Merge branch 'master' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[sfrench/cifs-2.6.git] / drivers / iommu / arm-smmu.c
1 /*
2  * IOMMU API for ARM architected SMMU implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16  *
17  * Copyright (C) 2013 ARM Limited
18  *
19  * Author: Will Deacon <will.deacon@arm.com>
20  *
21  * This driver currently supports:
22  *      - SMMUv1 and v2 implementations
23  *      - Stream-matching and stream-indexing
24  *      - v7/v8 long-descriptor format
25  *      - Non-secure access to the SMMU
26  *      - Context fault reporting
27  */
28
29 #define pr_fmt(fmt) "arm-smmu: " fmt
30
31 #include <linux/delay.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/err.h>
34 #include <linux/interrupt.h>
35 #include <linux/io.h>
36 #include <linux/iommu.h>
37 #include <linux/iopoll.h>
38 #include <linux/module.h>
39 #include <linux/of.h>
40 #include <linux/pci.h>
41 #include <linux/platform_device.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44
45 #include <linux/amba/bus.h>
46
47 #include "io-pgtable.h"
48
49 /* Maximum number of stream IDs assigned to a single device */
50 #define MAX_MASTER_STREAMIDS            MAX_PHANDLE_ARGS
51
52 /* Maximum number of context banks per SMMU */
53 #define ARM_SMMU_MAX_CBS                128
54
55 /* Maximum number of mapping groups per SMMU */
56 #define ARM_SMMU_MAX_SMRS               128
57
58 /* SMMU global address space */
59 #define ARM_SMMU_GR0(smmu)              ((smmu)->base)
60 #define ARM_SMMU_GR1(smmu)              ((smmu)->base + (1 << (smmu)->pgshift))
61
62 /*
63  * SMMU global address space with conditional offset to access secure
64  * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
65  * nsGFSYNR0: 0x450)
66  */
67 #define ARM_SMMU_GR0_NS(smmu)                                           \
68         ((smmu)->base +                                                 \
69                 ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)       \
70                         ? 0x400 : 0))
71
72 /* Configuration registers */
73 #define ARM_SMMU_GR0_sCR0               0x0
74 #define sCR0_CLIENTPD                   (1 << 0)
75 #define sCR0_GFRE                       (1 << 1)
76 #define sCR0_GFIE                       (1 << 2)
77 #define sCR0_GCFGFRE                    (1 << 4)
78 #define sCR0_GCFGFIE                    (1 << 5)
79 #define sCR0_USFCFG                     (1 << 10)
80 #define sCR0_VMIDPNE                    (1 << 11)
81 #define sCR0_PTM                        (1 << 12)
82 #define sCR0_FB                         (1 << 13)
83 #define sCR0_BSU_SHIFT                  14
84 #define sCR0_BSU_MASK                   0x3
85
86 /* Identification registers */
87 #define ARM_SMMU_GR0_ID0                0x20
88 #define ARM_SMMU_GR0_ID1                0x24
89 #define ARM_SMMU_GR0_ID2                0x28
90 #define ARM_SMMU_GR0_ID3                0x2c
91 #define ARM_SMMU_GR0_ID4                0x30
92 #define ARM_SMMU_GR0_ID5                0x34
93 #define ARM_SMMU_GR0_ID6                0x38
94 #define ARM_SMMU_GR0_ID7                0x3c
95 #define ARM_SMMU_GR0_sGFSR              0x48
96 #define ARM_SMMU_GR0_sGFSYNR0           0x50
97 #define ARM_SMMU_GR0_sGFSYNR1           0x54
98 #define ARM_SMMU_GR0_sGFSYNR2           0x58
99
100 #define ID0_S1TS                        (1 << 30)
101 #define ID0_S2TS                        (1 << 29)
102 #define ID0_NTS                         (1 << 28)
103 #define ID0_SMS                         (1 << 27)
104 #define ID0_ATOSNS                      (1 << 26)
105 #define ID0_CTTW                        (1 << 14)
106 #define ID0_NUMIRPT_SHIFT               16
107 #define ID0_NUMIRPT_MASK                0xff
108 #define ID0_NUMSIDB_SHIFT               9
109 #define ID0_NUMSIDB_MASK                0xf
110 #define ID0_NUMSMRG_SHIFT               0
111 #define ID0_NUMSMRG_MASK                0xff
112
113 #define ID1_PAGESIZE                    (1 << 31)
114 #define ID1_NUMPAGENDXB_SHIFT           28
115 #define ID1_NUMPAGENDXB_MASK            7
116 #define ID1_NUMS2CB_SHIFT               16
117 #define ID1_NUMS2CB_MASK                0xff
118 #define ID1_NUMCB_SHIFT                 0
119 #define ID1_NUMCB_MASK                  0xff
120
121 #define ID2_OAS_SHIFT                   4
122 #define ID2_OAS_MASK                    0xf
123 #define ID2_IAS_SHIFT                   0
124 #define ID2_IAS_MASK                    0xf
125 #define ID2_UBS_SHIFT                   8
126 #define ID2_UBS_MASK                    0xf
127 #define ID2_PTFS_4K                     (1 << 12)
128 #define ID2_PTFS_16K                    (1 << 13)
129 #define ID2_PTFS_64K                    (1 << 14)
130
131 /* Global TLB invalidation */
132 #define ARM_SMMU_GR0_TLBIVMID           0x64
133 #define ARM_SMMU_GR0_TLBIALLNSNH        0x68
134 #define ARM_SMMU_GR0_TLBIALLH           0x6c
135 #define ARM_SMMU_GR0_sTLBGSYNC          0x70
136 #define ARM_SMMU_GR0_sTLBGSTATUS        0x74
137 #define sTLBGSTATUS_GSACTIVE            (1 << 0)
138 #define TLB_LOOP_TIMEOUT                1000000 /* 1s! */
139
140 /* Stream mapping registers */
141 #define ARM_SMMU_GR0_SMR(n)             (0x800 + ((n) << 2))
142 #define SMR_VALID                       (1 << 31)
143 #define SMR_MASK_SHIFT                  16
144 #define SMR_MASK_MASK                   0x7fff
145 #define SMR_ID_SHIFT                    0
146 #define SMR_ID_MASK                     0x7fff
147
148 #define ARM_SMMU_GR0_S2CR(n)            (0xc00 + ((n) << 2))
149 #define S2CR_CBNDX_SHIFT                0
150 #define S2CR_CBNDX_MASK                 0xff
151 #define S2CR_TYPE_SHIFT                 16
152 #define S2CR_TYPE_MASK                  0x3
153 #define S2CR_TYPE_TRANS                 (0 << S2CR_TYPE_SHIFT)
154 #define S2CR_TYPE_BYPASS                (1 << S2CR_TYPE_SHIFT)
155 #define S2CR_TYPE_FAULT                 (2 << S2CR_TYPE_SHIFT)
156
157 /* Context bank attribute registers */
158 #define ARM_SMMU_GR1_CBAR(n)            (0x0 + ((n) << 2))
159 #define CBAR_VMID_SHIFT                 0
160 #define CBAR_VMID_MASK                  0xff
161 #define CBAR_S1_BPSHCFG_SHIFT           8
162 #define CBAR_S1_BPSHCFG_MASK            3
163 #define CBAR_S1_BPSHCFG_NSH             3
164 #define CBAR_S1_MEMATTR_SHIFT           12
165 #define CBAR_S1_MEMATTR_MASK            0xf
166 #define CBAR_S1_MEMATTR_WB              0xf
167 #define CBAR_TYPE_SHIFT                 16
168 #define CBAR_TYPE_MASK                  0x3
169 #define CBAR_TYPE_S2_TRANS              (0 << CBAR_TYPE_SHIFT)
170 #define CBAR_TYPE_S1_TRANS_S2_BYPASS    (1 << CBAR_TYPE_SHIFT)
171 #define CBAR_TYPE_S1_TRANS_S2_FAULT     (2 << CBAR_TYPE_SHIFT)
172 #define CBAR_TYPE_S1_TRANS_S2_TRANS     (3 << CBAR_TYPE_SHIFT)
173 #define CBAR_IRPTNDX_SHIFT              24
174 #define CBAR_IRPTNDX_MASK               0xff
175
176 #define ARM_SMMU_GR1_CBA2R(n)           (0x800 + ((n) << 2))
177 #define CBA2R_RW64_32BIT                (0 << 0)
178 #define CBA2R_RW64_64BIT                (1 << 0)
179
180 /* Translation context bank */
181 #define ARM_SMMU_CB_BASE(smmu)          ((smmu)->base + ((smmu)->size >> 1))
182 #define ARM_SMMU_CB(smmu, n)            ((n) * (1 << (smmu)->pgshift))
183
184 #define ARM_SMMU_CB_SCTLR               0x0
185 #define ARM_SMMU_CB_RESUME              0x8
186 #define ARM_SMMU_CB_TTBCR2              0x10
187 #define ARM_SMMU_CB_TTBR0_LO            0x20
188 #define ARM_SMMU_CB_TTBR0_HI            0x24
189 #define ARM_SMMU_CB_TTBR1_LO            0x28
190 #define ARM_SMMU_CB_TTBR1_HI            0x2c
191 #define ARM_SMMU_CB_TTBCR               0x30
192 #define ARM_SMMU_CB_S1_MAIR0            0x38
193 #define ARM_SMMU_CB_S1_MAIR1            0x3c
194 #define ARM_SMMU_CB_PAR_LO              0x50
195 #define ARM_SMMU_CB_PAR_HI              0x54
196 #define ARM_SMMU_CB_FSR                 0x58
197 #define ARM_SMMU_CB_FAR_LO              0x60
198 #define ARM_SMMU_CB_FAR_HI              0x64
199 #define ARM_SMMU_CB_FSYNR0              0x68
200 #define ARM_SMMU_CB_S1_TLBIVA           0x600
201 #define ARM_SMMU_CB_S1_TLBIASID         0x610
202 #define ARM_SMMU_CB_S1_TLBIVAL          0x620
