (paddr + size) might be partial page, we should map the whole
3523          * page.  Note: if two part of one page are separately mapped, we
3524          * might have two guest_addr mapping to the same host paddr, but this
3525          * is not a big problem
3526          */
3527         ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3528                                  mm_to_dma_pfn(paddr_pfn), size, prot);
3529         if (ret)
3530                 goto error;
3531
3532         /* it's a non-present to present mapping. Only flush if caching mode */
3533         if (cap_caching_mode(iommu->cap))
3534                 iommu_flush_iotlb_psi(iommu, domain,
3535                                       mm_to_dma_pfn(iova_pfn),
3536                                       size, 0, 1);
3537         else
3538                 iommu_flush_write_buffer(iommu);
3539
3540         start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3541         start_paddr += paddr & ~PAGE_MASK;
3542         return start_paddr;
3543
3544 error:
3545         if (iova_pfn)
3546                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3547         pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
3548                 dev_name(dev), size, (unsigned long long)paddr, dir);
3549         return 0;
3550 }
3551
3552 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3553                                  unsigned long offset, size_t size,
3554                                  enum dma_data_direction dir,
3555                                  unsigned long attrs)
3556 {
3557         return __intel_map_single(dev, page_to_phys(page) + offset, size,
3558                                   dir, *dev->dma_mask);
3559 }
3560
3561 static void flush_unmaps(struct deferred_flush_data *flush_data)
3562 {
3563         int i, j;
3564
3565         flush_data->timer_on = 0;
3566
3567         /* just flush them all */
3568         for (i = 0; i < g_num_of_iommus; i++) {
3569                 struct intel_iommu *iommu = g_iommus[i];
3570                 struct deferred_flush_table *flush_table =
3571                                 &flush_data->tables[i];
3572                 if (!iommu)
3573                         continue;
3574
3575                 if (!flush_table->next)
3576                         continue;
3577
3578                 /* In caching mode, global flushes turn emulation expensive */
3579                 if (!cap_caching_mode(iommu->cap))
3580                         iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3581                                          DMA_TLB_GLOBAL_FLUSH);
3582                 for (j = 0; j < flush_table->next; j++) {
3583                         unsigned long mask;
3584                         struct deferred_flush_entry *entry =
3585                                                 &flush_table->entries[j];
3586                         unsigned long iova_pfn = entry->iova_pfn;
3587                         unsigned long nrpages = entry->nrpages;
3588                         struct dmar_domain *domain = entry->domain;
3589                         struct page *freelist = entry->freelist;
3590
3591                         /* On real hardware multiple invalidations are expensive */
3592                         if (cap_caching_mode(iommu->cap))
3593                                 iommu_flush_iotlb_psi(iommu, domain,
3594                                         mm_to_dma_pfn(iova_pfn),
3595                                         nrpages, !freelist, 0);
3596                         else {
3597                                 mask = ilog2(nrpages);
3598                                 iommu_flush_dev_iotlb(domain,
3599                                                 (uint64_t)iova_pfn << PAGE_SHIFT, mask);
3600                         }
3601                         free_iova_fast(&domain->iovad, iova_pfn, nrpages);
3602                         if (freelist)
3603                                 dma_free_pagelist(freelist);
3604                 }
3605                 flush_table->next = 0;
3606         }
3607
3608         flush_data->size = 0;
3609 }
3610
3611 static void flush_unmaps_timeout(unsigned long cpuid)
3612 {
3613         struct deferred_flush_data *flush_data = per_cpu_ptr(&deferred_flush, cpuid);
3614         unsigned long flags;
3615
3616         spin_lock_irqsave(&flush_data->lock, flags);
3617         flush_unmaps(flush_data);
3618         spin_unlock_irqrestore(&flush_data->lock, flags);
3619 }
3620
3621 static void add_unmap(struct dmar_domain *dom, unsigned long iova_pfn,
3622                       unsigned long nrpages, struct page *freelist)
3623 {
3624         unsigned long flags;
3625         int entry_id, iommu_id;
3626         struct intel_iommu *iommu;
3627         struct deferred_flush_entry *entry;
3628         struct deferred_flush_data *flush_data;
3629         unsigned int cpuid;
3630
3631         cpuid = get_cpu();
3632         flush_data = per_cpu_ptr(&deferred_flush, cpuid);
3633
3634         /* Flush all CPUs' entries to avoid deferring too much.  If
3635          * this becomes a bottleneck, can just flush us, and rely on
3636          * flush timer for the rest.
3637          */
3638         if (flush_data->size == HIGH_WATER_MARK) {
3639                 int cpu;
3640
3641                 for_each_online_cpu(cpu)
3642                         flush_unmaps_timeout(cpu);
3643         }
3644
3645         spin_lock_irqsave(&flush_data->lock, flags);
3646
3647         iommu = domain_get_iommu(dom);
3648         iommu_id = iommu->seq_id;
3649
3650         entry_id = flush_data->tables[iommu_id].next;
3651         ++(flush_data->tables[iommu_id].next);
3652
3653         entry = &flush_data->tables[iommu_id].entries[entry_id];
3654         entry->domain = dom;
3655         entry->iova_pfn = iova_pfn;
3656         entry->nrpages = nrpages;
3657         entry->freelist = freelist;
3658
3659         if (!flush_data->timer_on) {
3660                 mod_timer(&flush_data->timer, jiffies + msecs_to_jiffies(10));
3661                 flush_data->timer_on = 1;
3662         }
3663         flush_data->size++;
3664         spin_unlock_irqrestore(&flush_data->lock, flags);
3665
3666         put_cpu();
3667 }
3668
3669 static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3670 {
3671         struct dmar_domain *domain;
3672         unsigned long start_pfn, last_pfn;
3673         unsigned long nrpages;
3674         unsigned long iova_pfn;
3675         struct intel_iommu *iommu;
3676         struct page *freelist;
3677
3678         if (iommu_no_mapping(dev))
3679                 return;
3680
3681         domain = find_domain(dev);
3682         BUG_ON(!domain);
3683
3684         iommu = domain_get_iommu(domain);
3685
3686         iova_pfn = IOVA_PFN(dev_addr);
3687
3688         nrpages = aligned_nrpages(dev_addr, size);
3689         start_pfn = mm_to_dma_pfn(iova_pfn);
3690         last_pfn = start_pfn + nrpages - 1;
3691
3692         pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3693                  dev_name(dev), start_pfn, last_pfn);
3694
3695         freelist = domain_unmap(domain, start_pfn, last_pfn);
3696
3697         if (intel_iommu_strict) {
3698                 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3699                                       nrpages, !freelist, 0);
3700                 /* free iova */
3701                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3702                 dma_free_pagelist(freelist);
3703         } else {
3704                 add_unmap(domain, iova_pfn, nrpages, freelist);
3705                 /*
3706                  * queue up the release of the unmap to save the 1/6th of the
3707                  * cpu used up by the iotlb flush operation...
