Input: uinput - add compat ioctl number translation for UI_*_FF_UPLOAD
[sfrench/cifs-2.6.git] / drivers / input / misc / ims-pcu.c
1 /*
2  * Driver for IMS Passenger Control Unit Devices
3  *
4  * Copyright (C) 2013 The IMS Company
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2
8  * as published by the Free Software Foundation.
9  */
10
11 #include <linux/completion.h>
12 #include <linux/device.h>
13 #include <linux/firmware.h>
14 #include <linux/ihex.h>
15 #include <linux/input.h>
16 #include <linux/kernel.h>
17 #include <linux/leds.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/types.h>
21 #include <linux/usb/input.h>
22 #include <linux/usb/cdc.h>
23 #include <asm/unaligned.h>
24
25 #define IMS_PCU_KEYMAP_LEN              32
26
27 struct ims_pcu_buttons {
28         struct input_dev *input;
29         char name[32];
30         char phys[32];
31         unsigned short keymap[IMS_PCU_KEYMAP_LEN];
32 };
33
34 struct ims_pcu_gamepad {
35         struct input_dev *input;
36         char name[32];
37         char phys[32];
38 };
39
40 struct ims_pcu_backlight {
41         struct led_classdev cdev;
42         char name[32];
43 };
44
45 #define IMS_PCU_PART_NUMBER_LEN         15
46 #define IMS_PCU_SERIAL_NUMBER_LEN       8
47 #define IMS_PCU_DOM_LEN                 8
48 #define IMS_PCU_FW_VERSION_LEN          (9 + 1)
49 #define IMS_PCU_BL_VERSION_LEN          (9 + 1)
50 #define IMS_PCU_BL_RESET_REASON_LEN     (2 + 1)
51
52 #define IMS_PCU_PCU_B_DEVICE_ID         5
53
54 #define IMS_PCU_BUF_SIZE                128
55
56 struct ims_pcu {
57         struct usb_device *udev;
58         struct device *dev; /* control interface's device, used for logging */
59
60         unsigned int device_no;
61
62         bool bootloader_mode;
63
64         char part_number[IMS_PCU_PART_NUMBER_LEN];
65         char serial_number[IMS_PCU_SERIAL_NUMBER_LEN];
66         char date_of_manufacturing[IMS_PCU_DOM_LEN];
67         char fw_version[IMS_PCU_FW_VERSION_LEN];
68         char bl_version[IMS_PCU_BL_VERSION_LEN];
69         char reset_reason[IMS_PCU_BL_RESET_REASON_LEN];
70         int update_firmware_status;
71         u8 device_id;
72
73         u8 ofn_reg_addr;
74
75         struct usb_interface *ctrl_intf;
76
77         struct usb_endpoint_descriptor *ep_ctrl;
78         struct urb *urb_ctrl;
79         u8 *urb_ctrl_buf;
80         dma_addr_t ctrl_dma;
81         size_t max_ctrl_size;
82
83         struct usb_interface *data_intf;
84
85         struct usb_endpoint_descriptor *ep_in;
86         struct urb *urb_in;
87         u8 *urb_in_buf;
88         dma_addr_t read_dma;
89         size_t max_in_size;
90
91         struct usb_endpoint_descriptor *ep_out;
92         u8 *urb_out_buf;
93         size_t max_out_size;
94
95         u8 read_buf[IMS_PCU_BUF_SIZE];
96         u8 read_pos;
97         u8 check_sum;
98         bool have_stx;
99         bool have_dle;
100
101         u8 cmd_buf[IMS_PCU_BUF_SIZE];
102         u8 ack_id;
103         u8 expected_response;
104         u8 cmd_buf_len;
105         struct completion cmd_done;
106         struct mutex cmd_mutex;
107
108         u32 fw_start_addr;
109         u32 fw_end_addr;
110         struct completion async_firmware_done;
111
112         struct ims_pcu_buttons buttons;
113         struct ims_pcu_gamepad *gamepad;
114         struct ims_pcu_backlight backlight;
115
116         bool setup_complete; /* Input and LED devices have been created */
117 };
118
119
120 /*********************************************************************
121  *             Buttons Input device support                          *
122  *********************************************************************/
123
124 static const unsigned short ims_pcu_keymap_1[] = {
125         [1] = KEY_ATTENDANT_OFF,
126         [2] = KEY_ATTENDANT_ON,
127         [3] = KEY_LIGHTS_TOGGLE,
128         [4] = KEY_VOLUMEUP,
129         [5] = KEY_VOLUMEDOWN,
130         [6] = KEY_INFO,
131 };
132
133 static const unsigned short ims_pcu_keymap_2[] = {
134         [4] = KEY_VOLUMEUP,
135         [5] = KEY_VOLUMEDOWN,
136         [6] = KEY_INFO,
137 };
138
139 static const unsigned short ims_pcu_keymap_3[] = {
140         [1] = KEY_HOMEPAGE,
141         [2] = KEY_ATTENDANT_TOGGLE,
142         [3] = KEY_LIGHTS_TOGGLE,
143         [4] = KEY_VOLUMEUP,
144         [5] = KEY_VOLUMEDOWN,
145         [6] = KEY_DISPLAYTOGGLE,
146         [18] = KEY_PLAYPAUSE,
147 };
148
149 static const unsigned short ims_pcu_keymap_4[] = {
150         [1] = KEY_ATTENDANT_OFF,
151         [2] = KEY_ATTENDANT_ON,
152         [3] = KEY_LIGHTS_TOGGLE,
153         [4] = KEY_VOLUMEUP,
154         [5] = KEY_VOLUMEDOWN,
155         [6] = KEY_INFO,
156         [18] = KEY_PLAYPAUSE,
157 };
158
159 static const unsigned short ims_pcu_keymap_5[] = {
160         [1] = KEY_ATTENDANT_OFF,
161         [2] = KEY_ATTENDANT_ON,
162         [3] = KEY_LIGHTS_TOGGLE,
163 };
164
165 struct ims_pcu_device_info {
166         const unsigned short *keymap;
167         size_t keymap_len;
168         bool has_gamepad;
169 };
170
171 #define IMS_PCU_DEVINFO(_n, _gamepad)                           \
172         [_n] = {                                                \
173                 .keymap = ims_pcu_keymap_##_n,                  \
174                 .keymap_len = ARRAY_SIZE(ims_pcu_keymap_##_n),  \
175                 .has_gamepad = _gamepad,                        \
176         }
177
178 static const struct ims_pcu_device_info ims_pcu_device_info[] = {
179         IMS_PCU_DEVINFO(1, true),
180         IMS_PCU_DEVINFO(2, true),
181         IMS_PCU_DEVINFO(3, true),
182         IMS_PCU_DEVINFO(4, true),
183         IMS_PCU_DEVINFO(5, false),
184 };
185
186 static void ims_pcu_buttons_report(struct ims_pcu *pcu, u32 data)
187 {
188         struct ims_pcu_buttons *buttons = &pcu->buttons;
189         struct input_dev *input = buttons->input;
190         int i;
191
192         for (i = 0; i < 32; i++) {
193                 unsigned short keycode = buttons->keymap[i];
194
195                 if (keycode != KEY_RESERVED)
196                         input_report_key(input, keycode, data & (1UL << i));
197         }
198
199         input_sync(input);
200 }
201
202 static int ims_pcu_setup_buttons(struct ims_pcu *pcu,
203                                  const unsigned short *keymap,
204                                  size_t keymap_len)
205 {
206         struct ims_pcu_buttons *buttons = &pcu->buttons;
207         struct input_dev *input;
208         int i;
209         int error;
210
211         input = input_allocate_device();
212         if (!input) {
213                 dev_err(pcu->dev,
214                         "Not enough memory for input input device\n");
215                 return -ENOMEM;
216         }
217
218         snprintf(buttons->name, sizeof(buttons->name),
219                  "IMS PCU#%d Button Interface", pcu->device_no);
220
221         usb_make_path(pcu->udev, buttons->phys, sizeof(buttons->phys));
222         strlcat(buttons->phys, "/input0", sizeof(buttons->phys));
223
224         memcpy(buttons->keymap, keymap, sizeof(*keymap) * keymap_len);
225
226         input->name = buttons->name;
227         input->phys = buttons->phys;
228         usb_to_input_id(pcu->udev, &input->id);
229         input->dev.parent = &pcu->ctrl_intf->dev;
230
231         input->keycode = buttons->keymap;
232         input->keycodemax = ARRAY_SIZE(buttons->keymap);
233         input->keycodesize = sizeof(buttons->keymap[0]);
234
235         __set_bit(EV_KEY, input->evbit);
236         for (i = 0; i < IMS_PCU_KEYMAP_LEN; i++)
237                 __set_bit(buttons->keymap[i], input->keybit);
238         __clear_bit(KEY_RESERVED, input->keybit);
239
240         error = input_register_device(input);
241         if (error) {
242                 dev_err(pcu->dev,
243                         "Failed to register buttons input device: %d\n",
244                         error);
245                 input_free_device(input);
246                 return error;
247         }
248
249         buttons->input = input;
250         return 0;
251 }
252
253 static void ims_pcu_destroy_buttons(struct ims_pcu *pcu)
254 {
255         struct ims_pcu_buttons *buttons = &pcu->buttons;
256
257         input_unregister_device(buttons->input);
258 }
259
260
261 /*********************************************************************
262  *             Gamepad Input device support                          *
263  *********************************************************************/
264
265 static void ims_pcu_gamepad_report(struct ims_pcu *pcu, u32 data)
266 {
267         struct ims_pcu_gamepad *gamepad = pcu->gamepad;
268         struct input_dev *input = gamepad->input;
269         int x, y;
270
271         x = !!(data & (1 << 14)) - !!(data & (1 << 13));
272         y = !!(data & (1 << 12)) - !!(data & (1 << 11));
273
274         input_report_abs(input, ABS_X, x);
275         input_report_abs(input, ABS_Y, y);
276
277         input_report_key(input, BTN_A, data & (1 << 7));
278         input_report_key(input, BTN_B, data & (1 << 8));
279         input_report_key(input, BTN_X, data & (1 << 9));
280         input_report_key(input, BTN_Y, data & (1 << 10));
281         input_report_key(input, BTN_START, data & (1 << 15));
282         input_report_key(input, BTN_SELECT, data & (1 << 16));
283
284         input_sync(input);
285 }
286
287 static int ims_pcu_setup_gamepad(struct ims_pcu *pcu)
288 {
289         struct ims_pcu_gamepad *gamepad;
290         struct input_dev *input;
291         int error;
292
293         gamepad = kzalloc(sizeof(struct ims_pcu_gamepad), GFP_KERNEL);
294         input = input_allocate_device();
295         if (!gamepad || !input) {
296                 dev_err(pcu->dev,
297                         "Not enough memory for gamepad device\n");
298                 error = -ENOMEM;
299                 goto err_free_mem;
300         }
301
302         gamepad->input = input;
303
304         snprintf(gamepad->name, sizeof(gamepad->name),
305                  "IMS PCU#%d Gamepad Interface", pcu->device_no);
306
307         usb_make_path(pcu->udev, gamepad->phys, sizeof(gamepad->phys));
308         strlcat(gamepad->phys, "/input1", sizeof(gamepad->phys));
309