203 #define ARM_SMMU_CB_S2_TLBIIPAS2        0x630
204 #define ARM_SMMU_CB_S2_TLBIIPAS2L       0x638
205 #define ARM_SMMU_CB_ATS1PR_LO           0x800
206 #define ARM_SMMU_CB_ATS1PR_HI           0x804
207 #define ARM_SMMU_CB_ATSR                0x8f0
208
209 #define SCTLR_S1_ASIDPNE                (1 << 12)
210 #define SCTLR_CFCFG                     (1 << 7)
211 #define SCTLR_CFIE                      (1 << 6)
212 #define SCTLR_CFRE                      (1 << 5)
213 #define SCTLR_E                         (1 << 4)
214 #define SCTLR_AFE                       (1 << 2)
215 #define SCTLR_TRE                       (1 << 1)
216 #define SCTLR_M                         (1 << 0)
217 #define SCTLR_EAE_SBOP                  (SCTLR_AFE | SCTLR_TRE)
218
219 #define CB_PAR_F                        (1 << 0)
220
221 #define ATSR_ACTIVE                     (1 << 0)
222
223 #define RESUME_RETRY                    (0 << 0)
224 #define RESUME_TERMINATE                (1 << 0)
225
226 #define TTBCR2_SEP_SHIFT                15
227 #define TTBCR2_SEP_UPSTREAM             (0x7 << TTBCR2_SEP_SHIFT)
228
229 #define TTBRn_HI_ASID_SHIFT            16
230
231 #define FSR_MULTI                       (1 << 31)
232 #define FSR_SS                          (1 << 30)
233 #define FSR_UUT                         (1 << 8)
234 #define FSR_ASF                         (1 << 7)
235 #define FSR_TLBLKF                      (1 << 6)
236 #define FSR_TLBMCF                      (1 << 5)
237 #define FSR_EF                          (1 << 4)
238 #define FSR_PF                          (1 << 3)
239 #define FSR_AFF                         (1 << 2)
240 #define FSR_TF                          (1 << 1)
241
242 #define FSR_IGN                         (FSR_AFF | FSR_ASF | \
243                                          FSR_TLBMCF | FSR_TLBLKF)
244 #define FSR_FAULT                       (FSR_MULTI | FSR_SS | FSR_UUT | \
245                                          FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
246
247 #define FSYNR0_WNR                      (1 << 4)
248
249 static int force_stage;
250 module_param_named(force_stage, force_stage, int, S_IRUGO | S_IWUSR);
251 MODULE_PARM_DESC(force_stage,
252         "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
253
254 enum arm_smmu_arch_version {
255         ARM_SMMU_V1 = 1,
256         ARM_SMMU_V2,
257 };
258
259 struct arm_smmu_smr {
260         u8                              idx;
261         u16                             mask;
262         u16                             id;
263 };
264
265 struct arm_smmu_master_cfg {
266         int                             num_streamids;
267         u16                             streamids[MAX_MASTER_STREAMIDS];
268         struct arm_smmu_smr             *smrs;
269 };
270
271 struct arm_smmu_master {
272         struct device_node              *of_node;
273         struct rb_node                  node;
274         struct arm_smmu_master_cfg      cfg;
275 };
276
277 struct arm_smmu_device {
278         struct device                   *dev;
279
280         void __iomem                    *base;
281         unsigned long                   size;
282         unsigned long                   pgshift;
283
284 #define ARM_SMMU_FEAT_COHERENT_WALK     (1 << 0)
285 #define ARM_SMMU_FEAT_STREAM_MATCH      (1 << 1)
286 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 2)
287 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 3)
288 #define ARM_SMMU_FEAT_TRANS_NESTED      (1 << 4)
289 #define ARM_SMMU_FEAT_TRANS_OPS         (1 << 5)
290         u32                             features;
291
292 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
293         u32                             options;
294         enum arm_smmu_arch_version      version;
295
296         u32                             num_context_banks;
297         u32                             num_s2_context_banks;
298         DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
299         atomic_t                        irptndx;
300
301         u32                             num_mapping_groups;
302         DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
303
304         unsigned long                   va_size;
305         unsigned long                   ipa_size;
306         unsigned long                   pa_size;
307
308         u32                             num_global_irqs;
309         u32                             num_context_irqs;
310         unsigned int                    *irqs;
311
312         struct list_head                list;
313         struct rb_root                  masters;
314 };
315
316 struct arm_smmu_cfg {
317         u8                              cbndx;
318         u8                              irptndx;
319         u32                             cbar;
320 };
321 #define INVALID_IRPTNDX                 0xff
322
323 #define ARM_SMMU_CB_ASID(cfg)           ((cfg)->cbndx)
324 #define ARM_SMMU_CB_VMID(cfg)           ((cfg)->cbndx + 1)
325
326 enum arm_smmu_domain_stage {
327         ARM_SMMU_DOMAIN_S1 = 0,
328         ARM_SMMU_DOMAIN_S2,
329         ARM_SMMU_DOMAIN_NESTED,
330 };
331
332 struct arm_smmu_domain {
333         struct arm_smmu_device          *smmu;
334         struct io_pgtable_ops           *pgtbl_ops;
335         spinlock_t                      pgtbl_lock;
336         struct arm_smmu_cfg             cfg;
337         enum arm_smmu_domain_stage      stage;
338         struct mutex                    init_mutex; /* Protects smmu pointer */
339         struct iommu_domain             domain;
340 };
341
342 static struct iommu_ops arm_smmu_ops;
343
344 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
345 static LIST_HEAD(arm_smmu_devices);
346
347 struct arm_smmu_option_prop {
348         u32 opt;
349         const char *prop;
350 };
351
352 static struct arm_smmu_option_prop arm_smmu_options[] = {
353         { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
354         { 0, NULL},
355 };
356
357 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
358 {
359         return container_of(dom, struct arm_smmu_domain, domain);
360 }
361
362 static void parse_driver_options(struct arm_smmu_device *smmu)
363 {
364         int i = 0;
365
366         do {
367                 if (of_property_read_bool(smmu->dev->of_node,
368                                                 arm_smmu_options[i].prop)) {
369                         smmu->options |= arm_smmu_options[i].opt;
370                         dev_notice(smmu->dev, "option %s\n",
371                                 arm_smmu_options[i].prop);
372                 }
373         } while (arm_smmu_options[++i].opt);
374 }
375
376 static struct device_node *dev_get_dev_node(struct device *dev)
377 {
378         if (dev_is_pci(dev)) {
379                 struct pci_bus *bus = to_pci_dev(dev)->bus;
380
381                 while (!pci_is_root_bus(bus))
382                         bus = bus->parent;
383                 return bus->bridge->parent->of_node;
384         }
385
386         return dev->of_node;
387 }
388
389 static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
390                                                 struct device_node *dev_node)
391 {
392         struct rb_node *node = smmu->masters.rb_node;
393
394         while (node) {
395                 struct arm_smmu_master *master;
396
397                 master = container_of(node, struct arm_smmu_master, node);
398
399                 if (dev_node < master->of_node)
400                         node = node->rb_left;
401                 else if (dev_node > master->of_node)
402                         node = node->rb_right;
403                 else
404                         return master;
405         }
406
407         return NULL;
408 }
409
410 static struct arm_smmu_master_cfg *
411 find_smmu_master_cfg(struct device *dev)
412 {
413         struct arm_smmu_master_cfg *cfg = NULL;
414         struct iommu_group *group = iommu_group_get(dev);
415
416         if (group) {
417                 cfg = iommu_group_get_iommudata(group);
418                 iommu_group_put(group);
