Merge tag 'iio-for-4.17a' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[sfrench/cifs-2.6.git] / drivers / input / rmi4 / rmi_driver.c
1 /*
2  * Copyright (c) 2011-2016 Synaptics Incorporated
3  * Copyright (c) 2011 Unixphere
4  *
5  * This driver provides the core support for a single RMI4-based device.
6  *
7  * The RMI4 specification can be found here (URL split for line length):
8  *
9  * http://www.synaptics.com/sites/default/files/
10  *      511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms of the GNU General Public License version 2 as published by
14  * the Free Software Foundation.
15  */
16
17 #include <linux/bitmap.h>
18 #include <linux/delay.h>
19 #include <linux/fs.h>
20 #include <linux/irq.h>
21 #include <linux/pm.h>
22 #include <linux/slab.h>
23 #include <linux/of.h>
24 #include <uapi/linux/input.h>
25 #include <linux/rmi.h>
26 #include "rmi_bus.h"
27 #include "rmi_driver.h"
28
29 #define HAS_NONSTANDARD_PDT_MASK 0x40
30 #define RMI4_MAX_PAGE 0xff
31 #define RMI4_PAGE_SIZE 0x100
32 #define RMI4_PAGE_MASK 0xFF00
33
34 #define RMI_DEVICE_RESET_CMD    0x01
35 #define DEFAULT_RESET_DELAY_MS  100
36
37 void rmi_free_function_list(struct rmi_device *rmi_dev)
38 {
39         struct rmi_function *fn, *tmp;
40         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
41
42         rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
43
44         /* Doing it in the reverse order so F01 will be removed last */
45         list_for_each_entry_safe_reverse(fn, tmp,
46                                          &data->function_list, node) {
47                 list_del(&fn->node);
48                 rmi_unregister_function(fn);
49         }
50
51         devm_kfree(&rmi_dev->dev, data->irq_memory);
52         data->irq_memory = NULL;
53         data->irq_status = NULL;
54         data->fn_irq_bits = NULL;
55         data->current_irq_mask = NULL;
56         data->new_irq_mask = NULL;
57
58         data->f01_container = NULL;
59         data->f34_container = NULL;
60 }
61
62 static int reset_one_function(struct rmi_function *fn)
63 {
64         struct rmi_function_handler *fh;
65         int retval = 0;
66
67         if (!fn || !fn->dev.driver)
68                 return 0;
69
70         fh = to_rmi_function_handler(fn->dev.driver);
71         if (fh->reset) {
72                 retval = fh->reset(fn);
73                 if (retval < 0)
74                         dev_err(&fn->dev, "Reset failed with code %d.\n",
75                                 retval);
76         }
77
78         return retval;
79 }
80
81 static int configure_one_function(struct rmi_function *fn)
82 {
83         struct rmi_function_handler *fh;
84         int retval = 0;
85
86         if (!fn || !fn->dev.driver)
87                 return 0;
88
89         fh = to_rmi_function_handler(fn->dev.driver);
90         if (fh->config) {
91                 retval = fh->config(fn);
92                 if (retval < 0)
93                         dev_err(&fn->dev, "Config failed with code %d.\n",
94                                 retval);
95         }
96
97         return retval;
98 }
99
100 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
101 {
102         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
103         struct rmi_function *entry;
104         int retval;
105
106         list_for_each_entry(entry, &data->function_list, node) {
107                 retval = reset_one_function(entry);
108                 if (retval < 0)
109                         return retval;
110         }
111
112         return 0;
113 }
114
115 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
116 {
117         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
118         struct rmi_function *entry;
119         int retval;
120
121         list_for_each_entry(entry, &data->function_list, node) {
122                 retval = configure_one_function(entry);
123                 if (retval < 0)
124                         return retval;
125         }
126
127         return 0;
128 }
129
130 static void process_one_interrupt(struct rmi_driver_data *data,
131                                   struct rmi_function *fn)
132 {
133         struct rmi_function_handler *fh;
134
135         if (!fn || !fn->dev.driver)
136                 return;
137
138         fh = to_rmi_function_handler(fn->dev.driver);
139         if (fh->attention) {
140                 bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask,
141                                 data->irq_count);
142                 if (!bitmap_empty(data->fn_irq_bits, data->irq_count))
143                         fh->attention(fn, data->fn_irq_bits);
144         }
145 }
146
147 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
148 {
149         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
150         struct device *dev = &rmi_dev->dev;
151         struct rmi_function *entry;
152         int error;
153
154         if (!data)
155                 return 0;
156
157         if (!data->attn_data.data) {
158                 error = rmi_read_block(rmi_dev,
159                                 data->f01_container->fd.data_base_addr + 1,
160                                 data->irq_status, data->num_of_irq_regs);
161                 if (error < 0) {
162                         dev_err(dev, "Failed to read irqs, code=%d\n", error);
163                         return error;
164                 }
165         }
166
167         mutex_lock(&data->irq_mutex);
168         bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
169                data->irq_count);
170         /*
171          * At this point, irq_status has all bits that are set in the
172          * interrupt status register and are enabled.