310         input->name = gamepad->name;
311         input->phys = gamepad->phys;
312         usb_to_input_id(pcu->udev, &input->id);
313         input->dev.parent = &pcu->ctrl_intf->dev;
314
315         __set_bit(EV_KEY, input->evbit);
316         __set_bit(BTN_A, input->keybit);
317         __set_bit(BTN_B, input->keybit);
318         __set_bit(BTN_X, input->keybit);
319         __set_bit(BTN_Y, input->keybit);
320         __set_bit(BTN_START, input->keybit);
321         __set_bit(BTN_SELECT, input->keybit);
322
323         __set_bit(EV_ABS, input->evbit);
324         input_set_abs_params(input, ABS_X, -1, 1, 0, 0);
325         input_set_abs_params(input, ABS_Y, -1, 1, 0, 0);
326
327         error = input_register_device(input);
328         if (error) {
329                 dev_err(pcu->dev,
330                         "Failed to register gamepad input device: %d\n",
331                         error);
332                 goto err_free_mem;
333         }
334
335         pcu->gamepad = gamepad;
336         return 0;
337
338 err_free_mem:
339         input_free_device(input);
340         kfree(gamepad);
341         return -ENOMEM;
342 }
343
344 static void ims_pcu_destroy_gamepad(struct ims_pcu *pcu)
345 {
346         struct ims_pcu_gamepad *gamepad = pcu->gamepad;
347
348         input_unregister_device(gamepad->input);
349         kfree(gamepad);
350 }
351
352
353 /*********************************************************************
354  *             PCU Communication protocol handling                   *
355  *********************************************************************/
356
357 #define IMS_PCU_PROTOCOL_STX            0x02
358 #define IMS_PCU_PROTOCOL_ETX            0x03
359 #define IMS_PCU_PROTOCOL_DLE            0x10
360
361 /* PCU commands */
362 #define IMS_PCU_CMD_STATUS              0xa0
363 #define IMS_PCU_CMD_PCU_RESET           0xa1
364 #define IMS_PCU_CMD_RESET_REASON        0xa2
365 #define IMS_PCU_CMD_SEND_BUTTONS        0xa3
366 #define IMS_PCU_CMD_JUMP_TO_BTLDR       0xa4
367 #define IMS_PCU_CMD_GET_INFO            0xa5
368 #define IMS_PCU_CMD_SET_BRIGHTNESS      0xa6
369 #define IMS_PCU_CMD_EEPROM              0xa7
370 #define IMS_PCU_CMD_GET_FW_VERSION      0xa8
371 #define IMS_PCU_CMD_GET_BL_VERSION      0xa9
372 #define IMS_PCU_CMD_SET_INFO            0xab
373 #define IMS_PCU_CMD_GET_BRIGHTNESS      0xac
374 #define IMS_PCU_CMD_GET_DEVICE_ID       0xae
375 #define IMS_PCU_CMD_SPECIAL_INFO        0xb0
376 #define IMS_PCU_CMD_BOOTLOADER          0xb1    /* Pass data to bootloader */
377 #define IMS_PCU_CMD_OFN_SET_CONFIG      0xb3
378 #define IMS_PCU_CMD_OFN_GET_CONFIG      0xb4
379
380 /* PCU responses */
381 #define IMS_PCU_RSP_STATUS              0xc0
382 #define IMS_PCU_RSP_PCU_RESET           0       /* Originally 0xc1 */
383 #define IMS_PCU_RSP_RESET_REASON        0xc2
384 #define IMS_PCU_RSP_SEND_BUTTONS        0xc3
385 #define IMS_PCU_RSP_JUMP_TO_BTLDR       0       /* Originally 0xc4 */
386 #define IMS_PCU_RSP_GET_INFO            0xc5
387 #define IMS_PCU_RSP_SET_BRIGHTNESS      0xc6
388 #define IMS_PCU_RSP_EEPROM              0xc7
389 #define IMS_PCU_RSP_GET_FW_VERSION      0xc8
390 #define IMS_PCU_RSP_GET_BL_VERSION      0xc9
391 #define IMS_PCU_RSP_SET_INFO            0xcb
392 #define IMS_PCU_RSP_GET_BRIGHTNESS      0xcc
393 #define IMS_PCU_RSP_CMD_INVALID         0xcd
394 #define IMS_PCU_RSP_GET_DEVICE_ID       0xce
395 #define IMS_PCU_RSP_SPECIAL_INFO        0xd0
396 #define IMS_PCU_RSP_BOOTLOADER          0xd1    /* Bootloader response */
397 #define IMS_PCU_RSP_OFN_SET_CONFIG      0xd2
398 #define IMS_PCU_RSP_OFN_GET_CONFIG      0xd3
399
400
401 #define IMS_PCU_RSP_EVNT_BUTTONS        0xe0    /* Unsolicited, button state */
402 #define IMS_PCU_GAMEPAD_MASK            0x0001ff80UL    /* Bits 7 through 16 */
403
404
405 #define IMS_PCU_MIN_PACKET_LEN          3
406 #define IMS_PCU_DATA_OFFSET             2
407
408 #define IMS_PCU_CMD_WRITE_TIMEOUT       100 /* msec */
409 #define IMS_PCU_CMD_RESPONSE_TIMEOUT    500 /* msec */
410
411 static void ims_pcu_report_events(struct ims_pcu *pcu)
412 {
413         u32 data = get_unaligned_be32(&pcu->read_buf[3]);
414
415         ims_pcu_buttons_report(pcu, data & ~IMS_PCU_GAMEPAD_MASK);
416         if (pcu->gamepad)
417                 ims_pcu_gamepad_report(pcu, data);
418 }
419
420 static void ims_pcu_handle_response(struct ims_pcu *pcu)
421 {
422         switch (pcu->read_buf[0]) {
423         case IMS_PCU_RSP_EVNT_BUTTONS:
424                 if (likely(pcu->setup_complete))
425                         ims_pcu_report_events(pcu);
426                 break;
427
428         default:
429                 /*
430                  * See if we got command completion.
431                  * If both the sequence and response code match save
432                  * the data and signal completion.
433                  */
434                 if (pcu->read_buf[0] == pcu->expected_response &&
435                     pcu->read_buf[1] == pcu->ack_id - 1) {
436
437                         memcpy(pcu->cmd_buf, pcu->read_buf, pcu->read_pos);
438                         pcu->cmd_buf_len = pcu->read_pos;
439                         complete(&pcu->cmd_done);
440                 }
441                 break;
442         }
443 }
444
445 static void ims_pcu_process_data(struct ims_pcu *pcu, struct urb *urb)
446 {
447         int i;
448
449         for (i = 0; i < urb->actual_length; i++) {
450                 u8 data = pcu->urb_in_buf[i];
451
452                 /* Skip everything until we get Start Xmit */
453                 if (!pcu->have_stx && data != IMS_PCU_PROTOCOL_STX)
454                         continue;
455
456                 if (pcu->have_dle) {
457                         pcu->have_dle = false;
458                         pcu->read_buf[pcu->read_pos++] = data;
459                         pcu->check_sum += data;
460                         continue;
461                 }
462
463                 switch (data) {
464                 case IMS_PCU_PROTOCOL_STX:
465                         if (pcu->have_stx)
466                                 dev_warn(pcu->dev,
467                                          "Unexpected STX at byte %d, discarding old data\n",
468                                          pcu->read_pos);
469                         pcu->have_stx = true;
470                         pcu->have_dle = false;
471                         pcu->read_pos = 0;
472                         pcu->check_sum = 0;
473                         break;
474
475                 case IMS_PCU_PROTOCOL_DLE:
476                         pcu->have_dle = true;
477                         break;
478
479                 case IMS_PCU_PROTOCOL_ETX:
480                         if (pcu->read_pos < IMS_PCU_MIN_PACKET_LEN) {
481                                 dev_warn(pcu->dev,
482                                          "Short packet received (%d bytes), ignoring\n",
483                                          pcu->read_pos);
484                         } else if (pcu->check_sum != 0) {
485                                 dev_warn(pcu->dev,
486                                          "Invalid checksum in packet (%d bytes), ignoring\n",
487                                          pcu->read_pos);
488                         } else {
489                                 ims_pcu_handle_response(pcu);
490                         }
491
492                         pcu->have_stx = false;
493                         pcu->have_dle = false;
494                         pcu->read_pos = 0;
495                         break;
496
497                 default:
498                         pcu->read_buf[pcu->read_pos++] = data;
499                         pcu->check_sum += data;
500                         break;
501                 }
502         }
503 }
504
505 static bool ims_pcu_byte_needs_escape(u8 byte)
506 {
507         return byte == IMS_PCU_PROTOCOL_STX ||
508                byte == IMS_PCU_PROTOCOL_ETX ||
509                byte == IMS_PCU_PROTOCOL_DLE;
510 }
511
512 static int ims_pcu_send_cmd_chunk(struct ims_pcu *pcu,
513                                   u8 command, int chunk, int len)
514 {
515         int error;
516
517         error = usb_bulk_msg(pcu->udev,
518                              usb_sndbulkpipe(pcu->udev,
519                                              pcu->ep_out->bEndpointAddress),
520                              pcu->urb_out_buf, len,
521                              NULL, IMS_PCU_CMD_WRITE_TIMEOUT);
522         if (error < 0) {
523                 dev_dbg(pcu->dev,
524                         "Sending 0x%02x command failed at chunk %d: %d\n",
525                         command, chunk, error);
526                 return error;
527         }
528
529         return 0;
530 }
531
532 static int ims_pcu_send_command(struct ims_pcu *pcu,
533                                 u8 command, const u8 *data, int len)
534 {
535         int count = 0;
536         int chunk = 0;
537         int delta;
538         int i;
539         int error;
540         u8 csum = 0;
541         u8 ack_id;
542
543         pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_STX;
544
545         /* We know the command need not be escaped */
546         pcu->urb_out_buf[count++] = command;
547         csum += command;
548
549         ack_id = pcu->ack_id++;
550         if (ack_id == 0xff)
551                 ack_id = pcu->ack_id++;
552
553         if (ims_pcu_byte_needs_escape(ack_id))
554                 pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_DLE;
555
556         pcu->urb_out_buf[count++] = ack_id;
557         csum += ack_id;
558
559         for (i = 0; i < len; i++) {
560
561                 delta = ims_pcu_byte_needs_escape(data[i]) ? 2 : 1;
562                 if (count + delta >= pcu->max_out_size) {
563                         error = ims_pcu_send_cmd_chunk(pcu, command,
564                                                        ++chunk, count);
565                         if (error)
566                                 return error;
567
568                         count = 0;
569                 }
570
571                 if (delta == 2)
572                         pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_DLE;
573
