Merge tag 'iommu-updates-v4.16' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / iommu / intel-iommu.c
1 /*
2  * Copyright © 2006-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * Authors: David Woodhouse <dwmw2@infradead.org>,
14  *          Ashok Raj <ashok.raj@intel.com>,
15  *          Shaohua Li <shaohua.li@intel.com>,
16  *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17  *          Fenghua Yu <fenghua.yu@intel.com>
18  *          Joerg Roedel <jroedel@suse.de>
19  */
20
21 #define pr_fmt(fmt)     "DMAR: " fmt
22
23 #include <linux/init.h>
24 #include <linux/bitmap.h>
25 #include <linux/debugfs.h>
26 #include <linux/export.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/memory.h>
36 #include <linux/cpu.h>
37 #include <linux/timer.h>
38 #include <linux/io.h>
39 #include <linux/iova.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/tboot.h>
44 #include <linux/dmi.h>
45 #include <linux/pci-ats.h>
46 #include <linux/memblock.h>
47 #include <linux/dma-contiguous.h>
48 #include <linux/crash_dump.h>
49 #include <asm/irq_remapping.h>
50 #include <asm/cacheflush.h>
51 #include <asm/iommu.h>
52
53 #include "irq_remapping.h"
54
55 #define ROOT_SIZE               VTD_PAGE_SIZE
56 #define CONTEXT_SIZE            VTD_PAGE_SIZE
57
58 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
59 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
60 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
61 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
62
63 #define IOAPIC_RANGE_START      (0xfee00000)
64 #define IOAPIC_RANGE_END        (0xfeefffff)
65 #define IOVA_START_ADDR         (0x1000)
66
67 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
68
69 #define MAX_AGAW_WIDTH 64
70 #define MAX_AGAW_PFN_WIDTH      (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
71
72 #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
73 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
74
75 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
76    to match. That way, we can use 'unsigned long' for PFNs with impunity. */
77 #define DOMAIN_MAX_PFN(gaw)     ((unsigned long) min_t(uint64_t, \
78                                 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
79 #define DOMAIN_MAX_ADDR(gaw)    (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
80
81 /* IO virtual address start page frame number */
82 #define IOVA_START_PFN          (1)
83
84 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
85
86 /* page table handling */
87 #define LEVEL_STRIDE            (9)
88 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
89
90 /*
91  * This bitmap is used to advertise the page sizes our hardware support
92  * to the IOMMU core, which will then use this information to split
93  * physically contiguous memory regions it is mapping into page sizes
94  * that we support.
95  *
96  * Traditionally the IOMMU core just handed us the mappings directly,
97  * after making sure the size is an order of a 4KiB page and that the
98  * mapping has natural alignment.
99  *
100  * To retain this behavior, we currently advertise that we support
101  * all page sizes that are an order of 4KiB.
102  *
103  * If at some point we'd like to utilize the IOMMU core's new behavior,
104  * we could change this to advertise the real page sizes we support.
105  */
106 #define INTEL_IOMMU_PGSIZES     (~0xFFFUL)
107
108 static inline int agaw_to_level(int agaw)
109 {
110         return agaw + 2;
111 }
112
113 static inline int agaw_to_width(int agaw)
114 {
115         return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
116 }
117
118 static inline int width_to_agaw(int width)
119 {
120         return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
121 }
122
123 static inline unsigned int level_to_offset_bits(int level)
124 {
125         return (level - 1) * LEVEL_STRIDE;
126 }
127
128 static inline int pfn_level_offset(unsigned long pfn, int level)
129 {
130         return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
131 }
132
133 static inline unsigned long level_mask(int level)
134 {
135         return -1UL << level_to_offset_bits(level);
136 }
137
138 static inline unsigned long level_size(int level)
139 {
140         return 1UL << level_to_offset_bits(level);
141 }
142
143 static inline unsigned long align_to_level(unsigned long pfn, int level)
144 {
145         return (pfn + level_size(level) - 1) & level_mask(level);
146 }
147
148 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
149 {
150         return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
151 }
152
153 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
154    are never going to work. */
155 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
156 {
157         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
158 }
159
160 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
161 {
162         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
163 }
164 static inline unsigned long page_to_dma_pfn(struct page *pg)
165 {
166         return mm_to_dma_pfn(page_to_pfn(pg));
167 }
168 static inline unsigned long virt_to_dma_pfn(void *p)
169 {
170         return page_to_dma_pfn(virt_to_page(p));
171 }
172
173 /* global iommu list, set NULL for ignored DMAR units */
174 static struct intel_iommu **g_iommus;
175
176 static void __init check_tylersburg_isoch(void);
177 static int rwbf_quirk;
178
179 /*
180  * set to 1 to panic kernel if can't successfully enable VT-d
181  * (used when kernel is launched w/ TXT)
182  */
183 static int force_on = 0;
184 int intel_iommu_tboot_noforce;
185
186 /*
187  * 0: Present
188  * 1-11: Reserved
189  * 12-63: Context Ptr (12 - (haw-1))
190  * 64-127: Reserved
191  */
192 struct root_entry {
193         u64     lo;
194         u64     hi;
195 };
196 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
197
198 /*
199  * Take a root_entry and return the Lower Context Table Pointer (LCTP)
200  * if marked present.
201  */
202 static phys_addr_t root_entry_lctp(struct root_entry *re)
203 {
204         if (!(re->lo & 1))
205                 return 0;
206
207         return re->lo & VTD_PAGE_MASK;
208 }
209
210 /*
211  * Take a root_entry and return the Upper Context Table Pointer (UCTP)
212  * if marked present.
213  */
214 static phys_addr_t root_entry_uctp(struct root_entry *re)
215 {
216         if (!(re->hi & 1))
217                 return 0;
218
219         return re->hi & VTD_PAGE_MASK;
220 }
221 /*
222  * low 64 bits:
223  * 0: present
224  * 1: fault processing disable
225  * 2-3: translation type
226  * 12-63: address space root
227  * high 64 bits:
228  * 0-2: address width
229  * 3-6: aval
230  * 8-23: domain id
231  */
232 struct context_entry {
233         u64 lo;
234         u64 hi;
235 };
236
237 static inline void context_clear_pasid_enable(struct context_entry *context)
238 {
239         context->lo &= ~(1ULL << 11);
240 }
241
242 static inline bool context_pasid_enabled(struct context_entry *context)
243 {
244         return !!(context->lo & (1ULL << 11));
245 }
246
247 static inline void context_set_copied(struct context_entry *context)
248 {
249         context->hi |= (1ull << 3);
250 }
251
252 static inline bool context_copied(struct context_entry *context)
253 {
254         return !!(context->hi & (1ULL << 3));
255 }
256
257 static inline bool __context_present(struct context_entry *context)
258 {
259         return (context->lo & 1);
260 }
261
262 static inline bool context_present(struct context_entry *context)
263 {
264         return context_pasid_enabled(context) ?
265              __context_present(context) :
266              __context_present(context) && !context_copied(context);
267 }
268
269 static inline void context_set_present(struct context_entry *context)
270 {
271         context->lo |= 1;
272 }
273
274 static inline void context_set_fault_enable(struct context_entry *context)
275 {
276         context->lo &= (((u64)-1) << 2) | 1;
277 }
278
279 static inline void context_set_translation_type(struct context_entry *context,
280                                                 unsigned long value)
281 {
282         context->lo &= (((u64)-1) << 4) | 3;
283         context->lo |= (value & 3) << 2;
284 }
285
286 static inline void context_set_address_root(struct context_entry *context,
287                                             unsigned long value)
288 {
289         context->lo &= ~VTD_PAGE_MASK;
290         context->lo |= value & VTD_PAGE_MASK;
291 }
292
293 static inline void context_set_address_width(struct context_entry *context,
294                                              unsigned long value)
295 {
296         context->hi |= value & 7;
297 }
298
299 static inline void context_set_domain_id(struct context_entry *context,
300                                          unsigned long value)
301 {
302         context->hi |= (value & ((1 << 16) - 1)) << 8;
303 }
304
305 static inline int context_domain_id(struct context_entry *c)
306 {
307         return((c->hi >> 8) & 0xffff);
308 }
309
310 static inline void context_clear_entry(struct context_entry *context)
311 {
312         context->lo = 0;
313         context->hi = 0;
314 }
315
316 /*
317  * 0: readable
318  * 1: writable
319  * 2-6: reserved
320  * 7: super page
321  * 8-10: available
322  * 11: snoop behavior
323  * 12-63: Host physcial address
324  */
325 struct dma_pte {
326         u64 val;
327 };
328
329 static inline void dma_clear_pte(struct dma_pte *pte)
330 {
331         pte->val = 0;
332 }
333
334 static inline u64 dma_pte_addr(struct dma_pte *pte)
335 {
336 #ifdef CONFIG_64BIT
337         return pte->val & VTD_PAGE_MASK;
338 #else
339         /* Must have a full atomic 64-bit read */
340         return  __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
341 #endif
342 }
343
344 static inline bool dma_pte_present(struct dma_pte *pte)
345 {
346         return (pte->val & 3) != 0;
347 }
348
349 static inline bool dma_pte_superpage(struct dma_pte *pte)
350 {
351         return (pte->val & DMA_PTE_LARGE_PAGE);
352 }
353
354 static inline int first_pte_in_page(struct dma_pte *pte)
355 {
356         return !((unsigned long)pte & ~VTD_PAGE_MASK);
357 }
358
359 /*
360  * This domain is a statically identity mapping domain.
361  *      1. This domain creats a static 1:1 mapping to all usable memory.
362  *      2. It maps to each iommu if successful.
363  *      3. Each iommu mapps to this domain if successful.
364  */
365 static struct dmar_domain *si_domain;
366 static int hw_pass_through = 1;
367
368 /*
369  * Domain represents a virtual machine, more than one devices
370  * across iommus may be owned in one domain, e.g. kvm guest.
