d28a8c284da90d57092577f648964d7bdb5731d1
[sfrench/cifs-2.6.git] / drivers / infiniband / ulp / srpt / ib_srpt.c
1 /*
2  * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
3  * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  *
33  */
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_tcq.h>
45 #include <target/configfs_macros.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_fabric_configfs.h>
48 #include <target/target_core_fabric.h>
49 #include <target/target_core_configfs.h>
50 #include "ib_srpt.h"
51
52 /* Name of this kernel module. */
53 #define DRV_NAME                "ib_srpt"
54 #define DRV_VERSION             "2.0.0"
55 #define DRV_RELDATE             "2011-02-14"
56
57 #define SRPT_ID_STRING  "Linux SRP target"
58
59 #undef pr_fmt
60 #define pr_fmt(fmt) DRV_NAME " " fmt
61
62 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
64                    "v" DRV_VERSION " (" DRV_RELDATE ")");
65 MODULE_LICENSE("Dual BSD/GPL");
66
67 /*
68  * Global Variables
69  */
70
71 static u64 srpt_service_guid;
72 static DEFINE_SPINLOCK(srpt_dev_lock);  /* Protects srpt_dev_list. */
73 static LIST_HEAD(srpt_dev_list);        /* List of srpt_device structures. */
74
75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
76 module_param(srp_max_req_size, int, 0444);
77 MODULE_PARM_DESC(srp_max_req_size,
78                  "Maximum size of SRP request messages in bytes.");
79
80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
81 module_param(srpt_srq_size, int, 0444);
82 MODULE_PARM_DESC(srpt_srq_size,
83                  "Shared receive queue (SRQ) size.");
84
85 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
86 {
87         return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
88 }
89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
90                   0444);
91 MODULE_PARM_DESC(srpt_service_guid,
92                  "Using this value for ioc_guid, id_ext, and cm_listen_id"
93                  " instead of using the node_guid of the first HCA.");
94
95 static struct ib_client srpt_client;
96 static struct target_fabric_configfs *srpt_target;
97 static void srpt_release_channel(struct srpt_rdma_ch *ch);
98 static int srpt_queue_status(struct se_cmd *cmd);
99
100 /**
101  * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
102  */
103 static inline
104 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
105 {
106         switch (dir) {
107         case DMA_TO_DEVICE:     return DMA_FROM_DEVICE;
108         case DMA_FROM_DEVICE:   return DMA_TO_DEVICE;
109         default:                return dir;
110         }
111 }
112
113 /**
114  * srpt_sdev_name() - Return the name associated with the HCA.
115  *
116  * Examples are ib0, ib1, ...
117  */
118 static inline const char *srpt_sdev_name(struct srpt_device *sdev)
119 {
120         return sdev->device->name;
121 }
122
123 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
124 {
125         unsigned long flags;
126         enum rdma_ch_state state;
127
128         spin_lock_irqsave(&ch->spinlock, flags);
129         state = ch->state;
130         spin_unlock_irqrestore(&ch->spinlock, flags);
131         return state;
132 }
133
134 static enum rdma_ch_state
135 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
136 {
137         unsigned long flags;
138         enum rdma_ch_state prev;
139
140         spin_lock_irqsave(&ch->spinlock, flags);
141         prev = ch->state;
142         ch->state = new_state;
143         spin_unlock_irqrestore(&ch->spinlock, flags);
144         return prev;
145 }
146
147 /**
148  * srpt_test_and_set_ch_state() - Test and set the channel state.
149  *
150  * Returns true if and only if the channel state has been set to the new state.
151  */
152 static bool
153 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
154                            enum rdma_ch_state new)
155 {
156         unsigned long flags;
157         enum rdma_ch_state prev;
158
159         spin_lock_irqsave(&ch->spinlock, flags);
160         prev = ch->state;
161         if (prev == old)
162                 ch->state = new;
163         spin_unlock_irqrestore(&ch->spinlock, flags);
164         return prev == old;
165 }
166
167 /**
168  * srpt_event_handler() - Asynchronous IB event callback function.
169  *
170  * Callback function called by the InfiniBand core when an asynchronous IB
171  * event occurs. This callback may occur in interrupt context. See also
172  * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
173  * Architecture Specification.
174  */
175 static void srpt_event_handler(struct ib_event_handler *handler,
176                                struct ib_event *event)
177 {
178         struct srpt_device *sdev;
179         struct srpt_port *sport;
180
181         sdev = ib_get_client_data(event->device, &srpt_client);
182         if (!sdev || sdev->device != event->device)
183                 return;
184
185         pr_debug("ASYNC event= %d on device= %s\n", event->event,
186                  srpt_sdev_name(sdev));
187
188         switch (event->event) {
189         case IB_EVENT_PORT_ERR:
190                 if (event->element.port_num <= sdev->device->phys_port_cnt) {
191                         sport = &sdev->port[event->element.port_num - 1];
192                         sport->lid = 0;
193                         sport->sm_lid = 0;
194                 }
195                 break;
196         case IB_EVENT_PORT_ACTIVE:
197         case IB_EVENT_LID_CHANGE:
198         case IB_EVENT_PKEY_CHANGE:
199         case IB_EVENT_SM_CHANGE:
200         case IB_EVENT_CLIENT_REREGISTER:
201         case IB_EVENT_GID_CHANGE:
202                 /* Refresh port data asynchronously. */
203                 if (event->element.port_num <= sdev->device->phys_port_cnt) {
204                         sport = &sdev->port[event->element.port_num - 1];
205                         if (!sport->lid && !sport->sm_lid)
206                                 schedule_work(&sport->work);
207                 }
208                 break;
209         default:
210                 printk(KERN_ERR "received unrecognized IB event %d\n",
211                        event->event);
212                 break;
213         }
214 }
215
216 /**
217  * srpt_srq_event() - SRQ event callback function.
218  */
219 static void srpt_srq_event(struct ib_event *event, void *ctx)
220 {
221         printk(KERN_INFO "SRQ event %d\n", event->event);
222 }
223
224 /**
225  * srpt_qp_event() - QP event callback function.
226  */
227 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
228 {
229         pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
230                  event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
231
232         switch (event->event) {
233         case IB_EVENT_COMM_EST:
234                 ib_cm_notify(ch->cm_id, event->event);
235                 break;
236         case IB_EVENT_QP_LAST_WQE_REACHED:
237                 if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
238                                                CH_RELEASING))
239                         srpt_release_channel(ch);
240                 else
241                         pr_debug("%s: state %d - ignored LAST_WQE.\n",
242                                  ch->sess_name, srpt_get_ch_state(ch));
243                 break;
244         default:
245                 printk(KERN_ERR "received unrecognized IB QP event %d\n",
246                        event->event);
247                 break;
248         }
249 }
250
251 /**
252  * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
253  *
254  * @slot: one-based slot number.
255  * @value: four-bit value.
256  *
257  * Copies the lowest four bits of value in element slot of the array of four
258  * bit elements called c_list (controller list). The index slot is one-based.
259  */
260 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
261 {
262         u16 id;
263         u8 tmp;
264
265         id = (slot - 1) / 2;
266         if (slot & 0x1) {
267                 tmp = c_list[id] & 0xf;
268                 c_list[id] = (value << 4) | tmp;
269         } else {
270                 tmp = c_list[id] & 0xf0;
271                 c_list[id] = (value & 0xf) | tmp;
272         }
273 }
274
275 /**
276  * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
277  *
278  * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
279  * Specification.
280  */
281 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
282 {
283         struct ib_class_port_info *cif;
284
285         cif = (struct ib_class_port_info *)mad->data;
286         memset(cif, 0, sizeof *cif);
287         cif->base_version = 1;
288         cif->class_version = 1;
289         cif->resp_time_value = 20;
290
291         mad->mad_hdr.status = 0;
292 }
293
294 /**
295  * srpt_get_iou() - Write IOUnitInfo to a management datagram.
296  *
297  * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
298  * Specification. See also section B.7, table B.6 in the SRP r16a document.
299  */
300 static void srpt_get_iou(struct ib_dm_mad *mad)
301 {
302         struct ib_dm_iou_info *ioui;
303         u8 slot;
304         int i;
305
306         ioui = (struct ib_dm_iou_info *)mad->data;
307         ioui->change_id = __constant_cpu_to_be16(1);
308         ioui->max_controllers = 16;
309
310         /* set present for slot 1 and empty for the rest */
311         srpt_set_ioc(ioui->controller_list, 1, 1);
312         for (i = 1, slot = 2; i < 16; i++, slot++)
313                 srpt_set_ioc(ioui->controller_list, slot, 0);
314
315         mad->mad_hdr.status = 0;
316 }
317
318 /**
319  * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
320  *
321  * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
322  * Architecture Specification. See also section B.7, table B.7 in the SRP
323  * r16a document.
324  */
325 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
326                          struct ib_dm_mad *mad)
327 {
328         struct srpt_device *sdev = sport->sdev;
329         struct ib_dm_ioc_profile *iocp;
330
331         iocp = (struct ib_dm_ioc_profile *)mad->data;
332
333         if (!slot || slot > 16) {
334                 mad->mad_hdr.status
335                         = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
336                 return;
337         }
338
339         if (slot > 2) {
340                 mad->mad_hdr.status
341                         = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
342                 return;
343         }
344
345         memset(iocp, 0, sizeof *iocp);
346         strcpy(iocp->id_string, SRPT_ID_STRING);
347         iocp->guid = cpu_to_be64(srpt_service_guid);
348         iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
349         iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
350         iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
351         iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
352         iocp->subsys_device_id = 0x0;
353         iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
354         iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS);
355         iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL);
356         iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION);
357         iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
358         iocp->rdma_read_depth = 4;
359         iocp->send_size = cpu_to_be32(srp_max_req_size);
360         iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
361                                           1U << 24));
362         iocp->num_svc_entries = 1;
363         iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
364                 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
365
366         mad->mad_hdr.status = 0;
367 }
368
369 /**
370  * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
371  *
372  * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
373  * Specification. See also section B.7, table B.8 in the SRP r16a document.
374  */
375 static void srpt_get_svc_entries(u64 ioc_guid,
376                                  u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
377 {
378         struct ib_dm_svc_entries *svc_entries;
379
380         WARN_ON(!ioc_guid);
381
382         if (!slot || slot > 16) {
383                 mad->mad_hdr.status
384                         = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
385                 return;
386         }
387
388         if (slot > 2 || lo > hi || hi > 1) {
389                 mad->mad_hdr.status
390                         = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
391                 return;
392         }
393
394         svc_entries = (struct ib_dm_svc_entries *)mad->data;
395         memset(svc_entries, 0, sizeof *svc_entries);
396         svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
397         snprintf(svc_entries->service_entries[0].name,
398                  sizeof(svc_entries->service_entries[0].name),
399                  "%s%016llx",
400                  SRP_SERVICE_NAME_PREFIX,
401                  ioc_guid);
402
403         mad->mad_hdr.status = 0;
404 }
405
406 /**
407  * srpt_mgmt_method_get() - Process a received management datagram.
408  * @sp:      source port through which the MAD has been received.
409  * @rq_mad:  received MAD.
410  * @rsp_mad: response MAD.
411  */
412 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
413                                  struct ib_dm_mad *rsp_mad)
414 {
415         u16 attr_id;
416         u32 slot;
417         u8 hi, lo;
418
419         attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
420         switch (attr_id) {
421         case DM_ATTR_CLASS_PORT_INFO:
422                 srpt_get_class_port_info(rsp_mad);
423                 break;
424         case DM_ATTR_IOU_INFO:
425                 srpt_get_iou(rsp_mad);
426                 break;
427         case DM_ATTR_IOC_PROFILE:
428                 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
429                 srpt_get_ioc(sp, slot, rsp_mad);
430                 break;
431         case DM_ATTR_SVC_ENTRIES:
432                 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
433                 hi = (u8) ((slot >> 8) & 0xff);
434                 lo = (u8) (slot & 0xff);
435                 slot = (u16) ((slot >> 16) & 0xffff);
436                 srpt_get_svc_entries(srpt_service_guid,
437                                      slot, hi, lo, rsp_mad);
438                 break;
439         default:
440                 rsp_mad->mad_hdr.status =
441                     __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
442                 break;
443         }
444 }
445
446 /**
447  * srpt_mad_send_handler() - Post MAD-send callback function.
448  */
449 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
450                                   struct ib_mad_send_wc *mad_wc)
451 {
452         ib_destroy_ah(mad_wc->send_buf->ah);
453         ib_free_send_mad(mad_wc->send_buf);
454 }
455
456 /**
457  * srpt_mad_recv_handler() - MAD reception callback function.
458  */
459 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
460                                   struct ib_mad_recv_wc *mad_wc)
461 {
462         struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
463         struct ib_ah *ah;
464         struct ib_mad_send_buf *rsp;
465         struct ib_dm_mad *dm_mad;
466
467         if (!mad_wc || !mad_wc->recv_buf.mad)
468                 return;
469
470         ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
471                                   mad_wc->recv_buf.grh, mad_agent->port_num);
472         if (IS_ERR(ah))
473                 goto err;
474
475         BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
476
477         rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
478                                  mad_wc->wc->pkey_index, 0,
479                                  IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
480                                  GFP_KERNEL);
481         if (IS_ERR(rsp))
482                 goto err_rsp;
483
484         rsp->ah = ah;
485
486         dm_mad = rsp->mad;
487         memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
488         dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
489         dm_mad->mad_hdr.status = 0;
490
491         switch (mad_wc->recv_buf.mad->mad_hdr.method) {
492         case IB_MGMT_METHOD_GET:
493                 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
494                 break;
495         case IB_MGMT_METHOD_SET:
496                 dm_mad->mad_hdr.status =
497                     __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
498                 break;
499         default:
500                 dm_mad->mad_hdr.status =
501                     __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
502                 break;
503         }
504
505         if (!ib_post_send_mad(rsp, NULL)) {
506                 ib_free_recv_mad(mad_wc);
507                 /* will destroy_ah & free_send_mad in send completion */
508                 return;
509         }
510
511         ib_free_send_mad(rsp);
512
513 err_rsp:
514         ib_destroy_ah(ah);
515 err:
516         ib_free_recv_mad(mad_wc);
517 }
518
519 /**
520  * srpt_refresh_port() - Configure a HCA port.