574                 pcu->urb_out_buf[count++] = data[i];
575                 csum += data[i];
576         }
577
578         csum = 1 + ~csum;
579
580         delta = ims_pcu_byte_needs_escape(csum) ? 3 : 2;
581         if (count + delta >= pcu->max_out_size) {
582                 error = ims_pcu_send_cmd_chunk(pcu, command, ++chunk, count);
583                 if (error)
584                         return error;
585
586                 count = 0;
587         }
588
589         if (delta == 3)
590                 pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_DLE;
591
592         pcu->urb_out_buf[count++] = csum;
593         pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_ETX;
594
595         return ims_pcu_send_cmd_chunk(pcu, command, ++chunk, count);
596 }
597
598 static int __ims_pcu_execute_command(struct ims_pcu *pcu,
599                                      u8 command, const void *data, size_t len,
600                                      u8 expected_response, int response_time)
601 {
602         int error;
603
604         pcu->expected_response = expected_response;
605         init_completion(&pcu->cmd_done);
606
607         error = ims_pcu_send_command(pcu, command, data, len);
608         if (error)
609                 return error;
610
611         if (expected_response &&
612             !wait_for_completion_timeout(&pcu->cmd_done,
613                                          msecs_to_jiffies(response_time))) {
614                 dev_dbg(pcu->dev, "Command 0x%02x timed out\n", command);
615                 return -ETIMEDOUT;
616         }
617
618         return 0;
619 }
620
621 #define ims_pcu_execute_command(pcu, code, data, len)                   \
622         __ims_pcu_execute_command(pcu,                                  \
623                                   IMS_PCU_CMD_##code, data, len,        \
624                                   IMS_PCU_RSP_##code,                   \
625                                   IMS_PCU_CMD_RESPONSE_TIMEOUT)
626
627 #define ims_pcu_execute_query(pcu, code)                                \
628         ims_pcu_execute_command(pcu, code, NULL, 0)
629
630 /* Bootloader commands */
631 #define IMS_PCU_BL_CMD_QUERY_DEVICE     0xa1
632 #define IMS_PCU_BL_CMD_UNLOCK_CONFIG    0xa2
633 #define IMS_PCU_BL_CMD_ERASE_APP        0xa3
634 #define IMS_PCU_BL_CMD_PROGRAM_DEVICE   0xa4
635 #define IMS_PCU_BL_CMD_PROGRAM_COMPLETE 0xa5
636 #define IMS_PCU_BL_CMD_READ_APP         0xa6
637 #define IMS_PCU_BL_CMD_RESET_DEVICE     0xa7
638 #define IMS_PCU_BL_CMD_LAUNCH_APP       0xa8
639
640 /* Bootloader commands */
641 #define IMS_PCU_BL_RSP_QUERY_DEVICE     0xc1
642 #define IMS_PCU_BL_RSP_UNLOCK_CONFIG    0xc2
643 #define IMS_PCU_BL_RSP_ERASE_APP        0xc3
644 #define IMS_PCU_BL_RSP_PROGRAM_DEVICE   0xc4
645 #define IMS_PCU_BL_RSP_PROGRAM_COMPLETE 0xc5
646 #define IMS_PCU_BL_RSP_READ_APP         0xc6
647 #define IMS_PCU_BL_RSP_RESET_DEVICE     0       /* originally 0xa7 */
648 #define IMS_PCU_BL_RSP_LAUNCH_APP       0       /* originally 0xa8 */
649
650 #define IMS_PCU_BL_DATA_OFFSET          3
651
652 static int __ims_pcu_execute_bl_command(struct ims_pcu *pcu,
653                                         u8 command, const void *data, size_t len,
654                                         u8 expected_response, int response_time)
655 {
656         int error;
657
658         pcu->cmd_buf[0] = command;
659         if (data)
660                 memcpy(&pcu->cmd_buf[1], data, len);
661
662         error = __ims_pcu_execute_command(pcu,
663                                 IMS_PCU_CMD_BOOTLOADER, pcu->cmd_buf, len + 1,
664                                 expected_response ? IMS_PCU_RSP_BOOTLOADER : 0,
665                                 response_time);
666         if (error) {
667                 dev_err(pcu->dev,
668                         "Failure when sending 0x%02x command to bootloader, error: %d\n",
669                         pcu->cmd_buf[0], error);
670                 return error;
671         }
672
673         if (expected_response && pcu->cmd_buf[2] != expected_response) {
674                 dev_err(pcu->dev,
675                         "Unexpected response from bootloader: 0x%02x, wanted 0x%02x\n",
676                         pcu->cmd_buf[2], expected_response);
677                 return -EINVAL;
678         }
679
680         return 0;
681 }
682
683 #define ims_pcu_execute_bl_command(pcu, code, data, len, timeout)       \
684         __ims_pcu_execute_bl_command(pcu,                               \
685                                      IMS_PCU_BL_CMD_##code, data, len,  \
686                                      IMS_PCU_BL_RSP_##code, timeout)    \
687
688 #define IMS_PCU_INFO_PART_OFFSET        2
689 #define IMS_PCU_INFO_DOM_OFFSET         17
690 #define IMS_PCU_INFO_SERIAL_OFFSET      25
691
692 #define IMS_PCU_SET_INFO_SIZE           31
693
694 static int ims_pcu_get_info(struct ims_pcu *pcu)
695 {
696         int error;
697
698         error = ims_pcu_execute_query(pcu, GET_INFO);
699         if (error) {
700                 dev_err(pcu->dev,
701                         "GET_INFO command failed, error: %d\n", error);
702                 return error;
703         }
704
705         memcpy(pcu->part_number,
706                &pcu->cmd_buf[IMS_PCU_INFO_PART_OFFSET],
707                sizeof(pcu->part_number));
708         memcpy(pcu->date_of_manufacturing,
709                &pcu->cmd_buf[IMS_PCU_INFO_DOM_OFFSET],
710                sizeof(pcu->date_of_manufacturing));
711         memcpy(pcu->serial_number,
712                &pcu->cmd_buf[IMS_PCU_INFO_SERIAL_OFFSET],
713                sizeof(pcu->serial_number));
714
715         return 0;
716 }
717
718 static int ims_pcu_set_info(struct ims_pcu *pcu)
719 {
720         int error;
721
722         memcpy(&pcu->cmd_buf[IMS_PCU_INFO_PART_OFFSET],
723                pcu->part_number, sizeof(pcu->part_number));
724         memcpy(&pcu->cmd_buf[IMS_PCU_INFO_DOM_OFFSET],
725                pcu->date_of_manufacturing, sizeof(pcu->date_of_manufacturing));
726         memcpy(&pcu->cmd_buf[IMS_PCU_INFO_SERIAL_OFFSET],
727                pcu->serial_number, sizeof(pcu->serial_number));
728
729         error = ims_pcu_execute_command(pcu, SET_INFO,
730                                         &pcu->cmd_buf[IMS_PCU_DATA_OFFSET],
731                                         IMS_PCU_SET_INFO_SIZE);
732         if (error) {
733                 dev_err(pcu->dev,
734                         "Failed to update device information, error: %d\n",
735                         error);
736                 return error;
737         }
738
739         return 0;
740 }
741
742 static int ims_pcu_switch_to_bootloader(struct ims_pcu *pcu)
743 {
744         int error;
745
746         /* Execute jump to the bootoloader */
747         error = ims_pcu_execute_command(pcu, JUMP_TO_BTLDR, NULL, 0);
748         if (error) {
749                 dev_err(pcu->dev,
750                         "Failure when sending JUMP TO BOOLTLOADER command, error: %d\n",
751                         error);
752                 return error;
753         }
754
755         return 0;
756 }
757
758 /*********************************************************************
759  *             Firmware Update handling                              *
760  *********************************************************************/
761
762 #define IMS_PCU_FIRMWARE_NAME   "imspcu.fw"
763
764 struct ims_pcu_flash_fmt {
765         __le32 addr;
766         u8 len;
767         u8 data[];
768 };
769
770 static unsigned int ims_pcu_count_fw_records(const struct firmware *fw)
771 {
772         const struct ihex_binrec *rec = (const struct ihex_binrec *)fw->data;
773         unsigned int count = 0;
774
775         while (rec) {
776                 count++;
777                 rec = ihex_next_binrec(rec);
778         }
779
780         return count;
781 }
782
783 static int ims_pcu_verify_block(struct ims_pcu *pcu,
784                                 u32 addr, u8 len, const u8 *data)
785 {
786         struct ims_pcu_flash_fmt *fragment;
787         int error;
788
789         fragment = (void *)&pcu->cmd_buf[1];
790         put_unaligned_le32(addr, &fragment->addr);
791         fragment->len = len;
792
793         error = ims_pcu_execute_bl_command(pcu, READ_APP, NULL, 5,
794                                         IMS_PCU_CMD_RESPONSE_TIMEOUT);
795         if (error) {
796                 dev_err(pcu->dev,
797                         "Failed to retrieve block at 0x%08x, len %d, error: %d\n",
798                         addr, len, error);
799                 return error;
800         }
801
802         fragment = (void *)&pcu->cmd_buf[IMS_PCU_BL_DATA_OFFSET];
803         if (get_unaligned_le32(&fragment->addr) != addr ||
804             fragment->len != len) {
805                 dev_err(pcu->dev,
806                         "Wrong block when retrieving 0x%08x (0x%08x), len %d (%d)\n",
807                         addr, get_unaligned_le32(&fragment->addr),
808                         len, fragment->len);
809                 return -EINVAL;
810         }
811
812         if (memcmp(fragment->data, data, len)) {
813                 dev_err(pcu->dev,
814                         "Mismatch in block at 0x%08x, len %d\n",
815                         addr, len);
816                 return -EINVAL;
817         }
818
819         return 0;
820 }
821
822 static int ims_pcu_flash_firmware(struct ims_pcu *pcu,
823                                   const struct firmware *fw,
824                                   unsigned int n_fw_records)
825 {
826         const struct ihex_binrec *rec = (const struct ihex_binrec *)fw->data;
827         struct ims_pcu_flash_fmt *fragment;
828         unsigned int count = 0;
829         u32 addr;
830         u8 len;
831         int error;
832
833         error = ims_pcu_execute_bl_command(pcu, ERASE_APP, NULL, 0, 2000);
834         if (error) {
835                 dev_err(pcu->dev,
836                         "Failed to erase application image, error: %d\n",
837                         error);
838                 return error;
839         }
840
841         while (rec) {
842                 /*
843                  * The firmware format is messed up for some reason.
