Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[sfrench/cifs-2.6.git] / drivers / input / rmi4 / rmi_driver.c
1 /*
2  * Copyright (c) 2011-2016 Synaptics Incorporated
3  * Copyright (c) 2011 Unixphere
4  *
5  * This driver provides the core support for a single RMI4-based device.
6  *
7  * The RMI4 specification can be found here (URL split for line length):
8  *
9  * http://www.synaptics.com/sites/default/files/
10  *      511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms of the GNU General Public License version 2 as published by
14  * the Free Software Foundation.
15  */
16
17 #include <linux/bitmap.h>
18 #include <linux/delay.h>
19 #include <linux/fs.h>
20 #include <linux/irq.h>
21 #include <linux/pm.h>
22 #include <linux/slab.h>
23 #include <linux/of.h>
24 #include <uapi/linux/input.h>
25 #include <linux/rmi.h>
26 #include "rmi_bus.h"
27 #include "rmi_driver.h"
28
29 #define HAS_NONSTANDARD_PDT_MASK 0x40
30 #define RMI4_MAX_PAGE 0xff
31 #define RMI4_PAGE_SIZE 0x100
32 #define RMI4_PAGE_MASK 0xFF00
33
34 #define RMI_DEVICE_RESET_CMD    0x01
35 #define DEFAULT_RESET_DELAY_MS  100
36
37 void rmi_free_function_list(struct rmi_device *rmi_dev)
38 {
39         struct rmi_function *fn, *tmp;
40         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
41
42         rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
43
44         /* Doing it in the reverse order so F01 will be removed last */
45         list_for_each_entry_safe_reverse(fn, tmp,
46                                          &data->function_list, node) {
47                 list_del(&fn->node);
48                 rmi_unregister_function(fn);
49         }
50
51         devm_kfree(&rmi_dev->dev, data->irq_memory);
52         data->irq_memory = NULL;
53         data->irq_status = NULL;
54         data->fn_irq_bits = NULL;
55         data->current_irq_mask = NULL;
56         data->new_irq_mask = NULL;
57
58         data->f01_container = NULL;
59         data->f34_container = NULL;
60 }
61
62 static int reset_one_function(struct rmi_function *fn)
63 {
64         struct rmi_function_handler *fh;
65         int retval = 0;
66
67         if (!fn || !fn->dev.driver)
68                 return 0;
69
70         fh = to_rmi_function_handler(fn->dev.driver);
71         if (fh->reset) {
72                 retval = fh->reset(fn);
73                 if (retval < 0)
74                         dev_err(&fn->dev, "Reset failed with code %d.\n",
75                                 retval);
76         }
77
78         return retval;
79 }
80
81 static int configure_one_function(struct rmi_function *fn)
82 {
83         struct rmi_function_handler *fh;
84         int retval = 0;
85
86         if (!fn || !fn->dev.driver)
87                 return 0;
88
89         fh = to_rmi_function_handler(fn->dev.driver);
90         if (fh->config) {
91                 retval = fh->config(fn);
92                 if (retval < 0)
93                         dev_err(&fn->dev, "Config failed with code %d.\n",
94                                 retval);
95         }
96
97         return retval;
98 }
99
100 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
101 {
102         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
103         struct rmi_function *entry;
104         int retval;
105
106         list_for_each_entry(entry, &data->function_list, node) {
107                 retval = reset_one_function(entry);
108                 if (retval < 0)
109                         return retval;
110         }
111
112         return 0;
113 }
114
115 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
116 {
117         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
118         struct rmi_function *entry;
119         int retval;
120
121         list_for_each_entry(entry, &data->function_list, node) {
122                 retval = configure_one_function(entry);
123                 if (retval < 0)
124                         return retval;
125         }
126
127         return 0;
128 }
129
130 static void process_one_interrupt(struct rmi_driver_data *data,
131                                   struct rmi_function *fn)
132 {
133         struct rmi_function_handler *fh;
134
135         if (!fn || !fn->dev.driver)
136                 return;
137
138         fh = to_rmi_function_handler(fn->dev.driver);
139         if (fh->attention) {
140                 bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask,
141                                 data->irq_count);
142                 if (!bitmap_empty(data->fn_irq_bits, data->irq_count))
143                         fh->attention(fn, data->fn_irq_bits);
144         }
145 }
146
147 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
148 {
149         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
150         struct device *dev = &rmi_dev->dev;
151         struct rmi_function *entry;
152         int error;
153
154         if (!data)
155                 return 0;
156
157         if (!data->attn_data.data) {
158                 error = rmi_read_block(rmi_dev,
159                                 data->f01_container->fd.data_base_addr + 1,
160                                 data->irq_status, data->num_of_irq_regs);
161                 if (error < 0) {
162                         dev_err(dev, "Failed to read irqs, code=%d\n", error);
163                         return error;
164                 }
165         }
166
167         mutex_lock(&data->irq_mutex);
168         bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
169                data->irq_count);
170         /*
171          * At this point, irq_status has all bits that are set in the
172          * interrupt status register and are enabled.