3708                  */
3709         }
3710 }
3711
3712 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3713                              size_t size, enum dma_data_direction dir,
3714                              unsigned long attrs)
3715 {
3716         intel_unmap(dev, dev_addr, size);
3717 }
3718
3719 static void *intel_alloc_coherent(struct device *dev, size_t size,
3720                                   dma_addr_t *dma_handle, gfp_t flags,
3721                                   unsigned long attrs)
3722 {
3723         struct page *page = NULL;
3724         int order;
3725
3726         size = PAGE_ALIGN(size);
3727         order = get_order(size);
3728
3729         if (!iommu_no_mapping(dev))
3730                 flags &= ~(GFP_DMA | GFP_DMA32);
3731         else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3732                 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3733                         flags |= GFP_DMA;
3734                 else
3735                         flags |= GFP_DMA32;
3736         }
3737
3738         if (gfpflags_allow_blocking(flags)) {
3739                 unsigned int count = size >> PAGE_SHIFT;
3740
3741                 page = dma_alloc_from_contiguous(dev, count, order);
3742                 if (page && iommu_no_mapping(dev) &&
3743                     page_to_phys(page) + size > dev->coherent_dma_mask) {
3744                         dma_release_from_contiguous(dev, page, count);
3745                         page = NULL;
3746                 }
3747         }
3748
3749         if (!page)
3750                 page = alloc_pages(flags, order);
3751         if (!page)
3752                 return NULL;
3753         memset(page_address(page), 0, size);
3754
3755         *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3756                                          DMA_BIDIRECTIONAL,
3757                                          dev->coherent_dma_mask);
3758         if (*dma_handle)
3759                 return page_address(page);
3760         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3761                 __free_pages(page, order);
3762
3763         return NULL;
3764 }
3765
3766 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3767                                 dma_addr_t dma_handle, unsigned long attrs)
3768 {
3769         int order;
3770         struct page *page = virt_to_page(vaddr);
3771
3772         size = PAGE_ALIGN(size);
3773         order = get_order(size);
3774
3775         intel_unmap(dev, dma_handle, size);
3776         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3777                 __free_pages(page, order);
3778 }
3779
3780 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3781                            int nelems, enum dma_data_direction dir,
3782                            unsigned long attrs)
3783 {
3784         dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3785         unsigned long nrpages = 0;
3786         struct scatterlist *sg;
3787         int i;
3788
3789         for_each_sg(sglist, sg, nelems, i) {
3790                 nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3791         }
3792
3793         intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3794 }
3795
3796 static int intel_nontranslate_map_sg(struct device *hddev,
3797         struct scatterlist *sglist, int nelems, int dir)
3798 {
3799         int i;
3800         struct scatterlist *sg;
3801
3802         for_each_sg(sglist, sg, nelems, i) {
3803                 BUG_ON(!sg_page(sg));
3804                 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3805                 sg->dma_length = sg->length;
3806         }
3807         return nelems;
3808 }
3809
3810 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3811                         enum dma_data_direction dir, unsigned long attrs)
3812 {
3813         int i;
3814         struct dmar_domain *domain;
3815         size_t size = 0;
3816         int prot = 0;
3817         unsigned long iova_pfn;
3818         int ret;
3819         struct scatterlist *sg;
3820         unsigned long start_vpfn;
3821         struct intel_iommu *iommu;
3822
3823         BUG_ON(dir == DMA_NONE);
3824         if (iommu_no_mapping(dev))
3825                 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3826
3827         domain = get_valid_domain_for_dev(dev);
3828         if (!domain)
3829                 return 0;
3830
3831         iommu = domain_get_iommu(domain);
3832
3833         for_each_sg(sglist, sg, nelems, i)
3834                 size += aligned_nrpages(sg->offset, sg->length);
3835
3836         iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3837                                 *dev->dma_mask);
3838         if (!iova_pfn) {
3839                 sglist->dma_length = 0;
3840                 return 0;
3841         }
3842
3843         /*
3844          * Check if DMAR supports zero-length reads on write only
3845          * mappings..
3846          */
3847         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3848                         !cap_zlr(iommu->cap))
3849                 prot |= DMA_PTE_READ;
3850         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3851                 prot |= DMA_PTE_WRITE;
3852
3853         start_vpfn = mm_to_dma_pfn(iova_pfn);
3854
3855         ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3856         if (unlikely(ret)) {
3857                 dma_pte_free_pagetable(domain, start_vpfn,
3858                                        start_vpfn + size - 1);
3859                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3860                 return 0;
3861         }
3862
3863         /* it's a non-present to present mapping. Only flush if caching mode */
3864         if (cap_caching_mode(iommu->cap))
3865                 iommu_flush_iotlb_psi(iommu, domain, start_vpfn, size, 0, 1);
3866         else
3867                 iommu_flush_write_buffer(iommu);
3868
3869         return nelems;
3870 }
3871
3872 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3873 {
3874         return !dma_addr;
3875 }
3876
3877 struct dma_map_ops intel_dma_ops = {
3878         .alloc = intel_alloc_coherent,
3879         .free = intel_free_coherent,
3880         .map_sg = intel_map_sg,
3881         .unmap_sg = intel_unmap_sg,
3882         .map_page = intel_map_page,
3883         .unmap_page = intel_unmap_page,
3884         .mapping_error = intel_mapping_error,
3885 };
3886
3887 static inline int iommu_domain_cache_init(void)
3888 {
3889         int ret = 0;
3890
3891         iommu_domain_cache = kmem_cache_create("iommu_domain",
3892                                          sizeof(struct dmar_domain),
3893                                          0,
3894                                          SLAB_HWCACHE_ALIGN,
3895
3896                                          NULL);
3897         if (!iommu_domain_cache) {
3898                 pr_err("Couldn't create iommu_domain cache\n");
3899                 ret = -ENOMEM;
3900         }
3901
3902         return ret;
3903 }
3904
3905 static inline int iommu_devinfo_cache_init(void)
3906 {
3907         int ret = 0;
3908
3909         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3910                                          sizeof(struct device_domain_info),
3911                                          0,
3912                                          SLAB_HWCACHE_ALIGN,
3913                                          NULL);
3914         if (!iommu_devinfo_cache) {
3915                 pr_err("Couldn't create devinfo cache\n");
3916                 ret = -ENOMEM;
3917         }
3918
3919         return ret;
3920 }
3921
3922 static int __init iommu_init_mempool(void)
3923 {
3924         int ret;
3925         ret = iova_cache_get();
3926         if (ret)
3927                 return ret;
3928
3929         ret = iommu_domain_cache_init();
3930         if (ret)
3931                 goto domain_error;
3932
3933         ret = iommu_devinfo_cache_init();
3934         if (!ret)
3935                 return ret;
3936
3937         kmem_cache_destroy(iommu_domain_cache);
3938 domain_error:
3939         iova_cache_put();
3940
3941         return -ENOMEM;
3942 }
3943
3944 static void __init iommu_exit_mempool(void)
3945 {
3946         kmem_cache_destroy(iommu_devinfo_cache);
3947         kmem_cache_destroy(iommu_domain_cache);
3948         iova_cache_put();
3949 }
3950
3951 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3952 {
3953         struct dmar_drhd_unit *drhd;
3954         u32 vtbar;
3955         int rc;
3956
3957         /* We know that this device on this chipset has its own IOMMU.
3958          * If we find it under a different IOMMU, then the BIOS is lying
3959          * to us. Hope that the IOMMU for this device is actually
3960          * disabled, and it needs no translation...