419         }
420
421         return cfg;
422 }
423
424 static int insert_smmu_master(struct arm_smmu_device *smmu,
425                               struct arm_smmu_master *master)
426 {
427         struct rb_node **new, *parent;
428
429         new = &smmu->masters.rb_node;
430         parent = NULL;
431         while (*new) {
432                 struct arm_smmu_master *this
433                         = container_of(*new, struct arm_smmu_master, node);
434
435                 parent = *new;
436                 if (master->of_node < this->of_node)
437                         new = &((*new)->rb_left);
438                 else if (master->of_node > this->of_node)
439                         new = &((*new)->rb_right);
440                 else
441                         return -EEXIST;
442         }
443
444         rb_link_node(&master->node, parent, new);
445         rb_insert_color(&master->node, &smmu->masters);
446         return 0;
447 }
448
449 static int register_smmu_master(struct arm_smmu_device *smmu,
450                                 struct device *dev,
451                                 struct of_phandle_args *masterspec)
452 {
453         int i;
454         struct arm_smmu_master *master;
455
456         master = find_smmu_master(smmu, masterspec->np);
457         if (master) {
458                 dev_err(dev,
459                         "rejecting multiple registrations for master device %s\n",
460                         masterspec->np->name);
461                 return -EBUSY;
462         }
463
464         if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
465                 dev_err(dev,
466                         "reached maximum number (%d) of stream IDs for master device %s\n",
467                         MAX_MASTER_STREAMIDS, masterspec->np->name);
468                 return -ENOSPC;
469         }
470
471         master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
472         if (!master)
473                 return -ENOMEM;
474
475         master->of_node                 = masterspec->np;
476         master->cfg.num_streamids       = masterspec->args_count;
477
478         for (i = 0; i < master->cfg.num_streamids; ++i) {
479                 u16 streamid = masterspec->args[i];
480
481                 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
482                      (streamid >= smmu->num_mapping_groups)) {
483                         dev_err(dev,
484                                 "stream ID for master device %s greater than maximum allowed (%d)\n",
485                                 masterspec->np->name, smmu->num_mapping_groups);
486                         return -ERANGE;
487                 }
488                 master->cfg.streamids[i] = streamid;
489         }
490         return insert_smmu_master(smmu, master);
491 }
492
493 static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
494 {
495         struct arm_smmu_device *smmu;
496         struct arm_smmu_master *master = NULL;
497         struct device_node *dev_node = dev_get_dev_node(dev);
498
499         spin_lock(&arm_smmu_devices_lock);
500         list_for_each_entry(smmu, &arm_smmu_devices, list) {
501                 master = find_smmu_master(smmu, dev_node);
502                 if (master)
503                         break;
504         }
505         spin_unlock(&arm_smmu_devices_lock);
506
507         return master ? smmu : NULL;
508 }
509
510 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
511 {
512         int idx;
513
514         do {
515                 idx = find_next_zero_bit(map, end, start);
516                 if (idx == end)
517                         return -ENOSPC;
518         } while (test_and_set_bit(idx, map));
519
520         return idx;
521 }
522
523 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
524 {
525         clear_bit(idx, map);
526 }
527
528 /* Wait for any pending TLB invalidations to complete */
529 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
530 {
531         int count = 0;
532         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
533
534         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
535         while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
536                & sTLBGSTATUS_GSACTIVE) {
537                 cpu_relax();
538                 if (++count == TLB_LOOP_TIMEOUT) {
539                         dev_err_ratelimited(smmu->dev,
540                         "TLB sync timed out -- SMMU may be deadlocked\n");
541                         return;
542                 }
543                 udelay(1);
544         }
545 }
546
547 static void arm_smmu_tlb_sync(void *cookie)
548 {
549         struct arm_smmu_domain *smmu_domain = cookie;
550         __arm_smmu_tlb_sync(smmu_domain->smmu);
551 }
552
553 static void arm_smmu_tlb_inv_context(void *cookie)
554 {
555         struct arm_smmu_domain *smmu_domain = cookie;
556         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
557         struct arm_smmu_device *smmu = smmu_domain->smmu;
558         bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
559         void __iomem *base;
560
561         if (stage1) {
562                 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
563                 writel_relaxed(ARM_SMMU_CB_ASID(cfg),
564                                base + ARM_SMMU_CB_S1_TLBIASID);
565         } else {
566                 base = ARM_SMMU_GR0(smmu);
567                 writel_relaxed(ARM_SMMU_CB_VMID(cfg),
568                                base + ARM_SMMU_GR0_TLBIVMID);
569         }
570
571         __arm_smmu_tlb_sync(smmu);
572 }
573
574 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
575                                           bool leaf, void *cookie)
576 {
577         struct arm_smmu_domain *smmu_domain = cookie;
578         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
579         struct arm_smmu_device *smmu = smmu_domain->smmu;
580         bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
581         void __iomem *reg;
582
583         if (stage1) {
584                 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
585                 reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;
586
587                 if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
588                         iova &= ~12UL;
589                         iova |= ARM_SMMU_CB_ASID(cfg);
590                         writel_relaxed(iova, reg);
591 #ifdef CONFIG_64BIT
592                 } else {
593                         iova >>= 12;
594                         iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48;
595                         writeq_relaxed(iova, reg);
596 #endif
597                 }
598 #ifdef CONFIG_64BIT
599         } else if (smmu->version == ARM_SMMU_V2) {
600                 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
601                 reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
602                               ARM_SMMU_CB_S2_TLBIIPAS2;
603                 writeq_relaxed(iova >> 12, reg);
604 #endif
605         } else {
606                 reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
607                 writel_relaxed(ARM_SMMU_CB_VMID(cfg), reg);
608         }
609 }
610
611 static void arm_smmu_flush_pgtable(void *addr, size_t size, void *cookie)
612 {
613         struct arm_smmu_domain *smmu_domain = cookie;
614         struct arm_smmu_device *smmu = smmu_domain->smmu;
615         unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
616
617
618         /* Ensure new page tables are visible to the hardware walker */
619         if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
620                 dsb(ishst);
621         } else {
622                 /*
623                  * If the SMMU can't walk tables in the CPU caches, treat them
624                  * like non-coherent DMA since we need to flush the new entries
625                  * all the way out to memory. There's no possibility of
626                  * recursion here as the SMMU table walker will not be wired
627                  * through another SMMU.