173          */
174         mutex_unlock(&data->irq_mutex);
175
176         /*
177          * It would be nice to be able to use irq_chip to handle these
178          * nested IRQs.  Unfortunately, most of the current customers for
179          * this driver are using older kernels (3.0.x) that don't support
180          * the features required for that.  Once they've shifted to more
181          * recent kernels (say, 3.3 and higher), this should be switched to
182          * use irq_chip.
183          */
184         list_for_each_entry(entry, &data->function_list, node)
185                 process_one_interrupt(data, entry);
186
187         if (data->input)
188                 input_sync(data->input);
189
190         return 0;
191 }
192
193 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
194                        void *data, size_t size)
195 {
196         struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
197         struct rmi4_attn_data attn_data;
198         void *fifo_data;
199
200         if (!drvdata->enabled)
201                 return;
202
203         fifo_data = kmemdup(data, size, GFP_ATOMIC);
204         if (!fifo_data)
205                 return;
206
207         attn_data.irq_status = irq_status;
208         attn_data.size = size;
209         attn_data.data = fifo_data;
210
211         kfifo_put(&drvdata->attn_fifo, attn_data);
212 }
213 EXPORT_SYMBOL_GPL(rmi_set_attn_data);
214
215 static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
216 {
217         struct rmi_device *rmi_dev = dev_id;
218         struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
219         struct rmi4_attn_data attn_data = {0};
220         int ret, count;
221
222         count = kfifo_get(&drvdata->attn_fifo, &attn_data);
223         if (count) {
224                 *(drvdata->irq_status) = attn_data.irq_status;
225                 drvdata->attn_data = attn_data;
226         }
227
228         ret = rmi_process_interrupt_requests(rmi_dev);
229         if (ret)
230                 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
231                         "Failed to process interrupt request: %d\n", ret);
232
233         if (count) {
234                 kfree(attn_data.data);
235                 attn_data.data = NULL;
236         }
237
238         if (!kfifo_is_empty(&drvdata->attn_fifo))
239                 return rmi_irq_fn(irq, dev_id);
240
241         return IRQ_HANDLED;
242 }
243
244 static int rmi_irq_init(struct rmi_device *rmi_dev)
245 {
246         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
247         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
248         int irq_flags = irq_get_trigger_type(pdata->irq);
249         int ret;
250
251         if (!irq_flags)
252                 irq_flags = IRQF_TRIGGER_LOW;
253
254         ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
255                                         rmi_irq_fn, irq_flags | IRQF_ONESHOT,
256                                         dev_driver_string(rmi_dev->xport->dev),
257                                         rmi_dev);
258         if (ret < 0) {
259                 dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
260                         pdata->irq);
261
262                 return ret;
263         }
264
265         data->enabled = true;
266
267         return 0;
268 }
269
270 struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number)
271 {
272         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
273         struct rmi_function *entry;
274
275         list_for_each_entry(entry, &data->function_list, node) {
276                 if (entry->fd.function_number == number)
277                         return entry;
278         }
279
280         return NULL;
281 }
282
283 static int suspend_one_function(struct rmi_function *fn)
284 {
285         struct rmi_function_handler *fh;
286         int retval = 0;
287
288         if (!fn || !fn->dev.driver)
289                 return 0;
290
291         fh = to_rmi_function_handler(fn->dev.driver);
292         if (fh->suspend) {
293                 retval = fh->suspend(fn);
294                 if (retval < 0)
295                         dev_err(&fn->dev, "Suspend failed with code %d.\n",
296                                 retval);
297         }
298
299         return retval;
300 }
301
302 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
303 {
304         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
305         struct rmi_function *entry;
306         int retval;
307
308         list_for_each_entry(entry, &data->function_list, node) {
309                 retval = suspend_one_function(entry);
310                 if (retval < 0)
311                         return retval;
312         }
313
314         return 0;
315 }
316
317 static int resume_one_function(struct rmi_function *fn)
318 {
319         struct rmi_function_handler *fh;
320         int retval = 0;
321
322         if (!fn || !fn->dev.driver)
323                 return 0;
324
325         fh = to_rmi_function_handler(fn->dev.driver);
326         if (fh->resume) {
327                 retval = fh->resume(fn);
328                 if (retval < 0)
329                         dev_err(&fn->dev, "Resume failed with code %d.\n",
330                                 retval);
331         }
332
333         return retval;
334 }
335
336 static int rmi_resume_functions(struct rmi_device *rmi_dev)
337 {
338         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
339         struct rmi_function *entry;
340         int retval;
341
342         list_for_each_entry(entry, &data->function_list, node) {
343                 retval = resume_one_function(entry);
344                 if (retval < 0)
345                         return retval;
346         }
347
348         return 0;
349 }
350
351 int rmi_enable_sensor(struct rmi_device *rmi_dev)
352 {
353         int retval = 0;
354
355         retval = rmi_driver_process_config_requests(rmi_dev);
356         if (retval < 0)
357                 return retval;
358
359         return rmi_process_interrupt_requests(rmi_dev);
360 }
361
362 /**
363  * rmi_driver_set_input_params - set input device id and other data.