173          */
174         mutex_unlock(&data->irq_mutex);
175
176         /*
177          * It would be nice to be able to use irq_chip to handle these
178          * nested IRQs.  Unfortunately, most of the current customers for
179          * this driver are using older kernels (3.0.x) that don't support
180          * the features required for that.  Once they've shifted to more
181          * recent kernels (say, 3.3 and higher), this should be switched to
182          * use irq_chip.
183          */
184         list_for_each_entry(entry, &data->function_list, node)
185                 process_one_interrupt(data, entry);
186
187         if (data->input)
188                 input_sync(data->input);
189
190         return 0;
191 }
192
193 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
194                        void *data, size_t size)
195 {
196         struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
197         struct rmi4_attn_data attn_data;
198         void *fifo_data;
199
200         if (!drvdata->enabled)
201                 return;
202
203         fifo_data = kmemdup(data, size, GFP_ATOMIC);
204         if (!fifo_data)
205                 return;
206
207         attn_data.irq_status = irq_status;
208         attn_data.size = size;
209         attn_data.data = fifo_data;
210
211         kfifo_put(&drvdata->attn_fifo, attn_data);
212 }
213 EXPORT_SYMBOL_GPL(rmi_set_attn_data);
214
215 static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
216 {
217         struct rmi_device *rmi_dev = dev_id;
218         struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
219         struct rmi4_attn_data attn_data = {0};
220         int ret, count;
221
222         count = kfifo_get(&drvdata->attn_fifo, &attn_data);
223         if (count) {
224                 *(drvdata->irq_status) = attn_data.irq_status;
225                 drvdata->attn_data = attn_data;
226         }
227
228         ret = rmi_process_interrupt_requests(rmi_dev);
229         if (ret)
230                 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
231                         "Failed to process interrupt request: %d\n", ret);
232
233         if (count) {
234                 kfree(attn_data.data);
235                 attn_data.data = NULL;
236         }
237
238         if (!kfifo_is_empty(&drvdata->attn_fifo))
239                 return rmi_irq_fn(irq, dev_id);
240
241         return IRQ_HANDLED;
242 }
243
244 static int rmi_irq_init(struct rmi_device *rmi_dev)
245 {
246         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
247         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
248         int irq_flags = irq_get_trigger_type(pdata->irq);
249         int ret;
250
251         if (!irq_flags)
252                 irq_flags = IRQF_TRIGGER_LOW;
253
254         ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
255                                         rmi_irq_fn, irq_flags | IRQF_ONESHOT,
256                                         dev_driver_string(rmi_dev->xport->dev),
257                                         rmi_dev);
258         if (ret < 0) {
259                 dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
260                         pdata->irq);
261
262                 return ret;
263         }
264
265         data->enabled = true;
266
267         return 0;
268 }
269
270 struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number)
271 {
272         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
273         struct rmi_function *entry;
274
275         list_for_each_entry(entry, &data->function_list, node) {
276                 if (entry->fd.function_number == number)
277                         return entry;
278         }
279
280         return NULL;
281 }
282
283 static int suspend_one_function(struct rmi_function *fn)
284 {
285         struct rmi_function_handler *fh;
286         int retval = 0;
287
288         if (!fn || !fn->dev.driver)
289                 return 0;
290
291         fh = to_rmi_function_handler(fn->dev.driver);
292         if (fh->suspend) {
293                 retval = fh->suspend(fn);
294                 if (retval < 0)
295                         dev_err(&fn->dev, "Suspend failed with code %d.\n",
296                                 retval);
297         }
298
299         return retval;
300 }
301
302 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
303 {
304         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
305         struct rmi_function *entry;
306         int retval;
307
308         list_for_each_entry(entry, &data->function_list, node) {
309                 retval = suspend_one_function(entry);
310                 if (retval < 0)
311                         return retval;
312         }
313
314         return 0;
315 }
316
317 static int resume_one_function(struct rmi_function *fn)
318 {
319         struct rmi_function_handler *fh;
320         int retval = 0;
321
322         if (!fn || !fn->dev.driver)
323                 return 0;
324
325         fh = to_rmi_function_handler(fn->dev.driver);
326         if (fh->resume) {
327                 retval = fh->resume(fn);
328                 if (retval < 0)
329                         dev_err(&fn->dev, "Resume failed with code %d.\n",
330                                 retval);
331         }
332
333         return retval;
334 }
335
336 static int rmi_resume_functions(struct rmi_device *rmi_dev)
337 {
338         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
339         struct rmi_function *entry;
340         int retval;
341
342         list_for_each_entry(entry, &data->function_list, node) {
343                 retval = resume_one_function(entry);
344                 if (retval < 0)
345                         return retval;
346         }
347
348         return 0;
349 }
350
351 int rmi_enable_sensor(struct rmi_device *rmi_dev)
352 {
353         int retval = 0;
354
355         retval = rmi_driver_process_config_requests(rmi_dev);
356         if (retval < 0)
357                 return retval;
358
359         return rmi_process_interrupt_requests(rmi_dev);
360 }
361
362 /**
363  * rmi_driver_set_input_params - set input device id and other data.