628                  */
629                 dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
630                              DMA_TO_DEVICE);
631         }
632 }
633
634 static struct iommu_gather_ops arm_smmu_gather_ops = {
635         .tlb_flush_all  = arm_smmu_tlb_inv_context,
636         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
637         .tlb_sync       = arm_smmu_tlb_sync,
638         .flush_pgtable  = arm_smmu_flush_pgtable,
639 };
640
641 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
642 {
643         int flags, ret;
644         u32 fsr, far, fsynr, resume;
645         unsigned long iova;
646         struct iommu_domain *domain = dev;
647         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
648         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
649         struct arm_smmu_device *smmu = smmu_domain->smmu;
650         void __iomem *cb_base;
651
652         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
653         fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
654
655         if (!(fsr & FSR_FAULT))
656                 return IRQ_NONE;
657
658         if (fsr & FSR_IGN)
659                 dev_err_ratelimited(smmu->dev,
660                                     "Unexpected context fault (fsr 0x%x)\n",
661                                     fsr);
662
663         fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
664         flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
665
666         far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
667         iova = far;
668 #ifdef CONFIG_64BIT
669         far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
670         iova |= ((unsigned long)far << 32);
671 #endif
672
673         if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
674                 ret = IRQ_HANDLED;
675                 resume = RESUME_RETRY;
676         } else {
677                 dev_err_ratelimited(smmu->dev,
678                     "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
679                     iova, fsynr, cfg->cbndx);
680                 ret = IRQ_NONE;
681                 resume = RESUME_TERMINATE;
682         }
683
684         /* Clear the faulting FSR */
685         writel(fsr, cb_base + ARM_SMMU_CB_FSR);
686
687         /* Retry or terminate any stalled transactions */
688         if (fsr & FSR_SS)
689                 writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
690
691         return ret;
692 }
693
694 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
695 {
696         u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
697         struct arm_smmu_device *smmu = dev;
698         void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
699
700         gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
701         gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
702         gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
703         gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
704
705         if (!gfsr)
706                 return IRQ_NONE;
707
708         dev_err_ratelimited(smmu->dev,
709                 "Unexpected global fault, this could be serious\n");
710         dev_err_ratelimited(smmu->dev,
711                 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
712                 gfsr, gfsynr0, gfsynr1, gfsynr2);
713
714         writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
715         return IRQ_HANDLED;
716 }
717
718 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
719                                        struct io_pgtable_cfg *pgtbl_cfg)
720 {
721         u32 reg;
722         bool stage1;
723         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
724         struct arm_smmu_device *smmu = smmu_domain->smmu;
725         void __iomem *cb_base, *gr0_base, *gr1_base;
726
727         gr0_base = ARM_SMMU_GR0(smmu);
728         gr1_base = ARM_SMMU_GR1(smmu);
729         stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
730         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
731
732         if (smmu->version > ARM_SMMU_V1) {
733                 /*
734                  * CBA2R.
735                  * *Must* be initialised before CBAR thanks to VMID16
736                  * architectural oversight affected some implementations.
737                  */
738 #ifdef CONFIG_64BIT
739                 reg = CBA2R_RW64_64BIT;
740 #else
741                 reg = CBA2R_RW64_32BIT;
742 #endif
743                 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
744         }
745
746         /* CBAR */
747         reg = cfg->cbar;
748         if (smmu->version == ARM_SMMU_V1)
749                 reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
750
751         /*
752          * Use the weakest shareability/memory types, so they are
753          * overridden by the ttbcr/pte.
754          */
755         if (stage1) {
756                 reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
757                         (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
758         } else {
759                 reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
760         }
761         writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
762
763         /* TTBRs */
764         if (stage1) {
765                 reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
766                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
767                 reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0] >> 32;
768                 reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
769                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
770
771                 reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
772                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_LO);
773                 reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1] >> 32;
774                 reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
775                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_HI);
776         } else {
777                 reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
778                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
779                 reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr >> 32;
780                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
781         }
782
783         /* TTBCR */
784         if (stage1) {
785                 reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
786                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
787                 if (smmu->version > ARM_SMMU_V1) {
788                         reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
789                         reg |= TTBCR2_SEP_UPSTREAM;
790                         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
791                 }
792         } else {
793                 reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
794                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
795         }
796
797         /* MAIRs (stage-1 only) */
798         if (stage1) {
799                 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
800                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
801                 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
802                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
803         }
804
805         /* SCTLR */
806         reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
807         if (stage1)
808                 reg |= SCTLR_S1_ASIDPNE;
809 #ifdef __BIG_ENDIAN
810         reg |= SCTLR_E;
811 #endif
812         writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
813 }
814
815 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
816                                         struct arm_smmu_device *smmu)
817 {
818         int irq, start, ret = 0;
819         unsigned long ias, oas;
820         struct io_pgtable_ops *pgtbl_ops;
821         struct io_pgtable_cfg pgtbl_cfg;
822         enum io_pgtable_fmt fmt;
823         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
824         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
825
826         mutex_lock(&smmu_domain->init_mutex);
827         if (smmu_domain->smmu)
828                 goto out_unlock;
829
830         /*
831          * Mapping the requested stage onto what we support is surprisingly
832          * complicated, mainly because the spec allows S1+S2 SMMUs without
833          * support for nested translation. That means we end up with the
834          * following table:
835          *
836          * Requested        Supported        Actual
837          *     S1               N              S1
838          *     S1             S1+S2            S1
839          *     S1               S2             S2
840          *     S1               S1             S1
841          *     N                N              N
842          *     N              S1+S2            S2
843          *     N                S2             S2
844          *     N                S1             S1
845          *
846          * Note that you can't actually request stage-2 mappings.
847          */
848         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
849                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
850         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
851                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
852
853         switch (smmu_domain->stage) {
854         case ARM_SMMU_DOMAIN_S1:
855                 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
856                 start = smmu->num_s2_context_banks;
857                 ias = smmu->va_size;
858                 oas = smmu->ipa_size;
859                 if (IS_ENABLED(CONFIG_64BIT))
860                         fmt = ARM_64_LPAE_S1;
861                 else
862                         fmt = ARM_32_LPAE_S1;
863                 break;
864         case ARM_SMMU_DOMAIN_NESTED:
865                 /*
866                  * We will likely want to change this if/when KVM gets
867                  * involved.