521  *
522  * Enable InfiniBand management datagram processing, update the cached sm_lid,
523  * lid and gid values, and register a callback function for processing MADs
524  * on the specified port.
525  *
526  * Note: It is safe to call this function more than once for the same port.
527  */
528 static int srpt_refresh_port(struct srpt_port *sport)
529 {
530         struct ib_mad_reg_req reg_req;
531         struct ib_port_modify port_modify;
532         struct ib_port_attr port_attr;
533         int ret;
534
535         memset(&port_modify, 0, sizeof port_modify);
536         port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
537         port_modify.clr_port_cap_mask = 0;
538
539         ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
540         if (ret)
541                 goto err_mod_port;
542
543         ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
544         if (ret)
545                 goto err_query_port;
546
547         sport->sm_lid = port_attr.sm_lid;
548         sport->lid = port_attr.lid;
549
550         ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
551         if (ret)
552                 goto err_query_port;
553
554         if (!sport->mad_agent) {
555                 memset(&reg_req, 0, sizeof reg_req);
556                 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
557                 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
558                 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
559                 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
560
561                 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
562                                                          sport->port,
563                                                          IB_QPT_GSI,
564                                                          &reg_req, 0,
565                                                          srpt_mad_send_handler,
566                                                          srpt_mad_recv_handler,
567                                                          sport, 0);
568                 if (IS_ERR(sport->mad_agent)) {
569                         ret = PTR_ERR(sport->mad_agent);
570                         sport->mad_agent = NULL;
571                         goto err_query_port;
572                 }
573         }
574
575         return 0;
576
577 err_query_port:
578
579         port_modify.set_port_cap_mask = 0;
580         port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
581         ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
582
583 err_mod_port:
584
585         return ret;
586 }
587
588 /**
589  * srpt_unregister_mad_agent() - Unregister MAD callback functions.
590  *
591  * Note: It is safe to call this function more than once for the same device.
592  */
593 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
594 {
595         struct ib_port_modify port_modify = {
596                 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
597         };
598         struct srpt_port *sport;
599         int i;
600
601         for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
602                 sport = &sdev->port[i - 1];
603                 WARN_ON(sport->port != i);
604                 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
605                         printk(KERN_ERR "disabling MAD processing failed.\n");
606                 if (sport->mad_agent) {
607                         ib_unregister_mad_agent(sport->mad_agent);
608                         sport->mad_agent = NULL;
609                 }
610         }
611 }
612
613 /**
614  * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
615  */
616 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
617                                            int ioctx_size, int dma_size,
618                                            enum dma_data_direction dir)
619 {
620         struct srpt_ioctx *ioctx;
621
622         ioctx = kmalloc(ioctx_size, GFP_KERNEL);
623         if (!ioctx)
624                 goto err;
625
626         ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
627         if (!ioctx->buf)
628                 goto err_free_ioctx;
629
630         ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
631         if (ib_dma_mapping_error(sdev->device, ioctx->dma))
632                 goto err_free_buf;
633
634         return ioctx;
635
636 err_free_buf:
637         kfree(ioctx->buf);
638 err_free_ioctx:
639         kfree(ioctx);
640 err:
641         return NULL;
642 }
643
644 /**
645  * srpt_free_ioctx() - Free an SRPT I/O context structure.
646  */
647 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
648                             int dma_size, enum dma_data_direction dir)
649 {
650         if (!ioctx)
651                 return;
652
653         ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
654         kfree(ioctx->buf);
655         kfree(ioctx);
656 }
657
658 /**
659  * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
660  * @sdev:       Device to allocate the I/O context ring for.
661  * @ring_size:  Number of elements in the I/O context ring.
662  * @ioctx_size: I/O context size.
663  * @dma_size:   DMA buffer size.
664  * @dir:        DMA data direction.
665  */
666 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
667                                 int ring_size, int ioctx_size,
668                                 int dma_size, enum dma_data_direction dir)
669 {
670         struct srpt_ioctx **ring;
671         int i;
672
673         WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
674                 && ioctx_size != sizeof(struct srpt_send_ioctx));
675
676         ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
677         if (!ring)
678                 goto out;
679         for (i = 0; i < ring_size; ++i) {
680                 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
681                 if (!ring[i])
682                         goto err;
683                 ring[i]->index = i;
684         }
685         goto out;
686
687 err:
688         while (--i >= 0)
689                 srpt_free_ioctx(sdev, ring[i], dma_size, dir);
690         kfree(ring);
691         ring = NULL;
692 out:
693         return ring;
694 }
695
696 /**
697  * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
698  */
699 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
700                                  struct srpt_device *sdev, int ring_size,
701                                  int dma_size, enum dma_data_direction dir)
702 {
703         int i;
704
705         for (i = 0; i < ring_size; ++i)
706                 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
707         kfree(ioctx_ring);
708 }
709
710 /**
711  * srpt_get_cmd_state() - Get the state of a SCSI command.
712  */
713 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
714 {
715         enum srpt_command_state state;
716         unsigned long flags;
717
718         BUG_ON(!ioctx);
719
720         spin_lock_irqsave(&ioctx->spinlock, flags);
721         state = ioctx->state;
722         spin_unlock_irqrestore(&ioctx->spinlock, flags);
723         return state;
724 }
725
726 /**
727  * srpt_set_cmd_state() - Set the state of a SCSI command.
728  *
729  * Does not modify the state of aborted commands. Returns the previous command
730  * state.
731  */
732 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
733                                                   enum srpt_command_state new)
734 {
735         enum srpt_command_state previous;
736         unsigned long flags;
737
738         BUG_ON(!ioctx);
739
740         spin_lock_irqsave(&ioctx->spinlock, flags);
741         previous = ioctx->state;
742         if (previous != SRPT_STATE_DONE)
743                 ioctx->state = new;
744         spin_unlock_irqrestore(&ioctx->spinlock, flags);
745
746         return previous;
747 }
748
749 /**
750  * srpt_test_and_set_cmd_state() - Test and set the state of a command.
751  *
752  * Returns true if and only if the previous command state was equal to 'old'.
753  */
754 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
755                                         enum srpt_command_state old,
756                                         enum srpt_command_state new)
757 {
758         enum srpt_command_state previous;
759         unsigned long flags;
760
761         WARN_ON(!ioctx);
762         WARN_ON(old == SRPT_STATE_DONE);
763         WARN_ON(new == SRPT_STATE_NEW);
764
765         spin_lock_irqsave(&ioctx->spinlock, flags);
766         previous = ioctx->state;
767         if (previous == old)
768                 ioctx->state = new;
769         spin_unlock_irqrestore(&ioctx->spinlock, flags);
770         return previous == old;
771 }
772
773 /**
774  * srpt_post_recv() - Post an IB receive request.
775  */
776 static int srpt_post_recv(struct srpt_device *sdev,
777                           struct srpt_recv_ioctx *ioctx)
778 {
779         struct ib_sge list;
780         struct ib_recv_wr wr, *bad_wr;
781
782         BUG_ON(!sdev);
783         wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
784
785         list.addr = ioctx->ioctx.dma;
786         list.length = srp_max_req_size;
787         list.lkey = sdev->mr->lkey;
788
789         wr.next = NULL;
790         wr.sg_list = &list;
791         wr.num_sge = 1;
792
793         return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
794 }
795
796 /**
797  * srpt_post_send() - Post an IB send request.
798  *
799  * Returns zero upon success and a non-zero value upon failure.
800  */
801 static int srpt_post_send(struct srpt_rdma_ch *ch,
802                           struct srpt_send_ioctx *ioctx, int len)
803 {
804         struct ib_sge list;
805         struct ib_send_wr wr, *bad_wr;
806         struct srpt_device *sdev = ch->sport->sdev;
807         int ret;
808
809         atomic_inc(&ch->req_lim);
810
811         ret = -ENOMEM;
812         if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
813                 printk(KERN_WARNING "IB send queue full (needed 1)\n");
814                 goto out;
815         }
816
817         ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
818                                       DMA_TO_DEVICE);
819
820         list.addr = ioctx->ioctx.dma;
821         list.length = len;
822         list.lkey = sdev->mr->lkey;
823
824         wr.next = NULL;
825         wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
826         wr.sg_list = &list;
827         wr.num_sge = 1;
828         wr.opcode = IB_WR_SEND;
829         wr.send_flags = IB_SEND_SIGNALED;
830
831         ret = ib_post_send(ch->qp, &wr, &bad_wr);
832
833 out:
834         if (ret < 0) {
835                 atomic_inc(&ch->sq_wr_avail);
836                 atomic_dec(&ch->req_lim);
837         }
838         return ret;
839 }
840
841 /**
842  * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
843  * @ioctx: Pointer to the I/O context associated with the request.
844  * @srp_cmd: Pointer to the SRP_CMD request data.
845  * @dir: Pointer to the variable to which the transfer direction will be
846  *   written.
847  * @data_len: Pointer to the variable to which the total data length of all
848  *   descriptors in the SRP_CMD request will be written.
849  *
850  * This function initializes ioctx->nrbuf and ioctx->r_bufs.
851  *
852  * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
853  * -ENOMEM when memory allocation fails and zero upon success.
854  */
855 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
856                              struct srp_cmd *srp_cmd,
857                              enum dma_data_direction *dir, u64 *data_len)
858 {
859         struct srp_indirect_buf *idb;
860         struct srp_direct_buf *db;
861         unsigned add_cdb_offset;
862         int ret;
863
864         /*
865          * The pointer computations below will only be compiled correctly
866          * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
867          * whether srp_cmd::add_data has been declared as a byte pointer.
868          */
869         BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
870                      && !__same_type(srp_cmd->add_data[0], (u8)0));
871
872         BUG_ON(!dir);
873         BUG_ON(!data_len);
874
875         ret = 0;
876         *data_len = 0;
877
878         /*
879          * The lower four bits of the buffer format field contain the DATA-IN
880          * buffer descriptor format, and the highest four bits contain the
881          * DATA-OUT buffer descriptor format.
882          */
883         *dir = DMA_NONE;
884         if (srp_cmd->buf_fmt & 0xf)
885                 /* DATA-IN: transfer data from target to initiator (read). */
886                 *dir = DMA_FROM_DEVICE;
887         else if (srp_cmd->buf_fmt >> 4)
888                 /* DATA-OUT: transfer data from initiator to target (write). */
889                 *dir = DMA_TO_DEVICE;
890
891         /*
892          * According to the SRP spec, the lower two bits of the 'ADDITIONAL
893          * CDB LENGTH' field are reserved and the size in bytes of this field
894          * is four times the value specified in bits 3..7. Hence the "& ~3".
895          */
896         add_cdb_offset = srp_cmd->add_cdb_len & ~3;
897         if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
898             ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
899                 ioctx->n_rbuf = 1;
900                 ioctx->rbufs = &ioctx->single_rbuf;
901
902                 db = (struct srp_direct_buf *)(srp_cmd->add_data
903                                                + add_cdb_offset);
904                 memcpy(ioctx->rbufs, db, sizeof *db);
905                 *data_len = be32_to_cpu(db->len);
906         } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
907                    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
908                 idb = (struct srp_indirect_buf *)(srp_cmd->add_data
909                                                   + add_cdb_offset);
910
911                 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
912
913                 if (ioctx->n_rbuf >
914                     (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
915                         printk(KERN_ERR "received unsupported SRP_CMD request"
916                                " type (%u out + %u in != %u / %zu)\n",
917                                srp_cmd->data_out_desc_cnt,
918                                srp_cmd->data_in_desc_cnt,
919                                be32_to_cpu(idb->table_desc.len),
920                                sizeof(*db));
921                         ioctx->n_rbuf = 0;
922                         ret = -EINVAL;
923                         goto out;
924                 }
925
926                 if (ioctx->n_rbuf == 1)
927                         ioctx->rbufs = &ioctx->single_rbuf;
928                 else {
929                         ioctx->rbufs =
930                                 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
931                         if (!ioctx->rbufs) {
932                                 ioctx->n_rbuf = 0;
933                                 ret = -ENOMEM;
934                                 goto out;
935                         }
936                 }
937
938                 db = idb->desc_list;
939                 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
940                 *data_len = be32_to_cpu(idb->len);
941         }
942 out:
943         return ret;
944 }
945
946 /**
947  * srpt_init_ch_qp() - Initialize queue pair attributes.
948  *
949  * Initialized the attributes of queue pair 'qp' by allowing local write,
950  * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
951  */
952 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
953 {
954         struct ib_qp_attr *attr;
955         int ret;
956
957         attr = kzalloc(sizeof *attr, GFP_KERNEL);
958         if (!attr)
959                 return -ENOMEM;
960
961         attr->qp_state = IB_QPS_INIT;
962         attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
963             IB_ACCESS_REMOTE_WRITE;
964         attr->port_num = ch->sport->port;
965         attr->pkey_index = 0;
966
967         ret = ib_modify_qp(qp, attr,
968                            IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
969                            IB_QP_PKEY_INDEX);
970
971         kfree(attr);
972         return ret;
973 }
974
975 /**
976  * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
977  * @ch: channel of the queue pair.