364  *
365  * @rmi_dev: Pointer to an RMI device
366  * @input: Pointer to input device
367  *
368  */
369 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
370                                 struct input_dev *input)
371 {
372         input->name = SYNAPTICS_INPUT_DEVICE_NAME;
373         input->id.vendor  = SYNAPTICS_VENDOR_ID;
374         input->id.bustype = BUS_RMI;
375         return 0;
376 }
377
378 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
379                                 struct input_dev *input)
380 {
381         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
382         const char *device_name = rmi_f01_get_product_ID(data->f01_container);
383         char *name;
384
385         name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
386                               "Synaptics %s", device_name);
387         if (!name)
388                 return;
389
390         input->name = name;
391 }
392
393 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
394                                    unsigned long *mask)
395 {
396         int error = 0;
397         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
398         struct device *dev = &rmi_dev->dev;
399
400         mutex_lock(&data->irq_mutex);
401         bitmap_or(data->new_irq_mask,
402                   data->current_irq_mask, mask, data->irq_count);
403
404         error = rmi_write_block(rmi_dev,
405                         data->f01_container->fd.control_base_addr + 1,
406                         data->new_irq_mask, data->num_of_irq_regs);
407         if (error < 0) {
408                 dev_err(dev, "%s: Failed to change enabled interrupts!",
409                                                         __func__);
410                 goto error_unlock;
411         }
412         bitmap_copy(data->current_irq_mask, data->new_irq_mask,
413                     data->num_of_irq_regs);
414
415 error_unlock:
416         mutex_unlock(&data->irq_mutex);
417         return error;
418 }
419
420 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
421                                      unsigned long *mask)
422 {
423         int error = 0;
424         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
425         struct device *dev = &rmi_dev->dev;
426
427         mutex_lock(&data->irq_mutex);
428         bitmap_andnot(data->new_irq_mask,
429                   data->current_irq_mask, mask, data->irq_count);
430
431         error = rmi_write_block(rmi_dev,
432                         data->f01_container->fd.control_base_addr + 1,
433                         data->new_irq_mask, data->num_of_irq_regs);
434         if (error < 0) {
435                 dev_err(dev, "%s: Failed to change enabled interrupts!",
436                                                         __func__);
437                 goto error_unlock;
438         }
439         bitmap_copy(data->current_irq_mask, data->new_irq_mask,
440                     data->num_of_irq_regs);
441
442 error_unlock:
443         mutex_unlock(&data->irq_mutex);
444         return error;
445 }
446
447 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
448 {
449         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
450         int error;
451
452         /*
453          * Can get called before the driver is fully ready to deal with
454          * this situation.
455          */
456         if (!data || !data->f01_container) {
457                 dev_warn(&rmi_dev->dev,
458                          "Not ready to handle reset yet!\n");
459                 return 0;
460         }
461
462         error = rmi_read_block(rmi_dev,
463                                data->f01_container->fd.control_base_addr + 1,
464                                data->current_irq_mask, data->num_of_irq_regs);
465         if (error < 0) {
466                 dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
467                         __func__);
468                 return error;
469         }
470
471         error = rmi_driver_process_reset_requests(rmi_dev);
472         if (error < 0)
473                 return error;
474
475         error = rmi_driver_process_config_requests(rmi_dev);
476         if (error < 0)
477                 return error;
478
479         return 0;
480 }
481
482 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
483                               struct pdt_entry *entry, u16 pdt_address)
484 {
485         u8 buf[RMI_PDT_ENTRY_SIZE];
486         int error;
487
488         error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
489         if (error) {
490                 dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
491                                 pdt_address, error);
492                 return error;
493         }
494
495         entry->page_start = pdt_address & RMI4_PAGE_MASK;
496         entry->query_base_addr = buf[0];
497         entry->command_base_addr = buf[1];
498         entry->control_base_addr = buf[2];
499         entry->data_base_addr = buf[3];
500         entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
501         entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
502         entry->function_number = buf[5];
503
504         return 0;
505 }
506
507 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
508                                       struct rmi_function_descriptor *fd)
509 {
510         fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
511         fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
512         fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
513         fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
514         fd->function_number = pdt->function_number;
515         fd->interrupt_source_count = pdt->interrupt_source_count;
516         fd->function_version = pdt->function_version;
517 }
518
519 #define RMI_SCAN_CONTINUE       0
520 #define RMI_SCAN_DONE           1
521
522 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
523                              int page,
524                              int *empty_pages,
525                              void *ctx,
526                              int (*callback)(struct rmi_device *rmi_dev,
527                                              void *ctx,
528                                              const struct pdt_entry *entry))
529 {
530         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
531         struct pdt_entry pdt_entry;
532         u16 page_start = RMI4_PAGE_SIZE * page;
533         u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
534         u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
535         u16 addr;
536         int error;
537         int retval;
538
539         for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
540                 error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
541                 if (error)
542                         return error;
543
544                 if (RMI4_END_OF_PDT(pdt_entry.function_number))
545                         break;
546
547                 retval = callback(rmi_dev, ctx, &pdt_entry);
548                 if (retval != RMI_SCAN_CONTINUE)
549                         return retval;
550         }
551
552         /*
553          * Count number of empty PDT pages. If a gap of two pages
554          * or more is found, stop scanning.