868                  */
869         case ARM_SMMU_DOMAIN_S2:
870                 cfg->cbar = CBAR_TYPE_S2_TRANS;
871                 start = 0;
872                 ias = smmu->ipa_size;
873                 oas = smmu->pa_size;
874                 if (IS_ENABLED(CONFIG_64BIT))
875                         fmt = ARM_64_LPAE_S2;
876                 else
877                         fmt = ARM_32_LPAE_S2;
878                 break;
879         default:
880                 ret = -EINVAL;
881                 goto out_unlock;
882         }
883
884         ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
885                                       smmu->num_context_banks);
886         if (IS_ERR_VALUE(ret))
887                 goto out_unlock;
888
889         cfg->cbndx = ret;
890         if (smmu->version == ARM_SMMU_V1) {
891                 cfg->irptndx = atomic_inc_return(&smmu->irptndx);
892                 cfg->irptndx %= smmu->num_context_irqs;
893         } else {
894                 cfg->irptndx = cfg->cbndx;
895         }
896
897         pgtbl_cfg = (struct io_pgtable_cfg) {
898                 .pgsize_bitmap  = arm_smmu_ops.pgsize_bitmap,
899                 .ias            = ias,
900                 .oas            = oas,
901                 .tlb            = &arm_smmu_gather_ops,
902         };
903
904         smmu_domain->smmu = smmu;
905         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
906         if (!pgtbl_ops) {
907                 ret = -ENOMEM;
908                 goto out_clear_smmu;
909         }
910
911         /* Update our support page sizes to reflect the page table format */
912         arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
913
914         /* Initialise the context bank with our page table cfg */
915         arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);
916
917         /*
918          * Request context fault interrupt. Do this last to avoid the
919          * handler seeing a half-initialised domain state.
920          */
921         irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
922         ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
923                           "arm-smmu-context-fault", domain);
924         if (IS_ERR_VALUE(ret)) {
925                 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
926                         cfg->irptndx, irq);
927                 cfg->irptndx = INVALID_IRPTNDX;
928         }
929
930         mutex_unlock(&smmu_domain->init_mutex);
931
932         /* Publish page table ops for map/unmap */
933         smmu_domain->pgtbl_ops = pgtbl_ops;
934         return 0;
935
936 out_clear_smmu:
937         smmu_domain->smmu = NULL;
938 out_unlock:
939         mutex_unlock(&smmu_domain->init_mutex);
940         return ret;
941 }
942
943 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
944 {
945         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
946         struct arm_smmu_device *smmu = smmu_domain->smmu;
947         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
948         void __iomem *cb_base;
949         int irq;
950
951         if (!smmu)
952                 return;
953
954         /*
955          * Disable the context bank and free the page tables before freeing
956          * it.
957          */
958         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
959         writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
960
961         if (cfg->irptndx != INVALID_IRPTNDX) {
962                 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
963                 free_irq(irq, domain);
964         }
965
966         if (smmu_domain->pgtbl_ops)
967                 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
968
969         __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
970 }
971
972 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
973 {
974         struct arm_smmu_domain *smmu_domain;
975
976         if (type != IOMMU_DOMAIN_UNMANAGED)
977                 return NULL;
978         /*
979          * Allocate the domain and initialise some of its data structures.
980          * We can't really do anything meaningful until we've added a
981          * master.
982          */
983         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
984         if (!smmu_domain)
985                 return NULL;
986
987         mutex_init(&smmu_domain->init_mutex);
988         spin_lock_init(&smmu_domain->pgtbl_lock);
989
990         return &smmu_domain->domain;
991 }
992
993 static void arm_smmu_domain_free(struct iommu_domain *domain)
994 {
995         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
996
997         /*
998          * Free the domain resources. We assume that all devices have
999          * already been detached.
1000          */
1001         arm_smmu_destroy_domain_context(domain);
1002         kfree(smmu_domain);
1003 }
1004
1005 static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1006                                           struct arm_smmu_master_cfg *cfg)
1007 {
1008         int i;
1009         struct arm_smmu_smr *smrs;
1010         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1011
1012         if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
1013                 return 0;
1014
1015         if (cfg->smrs)
1016                 return -EEXIST;
1017
1018         smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1019         if (!smrs) {
1020                 dev_err(smmu->dev, "failed to allocate %d SMRs\n",
1021                         cfg->num_streamids);
1022                 return -ENOMEM;
1023         }
1024
1025         /* Allocate the SMRs on the SMMU */
1026         for (i = 0; i < cfg->num_streamids; ++i) {
1027                 int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1028                                                   smmu->num_mapping_groups);
1029                 if (IS_ERR_VALUE(idx)) {
1030                         dev_err(smmu->dev, "failed to allocate free SMR\n");
1031                         goto err_free_smrs;
1032                 }
1033
1034                 smrs[i] = (struct arm_smmu_smr) {
1035                         .idx    = idx,
1036                         .mask   = 0, /* We don't currently share SMRs */
1037                         .id     = cfg->streamids[i],
1038                 };
1039         }
1040
1041         /* It worked! Now, poke the actual hardware */
1042         for (i = 0; i < cfg->num_streamids; ++i) {
1043                 u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1044                           smrs[i].mask << SMR_MASK_SHIFT;
1045                 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1046         }
1047
1048         cfg->smrs = smrs;
1049         return 0;
1050
1051 err_free_smrs:
1052         while (--i >= 0)
1053                 __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1054         kfree(smrs);
1055         return -ENOSPC;
1056 }
1057
1058 static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1059                                       struct arm_smmu_master_cfg *cfg)
1060 {
1061         int i;
1062         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1063         struct arm_smmu_smr *smrs = cfg->smrs;
1064
1065         if (!smrs)
1066                 return;
1067
1068         /* Invalidate the SMRs before freeing back to the allocator */
1069         for (i = 0; i < cfg->num_streamids; ++i) {
1070                 u8 idx = smrs[i].idx;
1071
1072                 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1073                 __arm_smmu_free_bitmap(smmu->smr_map, idx);
1074         }
1075
1076         cfg->smrs = NULL;
1077         kfree(smrs);
1078 }
1079
1080 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1081                                       struct arm_smmu_master_cfg *cfg)
1082 {
1083         int i, ret;
1084         struct arm_smmu_device *smmu = smmu_domain->smmu;
1085         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1086
1087         /* Devices in an IOMMU group may already be configured */
1088         ret = arm_smmu_master_configure_smrs(smmu, cfg);
1089         if (ret)
1090                 return ret == -EEXIST ? 0 : ret;
1091
1092         for (i = 0; i < cfg->num_streamids; ++i) {
1093                 u32 idx, s2cr;
1094
1095                 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1096                 s2cr = S2CR_TYPE_TRANS |
1097                        (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1098                 writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1099         }
1100
1101         return 0;
1102 }
1103
1104 static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1105                                           struct arm_smmu_master_cfg *cfg)
1106 {
1107         int i;
1108         struct arm_smmu_device *smmu = smmu_domain->smmu;
1109         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1110
1111         /* An IOMMU group is torn down by the first device to be removed */
1112         if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
1113                 return;
1114
1115         /*
1116          * We *must* clear the S2CR first, because freeing the SMR means
1117          * that it can be re-allocated immediately.
1118          */
1119         for (i = 0; i < cfg->num_streamids; ++i) {
1120                 u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1121
1122                 writel_relaxed(S2CR_TYPE_BYPASS,
1123                                gr0_base + ARM_SMMU_GR0_S2CR(idx));
1124         }
1125
1126         arm_smmu_master_free_smrs(smmu, cfg);
1127 }
1128
1129 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1130 {
1131         int ret;
1132         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1133         struct arm_smmu_device *smmu;
1134         struct arm_smmu_master_cfg *cfg;
1135
1136         smmu = find_smmu_for_device(dev);
1137         if (!smmu) {
1138                 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1139                 return -ENXIO;
1140         }
1141
1142         if (dev->archdata.iommu) {
1143                 dev_err(dev, "already attached to IOMMU domain\n");
1144                 return -EEXIST;
1145         }
1146
1147         /* Ensure that the domain is finalised */
1148         ret = arm_smmu_init_domain_context(domain, smmu);
1149         if (IS_ERR_VALUE(ret))
1150                 return ret;
1151
1152         /*
1153          * Sanity check the domain. We don't support domains across
1154          * different SMMUs.