364  *
365  * @rmi_dev: Pointer to an RMI device
366  * @input: Pointer to input device
367  *
368  */
369 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
370                                 struct input_dev *input)
371 {
372         input->name = SYNAPTICS_INPUT_DEVICE_NAME;
373         input->id.vendor  = SYNAPTICS_VENDOR_ID;
374         input->id.bustype = BUS_RMI;
375         return 0;
376 }
377
378 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
379                                 struct input_dev *input)
380 {
381         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
382         const char *device_name = rmi_f01_get_product_ID(data->f01_container);
383         char *name;
384
385         name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
386                               "Synaptics %s", device_name);
387         if (!name)
388                 return;
389
390         input->name = name;
391 }
392
393 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
394                                    unsigned long *mask)
395 {
396         int error = 0;
397         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
398         struct device *dev = &rmi_dev->dev;
399
400         mutex_lock(&data->irq_mutex);
401         bitmap_or(data->new_irq_mask,
402                   data->current_irq_mask, mask, data->irq_count);
403
404         error = rmi_write_block(rmi_dev,
405                         data->f01_container->fd.control_base_addr + 1,
406                         data->new_irq_mask, data->num_of_irq_regs);
407         if (error < 0) {
408                 dev_err(dev, "%s: Failed to change enabled interrupts!",
409                                                         __func__);
410                 goto error_unlock;
411         }
412         bitmap_copy(data->current_irq_mask, data->new_irq_mask,
413                     data->num_of_irq_regs);
414
415 error_unlock:
416         mutex_unlock(&data->irq_mutex);
417         return error;
418 }
419
420 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
421                                      unsigned long *mask)
422 {
423         int error = 0;
424         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
425         struct device *dev = &rmi_dev->dev;
426
427         mutex_lock(&data->irq_mutex);
428         bitmap_andnot(data->new_irq_mask,
429                   data->current_irq_mask, mask, data->irq_count);
430
431         error = rmi_write_block(rmi_dev,
432                         data->f01_container->fd.control_base_addr + 1,
433                         data->new_irq_mask, data->num_of_irq_regs);
434         if (error < 0) {
435                 dev_err(dev, "%s: Failed to change enabled interrupts!",
436                                                         __func__);
437                 goto error_unlock;
438         }
439         bitmap_copy(data->current_irq_mask, data->new_irq_mask,
440                     data->num_of_irq_regs);
441
442 error_unlock:
443         mutex_unlock(&data->irq_mutex);
444         return error;
445 }
446
447 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
448 {
449         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
450         int error;
451
452         /*
453          * Can get called before the driver is fully ready to deal with
454          * this situation.
455          */
456         if (!data || !data->f01_container) {
457                 dev_warn(&rmi_dev->dev,
458                          "Not ready to handle reset yet!\n");
459                 return 0;
460         }
461
462         error = rmi_read_block(rmi_dev,
463                                data->f01_container->fd.control_base_addr + 1,
464                                data->current_irq_mask, data->num_of_irq_regs);
465         if (error < 0) {
466                 dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
467                         __func__);
468                 return error;
469         }
470
471         error = rmi_driver_process_reset_requests(rmi_dev);
472         if (error < 0)
473                 return error;
474
475         error = rmi_driver_process_config_requests(rmi_dev);
476         if (error < 0)
477                 return error;
478
479         return 0;
480 }
481
482 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
483                               struct pdt_entry *entry, u16 pdt_address)
484 {
485         u8 buf[RMI_PDT_ENTRY_SIZE];
486         int error;
487
488         error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
489         if (error) {
490                 dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
491                                 pdt_address, error);
492                 return error;
493         }
494
495         entry->page_start = pdt_address & RMI4_PAGE_MASK;
496         entry->query_base_addr = buf[0];
497         entry->command_base_addr = buf[1];
498         entry->control_base_addr = buf[2];
499         entry->data_base_addr = buf[3];
500         entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
501         entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
502         entry->function_number = buf[5];
503
504         return 0;
505 }
506
507 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
508                                       struct rmi_function_descriptor *fd)
509 {
510         fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
511         fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
512         fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
513         fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
514         fd->function_number = pdt->function_number;
515         fd->interrupt_source_count = pdt->interrupt_source_count;
516         fd->function_version = pdt->function_version;
517 }
518
519 #define RMI_SCAN_CONTINUE       0
520 #define RMI_SCAN_DONE           1
521
522 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
523                              int page,
524                              int *empty_pages,
525                              void *ctx,
526                              int (*callback)(struct rmi_device *rmi_dev,
527                                              void *ctx,
528                                              const struct pdt_entry *entry))
529 {
530         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
531         struct pdt_entry pdt_entry;
532         u16 page_start = RMI4_PAGE_SIZE * page;
533         u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
534         u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
535         u16 addr;
536         int error;
537         int retval;
538
539         for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
540                 error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
541                 if (error)
542                         return error;
543
544                 if (RMI4_END_OF_PDT(pdt_entry.function_number))
545                         break;
546
547                 retval = callback(rmi_dev, ctx, &pdt_entry);
548                 if (retval != RMI_SCAN_CONTINUE)
549                         return retval;
550         }
551
552         /*
553          * Count number of empty PDT pages. If a gap of two pages
554          * or more is found, stop scanning.