978  * @qp: queue pair to change the state of.
979  *
980  * Returns zero upon success and a negative value upon failure.
981  *
982  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
983  * If this structure ever becomes larger, it might be necessary to allocate
984  * it dynamically instead of on the stack.
985  */
986 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
987 {
988         struct ib_qp_attr qp_attr;
989         int attr_mask;
990         int ret;
991
992         qp_attr.qp_state = IB_QPS_RTR;
993         ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
994         if (ret)
995                 goto out;
996
997         qp_attr.max_dest_rd_atomic = 4;
998
999         ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1000
1001 out:
1002         return ret;
1003 }
1004
1005 /**
1006  * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1007  * @ch: channel of the queue pair.
1008  * @qp: queue pair to change the state of.
1009  *
1010  * Returns zero upon success and a negative value upon failure.
1011  *
1012  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1013  * If this structure ever becomes larger, it might be necessary to allocate
1014  * it dynamically instead of on the stack.
1015  */
1016 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1017 {
1018         struct ib_qp_attr qp_attr;
1019         int attr_mask;
1020         int ret;
1021
1022         qp_attr.qp_state = IB_QPS_RTS;
1023         ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1024         if (ret)
1025                 goto out;
1026
1027         qp_attr.max_rd_atomic = 4;
1028
1029         ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1030
1031 out:
1032         return ret;
1033 }
1034
1035 /**
1036  * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1037  */
1038 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1039 {
1040         struct ib_qp_attr qp_attr;
1041
1042         qp_attr.qp_state = IB_QPS_ERR;
1043         return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1044 }
1045
1046 /**
1047  * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1048  */
1049 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1050                                     struct srpt_send_ioctx *ioctx)
1051 {
1052         struct scatterlist *sg;
1053         enum dma_data_direction dir;
1054
1055         BUG_ON(!ch);
1056         BUG_ON(!ioctx);
1057         BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1058
1059         while (ioctx->n_rdma)
1060                 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1061
1062         kfree(ioctx->rdma_ius);
1063         ioctx->rdma_ius = NULL;
1064
1065         if (ioctx->mapped_sg_count) {
1066                 sg = ioctx->sg;
1067                 WARN_ON(!sg);
1068                 dir = ioctx->cmd.data_direction;
1069                 BUG_ON(dir == DMA_NONE);
1070                 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1071                                 opposite_dma_dir(dir));
1072                 ioctx->mapped_sg_count = 0;
1073         }
1074 }
1075
1076 /**
1077  * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1078  */
1079 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1080                                  struct srpt_send_ioctx *ioctx)
1081 {
1082         struct ib_device *dev = ch->sport->sdev->device;
1083         struct se_cmd *cmd;
1084         struct scatterlist *sg, *sg_orig;
1085         int sg_cnt;
1086         enum dma_data_direction dir;
1087         struct rdma_iu *riu;
1088         struct srp_direct_buf *db;
1089         dma_addr_t dma_addr;
1090         struct ib_sge *sge;
1091         u64 raddr;
1092         u32 rsize;
1093         u32 tsize;
1094         u32 dma_len;
1095         int count, nrdma;
1096         int i, j, k;
1097
1098         BUG_ON(!ch);
1099         BUG_ON(!ioctx);
1100         cmd = &ioctx->cmd;
1101         dir = cmd->data_direction;
1102         BUG_ON(dir == DMA_NONE);
1103
1104         ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1105         ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1106
1107         count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1108                               opposite_dma_dir(dir));
1109         if (unlikely(!count))
1110                 return -EAGAIN;
1111
1112         ioctx->mapped_sg_count = count;
1113
1114         if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1115                 nrdma = ioctx->n_rdma_ius;
1116         else {
1117                 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1118                         + ioctx->n_rbuf;
1119
1120                 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1121                 if (!ioctx->rdma_ius)
1122                         goto free_mem;
1123
1124                 ioctx->n_rdma_ius = nrdma;
1125         }
1126
1127         db = ioctx->rbufs;
1128         tsize = cmd->data_length;
1129         dma_len = ib_sg_dma_len(dev, &sg[0]);
1130         riu = ioctx->rdma_ius;
1131
1132         /*
1133          * For each remote desc - calculate the #ib_sge.
1134          * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1135          *      each remote desc rdma_iu is required a rdma wr;
1136          * else
1137          *      we need to allocate extra rdma_iu to carry extra #ib_sge in
1138          *      another rdma wr
1139          */
1140         for (i = 0, j = 0;
1141              j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1142                 rsize = be32_to_cpu(db->len);
1143                 raddr = be64_to_cpu(db->va);
1144                 riu->raddr = raddr;
1145                 riu->rkey = be32_to_cpu(db->key);
1146                 riu->sge_cnt = 0;
1147
1148                 /* calculate how many sge required for this remote_buf */
1149                 while (rsize > 0 && tsize > 0) {
1150
1151                         if (rsize >= dma_len) {
1152                                 tsize -= dma_len;
1153                                 rsize -= dma_len;
1154                                 raddr += dma_len;
1155
1156                                 if (tsize > 0) {
1157                                         ++j;
1158                                         if (j < count) {
1159                                                 sg = sg_next(sg);
1160                                                 dma_len = ib_sg_dma_len(
1161                                                                 dev, sg);
1162                                         }
1163                                 }
1164                         } else {
1165                                 tsize -= rsize;
1166                                 dma_len -= rsize;
1167                                 rsize = 0;
1168                         }
1169
1170                         ++riu->sge_cnt;
1171
1172                         if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1173                                 ++ioctx->n_rdma;
1174                                 riu->sge =
1175                                     kmalloc(riu->sge_cnt * sizeof *riu->sge,
1176                                             GFP_KERNEL);
1177                                 if (!riu->sge)
1178                                         goto free_mem;
1179
1180                                 ++riu;
1181                                 riu->sge_cnt = 0;
1182                                 riu->raddr = raddr;
1183                                 riu->rkey = be32_to_cpu(db->key);
1184                         }
1185                 }
1186
1187                 ++ioctx->n_rdma;
1188                 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1189                                    GFP_KERNEL);
1190                 if (!riu->sge)
1191                         goto free_mem;
1192         }
1193
1194         db = ioctx->rbufs;
1195         tsize = cmd->data_length;
1196         riu = ioctx->rdma_ius;
1197         sg = sg_orig;
1198         dma_len = ib_sg_dma_len(dev, &sg[0]);
1199         dma_addr = ib_sg_dma_address(dev, &sg[0]);
1200
1201         /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1202         for (i = 0, j = 0;
1203              j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1204                 rsize = be32_to_cpu(db->len);
1205                 sge = riu->sge;
1206                 k = 0;
1207
1208                 while (rsize > 0 && tsize > 0) {
1209                         sge->addr = dma_addr;
1210                         sge->lkey = ch->sport->sdev->mr->lkey;
1211
1212                         if (rsize >= dma_len) {
1213                                 sge->length =
1214                                         (tsize < dma_len) ? tsize : dma_len;
1215                                 tsize -= dma_len;
1216                                 rsize -= dma_len;
1217
1218                                 if (tsize > 0) {
1219                                         ++j;
1220                                         if (j < count) {
1221                                                 sg = sg_next(sg);
1222                                                 dma_len = ib_sg_dma_len(
1223                                                                 dev, sg);
1224                                                 dma_addr = ib_sg_dma_address(
1225                                                                 dev, sg);
1226                                         }
1227                                 }
1228                         } else {
1229                                 sge->length = (tsize < rsize) ? tsize : rsize;
1230                                 tsize -= rsize;
1231                                 dma_len -= rsize;
1232                                 dma_addr += rsize;
1233                                 rsize = 0;
1234                         }
1235
1236                         ++k;
1237                         if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1238                                 ++riu;
1239                                 sge = riu->sge;
1240                                 k = 0;
1241                         } else if (rsize > 0 && tsize > 0)
1242                                 ++sge;
1243                 }
1244         }
1245
1246         return 0;
1247
1248 free_mem:
1249         srpt_unmap_sg_to_ib_sge(ch, ioctx);
1250
1251         return -ENOMEM;
1252 }
1253
1254 /**
1255  * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1256  */
1257 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1258 {
1259         struct srpt_send_ioctx *ioctx;
1260         unsigned long flags;
1261
1262         BUG_ON(!ch);
1263
1264         ioctx = NULL;
1265         spin_lock_irqsave(&ch->spinlock, flags);
1266         if (!list_empty(&ch->free_list)) {
1267                 ioctx = list_first_entry(&ch->free_list,
1268                                          struct srpt_send_ioctx, free_list);
1269                 list_del(&ioctx->free_list);
1270         }
1271         spin_unlock_irqrestore(&ch->spinlock, flags);
1272
1273         if (!ioctx)
1274                 return ioctx;
1275
1276         BUG_ON(ioctx->ch != ch);
1277         spin_lock_init(&ioctx->spinlock);
1278         ioctx->state = SRPT_STATE_NEW;
1279         ioctx->n_rbuf = 0;
1280         ioctx->rbufs = NULL;
1281         ioctx->n_rdma = 0;
1282         ioctx->n_rdma_ius = 0;
1283         ioctx->rdma_ius = NULL;
1284         ioctx->mapped_sg_count = 0;
1285         init_completion(&ioctx->tx_done);
1286         ioctx->queue_status_only = false;
1287         /*
1288          * transport_init_se_cmd() does not initialize all fields, so do it
1289          * here.
1290          */
1291         memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1292         memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1293
1294         return ioctx;
1295 }
1296
1297 /**
1298  * srpt_abort_cmd() - Abort a SCSI command.
1299  * @ioctx:   I/O context associated with the SCSI command.
1300  * @context: Preferred execution context.
1301  */
1302 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1303 {
1304         enum srpt_command_state state;
1305         unsigned long flags;
1306
1307         BUG_ON(!ioctx);
1308
1309         /*
1310          * If the command is in a state where the target core is waiting for
1311          * the ib_srpt driver, change the state to the next state. Changing
1312          * the state of the command from SRPT_STATE_NEED_DATA to
1313          * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1314          * function a second time.
1315          */
1316
1317         spin_lock_irqsave(&ioctx->spinlock, flags);
1318         state = ioctx->state;
1319         switch (state) {
1320         case SRPT_STATE_NEED_DATA:
1321                 ioctx->state = SRPT_STATE_DATA_IN;
1322                 break;
1323         case SRPT_STATE_DATA_IN:
1324         case SRPT_STATE_CMD_RSP_SENT:
1325         case SRPT_STATE_MGMT_RSP_SENT:
1326                 ioctx->state = SRPT_STATE_DONE;
1327                 break;
1328         default:
1329                 break;
1330         }
1331         spin_unlock_irqrestore(&ioctx->spinlock, flags);
1332
1333         if (state == SRPT_STATE_DONE) {
1334                 struct srpt_rdma_ch *ch = ioctx->ch;
1335
1336                 BUG_ON(ch->sess == NULL);
1337
1338                 target_put_sess_cmd(ch->sess, &ioctx->cmd);
1339                 goto out;
1340         }
1341
1342         pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1343                  ioctx->tag);
1344
1345         switch (state) {
1346         case SRPT_STATE_NEW:
1347         case SRPT_STATE_DATA_IN:
1348         case SRPT_STATE_MGMT:
1349                 /*
1350                  * Do nothing - defer abort processing until
1351                  * srpt_queue_response() is invoked.
1352                  */
1353                 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1354                 break;
1355         case SRPT_STATE_NEED_DATA:
1356                 /* DMA_TO_DEVICE (write) - RDMA read error. */
1357
1358                 /* XXX(hch): this is a horrible layering violation.. */
1359                 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1360                 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
1361                 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1362                 break;
1363         case SRPT_STATE_CMD_RSP_SENT:
1364                 /*
1365                  * SRP_RSP sending failed or the SRP_RSP send completion has
1366                  * not been received in time.
1367                  */
1368                 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1369                 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1370                 break;
1371         case SRPT_STATE_MGMT_RSP_SENT:
1372                 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1373                 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1374                 break;
1375         default:
1376                 WARN(1, "Unexpected command state (%d)", state);
1377                 break;
1378         }
1379
1380 out:
1381         return state;
1382 }
1383
1384 /**
1385  * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1386  */
1387 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1388 {
1389         struct srpt_send_ioctx *ioctx;
1390         enum srpt_command_state state;
1391         struct se_cmd *cmd;
1392         u32 index;
1393
1394         atomic_inc(&ch->sq_wr_avail);
1395
1396         index = idx_from_wr_id(wr_id);
1397         ioctx = ch->ioctx_ring[index];
1398         state = srpt_get_cmd_state(ioctx);
1399         cmd = &ioctx->cmd;
1400
1401         WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1402                 && state != SRPT_STATE_MGMT_RSP_SENT
1403                 && state != SRPT_STATE_NEED_DATA
1404                 && state != SRPT_STATE_DONE);
1405
1406         /* If SRP_RSP sending failed, undo the ch->req_lim change. */
1407         if (state == SRPT_STATE_CMD_RSP_SENT
1408             || state == SRPT_STATE_MGMT_RSP_SENT)
1409                 atomic_dec(&ch->req_lim);
1410
1411         srpt_abort_cmd(ioctx);
1412 }
1413
1414 /**
1415  * srpt_handle_send_comp() - Process an IB send completion notification.