371  */
372 #define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 0)
373
374 /* si_domain contains mulitple devices */
375 #define DOMAIN_FLAG_STATIC_IDENTITY     (1 << 1)
376
377 #define for_each_domain_iommu(idx, domain)                      \
378         for (idx = 0; idx < g_num_of_iommus; idx++)             \
379                 if (domain->iommu_refcnt[idx])
380
381 struct dmar_domain {
382         int     nid;                    /* node id */
383
384         unsigned        iommu_refcnt[DMAR_UNITS_SUPPORTED];
385                                         /* Refcount of devices per iommu */
386
387
388         u16             iommu_did[DMAR_UNITS_SUPPORTED];
389                                         /* Domain ids per IOMMU. Use u16 since
390                                          * domain ids are 16 bit wide according
391                                          * to VT-d spec, section 9.3 */
392
393         bool has_iotlb_device;
394         struct list_head devices;       /* all devices' list */
395         struct iova_domain iovad;       /* iova's that belong to this domain */
396
397         struct dma_pte  *pgd;           /* virtual address */
398         int             gaw;            /* max guest address width */
399
400         /* adjusted guest address width, 0 is level 2 30-bit */
401         int             agaw;
402
403         int             flags;          /* flags to find out type of domain */
404
405         int             iommu_coherency;/* indicate coherency of iommu access */
406         int             iommu_snooping; /* indicate snooping control feature*/
407         int             iommu_count;    /* reference count of iommu */
408         int             iommu_superpage;/* Level of superpages supported:
409                                            0 == 4KiB (no superpages), 1 == 2MiB,
410                                            2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
411         u64             max_addr;       /* maximum mapped address */
412
413         struct iommu_domain domain;     /* generic domain data structure for
414                                            iommu core */
415 };
416
417 /* PCI domain-device relationship */
418 struct device_domain_info {
419         struct list_head link;  /* link to domain siblings */
420         struct list_head global; /* link to global list */
421         u8 bus;                 /* PCI bus number */
422         u8 devfn;               /* PCI devfn number */
423         u8 pasid_supported:3;
424         u8 pasid_enabled:1;
425         u8 pri_supported:1;
426         u8 pri_enabled:1;
427         u8 ats_supported:1;
428         u8 ats_enabled:1;
429         u8 ats_qdep;
430         struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
431         struct intel_iommu *iommu; /* IOMMU used by this device */
432         struct dmar_domain *domain; /* pointer to domain */
433 };
434
435 struct dmar_rmrr_unit {
436         struct list_head list;          /* list of rmrr units   */
437         struct acpi_dmar_header *hdr;   /* ACPI header          */
438         u64     base_address;           /* reserved base address*/
439         u64     end_address;            /* reserved end address */
440         struct dmar_dev_scope *devices; /* target devices */
441         int     devices_cnt;            /* target device count */
442         struct iommu_resv_region *resv; /* reserved region handle */
443 };
444
445 struct dmar_atsr_unit {
446         struct list_head list;          /* list of ATSR units */
447         struct acpi_dmar_header *hdr;   /* ACPI header */
448         struct dmar_dev_scope *devices; /* target devices */
449         int devices_cnt;                /* target device count */
450         u8 include_all:1;               /* include all ports */
451 };
452
453 static LIST_HEAD(dmar_atsr_units);
454 static LIST_HEAD(dmar_rmrr_units);
455
456 #define for_each_rmrr_units(rmrr) \
457         list_for_each_entry(rmrr, &dmar_rmrr_units, list)
458
459 /* bitmap for indexing intel_iommus */
460 static int g_num_of_iommus;
461
462 static void domain_exit(struct dmar_domain *domain);
463 static void domain_remove_dev_info(struct dmar_domain *domain);
464 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
465                                      struct device *dev);
466 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
467 static void domain_context_clear(struct intel_iommu *iommu,
468                                  struct device *dev);
469 static int domain_detach_iommu(struct dmar_domain *domain,
470                                struct intel_iommu *iommu);
471
472 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
473 int dmar_disabled = 0;
474 #else
475 int dmar_disabled = 1;
476 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
477
478 int intel_iommu_enabled = 0;
479 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
480
481 static int dmar_map_gfx = 1;
482 static int dmar_forcedac;
483 static int intel_iommu_strict;
484 static int intel_iommu_superpage = 1;
485 static int intel_iommu_ecs = 1;
486 static int intel_iommu_pasid28;
487 static int iommu_identity_mapping;
488
489 #define IDENTMAP_ALL            1
490 #define IDENTMAP_GFX            2
491 #define IDENTMAP_AZALIA         4
492
493 /* Broadwell and Skylake have broken ECS support — normal so-called "second
494  * level" translation of DMA requests-without-PASID doesn't actually happen
495  * unless you also set the NESTE bit in an extended context-entry. Which of
496  * course means that SVM doesn't work because it's trying to do nested
497  * translation of the physical addresses it finds in the process page tables,
498  * through the IOVA->phys mapping found in the "second level" page tables.
499  *
500  * The VT-d specification was retroactively changed to change the definition
501  * of the capability bits and pretend that Broadwell/Skylake never happened...
502  * but unfortunately the wrong bit was changed. It's ECS which is broken, but
503  * for some reason it was the PASID capability bit which was redefined (from
504  * bit 28 on BDW/SKL to bit 40 in future).
505  *
506  * So our test for ECS needs to eschew those implementations which set the old
507  * PASID capabiity bit 28, since those are the ones on which ECS is broken.
508  * Unless we are working around the 'pasid28' limitations, that is, by putting
509  * the device into passthrough mode for normal DMA and thus masking the bug.
510  */
511 #define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
512                             (intel_iommu_pasid28 || !ecap_broken_pasid(iommu->ecap)))
513 /* PASID support is thus enabled if ECS is enabled and *either* of the old
514  * or new capability bits are set. */
515 #define pasid_enabled(iommu) (ecs_enabled(iommu) &&                     \
516                               (ecap_pasid(iommu->ecap) || ecap_broken_pasid(iommu->ecap)))
517
518 int intel_iommu_gfx_mapped;
519 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
520
521 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
522 static DEFINE_SPINLOCK(device_domain_lock);
523 static LIST_HEAD(device_domain_list);
524
525 const struct iommu_ops intel_iommu_ops;
526
527 static bool translation_pre_enabled(struct intel_iommu *iommu)
528 {
529         return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
530 }
531
532 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
533 {
534         iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
535 }
536
537 static void init_translation_status(struct intel_iommu *iommu)
538 {
539         u32 gsts;
540
541         gsts = readl(iommu->reg + DMAR_GSTS_REG);
542         if (gsts & DMA_GSTS_TES)
543                 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
544 }
545
546 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
547 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
548 {
549         return container_of(dom, struct dmar_domain, domain);
550 }
551
552 static int __init intel_iommu_setup(char *str)
553 {
554         if (!str)
555                 return -EINVAL;
556         while (*str) {
557                 if (!strncmp(str, "on", 2)) {
558                         dmar_disabled = 0;
559                         pr_info("IOMMU enabled\n");
560                 } else if (!strncmp(str, "off", 3)) {
561                         dmar_disabled = 1;
562                         pr_info("IOMMU disabled\n");
563                 } else if (!strncmp(str, "igfx_off", 8)) {
564                         dmar_map_gfx = 0;
565                         pr_info("Disable GFX device mapping\n");
566                 } else if (!strncmp(str, "forcedac", 8)) {
567                         pr_info("Forcing DAC for PCI devices\n");
568                         dmar_forcedac = 1;
569                 } else if (!strncmp(str, "strict", 6)) {
570                         pr_info("Disable batched IOTLB flush\n");
571                         intel_iommu_strict = 1;
572                 } else if (!strncmp(str, "sp_off", 6)) {
573                         pr_info("Disable supported super page\n");
574                         intel_iommu_superpage = 0;
575                 } else if (!strncmp(str, "ecs_off", 7)) {
576                         printk(KERN_INFO
577                                 "Intel-IOMMU: disable extended context table support\n");
578                         intel_iommu_ecs = 0;
579                 } else if (!strncmp(str, "pasid28", 7)) {
580                         printk(KERN_INFO
581                                 "Intel-IOMMU: enable pre-production PASID support\n");
582                         intel_iommu_pasid28 = 1;
583                         iommu_identity_mapping |= IDENTMAP_GFX;
584                 } else if (!strncmp(str, "tboot_noforce", 13)) {
585                         printk(KERN_INFO
586                                 "Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
587                         intel_iommu_tboot_noforce = 1;
588                 }
589
590                 str += strcspn(str, ",");
591                 while (*str == ',')
592                         str++;
593         }
594         return 0;
595 }
596 __setup("intel_iommu=", intel_iommu_setup);
597
598 static struct kmem_cache *iommu_domain_cache;
599 static struct kmem_cache *iommu_devinfo_cache;
600
601 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
602 {
603         struct dmar_domain **domains;
604         int idx = did >> 8;
605
606         domains = iommu->domains[idx];
607         if (!domains)
608                 return NULL;
609
610         return domains[did & 0xff];
611 }
612
613 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
614                              struct dmar_domain *domain)
615 {
616         struct dmar_domain **domains;
617         int idx = did >> 8;
618
619         if (!iommu->domains[idx]) {
620                 size_t size = 256 * sizeof(struct dmar_domain *);
621                 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
622         }
623
624         domains = iommu->domains[idx];
625         if (WARN_ON(!domains))
626                 return;
627         else
628                 domains[did & 0xff] = domain;
629 }
630
631 static inline void *alloc_pgtable_page(int node)
632 {
633         struct page *page;
634         void *vaddr = NULL;
635
636         page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
637         if (page)
638                 vaddr = page_address(page);
639         return vaddr;
640 }
641
642 static inline void free_pgtable_page(void *vaddr)
643 {
644         free_page((unsigned long)vaddr);
645 }
646
647 static inline void *alloc_domain_mem(void)
648 {
649         return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
650 }
651
652 static void free_domain_mem(void *vaddr)
653 {
654         kmem_cache_free(iommu_domain_cache, vaddr);
655 }
656
657 static inline void * alloc_devinfo_mem(void)
658 {
659         return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
660 }
661
662 static inline void free_devinfo_mem(void *vaddr)
663 {
664         kmem_cache_free(iommu_devinfo_cache, vaddr);
665 }
666
667 static inline int domain_type_is_vm(struct dmar_domain *domain)
668 {
669         return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
670 }
671
672 static inline int domain_type_is_si(struct dmar_domain *domain)
673 {
674         return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
675 }
676
677 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
678 {
679         return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
680                                 DOMAIN_FLAG_STATIC_IDENTITY);
681 }
682
683 static inline int domain_pfn_supported(struct dmar_domain *domain,
684                                        unsigned long pfn)
685 {
686         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
687
688         return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
689 }
690
691 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
692 {
693         unsigned long sagaw;
694         int agaw = -1;
695
696         sagaw = cap_sagaw(iommu->cap);
697         for (agaw = width_to_agaw(max_gaw);
698              agaw >= 0; agaw--) {
699                 if (test_bit(agaw, &sagaw))
700                         break;
701         }
702
703         return agaw;
704 }
705
706 /*
707  * Calculate max SAGAW for each iommu.
708  */
709 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
710 {
711         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
712 }
713
714 /*
715  * calculate agaw for each iommu.
716  * "SAGAW" may be different across iommus, use a default agaw, and
717  * get a supported less agaw for iommus that don't support the default agaw.