555          */
556         if (addr == pdt_start)
557                 ++*empty_pages;
558         else
559                 *empty_pages = 0;
560
561         return (data->bootloader_mode || *empty_pages >= 2) ?
562                                         RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
563 }
564
565 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
566                  int (*callback)(struct rmi_device *rmi_dev,
567                  void *ctx, const struct pdt_entry *entry))
568 {
569         int page;
570         int empty_pages = 0;
571         int retval = RMI_SCAN_DONE;
572
573         for (page = 0; page <= RMI4_MAX_PAGE; page++) {
574                 retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
575                                            ctx, callback);
576                 if (retval != RMI_SCAN_CONTINUE)
577                         break;
578         }
579
580         return retval < 0 ? retval : 0;
581 }
582
583 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
584                                 struct rmi_register_descriptor *rdesc)
585 {
586         int ret;
587         u8 size_presence_reg;
588         u8 buf[35];
589         int presense_offset = 1;
590         u8 *struct_buf;
591         int reg;
592         int offset = 0;
593         int map_offset = 0;
594         int i;
595         int b;
596
597         /*
598          * The first register of the register descriptor is the size of
599          * the register descriptor's presense register.
600          */
601         ret = rmi_read(d, addr, &size_presence_reg);
602         if (ret)
603                 return ret;
604         ++addr;
605
606         if (size_presence_reg < 0 || size_presence_reg > 35)
607                 return -EIO;
608
609         memset(buf, 0, sizeof(buf));
610
611         /*
612          * The presence register contains the size of the register structure
613          * and a bitmap which identified which packet registers are present
614          * for this particular register type (ie query, control, or data).
615          */
616         ret = rmi_read_block(d, addr, buf, size_presence_reg);
617         if (ret)
618                 return ret;
619         ++addr;
620
621         if (buf[0] == 0) {
622                 presense_offset = 3;
623                 rdesc->struct_size = buf[1] | (buf[2] << 8);
624         } else {
625                 rdesc->struct_size = buf[0];
626         }
627
628         for (i = presense_offset; i < size_presence_reg; i++) {
629                 for (b = 0; b < 8; b++) {
630                         if (buf[i] & (0x1 << b))
631                                 bitmap_set(rdesc->presense_map, map_offset, 1);
632                         ++map_offset;
633                 }
634         }
635
636         rdesc->num_registers = bitmap_weight(rdesc->presense_map,
637                                                 RMI_REG_DESC_PRESENSE_BITS);
638
639         rdesc->registers = devm_kzalloc(&d->dev, rdesc->num_registers *
640                                 sizeof(struct rmi_register_desc_item),
641                                 GFP_KERNEL);
642         if (!rdesc->registers)
643                 return -ENOMEM;
644
645         /*
646          * Allocate a temporary buffer to hold the register structure.
647          * I'm not using devm_kzalloc here since it will not be retained
648          * after exiting this function
649          */
650         struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
651         if (!struct_buf)
652                 return -ENOMEM;
653
654         /*
655          * The register structure contains information about every packet
656          * register of this type. This includes the size of the packet
657          * register and a bitmap of all subpackets contained in the packet
658          * register.