3961          */
3962         rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3963         if (rc) {
3964                 /* "can't" happen */
3965                 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3966                 return;
3967         }
3968         vtbar &= 0xffff0000;
3969
3970         /* we know that the this iommu should be at offset 0xa000 from vtbar */
3971         drhd = dmar_find_matched_drhd_unit(pdev);
3972         if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3973                             TAINT_FIRMWARE_WORKAROUND,
3974                             "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3975                 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3976 }
3977 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3978
3979 static void __init init_no_remapping_devices(void)
3980 {
3981         struct dmar_drhd_unit *drhd;
3982         struct device *dev;
3983         int i;
3984
3985         for_each_drhd_unit(drhd) {
3986                 if (!drhd->include_all) {
3987                         for_each_active_dev_scope(drhd->devices,
3988                                                   drhd->devices_cnt, i, dev)
3989                                 break;
3990                         /* ignore DMAR unit if no devices exist */
3991                         if (i == drhd->devices_cnt)
3992                                 drhd->ignored = 1;
3993                 }
3994         }
3995
3996         for_each_active_drhd_unit(drhd) {
3997                 if (drhd->include_all)
3998                         continue;
3999
4000                 for_each_active_dev_scope(drhd->devices,
4001                                           drhd->devices_cnt, i, dev)
4002                         if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4003                                 break;
4004                 if (i < drhd->devices_cnt)
4005                         continue;
4006
4007                 /* This IOMMU has *only* gfx devices. Either bypass it or
4008                    set the gfx_mapped flag, as appropriate */
4009                 if (dmar_map_gfx) {
4010                         intel_iommu_gfx_mapped = 1;
4011                 } else {
4012                         drhd->ignored = 1;
4013                         for_each_active_dev_scope(drhd->devices,
4014                                                   drhd->devices_cnt, i, dev)
4015                                 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4016                 }
4017         }
4018 }
4019
4020 #ifdef CONFIG_SUSPEND
4021 static int init_iommu_hw(void)
4022 {
4023         struct dmar_drhd_unit *drhd;
4024         struct intel_iommu *iommu = NULL;
4025
4026         for_each_active_iommu(iommu, drhd)
4027                 if (iommu->qi)
4028                         dmar_reenable_qi(iommu);
4029
4030         for_each_iommu(iommu, drhd) {
4031                 if (drhd->ignored) {
4032                         /*
4033                          * we always have to disable PMRs or DMA may fail on
4034                          * this device
4035                          */
4036                         if (force_on)
4037                                 iommu_disable_protect_mem_regions(iommu);
4038                         continue;
4039                 }
4040         
4041                 iommu_flush_write_buffer(iommu);
4042
4043                 iommu_set_root_entry(iommu);
4044
4045                 iommu->flush.flush_context(iommu, 0, 0, 0,
4046                                            DMA_CCMD_GLOBAL_INVL);
4047                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4048                 iommu_enable_translation(iommu);
4049                 iommu_disable_protect_mem_regions(iommu);
4050         }
4051
4052         return 0;
4053 }
4054
4055 static void iommu_flush_all(void)
4056 {
4057         struct dmar_drhd_unit *drhd;
4058         struct intel_iommu *iommu;
4059
4060         for_each_active_iommu(iommu, drhd) {
4061                 iommu->flush.flush_context(iommu, 0, 0, 0,
4062                                            DMA_CCMD_GLOBAL_INVL);
4063                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4064                                          DMA_TLB_GLOBAL_FLUSH);
4065         }
4066 }
4067
4068 static int iommu_suspend(void)
4069 {
4070         struct dmar_drhd_unit *drhd;
4071         struct intel_iommu *iommu = NULL;
4072         unsigned long flag;
4073
4074         for_each_active_iommu(iommu, drhd) {
4075                 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
4076                                                  GFP_ATOMIC);
4077                 if (!iommu->iommu_state)
4078                         goto nomem;
4079         }
4080
4081         iommu_flush_all();
4082
4083         for_each_active_iommu(iommu, drhd) {
4084                 iommu_disable_translation(iommu);
4085
4086                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4087
4088                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
4089                         readl(iommu->reg + DMAR_FECTL_REG);
4090                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
4091                         readl(iommu->reg + DMAR_FEDATA_REG);
4092                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
4093                         readl(iommu->reg + DMAR_FEADDR_REG);
4094                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
4095                         readl(iommu->reg + DMAR_FEUADDR_REG);
4096
4097                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4098         }
4099         return 0;
4100
4101 nomem:
4102         for_each_active_iommu(iommu, drhd)
4103                 kfree(iommu->iommu_state);
4104
4105         return -ENOMEM;
4106 }
4107
4108 static void iommu_resume(void)
4109 {
4110         struct dmar_drhd_unit *drhd;
4111         struct intel_iommu *iommu = NULL;
4112         unsigned long flag;
4113
4114         if (init_iommu_hw()) {
4115                 if (force_on)
4116                         panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4117                 else
4118                         WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4119                 return;
4120         }
4121
4122         for_each_active_iommu(iommu, drhd) {
4123
4124                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4125
4126                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
4127                         iommu->reg + DMAR_FECTL_REG);
4128                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
4129                         iommu->reg + DMAR_FEDATA_REG);
4130                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
4131                         iommu->reg + DMAR_FEADDR_REG);
4132                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
4133                         iommu->reg + DMAR_FEUADDR_REG);
4134
4135                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4136         }
4137
4138         for_each_active_iommu(iommu, drhd)
4139                 kfree(iommu->iommu_state);
4140 }
4141
4142 static struct syscore_ops iommu_syscore_ops = {
4143         .resume         = iommu_resume,
4144         .suspend        = iommu_suspend,
4145 };
4146
4147 static void __init init_iommu_pm_ops(void)
4148 {
4149         register_syscore_ops(&iommu_syscore_ops);
4150 }
4151
4152 #else
4153 static inline void init_iommu_pm_ops(void) {}
4154 #endif  /* CONFIG_PM */
4155
4156
4157 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4158 {
4159         struct acpi_dmar_reserved_memory *rmrr;
4160         struct dmar_rmrr_unit *rmrru;
4161
4162         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4163         if (!rmrru)
4164                 return -ENOMEM;
4165
4166         rmrru->hdr = header;
4167         rmrr = (struct acpi_dmar_reserved_memory *)header;
4168         rmrru->base_address = rmrr->base_address;
4169         rmrru->end_address = rmrr->end_address;
4170         rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4171                                 ((void *)rmrr) + rmrr->header.length,
4172                                 &rmrru->devices_cnt);
4173         if (rmrru->devices_cnt && rmrru->devices == NULL) {
4174                 kfree(rmrru);
4175                 return -ENOMEM;
4176         }
4177
4178         list_add(&rmrru->list, &dmar_rmrr_units);
4179
4180         return 0;
4181 }
4182
4183 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4184 {
4185         struct dmar_atsr_unit *atsru;
4186         struct acpi_dmar_atsr *tmp;
4187
4188         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4189                 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4190                 if (atsr->segment != tmp->segment)
4191                         continue;
4192                 if (atsr->header.length != tmp->header.length)
4193                         continue;
4194                 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4195                         return atsru;
4196         }
4197
4198         return NULL;
4199 }
4200
4201 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4202 {
4203         struct acpi_dmar_atsr *atsr;
4204         struct dmar_atsr_unit *atsru;
4205
4206         if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
4207                 return 0;
4208
4209         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4210         atsru = dmar_find_atsr(atsr);
4211         if (atsru)
4212                 return 0;
4213
4214         atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4215         if (!atsru)
4216                 return -ENOMEM;
4217
4218         /*
4219          * If memory is allocated from slab by ACPI _DSM method, we need to
4220          * copy the memory content because the memory buffer will be freed
4221          * on return.