1416  */
1417 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1418                                   struct srpt_send_ioctx *ioctx)
1419 {
1420         enum srpt_command_state state;
1421
1422         atomic_inc(&ch->sq_wr_avail);
1423
1424         state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1425
1426         if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1427                     && state != SRPT_STATE_MGMT_RSP_SENT
1428                     && state != SRPT_STATE_DONE))
1429                 pr_debug("state = %d\n", state);
1430
1431         if (state != SRPT_STATE_DONE) {
1432                 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1433                 transport_generic_free_cmd(&ioctx->cmd, 0);
1434         } else {
1435                 printk(KERN_ERR "IB completion has been received too late for"
1436                        " wr_id = %u.\n", ioctx->ioctx.index);
1437         }
1438 }
1439
1440 /**
1441  * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1442  *
1443  * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1444  * the data that has been transferred via IB RDMA had to be postponed until the
1445  * check_stop_free() callback.  None of this is necessary anymore and needs to
1446  * be cleaned up.
1447  */
1448 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1449                                   struct srpt_send_ioctx *ioctx,
1450                                   enum srpt_opcode opcode)
1451 {
1452         WARN_ON(ioctx->n_rdma <= 0);
1453         atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1454
1455         if (opcode == SRPT_RDMA_READ_LAST) {
1456                 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1457                                                 SRPT_STATE_DATA_IN))
1458                         target_execute_cmd(&ioctx->cmd);
1459                 else
1460                         printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__,
1461                                __LINE__, srpt_get_cmd_state(ioctx));
1462         } else if (opcode == SRPT_RDMA_ABORT) {
1463                 ioctx->rdma_aborted = true;
1464         } else {
1465                 WARN(true, "unexpected opcode %d\n", opcode);
1466         }
1467 }
1468
1469 /**
1470  * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1471  */
1472 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1473                                       struct srpt_send_ioctx *ioctx,
1474                                       enum srpt_opcode opcode)
1475 {
1476         struct se_cmd *cmd;
1477         enum srpt_command_state state;
1478
1479         cmd = &ioctx->cmd;
1480         state = srpt_get_cmd_state(ioctx);
1481         switch (opcode) {
1482         case SRPT_RDMA_READ_LAST:
1483                 if (ioctx->n_rdma <= 0) {
1484                         printk(KERN_ERR "Received invalid RDMA read"
1485                                " error completion with idx %d\n",
1486                                ioctx->ioctx.index);
1487                         break;
1488                 }
1489                 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1490                 if (state == SRPT_STATE_NEED_DATA)
1491                         srpt_abort_cmd(ioctx);
1492                 else
1493                         printk(KERN_ERR "%s[%d]: wrong state = %d\n",
1494                                __func__, __LINE__, state);
1495                 break;
1496         case SRPT_RDMA_WRITE_LAST:
1497                 break;
1498         default:
1499                 printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__,
1500                        __LINE__, opcode);
1501                 break;
1502         }
1503 }
1504
1505 /**
1506  * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1507  * @ch: RDMA channel through which the request has been received.
1508  * @ioctx: I/O context associated with the SRP_CMD request. The response will
1509  *   be built in the buffer ioctx->buf points at and hence this function will
1510  *   overwrite the request data.
1511  * @tag: tag of the request for which this response is being generated.
1512  * @status: value for the STATUS field of the SRP_RSP information unit.
1513  *
1514  * Returns the size in bytes of the SRP_RSP response.
1515  *
1516  * An SRP_RSP response contains a SCSI status or service response. See also
1517  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1518  * response. See also SPC-2 for more information about sense data.
1519  */
1520 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1521                               struct srpt_send_ioctx *ioctx, u64 tag,
1522                               int status)
1523 {
1524         struct srp_rsp *srp_rsp;
1525         const u8 *sense_data;
1526         int sense_data_len, max_sense_len;
1527
1528         /*
1529          * The lowest bit of all SAM-3 status codes is zero (see also
1530          * paragraph 5.3 in SAM-3).
1531          */
1532         WARN_ON(status & 1);
1533
1534         srp_rsp = ioctx->ioctx.buf;
1535         BUG_ON(!srp_rsp);
1536
1537         sense_data = ioctx->sense_data;
1538         sense_data_len = ioctx->cmd.scsi_sense_length;
1539         WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1540
1541         memset(srp_rsp, 0, sizeof *srp_rsp);
1542         srp_rsp->opcode = SRP_RSP;
1543         srp_rsp->req_lim_delta =
1544                 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1545         srp_rsp->tag = tag;
1546         srp_rsp->status = status;
1547
1548         if (sense_data_len) {
1549                 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1550                 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1551                 if (sense_data_len > max_sense_len) {
1552                         printk(KERN_WARNING "truncated sense data from %d to %d"
1553                                " bytes\n", sense_data_len, max_sense_len);
1554                         sense_data_len = max_sense_len;
1555                 }
1556
1557                 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1558                 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1559                 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1560         }
1561
1562         return sizeof(*srp_rsp) + sense_data_len;
1563 }
1564
1565 /**
1566  * srpt_build_tskmgmt_rsp() - Build a task management response.
1567  * @ch:       RDMA channel through which the request has been received.
1568  * @ioctx:    I/O context in which the SRP_RSP response will be built.
1569  * @rsp_code: RSP_CODE that will be stored in the response.
1570  * @tag:      Tag of the request for which this response is being generated.
1571  *
1572  * Returns the size in bytes of the SRP_RSP response.
1573  *
1574  * An SRP_RSP response contains a SCSI status or service response. See also
1575  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1576  * response.
1577  */
1578 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1579                                   struct srpt_send_ioctx *ioctx,
1580                                   u8 rsp_code, u64 tag)
1581 {
1582         struct srp_rsp *srp_rsp;
1583         int resp_data_len;
1584         int resp_len;
1585
1586         resp_data_len = 4;
1587         resp_len = sizeof(*srp_rsp) + resp_data_len;
1588
1589         srp_rsp = ioctx->ioctx.buf;
1590         BUG_ON(!srp_rsp);
1591         memset(srp_rsp, 0, sizeof *srp_rsp);
1592
1593         srp_rsp->opcode = SRP_RSP;
1594         srp_rsp->req_lim_delta = __constant_cpu_to_be32(1
1595                                     + atomic_xchg(&ch->req_lim_delta, 0));
1596         srp_rsp->tag = tag;
1597
1598         srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1599         srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1600         srp_rsp->data[3] = rsp_code;
1601
1602         return resp_len;
1603 }
1604
1605 #define NO_SUCH_LUN ((uint64_t)-1LL)
1606
1607 /*
1608  * SCSI LUN addressing method. See also SAM-2 and the section about
1609  * eight byte LUNs.
1610  */
1611 enum scsi_lun_addr_method {
1612         SCSI_LUN_ADDR_METHOD_PERIPHERAL   = 0,
1613         SCSI_LUN_ADDR_METHOD_FLAT         = 1,
1614         SCSI_LUN_ADDR_METHOD_LUN          = 2,
1615         SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1616 };
1617
1618 /*
1619  * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1620  *
1621  * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1622  * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1623  * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1624  */
1625 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1626 {
1627         uint64_t res = NO_SUCH_LUN;
1628         int addressing_method;
1629
1630         if (unlikely(len < 2)) {
1631                 printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or "
1632                        "more", len);
1633                 goto out;
1634         }
1635
1636         switch (len) {
1637         case 8:
1638                 if ((*((__be64 *)lun) &
1639                      __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1640                         goto out_err;
1641                 break;
1642         case 4:
1643                 if (*((__be16 *)&lun[2]) != 0)
1644                         goto out_err;
1645                 break;
1646         case 6:
1647                 if (*((__be32 *)&lun[2]) != 0)
1648                         goto out_err;
1649                 break;
1650         case 2:
1651                 break;
1652         default:
1653                 goto out_err;
1654         }
1655
1656         addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1657         switch (addressing_method) {
1658         case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1659         case SCSI_LUN_ADDR_METHOD_FLAT:
1660         case SCSI_LUN_ADDR_METHOD_LUN:
1661                 res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1662                 break;
1663
1664         case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1665         default:
1666                 printk(KERN_ERR "Unimplemented LUN addressing method %u",
1667                        addressing_method);
1668                 break;
1669         }
1670
1671 out:
1672         return res;
1673
1674 out_err:
1675         printk(KERN_ERR "Support for multi-level LUNs has not yet been"
1676                " implemented");
1677         goto out;
1678 }
1679
1680 static int srpt_check_stop_free(struct se_cmd *cmd)
1681 {
1682         struct srpt_send_ioctx *ioctx = container_of(cmd,
1683                                 struct srpt_send_ioctx, cmd);
1684
1685         return target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1686 }
1687
1688 /**
1689  * srpt_handle_cmd() - Process SRP_CMD.
1690  */
1691 static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1692                            struct srpt_recv_ioctx *recv_ioctx,
1693                            struct srpt_send_ioctx *send_ioctx)
1694 {
1695         struct se_cmd *cmd;
1696         struct srp_cmd *srp_cmd;
1697         uint64_t unpacked_lun;
1698         u64 data_len;
1699         enum dma_data_direction dir;
1700         sense_reason_t ret;
1701         int rc;
1702
1703         BUG_ON(!send_ioctx);
1704
1705         srp_cmd = recv_ioctx->ioctx.buf;
1706         cmd = &send_ioctx->cmd;
1707         send_ioctx->tag = srp_cmd->tag;
1708
1709         switch (srp_cmd->task_attr) {
1710         case SRP_CMD_SIMPLE_Q:
1711                 cmd->sam_task_attr = MSG_SIMPLE_TAG;
1712                 break;
1713         case SRP_CMD_ORDERED_Q:
1714         default:
1715                 cmd->sam_task_attr = MSG_ORDERED_TAG;
1716                 break;
1717         case SRP_CMD_HEAD_OF_Q:
1718                 cmd->sam_task_attr = MSG_HEAD_TAG;
1719                 break;
1720         case SRP_CMD_ACA:
1721                 cmd->sam_task_attr = MSG_ACA_TAG;
1722                 break;
1723         }
1724
1725         if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
1726                 printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n",
1727                        srp_cmd->tag);
1728                 ret = TCM_INVALID_CDB_FIELD;
1729                 goto send_sense;
1730         }
1731
1732         unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1733                                        sizeof(srp_cmd->lun));
1734         rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
1735                         &send_ioctx->sense_data[0], unpacked_lun, data_len,
1736                         MSG_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1737         if (rc != 0) {
1738                 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1739                 goto send_sense;
1740         }
1741         return 0;
1742
1743 send_sense:
1744         transport_send_check_condition_and_sense(cmd, ret, 0);
1745         return -1;
1746 }
1747
1748 /**
1749  * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
1750  * @ch: RDMA channel of the task management request.
1751  * @fn: Task management function to perform.
1752  * @req_tag: Tag of the SRP task management request.
1753  * @mgmt_ioctx: I/O context of the task management request.
1754  *
1755  * Returns zero if the target core will process the task management
1756  * request asynchronously.
1757  *
1758  * Note: It is assumed that the initiator serializes tag-based task management
1759  * requests.
1760  */
1761 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
1762 {
1763         struct srpt_device *sdev;
1764         struct srpt_rdma_ch *ch;
1765         struct srpt_send_ioctx *target;
1766         int ret, i;
1767
1768         ret = -EINVAL;
1769         ch = ioctx->ch;
1770         BUG_ON(!ch);
1771         BUG_ON(!ch->sport);
1772         sdev = ch->sport->sdev;
1773         BUG_ON(!sdev);
1774         spin_lock_irq(&sdev->spinlock);
1775         for (i = 0; i < ch->rq_size; ++i) {
1776                 target = ch->ioctx_ring[i];
1777                 if (target->cmd.se_lun == ioctx->cmd.se_lun &&
1778                     target->tag == tag &&
1779                     srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
1780                         ret = 0;
1781                         /* now let the target core abort &target->cmd; */
1782                         break;
1783                 }
1784         }
1785         spin_unlock_irq(&sdev->spinlock);
1786         return ret;
1787 }
1788
1789 static int srp_tmr_to_tcm(int fn)
1790 {
1791         switch (fn) {
1792         case SRP_TSK_ABORT_TASK:
1793                 return TMR_ABORT_TASK;
1794         case SRP_TSK_ABORT_TASK_SET:
1795                 return TMR_ABORT_TASK_SET;
1796         case SRP_TSK_CLEAR_TASK_SET:
1797                 return TMR_CLEAR_TASK_SET;
1798         case SRP_TSK_LUN_RESET:
1799                 return TMR_LUN_RESET;
1800         case SRP_TSK_CLEAR_ACA:
1801                 return TMR_CLEAR_ACA;
1802         default:
1803                 return -1;
1804         }
1805 }
1806
1807 /**
1808  * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1809  *
1810  * Returns 0 if and only if the request will be processed by the target core.
1811  *
1812  * For more information about SRP_TSK_MGMT information units, see also section
1813  * 6.7 in the SRP r16a document.