659          */
660         ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
661         if (ret)
662                 goto free_struct_buff;
663
664         reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
665         for (i = 0; i < rdesc->num_registers; i++) {
666                 struct rmi_register_desc_item *item = &rdesc->registers[i];
667                 int reg_size = struct_buf[offset];
668
669                 ++offset;
670                 if (reg_size == 0) {
671                         reg_size = struct_buf[offset] |
672                                         (struct_buf[offset + 1] << 8);
673                         offset += 2;
674                 }
675
676                 if (reg_size == 0) {
677                         reg_size = struct_buf[offset] |
678                                         (struct_buf[offset + 1] << 8) |
679                                         (struct_buf[offset + 2] << 16) |
680                                         (struct_buf[offset + 3] << 24);
681                         offset += 4;
682                 }
683
684                 item->reg = reg;
685                 item->reg_size = reg_size;
686
687                 map_offset = 0;
688
689                 do {
690                         for (b = 0; b < 7; b++) {
691                                 if (struct_buf[offset] & (0x1 << b))
692                                         bitmap_set(item->subpacket_map,
693                                                 map_offset, 1);
694                                 ++map_offset;
695                         }
696                 } while (struct_buf[offset++] & 0x80);
697
698                 item->num_subpackets = bitmap_weight(item->subpacket_map,
699                                                 RMI_REG_DESC_SUBPACKET_BITS);
700
701                 rmi_dbg(RMI_DEBUG_CORE, &d->dev,
702                         "%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
703                         item->reg, item->reg_size, item->num_subpackets);
704
705                 reg = find_next_bit(rdesc->presense_map,
706                                 RMI_REG_DESC_PRESENSE_BITS, reg + 1);
707         }
708
709 free_struct_buff:
710         kfree(struct_buf);
711         return ret;
712 }
713
714 const struct rmi_register_desc_item *rmi_get_register_desc_item(
715                                 struct rmi_register_descriptor *rdesc, u16 reg)
716 {
717         const struct rmi_register_desc_item *item;
718         int i;
719
720         for (i = 0; i < rdesc->num_registers; i++) {
721                 item = &rdesc->registers[i];
722                 if (item->reg == reg)
723                         return item;
724         }
725
726         return NULL;
727 }
728
729 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
730 {
731         const struct rmi_register_desc_item *item;
732         int i;
733         size_t size = 0;
734
735         for (i = 0; i < rdesc->num_registers; i++) {
736                 item = &rdesc->registers[i];
737                 size += item->reg_size;
738         }
739         return size;
740 }
741
742 /* Compute the register offset relative to the base address */
743 int rmi_register_desc_calc_reg_offset(
744                 struct rmi_register_descriptor *rdesc, u16 reg)
745 {
746         const struct rmi_register_desc_item *item;
747         int offset = 0;
748         int i;
749
750         for (i = 0; i < rdesc->num_registers; i++) {
751                 item = &rdesc->registers[i];
752                 if (item->reg == reg)
753                         return offset;
754                 ++offset;
755         }
756         return -1;
757 }
758
759 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
760         u8 subpacket)
761 {
762         return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
763                                 subpacket) == subpacket;
764 }
765
766 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
767                                      const struct pdt_entry *pdt)
768 {
769         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
770         int ret;
771         u8 status;
772
773         if (pdt->function_number == 0x34 && pdt->function_version > 1) {
774                 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
775                 if (ret) {
776                         dev_err(&rmi_dev->dev,
777                                 "Failed to read F34 status: %d.\n", ret);
778                         return ret;
779                 }
780
781                 if (status & BIT(7))
782                         data->bootloader_mode = true;
783         } else if (pdt->function_number == 0x01) {
784                 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
785                 if (ret) {
786                         dev_err(&rmi_dev->dev,
787                                 "Failed to read F01 status: %d.\n", ret);
788                         return ret;
789                 }
790
791                 if (status & BIT(6))
792                         data->bootloader_mode = true;
793         }
794
795         return 0;
796 }
797
798 static int rmi_count_irqs(struct rmi_device *rmi_dev,
799                          void *ctx, const struct pdt_entry *pdt)
800 {
801         int *irq_count = ctx;
802         int ret;
803
804         *irq_count += pdt->interrupt_source_count;
805
806         ret = rmi_check_bootloader_mode(rmi_dev, pdt);
807         if (ret < 0)
808                 return ret;
809
810         return RMI_SCAN_CONTINUE;
811 }
812
813 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
814                       const struct pdt_entry *pdt)
815 {
816         int error;
817
818         if (pdt->function_number == 0x01) {
819                 u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
820                 u8 cmd_buf = RMI_DEVICE_RESET_CMD;
821                 const struct rmi_device_platform_data *pdata =
822                                 rmi_get_platform_data(rmi_dev);
823
824                 if (rmi_dev->xport->ops->reset) {
825                         error = rmi_dev->xport->ops->reset(rmi_dev->xport,
826                                                                 cmd_addr);
827                         if (error)
828                                 return error;
829
830                         return RMI_SCAN_DONE;
831                 }
832
833                 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
834                 error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
835                 if (error) {
836                         dev_err(&rmi_dev->dev,
837                                 "Initial reset failed. Code = %d.\n", error);
838                         return error;
839                 }
840