844                  * The address twice that of what is needed for some
845                  * reason and we end up overwriting half of the data
846                  * with the next record.
847                  */
848                 addr = be32_to_cpu(rec->addr) / 2;
849                 len = be16_to_cpu(rec->len);
850
851                 fragment = (void *)&pcu->cmd_buf[1];
852                 put_unaligned_le32(addr, &fragment->addr);
853                 fragment->len = len;
854                 memcpy(fragment->data, rec->data, len);
855
856                 error = ims_pcu_execute_bl_command(pcu, PROGRAM_DEVICE,
857                                                 NULL, len + 5,
858                                                 IMS_PCU_CMD_RESPONSE_TIMEOUT);
859                 if (error) {
860                         dev_err(pcu->dev,
861                                 "Failed to write block at 0x%08x, len %d, error: %d\n",
862                                 addr, len, error);
863                         return error;
864                 }
865
866                 if (addr >= pcu->fw_start_addr && addr < pcu->fw_end_addr) {
867                         error = ims_pcu_verify_block(pcu, addr, len, rec->data);
868                         if (error)
869                                 return error;
870                 }
871
872                 count++;
873                 pcu->update_firmware_status = (count * 100) / n_fw_records;
874
875                 rec = ihex_next_binrec(rec);
876         }
877
878         error = ims_pcu_execute_bl_command(pcu, PROGRAM_COMPLETE,
879                                             NULL, 0, 2000);
880         if (error)
881                 dev_err(pcu->dev,
882                         "Failed to send PROGRAM_COMPLETE, error: %d\n",
883                         error);
884
885         return 0;
886 }
887
888 static int ims_pcu_handle_firmware_update(struct ims_pcu *pcu,
889                                           const struct firmware *fw)
890 {
891         unsigned int n_fw_records;
892         int retval;
893
894         dev_info(pcu->dev, "Updating firmware %s, size: %zu\n",
895                  IMS_PCU_FIRMWARE_NAME, fw->size);
896
897         n_fw_records = ims_pcu_count_fw_records(fw);
898
899         retval = ims_pcu_flash_firmware(pcu, fw, n_fw_records);
900         if (retval)
901                 goto out;
902
903         retval = ims_pcu_execute_bl_command(pcu, LAUNCH_APP, NULL, 0, 0);
904         if (retval)
905                 dev_err(pcu->dev,
906                         "Failed to start application image, error: %d\n",
907                         retval);
908
909 out:
910         pcu->update_firmware_status = retval;
911         sysfs_notify(&pcu->dev->kobj, NULL, "update_firmware_status");
912         return retval;
913 }
914
915 static void ims_pcu_process_async_firmware(const struct firmware *fw,
916                                            void *context)
917 {
918         struct ims_pcu *pcu = context;
919         int error;
920
921         if (!fw) {
922                 dev_err(pcu->dev, "Failed to get firmware %s\n",
923                         IMS_PCU_FIRMWARE_NAME);
924                 goto out;
925         }
926
927         error = ihex_validate_fw(fw);
928         if (error) {
929                 dev_err(pcu->dev, "Firmware %s is invalid\n",
930                         IMS_PCU_FIRMWARE_NAME);
931                 goto out;
932         }
933
934         mutex_lock(&pcu->cmd_mutex);
935         ims_pcu_handle_firmware_update(pcu, fw);
936         mutex_unlock(&pcu->cmd_mutex);
937
938         release_firmware(fw);
939
940 out:
941         complete(&pcu->async_firmware_done);
942 }
943
944 /*********************************************************************
945  *             Backlight LED device support                          *
946  *********************************************************************/
947
948 #define IMS_PCU_MAX_BRIGHTNESS          31998
949
950 static int ims_pcu_backlight_set_brightness(struct led_classdev *cdev,
951                                             enum led_brightness value)
952 {
953         struct ims_pcu_backlight *backlight =
954                         container_of(cdev, struct ims_pcu_backlight, cdev);
955         struct ims_pcu *pcu =
956                         container_of(backlight, struct ims_pcu, backlight);
957         __le16 br_val = cpu_to_le16(value);
958         int error;
959
960         mutex_lock(&pcu->cmd_mutex);
961
962         error = ims_pcu_execute_command(pcu, SET_BRIGHTNESS,
963                                         &br_val, sizeof(br_val));
964         if (error && error != -ENODEV)
965                 dev_warn(pcu->dev,
966                          "Failed to set desired brightness %u, error: %d\n",
967                          value, error);
968
969         mutex_unlock(&pcu->cmd_mutex);
970
971         return error;
972 }
973
974 static enum led_brightness
975 ims_pcu_backlight_get_brightness(struct led_classdev *cdev)
976 {
977         struct ims_pcu_backlight *backlight =
978                         container_of(cdev, struct ims_pcu_backlight, cdev);
979         struct ims_pcu *pcu =
980                         container_of(backlight, struct ims_pcu, backlight);
981         int brightness;
982         int error;
983
984         mutex_lock(&pcu->cmd_mutex);
985
986         error = ims_pcu_execute_query(pcu, GET_BRIGHTNESS);
987         if (error) {
988                 dev_warn(pcu->dev,
989                          "Failed to get current brightness, error: %d\n",
990                          error);
991                 /* Assume the LED is OFF */
992                 brightness = LED_OFF;
993         } else {
994                 brightness =
995                         get_unaligned_le16(&pcu->cmd_buf[IMS_PCU_DATA_OFFSET]);
996         }
997
998         mutex_unlock(&pcu->cmd_mutex);
999
1000         return brightness;
1001 }
1002
1003 static int ims_pcu_setup_backlight(struct ims_pcu *pcu)
1004 {
1005         struct ims_pcu_backlight *backlight = &pcu->backlight;
1006         int error;
1007
1008         snprintf(backlight->name, sizeof(backlight->name),
1009                  "pcu%d::kbd_backlight", pcu->device_no);
1010
1011         backlight->cdev.name = backlight->name;
1012         backlight->cdev.max_brightness = IMS_PCU_MAX_BRIGHTNESS;
1013         backlight->cdev.brightness_get = ims_pcu_backlight_get_brightness;
1014         backlight->cdev.brightness_set_blocking =
1015                                          ims_pcu_backlight_set_brightness;
1016
1017         error = led_classdev_register(pcu->dev, &backlight->cdev);
1018         if (error) {
1019                 dev_err(pcu->dev,
1020                         "Failed to register backlight LED device, error: %d\n",
1021                         error);
1022                 return error;
1023         }
1024
1025         return 0;
1026 }
1027
1028 static void ims_pcu_destroy_backlight(struct ims_pcu *pcu)
1029 {
1030         struct ims_pcu_backlight *backlight = &pcu->backlight;
1031
1032         led_classdev_unregister(&backlight->cdev);
1033 }
1034
1035
1036 /*********************************************************************
1037  *             Sysfs attributes handling                             *
1038  *********************************************************************/
1039
1040 struct ims_pcu_attribute {
1041         struct device_attribute dattr;
1042         size_t field_offset;
1043         int field_length;
1044 };
1045
1046 static ssize_t ims_pcu_attribute_show(struct device *dev,
1047                                       struct device_attribute *dattr,
1048                                       char *buf)
1049 {
1050         struct usb_interface *intf = to_usb_interface(dev);
1051         struct ims_pcu *pcu = usb_get_intfdata(intf);
1052         struct ims_pcu_attribute *attr =
1053                         container_of(dattr, struct ims_pcu_attribute, dattr);
1054         char *field = (char *)pcu + attr->field_offset;
1055
1056         return scnprintf(buf, PAGE_SIZE, "%.*s\n", attr->field_length, field);
1057 }
1058
1059 static ssize_t ims_pcu_attribute_store(struct device *dev,
1060                                        struct device_attribute *dattr,
1061                                        const char *buf, size_t count)
1062 {
1063
1064         struct usb_interface *intf = to_usb_interface(dev);
1065         struct ims_pcu *pcu = usb_get_intfdata(intf);
1066         struct ims_pcu_attribute *attr =
1067                         container_of(dattr, struct ims_pcu_attribute, dattr);
1068         char *field = (char *)pcu + attr->field_offset;
1069         size_t data_len;
1070         int error;
1071
1072         if (count > attr->field_length)
1073                 return -EINVAL;
1074
1075         data_len = strnlen(buf, attr->field_length);
1076         if (data_len > attr->field_length)
1077                 return -EINVAL;
1078
1079         error = mutex_lock_interruptible(&pcu->cmd_mutex);
1080         if (error)
1081                 return error;
1082
1083         memset(field, 0, attr->field_length);
1084         memcpy(field, buf, data_len);
1085
1086         error = ims_pcu_set_info(pcu);
1087
1088         /*
1089          * Even if update failed, let's fetch the info again as we just
1090          * clobbered one of the fields.