1814  */
1815 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1816                                  struct srpt_recv_ioctx *recv_ioctx,
1817                                  struct srpt_send_ioctx *send_ioctx)
1818 {
1819         struct srp_tsk_mgmt *srp_tsk;
1820         struct se_cmd *cmd;
1821         struct se_session *sess = ch->sess;
1822         uint64_t unpacked_lun;
1823         uint32_t tag = 0;
1824         int tcm_tmr;
1825         int rc;
1826
1827         BUG_ON(!send_ioctx);
1828
1829         srp_tsk = recv_ioctx->ioctx.buf;
1830         cmd = &send_ioctx->cmd;
1831
1832         pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1833                  " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1834                  srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1835
1836         srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1837         send_ioctx->tag = srp_tsk->tag;
1838         tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1839         if (tcm_tmr < 0) {
1840                 send_ioctx->cmd.se_tmr_req->response =
1841                         TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
1842                 goto fail;
1843         }
1844         unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1845                                        sizeof(srp_tsk->lun));
1846
1847         if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) {
1848                 rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
1849                 if (rc < 0) {
1850                         send_ioctx->cmd.se_tmr_req->response =
1851                                         TMR_TASK_DOES_NOT_EXIST;
1852                         goto fail;
1853                 }
1854                 tag = srp_tsk->task_tag;
1855         }
1856         rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
1857                                 srp_tsk, tcm_tmr, GFP_KERNEL, tag,
1858                                 TARGET_SCF_ACK_KREF);
1859         if (rc != 0) {
1860                 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1861                 goto fail;
1862         }
1863         return;
1864 fail:
1865         transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1866 }
1867
1868 /**
1869  * srpt_handle_new_iu() - Process a newly received information unit.
1870  * @ch:    RDMA channel through which the information unit has been received.
1871  * @ioctx: SRPT I/O context associated with the information unit.
1872  */
1873 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1874                                struct srpt_recv_ioctx *recv_ioctx,
1875                                struct srpt_send_ioctx *send_ioctx)
1876 {
1877         struct srp_cmd *srp_cmd;
1878         enum rdma_ch_state ch_state;
1879
1880         BUG_ON(!ch);
1881         BUG_ON(!recv_ioctx);
1882
1883         ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1884                                    recv_ioctx->ioctx.dma, srp_max_req_size,
1885                                    DMA_FROM_DEVICE);
1886
1887         ch_state = srpt_get_ch_state(ch);
1888         if (unlikely(ch_state == CH_CONNECTING)) {
1889                 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1890                 goto out;
1891         }
1892
1893         if (unlikely(ch_state != CH_LIVE))
1894                 goto out;
1895
1896         srp_cmd = recv_ioctx->ioctx.buf;
1897         if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1898                 if (!send_ioctx)
1899                         send_ioctx = srpt_get_send_ioctx(ch);
1900                 if (unlikely(!send_ioctx)) {
1901                         list_add_tail(&recv_ioctx->wait_list,
1902                                       &ch->cmd_wait_list);
1903                         goto out;
1904                 }
1905         }
1906
1907         switch (srp_cmd->opcode) {
1908         case SRP_CMD:
1909                 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1910                 break;
1911         case SRP_TSK_MGMT:
1912                 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1913                 break;
1914         case SRP_I_LOGOUT:
1915                 printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n");
1916                 break;
1917         case SRP_CRED_RSP:
1918                 pr_debug("received SRP_CRED_RSP\n");
1919                 break;
1920         case SRP_AER_RSP:
1921                 pr_debug("received SRP_AER_RSP\n");
1922                 break;
1923         case SRP_RSP:
1924                 printk(KERN_ERR "Received SRP_RSP\n");
1925                 break;
1926         default:
1927                 printk(KERN_ERR "received IU with unknown opcode 0x%x\n",
1928                        srp_cmd->opcode);
1929                 break;
1930         }
1931
1932         srpt_post_recv(ch->sport->sdev, recv_ioctx);
1933 out:
1934         return;
1935 }
1936
1937 static void srpt_process_rcv_completion(struct ib_cq *cq,
1938                                         struct srpt_rdma_ch *ch,
1939                                         struct ib_wc *wc)
1940 {
1941         struct srpt_device *sdev = ch->sport->sdev;
1942         struct srpt_recv_ioctx *ioctx;
1943         u32 index;
1944
1945         index = idx_from_wr_id(wc->wr_id);
1946         if (wc->status == IB_WC_SUCCESS) {
1947                 int req_lim;
1948
1949                 req_lim = atomic_dec_return(&ch->req_lim);
1950                 if (unlikely(req_lim < 0))
1951                         printk(KERN_ERR "req_lim = %d < 0\n", req_lim);
1952                 ioctx = sdev->ioctx_ring[index];
1953                 srpt_handle_new_iu(ch, ioctx, NULL);
1954         } else {
1955                 printk(KERN_INFO "receiving failed for idx %u with status %d\n",
1956                        index, wc->status);
1957         }
1958 }
1959
1960 /**
1961  * srpt_process_send_completion() - Process an IB send completion.
1962  *
1963  * Note: Although this has not yet been observed during tests, at least in
1964  * theory it is possible that the srpt_get_send_ioctx() call invoked by
1965  * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1966  * value in each response is set to one, and it is possible that this response
1967  * makes the initiator send a new request before the send completion for that
1968  * response has been processed. This could e.g. happen if the call to
1969  * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1970  * if IB retransmission causes generation of the send completion to be
1971  * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1972  * are queued on cmd_wait_list. The code below processes these delayed
1973  * requests one at a time.
1974  */
1975 static void srpt_process_send_completion(struct ib_cq *cq,
1976                                          struct srpt_rdma_ch *ch,
1977                                          struct ib_wc *wc)
1978 {
1979         struct srpt_send_ioctx *send_ioctx;
1980         uint32_t index;
1981         enum srpt_opcode opcode;
1982
1983         index = idx_from_wr_id(wc->wr_id);
1984         opcode = opcode_from_wr_id(wc->wr_id);
1985         send_ioctx = ch->ioctx_ring[index];
1986         if (wc->status == IB_WC_SUCCESS) {
1987                 if (opcode == SRPT_SEND)
1988                         srpt_handle_send_comp(ch, send_ioctx);
1989                 else {
1990                         WARN_ON(opcode != SRPT_RDMA_ABORT &&
1991                                 wc->opcode != IB_WC_RDMA_READ);
1992                         srpt_handle_rdma_comp(ch, send_ioctx, opcode);
1993                 }
1994         } else {
1995                 if (opcode == SRPT_SEND) {
1996                         printk(KERN_INFO "sending response for idx %u failed"
1997                                " with status %d\n", index, wc->status);
1998                         srpt_handle_send_err_comp(ch, wc->wr_id);
1999                 } else if (opcode != SRPT_RDMA_MID) {
2000                         printk(KERN_INFO "RDMA t %d for idx %u failed with"
2001                                 " status %d", opcode, index, wc->status);
2002                         srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
2003                 }
2004         }
2005
2006         while (unlikely(opcode == SRPT_SEND
2007                         && !list_empty(&ch->cmd_wait_list)
2008                         && srpt_get_ch_state(ch) == CH_LIVE
2009                         && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
2010                 struct srpt_recv_ioctx *recv_ioctx;
2011
2012                 recv_ioctx = list_first_entry(&ch->cmd_wait_list,
2013                                               struct srpt_recv_ioctx,
2014                                               wait_list);
2015                 list_del(&recv_ioctx->wait_list);
2016                 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
2017         }
2018 }
2019
2020 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
2021 {
2022         struct ib_wc *const wc = ch->wc;
2023         int i, n;
2024
2025         WARN_ON(cq != ch->cq);
2026
2027         ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
2028         while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
2029                 for (i = 0; i < n; i++) {
2030                         if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
2031                                 srpt_process_rcv_completion(cq, ch, &wc[i]);
2032                         else
2033                                 srpt_process_send_completion(cq, ch, &wc[i]);
2034                 }
2035         }
2036 }
2037
2038 /**
2039  * srpt_completion() - IB completion queue callback function.
2040  *
2041  * Notes:
2042  * - It is guaranteed that a completion handler will never be invoked
2043  *   concurrently on two different CPUs for the same completion queue. See also
2044  *   Documentation/infiniband/core_locking.txt and the implementation of
2045  *   handle_edge_irq() in kernel/irq/chip.c.
2046  * - When threaded IRQs are enabled, completion handlers are invoked in thread
2047  *   context instead of interrupt context.
2048  */
2049 static void srpt_completion(struct ib_cq *cq, void *ctx)
2050 {
2051         struct srpt_rdma_ch *ch = ctx;
2052
2053         wake_up_interruptible(&ch->wait_queue);
2054 }
2055
2056 static int srpt_compl_thread(void *arg)
2057 {
2058         struct srpt_rdma_ch *ch;
2059
2060         /* Hibernation / freezing of the SRPT kernel thread is not supported. */
2061         current->flags |= PF_NOFREEZE;
2062
2063         ch = arg;
2064         BUG_ON(!ch);
2065         printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n",
2066                ch->sess_name, ch->thread->comm, current->pid);
2067         while (!kthread_should_stop()) {
2068                 wait_event_interruptible(ch->wait_queue,
2069                         (srpt_process_completion(ch->cq, ch),
2070                          kthread_should_stop()));
2071         }
2072         printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n",
2073                ch->sess_name, ch->thread->comm, current->pid);
2074         return 0;
2075 }
2076
2077 /**
2078  * srpt_create_ch_ib() - Create receive and send completion queues.
2079  */
2080 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2081 {
2082         struct ib_qp_init_attr *qp_init;
2083         struct srpt_port *sport = ch->sport;
2084         struct srpt_device *sdev = sport->sdev;
2085         u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2086         int ret;
2087
2088         WARN_ON(ch->rq_size < 1);
2089
2090         ret = -ENOMEM;
2091         qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2092         if (!qp_init)
2093                 goto out;
2094
2095         ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2096                               ch->rq_size + srp_sq_size, 0);
2097         if (IS_ERR(ch->cq)) {
2098                 ret = PTR_ERR(ch->cq);
2099                 printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n",
2100                        ch->rq_size + srp_sq_size, ret);
2101                 goto out;
2102         }
2103
2104         qp_init->qp_context = (void *)ch;
2105         qp_init->event_handler
2106                 = (void(*)(struct ib_event *, void*))srpt_qp_event;
2107         qp_init->send_cq = ch->cq;
2108         qp_init->recv_cq = ch->cq;
2109         qp_init->srq = sdev->srq;
2110         qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2111         qp_init->qp_type = IB_QPT_RC;
2112         qp_init->cap.max_send_wr = srp_sq_size;
2113         qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2114
2115         ch->qp = ib_create_qp(sdev->pd, qp_init);
2116         if (IS_ERR(ch->qp)) {
2117                 ret = PTR_ERR(ch->qp);
2118                 printk(KERN_ERR "failed to create_qp ret= %d\n", ret);
2119                 goto err_destroy_cq;
2120         }
2121
2122         atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2123
2124         pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2125                  __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2126                  qp_init->cap.max_send_wr, ch->cm_id);
2127
2128         ret = srpt_init_ch_qp(ch, ch->qp);
2129         if (ret)
2130                 goto err_destroy_qp;
2131
2132         init_waitqueue_head(&ch->wait_queue);
2133
2134         pr_debug("creating thread for session %s\n", ch->sess_name);
2135
2136         ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2137         if (IS_ERR(ch->thread)) {
2138                 printk(KERN_ERR "failed to create kernel thread %ld\n",
2139                        PTR_ERR(ch->thread));
2140                 ch->thread = NULL;
2141                 goto err_destroy_qp;
2142         }
2143
2144 out:
2145         kfree(qp_init);
2146         return ret;
2147
2148 err_destroy_qp:
2149         ib_destroy_qp(ch->qp);
2150 err_destroy_cq:
2151         ib_destroy_cq(ch->cq);
2152         goto out;
2153 }
2154
2155 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2156 {
2157         if (ch->thread)
2158                 kthread_stop(ch->thread);
2159
2160         ib_destroy_qp(ch->qp);
2161         ib_destroy_cq(ch->cq);
2162 }
2163
2164 /**
2165  * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2166  *
2167  * Reset the QP and make sure all resources associated with the channel will
2168  * be deallocated at an appropriate time.
2169  *
2170  * Note: The caller must hold ch->sport->sdev->spinlock.
2171  */
2172 static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2173 {
2174         struct srpt_device *sdev;
2175         enum rdma_ch_state prev_state;
2176         unsigned long flags;
2177
2178         sdev = ch->sport->sdev;
2179
2180         spin_lock_irqsave(&ch->spinlock, flags);
2181         prev_state = ch->state;
2182         switch (prev_state) {
2183         case CH_CONNECTING:
2184         case CH_LIVE:
2185                 ch->state = CH_DISCONNECTING;
2186                 break;
2187         default:
2188                 break;
2189         }
2190         spin_unlock_irqrestore(&ch->spinlock, flags);
2191
2192         switch (prev_state) {
2193         case CH_CONNECTING:
2194                 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2195                                NULL, 0);
2196                 /* fall through */
2197         case CH_LIVE:
2198                 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2199                         printk(KERN_ERR "sending CM DREQ failed.\n");
2200                 break;
2201         case CH_DISCONNECTING:
2202                 break;
2203         case CH_DRAINING:
2204         case CH_RELEASING:
2205                 break;
2206         }
2207 }
2208
2209 /**
2210  * srpt_close_ch() - Close an RDMA channel.
2211  */
2212 static void srpt_close_ch(struct srpt_rdma_ch *ch)
2213 {
2214         struct srpt_device *sdev;
2215
2216         sdev = ch->sport->sdev;
2217         spin_lock_irq(&sdev->spinlock);
2218         __srpt_close_ch(ch);
2219         spin_unlock_irq(&sdev->spinlock);
2220 }
2221
2222 /**
2223  * srpt_shutdown_session() - Whether or not a session may be shut down.
2224  */
2225 static int srpt_shutdown_session(struct se_session *se_sess)
2226 {
2227         struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2228         unsigned long flags;
2229
2230         spin_lock_irqsave(&ch->spinlock, flags);
2231         if (ch->in_shutdown) {
2232                 spin_unlock_irqrestore(&ch->spinlock, flags);
2233                 return true;
2234         }
2235
2236         ch->in_shutdown = true;
2237         target_sess_cmd_list_set_waiting(se_sess);
2238         spin_unlock_irqrestore(&ch->spinlock, flags);
2239
2240         return true;
2241 }
2242
2243 /**
2244  * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2245  * @cm_id: Pointer to the CM ID of the channel to be drained.