1155          */
1156         if (smmu_domain->smmu != smmu) {
1157                 dev_err(dev,
1158                         "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1159                         dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1160                 return -EINVAL;
1161         }
1162
1163         /* Looks ok, so add the device to the domain */
1164         cfg = find_smmu_master_cfg(dev);
1165         if (!cfg)
1166                 return -ENODEV;
1167
1168         ret = arm_smmu_domain_add_master(smmu_domain, cfg);
1169         if (!ret)
1170                 dev->archdata.iommu = domain;
1171         return ret;
1172 }
1173
1174 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1175 {
1176         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1177         struct arm_smmu_master_cfg *cfg;
1178
1179         cfg = find_smmu_master_cfg(dev);
1180         if (!cfg)
1181                 return;
1182
1183         dev->archdata.iommu = NULL;
1184         arm_smmu_domain_remove_master(smmu_domain, cfg);
1185 }
1186
1187 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1188                         phys_addr_t paddr, size_t size, int prot)
1189 {
1190         int ret;
1191         unsigned long flags;
1192         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1193         struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1194
1195         if (!ops)
1196                 return -ENODEV;
1197
1198         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1199         ret = ops->map(ops, iova, paddr, size, prot);
1200         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1201         return ret;
1202 }
1203
1204 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1205                              size_t size)
1206 {
1207         size_t ret;
1208         unsigned long flags;
1209         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1210         struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1211
1212         if (!ops)
1213                 return 0;
1214
1215         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1216         ret = ops->unmap(ops, iova, size);
1217         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1218         return ret;
1219 }
1220
1221 static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
1222                                               dma_addr_t iova)
1223 {
1224         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1225         struct arm_smmu_device *smmu = smmu_domain->smmu;
1226         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1227         struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1228         struct device *dev = smmu->dev;
1229         void __iomem *cb_base;
1230         u32 tmp;
1231         u64 phys;
1232
1233         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1234
1235         if (smmu->version == 1) {
1236                 u32 reg = iova & ~0xfff;
1237                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_ATS1PR_LO);
1238         } else {
1239                 u32 reg = iova & ~0xfff;
1240                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_ATS1PR_LO);
1241                 reg = ((u64)iova & ~0xfff) >> 32;
1242                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_ATS1PR_HI);
1243         }
1244
1245         if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
1246                                       !(tmp & ATSR_ACTIVE), 5, 50)) {
1247                 dev_err(dev,
1248                         "iova to phys timed out on 0x%pad. Falling back to software table walk.\n",
1249                         &iova);
1250                 return ops->iova_to_phys(ops, iova);
1251         }
1252
1253         phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
1254         phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;
1255
1256         if (phys & CB_PAR_F) {
1257                 dev_err(dev, "translation fault!\n");
1258                 dev_err(dev, "PAR = 0x%llx\n", phys);
1259                 return 0;
1260         }
1261
1262         return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
1263 }
1264
1265 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1266                                         dma_addr_t iova)
1267 {
1268         phys_addr_t ret;
1269         unsigned long flags;
1270         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1271         struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1272
1273         if (!ops)
1274                 return 0;
1275
1276         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1277         if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
1278                         smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1279                 ret = arm_smmu_iova_to_phys_hard(domain, iova);
1280         } else {
1281                 ret = ops->iova_to_phys(ops, iova);
1282         }
1283
1284         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1285
1286         return ret;
1287 }
1288
1289 static bool arm_smmu_capable(enum iommu_cap cap)
1290 {
1291         switch (cap) {
1292         case IOMMU_CAP_CACHE_COHERENCY:
1293                 /*
1294                  * Return true here as the SMMU can always send out coherent
1295                  * requests.
1296                  */
1297                 return true;
1298         case IOMMU_CAP_INTR_REMAP:
1299                 return true; /* MSIs are just memory writes */
1300         case IOMMU_CAP_NOEXEC:
1301                 return true;
1302         default:
1303                 return false;
1304         }
1305 }
1306
1307 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
1308 {
1309         *((u16 *)data) = alias;
1310         return 0; /* Continue walking */
1311 }
1312
1313 static void __arm_smmu_release_pci_iommudata(void *data)
1314 {
1315         kfree(data);
1316 }
1317
1318 static int arm_smmu_add_pci_device(struct pci_dev *pdev)
1319 {
1320         int i, ret;
1321         u16 sid;
1322         struct iommu_group *group;
1323         struct arm_smmu_master_cfg *cfg;
1324
1325         group = iommu_group_get_for_dev(&pdev->dev);
1326         if (IS_ERR(group))
1327                 return PTR_ERR(group);
1328
1329         cfg = iommu_group_get_iommudata(group);
1330         if (!cfg) {
1331                 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1332                 if (!cfg) {
1333                         ret = -ENOMEM;
1334                         goto out_put_group;
1335                 }
1336
1337                 iommu_group_set_iommudata(group, cfg,
1338                                           __arm_smmu_release_pci_iommudata);
1339         }
1340
1341         if (cfg->num_streamids >= MAX_MASTER_STREAMIDS) {
1342                 ret = -ENOSPC;
1343                 goto out_put_group;
1344         }
1345
1346         /*
1347          * Assume Stream ID == Requester ID for now.
1348          * We need a way to describe the ID mappings in FDT.