555          */
556         if (addr == pdt_start)
557                 ++*empty_pages;
558         else
559                 *empty_pages = 0;
560
561         return (data->bootloader_mode || *empty_pages >= 2) ?
562                                         RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
563 }
564
565 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
566                  int (*callback)(struct rmi_device *rmi_dev,
567                  void *ctx, const struct pdt_entry *entry))
568 {
569         int page;
570         int empty_pages = 0;
571         int retval = RMI_SCAN_DONE;
572
573         for (page = 0; page <= RMI4_MAX_PAGE; page++) {
574                 retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
575                                            ctx, callback);
576                 if (retval != RMI_SCAN_CONTINUE)
577                         break;
578         }
579
580         return retval < 0 ? retval : 0;
581 }
582
583 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
584                                 struct rmi_register_descriptor *rdesc)
585 {
586         int ret;
587         u8 size_presence_reg;
588         u8 buf[35];
589         int presense_offset = 1;
590         u8 *struct_buf;
591         int reg;
592         int offset = 0;
593         int map_offset = 0;
594         int i;
595         int b;
596
597         /*
598          * The first register of the register descriptor is the size of
599          * the register descriptor's presense register.
600          */
601         ret = rmi_read(d, addr, &size_presence_reg);
602         if (ret)
603                 return ret;
604         ++addr;
605
606         if (size_presence_reg < 0 || size_presence_reg > 35)
607                 return -EIO;
608
609         memset(buf, 0, sizeof(buf));
610
611         /*
612          * The presence register contains the size of the register structure
613          * and a bitmap which identified which packet registers are present
614          * for this particular register type (ie query, control, or data).
615          */
616         ret = rmi_read_block(d, addr, buf, size_presence_reg);
617         if (ret)
618                 return ret;
619         ++addr;
620
621         if (buf[0] == 0) {
622                 presense_offset = 3;
623                 rdesc->struct_size = buf[1] | (buf[2] << 8);
624         } else {
625                 rdesc->struct_size = buf[0];
626         }
627
628         for (i = presense_offset; i < size_presence_reg; i++) {
629                 for (b = 0; b < 8; b++) {
630                         if (buf[i] & (0x1 << b))
631                                 bitmap_set(rdesc->presense_map, map_offset, 1);
632                         ++map_offset;
633                 }
634         }
635
636         rdesc->num_registers = bitmap_weight(rdesc->presense_map,
637                                                 RMI_REG_DESC_PRESENSE_BITS);
638
639         rdesc->registers = devm_kcalloc(&d->dev,
640                                         rdesc->num_registers,
641                                         sizeof(struct rmi_register_desc_item),
642                                         GFP_KERNEL);
643         if (!rdesc->registers)
644                 return -ENOMEM;
645
646         /*
647          * Allocate a temporary buffer to hold the register structure.
648          * I'm not using devm_kzalloc here since it will not be retained
649          * after exiting this function
650          */
651         struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
652         if (!struct_buf)
653                 return -ENOMEM;
654
655         /*
656          * The register structure contains information about every packet
657          * register of this type. This includes the size of the packet
658          * register and a bitmap of all subpackets contained in the packet
659          * register.