718  */
719 int iommu_calculate_agaw(struct intel_iommu *iommu)
720 {
721         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
722 }
723
724 /* This functionin only returns single iommu in a domain */
725 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
726 {
727         int iommu_id;
728
729         /* si_domain and vm domain should not get here. */
730         BUG_ON(domain_type_is_vm_or_si(domain));
731         for_each_domain_iommu(iommu_id, domain)
732                 break;
733
734         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
735                 return NULL;
736
737         return g_iommus[iommu_id];
738 }
739
740 static void domain_update_iommu_coherency(struct dmar_domain *domain)
741 {
742         struct dmar_drhd_unit *drhd;
743         struct intel_iommu *iommu;
744         bool found = false;
745         int i;
746
747         domain->iommu_coherency = 1;
748
749         for_each_domain_iommu(i, domain) {
750                 found = true;
751                 if (!ecap_coherent(g_iommus[i]->ecap)) {
752                         domain->iommu_coherency = 0;
753                         break;
754                 }
755         }
756         if (found)
757                 return;
758
759         /* No hardware attached; use lowest common denominator */
760         rcu_read_lock();
761         for_each_active_iommu(iommu, drhd) {
762                 if (!ecap_coherent(iommu->ecap)) {
763                         domain->iommu_coherency = 0;
764                         break;
765                 }
766         }
767         rcu_read_unlock();
768 }
769
770 static int domain_update_iommu_snooping(struct intel_iommu *skip)
771 {
772         struct dmar_drhd_unit *drhd;
773         struct intel_iommu *iommu;
774         int ret = 1;
775
776         rcu_read_lock();
777         for_each_active_iommu(iommu, drhd) {
778                 if (iommu != skip) {
779                         if (!ecap_sc_support(iommu->ecap)) {
780                                 ret = 0;
781                                 break;
782                         }
783                 }
784         }
785         rcu_read_unlock();
786
787         return ret;
788 }
789
790 static int domain_update_iommu_superpage(struct intel_iommu *skip)
791 {
792         struct dmar_drhd_unit *drhd;
793         struct intel_iommu *iommu;
794         int mask = 0xf;
795
796         if (!intel_iommu_superpage) {
797                 return 0;
798         }
799
800         /* set iommu_superpage to the smallest common denominator */
801         rcu_read_lock();
802         for_each_active_iommu(iommu, drhd) {
803                 if (iommu != skip) {
804                         mask &= cap_super_page_val(iommu->cap);
805                         if (!mask)
806                                 break;
807                 }
808         }
809         rcu_read_unlock();
810
811         return fls(mask);
812 }
813
814 /* Some capabilities may be different across iommus */
815 static void domain_update_iommu_cap(struct dmar_domain *domain)
816 {
817         domain_update_iommu_coherency(domain);
818         domain->iommu_snooping = domain_update_iommu_snooping(NULL);
819         domain->iommu_superpage = domain_update_iommu_superpage(NULL);
820 }
821
822 static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
823                                                        u8 bus, u8 devfn, int alloc)
824 {
825         struct root_entry *root = &iommu->root_entry[bus];
826         struct context_entry *context;
827         u64 *entry;
828
829         entry = &root->lo;
830         if (ecs_enabled(iommu)) {
831                 if (devfn >= 0x80) {
832                         devfn -= 0x80;
833                         entry = &root->hi;
834                 }
835                 devfn *= 2;
836         }
837         if (*entry & 1)
838                 context = phys_to_virt(*entry & VTD_PAGE_MASK);
839         else {
840                 unsigned long phy_addr;
841                 if (!alloc)
842                         return NULL;
843
844                 context = alloc_pgtable_page(iommu->node);
845                 if (!context)
846                         return NULL;
847
848                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
849                 phy_addr = virt_to_phys((void *)context);
850                 *entry = phy_addr | 1;
851                 __iommu_flush_cache(iommu, entry, sizeof(*entry));
852         }
853         return &context[devfn];
854 }
855
856 static int iommu_dummy(struct device *dev)
857 {
858         return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
859 }
860
861 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
862 {
863         struct dmar_drhd_unit *drhd = NULL;
864         struct intel_iommu *iommu;
865         struct device *tmp;
866         struct pci_dev *ptmp, *pdev = NULL;
867         u16 segment = 0;
868         int i;
869
870         if (iommu_dummy(dev))
871                 return NULL;
872
873         if (dev_is_pci(dev)) {
874                 struct pci_dev *pf_pdev;
875
876                 pdev = to_pci_dev(dev);
877
878 #ifdef CONFIG_X86
879                 /* VMD child devices currently cannot be handled individually */
880                 if (is_vmd(pdev->bus))
881                         return NULL;
882 #endif
883
884                 /* VFs aren't listed in scope tables; we need to look up
885                  * the PF instead to find the IOMMU. */
886                 pf_pdev = pci_physfn(pdev);
887                 dev = &pf_pdev->dev;
888                 segment = pci_domain_nr(pdev->bus);
889         } else if (has_acpi_companion(dev))
890                 dev = &ACPI_COMPANION(dev)->dev;
891
892         rcu_read_lock();
893         for_each_active_iommu(iommu, drhd) {
894                 if (pdev && segment != drhd->segment)
895                         continue;
896
897                 for_each_active_dev_scope(drhd->devices,
898                                           drhd->devices_cnt, i, tmp) {
899                         if (tmp == dev) {
900                                 /* For a VF use its original BDF# not that of the PF
901                                  * which we used for the IOMMU lookup. Strictly speaking
902                                  * we could do this for all PCI devices; we only need to
903                                  * get the BDF# from the scope table for ACPI matches. */
904                                 if (pdev && pdev->is_virtfn)
905                                         goto got_pdev;
906
907                                 *bus = drhd->devices[i].bus;
908                                 *devfn = drhd->devices[i].devfn;
909                                 goto out;
910                         }
911
912                         if (!pdev || !dev_is_pci(tmp))
913                                 continue;
914
915                         ptmp = to_pci_dev(tmp);
916                         if (ptmp->subordinate &&
917                             ptmp->subordinate->number <= pdev->bus->number &&
918                             ptmp->subordinate->busn_res.end >= pdev->bus->number)
919                                 goto got_pdev;
920                 }
921
922                 if (pdev && drhd->include_all) {
923                 got_pdev:
924                         *bus = pdev->bus->number;
925                         *devfn = pdev->devfn;
926                         goto out;
927                 }
928         }
929         iommu = NULL;
930  out:
931         rcu_read_unlock();
932
933         return iommu;
934 }
935
936 static void domain_flush_cache(struct dmar_domain *domain,
937                                void *addr, int size)
938 {
939         if (!domain->iommu_coherency)
940                 clflush_cache_range(addr, size);
941 }
942
943 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
944 {
945         struct context_entry *context;
946         int ret = 0;
947         unsigned long flags;
948
949         spin_lock_irqsave(&iommu->lock, flags);
950         context = iommu_context_addr(iommu, bus, devfn, 0);
951         if (context)
952                 ret = context_present(context);
953         spin_unlock_irqrestore(&iommu->lock, flags);
954         return ret;
955 }
956
957 static void free_context_table(struct intel_iommu *iommu)
958 {
959         int i;
960         unsigned long flags;
961         struct context_entry *context;
962
963         spin_lock_irqsave(&iommu->lock, flags);
964         if (!iommu->root_entry) {
965                 goto out;
966         }
967         for (i = 0; i < ROOT_ENTRY_NR; i++) {
968                 context = iommu_context_addr(iommu, i, 0, 0);
969                 if (context)
970                         free_pgtable_page(context);
971
972                 if (!ecs_enabled(iommu))
973                         continue;
974
975                 context = iommu_context_addr(iommu, i, 0x80, 0);
976                 if (context)
977                         free_pgtable_page(context);
978
979         }
980         free_pgtable_page(iommu->root_entry);
981         iommu->root_entry = NULL;
982 out:
983         spin_unlock_irqrestore(&iommu->lock, flags);
984 }
985
986 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
987                                       unsigned long pfn, int *target_level)
988 {
989         struct dma_pte *parent, *pte = NULL;
990         int level = agaw_to_level(domain->agaw);
991         int offset;
992
993         BUG_ON(!domain->pgd);
994
995         if (!domain_pfn_supported(domain, pfn))
996                 /* Address beyond IOMMU's addressing capabilities. */
997                 return NULL;
998
999         parent = domain->pgd;
1000
1001         while (1) {
1002                 void *tmp_page;
1003
1004                 offset = pfn_level_offset(pfn, level);
1005                 pte = &parent[offset];
1006                 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
1007                         break;
1008                 if (level == *target_level)
1009                         break;
1010
1011                 if (!dma_pte_present(pte)) {
1012                         uint64_t pteval;
1013
1014                         tmp_page = alloc_pgtable_page(domain->nid);
1015
1016                         if (!tmp_page)
1017                                 return NULL;
1018
1019                         domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
1020                         pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
1021                         if (cmpxchg64(&pte->val, 0ULL, pteval))
1022                                 /* Someone else set it while we were thinking; use theirs. */
1023                                 free_pgtable_page(tmp_page);
1024                         else
1025                                 domain_flush_cache(domain, pte, sizeof(*pte));
1026                 }
1027                 if (level == 1)
1028                         break;
1029
1030                 parent = phys_to_virt(dma_pte_addr(pte));
1031                 level--;
1032         }
1033
1034         if (!*target_level)
1035                 *target_level = level;
1036
1037         return pte;
1038 }
1039
1040
1041 /* return address's pte at specific level */
1042 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1043                                          unsigned long pfn,
1044                                          int level, int *large_page)
1045 {
1046         struct dma_pte *parent, *pte = NULL;
1047         int total = agaw_to_level(domain->agaw);
1048         int offset;
1049
1050         parent = domain->pgd;
1051         while (level <= total) {
1052                 offset = pfn_level_offset(pfn, total);
1053                 pte = &parent[offset];
1054                 if (level == total)
1055                         return pte;
1056
1057                 if (!dma_pte_present(pte)) {
1058                         *large_page = total;
1059                         break;
1060                 }
1061
1062                 if (dma_pte_superpage(pte)) {
1063                         *large_page = total;
1064                         return pte;
1065                 }
1066
1067                 parent = phys_to_virt(dma_pte_addr(pte));
1068                 total--;
1069         }
1070         return NULL;
1071 }
1072
1073 /* clear last level pte, a tlb flush should be followed */
1074 static void dma_pte_clear_range(struct dmar_domain *domain,
1075                                 unsigned long start_pfn,
1076                                 unsigned long last_pfn)
1077 {
1078         unsigned int large_page = 1;
1079         struct dma_pte *first_pte, *pte;
1080
1081         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1082         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1083         BUG_ON(start_pfn > last_pfn);
1084
1085         /* we don't need lock here; nobody else touches the iova range */
1086         do {
1087                 large_page = 1;
1088                 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1089                 if (!pte) {
1090                         start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1091                         continue;
1092                 }
1093                 do {
1094                         dma_clear_pte(pte);
1095                         start_pfn += lvl_to_nr_pages(large_page);
1096                         pte++;
1097                 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1098
1099                 domain_flush_cache(domain, first_pte,
1100                                    (void *)pte - (void *)first_pte);
1101
1102         } while (start_pfn && start_pfn <= last_pfn);
1103 }
1104
1105 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1106                                int retain_level, struct dma_pte *pte,
1107                                unsigned long pfn, unsigned long start_pfn,
1108                                unsigned long last_pfn)
1109 {
1110         pfn = max(start_pfn, pfn);
1111         pte = &pte[pfn_level_offset(pfn, level)];
1112
1113         do {
1114                 unsigned long level_pfn;
1115                 struct dma_pte *level_pte;
1116
1117                 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1118                         goto next;
1119
1120                 level_pfn = pfn & level_mask(level);
1121                 level_pte = phys_to_virt(dma_pte_addr(pte));
1122
1123                 if (level > 2) {
1124                         dma_pte_free_level(domain, level - 1, retain_level,
1125                                            level_pte, level_pfn, start_pfn,
1126                                            last_pfn);
1127                 }
1128
1129                 /*
1130                  * Free the page table if we're below the level we want to
1131                  * retain and the range covers the entire table.
1132                  */
1133                 if (level < retain_level && !(start_pfn > level_pfn ||
1134                       last_pfn < level_pfn + level_size(level) - 1)) {
1135                         dma_clear_pte(pte);
1136                         domain_flush_cache(domain, pte, sizeof(*pte));
1137                         free_pgtable_page(level_pte);
1138                 }
1139 next:
1140                 pfn += level_size(level);
1141         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1142 }
1143
1144 /*
1145  * clear last level (leaf) ptes and free page table pages below the
1146  * level we wish to keep intact.
1147  */
1148 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1149                                    unsigned long start_pfn,
1150                                    unsigned long last_pfn,
1151                                    int retain_level)
1152 {
1153         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1154         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1155         BUG_ON(start_pfn > last_pfn);
1156
1157         dma_pte_clear_range(domain, start_pfn, last_pfn);
1158
1159         /* We don't need lock here; nobody else touches the iova range */
1160         dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1161                            domain->pgd, 0, start_pfn, last_pfn);
1162
1163         /* free pgd */
1164         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1165                 free_pgtable_page(domain->pgd);
1166                 domain->pgd = NULL;
1167         }
1168 }
1169
1170 /* When a page at a given level is being unlinked from its parent, we don't
1171    need to *modify* it at all. All we need to do is make a list of all the
1172    pages which can be freed just as soon as we've flushed the IOTLB and we
1173    know the hardware page-walk will no longer touch them.