1349          */
1350         pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1351         for (i = 0; i < cfg->num_streamids; ++i)
1352                 if (cfg->streamids[i] == sid)
1353                         break;
1354
1355         /* Avoid duplicate SIDs, as this can lead to SMR conflicts */
1356         if (i == cfg->num_streamids)
1357                 cfg->streamids[cfg->num_streamids++] = sid;
1358
1359         return 0;
1360 out_put_group:
1361         iommu_group_put(group);
1362         return ret;
1363 }
1364
1365 static int arm_smmu_add_platform_device(struct device *dev)
1366 {
1367         struct iommu_group *group;
1368         struct arm_smmu_master *master;
1369         struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1370
1371         if (!smmu)
1372                 return -ENODEV;
1373
1374         master = find_smmu_master(smmu, dev->of_node);
1375         if (!master)
1376                 return -ENODEV;
1377
1378         /* No automatic group creation for platform devices */
1379         group = iommu_group_alloc();
1380         if (IS_ERR(group))
1381                 return PTR_ERR(group);
1382
1383         iommu_group_set_iommudata(group, &master->cfg, NULL);
1384         return iommu_group_add_device(group, dev);
1385 }
1386
1387 static int arm_smmu_add_device(struct device *dev)
1388 {
1389         if (dev_is_pci(dev))
1390                 return arm_smmu_add_pci_device(to_pci_dev(dev));
1391
1392         return arm_smmu_add_platform_device(dev);
1393 }
1394
1395 static void arm_smmu_remove_device(struct device *dev)
1396 {
1397         iommu_group_remove_device(dev);
1398 }
1399
1400 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1401                                     enum iommu_attr attr, void *data)
1402 {
1403         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1404
1405         switch (attr) {
1406         case DOMAIN_ATTR_NESTING:
1407                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1408                 return 0;
1409         default:
1410                 return -ENODEV;
1411         }
1412 }
1413
1414 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1415                                     enum iommu_attr attr, void *data)
1416 {
1417         int ret = 0;
1418         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1419
1420         mutex_lock(&smmu_domain->init_mutex);
1421
1422         switch (attr) {
1423         case DOMAIN_ATTR_NESTING:
1424                 if (smmu_domain->smmu) {
1425                         ret = -EPERM;
1426                         goto out_unlock;
1427                 }
1428
1429                 if (*(int *)data)
1430                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1431                 else
1432                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1433
1434                 break;
1435         default:
1436                 ret = -ENODEV;
1437         }
1438
1439 out_unlock:
1440         mutex_unlock(&smmu_domain->init_mutex);
1441         return ret;
1442 }
1443
1444 static struct iommu_ops arm_smmu_ops = {
1445         .capable                = arm_smmu_capable,
1446         .domain_alloc           = arm_smmu_domain_alloc,
1447         .domain_free            = arm_smmu_domain_free,
1448         .attach_dev             = arm_smmu_attach_dev,
1449         .detach_dev             = arm_smmu_detach_dev,
1450         .map                    = arm_smmu_map,
1451         .unmap                  = arm_smmu_unmap,
1452         .map_sg                 = default_iommu_map_sg,
1453         .iova_to_phys           = arm_smmu_iova_to_phys,
1454         .add_device             = arm_smmu_add_device,
1455         .remove_device          = arm_smmu_remove_device,
1456         .domain_get_attr        = arm_smmu_domain_get_attr,
1457         .domain_set_attr        = arm_smmu_domain_set_attr,
1458         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1459 };
1460
1461 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1462 {
1463         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1464         void __iomem *cb_base;
1465         int i = 0;
1466         u32 reg;
1467
1468         /* clear global FSR */
1469         reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1470         writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1471
1472         /* Mark all SMRn as invalid and all S2CRn as bypass */
1473         for (i = 0; i < smmu->num_mapping_groups; ++i) {
1474                 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1475                 writel_relaxed(S2CR_TYPE_BYPASS,
1476                         gr0_base + ARM_SMMU_GR0_S2CR(i));
1477         }
1478
1479         /* Make sure all context banks are disabled and clear CB_FSR  */
1480         for (i = 0; i < smmu->num_context_banks; ++i) {
1481                 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1482                 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1483                 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1484         }
1485
1486         /* Invalidate the TLB, just in case */
1487         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1488         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1489
1490         reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1491
1492         /* Enable fault reporting */
1493         reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1494
1495         /* Disable TLB broadcasting. */
1496         reg |= (sCR0_VMIDPNE | sCR0_PTM);
1497
1498         /* Enable client access, but bypass when no mapping is found */
1499         reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1500
1501         /* Disable forced broadcasting */
1502         reg &= ~sCR0_FB;
1503
1504         /* Don't upgrade barriers */
1505         reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1506
1507         /* Push the button */
1508         __arm_smmu_tlb_sync(smmu);
1509         writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1510 }
1511
1512 static int arm_smmu_id_size_to_bits(int size)
1513 {
1514         switch (size) {
1515         case 0:
1516                 return 32;
1517         case 1:
1518                 return 36;
1519         case 2:
1520                 return 40;
1521         case 3:
1522                 return 42;
1523         case 4:
1524                 return 44;
1525         case 5:
1526         default:
1527                 return 48;
1528         }
1529 }
1530
1531 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1532 {
1533         unsigned long size;
1534         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1535         u32 id;
1536
1537         dev_notice(smmu->dev, "probing hardware configuration...\n");
1538         dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1539
1540         /* ID0 */
1541         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1542
1543         /* Restrict available stages based on module parameter */
1544         if (force_stage == 1)
1545                 id &= ~(ID0_S2TS | ID0_NTS);
1546         else if (force_stage == 2)
1547                 id &= ~(ID0_S1TS | ID0_NTS);
1548
1549         if (id & ID0_S1TS) {
1550                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1551                 dev_notice(smmu->dev, "\tstage 1 translation\n");
1552         }
1553
1554         if (id & ID0_S2TS) {
1555                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1556                 dev_notice(smmu->dev, "\tstage 2 translation\n");
1557         }
1558
1559         if (id & ID0_NTS) {
1560                 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1561                 dev_notice(smmu->dev, "\tnested translation\n");
1562         }
1563
1564         if (!(smmu->features &
1565                 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1566                 dev_err(smmu->dev, "\tno translation support!\n");
1567                 return -ENODEV;
1568         }
1569
1570         if ((id & ID0_S1TS) && ((smmu->version == 1) || (id & ID0_ATOSNS))) {
1571                 smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
1572                 dev_notice(smmu->dev, "\taddress translation ops\n");
1573         }
1574
1575         if (id & ID0_CTTW) {
1576                 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1577                 dev_notice(smmu->dev, "\tcoherent table walk\n");
1578         }
1579
1580         if (id & ID0_SMS) {
1581                 u32 smr, sid, mask;
1582
1583                 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1584                 smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1585                                            ID0_NUMSMRG_MASK;
1586                 if (smmu->num_mapping_groups == 0) {
1587                         dev_err(smmu->dev,
1588                                 "stream-matching supported, but no SMRs present!\n");
1589                         return -ENODEV;
1590                 }
1591
1592                 smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1593                 smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1594                 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1595                 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1596
1597                 mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1598                 sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1599                 if ((mask & sid) != sid) {
1600                         dev_err(smmu->dev,
1601                                 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1602                                 mask, sid);
1603                         return -ENODEV;
1604                 }
1605
1606                 dev_notice(smmu->dev,
1607                            "\tstream matching with %u register groups, mask 0x%x",
1608                            smmu->num_mapping_groups, mask);
1609         } else {
1610                 smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
1611                                            ID0_NUMSIDB_MASK;
1612         }
1613
1614         /* ID1 */
1615         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1616         smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1617
1618         /* Check for size mismatch of SMMU address space from mapped region */
1619         size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1620         size *= 2 << smmu->pgshift;
1621         if (smmu->size != size)
1622                 dev_warn(smmu->dev,
1623                         "SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1624                         size, smmu->size);
1625
1626         smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1627         smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1628         if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1629                 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1630                 return -ENODEV;
1631         }
1632         dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1633                    smmu->num_context_banks, smmu->num_s2_context_banks);
1634
1635         /* ID2 */
1636         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1637         size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1638         smmu->ipa_size = size;
1639
1640         /* The output mask is also applied for bypass */
1641         size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1642         smmu->pa_size = size;
1643
1644         /*
1645          * What the page table walker can address actually depends on which
1646          * descriptor format is in use, but since a) we don't know that yet,
1647          * and b) it can vary per context bank, this will have to do...