1091          */
1092         ims_pcu_get_info(pcu);
1093
1094         mutex_unlock(&pcu->cmd_mutex);
1095
1096         return error < 0 ? error : count;
1097 }
1098
1099 #define IMS_PCU_ATTR(_field, _mode)                                     \
1100 struct ims_pcu_attribute ims_pcu_attr_##_field = {                      \
1101         .dattr = __ATTR(_field, _mode,                                  \
1102                         ims_pcu_attribute_show,                         \
1103                         ims_pcu_attribute_store),                       \
1104         .field_offset = offsetof(struct ims_pcu, _field),               \
1105         .field_length = sizeof(((struct ims_pcu *)NULL)->_field),       \
1106 }
1107
1108 #define IMS_PCU_RO_ATTR(_field)                                         \
1109                 IMS_PCU_ATTR(_field, S_IRUGO)
1110 #define IMS_PCU_RW_ATTR(_field)                                         \
1111                 IMS_PCU_ATTR(_field, S_IRUGO | S_IWUSR)
1112
1113 static IMS_PCU_RW_ATTR(part_number);
1114 static IMS_PCU_RW_ATTR(serial_number);
1115 static IMS_PCU_RW_ATTR(date_of_manufacturing);
1116
1117 static IMS_PCU_RO_ATTR(fw_version);
1118 static IMS_PCU_RO_ATTR(bl_version);
1119 static IMS_PCU_RO_ATTR(reset_reason);
1120
1121 static ssize_t ims_pcu_reset_device(struct device *dev,
1122                                     struct device_attribute *dattr,
1123                                     const char *buf, size_t count)
1124 {
1125         static const u8 reset_byte = 1;
1126         struct usb_interface *intf = to_usb_interface(dev);
1127         struct ims_pcu *pcu = usb_get_intfdata(intf);
1128         int value;
1129         int error;
1130
1131         error = kstrtoint(buf, 0, &value);
1132         if (error)
1133                 return error;
1134
1135         if (value != 1)
1136                 return -EINVAL;
1137
1138         dev_info(pcu->dev, "Attempting to reset device\n");
1139
1140         error = ims_pcu_execute_command(pcu, PCU_RESET, &reset_byte, 1);
1141         if (error) {
1142                 dev_info(pcu->dev,
1143                          "Failed to reset device, error: %d\n",
1144                          error);
1145                 return error;
1146         }
1147
1148         return count;
1149 }
1150
1151 static DEVICE_ATTR(reset_device, S_IWUSR, NULL, ims_pcu_reset_device);
1152
1153 static ssize_t ims_pcu_update_firmware_store(struct device *dev,
1154                                              struct device_attribute *dattr,
1155                                              const char *buf, size_t count)
1156 {
1157         struct usb_interface *intf = to_usb_interface(dev);
1158         struct ims_pcu *pcu = usb_get_intfdata(intf);
1159         const struct firmware *fw = NULL;
1160         int value;
1161         int error;
1162
1163         error = kstrtoint(buf, 0, &value);
1164         if (error)
1165                 return error;
1166
1167         if (value != 1)
1168                 return -EINVAL;
1169
1170         error = mutex_lock_interruptible(&pcu->cmd_mutex);
1171         if (error)
1172                 return error;
1173
1174         error = request_ihex_firmware(&fw, IMS_PCU_FIRMWARE_NAME, pcu->dev);
1175         if (error) {
1176                 dev_err(pcu->dev, "Failed to request firmware %s, error: %d\n",
1177                         IMS_PCU_FIRMWARE_NAME, error);
1178                 goto out;
1179         }
1180
1181         /*
1182          * If we are already in bootloader mode we can proceed with
1183          * flashing the firmware.
1184          *
1185          * If we are in application mode, then we need to switch into
1186          * bootloader mode, which will cause the device to disconnect
1187          * and reconnect as different device.
1188          */
1189         if (pcu->bootloader_mode)
1190                 error = ims_pcu_handle_firmware_update(pcu, fw);
1191         else
1192                 error = ims_pcu_switch_to_bootloader(pcu);
1193
1194         release_firmware(fw);
1195
1196 out:
1197         mutex_unlock(&pcu->cmd_mutex);
1198         return error ?: count;
1199 }
1200
1201 static DEVICE_ATTR(update_firmware, S_IWUSR,
1202                    NULL, ims_pcu_update_firmware_store);
1203
1204 static ssize_t
1205 ims_pcu_update_firmware_status_show(struct device *dev,
1206                                     struct device_attribute *dattr,
1207                                     char *buf)
1208 {
1209         struct usb_interface *intf = to_usb_interface(dev);
1210         struct ims_pcu *pcu = usb_get_intfdata(intf);
1211
1212         return scnprintf(buf, PAGE_SIZE, "%d\n", pcu->update_firmware_status);
1213 }
1214
1215 static DEVICE_ATTR(update_firmware_status, S_IRUGO,
1216                    ims_pcu_update_firmware_status_show, NULL);
1217
1218 static struct attribute *ims_pcu_attrs[] = {
1219         &ims_pcu_attr_part_number.dattr.attr,
1220         &ims_pcu_attr_serial_number.dattr.attr,
1221         &ims_pcu_attr_date_of_manufacturing.dattr.attr,
1222         &ims_pcu_attr_fw_version.dattr.attr,
1223         &ims_pcu_attr_bl_version.dattr.attr,
1224         &ims_pcu_attr_reset_reason.dattr.attr,
1225         &dev_attr_reset_device.attr,
1226         &dev_attr_update_firmware.attr,
1227         &dev_attr_update_firmware_status.attr,
1228         NULL
1229 };
1230
1231 static umode_t ims_pcu_is_attr_visible(struct kobject *kobj,
1232                                        struct attribute *attr, int n)
1233 {
1234         struct device *dev = container_of(kobj, struct device, kobj);
1235         struct usb_interface *intf = to_usb_interface(dev);
1236         struct ims_pcu *pcu = usb_get_intfdata(intf);
1237         umode_t mode = attr->mode;
1238
1239         if (pcu->bootloader_mode) {
1240                 if (attr != &dev_attr_update_firmware_status.attr &&
1241                     attr != &dev_attr_update_firmware.attr &&
1242                     attr != &dev_attr_reset_device.attr) {
1243                         mode = 0;
1244                 }
1245         } else {
1246                 if (attr == &dev_attr_update_firmware_status.attr)
1247                         mode = 0;
1248         }
1249
1250         return mode;
1251 }
1252
1253 static const struct attribute_group ims_pcu_attr_group = {
1254         .is_visible     = ims_pcu_is_attr_visible,
1255         .attrs          = ims_pcu_attrs,
1256 };
1257
1258 /* Support for a separate OFN attribute group */
1259
1260 #define OFN_REG_RESULT_OFFSET   2
1261
1262 static int ims_pcu_read_ofn_config(struct ims_pcu *pcu, u8 addr, u8 *data)
1263 {
1264         int error;
1265         s16 result;
1266
1267         error = ims_pcu_execute_command(pcu, OFN_GET_CONFIG,
1268                                         &addr, sizeof(addr));
1269         if (error)
1270                 return error;
1271
1272         result = (s16)get_unaligned_le16(pcu->cmd_buf + OFN_REG_RESULT_OFFSET);
1273         if (result < 0)
1274                 return -EIO;
1275
1276         /* We only need LSB */
1277         *data = pcu->cmd_buf[OFN_REG_RESULT_OFFSET];
1278         return 0;
1279 }
1280
1281 static int ims_pcu_write_ofn_config(struct ims_pcu *pcu, u8 addr, u8 data)
1282 {
1283         u8 buffer[] = { addr, data };
1284         int error;
1285         s16 result;
1286
1287         error = ims_pcu_execute_command(pcu, OFN_SET_CONFIG,
1288                                         &buffer, sizeof(buffer));
1289         if (error)
1290                 return error;
1291
1292         result = (s16)get_unaligned_le16(pcu->cmd_buf + OFN_REG_RESULT_OFFSET);
1293         if (result < 0)
1294                 return -EIO;
1295
1296         return 0;
1297 }
1298
1299 static ssize_t ims_pcu_ofn_reg_data_show(struct device *dev,
1300                                          struct device_attribute *dattr,
1301                                          char *buf)
1302 {
1303         struct usb_interface *intf = to_usb_interface(dev);
1304         struct ims_pcu *pcu = usb_get_intfdata(intf);
1305         int error;
1306         u8 data;
1307
1308         mutex_lock(&pcu->cmd_mutex);
1309         error = ims_pcu_read_ofn_config(pcu, pcu->ofn_reg_addr, &data);
1310         mutex_unlock(&pcu->cmd_mutex);
1311
1312         if (error)
1313                 return error;
1314
1315         return scnprintf(buf, PAGE_SIZE, "%x\n", data);
1316 }
1317
1318 static ssize_t ims_pcu_ofn_reg_data_store(struct device *dev,
1319                                           struct device_attribute *dattr,
1320                                           const char *buf, size_t count)
1321 {
1322         struct usb_interface *intf = to_usb_interface(dev);
1323         struct ims_pcu *pcu = usb_get_intfdata(intf);
1324         int error;
1325         u8 value;
1326
1327         error = kstrtou8(buf, 0, &value);
1328         if (error)
1329                 return error;
1330
1331         mutex_lock(&pcu->cmd_mutex);
1332         error = ims_pcu_write_ofn_config(pcu, pcu->ofn_reg_addr, value);
1333         mutex_unlock(&pcu->cmd_mutex);
1334
1335         return error ?: count;
1336 }
1337
1338 static DEVICE_ATTR(reg_data, S_IRUGO | S_IWUSR,
1339                    ims_pcu_ofn_reg_data_show, ims_pcu_ofn_reg_data_store);
1340
1341 static ssize_t ims_pcu_ofn_reg_addr_show(struct device *dev,
1342                                          struct device_attribute *dattr,
1343                                          char *buf)
1344 {
1345         struct usb_interface *intf = to_usb_interface(dev);
1346         struct ims_pcu *pcu = usb_get_intfdata(intf);
1347         int error;
1348
1349         mutex_lock(&pcu->cmd_mutex);
1350         error = scnprintf(buf, PAGE_SIZE, "%x\n", pcu->ofn_reg_addr);
1351         mutex_unlock(&pcu->cmd_mutex);
1352
1353         return error;
1354 }
1355
1356 static ssize_t ims_pcu_ofn_reg_addr_store(struct device *dev,
1357                                           struct device_attribute *dattr,
1358                                           const char *buf, size_t count)