660          */
661         ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
662         if (ret)
663                 goto free_struct_buff;
664
665         reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
666         for (i = 0; i < rdesc->num_registers; i++) {
667                 struct rmi_register_desc_item *item = &rdesc->registers[i];
668                 int reg_size = struct_buf[offset];
669
670                 ++offset;
671                 if (reg_size == 0) {
672                         reg_size = struct_buf[offset] |
673                                         (struct_buf[offset + 1] << 8);
674                         offset += 2;
675                 }
676
677                 if (reg_size == 0) {
678                         reg_size = struct_buf[offset] |
679                                         (struct_buf[offset + 1] << 8) |
680                                         (struct_buf[offset + 2] << 16) |
681                                         (struct_buf[offset + 3] << 24);
682                         offset += 4;
683                 }
684
685                 item->reg = reg;
686                 item->reg_size = reg_size;
687
688                 map_offset = 0;
689
690                 do {
691                         for (b = 0; b < 7; b++) {
692                                 if (struct_buf[offset] & (0x1 << b))
693                                         bitmap_set(item->subpacket_map,
694                                                 map_offset, 1);
695                                 ++map_offset;
696                         }
697                 } while (struct_buf[offset++] & 0x80);
698
699                 item->num_subpackets = bitmap_weight(item->subpacket_map,
700                                                 RMI_REG_DESC_SUBPACKET_BITS);
701
702                 rmi_dbg(RMI_DEBUG_CORE, &d->dev,
703                         "%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
704                         item->reg, item->reg_size, item->num_subpackets);
705
706                 reg = find_next_bit(rdesc->presense_map,
707                                 RMI_REG_DESC_PRESENSE_BITS, reg + 1);
708         }
709
710 free_struct_buff:
711         kfree(struct_buf);
712         return ret;
713 }
714
715 const struct rmi_register_desc_item *rmi_get_register_desc_item(
716                                 struct rmi_register_descriptor *rdesc, u16 reg)
717 {
718         const struct rmi_register_desc_item *item;
719         int i;
720
721         for (i = 0; i < rdesc->num_registers; i++) {
722                 item = &rdesc->registers[i];
723                 if (item->reg == reg)
724                         return item;
725         }
726
727         return NULL;
728 }
729
730 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
731 {
732         const struct rmi_register_desc_item *item;
733         int i;
734         size_t size = 0;
735
736         for (i = 0; i < rdesc->num_registers; i++) {
737                 item = &rdesc->registers[i];
738                 size += item->reg_size;
739         }
740         return size;
741 }
742
743 /* Compute the register offset relative to the base address */
744 int rmi_register_desc_calc_reg_offset(
745                 struct rmi_register_descriptor *rdesc, u16 reg)
746 {
747         const struct rmi_register_desc_item *item;
748         int offset = 0;
749         int i;
750
751         for (i = 0; i < rdesc->num_registers; i++) {
752                 item = &rdesc->registers[i];
753                 if (item->reg == reg)
754                         return offset;
755                 ++offset;
756         }
757         return -1;
758 }
759
760 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
761         u8 subpacket)
762 {
763         return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
764                                 subpacket) == subpacket;
765 }
766
767 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
768                                      const struct pdt_entry *pdt)
769 {
770         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
771         int ret;
772         u8 status;
773
774         if (pdt->function_number == 0x34 && pdt->function_version > 1) {
775                 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
776                 if (ret) {
777                         dev_err(&rmi_dev->dev,
778                                 "Failed to read F34 status: %d.\n", ret);
779                         return ret;
780                 }
781
782                 if (status & BIT(7))
783                         data->bootloader_mode = true;
784         } else if (pdt->function_number == 0x01) {
785                 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
786                 if (ret) {
787                         dev_err(&rmi_dev->dev,
788                                 "Failed to read F01 status: %d.\n", ret);
789                         return ret;
790                 }
791
792                 if (status & BIT(6))
793                         data->bootloader_mode = true;
794         }
795
796         return 0;
797 }
798
799 static int rmi_count_irqs(struct rmi_device *rmi_dev,
800                          void *ctx, const struct pdt_entry *pdt)
801 {
802         int *irq_count = ctx;
803         int ret;
804
805         *irq_count += pdt->interrupt_source_count;
806
807         ret = rmi_check_bootloader_mode(rmi_dev, pdt);
808         if (ret < 0)
809                 return ret;
810
811         return RMI_SCAN_CONTINUE;
812 }
813
814 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
815                       const struct pdt_entry *pdt)
816 {
817         int error;
818
819         if (pdt->function_number == 0x01) {
820                 u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
821                 u8 cmd_buf = RMI_DEVICE_RESET_CMD;
822                 const struct rmi_device_platform_data *pdata =
823                                 rmi_get_platform_data(rmi_dev);
824
825                 if (rmi_dev->xport->ops->reset) {
826                         error = rmi_dev->xport->ops->reset(rmi_dev->xport,
827                                                                 cmd_addr);
828                         if (error)
829                                 return error;
830
831                         return RMI_SCAN_DONE;
832                 }
833
834                 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
835                 error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
836                 if (error) {
837                         dev_err(&rmi_dev->dev,
838                                 "Initial reset failed. Code = %d.\n", error);
839                         return error;
840                 }
841