2246  *
2247  * Note: Must be called from inside srpt_cm_handler to avoid a race between
2248  * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2249  * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2250  * waits until all target sessions for the associated IB device have been
2251  * unregistered and target session registration involves a call to
2252  * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2253  * this function has finished).
2254  */
2255 static void srpt_drain_channel(struct ib_cm_id *cm_id)
2256 {
2257         struct srpt_device *sdev;
2258         struct srpt_rdma_ch *ch;
2259         int ret;
2260         bool do_reset = false;
2261
2262         WARN_ON_ONCE(irqs_disabled());
2263
2264         sdev = cm_id->context;
2265         BUG_ON(!sdev);
2266         spin_lock_irq(&sdev->spinlock);
2267         list_for_each_entry(ch, &sdev->rch_list, list) {
2268                 if (ch->cm_id == cm_id) {
2269                         do_reset = srpt_test_and_set_ch_state(ch,
2270                                         CH_CONNECTING, CH_DRAINING) ||
2271                                    srpt_test_and_set_ch_state(ch,
2272                                         CH_LIVE, CH_DRAINING) ||
2273                                    srpt_test_and_set_ch_state(ch,
2274                                         CH_DISCONNECTING, CH_DRAINING);
2275                         break;
2276                 }
2277         }
2278         spin_unlock_irq(&sdev->spinlock);
2279
2280         if (do_reset) {
2281                 if (ch->sess)
2282                         srpt_shutdown_session(ch->sess);
2283
2284                 ret = srpt_ch_qp_err(ch);
2285                 if (ret < 0)
2286                         printk(KERN_ERR "Setting queue pair in error state"
2287                                " failed: %d\n", ret);
2288         }
2289 }
2290
2291 /**
2292  * srpt_find_channel() - Look up an RDMA channel.
2293  * @cm_id: Pointer to the CM ID of the channel to be looked up.
2294  *
2295  * Return NULL if no matching RDMA channel has been found.
2296  */
2297 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2298                                               struct ib_cm_id *cm_id)
2299 {
2300         struct srpt_rdma_ch *ch;
2301         bool found;
2302
2303         WARN_ON_ONCE(irqs_disabled());
2304         BUG_ON(!sdev);
2305
2306         found = false;
2307         spin_lock_irq(&sdev->spinlock);
2308         list_for_each_entry(ch, &sdev->rch_list, list) {
2309                 if (ch->cm_id == cm_id) {
2310                         found = true;
2311                         break;
2312                 }
2313         }
2314         spin_unlock_irq(&sdev->spinlock);
2315
2316         return found ? ch : NULL;
2317 }
2318
2319 /**
2320  * srpt_release_channel() - Release channel resources.
2321  *
2322  * Schedules the actual release because:
2323  * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2324  *   trigger a deadlock.
2325  * - It is not safe to call TCM transport_* functions from interrupt context.
2326  */
2327 static void srpt_release_channel(struct srpt_rdma_ch *ch)
2328 {
2329         schedule_work(&ch->release_work);
2330 }
2331
2332 static void srpt_release_channel_work(struct work_struct *w)
2333 {
2334         struct srpt_rdma_ch *ch;
2335         struct srpt_device *sdev;
2336         struct se_session *se_sess;
2337
2338         ch = container_of(w, struct srpt_rdma_ch, release_work);
2339         pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2340                  ch->release_done);
2341
2342         sdev = ch->sport->sdev;
2343         BUG_ON(!sdev);
2344
2345         se_sess = ch->sess;
2346         BUG_ON(!se_sess);
2347
2348         target_wait_for_sess_cmds(se_sess);
2349
2350         transport_deregister_session_configfs(se_sess);
2351         transport_deregister_session(se_sess);
2352         ch->sess = NULL;
2353
2354         ib_destroy_cm_id(ch->cm_id);
2355
2356         srpt_destroy_ch_ib(ch);
2357
2358         srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2359                              ch->sport->sdev, ch->rq_size,
2360                              ch->rsp_size, DMA_TO_DEVICE);
2361
2362         spin_lock_irq(&sdev->spinlock);
2363         list_del(&ch->list);
2364         spin_unlock_irq(&sdev->spinlock);
2365
2366         if (ch->release_done)
2367                 complete(ch->release_done);
2368
2369         wake_up(&sdev->ch_releaseQ);
2370
2371         kfree(ch);
2372 }
2373
2374 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2375                                                u8 i_port_id[16])
2376 {
2377         struct srpt_node_acl *nacl;
2378
2379         list_for_each_entry(nacl, &sport->port_acl_list, list)
2380                 if (memcmp(nacl->i_port_id, i_port_id,
2381                            sizeof(nacl->i_port_id)) == 0)
2382                         return nacl;
2383
2384         return NULL;
2385 }
2386
2387 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2388                                              u8 i_port_id[16])
2389 {
2390         struct srpt_node_acl *nacl;
2391
2392         spin_lock_irq(&sport->port_acl_lock);
2393         nacl = __srpt_lookup_acl(sport, i_port_id);
2394         spin_unlock_irq(&sport->port_acl_lock);
2395
2396         return nacl;
2397 }
2398
2399 /**
2400  * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2401  *
2402  * Ownership of the cm_id is transferred to the target session if this
2403  * functions returns zero. Otherwise the caller remains the owner of cm_id.
2404  */
2405 static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2406                             struct ib_cm_req_event_param *param,
2407                             void *private_data)
2408 {
2409         struct srpt_device *sdev = cm_id->context;
2410         struct srpt_port *sport = &sdev->port[param->port - 1];
2411         struct srp_login_req *req;
2412         struct srp_login_rsp *rsp;
2413         struct srp_login_rej *rej;
2414         struct ib_cm_rep_param *rep_param;
2415         struct srpt_rdma_ch *ch, *tmp_ch;
2416         struct srpt_node_acl *nacl;
2417         u32 it_iu_len;
2418         int i;
2419         int ret = 0;
2420
2421         WARN_ON_ONCE(irqs_disabled());
2422
2423         if (WARN_ON(!sdev || !private_data))
2424                 return -EINVAL;
2425
2426         req = (struct srp_login_req *)private_data;
2427
2428         it_iu_len = be32_to_cpu(req->req_it_iu_len);
2429
2430         printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2431                " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2432                " (guid=0x%llx:0x%llx)\n",
2433                be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2434                be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2435                be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2436                be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2437                it_iu_len,
2438                param->port,
2439                be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2440                be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2441
2442         rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2443         rej = kzalloc(sizeof *rej, GFP_KERNEL);
2444         rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2445
2446         if (!rsp || !rej || !rep_param) {
2447                 ret = -ENOMEM;
2448                 goto out;
2449         }
2450
2451         if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2452                 rej->reason = __constant_cpu_to_be32(
2453                                 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2454                 ret = -EINVAL;
2455                 printk(KERN_ERR "rejected SRP_LOGIN_REQ because its"
2456                        " length (%d bytes) is out of range (%d .. %d)\n",
2457                        it_iu_len, 64, srp_max_req_size);
2458                 goto reject;
2459         }
2460
2461         if (!sport->enabled) {
2462                 rej->reason = __constant_cpu_to_be32(
2463                              SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2464                 ret = -EINVAL;
2465                 printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port"
2466                        " has not yet been enabled\n");
2467                 goto reject;
2468         }
2469
2470         if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2471                 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2472
2473                 spin_lock_irq(&sdev->spinlock);
2474
2475                 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2476                         if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2477                             && !memcmp(ch->t_port_id, req->target_port_id, 16)
2478                             && param->port == ch->sport->port
2479                             && param->listen_id == ch->sport->sdev->cm_id
2480                             && ch->cm_id) {
2481                                 enum rdma_ch_state ch_state;
2482
2483                                 ch_state = srpt_get_ch_state(ch);
2484                                 if (ch_state != CH_CONNECTING
2485                                     && ch_state != CH_LIVE)
2486                                         continue;
2487
2488                                 /* found an existing channel */
2489                                 pr_debug("Found existing channel %s"
2490                                          " cm_id= %p state= %d\n",
2491                                          ch->sess_name, ch->cm_id, ch_state);
2492
2493                                 __srpt_close_ch(ch);
2494
2495                                 rsp->rsp_flags =
2496                                         SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2497                         }
2498                 }
2499
2500                 spin_unlock_irq(&sdev->spinlock);
2501
2502         } else
2503                 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2504
2505         if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2506             || *(__be64 *)(req->target_port_id + 8) !=
2507                cpu_to_be64(srpt_service_guid)) {
2508                 rej->reason = __constant_cpu_to_be32(
2509                                 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2510                 ret = -ENOMEM;
2511                 printk(KERN_ERR "rejected SRP_LOGIN_REQ because it"
2512                        " has an invalid target port identifier.\n");
2513                 goto reject;
2514         }
2515
2516         ch = kzalloc(sizeof *ch, GFP_KERNEL);
2517         if (!ch) {
2518                 rej->reason = __constant_cpu_to_be32(
2519                                         SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2520                 printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n");
2521                 ret = -ENOMEM;
2522                 goto reject;
2523         }
2524
2525         INIT_WORK(&ch->release_work, srpt_release_channel_work);
2526         memcpy(ch->i_port_id, req->initiator_port_id, 16);
2527         memcpy(ch->t_port_id, req->target_port_id, 16);
2528         ch->sport = &sdev->port[param->port - 1];
2529         ch->cm_id = cm_id;
2530         /*
2531          * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2532          * for the SRP protocol to the command queue size.
2533          */
2534         ch->rq_size = SRPT_RQ_SIZE;
2535         spin_lock_init(&ch->spinlock);
2536         ch->state = CH_CONNECTING;
2537         INIT_LIST_HEAD(&ch->cmd_wait_list);
2538         ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2539
2540         ch->ioctx_ring = (struct srpt_send_ioctx **)
2541                 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2542                                       sizeof(*ch->ioctx_ring[0]),
2543                                       ch->rsp_size, DMA_TO_DEVICE);
2544         if (!ch->ioctx_ring)
2545                 goto free_ch;
2546
2547         INIT_LIST_HEAD(&ch->free_list);
2548         for (i = 0; i < ch->rq_size; i++) {
2549                 ch->ioctx_ring[i]->ch = ch;
2550                 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2551         }
2552
2553         ret = srpt_create_ch_ib(ch);
2554         if (ret) {
2555                 rej->reason = __constant_cpu_to_be32(
2556                                 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2557                 printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating"
2558                        " a new RDMA channel failed.\n");
2559                 goto free_ring;
2560         }
2561
2562         ret = srpt_ch_qp_rtr(ch, ch->qp);
2563         if (ret) {
2564                 rej->reason = __constant_cpu_to_be32(
2565                                 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2566                 printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling"
2567                        " RTR failed (error code = %d)\n", ret);
2568                 goto destroy_ib;
2569         }
2570         /*
2571          * Use the initator port identifier as the session name.
2572          */
2573         snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2574                         be64_to_cpu(*(__be64 *)ch->i_port_id),
2575                         be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2576
2577         pr_debug("registering session %s\n", ch->sess_name);
2578
2579         nacl = srpt_lookup_acl(sport, ch->i_port_id);
2580         if (!nacl) {
2581                 printk(KERN_INFO "Rejected login because no ACL has been"
2582                        " configured yet for initiator %s.\n", ch->sess_name);
2583                 rej->reason = __constant_cpu_to_be32(
2584                                 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2585                 goto destroy_ib;
2586         }
2587
2588         ch->sess = transport_init_session(TARGET_PROT_NORMAL);
2589         if (IS_ERR(ch->sess)) {
2590                 rej->reason = __constant_cpu_to_be32(
2591                                 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2592                 pr_debug("Failed to create session\n");
2593                 goto deregister_session;
2594         }
2595         ch->sess->se_node_acl = &nacl->nacl;
2596         transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2597
2598         pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2599                  ch->sess_name, ch->cm_id);
2600
2601         /* create srp_login_response */
2602         rsp->opcode = SRP_LOGIN_RSP;
2603         rsp->tag = req->tag;
2604         rsp->max_it_iu_len = req->req_it_iu_len;
2605         rsp->max_ti_iu_len = req->req_it_iu_len;
2606         ch->max_ti_iu_len = it_iu_len;
2607         rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2608                                               | SRP_BUF_FORMAT_INDIRECT);
2609         rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2610         atomic_set(&ch->req_lim, ch->rq_size);
2611         atomic_set(&ch->req_lim_delta, 0);
2612
2613         /* create cm reply */
2614         rep_param->qp_num = ch->qp->qp_num;
2615         rep_param->private_data = (void *)rsp;
2616         rep_param->private_data_len = sizeof *rsp;
2617         rep_param->rnr_retry_count = 7;
2618         rep_param->flow_control = 1;
2619         rep_param->failover_accepted = 0;
2620         rep_param->srq = 1;
2621         rep_param->responder_resources = 4;
2622         rep_param->initiator_depth = 4;
2623
2624         ret = ib_send_cm_rep(cm_id, rep_param);
2625         if (ret) {
2626                 printk(KERN_ERR "sending SRP_LOGIN_REQ response failed"
2627                        " (error code = %d)\n", ret);
2628                 goto release_channel;
2629         }
2630
2631         spin_lock_irq(&sdev->spinlock);
2632         list_add_tail(&ch->list, &sdev->rch_list);
2633         spin_unlock_irq(&sdev->spinlock);
2634
2635         goto out;
2636
2637 release_channel:
2638         srpt_set_ch_state(ch, CH_RELEASING);
2639         transport_deregister_session_configfs(ch->sess);
2640
2641 deregister_session:
2642         transport_deregister_session(ch->sess);
2643         ch->sess = NULL;
2644
2645 destroy_ib:
2646         srpt_destroy_ch_ib(ch);
2647
2648 free_ring:
2649         srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2650                              ch->sport->sdev, ch->rq_size,
2651                              ch->rsp_size, DMA_TO_DEVICE);
2652 free_ch:
2653         kfree(ch);
2654
2655 reject:
2656         rej->opcode = SRP_LOGIN_REJ;
2657         rej->tag = req->tag;
2658         rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2659                                               | SRP_BUF_FORMAT_INDIRECT);
2660
2661         ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2662                              (void *)rej, sizeof *rej);
2663
2664 out:
2665         kfree(rep_param);
2666         kfree(rsp);
2667         kfree(rej);
2668
2669         return ret;
2670 }
2671
2672 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2673 {
2674         printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id);
2675         srpt_drain_channel(cm_id);
2676 }
2677
2678 /**
2679  * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2680  *
2681  * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2682  * and that the recipient may begin transmitting (RTU = ready to use).