1359 {
1360         struct usb_interface *intf = to_usb_interface(dev);
1361         struct ims_pcu *pcu = usb_get_intfdata(intf);
1362         int error;
1363         u8 value;
1364
1365         error = kstrtou8(buf, 0, &value);
1366         if (error)
1367                 return error;
1368
1369         mutex_lock(&pcu->cmd_mutex);
1370         pcu->ofn_reg_addr = value;
1371         mutex_unlock(&pcu->cmd_mutex);
1372
1373         return count;
1374 }
1375
1376 static DEVICE_ATTR(reg_addr, S_IRUGO | S_IWUSR,
1377                    ims_pcu_ofn_reg_addr_show, ims_pcu_ofn_reg_addr_store);
1378
1379 struct ims_pcu_ofn_bit_attribute {
1380         struct device_attribute dattr;
1381         u8 addr;
1382         u8 nr;
1383 };
1384
1385 static ssize_t ims_pcu_ofn_bit_show(struct device *dev,
1386                                     struct device_attribute *dattr,
1387                                     char *buf)
1388 {
1389         struct usb_interface *intf = to_usb_interface(dev);
1390         struct ims_pcu *pcu = usb_get_intfdata(intf);
1391         struct ims_pcu_ofn_bit_attribute *attr =
1392                 container_of(dattr, struct ims_pcu_ofn_bit_attribute, dattr);
1393         int error;
1394         u8 data;
1395
1396         mutex_lock(&pcu->cmd_mutex);
1397         error = ims_pcu_read_ofn_config(pcu, attr->addr, &data);
1398         mutex_unlock(&pcu->cmd_mutex);
1399
1400         if (error)
1401                 return error;
1402
1403         return scnprintf(buf, PAGE_SIZE, "%d\n", !!(data & (1 << attr->nr)));
1404 }
1405
1406 static ssize_t ims_pcu_ofn_bit_store(struct device *dev,
1407                                      struct device_attribute *dattr,
1408                                      const char *buf, size_t count)
1409 {
1410         struct usb_interface *intf = to_usb_interface(dev);
1411         struct ims_pcu *pcu = usb_get_intfdata(intf);
1412         struct ims_pcu_ofn_bit_attribute *attr =
1413                 container_of(dattr, struct ims_pcu_ofn_bit_attribute, dattr);
1414         int error;
1415         int value;
1416         u8 data;
1417
1418         error = kstrtoint(buf, 0, &value);
1419         if (error)
1420                 return error;
1421
1422         if (value > 1)
1423                 return -EINVAL;
1424
1425         mutex_lock(&pcu->cmd_mutex);
1426
1427         error = ims_pcu_read_ofn_config(pcu, attr->addr, &data);
1428         if (!error) {
1429                 if (value)
1430                         data |= 1U << attr->nr;
1431                 else
1432                         data &= ~(1U << attr->nr);
1433
1434                 error = ims_pcu_write_ofn_config(pcu, attr->addr, data);
1435         }
1436
1437         mutex_unlock(&pcu->cmd_mutex);
1438
1439         return error ?: count;
1440 }
1441
1442 #define IMS_PCU_OFN_BIT_ATTR(_field, _addr, _nr)                        \
1443 struct ims_pcu_ofn_bit_attribute ims_pcu_ofn_attr_##_field = {          \
1444         .dattr = __ATTR(_field, S_IWUSR | S_IRUGO,                      \
1445                         ims_pcu_ofn_bit_show, ims_pcu_ofn_bit_store),   \
1446         .addr = _addr,                                                  \
1447         .nr = _nr,                                                      \
1448 }
1449
1450 static IMS_PCU_OFN_BIT_ATTR(engine_enable,   0x60, 7);
1451 static IMS_PCU_OFN_BIT_ATTR(speed_enable,    0x60, 6);
1452 static IMS_PCU_OFN_BIT_ATTR(assert_enable,   0x60, 5);
1453 static IMS_PCU_OFN_BIT_ATTR(xyquant_enable,  0x60, 4);
1454 static IMS_PCU_OFN_BIT_ATTR(xyscale_enable,  0x60, 1);
1455
1456 static IMS_PCU_OFN_BIT_ATTR(scale_x2,        0x63, 6);
1457 static IMS_PCU_OFN_BIT_ATTR(scale_y2,        0x63, 7);
1458
1459 static struct attribute *ims_pcu_ofn_attrs[] = {
1460         &dev_attr_reg_data.attr,
1461         &dev_attr_reg_addr.attr,
1462         &ims_pcu_ofn_attr_engine_enable.dattr.attr,
1463         &ims_pcu_ofn_attr_speed_enable.dattr.attr,
1464         &ims_pcu_ofn_attr_assert_enable.dattr.attr,
1465         &ims_pcu_ofn_attr_xyquant_enable.dattr.attr,
1466         &ims_pcu_ofn_attr_xyscale_enable.dattr.attr,
1467         &ims_pcu_ofn_attr_scale_x2.dattr.attr,
1468         &ims_pcu_ofn_attr_scale_y2.dattr.attr,
1469         NULL
1470 };
1471
1472 static const struct attribute_group ims_pcu_ofn_attr_group = {
1473         .name   = "ofn",
1474         .attrs  = ims_pcu_ofn_attrs,
1475 };
1476
1477 static void ims_pcu_irq(struct urb *urb)
1478 {
1479         struct ims_pcu *pcu = urb->context;
1480         int retval, status;
1481
1482         status = urb->status;
1483
1484         switch (status) {
1485         case 0:
1486                 /* success */
1487                 break;
1488         case -ECONNRESET:
1489         case -ENOENT:
1490         case -ESHUTDOWN:
1491                 /* this urb is terminated, clean up */
1492                 dev_dbg(pcu->dev, "%s - urb shutting down with status: %d\n",
1493                         __func__, status);
1494                 return;
1495         default:
1496                 dev_dbg(pcu->dev, "%s - nonzero urb status received: %d\n",
1497                         __func__, status);
1498                 goto exit;
1499         }
1500
1501         dev_dbg(pcu->dev, "%s: received %d: %*ph\n", __func__,
1502                 urb->actual_length, urb->actual_length, pcu->urb_in_buf);
1503
1504         if (urb == pcu->urb_in)
1505                 ims_pcu_process_data(pcu, urb);
1506
1507 exit:
1508         retval = usb_submit_urb(urb, GFP_ATOMIC);
1509         if (retval && retval != -ENODEV)
1510                 dev_err(pcu->dev, "%s - usb_submit_urb failed with result %d\n",
1511                         __func__, retval);
1512 }
1513
1514 static int ims_pcu_buffers_alloc(struct ims_pcu *pcu)
1515 {
1516         int error;
1517
1518         pcu->urb_in_buf = usb_alloc_coherent(pcu->udev, pcu->max_in_size,
1519                                              GFP_KERNEL, &pcu->read_dma);
1520         if (!pcu->urb_in_buf) {
1521                 dev_err(pcu->dev,
1522                         "Failed to allocate memory for read buffer\n");
1523                 return -ENOMEM;
1524         }
1525
1526         pcu->urb_in = usb_alloc_urb(0, GFP_KERNEL);
1527         if (!pcu->urb_in) {
1528                 dev_err(pcu->dev, "Failed to allocate input URB\n");
1529                 error = -ENOMEM;
1530                 goto err_free_urb_in_buf;
1531         }
1532
1533         pcu->urb_in->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
1534         pcu->urb_in->transfer_dma = pcu->read_dma;
1535
1536         usb_fill_bulk_urb(pcu->urb_in, pcu->udev,
1537                           usb_rcvbulkpipe(pcu->udev,
1538                                           pcu->ep_in->bEndpointAddress),
1539                           pcu->urb_in_buf, pcu->max_in_size,
1540                           ims_pcu_irq, pcu);
1541
1542         /*
1543          * We are using usb_bulk_msg() for sending so there is no point
1544          * in allocating memory with usb_alloc_coherent().
1545          */
1546         pcu->urb_out_buf = kmalloc(pcu->max_out_size, GFP_KERNEL);
1547         if (!pcu->urb_out_buf) {
1548                 dev_err(pcu->dev, "Failed to allocate memory for write buffer\n");
1549                 error = -ENOMEM;
1550                 goto err_free_in_urb;
1551         }
1552
1553         pcu->urb_ctrl_buf = usb_alloc_coherent(pcu->udev, pcu->max_ctrl_size,
1554                                                GFP_KERNEL, &pcu->ctrl_dma);
1555         if (!pcu->urb_ctrl_buf) {
1556                 dev_err(pcu->dev,
1557                         "Failed to allocate memory for read buffer\n");
1558                 error = -ENOMEM;
1559                 goto err_free_urb_out_buf;
1560         }
1561
1562         pcu->urb_ctrl = usb_alloc_urb(0, GFP_KERNEL);
1563         if (!pcu->urb_ctrl) {
1564                 dev_err(pcu->dev, "Failed to allocate input URB\n");
1565                 error = -ENOMEM;
1566                 goto err_free_urb_ctrl_buf;
1567         }
1568
1569         pcu->urb_ctrl->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
1570         pcu->urb_ctrl->transfer_dma = pcu->ctrl_dma;
1571
1572         usb_fill_int_urb(pcu->urb_ctrl, pcu->udev,
1573                           usb_rcvintpipe(pcu->udev,
1574                                          pcu->ep_ctrl->bEndpointAddress),
1575                           pcu->urb_ctrl_buf, pcu->max_ctrl_size,
1576                           ims_pcu_irq, pcu, pcu->ep_ctrl->bInterval);
1577
1578         return 0;
1579
1580 err_free_urb_ctrl_buf:
1581         usb_free_coherent(pcu->udev, pcu->max_ctrl_size,
1582                           pcu->urb_ctrl_buf, pcu->ctrl_dma);
1583 err_free_urb_out_buf:
1584         kfree(pcu->urb_out_buf);
1585 err_free_in_urb:
1586         usb_free_urb(pcu->urb_in);
1587 err_free_urb_in_buf:
1588         usb_free_coherent(pcu->udev, pcu->max_in_size,
1589                           pcu->urb_in_buf, pcu->read_dma);
1590         return error;
1591 }
1592
1593 static void ims_pcu_buffers_free(struct ims_pcu *pcu)
1594 {
1595         usb_kill_urb(pcu->urb_in);
1596         usb_free_urb(pcu->urb_in);
1597
1598         usb_free_coherent(pcu->udev, pcu->max_out_size,
1599                           pcu->urb_in_buf, pcu->read_dma);
1600
1601         kfree(pcu->urb_out_buf);
1602
1603         usb_kill_urb(pcu->urb_ctrl);
1604         usb_free_urb(pcu->urb_ctrl);
1605
1606         usb_free_coherent(pcu->udev, pcu->max_ctrl_size,
1607                           pcu->urb_ctrl_buf, pcu->ctrl_dma);
1608 }
1609
1610 static const struct usb_cdc_union_desc *
1611 ims_pcu_get_cdc_union_desc(struct usb_interface *intf)
1612 {
1613         const void *buf = intf->altsetting->extra;
1614         size_t buflen = intf->altsetting->extralen;
1615         struct usb_cdc_union_desc *union_desc;
1616
1617         if (!buf) {
1618                 dev_err(&intf->dev, "Missing descriptor data\n");
1619                 return NULL;