842                 mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
843
844                 return RMI_SCAN_DONE;
845         }
846
847         /* F01 should always be on page 0. If we don't find it there, fail. */
848         return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
849 }
850
851 static int rmi_create_function(struct rmi_device *rmi_dev,
852                                void *ctx, const struct pdt_entry *pdt)
853 {
854         struct device *dev = &rmi_dev->dev;
855         struct rmi_driver_data *data = dev_get_drvdata(dev);
856         int *current_irq_count = ctx;
857         struct rmi_function *fn;
858         int i;
859         int error;
860
861         rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
862                         pdt->function_number);
863
864         fn = kzalloc(sizeof(struct rmi_function) +
865                         BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
866                      GFP_KERNEL);
867         if (!fn) {
868                 dev_err(dev, "Failed to allocate memory for F%02X\n",
869                         pdt->function_number);
870                 return -ENOMEM;
871         }
872
873         INIT_LIST_HEAD(&fn->node);
874         rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
875
876         fn->rmi_dev = rmi_dev;
877
878         fn->num_of_irqs = pdt->interrupt_source_count;
879         fn->irq_pos = *current_irq_count;
880         *current_irq_count += fn->num_of_irqs;
881
882         for (i = 0; i < fn->num_of_irqs; i++)
883                 set_bit(fn->irq_pos + i, fn->irq_mask);
884
885         error = rmi_register_function(fn);
886         if (error)
887                 goto err_put_fn;
888
889         if (pdt->function_number == 0x01)
890                 data->f01_container = fn;
891         else if (pdt->function_number == 0x34)
892                 data->f34_container = fn;
893
894         list_add_tail(&fn->node, &data->function_list);
895
896         return RMI_SCAN_CONTINUE;
897
898 err_put_fn:
899         put_device(&fn->dev);
900         return error;
901 }
902
903 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
904 {
905         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
906         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
907         int irq = pdata->irq;
908         int irq_flags;
909         int retval;
910
911         mutex_lock(&data->enabled_mutex);
912
913         if (data->enabled)
914                 goto out;
915
916         enable_irq(irq);
917         data->enabled = true;
918         if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
919                 retval = disable_irq_wake(irq);
920                 if (retval)
921                         dev_warn(&rmi_dev->dev,
922                                  "Failed to disable irq for wake: %d\n",
923                                  retval);
924         }
925
926         /*
927          * Call rmi_process_interrupt_requests() after enabling irq,
928          * otherwise we may lose interrupt on edge-triggered systems.
929          */
930         irq_flags = irq_get_trigger_type(pdata->irq);
931         if (irq_flags & IRQ_TYPE_EDGE_BOTH)
932                 rmi_process_interrupt_requests(rmi_dev);
933
934 out:
935         mutex_unlock(&data->enabled_mutex);
936 }
937
938 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
939 {
940         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
941         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
942         struct rmi4_attn_data attn_data = {0};
943         int irq = pdata->irq;
944         int retval, count;
945
946         mutex_lock(&data->enabled_mutex);
947
948         if (!data->enabled)
949                 goto out;
950
951         data->enabled = false;
952         disable_irq(irq);
953         if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
954                 retval = enable_irq_wake(irq);
955                 if (retval)
956                         dev_warn(&rmi_dev->dev,
957                                  "Failed to enable irq for wake: %d\n",
958                                  retval);
959         }
960
961         /* make sure the fifo is clean */
962         while (!kfifo_is_empty(&data->attn_fifo)) {
963                 count = kfifo_get(&data->attn_fifo, &attn_data);
964                 if (count)
965                         kfree(attn_data.data);
966         }
967
968 out:
969         mutex_unlock(&data->enabled_mutex);
970 }
971
972 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
973 {
974         int retval;
975
976         retval = rmi_suspend_functions(rmi_dev);
977         if (retval)
978                 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
979                         retval);
980
981         rmi_disable_irq(rmi_dev, enable_wake);
982         return retval;
983 }
984 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
985
986 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
987 {
988         int retval;
989
990         rmi_enable_irq(rmi_dev, clear_wake);
991
992         retval = rmi_resume_functions(rmi_dev);
993         if (retval)
994                 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
995                         retval);
996
997         return retval;
998 }
999 EXPORT_SYMBOL_GPL(rmi_driver_resume);
1000
1001 static int rmi_driver_remove(struct device *dev)
1002 {
1003         struct rmi_device *rmi_dev = to_rmi_device(dev);
1004
1005         rmi_disable_irq(rmi_dev, false);
1006
1007         rmi_f34_remove_sysfs(rmi_dev);
1008         rmi_free_function_list(rmi_dev);
1009
1010         return 0;
1011 }
1012
1013 #ifdef CONFIG_OF
1014 static int rmi_driver_of_probe(struct device *dev,
1015                                 struct rmi_device_platform_data *pdata)
1016 {
1017         int retval;
1018
1019         retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
1020                                         "syna,reset-delay-ms", 1);
1021         if (retval)
1022                 return retval;
1023
1024         return 0;
1025 }
1026 #else
1027 static inline int rmi_driver_of_probe(struct device *dev,
1028                                         struct rmi_device_platform_data *pdata)
1029 {
1030         return -ENODEV;
1031 }
1032 #endif
1033
1034 int rmi_probe_interrupts(struct rmi_driver_data *data)
1035 {
1036         struct rmi_device *rmi_dev = data->rmi_dev;
1037         struct device *dev = &rmi_dev->dev;
1038         int irq_count;
1039         size_t size;
1040         int retval;
1041
1042         /*
1043          * We need to count the IRQs and allocate their storage before scanning
1044          * the PDT and creating the function entries, because adding a new
1045          * function can trigger events that result in the IRQ related storage
1046          * being accessed.