1174    The 'pte' argument is the *parent* PTE, pointing to the page that is to
1175    be freed. */
1176 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1177                                             int level, struct dma_pte *pte,
1178                                             struct page *freelist)
1179 {
1180         struct page *pg;
1181
1182         pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1183         pg->freelist = freelist;
1184         freelist = pg;
1185
1186         if (level == 1)
1187                 return freelist;
1188
1189         pte = page_address(pg);
1190         do {
1191                 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1192                         freelist = dma_pte_list_pagetables(domain, level - 1,
1193                                                            pte, freelist);
1194                 pte++;
1195         } while (!first_pte_in_page(pte));
1196
1197         return freelist;
1198 }
1199
1200 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1201                                         struct dma_pte *pte, unsigned long pfn,
1202                                         unsigned long start_pfn,
1203                                         unsigned long last_pfn,
1204                                         struct page *freelist)
1205 {
1206         struct dma_pte *first_pte = NULL, *last_pte = NULL;
1207
1208         pfn = max(start_pfn, pfn);
1209         pte = &pte[pfn_level_offset(pfn, level)];
1210
1211         do {
1212                 unsigned long level_pfn;
1213
1214                 if (!dma_pte_present(pte))
1215                         goto next;
1216
1217                 level_pfn = pfn & level_mask(level);
1218
1219                 /* If range covers entire pagetable, free it */
1220                 if (start_pfn <= level_pfn &&
1221                     last_pfn >= level_pfn + level_size(level) - 1) {
1222                         /* These suborbinate page tables are going away entirely. Don't
1223                            bother to clear them; we're just going to *free* them. */
1224                         if (level > 1 && !dma_pte_superpage(pte))
1225                                 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1226
1227                         dma_clear_pte(pte);
1228                         if (!first_pte)
1229                                 first_pte = pte;
1230                         last_pte = pte;
1231                 } else if (level > 1) {
1232                         /* Recurse down into a level that isn't *entirely* obsolete */
1233                         freelist = dma_pte_clear_level(domain, level - 1,
1234                                                        phys_to_virt(dma_pte_addr(pte)),
1235                                                        level_pfn, start_pfn, last_pfn,
1236                                                        freelist);
1237                 }
1238 next:
1239                 pfn += level_size(level);
1240         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1241
1242         if (first_pte)
1243                 domain_flush_cache(domain, first_pte,
1244                                    (void *)++last_pte - (void *)first_pte);
1245
1246         return freelist;
1247 }
1248
1249 /* We can't just free the pages because the IOMMU may still be walking
1250    the page tables, and may have cached the intermediate levels. The
1251    pages can only be freed after the IOTLB flush has been done. */
1252 static struct page *domain_unmap(struct dmar_domain *domain,
1253                                  unsigned long start_pfn,
1254                                  unsigned long last_pfn)
1255 {
1256         struct page *freelist = NULL;
1257
1258         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1259         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1260         BUG_ON(start_pfn > last_pfn);
1261
1262         /* we don't need lock here; nobody else touches the iova range */
1263         freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1264                                        domain->pgd, 0, start_pfn, last_pfn, NULL);
1265
1266         /* free pgd */
1267         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1268                 struct page *pgd_page = virt_to_page(domain->pgd);
1269                 pgd_page->freelist = freelist;
1270                 freelist = pgd_page;
1271
1272                 domain->pgd = NULL;
1273         }
1274
1275         return freelist;
1276 }
1277
1278 static void dma_free_pagelist(struct page *freelist)
1279 {
1280         struct page *pg;
1281
1282         while ((pg = freelist)) {
1283                 freelist = pg->freelist;
1284                 free_pgtable_page(page_address(pg));
1285         }
1286 }
1287
1288 static void iova_entry_free(unsigned long data)
1289 {
1290         struct page *freelist = (struct page *)data;
1291
1292         dma_free_pagelist(freelist);
1293 }
1294
1295 /* iommu handling */
1296 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1297 {
1298         struct root_entry *root;
1299         unsigned long flags;
1300
1301         root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1302         if (!root) {
1303                 pr_err("Allocating root entry for %s failed\n",
1304                         iommu->name);
1305                 return -ENOMEM;
1306         }
1307
1308         __iommu_flush_cache(iommu, root, ROOT_SIZE);
1309
1310         spin_lock_irqsave(&iommu->lock, flags);
1311         iommu->root_entry = root;
1312         spin_unlock_irqrestore(&iommu->lock, flags);
1313
1314         return 0;
1315 }
1316
1317 static void iommu_set_root_entry(struct intel_iommu *iommu)
1318 {
1319         u64 addr;
1320         u32 sts;
1321         unsigned long flag;
1322
1323         addr = virt_to_phys(iommu->root_entry);
1324         if (ecs_enabled(iommu))
1325                 addr |= DMA_RTADDR_RTT;
1326
1327         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1328         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1329
1330         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1331
1332         /* Make sure hardware complete it */
1333         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1334                       readl, (sts & DMA_GSTS_RTPS), sts);
1335
1336         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1337 }
1338
1339 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1340 {
1341         u32 val;
1342         unsigned long flag;
1343
1344         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1345                 return;
1346
1347         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1348         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1349
1350         /* Make sure hardware complete it */
1351         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1352                       readl, (!(val & DMA_GSTS_WBFS)), val);
1353
1354         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1355 }
1356
1357 /* return value determine if we need a write buffer flush */
1358 static void __iommu_flush_context(struct intel_iommu *iommu,
1359                                   u16 did, u16 source_id, u8 function_mask,
1360                                   u64 type)
1361 {
1362         u64 val = 0;
1363         unsigned long flag;
1364
1365         switch (type) {
1366         case DMA_CCMD_GLOBAL_INVL:
1367                 val = DMA_CCMD_GLOBAL_INVL;
1368                 break;
1369         case DMA_CCMD_DOMAIN_INVL:
1370                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1371                 break;
1372         case DMA_CCMD_DEVICE_INVL:
1373                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1374                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1375                 break;
1376         default:
1377                 BUG();
1378         }
1379         val |= DMA_CCMD_ICC;
1380
1381         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1382         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1383
1384         /* Make sure hardware complete it */
1385         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1386                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1387
1388         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1389 }
1390
1391 /* return value determine if we need a write buffer flush */
1392 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1393                                 u64 addr, unsigned int size_order, u64 type)
1394 {
1395         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1396         u64 val = 0, val_iva = 0;
1397         unsigned long flag;
1398
1399         switch (type) {
1400         case DMA_TLB_GLOBAL_FLUSH:
1401                 /* global flush doesn't need set IVA_REG */
1402                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1403                 break;
1404         case DMA_TLB_DSI_FLUSH:
1405                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1406                 break;
1407         case DMA_TLB_PSI_FLUSH:
1408                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1409                 /* IH bit is passed in as part of address */
1410                 val_iva = size_order | addr;
1411                 break;
1412         default:
1413                 BUG();
1414         }
1415         /* Note: set drain read/write */
1416 #if 0
1417         /*
1418          * This is probably to be super secure.. Looks like we can
1419          * ignore it without any impact.
1420          */
1421         if (cap_read_drain(iommu->cap))
1422                 val |= DMA_TLB_READ_DRAIN;
1423 #endif
1424         if (cap_write_drain(iommu->cap))
1425                 val |= DMA_TLB_WRITE_DRAIN;
1426
1427         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1428         /* Note: Only uses first TLB reg currently */
1429         if (val_iva)
1430                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1431         dmar_writeq(iommu->reg + tlb_offset + 8, val);
1432
1433         /* Make sure hardware complete it */
1434         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1435                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1436
1437         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1438
1439         /* check IOTLB invalidation granularity */
1440         if (DMA_TLB_IAIG(val) == 0)
1441                 pr_err("Flush IOTLB failed\n");
1442         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1443                 pr_debug("TLB flush request %Lx, actual %Lx\n",
1444                         (unsigned long long)DMA_TLB_IIRG(type),
1445                         (unsigned long long)DMA_TLB_IAIG(val));
1446 }
1447
1448 static struct device_domain_info *
1449 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1450                          u8 bus, u8 devfn)
1451 {
1452         struct device_domain_info *info;
1453
1454         assert_spin_locked(&device_domain_lock);
1455
1456         if (!iommu->qi)
1457                 return NULL;
1458
1459         list_for_each_entry(info, &domain->devices, link)
1460                 if (info->iommu == iommu && info->bus == bus &&
1461                     info->devfn == devfn) {
1462                         if (info->ats_supported && info->dev)
1463                                 return info;
1464                         break;
1465                 }
1466
1467         return NULL;
1468 }
1469
1470 static void domain_update_iotlb(struct dmar_domain *domain)
1471 {
1472         struct device_domain_info *info;
1473         bool has_iotlb_device = false;
1474
1475         assert_spin_locked(&device_domain_lock);
1476
1477         list_for_each_entry(info, &domain->devices, link) {
1478                 struct pci_dev *pdev;
1479
1480                 if (!info->dev || !dev_is_pci(info->dev))
1481                         continue;
1482
1483                 pdev = to_pci_dev(info->dev);
1484                 if (pdev->ats_enabled) {
1485                         has_iotlb_device = true;
1486                         break;
1487                 }
1488         }
1489
1490         domain->has_iotlb_device = has_iotlb_device;
1491 }
1492
1493 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1494 {
1495         struct pci_dev *pdev;
1496
1497         assert_spin_locked(&device_domain_lock);
1498
1499         if (!info || !dev_is_pci(info->dev))
1500                 return;
1501
1502         pdev = to_pci_dev(info->dev);
1503
1504 #ifdef CONFIG_INTEL_IOMMU_SVM
1505         /* The PCIe spec, in its wisdom, declares that the behaviour of
1506            the device if you enable PASID support after ATS support is
1507            undefined. So always enable PASID support on devices which
1508            have it, even if we can't yet know if we're ever going to
1509            use it. */
1510         if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1511                 info->pasid_enabled = 1;
1512
1513         if (info->pri_supported && !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1514                 info->pri_enabled = 1;
1515 #endif
1516         if (info->ats_supported && !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1517                 info->ats_enabled = 1;
1518                 domain_update_iotlb(info->domain);
1519                 info->ats_qdep = pci_ats_queue_depth(pdev);
1520         }
1521 }
1522
1523 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1524 {
1525         struct pci_dev *pdev;
1526
1527         assert_spin_locked(&device_domain_lock);
1528
1529         if (!dev_is_pci(info->dev))
1530                 return;
1531
1532         pdev = to_pci_dev(info->dev);
1533
1534         if (info->ats_enabled) {
1535                 pci_disable_ats(pdev);
1536                 info->ats_enabled = 0;
1537                 domain_update_iotlb(info->domain);
1538         }
1539 #ifdef CONFIG_INTEL_IOMMU_SVM
1540         if (info->pri_enabled) {
1541                 pci_disable_pri(pdev);
1542                 info->pri_enabled = 0;
1543         }
1544         if (info->pasid_enabled) {
1545                 pci_disable_pasid(pdev);
1546                 info->pasid_enabled = 0;
1547         }
1548 #endif
1549 }
1550
1551 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1552                                   u64 addr, unsigned mask)
1553 {
1554         u16 sid, qdep;
1555         unsigned long flags;
1556         struct device_domain_info *info;
1557
1558         if (!domain->has_iotlb_device)
1559                 return;
1560
1561         spin_lock_irqsave(&device_domain_lock, flags);
1562         list_for_each_entry(info, &domain->devices, link) {
1563                 if (!info->ats_enabled)
1564                         continue;
1565
1566                 sid = info->bus << 8 | info->devfn;
1567                 qdep = info->ats_qdep;
1568                 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1569         }
1570         spin_unlock_irqrestore(&device_domain_lock, flags);
1571 }
1572
1573 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1574                                   struct dmar_domain *domain,
1575                                   unsigned long pfn, unsigned int pages,
1576                                   int ih, int map)
1577 {
1578         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1579         uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1580         u16 did = domain->iommu_did[iommu->seq_id];
1581
1582         BUG_ON(pages == 0);
1583
1584         if (ih)
1585                 ih = 1 << 6;
1586         /*
1587          * Fallback to domain selective flush if no PSI support or the size is
1588          * too big.
1589          * PSI requires page size to be 2 ^ x, and the base address is naturally
1590          * aligned to the size
1591          */
1592         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1593                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1594                                                 DMA_TLB_DSI_FLUSH);
1595         else
1596                 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1597                                                 DMA_TLB_PSI_FLUSH);
1598
1599         /*
1600          * In caching mode, changes of pages from non-present to present require
1601          * flush. However, device IOTLB doesn't need to be flushed in this case.