841                 mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
842
843                 return RMI_SCAN_DONE;
844         }
845
846         /* F01 should always be on page 0. If we don't find it there, fail. */
847         return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
848 }
849
850 static int rmi_create_function(struct rmi_device *rmi_dev,
851                                void *ctx, const struct pdt_entry *pdt)
852 {
853         struct device *dev = &rmi_dev->dev;
854         struct rmi_driver_data *data = dev_get_drvdata(dev);
855         int *current_irq_count = ctx;
856         struct rmi_function *fn;
857         int i;
858         int error;
859
860         rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
861                         pdt->function_number);
862
863         fn = kzalloc(sizeof(struct rmi_function) +
864                         BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
865                      GFP_KERNEL);
866         if (!fn) {
867                 dev_err(dev, "Failed to allocate memory for F%02X\n",
868                         pdt->function_number);
869                 return -ENOMEM;
870         }
871
872         INIT_LIST_HEAD(&fn->node);
873         rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
874
875         fn->rmi_dev = rmi_dev;
876
877         fn->num_of_irqs = pdt->interrupt_source_count;
878         fn->irq_pos = *current_irq_count;
879         *current_irq_count += fn->num_of_irqs;
880
881         for (i = 0; i < fn->num_of_irqs; i++)
882                 set_bit(fn->irq_pos + i, fn->irq_mask);
883
884         error = rmi_register_function(fn);
885         if (error)
886                 goto err_put_fn;
887
888         if (pdt->function_number == 0x01)
889                 data->f01_container = fn;
890         else if (pdt->function_number == 0x34)
891                 data->f34_container = fn;
892
893         list_add_tail(&fn->node, &data->function_list);
894
895         return RMI_SCAN_CONTINUE;
896
897 err_put_fn:
898         put_device(&fn->dev);
899         return error;
900 }
901
902 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
903 {
904         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
905         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
906         int irq = pdata->irq;
907         int irq_flags;
908         int retval;
909
910         mutex_lock(&data->enabled_mutex);
911
912         if (data->enabled)
913                 goto out;
914
915         enable_irq(irq);
916         data->enabled = true;
917         if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
918                 retval = disable_irq_wake(irq);
919                 if (retval)
920                         dev_warn(&rmi_dev->dev,
921                                  "Failed to disable irq for wake: %d\n",
922                                  retval);
923         }
924
925         /*
926          * Call rmi_process_interrupt_requests() after enabling irq,
927          * otherwise we may lose interrupt on edge-triggered systems.
928          */
929         irq_flags = irq_get_trigger_type(pdata->irq);
930         if (irq_flags & IRQ_TYPE_EDGE_BOTH)
931                 rmi_process_interrupt_requests(rmi_dev);
932
933 out:
934         mutex_unlock(&data->enabled_mutex);
935 }
936
937 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
938 {
939         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
940         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
941         struct rmi4_attn_data attn_data = {0};
942         int irq = pdata->irq;
943         int retval, count;
944
945         mutex_lock(&data->enabled_mutex);
946
947         if (!data->enabled)
948                 goto out;
949
950         data->enabled = false;
951         disable_irq(irq);
952         if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
953                 retval = enable_irq_wake(irq);
954                 if (retval)
955                         dev_warn(&rmi_dev->dev,
956                                  "Failed to enable irq for wake: %d\n",
957                                  retval);
958         }
959
960         /* make sure the fifo is clean */
961         while (!kfifo_is_empty(&data->attn_fifo)) {
962                 count = kfifo_get(&data->attn_fifo, &attn_data);
963                 if (count)
964                         kfree(attn_data.data);
965         }
966
967 out:
968         mutex_unlock(&data->enabled_mutex);
969 }
970
971 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
972 {
973         int retval;
974
975         retval = rmi_suspend_functions(rmi_dev);
976         if (retval)
977                 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
978                         retval);
979
980         rmi_disable_irq(rmi_dev, enable_wake);
981         return retval;
982 }
983 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
984
985 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
986 {
987         int retval;
988
989         rmi_enable_irq(rmi_dev, clear_wake);
990
991         retval = rmi_resume_functions(rmi_dev);
992         if (retval)
993                 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
994                         retval);
995
996         return retval;
997 }
998 EXPORT_SYMBOL_GPL(rmi_driver_resume);
999
1000 static int rmi_driver_remove(struct device *dev)
1001 {
1002         struct rmi_device *rmi_dev = to_rmi_device(dev);
1003
1004         rmi_disable_irq(rmi_dev, false);
1005
1006         rmi_f34_remove_sysfs(rmi_dev);
1007         rmi_free_function_list(rmi_dev);
1008
1009         return 0;
1010 }
1011
1012 #ifdef CONFIG_OF
1013 static int rmi_driver_of_probe(struct device *dev,
1014                                 struct rmi_device_platform_data *pdata)
1015 {
1016         int retval;
1017
1018         retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
1019                                         "syna,reset-delay-ms", 1);
1020         if (retval)
1021                 return retval;
1022
1023         return 0;
1024 }
1025 #else
1026 static inline int rmi_driver_of_probe(struct device *dev,
1027                                         struct rmi_device_platform_data *pdata)
1028 {
1029         return -ENODEV;
1030 }
1031 #endif
1032
1033 int rmi_probe_interrupts(struct rmi_driver_data *data)
1034 {
1035         struct rmi_device *rmi_dev = data->rmi_dev;
1036         struct device *dev = &rmi_dev->dev;
1037         int irq_count;
1038         size_t size;
1039         int retval;
1040
1041         /*
1042          * We need to count the IRQs and allocate their storage before scanning
1043          * the PDT and creating the function entries, because adding a new
1044          * function can trigger events that result in the IRQ related storage
1045          * being accessed.