4222          */
4223         atsru->hdr = (void *)(atsru + 1);
4224         memcpy(atsru->hdr, hdr, hdr->length);
4225         atsru->include_all = atsr->flags & 0x1;
4226         if (!atsru->include_all) {
4227                 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4228                                 (void *)atsr + atsr->header.length,
4229                                 &atsru->devices_cnt);
4230                 if (atsru->devices_cnt && atsru->devices == NULL) {
4231                         kfree(atsru);
4232                         return -ENOMEM;
4233                 }
4234         }
4235
4236         list_add_rcu(&atsru->list, &dmar_atsr_units);
4237
4238         return 0;
4239 }
4240
4241 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4242 {
4243         dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4244         kfree(atsru);
4245 }
4246
4247 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4248 {
4249         struct acpi_dmar_atsr *atsr;
4250         struct dmar_atsr_unit *atsru;
4251
4252         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4253         atsru = dmar_find_atsr(atsr);
4254         if (atsru) {
4255                 list_del_rcu(&atsru->list);
4256                 synchronize_rcu();
4257                 intel_iommu_free_atsr(atsru);
4258         }
4259
4260         return 0;
4261 }
4262
4263 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4264 {
4265         int i;
4266         struct device *dev;
4267         struct acpi_dmar_atsr *atsr;
4268         struct dmar_atsr_unit *atsru;
4269
4270         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4271         atsru = dmar_find_atsr(atsr);
4272         if (!atsru)
4273                 return 0;
4274
4275         if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4276                 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4277                                           i, dev)
4278                         return -EBUSY;
4279         }
4280
4281         return 0;
4282 }
4283
4284 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4285 {
4286         int sp, ret = 0;
4287         struct intel_iommu *iommu = dmaru->iommu;
4288
4289         if (g_iommus[iommu->seq_id])
4290                 return 0;
4291
4292         if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4293                 pr_warn("%s: Doesn't support hardware pass through.\n",
4294                         iommu->name);
4295                 return -ENXIO;
4296         }
4297         if (!ecap_sc_support(iommu->ecap) &&
4298             domain_update_iommu_snooping(iommu)) {
4299                 pr_warn("%s: Doesn't support snooping.\n",
4300                         iommu->name);
4301                 return -ENXIO;
4302         }
4303         sp = domain_update_iommu_superpage(iommu) - 1;
4304         if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4305                 pr_warn("%s: Doesn't support large page.\n",
4306                         iommu->name);
4307                 return -ENXIO;
4308         }
4309
4310         /*
4311          * Disable translation if already enabled prior to OS handover.
4312          */
4313         if (iommu->gcmd & DMA_GCMD_TE)
4314                 iommu_disable_translation(iommu);
4315
4316         g_iommus[iommu->seq_id] = iommu;
4317         ret = iommu_init_domains(iommu);
4318         if (ret == 0)
4319                 ret = iommu_alloc_root_entry(iommu);
4320         if (ret)
4321                 goto out;
4322
4323 #ifdef CONFIG_INTEL_IOMMU_SVM
4324         if (pasid_enabled(iommu))
4325                 intel_svm_alloc_pasid_tables(iommu);
4326 #endif
4327
4328         if (dmaru->ignored) {
4329                 /*
4330                  * we always have to disable PMRs or DMA may fail on this device
4331                  */
4332                 if (force_on)
4333                         iommu_disable_protect_mem_regions(iommu);
4334                 return 0;
4335         }
4336
4337         intel_iommu_init_qi(iommu);
4338         iommu_flush_write_buffer(iommu);
4339
4340 #ifdef CONFIG_INTEL_IOMMU_SVM
4341         if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
4342                 ret = intel_svm_enable_prq(iommu);
4343                 if (ret)
4344                         goto disable_iommu;
4345         }
4346 #endif
4347         ret = dmar_set_interrupt(iommu);
4348         if (ret)
4349                 goto disable_iommu;
4350
4351         iommu_set_root_entry(iommu);
4352         iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4353         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4354         iommu_enable_translation(iommu);
4355
4356         iommu_disable_protect_mem_regions(iommu);
4357         return 0;
4358
4359 disable_iommu:
4360         disable_dmar_iommu(iommu);
4361 out:
4362         free_dmar_iommu(iommu);
4363         return ret;
4364 }
4365
4366 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4367 {
4368         int ret = 0;
4369         struct intel_iommu *iommu = dmaru->iommu;
4370
4371         if (!intel_iommu_enabled)
4372                 return 0;
4373         if (iommu == NULL)
4374                 return -EINVAL;
4375
4376         if (insert) {
4377                 ret = intel_iommu_add(dmaru);
4378         } else {
4379                 disable_dmar_iommu(iommu);
4380                 free_dmar_iommu(iommu);
4381         }
4382
4383         return ret;
4384 }
4385
4386 static void intel_iommu_free_dmars(void)
4387 {
4388         struct dmar_rmrr_unit *rmrru, *rmrr_n;
4389         struct dmar_atsr_unit *atsru, *atsr_n;
4390
4391         list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4392                 list_del(&rmrru->list);
4393                 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4394                 kfree(rmrru);
4395         }
4396
4397         list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4398                 list_del(&atsru->list);
4399                 intel_iommu_free_atsr(atsru);
4400         }
4401 }
4402
4403 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4404 {
4405         int i, ret = 1;
4406         struct pci_bus *bus;
4407         struct pci_dev *bridge = NULL;
4408         struct device *tmp;
4409         struct acpi_dmar_atsr *atsr;
4410         struct dmar_atsr_unit *atsru;
4411
4412         dev = pci_physfn(dev);
4413         for (bus = dev->bus; bus; bus = bus->parent) {
4414                 bridge = bus->self;
4415                 /* If it's an integrated device, allow ATS */
4416                 if (!bridge)
4417                         return 1;
4418                 /* Connected via non-PCIe: no ATS */
4419                 if (!pci_is_pcie(bridge) ||
4420                     pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4421                         return 0;
4422                 /* If we found the root port, look it up in the ATSR */
4423                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4424                         break;
4425         }
4426
4427         rcu_read_lock();
4428         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4429                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4430                 if (atsr->segment != pci_domain_nr(dev->bus))
4431                         continue;
4432
4433                 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4434                         if (tmp == &bridge->dev)
4435                                 goto out;
4436
4437                 if (atsru->include_all)
4438                         goto out;
4439         }
4440         ret = 0;
4441 out:
4442         rcu_read_unlock();
4443
4444         return ret;
4445 }
4446
4447 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4448 {
4449         int ret = 0;
4450         struct dmar_rmrr_unit *rmrru;
4451         struct dmar_atsr_unit *atsru;
4452         struct acpi_dmar_atsr *atsr;
4453         struct acpi_dmar_reserved_memory *rmrr;
4454
4455         if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
4456                 return 0;
4457
4458         list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4459                 rmrr = container_of(rmrru->hdr,
4460                                     struct acpi_dmar_reserved_memory, header);
4461                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4462                         ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4463                                 ((void *)rmrr) + rmrr->header.length,
4464                                 rmrr->segment, rmrru->devices,
4465                                 rmrru->devices_cnt);
4466                         if(ret < 0)
4467                                 return ret;
4468                 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4469                         dmar_remove_dev_scope(info, rmrr->segment,
4470                                 rmrru->devices, rmrru->devices_cnt);
4471                 }
4472         }
4473
4474         list_for_each_entry(atsru, &dmar_atsr_units, list) {
4475                 if (atsru->include_all)
4476                         continue;
4477
4478                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4479                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4480                         ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4481                                         (void *)atsr + atsr->header.length,
4482                                         atsr->segment, atsru->devices,
4483                                         atsru->devices_cnt);
4484                         if (ret > 0)
4485                                 break;
4486                         else if(ret < 0)
4487                                 return ret;
4488                 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4489                         if (dmar_remove_dev_scope(info, atsr->segment,
4490                                         atsru->devices, atsru->devices_cnt))
4491                                 break;
4492                 }
4493         }
4494
4495         return 0;
4496 }
4497
4498 /*
4499  * Here we only respond to action of unbound device from driver.