2683  */
2684 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2685 {
2686         struct srpt_rdma_ch *ch;
2687         int ret;
2688
2689         ch = srpt_find_channel(cm_id->context, cm_id);
2690         BUG_ON(!ch);
2691
2692         if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2693                 struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2694
2695                 ret = srpt_ch_qp_rts(ch, ch->qp);
2696
2697                 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2698                                          wait_list) {
2699                         list_del(&ioctx->wait_list);
2700                         srpt_handle_new_iu(ch, ioctx, NULL);
2701                 }
2702                 if (ret)
2703                         srpt_close_ch(ch);
2704         }
2705 }
2706
2707 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2708 {
2709         printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id);
2710         srpt_drain_channel(cm_id);
2711 }
2712
2713 static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2714 {
2715         printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id);
2716         srpt_drain_channel(cm_id);
2717 }
2718
2719 /**
2720  * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2721  */
2722 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2723 {
2724         struct srpt_rdma_ch *ch;
2725         unsigned long flags;
2726         bool send_drep = false;
2727
2728         ch = srpt_find_channel(cm_id->context, cm_id);
2729         BUG_ON(!ch);
2730
2731         pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2732
2733         spin_lock_irqsave(&ch->spinlock, flags);
2734         switch (ch->state) {
2735         case CH_CONNECTING:
2736         case CH_LIVE:
2737                 send_drep = true;
2738                 ch->state = CH_DISCONNECTING;
2739                 break;
2740         case CH_DISCONNECTING:
2741         case CH_DRAINING:
2742         case CH_RELEASING:
2743                 WARN(true, "unexpected channel state %d\n", ch->state);
2744                 break;
2745         }
2746         spin_unlock_irqrestore(&ch->spinlock, flags);
2747
2748         if (send_drep) {
2749                 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2750                         printk(KERN_ERR "Sending IB DREP failed.\n");
2751                 printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n",
2752                        ch->sess_name);
2753         }
2754 }
2755
2756 /**
2757  * srpt_cm_drep_recv() - Process reception of a DREP message.
2758  */
2759 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2760 {
2761         printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n",
2762                cm_id);
2763         srpt_drain_channel(cm_id);
2764 }
2765
2766 /**
2767  * srpt_cm_handler() - IB connection manager callback function.
2768  *
2769  * A non-zero return value will cause the caller destroy the CM ID.
2770  *
2771  * Note: srpt_cm_handler() must only return a non-zero value when transferring
2772  * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2773  * a non-zero value in any other case will trigger a race with the
2774  * ib_destroy_cm_id() call in srpt_release_channel().
2775  */
2776 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2777 {
2778         int ret;
2779
2780         ret = 0;
2781         switch (event->event) {
2782         case IB_CM_REQ_RECEIVED:
2783                 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2784                                        event->private_data);
2785                 break;
2786         case IB_CM_REJ_RECEIVED:
2787                 srpt_cm_rej_recv(cm_id);
2788                 break;
2789         case IB_CM_RTU_RECEIVED:
2790         case IB_CM_USER_ESTABLISHED:
2791                 srpt_cm_rtu_recv(cm_id);
2792                 break;
2793         case IB_CM_DREQ_RECEIVED:
2794                 srpt_cm_dreq_recv(cm_id);
2795                 break;
2796         case IB_CM_DREP_RECEIVED:
2797                 srpt_cm_drep_recv(cm_id);
2798                 break;
2799         case IB_CM_TIMEWAIT_EXIT:
2800                 srpt_cm_timewait_exit(cm_id);
2801                 break;
2802         case IB_CM_REP_ERROR:
2803                 srpt_cm_rep_error(cm_id);
2804                 break;
2805         case IB_CM_DREQ_ERROR:
2806                 printk(KERN_INFO "Received IB DREQ ERROR event.\n");
2807                 break;
2808         case IB_CM_MRA_RECEIVED:
2809                 printk(KERN_INFO "Received IB MRA event\n");
2810                 break;
2811         default:
2812                 printk(KERN_ERR "received unrecognized IB CM event %d\n",
2813                        event->event);
2814                 break;
2815         }
2816
2817         return ret;
2818 }
2819
2820 /**
2821  * srpt_perform_rdmas() - Perform IB RDMA.
2822  *
2823  * Returns zero upon success or a negative number upon failure.
2824  */
2825 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2826                               struct srpt_send_ioctx *ioctx)
2827 {
2828         struct ib_send_wr wr;
2829         struct ib_send_wr *bad_wr;
2830         struct rdma_iu *riu;
2831         int i;
2832         int ret;
2833         int sq_wr_avail;
2834         enum dma_data_direction dir;
2835         const int n_rdma = ioctx->n_rdma;
2836
2837         dir = ioctx->cmd.data_direction;
2838         if (dir == DMA_TO_DEVICE) {
2839                 /* write */
2840                 ret = -ENOMEM;
2841                 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2842                 if (sq_wr_avail < 0) {
2843                         printk(KERN_WARNING "IB send queue full (needed %d)\n",
2844                                n_rdma);
2845                         goto out;
2846                 }
2847         }
2848
2849         ioctx->rdma_aborted = false;
2850         ret = 0;
2851         riu = ioctx->rdma_ius;
2852         memset(&wr, 0, sizeof wr);
2853
2854         for (i = 0; i < n_rdma; ++i, ++riu) {
2855                 if (dir == DMA_FROM_DEVICE) {
2856                         wr.opcode = IB_WR_RDMA_WRITE;
2857                         wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2858                                                 SRPT_RDMA_WRITE_LAST :
2859                                                 SRPT_RDMA_MID,
2860                                                 ioctx->ioctx.index);
2861                 } else {
2862                         wr.opcode = IB_WR_RDMA_READ;
2863                         wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2864                                                 SRPT_RDMA_READ_LAST :
2865                                                 SRPT_RDMA_MID,
2866                                                 ioctx->ioctx.index);
2867                 }
2868                 wr.next = NULL;
2869                 wr.wr.rdma.remote_addr = riu->raddr;
2870                 wr.wr.rdma.rkey = riu->rkey;
2871                 wr.num_sge = riu->sge_cnt;
2872                 wr.sg_list = riu->sge;
2873
2874                 /* only get completion event for the last rdma write */
2875                 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2876                         wr.send_flags = IB_SEND_SIGNALED;
2877
2878                 ret = ib_post_send(ch->qp, &wr, &bad_wr);
2879                 if (ret)
2880                         break;
2881         }
2882
2883         if (ret)
2884                 printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d",
2885                                  __func__, __LINE__, ret, i, n_rdma);
2886         if (ret && i > 0) {
2887                 wr.num_sge = 0;
2888                 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2889                 wr.send_flags = IB_SEND_SIGNALED;
2890                 while (ch->state == CH_LIVE &&
2891                         ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
2892                         printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]",
2893                                 ioctx->ioctx.index);
2894                         msleep(1000);
2895                 }
2896                 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2897                         printk(KERN_INFO "Waiting until RDMA abort finished [%d]",
2898                                 ioctx->ioctx.index);
2899                         msleep(1000);
2900                 }
2901         }
2902 out:
2903         if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2904                 atomic_add(n_rdma, &ch->sq_wr_avail);
2905         return ret;
2906 }
2907
2908 /**
2909  * srpt_xfer_data() - Start data transfer from initiator to target.
2910  */
2911 static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2912                           struct srpt_send_ioctx *ioctx)
2913 {
2914         int ret;
2915
2916         ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2917         if (ret) {
2918                 printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret);
2919                 goto out;
2920         }
2921
2922         ret = srpt_perform_rdmas(ch, ioctx);
2923         if (ret) {
2924                 if (ret == -EAGAIN || ret == -ENOMEM)
2925                         printk(KERN_INFO "%s[%d] queue full -- ret=%d\n",
2926                                    __func__, __LINE__, ret);
2927                 else
2928                         printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n",
2929                                __func__, __LINE__, ret);
2930                 goto out_unmap;
2931         }
2932
2933 out:
2934         return ret;
2935 out_unmap:
2936         srpt_unmap_sg_to_ib_sge(ch, ioctx);
2937         goto out;
2938 }
2939
2940 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2941 {
2942         struct srpt_send_ioctx *ioctx;
2943
2944         ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2945         return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2946 }
2947
2948 /*
2949  * srpt_write_pending() - Start data transfer from initiator to target (write).
2950  */
2951 static int srpt_write_pending(struct se_cmd *se_cmd)
2952 {
2953         struct srpt_rdma_ch *ch;
2954         struct srpt_send_ioctx *ioctx;
2955         enum srpt_command_state new_state;
2956         enum rdma_ch_state ch_state;
2957         int ret;
2958
2959         ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2960
2961         new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2962         WARN_ON(new_state == SRPT_STATE_DONE);
2963
2964         ch = ioctx->ch;
2965         BUG_ON(!ch);
2966
2967         ch_state = srpt_get_ch_state(ch);
2968         switch (ch_state) {
2969         case CH_CONNECTING:
2970                 WARN(true, "unexpected channel state %d\n", ch_state);
2971                 ret = -EINVAL;
2972                 goto out;
2973         case CH_LIVE:
2974                 break;
2975         case CH_DISCONNECTING:
2976         case CH_DRAINING:
2977         case CH_RELEASING:
2978                 pr_debug("cmd with tag %lld: channel disconnecting\n",
2979                          ioctx->tag);
2980                 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2981                 ret = -EINVAL;
2982                 goto out;
2983         }
2984         ret = srpt_xfer_data(ch, ioctx);
2985
2986 out:
2987         return ret;
2988 }
2989
2990 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2991 {
2992         switch (tcm_mgmt_status) {
2993         case TMR_FUNCTION_COMPLETE:
2994                 return SRP_TSK_MGMT_SUCCESS;
2995         case TMR_FUNCTION_REJECTED:
2996                 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2997         }
2998         return SRP_TSK_MGMT_FAILED;
2999 }
3000
3001 /**
3002  * srpt_queue_response() - Transmits the response to a SCSI command.
3003  *
3004  * Callback function called by the TCM core. Must not block since it can be
3005  * invoked on the context of the IB completion handler.
3006  */
3007 static void srpt_queue_response(struct se_cmd *cmd)
3008 {
3009         struct srpt_rdma_ch *ch;
3010         struct srpt_send_ioctx *ioctx;
3011         enum srpt_command_state state;
3012         unsigned long flags;
3013         int ret;
3014         enum dma_data_direction dir;
3015         int resp_len;
3016         u8 srp_tm_status;
3017
3018         ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3019         ch = ioctx->ch;
3020         BUG_ON(!ch);
3021
3022         spin_lock_irqsave(&ioctx->spinlock, flags);
3023         state = ioctx->state;
3024         switch (state) {
3025         case SRPT_STATE_NEW:
3026         case SRPT_STATE_DATA_IN:
3027                 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
3028                 break;
3029         case SRPT_STATE_MGMT:
3030                 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
3031                 break;
3032         default:
3033                 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
3034                         ch, ioctx->ioctx.index, ioctx->state);
3035                 break;
3036         }
3037         spin_unlock_irqrestore(&ioctx->spinlock, flags);
3038
3039         if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
3040                      || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
3041                 atomic_inc(&ch->req_lim_delta);
3042                 srpt_abort_cmd(ioctx);
3043                 return;
3044         }
3045
3046         dir = ioctx->cmd.data_direction;
3047
3048         /* For read commands, transfer the data to the initiator. */
3049         if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
3050             !ioctx->queue_status_only) {
3051                 ret = srpt_xfer_data(ch, ioctx);
3052                 if (ret) {
3053                         printk(KERN_ERR "xfer_data failed for tag %llu\n",
3054                                ioctx->tag);
3055                         return;
3056                 }
3057         }
3058
3059         if (state != SRPT_STATE_MGMT)
3060                 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag,
3061                                               cmd->scsi_status);
3062         else {
3063                 srp_tm_status
3064                         = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3065                 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3066                                                  ioctx->tag);
3067         }
3068         ret = srpt_post_send(ch, ioctx, resp_len);
3069         if (ret) {
3070                 printk(KERN_ERR "sending cmd response failed for tag %llu\n",
3071                        ioctx->tag);
3072                 srpt_unmap_sg_to_ib_sge(ch, ioctx);
3073                 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3074                 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
3075         }
3076 }
3077
3078 static int srpt_queue_data_in(struct se_cmd *cmd)
3079 {
3080         srpt_queue_response(cmd);
3081         return 0;
3082 }
3083
3084 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
3085 {
3086         srpt_queue_response(cmd);
3087 }
3088
3089 static void srpt_aborted_task(struct se_cmd *cmd)
3090 {
3091         struct srpt_send_ioctx *ioctx = container_of(cmd,
3092                                 struct srpt_send_ioctx, cmd);
3093
3094         srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
3095 }
3096
3097 static int srpt_queue_status(struct se_cmd *cmd)
3098 {
3099         struct srpt_send_ioctx *ioctx;
3100
3101         ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3102         BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3103         if (cmd->se_cmd_flags &
3104             (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3105                 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3106         ioctx->queue_status_only = true;
3107         srpt_queue_response(cmd);
3108         return 0;
3109 }
3110
3111 static void srpt_refresh_port_work(struct work_struct *work)
3112 {
3113         struct srpt_port *sport = container_of(work, struct srpt_port, work);
3114
3115         srpt_refresh_port(sport);
3116 }
3117
3118 static int srpt_ch_list_empty(struct srpt_device *sdev)
3119 {
3120         int res;
3121
3122         spin_lock_irq(&sdev->spinlock);
3123         res = list_empty(&sdev->rch_list);
3124         spin_unlock_irq(&sdev->spinlock);
3125
3126         return res;
3127 }
3128
3129 /**
3130  * srpt_release_sdev() - Free the channel resources associated with a target.