1620         }
1621
1622         if (!buflen) {
1623                 dev_err(&intf->dev, "Zero length descriptor\n");
1624                 return NULL;
1625         }
1626
1627         while (buflen >= sizeof(*union_desc)) {
1628                 union_desc = (struct usb_cdc_union_desc *)buf;
1629
1630                 if (union_desc->bLength > buflen) {
1631                         dev_err(&intf->dev, "Too large descriptor\n");
1632                         return NULL;
1633                 }
1634
1635                 if (union_desc->bDescriptorType == USB_DT_CS_INTERFACE &&
1636                     union_desc->bDescriptorSubType == USB_CDC_UNION_TYPE) {
1637                         dev_dbg(&intf->dev, "Found union header\n");
1638
1639                         if (union_desc->bLength >= sizeof(*union_desc))
1640                                 return union_desc;
1641
1642                         dev_err(&intf->dev,
1643                                 "Union descriptor too short (%d vs %zd)\n",
1644                                 union_desc->bLength, sizeof(*union_desc));
1645                         return NULL;
1646                 }
1647
1648                 buflen -= union_desc->bLength;
1649                 buf += union_desc->bLength;
1650         }
1651
1652         dev_err(&intf->dev, "Missing CDC union descriptor\n");
1653         return NULL;
1654 }
1655
1656 static int ims_pcu_parse_cdc_data(struct usb_interface *intf, struct ims_pcu *pcu)
1657 {
1658         const struct usb_cdc_union_desc *union_desc;
1659         struct usb_host_interface *alt;
1660
1661         union_desc = ims_pcu_get_cdc_union_desc(intf);
1662         if (!union_desc)
1663                 return -EINVAL;
1664
1665         pcu->ctrl_intf = usb_ifnum_to_if(pcu->udev,
1666                                          union_desc->bMasterInterface0);
1667         if (!pcu->ctrl_intf)
1668                 return -EINVAL;
1669
1670         alt = pcu->ctrl_intf->cur_altsetting;
1671
1672         if (alt->desc.bNumEndpoints < 1)
1673                 return -ENODEV;
1674
1675         pcu->ep_ctrl = &alt->endpoint[0].desc;
1676         pcu->max_ctrl_size = usb_endpoint_maxp(pcu->ep_ctrl);
1677
1678         pcu->data_intf = usb_ifnum_to_if(pcu->udev,
1679                                          union_desc->bSlaveInterface0);
1680         if (!pcu->data_intf)
1681                 return -EINVAL;
1682
1683         alt = pcu->data_intf->cur_altsetting;
1684         if (alt->desc.bNumEndpoints != 2) {
1685                 dev_err(pcu->dev,
1686                         "Incorrect number of endpoints on data interface (%d)\n",
1687                         alt->desc.bNumEndpoints);
1688                 return -EINVAL;
1689         }
1690
1691         pcu->ep_out = &alt->endpoint[0].desc;
1692         if (!usb_endpoint_is_bulk_out(pcu->ep_out)) {
1693                 dev_err(pcu->dev,
1694                         "First endpoint on data interface is not BULK OUT\n");
1695                 return -EINVAL;
1696         }
1697
1698         pcu->max_out_size = usb_endpoint_maxp(pcu->ep_out);
1699         if (pcu->max_out_size < 8) {
1700                 dev_err(pcu->dev,
1701                         "Max OUT packet size is too small (%zd)\n",
1702                         pcu->max_out_size);
1703                 return -EINVAL;
1704         }
1705
1706         pcu->ep_in = &alt->endpoint[1].desc;
1707         if (!usb_endpoint_is_bulk_in(pcu->ep_in)) {
1708                 dev_err(pcu->dev,
1709                         "Second endpoint on data interface is not BULK IN\n");
1710                 return -EINVAL;
1711         }
1712
1713         pcu->max_in_size = usb_endpoint_maxp(pcu->ep_in);
1714         if (pcu->max_in_size < 8) {
1715                 dev_err(pcu->dev,
1716                         "Max IN packet size is too small (%zd)\n",
1717                         pcu->max_in_size);
1718                 return -EINVAL;
1719         }
1720
1721         return 0;
1722 }
1723
1724 static int ims_pcu_start_io(struct ims_pcu *pcu)
1725 {
1726         int error;
1727
1728         error = usb_submit_urb(pcu->urb_ctrl, GFP_KERNEL);
1729         if (error) {
1730                 dev_err(pcu->dev,
1731                         "Failed to start control IO - usb_submit_urb failed with result: %d\n",
1732                         error);
1733                 return -EIO;
1734         }
1735
1736         error = usb_submit_urb(pcu->urb_in, GFP_KERNEL);
1737         if (error) {
1738                 dev_err(pcu->dev,
1739                         "Failed to start IO - usb_submit_urb failed with result: %d\n",
1740                         error);
1741                 usb_kill_urb(pcu->urb_ctrl);
1742                 return -EIO;
1743         }
1744
1745         return 0;
1746 }
1747
1748 static void ims_pcu_stop_io(struct ims_pcu *pcu)
1749 {
1750         usb_kill_urb(pcu->urb_in);
1751         usb_kill_urb(pcu->urb_ctrl);
1752 }
1753
1754 static int ims_pcu_line_setup(struct ims_pcu *pcu)
1755 {
1756         struct usb_host_interface *interface = pcu->ctrl_intf->cur_altsetting;
1757         struct usb_cdc_line_coding *line = (void *)pcu->cmd_buf;
1758         int error;
1759
1760         memset(line, 0, sizeof(*line));
1761         line->dwDTERate = cpu_to_le32(57600);
1762         line->bDataBits = 8;
1763
1764         error = usb_control_msg(pcu->udev, usb_sndctrlpipe(pcu->udev, 0),
1765                                 USB_CDC_REQ_SET_LINE_CODING,
1766                                 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1767                                 0, interface->desc.bInterfaceNumber,
1768                                 line, sizeof(struct usb_cdc_line_coding),
1769                                 5000);
1770         if (error < 0) {
1771                 dev_err(pcu->dev, "Failed to set line coding, error: %d\n",
1772                         error);
1773                 return error;
1774         }
1775
1776         error = usb_control_msg(pcu->udev, usb_sndctrlpipe(pcu->udev, 0),
1777                                 USB_CDC_REQ_SET_CONTROL_LINE_STATE,
1778                                 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1779                                 0x03, interface->desc.bInterfaceNumber,
1780                                 NULL, 0, 5000);
1781         if (error < 0) {
1782                 dev_err(pcu->dev, "Failed to set line state, error: %d\n",
1783                         error);
1784                 return error;
1785         }
1786
1787         return 0;
1788 }
1789
1790 static int ims_pcu_get_device_info(struct ims_pcu *pcu)
1791 {
1792         int error;
1793
1794         error = ims_pcu_get_info(pcu);
1795         if (error)
1796                 return error;
1797
1798         error = ims_pcu_execute_query(pcu, GET_FW_VERSION);
1799         if (error) {
1800                 dev_err(pcu->dev,
1801                         "GET_FW_VERSION command failed, error: %d\n", error);
1802                 return error;
1803         }
1804
1805         snprintf(pcu->fw_version, sizeof(pcu->fw_version),
1806                  "%02d%02d%02d%02d.%c%c",
1807                  pcu->cmd_buf[2], pcu->cmd_buf[3], pcu->cmd_buf[4], pcu->cmd_buf[5],
1808                  pcu->cmd_buf[6], pcu->cmd_buf[7]);
1809
1810         error = ims_pcu_execute_query(pcu, GET_BL_VERSION);
1811         if (error) {
1812                 dev_err(pcu->dev,
1813                         "GET_BL_VERSION command failed, error: %d\n", error);
1814                 return error;
1815         }
1816
1817         snprintf(pcu->bl_version, sizeof(pcu->bl_version),
1818                  "%02d%02d%02d%02d.%c%c",
1819                  pcu->cmd_buf[2], pcu->cmd_buf[3], pcu->cmd_buf[4], pcu->cmd_buf[5],
1820                  pcu->cmd_buf[6], pcu->cmd_buf[7]);
1821
1822         error = ims_pcu_execute_query(pcu, RESET_REASON);
1823         if (error) {
1824                 dev_err(pcu->dev,
1825                         "RESET_REASON command failed, error: %d\n", error);
1826                 return error;
1827         }
1828
1829         snprintf(pcu->reset_reason, sizeof(pcu->reset_reason),
1830                  "%02x", pcu->cmd_buf[IMS_PCU_DATA_OFFSET]);
1831
1832         dev_dbg(pcu->dev,
1833                 "P/N: %s, MD: %s, S/N: %s, FW: %s, BL: %s, RR: %s\n",
1834                 pcu->part_number,
1835                 pcu->date_of_manufacturing,
1836                 pcu->serial_number,
1837                 pcu->fw_version,
1838                 pcu->bl_version,
1839                 pcu->reset_reason);
1840
1841         return 0;
1842 }
1843
1844 static int ims_pcu_identify_type(struct ims_pcu *pcu, u8 *device_id)
1845 {
1846         int error;
1847
1848         error = ims_pcu_execute_query(pcu, GET_DEVICE_ID);
1849         if (error) {
1850                 dev_err(pcu->dev,
1851                         "GET_DEVICE_ID command failed, error: %d\n", error);
1852                 return error;
1853         }
1854
1855         *device_id = pcu->cmd_buf[IMS_PCU_DATA_OFFSET];
1856         dev_dbg(pcu->dev, "Detected device ID: %d\n", *device_id);
1857
1858         return 0;
1859 }
1860
1861 static int ims_pcu_init_application_mode(struct ims_pcu *pcu)
1862 {
1863         static atomic_t device_no = ATOMIC_INIT(-1);
1864
1865         const struct ims_pcu_device_info *info;
1866         int error;
1867
1868         error = ims_pcu_get_device_info(pcu);
1869         if (error) {
1870                 /* Device does not respond to basic queries, hopeless */
1871                 return error;
1872         }
1873
1874         error = ims_pcu_identify_type(pcu, &pcu->device_id);
1875         if (error) {
1876                 dev_err(pcu->dev,
1877                         "Failed to identify device, error: %d\n", error);
1878                 /*
1879                  * Do not signal error, but do not create input nor
1880                  * backlight devices either, let userspace figure this
1881                  * out (flash a new firmware?).