1046          */
1047         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1048         irq_count = 0;
1049         data->bootloader_mode = false;
1050
1051         retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1052         if (retval < 0) {
1053                 dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1054                 return retval;
1055         }
1056
1057         if (data->bootloader_mode)
1058                 dev_warn(dev, "Device in bootloader mode.\n");
1059
1060         data->irq_count = irq_count;
1061         data->num_of_irq_regs = (data->irq_count + 7) / 8;
1062
1063         size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1064         data->irq_memory = devm_kzalloc(dev, size * 4, GFP_KERNEL);
1065         if (!data->irq_memory) {
1066                 dev_err(dev, "Failed to allocate memory for irq masks.\n");
1067                 return -ENOMEM;
1068         }
1069
1070         data->irq_status        = data->irq_memory + size * 0;
1071         data->fn_irq_bits       = data->irq_memory + size * 1;
1072         data->current_irq_mask  = data->irq_memory + size * 2;
1073         data->new_irq_mask      = data->irq_memory + size * 3;
1074
1075         return retval;
1076 }
1077
1078 int rmi_init_functions(struct rmi_driver_data *data)
1079 {
1080         struct rmi_device *rmi_dev = data->rmi_dev;
1081         struct device *dev = &rmi_dev->dev;
1082         int irq_count;
1083         int retval;
1084
1085         irq_count = 0;
1086         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1087         retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1088         if (retval < 0) {
1089                 dev_err(dev, "Function creation failed with code %d.\n",
1090                         retval);
1091                 goto err_destroy_functions;
1092         }
1093
1094         if (!data->f01_container) {
1095                 dev_err(dev, "Missing F01 container!\n");
1096                 retval = -EINVAL;
1097                 goto err_destroy_functions;
1098         }
1099
1100         retval = rmi_read_block(rmi_dev,
1101                                 data->f01_container->fd.control_base_addr + 1,
1102                                 data->current_irq_mask, data->num_of_irq_regs);
1103         if (retval < 0) {
1104                 dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1105                         __func__);
1106                 goto err_destroy_functions;
1107         }
1108
1109         return 0;
1110
1111 err_destroy_functions:
1112         rmi_free_function_list(rmi_dev);
1113         return retval;
1114 }
1115
1116 static int rmi_driver_probe(struct device *dev)
1117 {
1118         struct rmi_driver *rmi_driver;
1119         struct rmi_driver_data *data;
1120         struct rmi_device_platform_data *pdata;
1121         struct rmi_device *rmi_dev;
1122         int retval;
1123
1124         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1125                         __func__);
1126
1127         if (!rmi_is_physical_device(dev)) {
1128                 rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1129                 return -ENODEV;
1130         }
1131
1132         rmi_dev = to_rmi_device(dev);
1133         rmi_driver = to_rmi_driver(dev->driver);
1134         rmi_dev->driver = rmi_driver;
1135
1136         pdata = rmi_get_platform_data(rmi_dev);
1137
1138         if (rmi_dev->xport->dev->of_node) {
1139                 retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1140                 if (retval)
1141                         return retval;
1142         }
1143
1144         data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1145         if (!data)
1146                 return -ENOMEM;
1147
1148         INIT_LIST_HEAD(&data->function_list);
1149         data->rmi_dev = rmi_dev;
1150         dev_set_drvdata(&rmi_dev->dev, data);
1151
1152         /*
1153          * Right before a warm boot, the sensor might be in some unusual state,
1154          * such as F54 diagnostics, or F34 bootloader mode after a firmware
1155          * or configuration update.  In order to clear the sensor to a known
1156          * state and/or apply any updates, we issue a initial reset to clear any
1157          * previous settings and force it into normal operation.