1602          */
1603         if (!cap_caching_mode(iommu->cap) || !map)
1604                 iommu_flush_dev_iotlb(domain, addr, mask);
1605 }
1606
1607 static void iommu_flush_iova(struct iova_domain *iovad)
1608 {
1609         struct dmar_domain *domain;
1610         int idx;
1611
1612         domain = container_of(iovad, struct dmar_domain, iovad);
1613
1614         for_each_domain_iommu(idx, domain) {
1615                 struct intel_iommu *iommu = g_iommus[idx];
1616                 u16 did = domain->iommu_did[iommu->seq_id];
1617
1618                 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
1619
1620                 if (!cap_caching_mode(iommu->cap))
1621                         iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1622                                               0, MAX_AGAW_PFN_WIDTH);
1623         }
1624 }
1625
1626 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1627 {
1628         u32 pmen;
1629         unsigned long flags;
1630
1631         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1632         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1633         pmen &= ~DMA_PMEN_EPM;
1634         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1635
1636         /* wait for the protected region status bit to clear */
1637         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1638                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1639
1640         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1641 }
1642
1643 static void iommu_enable_translation(struct intel_iommu *iommu)
1644 {
1645         u32 sts;
1646         unsigned long flags;
1647
1648         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1649         iommu->gcmd |= DMA_GCMD_TE;
1650         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1651
1652         /* Make sure hardware complete it */
1653         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1654                       readl, (sts & DMA_GSTS_TES), sts);
1655
1656         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1657 }
1658
1659 static void iommu_disable_translation(struct intel_iommu *iommu)
1660 {
1661         u32 sts;
1662         unsigned long flag;
1663
1664         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1665         iommu->gcmd &= ~DMA_GCMD_TE;
1666         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1667
1668         /* Make sure hardware complete it */
1669         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1670                       readl, (!(sts & DMA_GSTS_TES)), sts);
1671
1672         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1673 }
1674
1675
1676 static int iommu_init_domains(struct intel_iommu *iommu)
1677 {
1678         u32 ndomains, nlongs;
1679         size_t size;
1680
1681         ndomains = cap_ndoms(iommu->cap);
1682         pr_debug("%s: Number of Domains supported <%d>\n",
1683                  iommu->name, ndomains);
1684         nlongs = BITS_TO_LONGS(ndomains);
1685
1686         spin_lock_init(&iommu->lock);
1687
1688         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1689         if (!iommu->domain_ids) {
1690                 pr_err("%s: Allocating domain id array failed\n",
1691                        iommu->name);
1692                 return -ENOMEM;
1693         }
1694
1695         size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1696         iommu->domains = kzalloc(size, GFP_KERNEL);
1697
1698         if (iommu->domains) {
1699                 size = 256 * sizeof(struct dmar_domain *);
1700                 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1701         }
1702
1703         if (!iommu->domains || !iommu->domains[0]) {
1704                 pr_err("%s: Allocating domain array failed\n",
1705                        iommu->name);
1706                 kfree(iommu->domain_ids);
1707                 kfree(iommu->domains);
1708                 iommu->domain_ids = NULL;
1709                 iommu->domains    = NULL;
1710                 return -ENOMEM;
1711         }
1712
1713
1714
1715         /*
1716          * If Caching mode is set, then invalid translations are tagged
1717          * with domain-id 0, hence we need to pre-allocate it. We also
1718          * use domain-id 0 as a marker for non-allocated domain-id, so
1719          * make sure it is not used for a real domain.
1720          */
1721         set_bit(0, iommu->domain_ids);
1722
1723         return 0;
1724 }
1725
1726 static void disable_dmar_iommu(struct intel_iommu *iommu)
1727 {
1728         struct device_domain_info *info, *tmp;
1729         unsigned long flags;
1730
1731         if (!iommu->domains || !iommu->domain_ids)
1732                 return;
1733
1734 again:
1735         spin_lock_irqsave(&device_domain_lock, flags);
1736         list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1737                 struct dmar_domain *domain;
1738
1739                 if (info->iommu != iommu)
1740                         continue;
1741
1742                 if (!info->dev || !info->domain)
1743                         continue;
1744
1745                 domain = info->domain;
1746
1747                 __dmar_remove_one_dev_info(info);
1748
1749                 if (!domain_type_is_vm_or_si(domain)) {
1750                         /*
1751                          * The domain_exit() function  can't be called under
1752                          * device_domain_lock, as it takes this lock itself.
1753                          * So release the lock here and re-run the loop
1754                          * afterwards.
1755                          */
1756                         spin_unlock_irqrestore(&device_domain_lock, flags);
1757                         domain_exit(domain);
1758                         goto again;
1759                 }
1760         }
1761         spin_unlock_irqrestore(&device_domain_lock, flags);
1762
1763         if (iommu->gcmd & DMA_GCMD_TE)
1764                 iommu_disable_translation(iommu);
1765 }
1766
1767 static void free_dmar_iommu(struct intel_iommu *iommu)
1768 {
1769         if ((iommu->domains) && (iommu->domain_ids)) {
1770                 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1771                 int i;
1772
1773                 for (i = 0; i < elems; i++)
1774                         kfree(iommu->domains[i]);
1775                 kfree(iommu->domains);
1776                 kfree(iommu->domain_ids);
1777                 iommu->domains = NULL;
1778                 iommu->domain_ids = NULL;
1779         }
1780
1781         g_iommus[iommu->seq_id] = NULL;
1782
1783         /* free context mapping */
1784         free_context_table(iommu);
1785
1786 #ifdef CONFIG_INTEL_IOMMU_SVM
1787         if (pasid_enabled(iommu)) {
1788                 if (ecap_prs(iommu->ecap))
1789                         intel_svm_finish_prq(iommu);
1790                 intel_svm_free_pasid_tables(iommu);
1791         }
1792 #endif
1793 }
1794
1795 static struct dmar_domain *alloc_domain(int flags)
1796 {
1797         struct dmar_domain *domain;
1798
1799         domain = alloc_domain_mem();
1800         if (!domain)
1801                 return NULL;
1802
1803         memset(domain, 0, sizeof(*domain));
1804         domain->nid = -1;
1805         domain->flags = flags;
1806         domain->has_iotlb_device = false;
1807         INIT_LIST_HEAD(&domain->devices);
1808
1809         return domain;
1810 }
1811
1812 /* Must be called with iommu->lock */
1813 static int domain_attach_iommu(struct dmar_domain *domain,
1814                                struct intel_iommu *iommu)
1815 {
1816         unsigned long ndomains;
1817         int num;
1818
1819         assert_spin_locked(&device_domain_lock);
1820         assert_spin_locked(&iommu->lock);
1821
1822         domain->iommu_refcnt[iommu->seq_id] += 1;
1823         domain->iommu_count += 1;
1824         if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1825                 ndomains = cap_ndoms(iommu->cap);
1826                 num      = find_first_zero_bit(iommu->domain_ids, ndomains);
1827
1828                 if (num >= ndomains) {
1829                         pr_err("%s: No free domain ids\n", iommu->name);
1830                         domain->iommu_refcnt[iommu->seq_id] -= 1;
1831                         domain->iommu_count -= 1;
1832                         return -ENOSPC;
1833                 }
1834
1835                 set_bit(num, iommu->domain_ids);
1836                 set_iommu_domain(iommu, num, domain);
1837
1838                 domain->iommu_did[iommu->seq_id] = num;
1839                 domain->nid                      = iommu->node;
1840
1841                 domain_update_iommu_cap(domain);
1842         }
1843
1844         return 0;
1845 }
1846
1847 static int domain_detach_iommu(struct dmar_domain *domain,
1848                                struct intel_iommu *iommu)
1849 {
1850         int num, count = INT_MAX;
1851
1852         assert_spin_locked(&device_domain_lock);
1853         assert_spin_locked(&iommu->lock);
1854
1855         domain->iommu_refcnt[iommu->seq_id] -= 1;
1856         count = --domain->iommu_count;
1857         if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1858                 num = domain->iommu_did[iommu->seq_id];
1859                 clear_bit(num, iommu->domain_ids);
1860                 set_iommu_domain(iommu, num, NULL);
1861
1862                 domain_update_iommu_cap(domain);
1863                 domain->iommu_did[iommu->seq_id] = 0;
1864         }
1865
1866         return count;
1867 }
1868
1869 static struct iova_domain reserved_iova_list;
1870 static struct lock_class_key reserved_rbtree_key;
1871
1872 static int dmar_init_reserved_ranges(void)
1873 {
1874         struct pci_dev *pdev = NULL;
1875         struct iova *iova;
1876         int i;
1877
1878         init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1879
1880         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1881                 &reserved_rbtree_key);
1882
1883         /* IOAPIC ranges shouldn't be accessed by DMA */
1884         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1885                 IOVA_PFN(IOAPIC_RANGE_END));
1886         if (!iova) {
1887                 pr_err("Reserve IOAPIC range failed\n");
1888                 return -ENODEV;
1889         }
1890
1891         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1892         for_each_pci_dev(pdev) {
1893                 struct resource *r;
1894
1895                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1896                         r = &pdev->resource[i];
1897                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1898                                 continue;
1899                         iova = reserve_iova(&reserved_iova_list,
1900                                             IOVA_PFN(r->start),
1901                                             IOVA_PFN(r->end));
1902                         if (!iova) {
1903                                 pr_err("Reserve iova failed\n");
1904                                 return -ENODEV;
1905                         }
1906                 }
1907         }
1908         return 0;
1909 }
1910
1911 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1912 {
1913         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1914 }
1915
1916 static inline int guestwidth_to_adjustwidth(int gaw)
1917 {
1918         int agaw;
1919         int r = (gaw - 12) % 9;
1920
1921         if (r == 0)
1922                 agaw = gaw;
1923         else
1924                 agaw = gaw + 9 - r;
1925         if (agaw > 64)
1926                 agaw = 64;
1927         return agaw;
1928 }
1929
1930 static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1931                        int guest_width)
1932 {
1933         int adjust_width, agaw;
1934         unsigned long sagaw;
1935         int err;
1936
1937         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
1938
1939         err = init_iova_flush_queue(&domain->iovad,
1940                                     iommu_flush_iova, iova_entry_free);
1941         if (err)
1942                 return err;
1943
1944         domain_reserve_special_ranges(domain);
1945
1946         /* calculate AGAW */
1947         if (guest_width > cap_mgaw(iommu->cap))
1948                 guest_width = cap_mgaw(iommu->cap);
1949         domain->gaw = guest_width;
1950         adjust_width = guestwidth_to_adjustwidth(guest_width);
1951         agaw = width_to_agaw(adjust_width);
1952         sagaw = cap_sagaw(iommu->cap);
1953         if (!test_bit(agaw, &sagaw)) {
1954                 /* hardware doesn't support it, choose a bigger one */
1955                 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1956                 agaw = find_next_bit(&sagaw, 5, agaw);
1957                 if (agaw >= 5)
1958                         return -ENODEV;
1959         }
1960         domain->agaw = agaw;
1961
1962         if (ecap_coherent(iommu->ecap))
1963                 domain->iommu_coherency = 1;
1964         else
1965                 domain->iommu_coherency = 0;
1966
1967         if (ecap_sc_support(iommu->ecap))
1968                 domain->iommu_snooping = 1;
1969         else
1970                 domain->iommu_snooping = 0;
1971
1972         if (intel_iommu_superpage)
1973                 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1974         else
1975                 domain->iommu_superpage = 0;
1976
1977         domain->nid = iommu->node;
1978
1979         /* always allocate the top pgd */
1980         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1981         if (!domain->pgd)
1982                 return -ENOMEM;
1983         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1984         return 0;
1985 }
1986
1987 static void domain_exit(struct dmar_domain *domain)
1988 {
1989         struct page *freelist = NULL;
1990
1991         /* Domain 0 is reserved, so dont process it */
1992         if (!domain)
1993                 return;
1994
1995         /* Remove associated devices and clear attached or cached domains */
1996         rcu_read_lock();
1997         domain_remove_dev_info(domain);
1998         rcu_read_unlock();
1999
2000         /* destroy iovas */
2001         put_iova_domain(&domain->iovad);
2002
2003         freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
2004
2005         dma_free_pagelist(freelist);
2006
2007         free_domain_mem(domain);
2008 }
2009
2010 static int domain_context_mapping_one(struct dmar_domain *domain,
2011                                       struct intel_iommu *iommu,
2012                                       u8 bus, u8 devfn)
2013 {
2014         u16 did = domain->iommu_did[iommu->seq_id];
2015         int translation = CONTEXT_TT_MULTI_LEVEL;
2016         struct device_domain_info *info = NULL;
2017         struct context_entry *context;
2018         unsigned long flags;
2019         struct dma_pte *pgd;
2020         int ret, agaw;
2021
2022         WARN_ON(did == 0);
2023
2024         if (hw_pass_through && domain_type_is_si(domain))
2025                 translation = CONTEXT_TT_PASS_THROUGH;
2026
2027         pr_debug("Set context mapping for %02x:%02x.%d\n",
2028                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
2029
2030         BUG_ON(!domain->pgd);
2031
2032         spin_lock_irqsave(&device_domain_lock, flags);
2033         spin_lock(&iommu->lock);
2034
2035         ret = -ENOMEM;
2036         context = iommu_context_addr(iommu, bus, devfn, 1);
2037         if (!context)
2038                 goto out_unlock;
2039
2040         ret = 0;
2041         if (context_present(context))
2042                 goto out_unlock;
2043
2044         /*
2045          * For kdump cases, old valid entries may be cached due to the
2046          * in-flight DMA and copied pgtable, but there is no unmapping
2047          * behaviour for them, thus we need an explicit cache flush for
2048          * the newly-mapped device. For kdump, at this point, the device
2049          * is supposed to finish reset at its driver probe stage, so no
2050          * in-flight DMA will exist, and we don't need to worry anymore
2051          * hereafter.