4500  *
4501  * Added device is not attached to its DMAR domain here yet. That will happen
4502  * when mapping the device to iova.
4503  */
4504 static int device_notifier(struct notifier_block *nb,
4505                                   unsigned long action, void *data)
4506 {
4507         struct device *dev = data;
4508         struct dmar_domain *domain;
4509
4510         if (iommu_dummy(dev))
4511                 return 0;
4512
4513         if (action != BUS_NOTIFY_REMOVED_DEVICE)
4514                 return 0;
4515
4516         domain = find_domain(dev);
4517         if (!domain)
4518                 return 0;
4519
4520         dmar_remove_one_dev_info(domain, dev);
4521         if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4522                 domain_exit(domain);
4523
4524         return 0;
4525 }
4526
4527 static struct notifier_block device_nb = {
4528         .notifier_call = device_notifier,
4529 };
4530
4531 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4532                                        unsigned long val, void *v)
4533 {
4534         struct memory_notify *mhp = v;
4535         unsigned long long start, end;
4536         unsigned long start_vpfn, last_vpfn;
4537
4538         switch (val) {
4539         case MEM_GOING_ONLINE:
4540                 start = mhp->start_pfn << PAGE_SHIFT;
4541                 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4542                 if (iommu_domain_identity_map(si_domain, start, end)) {
4543                         pr_warn("Failed to build identity map for [%llx-%llx]\n",
4544                                 start, end);
4545                         return NOTIFY_BAD;
4546                 }
4547                 break;
4548
4549         case MEM_OFFLINE:
4550         case MEM_CANCEL_ONLINE:
4551                 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4552                 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4553                 while (start_vpfn <= last_vpfn) {
4554                         struct iova *iova;
4555                         struct dmar_drhd_unit *drhd;
4556                         struct intel_iommu *iommu;
4557                         struct page *freelist;
4558
4559                         iova = find_iova(&si_domain->iovad, start_vpfn);
4560                         if (iova == NULL) {
4561                                 pr_debug("Failed get IOVA for PFN %lx\n",
4562                                          start_vpfn);
4563                                 break;
4564                         }
4565
4566                         iova = split_and_remove_iova(&si_domain->iovad, iova,
4567                                                      start_vpfn, last_vpfn);
4568                         if (iova == NULL) {
4569                                 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4570                                         start_vpfn, last_vpfn);
4571                                 return NOTIFY_BAD;
4572                         }
4573
4574                         freelist = domain_unmap(si_domain, iova->pfn_lo,
4575                                                iova->pfn_hi);
4576
4577                         rcu_read_lock();
4578                         for_each_active_iommu(iommu, drhd)
4579                                 iommu_flush_iotlb_psi(iommu, si_domain,
4580                                         iova->pfn_lo, iova_size(iova),
4581                                         !freelist, 0);
4582                         rcu_read_unlock();
4583                         dma_free_pagelist(freelist);
4584
4585                         start_vpfn = iova->pfn_hi + 1;
4586                         free_iova_mem(iova);
4587                 }
4588                 break;
4589         }
4590
4591         return NOTIFY_OK;
4592 }
4593
4594 static struct notifier_block intel_iommu_memory_nb = {
4595         .notifier_call = intel_iommu_memory_notifier,
4596         .priority = 0
4597 };
4598
4599 static void free_all_cpu_cached_iovas(unsigned int cpu)
4600 {
4601         int i;
4602
4603         for (i = 0; i < g_num_of_iommus; i++) {
4604                 struct intel_iommu *iommu = g_iommus[i];
4605                 struct dmar_domain *domain;
4606                 int did;
4607
4608                 if (!iommu)
4609                         continue;
4610
4611                 for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4612                         domain = get_iommu_domain(iommu, (u16)did);
4613
4614                         if (!domain)
4615                                 continue;
4616                         free_cpu_cached_iovas(cpu, &domain->iovad);
4617                 }
4618         }
4619 }
4620
4621 static int intel_iommu_cpu_notifier(struct notifier_block *nfb,
4622                                     unsigned long action, void *v)
4623 {
4624         unsigned int cpu = (unsigned long)v;
4625
4626         switch (action) {
4627         case CPU_DEAD:
4628         case CPU_DEAD_FROZEN:
4629                 free_all_cpu_cached_iovas(cpu);
4630                 flush_unmaps_timeout(cpu);
4631                 break;
4632         }
4633         return NOTIFY_OK;
4634 }
4635
4636 static struct notifier_block intel_iommu_cpu_nb = {
4637         .notifier_call = intel_iommu_cpu_notifier,
4638 };
4639
4640 static ssize_t intel_iommu_show_version(struct device *dev,
4641                                         struct device_attribute *attr,
4642                                         char *buf)
4643 {
4644         struct intel_iommu *iommu = dev_get_drvdata(dev);
4645         u32 ver = readl(iommu->reg + DMAR_VER_REG);
4646         return sprintf(buf, "%d:%d\n",
4647                        DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4648 }
4649 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4650
4651 static ssize_t intel_iommu_show_address(struct device *dev,
4652                                         struct device_attribute *attr,
4653                                         char *buf)
4654 {
4655         struct intel_iommu *iommu = dev_get_drvdata(dev);
4656         return sprintf(buf, "%llx\n", iommu->reg_phys);
4657 }
4658 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4659
4660 static ssize_t intel_iommu_show_cap(struct device *dev,
4661                                     struct device_attribute *attr,
4662                                     char *buf)
4663 {
4664         struct intel_iommu *iommu = dev_get_drvdata(dev);
4665         return sprintf(buf, "%llx\n", iommu->cap);
4666 }
4667 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4668
4669 static ssize_t intel_iommu_show_ecap(struct device *dev,
4670                                     struct device_attribute *attr,
4671                                     char *buf)
4672 {
4673         struct intel_iommu *iommu = dev_get_drvdata(dev);
4674         return sprintf(buf, "%llx\n", iommu->ecap);
4675 }
4676 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4677
4678 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4679                                       struct device_attribute *attr,
4680                                       char *buf)
4681 {
4682         struct intel_iommu *iommu = dev_get_drvdata(dev);
4683         return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4684 }
4685 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4686
4687 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4688                                            struct device_attribute *attr,
4689                                            char *buf)
4690 {
4691         struct intel_iommu *iommu = dev_get_drvdata(dev);
4692         return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4693                                                   cap_ndoms(iommu->cap)));
4694 }
4695 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4696
4697 static struct attribute *intel_iommu_attrs[] = {
4698         &dev_attr_version.attr,
4699         &dev_attr_address.attr,
4700         &dev_attr_cap.attr,
4701         &dev_attr_ecap.attr,
4702         &dev_attr_domains_supported.attr,
4703         &dev_attr_domains_used.attr,
4704         NULL,
4705 };
4706
4707 static struct attribute_group intel_iommu_group = {
4708         .name = "intel-iommu",