1648          */
1649         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
1650                 dev_warn(smmu->dev,
1651                          "failed to set DMA mask for table walker\n");
1652
1653         if (smmu->version == ARM_SMMU_V1) {
1654                 smmu->va_size = smmu->ipa_size;
1655                 size = SZ_4K | SZ_2M | SZ_1G;
1656         } else {
1657                 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1658                 smmu->va_size = arm_smmu_id_size_to_bits(size);
1659 #ifndef CONFIG_64BIT
1660                 smmu->va_size = min(32UL, smmu->va_size);
1661 #endif
1662                 size = 0;
1663                 if (id & ID2_PTFS_4K)
1664                         size |= SZ_4K | SZ_2M | SZ_1G;
1665                 if (id & ID2_PTFS_16K)
1666                         size |= SZ_16K | SZ_32M;
1667                 if (id & ID2_PTFS_64K)
1668                         size |= SZ_64K | SZ_512M;
1669         }
1670
1671         arm_smmu_ops.pgsize_bitmap &= size;
1672         dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);
1673
1674         if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
1675                 dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1676                            smmu->va_size, smmu->ipa_size);
1677
1678         if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
1679                 dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1680                            smmu->ipa_size, smmu->pa_size);
1681
1682         return 0;
1683 }
1684
1685 static const struct of_device_id arm_smmu_of_match[] = {
1686         { .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
1687         { .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
1688         { .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
1689         { .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1690         { .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
1691         { },
1692 };
1693 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1694
1695 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1696 {
1697         const struct of_device_id *of_id;
1698         struct resource *res;
1699         struct arm_smmu_device *smmu;
1700         struct device *dev = &pdev->dev;
1701         struct rb_node *node;
1702         struct of_phandle_args masterspec;
1703         int num_irqs, i, err;
1704
1705         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1706         if (!smmu) {
1707                 dev_err(dev, "failed to allocate arm_smmu_device\n");
1708                 return -ENOMEM;
1709         }
1710         smmu->dev = dev;
1711
1712         of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1713         smmu->version = (enum arm_smmu_arch_version)of_id->data;
1714
1715         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1716         smmu->base = devm_ioremap_resource(dev, res);
1717         if (IS_ERR(smmu->base))
1718                 return PTR_ERR(smmu->base);
1719         smmu->size = resource_size(res);
1720
1721         if (of_property_read_u32(dev->of_node, "#global-interrupts",
1722                                  &smmu->num_global_irqs)) {
1723                 dev_err(dev, "missing #global-interrupts property\n");
1724                 return -ENODEV;
1725         }
1726
1727         num_irqs = 0;
1728         while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1729                 num_irqs++;
1730                 if (num_irqs > smmu->num_global_irqs)
1731                         smmu->num_context_irqs++;
1732         }
1733
1734         if (!smmu->num_context_irqs) {
1735                 dev_err(dev, "found %d interrupts but expected at least %d\n",
1736                         num_irqs, smmu->num_global_irqs + 1);
1737                 return -ENODEV;
1738         }
1739
1740         smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1741                                   GFP_KERNEL);
1742         if (!smmu->irqs) {
1743                 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1744                 return -ENOMEM;
1745         }
1746
1747         for (i = 0; i < num_irqs; ++i) {
1748                 int irq = platform_get_irq(pdev, i);
1749
1750                 if (irq < 0) {
1751                         dev_err(dev, "failed to get irq index %d\n", i);
1752                         return -ENODEV;
1753                 }
1754                 smmu->irqs[i] = irq;
1755         }
1756
1757         err = arm_smmu_device_cfg_probe(smmu);
1758         if (err)
1759                 return err;
1760
1761         i = 0;
1762         smmu->masters = RB_ROOT;
1763         while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1764                                            "#stream-id-cells", i,
1765                                            &masterspec)) {
1766                 err = register_smmu_master(smmu, dev, &masterspec);
1767                 if (err) {
1768                         dev_err(dev, "failed to add master %s\n",
1769                                 masterspec.np->name);
1770                         goto out_put_masters;
1771                 }
1772
1773                 i++;
1774         }
1775         dev_notice(dev, "registered %d master devices\n", i);
1776
1777         parse_driver_options(smmu);
1778
1779         if (smmu->version > ARM_SMMU_V1 &&
1780             smmu->num_context_banks != smmu->num_context_irqs) {
1781                 dev_err(dev,
1782                         "found only %d context interrupt(s) but %d required\n",
1783                         smmu->num_context_irqs, smmu->num_context_banks);
1784                 err = -ENODEV;
1785                 goto out_put_masters;
1786         }
1787
1788         for (i = 0; i < smmu->num_global_irqs; ++i) {
1789                 err = request_irq(smmu->irqs[i],
1790                                   arm_smmu_global_fault,
1791                                   IRQF_SHARED,
1792                                   "arm-smmu global fault",
1793                                   smmu);
1794                 if (err) {
1795                         dev_err(dev, "failed to request global IRQ %d (%u)\n",
1796                                 i, smmu->irqs[i]);
1797                         goto out_free_irqs;
1798                 }
1799         }
1800
1801         INIT_LIST_HEAD(&smmu->list);
1802         spin_lock(&arm_smmu_devices_lock);
1803         list_add(&smmu->list, &arm_smmu_devices);
1804         spin_unlock(&arm_smmu_devices_lock);
1805
1806         arm_smmu_device_reset(smmu);
1807         return 0;
1808
1809 out_free_irqs:
1810         while (i--)
1811                 free_irq(smmu->irqs[i], smmu);
1812
1813 out_put_masters:
1814         for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1815                 struct arm_smmu_master *master
1816                         = container_of(node, struct arm_smmu_master, node);
1817                 of_node_put(master->of_node);
1818         }
1819
1820         return err;
1821 }
1822
1823 static int arm_smmu_device_remove(struct platform_device *pdev)
1824 {
1825         int i;
1826         struct device *dev = &pdev->dev;
1827         struct arm_smmu_device *curr, *smmu = NULL;
1828         struct rb_node *node;
1829
1830         spin_lock(&arm_smmu_devices_lock);
1831         list_for_each_entry(curr, &arm_smmu_devices, list) {
1832                 if (curr->dev == dev) {
1833                         smmu = curr;
1834                         list_del(&smmu->list);
1835                         break;
1836                 }
1837         }
1838         spin_unlock(&arm_smmu_devices_lock);
1839
1840         if (!smmu)
1841                 return -ENODEV;
1842
1843         for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1844                 struct arm_smmu_master *master
1845                         = container_of(node, struct arm_smmu_master, node);
1846                 of_node_put(master->of_node);
1847         }
1848
1849         if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1850                 dev_err(dev, "removing device with active domains!\n");
1851
1852         for (i = 0; i < smmu->num_global_irqs; ++i)
1853                 free_irq(smmu->irqs[i], smmu);
1854
1855         /* Turn the thing off */
1856         writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1857         return 0;
1858 }
1859
1860 static struct platform_driver arm_smmu_driver = {
1861         .driver = {
1862                 .name           = "arm-smmu",
1863                 .of_match_table = of_match_ptr(arm_smmu_of_match),
1864         },
1865         .probe  = arm_smmu_device_dt_probe,
1866         .remove = arm_smmu_device_remove,
1867 };
1868
1869 static int __init arm_smmu_init(void)
1870 {
1871         struct device_node *np;
1872         int ret;
1873
1874         /*
1875          * Play nice with systems that don't have an ARM SMMU by checking that
1876          * an ARM SMMU exists in the system before proceeding with the driver
1877          * and IOMMU bus operation registration.
1878          */
1879         np = of_find_matching_node(NULL, arm_smmu_of_match);
1880         if (!np)
1881                 return 0;
1882
1883         of_node_put(np);
1884
1885         ret = platform_driver_register(&arm_smmu_driver);
1886         if (ret)
1887                 return ret;
1888
1889         /* Oh, for a proper bus abstraction */
1890         if (!iommu_present(&platform_bus_type))
1891                 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
1892
1893 #ifdef CONFIG_ARM_AMBA
1894         if (!iommu_present(&amba_bustype))
1895                 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1896 #endif
1897
1898 #ifdef CONFIG_PCI
1899         if (!iommu_present(&pci_bus_type))
1900                 bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
1901 #endif
1902
1903         return 0;
1904 }
1905
1906 static void __exit arm_smmu_exit(void)
1907 {
1908         return platform_driver_unregister(&arm_smmu_driver);
1909 }
1910
1911 subsys_initcall(arm_smmu_init);
1912 module_exit(arm_smmu_exit);
1913
1914 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
1915 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1916 MODULE_LICENSE("GPL v2");