2052          */
2053         if (context_copied(context)) {
2054                 u16 did_old = context_domain_id(context);
2055
2056                 if (did_old < cap_ndoms(iommu->cap)) {
2057                         iommu->flush.flush_context(iommu, did_old,
2058                                                    (((u16)bus) << 8) | devfn,
2059                                                    DMA_CCMD_MASK_NOBIT,
2060                                                    DMA_CCMD_DEVICE_INVL);
2061                         iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
2062                                                  DMA_TLB_DSI_FLUSH);
2063                 }
2064         }
2065
2066         pgd = domain->pgd;
2067
2068         context_clear_entry(context);
2069         context_set_domain_id(context, did);
2070
2071         /*
2072          * Skip top levels of page tables for iommu which has less agaw
2073          * than default.  Unnecessary for PT mode.
2074          */
2075         if (translation != CONTEXT_TT_PASS_THROUGH) {
2076                 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
2077                         ret = -ENOMEM;
2078                         pgd = phys_to_virt(dma_pte_addr(pgd));
2079                         if (!dma_pte_present(pgd))
2080                                 goto out_unlock;
2081                 }
2082
2083                 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2084                 if (info && info->ats_supported)
2085                         translation = CONTEXT_TT_DEV_IOTLB;
2086                 else
2087                         translation = CONTEXT_TT_MULTI_LEVEL;
2088
2089                 context_set_address_root(context, virt_to_phys(pgd));
2090                 context_set_address_width(context, iommu->agaw);
2091         } else {
2092                 /*
2093                  * In pass through mode, AW must be programmed to
2094                  * indicate the largest AGAW value supported by
2095                  * hardware. And ASR is ignored by hardware.
2096                  */
2097                 context_set_address_width(context, iommu->msagaw);
2098         }
2099
2100         context_set_translation_type(context, translation);
2101         context_set_fault_enable(context);
2102         context_set_present(context);
2103         domain_flush_cache(domain, context, sizeof(*context));
2104
2105         /*
2106          * It's a non-present to present mapping. If hardware doesn't cache
2107          * non-present entry we only need to flush the write-buffer. If the
2108          * _does_ cache non-present entries, then it does so in the special
2109          * domain #0, which we have to flush:
2110          */
2111         if (cap_caching_mode(iommu->cap)) {
2112                 iommu->flush.flush_context(iommu, 0,
2113                                            (((u16)bus) << 8) | devfn,
2114                                            DMA_CCMD_MASK_NOBIT,
2115                                            DMA_CCMD_DEVICE_INVL);
2116                 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2117         } else {
2118                 iommu_flush_write_buffer(iommu);
2119         }
2120         iommu_enable_dev_iotlb(info);
2121
2122         ret = 0;
2123
2124 out_unlock:
2125         spin_unlock(&iommu->lock);
2126         spin_unlock_irqrestore(&device_domain_lock, flags);
2127
2128         return ret;
2129 }
2130
2131 struct domain_context_mapping_data {
2132         struct dmar_domain *domain;
2133         struct intel_iommu *iommu;
2134 };
2135
2136 static int domain_context_mapping_cb(struct pci_dev *pdev,
2137                                      u16 alias, void *opaque)
2138 {
2139         struct domain_context_mapping_data *data = opaque;
2140
2141         return domain_context_mapping_one(data->domain, data->iommu,
2142                                           PCI_BUS_NUM(alias), alias & 0xff);
2143 }
2144
2145 static int
2146 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2147 {
2148         struct intel_iommu *iommu;
2149         u8 bus, devfn;
2150         struct domain_context_mapping_data data;
2151
2152         iommu = device_to_iommu(dev, &bus, &devfn);
2153         if (!iommu)
2154                 return -ENODEV;
2155
2156         if (!dev_is_pci(dev))
2157                 return domain_context_mapping_one(domain, iommu, bus, devfn);
2158
2159         data.domain = domain;
2160         data.iommu = iommu;
2161
2162         return pci_for_each_dma_alias(to_pci_dev(dev),
2163                                       &domain_context_mapping_cb, &data);
2164 }
2165
2166 static int domain_context_mapped_cb(struct pci_dev *pdev,
2167                                     u16 alias, void *opaque)
2168 {
2169         struct intel_iommu *iommu = opaque;
2170
2171         return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2172 }
2173
2174 static int domain_context_mapped(struct device *dev)
2175 {
2176         struct intel_iommu *iommu;
2177         u8 bus, devfn;
2178
2179         iommu = device_to_iommu(dev, &bus, &devfn);
2180         if (!iommu)
2181                 return -ENODEV;
2182
2183         if (!dev_is_pci(dev))
2184                 return device_context_mapped(iommu, bus, devfn);
2185
2186         return !pci_for_each_dma_alias(to_pci_dev(dev),
2187                                        domain_context_mapped_cb, iommu);
2188 }
2189
2190 /* Returns a number of VTD pages, but aligned to MM page size */
2191 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2192                                             size_t size)
2193 {
2194         host_addr &= ~PAGE_MASK;
2195         return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2196 }
2197
2198 /* Return largest possible superpage level for a given mapping */
2199 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2200                                           unsigned long iov_pfn,
2201                                           unsigned long phy_pfn,
2202                                           unsigned long pages)
2203 {
2204         int support, level = 1;
2205         unsigned long pfnmerge;
2206
2207         support = domain->iommu_superpage;
2208
2209         /* To use a large page, the virtual *and* physical addresses
2210            must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2211            of them will mean we have to use smaller pages. So just
2212            merge them and check both at once. */
2213         pfnmerge = iov_pfn | phy_pfn;
2214
2215         while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2216                 pages >>= VTD_STRIDE_SHIFT;
2217                 if (!pages)
2218                         break;
2219                 pfnmerge >>= VTD_STRIDE_SHIFT;
2220                 level++;
2221                 support--;
2222         }
2223         return level;
2224 }
2225
2226 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2227                             struct scatterlist *sg, unsigned long phys_pfn,
2228                             unsigned long nr_pages, int prot)
2229 {
2230         struct dma_pte *first_pte = NULL, *pte = NULL;
2231         phys_addr_t uninitialized_var(pteval);
2232         unsigned long sg_res = 0;
2233         unsigned int largepage_lvl = 0;
2234         unsigned long lvl_pages = 0;
2235
2236         BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2237
2238         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2239                 return -EINVAL;
2240
2241         prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2242
2243         if (!sg) {
2244                 sg_res = nr_pages;
2245                 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2246         }
2247
2248         while (nr_pages > 0) {
2249                 uint64_t tmp;
2250
2251                 if (!sg_res) {
2252                         unsigned int pgoff = sg->offset & ~PAGE_MASK;
2253
2254                         sg_res = aligned_nrpages(sg->offset, sg->length);
2255                         sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2256                         sg->dma_length = sg->length;
2257                         pteval = (sg_phys(sg) - pgoff) | prot;
2258                         phys_pfn = pteval >> VTD_PAGE_SHIFT;
2259                 }
2260
2261                 if (!pte) {
2262                         largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2263
2264                         first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2265                         if (!pte)
2266                                 return -ENOMEM;
2267                         /* It is large page*/
2268                         if (largepage_lvl > 1) {
2269                                 unsigned long nr_superpages, end_pfn;
2270
2271                                 pteval |= DMA_PTE_LARGE_PAGE;
2272                                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2273
2274                                 nr_superpages = sg_res / lvl_pages;
2275                                 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2276
2277                                 /*
2278                                  * Ensure that old small page tables are
2279                                  * removed to make room for superpage(s).
2280                                  * We're adding new large pages, so make sure
2281                                  * we don't remove their parent tables.
2282                                  */
2283                                 dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
2284                                                        largepage_lvl + 1);
2285                         } else {
2286                                 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2287                         }
2288
2289                 }
2290                 /* We don't need lock here, nobody else
2291                  * touches the iova range
2292                  */
2293                 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2294                 if (tmp) {
2295                         static int dumps = 5;
2296                         pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2297                                 iov_pfn, tmp, (unsigned long long)pteval);
2298                         if (dumps) {
2299                                 dumps--;
2300                                 debug_dma_dump_mappings(NULL);
2301                         }
2302                         WARN_ON(1);
2303                 }
2304
2305                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2306
2307                 BUG_ON(nr_pages < lvl_pages);
2308                 BUG_ON(sg_res < lvl_pages);
2309
2310                 nr_pages -= lvl_pages;
2311                 iov_pfn += lvl_pages;
2312                 phys_pfn += lvl_pages;
2313                 pteval += lvl_pages * VTD_PAGE_SIZE;
2314                 sg_res -= lvl_pages;
2315
2316                 /* If the next PTE would be the first in a new page, then we
2317                    need to flush the cache on the entries we've just written.
2318                    And then we'll need to recalculate 'pte', so clear it and
2319                    let it get set again in the if (!pte) block above.