4709         .attrs = intel_iommu_attrs,
4710 };
4711
4712 const struct attribute_group *intel_iommu_groups[] = {
4713         &intel_iommu_group,
4714         NULL,
4715 };
4716
4717 int __init intel_iommu_init(void)
4718 {
4719         int ret = -ENODEV;
4720         struct dmar_drhd_unit *drhd;
4721         struct intel_iommu *iommu;
4722
4723         /* VT-d is required for a TXT/tboot launch, so enforce that */
4724         force_on = tboot_force_iommu();
4725
4726         if (iommu_init_mempool()) {
4727                 if (force_on)
4728                         panic("tboot: Failed to initialize iommu memory\n");
4729                 return -ENOMEM;
4730         }
4731
4732         down_write(&dmar_global_lock);
4733         if (dmar_table_init()) {
4734                 if (force_on)
4735                         panic("tboot: Failed to initialize DMAR table\n");
4736                 goto out_free_dmar;
4737         }
4738
4739         if (dmar_dev_scope_init() < 0) {
4740                 if (force_on)
4741                         panic("tboot: Failed to initialize DMAR device scope\n");
4742                 goto out_free_dmar;
4743         }
4744
4745         if (no_iommu || dmar_disabled)
4746                 goto out_free_dmar;
4747
4748         if (list_empty(&dmar_rmrr_units))
4749                 pr_info("No RMRR found\n");
4750
4751         if (list_empty(&dmar_atsr_units))
4752                 pr_info("No ATSR found\n");
4753
4754         if (dmar_init_reserved_ranges()) {
4755                 if (force_on)
4756                         panic("tboot: Failed to reserve iommu ranges\n");
4757                 goto out_free_reserved_range;
4758         }
4759
4760         init_no_remapping_devices();
4761
4762         ret = init_dmars();
4763         if (ret) {
4764                 if (force_on)
4765                         panic("tboot: Failed to initialize DMARs\n");
4766                 pr_err("Initialization failed\n");
4767                 goto out_free_reserved_range;
4768         }
4769         up_write(&dmar_global_lock);
4770         pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4771
4772 #ifdef CONFIG_SWIOTLB
4773         swiotlb = 0;
4774 #endif
4775         dma_ops = &intel_dma_ops;
4776
4777         init_iommu_pm_ops();
4778
4779         for_each_active_iommu(iommu, drhd)
4780                 iommu->iommu_dev = iommu_device_create(NULL, iommu,
4781                                                        intel_iommu_groups,
4782                                                        "%s", iommu->name);
4783
4784         bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4785         bus_register_notifier(&pci_bus_type, &device_nb);
4786         if (si_domain && !hw_pass_through)
4787                 register_memory_notifier(&intel_iommu_memory_nb);
4788         register_hotcpu_notifier(&intel_iommu_cpu_nb);
4789
4790         intel_iommu_enabled = 1;
4791
4792         return 0;
4793
4794 out_free_reserved_range:
4795         put_iova_domain(&reserved_iova_list);
4796 out_free_dmar:
4797         intel_iommu_free_dmars();
4798         up_write(&dmar_global_lock);
4799         iommu_exit_mempool();
4800         return ret;
4801 }
4802
4803 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4804 {
4805         struct intel_iommu *iommu = opaque;
4806
4807         domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4808         return 0;
4809 }
4810
4811 /*
4812  * NB - intel-iommu lacks any sort of reference counting for the users of
4813  * dependent devices.  If multiple endpoints have intersecting dependent
4814  * devices, unbinding the driver from any one of them will possibly leave
4815  * the others unable to operate.
4816  */
4817 static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
4818 {
4819         if (!iommu || !dev || !dev_is_pci(dev))
4820                 return;
4821
4822         pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
4823 }
4824
4825 static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4826 {
4827         struct intel_iommu *iommu;
4828         unsigned long flags;
4829
4830         assert_spin_locked(&device_domain_lock);
4831
4832         if (WARN_ON(!info))
4833                 return;
4834
4835         iommu = info->iommu;
4836
4837         if (info->dev) {
4838                 iommu_disable_dev_iotlb(info);
4839                 domain_context_clear(iommu, info->dev);
4840         }
4841
4842         unlink_domain_info(info);
4843
4844         spin_lock_irqsave(&iommu->lock, flags);
4845         domain_detach_iommu(info->domain, iommu);
4846         spin_unlock_irqrestore(&iommu->lock, flags);
4847
4848         free_devinfo_mem(info);
4849 }
4850
4851 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
4852                                      struct device *dev)
4853 {
4854         struct device_domain_info *info;
4855         unsigned long flags;
4856
4857         spin_lock_irqsave(&device_domain_lock, flags);
4858         info = dev->archdata.iommu;
4859         __dmar_remove_one_dev_info(info);
4860         spin_unlock_irqrestore(&device_domain_lock, flags);
4861 }
4862
4863 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4864 {
4865         int adjust_width;
4866
4867         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
4868                         DMA_32BIT_PFN);
4869         domain_reserve_special_ranges(domain);
4870
4871         /* calculate AGAW */
4872         domain->gaw = guest_width;
4873         adjust_width = guestwidth_to_adjustwidth(guest_width);
4874         domain->agaw = width_to_agaw(adjust_width);
4875
4876         domain->iommu_coherency = 0;
4877         domain->iommu_snooping = 0;
4878         domain->iommu_superpage = 0;
4879         domain->max_addr = 0;
4880
4881         /* always allocate the top pgd */
4882         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4883         if (!domain->pgd)
4884                 return -ENOMEM;
4885         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4886         return 0;
4887 }
4888
4889 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4890 {
4891         struct dmar_domain *dmar_domain;
4892         struct iommu_domain *domain;
4893
4894         if (type != IOMMU_DOMAIN_UNMANAGED)
4895                 return NULL;
4896
4897         dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4898         if (!dmar_domain) {
4899                 pr_err("Can't allocate dmar_domain\n");
4900                 return NULL;
4901         }
4902         if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4903                 pr_err("Domain initialization failed\n");
4904                 domain_exit(dmar_domain);
4905                 return NULL;
4906         }
4907         domain_update_iommu_cap(dmar_domain);
4908
4909         domain = &dmar_domain->domain;
4910         domain->geometry.aperture_start = 0;
4911         domain->geometry.aperture_end   = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4912         domain->geometry.force_aperture = true;
4913
4914         return domain;
4915 }
4916
4917 static void intel_iommu_domain_free(struct iommu_domain *domain)
4918 {
4919         domain_exit(to_dmar_domain(domain));
4920 }
4921
4922 static int intel_iommu_attach_device(struct iommu_domain *domain,
4923                                      struct device *dev)
4924 {
4925         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4926         struct intel_iommu *iommu;
4927         int addr_width;
4928         u8 bus, devfn;
4929
4930         if (device_is_rmrr_locked(dev)) {
4931                 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
4932                 return -EPERM;
4933         }
4934
4935         /* normally dev is not mapped */
4936         if (unlikely(domain_context_mapped(dev))) {
4937                 struct dmar_domain *old_domain;
4938
4939                 old_domain = find_domain(dev);
4940                 if (old_domain) {
4941                         rcu_read_lock();
4942                         dmar_remove_one_dev_info(old_domain, dev);
4943                         rcu_read_unlock();
4944
4945                         if (!domain_type_is_vm_or_si(old_domain) &&
4946                              list_empty(&old_domain->devices))
4947                                 domain_exit(old_domain);