1047          */
1048         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1049         irq_count = 0;
1050         data->bootloader_mode = false;
1051
1052         retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1053         if (retval < 0) {
1054                 dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1055                 return retval;
1056         }
1057
1058         if (data->bootloader_mode)
1059                 dev_warn(dev, "Device in bootloader mode.\n");
1060
1061         data->irq_count = irq_count;
1062         data->num_of_irq_regs = (data->irq_count + 7) / 8;
1063
1064         size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1065         data->irq_memory = devm_kcalloc(dev, size, 4, GFP_KERNEL);
1066         if (!data->irq_memory) {
1067                 dev_err(dev, "Failed to allocate memory for irq masks.\n");
1068                 return -ENOMEM;
1069         }
1070
1071         data->irq_status        = data->irq_memory + size * 0;
1072         data->fn_irq_bits       = data->irq_memory + size * 1;
1073         data->current_irq_mask  = data->irq_memory + size * 2;
1074         data->new_irq_mask      = data->irq_memory + size * 3;
1075
1076         return retval;
1077 }
1078
1079 int rmi_init_functions(struct rmi_driver_data *data)
1080 {
1081         struct rmi_device *rmi_dev = data->rmi_dev;
1082         struct device *dev = &rmi_dev->dev;
1083         int irq_count;
1084         int retval;
1085
1086         irq_count = 0;
1087         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1088         retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1089         if (retval < 0) {
1090                 dev_err(dev, "Function creation failed with code %d.\n",
1091                         retval);
1092                 goto err_destroy_functions;
1093         }
1094
1095         if (!data->f01_container) {
1096                 dev_err(dev, "Missing F01 container!\n");
1097                 retval = -EINVAL;
1098                 goto err_destroy_functions;
1099         }
1100
1101         retval = rmi_read_block(rmi_dev,
1102                                 data->f01_container->fd.control_base_addr + 1,
1103                                 data->current_irq_mask, data->num_of_irq_regs);
1104         if (retval < 0) {
1105                 dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1106                         __func__);
1107                 goto err_destroy_functions;
1108         }
1109
1110         return 0;
1111
1112 err_destroy_functions:
1113         rmi_free_function_list(rmi_dev);
1114         return retval;
1115 }
1116
1117 static int rmi_driver_probe(struct device *dev)
1118 {
1119         struct rmi_driver *rmi_driver;
1120         struct rmi_driver_data *data;
1121         struct rmi_device_platform_data *pdata;
1122         struct rmi_device *rmi_dev;
1123         int retval;
1124
1125         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1126                         __func__);
1127
1128         if (!rmi_is_physical_device(dev)) {
1129                 rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1130                 return -ENODEV;
1131         }
1132
1133         rmi_dev = to_rmi_device(dev);
1134         rmi_driver = to_rmi_driver(dev->driver);
1135         rmi_dev->driver = rmi_driver;
1136
1137         pdata = rmi_get_platform_data(rmi_dev);
1138
1139         if (rmi_dev->xport->dev->of_node) {
1140                 retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1141                 if (retval)
1142                         return retval;
1143         }
1144
1145         data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1146         if (!data)
1147                 return -ENOMEM;
1148
1149         INIT_LIST_HEAD(&data->function_list);
1150         data->rmi_dev = rmi_dev;
1151         dev_set_drvdata(&rmi_dev->dev, data);
1152
1153         /*
1154          * Right before a warm boot, the sensor might be in some unusual state,
1155          * such as F54 diagnostics, or F34 bootloader mode after a firmware
1156          * or configuration update.  In order to clear the sensor to a known
1157          * state and/or apply any updates, we issue a initial reset to clear any
1158          * previous settings and force it into normal operation.