2320
2321                    If we're done (!nr_pages) we need to flush the cache too.
2322
2323                    Also if we've been setting superpages, we may need to
2324                    recalculate 'pte' and switch back to smaller pages for the
2325                    end of the mapping, if the trailing size is not enough to
2326                    use another superpage (i.e. sg_res < lvl_pages). */
2327                 pte++;
2328                 if (!nr_pages || first_pte_in_page(pte) ||
2329                     (largepage_lvl > 1 && sg_res < lvl_pages)) {
2330                         domain_flush_cache(domain, first_pte,
2331                                            (void *)pte - (void *)first_pte);
2332                         pte = NULL;
2333                 }
2334
2335                 if (!sg_res && nr_pages)
2336                         sg = sg_next(sg);
2337         }
2338         return 0;
2339 }
2340
2341 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2342                                     struct scatterlist *sg, unsigned long nr_pages,
2343                                     int prot)
2344 {
2345         return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2346 }
2347
2348 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2349                                      unsigned long phys_pfn, unsigned long nr_pages,
2350                                      int prot)
2351 {
2352         return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2353 }
2354
2355 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2356 {
2357         unsigned long flags;
2358         struct context_entry *context;
2359         u16 did_old;
2360
2361         if (!iommu)
2362                 return;
2363
2364         spin_lock_irqsave(&iommu->lock, flags);
2365         context = iommu_context_addr(iommu, bus, devfn, 0);
2366         if (!context) {
2367                 spin_unlock_irqrestore(&iommu->lock, flags);
2368                 return;
2369         }
2370         did_old = context_domain_id(context);
2371         context_clear_entry(context);
2372         __iommu_flush_cache(iommu, context, sizeof(*context));
2373         spin_unlock_irqrestore(&iommu->lock, flags);
2374         iommu->flush.flush_context(iommu,
2375                                    did_old,
2376                                    (((u16)bus) << 8) | devfn,
2377                                    DMA_CCMD_MASK_NOBIT,
2378                                    DMA_CCMD_DEVICE_INVL);
2379         iommu->flush.flush_iotlb(iommu,
2380                                  did_old,
2381                                  0,
2382                                  0,
2383                                  DMA_TLB_DSI_FLUSH);
2384 }
2385
2386 static inline void unlink_domain_info(struct device_domain_info *info)
2387 {
2388         assert_spin_locked(&device_domain_lock);
2389         list_del(&info->link);
2390         list_del(&info->global);
2391         if (info->dev)
2392                 info->dev->archdata.iommu = NULL;
2393 }
2394
2395 static void domain_remove_dev_info(struct dmar_domain *domain)
2396 {
2397         struct device_domain_info *info, *tmp;
2398         unsigned long flags;
2399
2400         spin_lock_irqsave(&device_domain_lock, flags);
2401         list_for_each_entry_safe(info, tmp, &domain->devices, link)
2402                 __dmar_remove_one_dev_info(info);
2403         spin_unlock_irqrestore(&device_domain_lock, flags);
2404 }
2405
2406 /*
2407  * find_domain
2408  * Note: we use struct device->archdata.iommu stores the info
2409  */
2410 static struct dmar_domain *find_domain(struct device *dev)
2411 {
2412         struct device_domain_info *info;
2413
2414         /* No lock here, assumes no domain exit in normal case */
2415         info = dev->archdata.iommu;
2416         if (likely(info))
2417                 return info->domain;
2418         return NULL;
2419 }
2420
2421 static inline struct device_domain_info *
2422 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2423 {
2424         struct device_domain_info *info;
2425
2426         list_for_each_entry(info, &device_domain_list, global)
2427                 if (info->iommu->segment == segment && info->bus == bus &&
2428                     info->devfn == devfn)
2429                         return info;
2430
2431         return NULL;
2432 }
2433
2434 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2435                                                     int bus, int devfn,
2436                                                     struct device *dev,
2437                                                     struct dmar_domain *domain)
2438 {
2439         struct dmar_domain *found = NULL;
2440         struct device_domain_info *info;
2441         unsigned long flags;
2442         int ret;
2443
2444         info = alloc_devinfo_mem();
2445         if (!info)
2446                 return NULL;
2447
2448         info->bus = bus;
2449         info->devfn = devfn;
2450         info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2451         info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2452         info->ats_qdep = 0;
2453         info->dev = dev;
2454         info->domain = domain;
2455         info->iommu = iommu;
2456
2457         if (dev && dev_is_pci(dev)) {
2458                 struct pci_dev *pdev = to_pci_dev(info->dev);
2459
2460                 if (ecap_dev_iotlb_support(iommu->ecap) &&
2461                     pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2462                     dmar_find_matched_atsr_unit(pdev))
2463                         info->ats_supported = 1;
2464
2465                 if (ecs_enabled(iommu)) {
2466                         if (pasid_enabled(iommu)) {
2467                                 int features = pci_pasid_features(pdev);
2468                                 if (features >= 0)
2469                                         info->pasid_supported = features | 1;
2470                         }
2471
2472                         if (info->ats_supported && ecap_prs(iommu->ecap) &&
2473                             pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2474                                 info->pri_supported = 1;
2475                 }
2476         }
2477
2478         spin_lock_irqsave(&device_domain_lock, flags);
2479         if (dev)
2480                 found = find_domain(dev);
2481
2482         if (!found) {
2483                 struct device_domain_info *info2;
2484                 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2485                 if (info2) {
2486                         found      = info2->domain;
2487                         info2->dev = dev;
2488                 }
2489         }
2490
2491         if (found) {
2492                 spin_unlock_irqrestore(&device_domain_lock, flags);
2493                 free_devinfo_mem(info);
2494                 /* Caller must free the original domain */
2495                 return found;
2496         }
2497
2498         spin_lock(&iommu->lock);
2499         ret = domain_attach_iommu(domain, iommu);
2500         spin_unlock(&iommu->lock);
2501
2502         if (ret) {
2503                 spin_unlock_irqrestore(&device_domain_lock, flags);
2504                 free_devinfo_mem(info);
2505                 return NULL;
2506         }
2507
2508         list_add(&info->link, &domain->devices);
2509         list_add(&info->global, &device_domain_list);
2510         if (dev)
2511                 dev->archdata.iommu = info;
2512         spin_unlock_irqrestore(&device_domain_lock, flags);
2513
2514         if (dev && domain_context_mapping(domain, dev)) {
2515                 pr_err("Domain context map for %s failed\n", dev_name(dev));
2516                 dmar_remove_one_dev_info(domain, dev);
2517                 return NULL;
2518         }
2519
2520         return domain;
2521 }
2522
2523 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2524 {
2525         *(u16 *)opaque = alias;
2526         return 0;
2527 }
2528
2529 static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2530 {
2531         struct device_domain_info *info = NULL;
2532         struct dmar_domain *domain = NULL;
2533         struct intel_iommu *iommu;
2534         u16 req_id, dma_alias;
2535         unsigned long flags;
2536         u8 bus, devfn;
2537
2538         iommu = device_to_iommu(dev, &bus, &devfn);
2539         if (!iommu)
2540                 return NULL;
2541
2542         req_id = ((u16)bus << 8) | devfn;
2543
2544         if (dev_is_pci(dev)) {
2545                 struct pci_dev *pdev = to_pci_dev(dev);
2546
2547                 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2548
2549                 spin_lock_irqsave(&device_domain_lock, flags);
2550                 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2551                                                       PCI_BUS_NUM(dma_alias),
2552                                                       dma_alias & 0xff);
2553                 if (info) {
2554                         iommu = info->iommu;
2555                         domain = info->domain;
2556                 }
2557                 spin_unlock_irqrestore(&device_domain_lock, flags);
2558
2559                 /* DMA alias already has a domain, use it */
2560                 if (info)
2561                         goto out;
2562         }
2563
2564         /* Allocate and initialize new domain for the device */
2565         domain = alloc_domain(0);
2566         if (!domain)
2567                 return NULL;
2568         if (domain_init(domain, iommu, gaw)) {
2569                 domain_exit(domain);
2570                 return NULL;
2571         }
2572
2573 out:
2574
2575         return domain;
2576 }
2577
2578 static struct dmar_domain *set_domain_for_dev(struct device *dev,
2579                                               struct dmar_domain *domain)
2580 {
2581         struct intel_iommu *iommu;
2582         struct dmar_domain *tmp;
2583         u16 req_id, dma_alias;
2584         u8 bus, devfn;
2585
2586         iommu = device_to_iommu(dev, &bus, &devfn);
2587         if (!iommu)
2588                 return NULL;
2589
2590         req_id = ((u16)bus << 8) | devfn;
2591
2592         if (dev_is_pci(dev)) {
2593                 struct pci_dev *pdev = to_pci_dev(dev);
2594
2595                 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2596
2597                 /* register PCI DMA alias device */
2598                 if (req_id != dma_alias) {
2599                         tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2600                                         dma_alias & 0xff, NULL, domain);
2601
2602                         if (!tmp || tmp != domain)
2603                                 return tmp;
2604                 }
2605         }
2606
2607         tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2608         if (!tmp || tmp != domain)
2609                 return tmp;
2610
2611         return domain;
2612 }
2613
2614 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2615 {
2616         struct dmar_domain *domain, *tmp;
2617
2618         domain = find_domain(dev);
2619         if (domain)
2620                 goto out;
2621
2622         domain = find_or_alloc_domain(dev, gaw);
2623         if (!domain)
2624                 goto out;
2625
2626         tmp = set_domain_for_dev(dev, domain);
2627         if (!tmp || domain != tmp) {
2628                 domain_exit(domain);
2629                 domain = tmp;
2630         }
2631
2632 out:
2633
2634         return domain;
2635 }
2636
2637 static int iommu_domain_identity_map(struct dmar_domain *domain,
2638                                      unsigned long long start,
2639                                      unsigned long long end)
2640 {
2641         unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2642         unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2643
2644         if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2645                           dma_to_mm_pfn(last_vpfn))) {
2646                 pr_err("Reserving iova failed\n");
2647                 return -ENOMEM;
2648         }
2649
2650         pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2651         /*
2652          * RMRR range might have overlap with physical memory range,
2653          * clear it first
2654          */
2655         dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2656
2657         return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2658                                   last_vpfn - first_vpfn + 1,
2659                                   DMA_PTE_READ|DMA_PTE_WRITE);
2660 }
2661
2662 static int domain_prepare_identity_map(struct device *dev,
2663                                        struct dmar_domain *domain,
2664                                        unsigned long long start,
2665                                        unsigned long long end)
2666 {
2667         /* For _hardware_ passthrough, don't bother. But for software
2668            passthrough, we do it anyway -- it may indicate a memory
2669            range which is reserved in E820, so which didn't get set
2670            up to start with in si_domain */
2671         if (domain == si_domain && hw_pass_through) {
2672                 pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2673                         dev_name(dev), start, end);
2674                 return 0;
2675         }
2676
2677         pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2678                 dev_name(dev), start, end);
2679
2680         if (end < start) {
2681                 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2682                         "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2683                         dmi_get_system_info(DMI_BIOS_VENDOR),
2684                         dmi_get_system_info(DMI_BIOS_VERSION),
2685                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2686                 return -EIO;
2687         }
2688
2689         if (end >> agaw_to_width(domain->agaw)) {
2690                 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2691                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2692                      agaw_to_width(domain->agaw),
2693                      dmi_get_system_info(DMI_BIOS_VENDOR),
2694                      dmi_get_system_info(DMI_BIOS_VERSION),
2695                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2696                 return -EIO;
2697         }
2698
2699         return iommu_domain_identity_map(domain, start, end);
2700 }
2701
2702 static int iommu_prepare_identity_map(struct device *dev,
2703                                       unsigned long long start,
2704                                       unsigned long long end)
2705 {
2706         struct dmar_domain *domain;
2707         int ret;
2708
2709         domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2710         if (!domain)
2711                 return -ENOMEM;
2712
2713         ret = domain_prepare_identity_map(dev, domain, start, end);
2714         if (ret)
2715                 domain_exit(domain);
2716
2717         return ret;
2718 }
2719
2720 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2721                                          struct device *dev)
2722 {
2723         if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2724                 return 0;
2725         return iommu_prepare_identity_map(dev, rmrr->base_address,
2726                                           rmrr->end_address);
2727 }
2728
2729 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2730 static inline void iommu_prepare_isa(void)
2731 {
2732         struct pci_dev *pdev;
2733         int ret;
2734
2735         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2736         if (!pdev)
2737                 return;
2738
2739         pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2740         ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2741
2742         if (ret)
2743                 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2744
2745         pci_dev_put(pdev);
2746 }
2747 #else
2748 static inline void iommu_prepare_isa(void)
2749 {
2750         return;
2751 }
2752 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2753
2754 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2755
2756 static int __init si_domain_init(int hw)
2757 {
2758         int nid, ret = 0;
2759
2760         si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2761         if (!si_domain)
2762                 return -EFAULT;
2763
2764         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2765                 domain_exit(si_domain);
2766                 return -EFAULT;
2767         }
2768
2769         pr_debug("Identity mapping domain allocated\n");
2770
2771         if (hw)
2772                 return 0;
2773
2774         for_each_online_node(nid) {
2775                 unsigned long start_pfn, end_pfn;
2776                 int i;
2777
2778                 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2779                         ret = iommu_domain_identity_map(si_domain,
2780                                         PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2781                         if (ret)
2782                                 return ret;
2783                 }
2784         }
2785
2786         return 0;
2787 }
2788
2789 static int identity_mapping(struct device *dev)
2790 {
2791         struct device_domain_info *info;
2792
2793         if (likely(!iommu_identity_mapping))
2794                 return 0;
2795
2796         info = dev->archdata.iommu;
2797         if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2798                 return (info->domain == si_domain);
2799
2800         return 0;
2801 }
2802
2803 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2804 {
2805         struct dmar_domain *ndomain;
2806         struct intel_iommu *iommu;
2807         u8 bus, devfn;
2808
2809         iommu = device_to_iommu(dev, &bus, &devfn);
2810         if (!iommu)
2811                 return -ENODEV;
2812
2813         ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2814         if (ndomain != domain)
2815                 return -EBUSY;
2816
2817         return 0;
2818 }
2819
2820 static bool device_has_rmrr(struct device *dev)
2821 {
2822         struct dmar_rmrr_unit *rmrr;
2823         struct device *tmp;
2824         int i;
2825
2826         rcu_read_lock();
2827         for_each_rmrr_units(rmrr) {
2828                 /*
2829                  * Return TRUE if this RMRR contains the device that
2830                  * is passed in.
2831                  */
2832                 for_each_active_dev_scope(rmrr->devices,
2833                                           rmrr->devices_cnt, i, tmp)
2834                         if (tmp == dev) {
2835                                 rcu_read_unlock();
2836                                 return true;
2837                         }
2838         }
2839         rcu_read_unlock();
2840         return false;
2841 }
2842
2843 /*
2844  * There are a couple cases where we need to restrict the functionality of
2845  * devices associated with RMRRs.  The first is when evaluating a device for
2846  * identity mapping because problems exist when devices are moved in and out
2847  * of domains and their respective RMRR information is lost.  This means that
2848  * a device with associated RMRRs will never be in a "passthrough" domain.