4948                 }
4949         }
4950
4951         iommu = device_to_iommu(dev, &bus, &devfn);
4952         if (!iommu)
4953                 return -ENODEV;
4954
4955         /* check if this iommu agaw is sufficient for max mapped address */
4956         addr_width = agaw_to_width(iommu->agaw);
4957         if (addr_width > cap_mgaw(iommu->cap))
4958                 addr_width = cap_mgaw(iommu->cap);
4959
4960         if (dmar_domain->max_addr > (1LL << addr_width)) {
4961                 pr_err("%s: iommu width (%d) is not "
4962                        "sufficient for the mapped address (%llx)\n",
4963                        __func__, addr_width, dmar_domain->max_addr);
4964                 return -EFAULT;
4965         }
4966         dmar_domain->gaw = addr_width;
4967
4968         /*
4969          * Knock out extra levels of page tables if necessary
4970          */
4971         while (iommu->agaw < dmar_domain->agaw) {
4972                 struct dma_pte *pte;
4973
4974                 pte = dmar_domain->pgd;
4975                 if (dma_pte_present(pte)) {
4976                         dmar_domain->pgd = (struct dma_pte *)
4977                                 phys_to_virt(dma_pte_addr(pte));
4978                         free_pgtable_page(pte);
4979                 }
4980                 dmar_domain->agaw--;
4981         }
4982
4983         return domain_add_dev_info(dmar_domain, dev);
4984 }
4985
4986 static void intel_iommu_detach_device(struct iommu_domain *domain,
4987                                       struct device *dev)
4988 {
4989         dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
4990 }
4991
4992 static int intel_iommu_map(struct iommu_domain *domain,
4993                            unsigned long iova, phys_addr_t hpa,
4994                            size_t size, int iommu_prot)
4995 {
4996         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4997         u64 max_addr;
4998         int prot = 0;
4999         int ret;
5000
5001         if (iommu_prot & IOMMU_READ)
5002                 prot |= DMA_PTE_READ;
5003         if (iommu_prot & IOMMU_WRITE)
5004                 prot |= DMA_PTE_WRITE;
5005         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5006                 prot |= DMA_PTE_SNP;
5007
5008         max_addr = iova + size;
5009         if (dmar_domain->max_addr < max_addr) {
5010                 u64 end;
5011
5012                 /* check if minimum agaw is sufficient for mapped address */
5013                 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5014                 if (end < max_addr) {
5015                         pr_err("%s: iommu width (%d) is not "
5016                                "sufficient for the mapped address (%llx)\n",
5017                                __func__, dmar_domain->gaw, max_addr);
5018                         return -EFAULT;
5019                 }
5020                 dmar_domain->max_addr = max_addr;
5021         }
5022         /* Round up size to next multiple of PAGE_SIZE, if it and
5023            the low bits of hpa would take us onto the next page */
5024         size = aligned_nrpages(hpa, size);
5025         ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5026                                  hpa >> VTD_PAGE_SHIFT, size, prot);
5027         return ret;
5028 }
5029
5030 static size_t intel_iommu_unmap(struct iommu_domain *domain,
5031                                 unsigned long iova, size_t size)
5032 {
5033         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5034         struct page *freelist = NULL;
5035         struct intel_iommu *iommu;
5036         unsigned long start_pfn, last_pfn;
5037         unsigned int npages;
5038         int iommu_id, level = 0;
5039
5040         /* Cope with horrid API which requires us to unmap more than the
5041            size argument if it happens to be a large-page mapping. */
5042         BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5043
5044         if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5045                 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5046
5047         start_pfn = iova >> VTD_PAGE_SHIFT;
5048         last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5049
5050         freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5051
5052         npages = last_pfn - start_pfn + 1;
5053
5054         for_each_domain_iommu(iommu_id, dmar_domain) {
5055                 iommu = g_iommus[iommu_id];
5056
5057                 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5058                                       start_pfn, npages, !freelist, 0);
5059         }
5060
5061         dma_free_pagelist(freelist);
5062
5063         if (dmar_domain->max_addr == iova + size)
5064                 dmar_domain->max_addr = iova;
5065
5066         return size;
5067 }
5068
5069 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5070                                             dma_addr_t iova)
5071 {
5072         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5073         struct dma_pte *pte;
5074         int level = 0;
5075         u64 phys = 0;
5076
5077         pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5078         if (pte)
5079                 phys = dma_pte_addr(pte);
5080
5081         return phys;
5082 }
5083
5084 static bool intel_iommu_capable(enum iommu_cap cap)
5085 {
5086         if (cap == IOMMU_CAP_CACHE_COHERENCY)
5087                 return domain_update_iommu_snooping(NULL) == 1;
5088         if (cap == IOMMU_CAP_INTR_REMAP)
5089                 return irq_remapping_enabled == 1;
5090
5091         return false;
5092 }
5093
5094 static int intel_iommu_add_device(struct device *dev)
5095 {
5096         struct intel_iommu *iommu;
5097         struct iommu_group *group;
5098         u8 bus, devfn;
5099
5100         iommu = device_to_iommu(dev, &bus, &devfn);
5101         if (!iommu)
5102                 return -ENODEV;
5103
5104         iommu_device_link(iommu->iommu_dev, dev);
5105
5106         group = iommu_group_get_for_dev(dev);
5107
5108         if (IS_ERR(group))
5109                 return PTR_ERR(group);
5110
5111         iommu_group_put(group);
5112         return 0;
5113 }
5114
5115 static void intel_iommu_remove_device(struct device *dev)
5116 {
5117         struct intel_iommu *iommu;
5118         u8 bus, devfn;
5119
5120         iommu = device_to_iommu(dev, &bus, &devfn);
5121         if (!iommu)
5122                 return;
5123
5124         iommu_group_remove_device(dev);
5125
5126         iommu_device_unlink(iommu->iommu_dev, dev);
5127 }
5128
5129 #ifdef CONFIG_INTEL_IOMMU_SVM
5130 int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct intel_svm_dev *sdev)
5131 {
5132         struct device_domain_info *info;
5133         struct context_entry *context;
5134         struct dmar_domain *domain;
5135         unsigned long flags;
5136         u64 ctx_lo;
5137         int ret;
5138
5139         domain = get_valid_domain_for_dev(sdev->dev);
5140         if (!domain)
5141                 return -EINVAL;
5142
5143         spin_lock_irqsave(&device_domain_lock, flags);
5144         spin_lock(&iommu->lock);
5145
5146         ret = -EINVAL;
5147         info = sdev->dev->archdata.iommu;
5148         if (!info || !info->pasid_supported)
5149                 goto out;
5150
5151         context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5152         if (WARN_ON(!context))
5153                 goto out;
5154
5155         ctx_lo = context[0].lo;
5156
5157         sdev->did = domain->iommu_did[iommu->seq_id];
5158         sdev->sid = PCI_DEVID(info->bus, info->devfn);
5159
5160         if (!(ctx_lo & CONTEXT_PASIDE)) {
5161                 context[1].hi = (u64)virt_to_phys(iommu->pasid_state_table);
5162                 context[1].lo = (u64)virt_to_phys(iommu->pasid_table) | ecap_pss(iommu->ecap);
5163                 wmb();
5164                 /* CONTEXT_TT_MULTI_LEVEL and CONTEXT_TT_DEV_IOTLB are both
5165                  * extended to permit requests-with-PASID if the PASIDE bit
5166                  * is set. which makes sense. For CONTEXT_TT_PASS_THROUGH,
5167                  * however, the PASIDE bit is ignored and requests-with-PASID
5168                  * are unconditionally blocked. Which makes less sense.