1158          *
1159          * We have to do this before actually building the PDT because
1160          * the reflash updates (if any) might cause various registers to move
1161          * around.
1162          *
1163          * For a number of reasons, this initial reset may fail to return
1164          * within the specified time, but we'll still be able to bring up the
1165          * driver normally after that failure.  This occurs most commonly in
1166          * a cold boot situation (where then firmware takes longer to come up
1167          * than from a warm boot) and the reset_delay_ms in the platform data
1168          * has been set too short to accommodate that.  Since the sensor will
1169          * eventually come up and be usable, we don't want to just fail here
1170          * and leave the customer's device unusable.  So we warn them, and
1171          * continue processing.
1172          */
1173         retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1174         if (retval < 0)
1175                 dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1176
1177         retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1178         if (retval < 0) {
1179                 /*
1180                  * we'll print out a warning and continue since
1181                  * failure to get the PDT properties is not a cause to fail
1182                  */
1183                 dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1184                          PDT_PROPERTIES_LOCATION, retval);
1185         }
1186
1187         mutex_init(&data->irq_mutex);
1188         mutex_init(&data->enabled_mutex);
1189
1190         retval = rmi_probe_interrupts(data);
1191         if (retval)
1192                 goto err;
1193
1194         if (rmi_dev->xport->input) {
1195                 /*
1196                  * The transport driver already has an input device.
1197                  * In some cases it is preferable to reuse the transport
1198                  * devices input device instead of creating a new one here.
1199                  * One example is some HID touchpads report "pass-through"
1200                  * button events are not reported by rmi registers.
1201                  */
1202                 data->input = rmi_dev->xport->input;
1203         } else {
1204                 data->input = devm_input_allocate_device(dev);
1205                 if (!data->input) {
1206                         dev_err(dev, "%s: Failed to allocate input device.\n",
1207                                 __func__);
1208                         retval = -ENOMEM;
1209                         goto err;
1210                 }
1211                 rmi_driver_set_input_params(rmi_dev, data->input);
1212                 data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1213                                                 "%s/input0", dev_name(dev));
1214         }
1215
1216         retval = rmi_init_functions(data);
1217         if (retval)
1218                 goto err;
1219
1220         retval = rmi_f34_create_sysfs(rmi_dev);
1221         if (retval)
1222                 goto err;
1223
1224         if (data->input) {
1225                 rmi_driver_set_input_name(rmi_dev, data->input);
1226                 if (!rmi_dev->xport->input) {
1227                         if (input_register_device(data->input)) {
1228                                 dev_err(dev, "%s: Failed to register input device.\n",
1229                                         __func__);
1230                                 goto err_destroy_functions;
1231                         }
1232                 }
1233         }
1234
1235         retval = rmi_irq_init(rmi_dev);
1236         if (retval < 0)
1237                 goto err_destroy_functions;
1238
1239         if (data->f01_container->dev.driver) {
1240                 /* Driver already bound, so enable ATTN now. */
1241                 retval = rmi_enable_sensor(rmi_dev);
1242                 if (retval)
1243                         goto err_disable_irq;
1244         }
1245
1246         return 0;
1247
1248 err_disable_irq:
1249         rmi_disable_irq(rmi_dev, false);
1250 err_destroy_functions:
1251         rmi_free_function_list(rmi_dev);
1252 err:
1253         return retval;
1254 }
1255
1256 static struct rmi_driver rmi_physical_driver = {
1257         .driver = {
1258                 .owner  = THIS_MODULE,
1259                 .name   = "rmi4_physical",
1260                 .bus    = &rmi_bus_type,
1261                 .probe = rmi_driver_probe,
1262                 .remove = rmi_driver_remove,
1263         },
1264         .reset_handler = rmi_driver_reset_handler,
1265         .clear_irq_bits = rmi_driver_clear_irq_bits,
1266         .set_irq_bits = rmi_driver_set_irq_bits,
1267         .set_input_params = rmi_driver_set_input_params,
1268 };
1269
1270 bool rmi_is_physical_driver(struct device_driver *drv)
1271 {
1272         return drv == &rmi_physical_driver.driver;
1273 }
1274
1275 int __init rmi_register_physical_driver(void)
1276 {
1277         int error;
1278
1279         error = driver_register(&rmi_physical_driver.driver);
1280         if (error) {
1281                 pr_err("%s: driver register failed, code=%d.\n", __func__,
1282                        error);
1283                 return error;
1284         }
1285
1286         return 0;
1287 }
1288
1289 void __exit rmi_unregister_physical_driver(void)
1290 {
1291         driver_unregister(&rmi_physical_driver.driver);
1292 }