2849  * The second is use of the device through the IOMMU API.  This interface
2850  * expects to have full control of the IOVA space for the device.  We cannot
2851  * satisfy both the requirement that RMRR access is maintained and have an
2852  * unencumbered IOVA space.  We also have no ability to quiesce the device's
2853  * use of the RMRR space or even inform the IOMMU API user of the restriction.
2854  * We therefore prevent devices associated with an RMRR from participating in
2855  * the IOMMU API, which eliminates them from device assignment.
2856  *
2857  * In both cases we assume that PCI USB devices with RMRRs have them largely
2858  * for historical reasons and that the RMRR space is not actively used post
2859  * boot.  This exclusion may change if vendors begin to abuse it.
2860  *
2861  * The same exception is made for graphics devices, with the requirement that
2862  * any use of the RMRR regions will be torn down before assigning the device
2863  * to a guest.
2864  */
2865 static bool device_is_rmrr_locked(struct device *dev)
2866 {
2867         if (!device_has_rmrr(dev))
2868                 return false;
2869
2870         if (dev_is_pci(dev)) {
2871                 struct pci_dev *pdev = to_pci_dev(dev);
2872
2873                 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2874                         return false;
2875         }
2876
2877         return true;
2878 }
2879
2880 static int iommu_should_identity_map(struct device *dev, int startup)
2881 {
2882
2883         if (dev_is_pci(dev)) {
2884                 struct pci_dev *pdev = to_pci_dev(dev);
2885
2886                 if (device_is_rmrr_locked(dev))
2887                         return 0;
2888
2889                 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2890                         return 1;
2891
2892                 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2893                         return 1;
2894
2895                 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2896                         return 0;
2897
2898                 /*
2899                  * We want to start off with all devices in the 1:1 domain, and
2900                  * take them out later if we find they can't access all of memory.
2901                  *
2902                  * However, we can't do this for PCI devices behind bridges,
2903                  * because all PCI devices behind the same bridge will end up
2904                  * with the same source-id on their transactions.
2905                  *
2906                  * Practically speaking, we can't change things around for these
2907                  * devices at run-time, because we can't be sure there'll be no
2908                  * DMA transactions in flight for any of their siblings.
2909                  *
2910                  * So PCI devices (unless they're on the root bus) as well as
2911                  * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2912                  * the 1:1 domain, just in _case_ one of their siblings turns out
2913                  * not to be able to map all of memory.
2914                  */
2915                 if (!pci_is_pcie(pdev)) {
2916                         if (!pci_is_root_bus(pdev->bus))
2917                                 return 0;
2918                         if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2919                                 return 0;
2920                 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2921                         return 0;
2922         } else {
2923                 if (device_has_rmrr(dev))
2924                         return 0;
2925         }
2926
2927         /*
2928          * At boot time, we don't yet know if devices will be 64-bit capable.
2929          * Assume that they will — if they turn out not to be, then we can
2930          * take them out of the 1:1 domain later.
2931          */
2932         if (!startup) {
2933                 /*
2934                  * If the device's dma_mask is less than the system's memory
2935                  * size then this is not a candidate for identity mapping.
2936                  */
2937                 u64 dma_mask = *dev->dma_mask;
2938
2939                 if (dev->coherent_dma_mask &&
2940                     dev->coherent_dma_mask < dma_mask)
2941                         dma_mask = dev->coherent_dma_mask;
2942
2943                 return dma_mask >= dma_get_required_mask(dev);
2944         }
2945
2946         return 1;
2947 }
2948
2949 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2950 {
2951         int ret;
2952
2953         if (!iommu_should_identity_map(dev, 1))
2954                 return 0;
2955
2956         ret = domain_add_dev_info(si_domain, dev);
2957         if (!ret)
2958                 pr_info("%s identity mapping for device %s\n",
2959                         hw ? "Hardware" : "Software", dev_name(dev));
2960         else if (ret == -ENODEV)
2961                 /* device not associated with an iommu */
2962                 ret = 0;
2963
2964         return ret;
2965 }
2966
2967
2968 static int __init iommu_prepare_static_identity_mapping(int hw)
2969 {
2970         struct pci_dev *pdev = NULL;
2971         struct dmar_drhd_unit *drhd;
2972         struct intel_iommu *iommu;
2973         struct device *dev;
2974         int i;
2975         int ret = 0;
2976
2977         for_each_pci_dev(pdev) {
2978                 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2979                 if (ret)
2980                         return ret;
2981         }
2982
2983         for_each_active_iommu(iommu, drhd)
2984                 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2985                         struct acpi_device_physical_node *pn;
2986                         struct acpi_device *adev;
2987
2988                         if (dev->bus != &acpi_bus_type)
2989                                 continue;
2990
2991                         adev= to_acpi_device(dev);
2992                         mutex_lock(&adev->physical_node_lock);
2993                         list_for_each_entry(pn, &adev->physical_node_list, node) {
2994                                 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2995                                 if (ret)
2996                                         break;
2997                         }
2998                         mutex_unlock(&adev->physical_node_lock);
2999                         if (ret)
3000                                 return ret;
3001                 }
3002
3003         return 0;
3004 }
3005
3006 static void intel_iommu_init_qi(struct intel_iommu *iommu)
3007 {
3008         /*
3009          * Start from the sane iommu hardware state.
3010          * If the queued invalidation is already initialized by us
3011          * (for example, while enabling interrupt-remapping) then
3012          * we got the things already rolling from a sane state.
3013          */
3014         if (!iommu->qi) {
3015                 /*
3016                  * Clear any previous faults.
3017                  */
3018                 dmar_fault(-1, iommu);
3019                 /*
3020                  * Disable queued invalidation if supported and already enabled
3021                  * before OS handover.
3022                  */
3023                 dmar_disable_qi(iommu);
3024         }
3025
3026         if (dmar_enable_qi(iommu)) {
3027                 /*
3028                  * Queued Invalidate not enabled, use Register Based Invalidate
3029                  */
3030                 iommu->flush.flush_context = __iommu_flush_context;
3031                 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
3032                 pr_info("%s: Using Register based invalidation\n",
3033                         iommu->name);
3034         } else {
3035                 iommu->flush.flush_context = qi_flush_context;
3036                 iommu->flush.flush_iotlb = qi_flush_iotlb;
3037                 pr_info("%s: Using Queued invalidation\n", iommu->name);
3038         }
3039 }
3040
3041 static int copy_context_table(struct intel_iommu *iommu,
3042                               struct root_entry *old_re,
3043                               struct context_entry **tbl,
3044                               int bus, bool ext)
3045 {
3046         int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
3047         struct context_entry *new_ce = NULL, ce;
3048         struct context_entry *old_ce = NULL;
3049         struct root_entry re;
3050         phys_addr_t old_ce_phys;
3051
3052         tbl_idx = ext ? bus * 2 : bus;
3053         memcpy(&re, old_re, sizeof(re));
3054
3055         for (devfn = 0; devfn < 256; devfn++) {
3056                 /* First calculate the correct index */
3057                 idx = (ext ? devfn * 2 : devfn) % 256;
3058
3059                 if (idx == 0) {
3060                         /* First save what we may have and clean up */
3061                         if (new_ce) {
3062                                 tbl[tbl_idx] = new_ce;
3063                                 __iommu_flush_cache(iommu, new_ce,
3064                                                     VTD_PAGE_SIZE);
3065                                 pos = 1;
3066                         }
3067
3068                         if (old_ce)
3069                                 iounmap(old_ce);
3070
3071                         ret = 0;
3072                         if (devfn < 0x80)
3073                                 old_ce_phys = root_entry_lctp(&re);
3074                         else
3075                                 old_ce_phys = root_entry_uctp(&re);
3076
3077                         if (!old_ce_phys) {
3078                                 if (ext && devfn == 0) {
3079                                         /* No LCTP, try UCTP */
3080                                         devfn = 0x7f;
3081                                         continue;
3082                                 } else {
3083                                         goto out;
3084                                 }
3085                         }
3086
3087                         ret = -ENOMEM;
3088                         old_ce = memremap(old_ce_phys, PAGE_SIZE,
3089                                         MEMREMAP_WB);
3090                         if (!old_ce)
3091                                 goto out;
3092
3093                         new_ce = alloc_pgtable_page(iommu->node);
3094                         if (!new_ce)
3095                                 goto out_unmap;
3096
3097                         ret = 0;
3098                 }
3099
3100                 /* Now copy the context entry */
3101                 memcpy(&ce, old_ce + idx, sizeof(ce));
3102
3103                 if (!__context_present(&ce))
3104                         continue;
3105
3106                 did = context_domain_id(&ce);
3107                 if (did >= 0 && did < cap_ndoms(iommu->cap))
3108                         set_bit(did, iommu->domain_ids);
3109
3110                 /*
3111                  * We need a marker for copied context entries. This
3112                  * marker needs to work for the old format as well as
3113                  * for extended context entries.
3114                  *
3115                  * Bit 67 of the context entry is used. In the old
3116                  * format this bit is available to software, in the
3117                  * extended format it is the PGE bit, but PGE is ignored
3118                  * by HW if PASIDs are disabled (and thus still
3119                  * available).
3120                  *
3121                  * So disable PASIDs first and then mark the entry
3122                  * copied. This means that we don't copy PASID
3123                  * translations from the old kernel, but this is fine as
3124                  * faults there are not fatal.
3125                  */
3126                 context_clear_pasid_enable(&ce);
3127                 context_set_copied(&ce);
3128
3129                 new_ce[idx] = ce;
3130         }
3131
3132         tbl[tbl_idx + pos] = new_ce;
3133
3134         __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3135
3136 out_unmap:
3137         memunmap(old_ce);
3138
3139 out:
3140         return ret;
3141 }
3142
3143 static int copy_translation_tables(struct intel_iommu *iommu)
3144 {
3145         struct context_entry **ctxt_tbls;
3146         struct root_entry *old_rt;
3147         phys_addr_t old_rt_phys;
3148         int ctxt_table_entries;
3149         unsigned long flags;
3150         u64 rtaddr_reg;
3151         int bus, ret;
3152         bool new_ext, ext;
3153
3154         rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3155         ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3156         new_ext    = !!ecap_ecs(iommu->ecap);
3157
3158         /*
3159          * The RTT bit can only be changed when translation is disabled,
3160          * but disabling translation means to open a window for data
3161          * corruption. So bail out and don't copy anything if we would
3162          * have to change the bit.
3163          */
3164         if (new_ext != ext)
3165                 return -EINVAL;
3166
3167         old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3168         if (!old_rt_phys)
3169                 return -EINVAL;
3170
3171         old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3172         if (!old_rt)
3173                 return -ENOMEM;
3174
3175         /* This is too big for the stack - allocate it from slab */
3176         ctxt_table_entries = ext ? 512 : 256;
3177         ret = -ENOMEM;
3178         ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
3179         if (!ctxt_tbls)
3180                 goto out_unmap;
3181
3182         for (bus = 0; bus < 256; bus++) {
3183                 ret = copy_context_table(iommu, &old_rt[bus],
3184                                          ctxt_tbls, bus, ext);
3185                 if (ret) {
3186                         pr_err("%s: Failed to copy context table for bus %d\n",
3187                                 iommu->name, bus);
3188                         continue;
3189                 }
3190         }
3191
3192         spin_lock_irqsave(&iommu->lock, flags);
3193
3194         /* Context tables are copied, now write them to the root_entry table */
3195         for (bus = 0; bus < 256; bus++) {
3196                 int idx = ext ? bus * 2 : bus;
3197                 u64 val;
3198
3199                 if (ctxt_tbls[idx]) {
3200                         val = virt_to_phys(ctxt_tbls[idx]) | 1;
3201                         iommu->root_entry[bus].lo = val;
3202                 }
3203
3204                 if (!ext || !ctxt_tbls[idx + 1])
3205                         continue;
3206
3207                 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3208                 iommu->root_entry[bus].hi = val;
3209         }
3210
3211         spin_unlock_irqrestore(&iommu->lock, flags);