5169                  * So convert from CONTEXT_TT_PASS_THROUGH to one of the new
5170                  * "guest mode" translation types depending on whether ATS
5171                  * is available or not. Annoyingly, we can't use the new
5172                  * modes *unless* PASIDE is set. */
5173                 if ((ctx_lo & CONTEXT_TT_MASK) == (CONTEXT_TT_PASS_THROUGH << 2)) {
5174                         ctx_lo &= ~CONTEXT_TT_MASK;
5175                         if (info->ats_supported)
5176                                 ctx_lo |= CONTEXT_TT_PT_PASID_DEV_IOTLB << 2;
5177                         else
5178                                 ctx_lo |= CONTEXT_TT_PT_PASID << 2;
5179                 }
5180                 ctx_lo |= CONTEXT_PASIDE;
5181                 if (iommu->pasid_state_table)
5182                         ctx_lo |= CONTEXT_DINVE;
5183                 if (info->pri_supported)
5184                         ctx_lo |= CONTEXT_PRS;
5185                 context[0].lo = ctx_lo;
5186                 wmb();
5187                 iommu->flush.flush_context(iommu, sdev->did, sdev->sid,
5188                                            DMA_CCMD_MASK_NOBIT,
5189                                            DMA_CCMD_DEVICE_INVL);
5190         }
5191
5192         /* Enable PASID support in the device, if it wasn't already */
5193         if (!info->pasid_enabled)
5194                 iommu_enable_dev_iotlb(info);
5195
5196         if (info->ats_enabled) {
5197                 sdev->dev_iotlb = 1;
5198                 sdev->qdep = info->ats_qdep;
5199                 if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS)
5200                         sdev->qdep = 0;
5201         }
5202         ret = 0;
5203
5204  out:
5205         spin_unlock(&iommu->lock);
5206         spin_unlock_irqrestore(&device_domain_lock, flags);
5207
5208         return ret;
5209 }
5210
5211 struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5212 {
5213         struct intel_iommu *iommu;
5214         u8 bus, devfn;
5215
5216         if (iommu_dummy(dev)) {
5217                 dev_warn(dev,
5218                          "No IOMMU translation for device; cannot enable SVM\n");
5219                 return NULL;
5220         }
5221
5222         iommu = device_to_iommu(dev, &bus, &devfn);
5223         if ((!iommu)) {
5224                 dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5225                 return NULL;
5226         }
5227
5228         if (!iommu->pasid_table) {
5229                 dev_err(dev, "PASID not enabled on IOMMU; cannot enable SVM\n");
5230                 return NULL;
5231         }
5232
5233         return iommu;
5234 }
5235 #endif /* CONFIG_INTEL_IOMMU_SVM */
5236
5237 static const struct iommu_ops intel_iommu_ops = {
5238         .capable        = intel_iommu_capable,
5239         .domain_alloc   = intel_iommu_domain_alloc,
5240         .domain_free    = intel_iommu_domain_free,
5241         .attach_dev     = intel_iommu_attach_device,
5242         .detach_dev     = intel_iommu_detach_device,
5243         .map            = intel_iommu_map,
5244         .unmap          = intel_iommu_unmap,
5245         .map_sg         = default_iommu_map_sg,
5246         .iova_to_phys   = intel_iommu_iova_to_phys,
5247         .add_device     = intel_iommu_add_device,
5248         .remove_device  = intel_iommu_remove_device,
5249         .device_group   = pci_device_group,
5250         .pgsize_bitmap  = INTEL_IOMMU_PGSIZES,
5251 };
5252
5253 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
5254 {
5255         /* G4x/GM45 integrated gfx dmar support is totally busted. */
5256         pr_info("Disabling IOMMU for graphics on this chipset\n");
5257         dmar_map_gfx = 0;
5258 }
5259
5260 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
5261 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
5262 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
5263 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
5264 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
5265 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
5266 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
5267
5268 static void quirk_iommu_rwbf(struct pci_dev *dev)
5269 {
5270         /*
5271          * Mobile 4 Series Chipset neglects to set RWBF capability,
5272          * but needs it. Same seems to hold for the desktop versions.
5273          */
5274         pr_info("Forcing write-buffer flush capability\n");
5275         rwbf_quirk = 1;
5276 }
5277
5278 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5279 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
5280 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
5281 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
5282 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
5283 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
5284 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5285
5286 #define GGC 0x52
5287 #define GGC_MEMORY_SIZE_MASK    (0xf << 8)
5288 #define GGC_MEMORY_SIZE_NONE    (0x0 << 8)
5289 #define GGC_MEMORY_SIZE_1M      (0x1 << 8)
5290 #define GGC_MEMORY_SIZE_2M      (0x3 << 8)
5291 #define GGC_MEMORY_VT_ENABLED   (0x8 << 8)
5292 #define GGC_MEMORY_SIZE_2M_VT   (0x9 << 8)
5293 #define GGC_MEMORY_SIZE_3M_VT   (0xa << 8)
5294 #define GGC_MEMORY_SIZE_4M_VT   (0xb << 8)
5295
5296 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5297 {
5298         unsigned short ggc;
5299
5300         if (pci_read_config_word(dev, GGC, &ggc))
5301                 return;
5302
5303         if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5304                 pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5305                 dmar_map_gfx = 0;
5306         } else if (dmar_map_gfx) {
5307                 /* we have to ensure the gfx device is idle before we flush */
5308                 pr_info("Disabling batched IOTLB flush on Ironlake\n");
5309                 intel_iommu_strict = 1;
5310        }
5311 }
5312 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
5313 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
5314 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
5315 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
5316
5317 /* On Tylersburg chipsets, some BIOSes have been known to enable the
5318    ISOCH DMAR unit for the Azalia sound device, but not give it any
5319    TLB entries, which causes it to deadlock. Check for that.  We do
5320    this in a function called from init_dmars(), instead of in a PCI
5321    quirk, because we don't want to print the obnoxious "BIOS broken"
5322    message if VT-d is actually disabled.
5323 */
5324 static void __init check_tylersburg_isoch(void)
5325 {
5326         struct pci_dev *pdev;
5327         uint32_t vtisochctrl;
5328
5329         /* If there's no Azalia in the system anyway, forget it. */
5330         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
5331         if (!pdev)
5332                 return;
5333         pci_dev_put(pdev);
5334
5335         /* System Management Registers. Might be hidden, in which case
5336            we can't do the sanity check. But that's OK, because the
5337            known-broken BIOSes _don't_ actually hide it, so far. */
5338         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5339         if (!pdev)
5340                 return;
5341
5342         if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5343                 pci_dev_put(pdev);
5344                 return;
5345         }
5346
5347         pci_dev_put(pdev);
5348
5349         /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5350         if (vtisochctrl & 1)
5351                 return;
5352
5353         /* Drop all bits other than the number of TLB entries */
5354         vtisochctrl &= 0x1c;
5355
5356         /* If we have the recommended number of TLB entries (16), fine. */
5357         if (vtisochctrl == 0x10)
5358                 return;
5359
5360         /* Zero TLB entries? You get to ride the short bus to school. */
5361         if (!vtisochctrl) {
5362                 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5363                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5364                      dmi_get_system_info(DMI_BIOS_VENDOR),
5365                      dmi_get_system_info(DMI_BIOS_VERSION),
5366                      dmi_get_system_info(DMI_PRODUCT_VERSION));
5367                 iommu_identity_mapping |= IDENTMAP_AZALIA;
5368                 return;
5369         }
5370
5371         pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5372                vtisochctrl);
5373 }