1159          *
1160          * We have to do this before actually building the PDT because
1161          * the reflash updates (if any) might cause various registers to move
1162          * around.
1163          *
1164          * For a number of reasons, this initial reset may fail to return
1165          * within the specified time, but we'll still be able to bring up the
1166          * driver normally after that failure.  This occurs most commonly in
1167          * a cold boot situation (where then firmware takes longer to come up
1168          * than from a warm boot) and the reset_delay_ms in the platform data
1169          * has been set too short to accommodate that.  Since the sensor will
1170          * eventually come up and be usable, we don't want to just fail here
1171          * and leave the customer's device unusable.  So we warn them, and
1172          * continue processing.
1173          */
1174         retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1175         if (retval < 0)
1176                 dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1177
1178         retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1179         if (retval < 0) {
1180                 /*
1181                  * we'll print out a warning and continue since
1182                  * failure to get the PDT properties is not a cause to fail
1183                  */
1184                 dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1185                          PDT_PROPERTIES_LOCATION, retval);
1186         }
1187
1188         mutex_init(&data->irq_mutex);
1189         mutex_init(&data->enabled_mutex);
1190
1191         retval = rmi_probe_interrupts(data);
1192         if (retval)
1193                 goto err;
1194
1195         if (rmi_dev->xport->input) {
1196                 /*
1197                  * The transport driver already has an input device.
1198                  * In some cases it is preferable to reuse the transport
1199                  * devices input device instead of creating a new one here.
1200                  * One example is some HID touchpads report "pass-through"
1201                  * button events are not reported by rmi registers.
1202                  */
1203                 data->input = rmi_dev->xport->input;
1204         } else {
1205                 data->input = devm_input_allocate_device(dev);
1206                 if (!data->input) {
1207                         dev_err(dev, "%s: Failed to allocate input device.\n",
1208                                 __func__);
1209                         retval = -ENOMEM;
1210                         goto err;
1211                 }
1212                 rmi_driver_set_input_params(rmi_dev, data->input);
1213                 data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1214                                                 "%s/input0", dev_name(dev));
1215         }
1216
1217         retval = rmi_init_functions(data);
1218         if (retval)
1219                 goto err;
1220
1221         retval = rmi_f34_create_sysfs(rmi_dev);
1222         if (retval)
1223                 goto err;
1224
1225         if (data->input) {
1226                 rmi_driver_set_input_name(rmi_dev, data->input);
1227                 if (!rmi_dev->xport->input) {
1228                         if (input_register_device(data->input)) {
1229                                 dev_err(dev, "%s: Failed to register input device.\n",
1230                                         __func__);
1231                                 goto err_destroy_functions;
1232                         }
1233                 }
1234         }
1235
1236         retval = rmi_irq_init(rmi_dev);
1237         if (retval < 0)
1238                 goto err_destroy_functions;
1239
1240         if (data->f01_container->dev.driver) {
1241                 /* Driver already bound, so enable ATTN now. */
1242                 retval = rmi_enable_sensor(rmi_dev);
1243                 if (retval)
1244                         goto err_disable_irq;
1245         }
1246
1247         return 0;
1248
1249 err_disable_irq:
1250         rmi_disable_irq(rmi_dev, false);
1251 err_destroy_functions:
1252         rmi_free_function_list(rmi_dev);
1253 err:
1254         return retval;
1255 }
1256
1257 static struct rmi_driver rmi_physical_driver = {
1258         .driver = {
1259                 .owner  = THIS_MODULE,
1260                 .name   = "rmi4_physical",
1261                 .bus    = &rmi_bus_type,
1262                 .probe = rmi_driver_probe,
1263                 .remove = rmi_driver_remove,
1264         },
1265         .reset_handler = rmi_driver_reset_handler,
1266         .clear_irq_bits = rmi_driver_clear_irq_bits,
1267         .set_irq_bits = rmi_driver_set_irq_bits,
1268         .set_input_params = rmi_driver_set_input_params,
1269 };
1270
1271 bool rmi_is_physical_driver(struct device_driver *drv)
1272 {
1273         return drv == &rmi_physical_driver.driver;
1274 }
1275
1276 int __init rmi_register_physical_driver(void)
1277 {
1278         int error;
1279
1280         error = driver_register(&rmi_physical_driver.driver);
1281         if (error) {
1282                 pr_err("%s: driver register failed, code=%d.\n", __func__,
1283                        error);
1284                 return error;
1285         }
1286
1287         return 0;
1288 }
1289
1290 void __exit rmi_unregister_physical_driver(void)
1291 {
1292         driver_unregister(&rmi_physical_driver.driver);
1293 }