1882                  */
1883                 return 0;
1884         }
1885
1886         if (pcu->device_id >= ARRAY_SIZE(ims_pcu_device_info) ||
1887             !ims_pcu_device_info[pcu->device_id].keymap) {
1888                 dev_err(pcu->dev, "Device ID %d is not valid\n", pcu->device_id);
1889                 /* Same as above, punt to userspace */
1890                 return 0;
1891         }
1892
1893         /* Device appears to be operable, complete initialization */
1894         pcu->device_no = atomic_inc_return(&device_no);
1895
1896         /*
1897          * PCU-B devices, both GEN_1 and GEN_2 do not have OFN sensor
1898          */
1899         if (pcu->device_id != IMS_PCU_PCU_B_DEVICE_ID) {
1900                 error = sysfs_create_group(&pcu->dev->kobj,
1901                                            &ims_pcu_ofn_attr_group);
1902                 if (error)
1903                         return error;
1904         }
1905
1906         error = ims_pcu_setup_backlight(pcu);
1907         if (error)
1908                 return error;
1909
1910         info = &ims_pcu_device_info[pcu->device_id];
1911         error = ims_pcu_setup_buttons(pcu, info->keymap, info->keymap_len);
1912         if (error)
1913                 goto err_destroy_backlight;
1914
1915         if (info->has_gamepad) {
1916                 error = ims_pcu_setup_gamepad(pcu);
1917                 if (error)
1918                         goto err_destroy_buttons;
1919         }
1920
1921         pcu->setup_complete = true;
1922
1923         return 0;
1924
1925 err_destroy_buttons:
1926         ims_pcu_destroy_buttons(pcu);
1927 err_destroy_backlight:
1928         ims_pcu_destroy_backlight(pcu);
1929         return error;
1930 }
1931
1932 static void ims_pcu_destroy_application_mode(struct ims_pcu *pcu)
1933 {
1934         if (pcu->setup_complete) {
1935                 pcu->setup_complete = false;
1936                 mb(); /* make sure flag setting is not reordered */
1937
1938                 if (pcu->gamepad)
1939                         ims_pcu_destroy_gamepad(pcu);
1940                 ims_pcu_destroy_buttons(pcu);
1941                 ims_pcu_destroy_backlight(pcu);
1942
1943                 if (pcu->device_id != IMS_PCU_PCU_B_DEVICE_ID)
1944                         sysfs_remove_group(&pcu->dev->kobj,
1945                                            &ims_pcu_ofn_attr_group);
1946         }
1947 }
1948
1949 static int ims_pcu_init_bootloader_mode(struct ims_pcu *pcu)
1950 {
1951         int error;
1952
1953         error = ims_pcu_execute_bl_command(pcu, QUERY_DEVICE, NULL, 0,
1954                                            IMS_PCU_CMD_RESPONSE_TIMEOUT);
1955         if (error) {
1956                 dev_err(pcu->dev, "Bootloader does not respond, aborting\n");
1957                 return error;
1958         }
1959
1960         pcu->fw_start_addr =
1961                 get_unaligned_le32(&pcu->cmd_buf[IMS_PCU_DATA_OFFSET + 11]);
1962         pcu->fw_end_addr =
1963                 get_unaligned_le32(&pcu->cmd_buf[IMS_PCU_DATA_OFFSET + 15]);
1964
1965         dev_info(pcu->dev,
1966                  "Device is in bootloader mode (addr 0x%08x-0x%08x), requesting firmware\n",
1967                  pcu->fw_start_addr, pcu->fw_end_addr);
1968
1969         error = request_firmware_nowait(THIS_MODULE, true,
1970                                         IMS_PCU_FIRMWARE_NAME,
1971                                         pcu->dev, GFP_KERNEL, pcu,
1972                                         ims_pcu_process_async_firmware);
1973         if (error) {
1974                 /* This error is not fatal, let userspace have another chance */
1975                 complete(&pcu->async_firmware_done);
1976         }
1977
1978         return 0;
1979 }
1980
1981 static void ims_pcu_destroy_bootloader_mode(struct ims_pcu *pcu)
1982 {
1983         /* Make sure our initial firmware request has completed */
1984         wait_for_completion(&pcu->async_firmware_done);
1985 }
1986
1987 #define IMS_PCU_APPLICATION_MODE        0
1988 #define IMS_PCU_BOOTLOADER_MODE         1
1989
1990 static struct usb_driver ims_pcu_driver;
1991
1992 static int ims_pcu_probe(struct usb_interface *intf,
1993                          const struct usb_device_id *id)
1994 {
1995         struct usb_device *udev = interface_to_usbdev(intf);
1996         struct ims_pcu *pcu;
1997         int error;
1998
1999         pcu = kzalloc(sizeof(struct ims_pcu), GFP_KERNEL);
2000         if (!pcu)
2001                 return -ENOMEM;
2002
2003         pcu->dev = &intf->dev;
2004         pcu->udev = udev;
2005         pcu->bootloader_mode = id->driver_info == IMS_PCU_BOOTLOADER_MODE;
2006         mutex_init(&pcu->cmd_mutex);
2007         init_completion(&pcu->cmd_done);
2008         init_completion(&pcu->async_firmware_done);
2009
2010         error = ims_pcu_parse_cdc_data(intf, pcu);
2011         if (error)
2012                 goto err_free_mem;
2013
2014         error = usb_driver_claim_interface(&ims_pcu_driver,
2015                                            pcu->data_intf, pcu);
2016         if (error) {
2017                 dev_err(&intf->dev,
2018                         "Unable to claim corresponding data interface: %d\n",
2019                         error);
2020                 goto err_free_mem;
2021         }
2022
2023         usb_set_intfdata(pcu->ctrl_intf, pcu);
2024         usb_set_intfdata(pcu->data_intf, pcu);
2025
2026         error = ims_pcu_buffers_alloc(pcu);
2027         if (error)
2028                 goto err_unclaim_intf;
2029
2030         error = ims_pcu_start_io(pcu);
2031         if (error)
2032                 goto err_free_buffers;
2033
2034         error = ims_pcu_line_setup(pcu);
2035         if (error)
2036                 goto err_stop_io;
2037
2038         error = sysfs_create_group(&intf->dev.kobj, &ims_pcu_attr_group);
2039         if (error)
2040                 goto err_stop_io;
2041
2042         error = pcu->bootloader_mode ?
2043                         ims_pcu_init_bootloader_mode(pcu) :
2044                         ims_pcu_init_application_mode(pcu);
2045         if (error)
2046                 goto err_remove_sysfs;
2047
2048         return 0;
2049
2050 err_remove_sysfs:
2051         sysfs_remove_group(&intf->dev.kobj, &ims_pcu_attr_group);
2052 err_stop_io:
2053         ims_pcu_stop_io(pcu);
2054 err_free_buffers:
2055         ims_pcu_buffers_free(pcu);
2056 err_unclaim_intf:
2057         usb_driver_release_interface(&ims_pcu_driver, pcu->data_intf);
2058 err_free_mem:
2059         kfree(pcu);
2060         return error;
2061 }
2062
2063 static void ims_pcu_disconnect(struct usb_interface *intf)
2064 {
2065         struct ims_pcu *pcu = usb_get_intfdata(intf);
2066         struct usb_host_interface *alt = intf->cur_altsetting;
2067
2068         usb_set_intfdata(intf, NULL);
2069
2070         /*
2071          * See if we are dealing with control or data interface. The cleanup
2072          * happens when we unbind primary (control) interface.
2073          */
2074         if (alt->desc.bInterfaceClass != USB_CLASS_COMM)
2075                 return;
2076
2077         sysfs_remove_group(&intf->dev.kobj, &ims_pcu_attr_group);
2078
2079         ims_pcu_stop_io(pcu);
2080
2081         if (pcu->bootloader_mode)
2082                 ims_pcu_destroy_bootloader_mode(pcu);
2083         else
2084                 ims_pcu_destroy_application_mode(pcu);
2085
2086         ims_pcu_buffers_free(pcu);
2087         kfree(pcu);
2088 }
2089
2090 #ifdef CONFIG_PM
2091 static int ims_pcu_suspend(struct usb_interface *intf,
2092                            pm_message_t message)
2093 {
2094         struct ims_pcu *pcu = usb_get_intfdata(intf);
2095         struct usb_host_interface *alt = intf->cur_altsetting;
2096
2097         if (alt->desc.bInterfaceClass == USB_CLASS_COMM)
2098                 ims_pcu_stop_io(pcu);
2099
2100         return 0;
2101 }
2102
2103 static int ims_pcu_resume(struct usb_interface *intf)
2104 {
2105         struct ims_pcu *pcu = usb_get_intfdata(intf);
2106         struct usb_host_interface *alt = intf->cur_altsetting;
2107         int retval = 0;
2108
2109         if (alt->desc.bInterfaceClass == USB_CLASS_COMM) {
2110                 retval = ims_pcu_start_io(pcu);
2111                 if (retval == 0)
2112                         retval = ims_pcu_line_setup(pcu);
2113         }
2114
2115         return retval;
2116 }
2117 #endif
2118
2119 static const struct usb_device_id ims_pcu_id_table[] = {
2120         {
2121                 USB_DEVICE_AND_INTERFACE_INFO(0x04d8, 0x0082,
2122                                         USB_CLASS_COMM,
2123                                         USB_CDC_SUBCLASS_ACM,
2124                                         USB_CDC_ACM_PROTO_AT_V25TER),
2125                 .driver_info = IMS_PCU_APPLICATION_MODE,
2126         },
2127         {
2128                 USB_DEVICE_AND_INTERFACE_INFO(0x04d8, 0x0083,
2129                                         USB_CLASS_COMM,
2130                                         USB_CDC_SUBCLASS_ACM,
2131                                         USB_CDC_ACM_PROTO_AT_V25TER),
2132                 .driver_info = IMS_PCU_BOOTLOADER_MODE,
2133         },
2134         { }
2135 };
2136
2137 static struct usb_driver ims_pcu_driver = {
2138         .name                   = "ims_pcu",
2139         .id_table               = ims_pcu_id_table,
2140         .probe                  = ims_pcu_probe,
2141         .disconnect             = ims_pcu_disconnect,
2142 #ifdef CONFIG_PM
2143         .suspend                = ims_pcu_suspend,
2144         .resume                 = ims_pcu_resume,
2145         .reset_resume           = ims_pcu_resume,
2146 #endif
2147 };
2148
2149 module_usb_driver(ims_pcu_driver);
2150
2151 MODULE_DESCRIPTION("IMS Passenger Control Unit driver");
2152 MODULE_AUTHOR("Dmitry Torokhov <dmitry.torokhov@gmail.com>");
2153 MODULE_LICENSE("GPL");