3131  */
3132 static int srpt_release_sdev(struct srpt_device *sdev)
3133 {
3134         struct srpt_rdma_ch *ch, *tmp_ch;
3135         int res;
3136
3137         WARN_ON_ONCE(irqs_disabled());
3138
3139         BUG_ON(!sdev);
3140
3141         spin_lock_irq(&sdev->spinlock);
3142         list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3143                 __srpt_close_ch(ch);
3144         spin_unlock_irq(&sdev->spinlock);
3145
3146         res = wait_event_interruptible(sdev->ch_releaseQ,
3147                                        srpt_ch_list_empty(sdev));
3148         if (res)
3149                 printk(KERN_ERR "%s: interrupted.\n", __func__);
3150
3151         return 0;
3152 }
3153
3154 static struct srpt_port *__srpt_lookup_port(const char *name)
3155 {
3156         struct ib_device *dev;
3157         struct srpt_device *sdev;
3158         struct srpt_port *sport;
3159         int i;
3160
3161         list_for_each_entry(sdev, &srpt_dev_list, list) {
3162                 dev = sdev->device;
3163                 if (!dev)
3164                         continue;
3165
3166                 for (i = 0; i < dev->phys_port_cnt; i++) {
3167                         sport = &sdev->port[i];
3168
3169                         if (!strcmp(sport->port_guid, name))
3170                                 return sport;
3171                 }
3172         }
3173
3174         return NULL;
3175 }
3176
3177 static struct srpt_port *srpt_lookup_port(const char *name)
3178 {
3179         struct srpt_port *sport;
3180
3181         spin_lock(&srpt_dev_lock);
3182         sport = __srpt_lookup_port(name);
3183         spin_unlock(&srpt_dev_lock);
3184
3185         return sport;
3186 }
3187
3188 /**
3189  * srpt_add_one() - Infiniband device addition callback function.
3190  */
3191 static void srpt_add_one(struct ib_device *device)
3192 {
3193         struct srpt_device *sdev;
3194         struct srpt_port *sport;
3195         struct ib_srq_init_attr srq_attr;
3196         int i;
3197
3198         pr_debug("device = %p, device->dma_ops = %p\n", device,
3199                  device->dma_ops);
3200
3201         sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3202         if (!sdev)
3203                 goto err;
3204
3205         sdev->device = device;
3206         INIT_LIST_HEAD(&sdev->rch_list);
3207         init_waitqueue_head(&sdev->ch_releaseQ);
3208         spin_lock_init(&sdev->spinlock);
3209
3210         if (ib_query_device(device, &sdev->dev_attr))
3211                 goto free_dev;
3212
3213         sdev->pd = ib_alloc_pd(device);
3214         if (IS_ERR(sdev->pd))
3215                 goto free_dev;
3216
3217         sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
3218         if (IS_ERR(sdev->mr))
3219                 goto err_pd;
3220
3221         sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3222
3223         srq_attr.event_handler = srpt_srq_event;
3224         srq_attr.srq_context = (void *)sdev;
3225         srq_attr.attr.max_wr = sdev->srq_size;
3226         srq_attr.attr.max_sge = 1;
3227         srq_attr.attr.srq_limit = 0;
3228         srq_attr.srq_type = IB_SRQT_BASIC;
3229
3230         sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3231         if (IS_ERR(sdev->srq))
3232                 goto err_mr;
3233
3234         pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3235                  __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3236                  device->name);
3237
3238         if (!srpt_service_guid)
3239                 srpt_service_guid = be64_to_cpu(device->node_guid);
3240
3241         sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3242         if (IS_ERR(sdev->cm_id))
3243                 goto err_srq;
3244
3245         /* print out target login information */
3246         pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3247                  "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3248                  srpt_service_guid, srpt_service_guid);
3249
3250         /*
3251          * We do not have a consistent service_id (ie. also id_ext of target_id)
3252          * to identify this target. We currently use the guid of the first HCA
3253          * in the system as service_id; therefore, the target_id will change
3254          * if this HCA is gone bad and replaced by different HCA
3255          */
3256         if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
3257                 goto err_cm;
3258
3259         INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3260                               srpt_event_handler);
3261         if (ib_register_event_handler(&sdev->event_handler))
3262                 goto err_cm;
3263
3264         sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3265                 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3266                                       sizeof(*sdev->ioctx_ring[0]),
3267                                       srp_max_req_size, DMA_FROM_DEVICE);
3268         if (!sdev->ioctx_ring)
3269                 goto err_event;
3270
3271         for (i = 0; i < sdev->srq_size; ++i)
3272                 srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3273
3274         WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3275
3276         for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3277                 sport = &sdev->port[i - 1];
3278                 sport->sdev = sdev;
3279                 sport->port = i;
3280                 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3281                 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3282                 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3283                 INIT_WORK(&sport->work, srpt_refresh_port_work);
3284                 INIT_LIST_HEAD(&sport->port_acl_list);
3285                 spin_lock_init(&sport->port_acl_lock);
3286
3287                 if (srpt_refresh_port(sport)) {
3288                         printk(KERN_ERR "MAD registration failed for %s-%d.\n",
3289                                srpt_sdev_name(sdev), i);
3290                         goto err_ring;
3291                 }
3292                 snprintf(sport->port_guid, sizeof(sport->port_guid),
3293                         "0x%016llx%016llx",
3294                         be64_to_cpu(sport->gid.global.subnet_prefix),
3295                         be64_to_cpu(sport->gid.global.interface_id));
3296         }
3297
3298         spin_lock(&srpt_dev_lock);
3299         list_add_tail(&sdev->list, &srpt_dev_list);
3300         spin_unlock(&srpt_dev_lock);
3301
3302 out:
3303         ib_set_client_data(device, &srpt_client, sdev);
3304         pr_debug("added %s.\n", device->name);
3305         return;
3306
3307 err_ring:
3308         srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3309                              sdev->srq_size, srp_max_req_size,
3310                              DMA_FROM_DEVICE);
3311 err_event:
3312         ib_unregister_event_handler(&sdev->event_handler);
3313 err_cm:
3314         ib_destroy_cm_id(sdev->cm_id);
3315 err_srq:
3316         ib_destroy_srq(sdev->srq);
3317 err_mr:
3318         ib_dereg_mr(sdev->mr);
3319 err_pd:
3320         ib_dealloc_pd(sdev->pd);
3321 free_dev:
3322         kfree(sdev);
3323 err:
3324         sdev = NULL;
3325         printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name);
3326         goto out;
3327 }
3328
3329 /**
3330  * srpt_remove_one() - InfiniBand device removal callback function.
3331  */
3332 static void srpt_remove_one(struct ib_device *device)
3333 {
3334         struct srpt_device *sdev;
3335         int i;
3336
3337         sdev = ib_get_client_data(device, &srpt_client);
3338         if (!sdev) {
3339                 printk(KERN_INFO "%s(%s): nothing to do.\n", __func__,
3340                        device->name);
3341                 return;
3342         }
3343
3344         srpt_unregister_mad_agent(sdev);
3345
3346         ib_unregister_event_handler(&sdev->event_handler);
3347
3348         /* Cancel any work queued by the just unregistered IB event handler. */
3349         for (i = 0; i < sdev->device->phys_port_cnt; i++)
3350                 cancel_work_sync(&sdev->port[i].work);
3351
3352         ib_destroy_cm_id(sdev->cm_id);
3353
3354         /*
3355          * Unregistering a target must happen after destroying sdev->cm_id
3356          * such that no new SRP_LOGIN_REQ information units can arrive while
3357          * destroying the target.
3358          */
3359         spin_lock(&srpt_dev_lock);
3360         list_del(&sdev->list);
3361         spin_unlock(&srpt_dev_lock);
3362         srpt_release_sdev(sdev);
3363
3364         ib_destroy_srq(sdev->srq);
3365         ib_dereg_mr(sdev->mr);
3366         ib_dealloc_pd(sdev->pd);
3367
3368         srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3369                              sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3370         sdev->ioctx_ring = NULL;
3371         kfree(sdev);
3372 }
3373
3374 static struct ib_client srpt_client = {
3375         .name = DRV_NAME,
3376         .add = srpt_add_one,
3377         .remove = srpt_remove_one
3378 };
3379
3380 static int srpt_check_true(struct se_portal_group *se_tpg)
3381 {
3382         return 1;
3383 }
3384
3385 static int srpt_check_false(struct se_portal_group *se_tpg)
3386 {
3387         return 0;
3388 }
3389
3390 static char *srpt_get_fabric_name(void)
3391 {
3392         return "srpt";
3393 }
3394
3395 static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg)
3396 {
3397         return SCSI_TRANSPORTID_PROTOCOLID_SRP;
3398 }
3399
3400 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3401 {
3402         struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3403
3404         return sport->port_guid;
3405 }
3406
3407 static u16 srpt_get_tag(struct se_portal_group *tpg)
3408 {
3409         return 1;
3410 }
3411
3412 static u32 srpt_get_default_depth(struct se_portal_group *se_tpg)
3413 {
3414         return 1;
3415 }
3416
3417 static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg,
3418                                     struct se_node_acl *se_nacl,
3419                                     struct t10_pr_registration *pr_reg,
3420                                     int *format_code, unsigned char *buf)
3421 {
3422         struct srpt_node_acl *nacl;
3423         struct spc_rdma_transport_id *tr_id;
3424
3425         nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3426         tr_id = (void *)buf;
3427         tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP;
3428         memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id));
3429         return sizeof(*tr_id);
3430 }
3431
3432 static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg,
3433                                         struct se_node_acl *se_nacl,
3434                                         struct t10_pr_registration *pr_reg,
3435                                         int *format_code)
3436 {
3437         *format_code = 0;
3438         return sizeof(struct spc_rdma_transport_id);
3439 }
3440
3441 static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg,
3442                                             const char *buf, u32 *out_tid_len,
3443                                             char **port_nexus_ptr)
3444 {
3445         struct spc_rdma_transport_id *tr_id;
3446
3447         *port_nexus_ptr = NULL;
3448         *out_tid_len = sizeof(struct spc_rdma_transport_id);
3449         tr_id = (void *)buf;
3450         return (char *)tr_id->i_port_id;
3451 }
3452
3453 static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg)
3454 {
3455         struct srpt_node_acl *nacl;
3456
3457         nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL);
3458         if (!nacl) {
3459                 printk(KERN_ERR "Unable to allocate struct srpt_node_acl\n");
3460                 return NULL;
3461         }
3462
3463         return &nacl->nacl;
3464 }
3465
3466 static void srpt_release_fabric_acl(struct se_portal_group *se_tpg,
3467                                     struct se_node_acl *se_nacl)
3468 {
3469         struct srpt_node_acl *nacl;
3470
3471         nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3472         kfree(nacl);
3473 }
3474
3475 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3476 {
3477         return 1;
3478 }
3479
3480 static void srpt_release_cmd(struct se_cmd *se_cmd)
3481 {
3482         struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3483                                 struct srpt_send_ioctx, cmd);
3484         struct srpt_rdma_ch *ch = ioctx->ch;
3485         unsigned long flags;
3486
3487         WARN_ON(ioctx->state != SRPT_STATE_DONE);
3488         WARN_ON(ioctx->mapped_sg_count != 0);
3489
3490         if (ioctx->n_rbuf > 1) {
3491                 kfree(ioctx->rbufs);
3492                 ioctx->rbufs = NULL;
3493                 ioctx->n_rbuf = 0;
3494         }
3495
3496         spin_lock_irqsave(&ch->spinlock, flags);
3497         list_add(&ioctx->free_list, &ch->free_list);
3498         spin_unlock_irqrestore(&ch->spinlock, flags);
3499 }
3500
3501 /**
3502  * srpt_close_session() - Forcibly close a session.
3503  *
3504  * Callback function invoked by the TCM core to clean up sessions associated
3505  * with a node ACL when the user invokes
3506  * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3507  */
3508 static void srpt_close_session(struct se_session *se_sess)
3509 {
3510         DECLARE_COMPLETION_ONSTACK(release_done);
3511         struct srpt_rdma_ch *ch;
3512         struct srpt_device *sdev;
3513         int res;
3514
3515         ch = se_sess->fabric_sess_ptr;
3516         WARN_ON(ch->sess != se_sess);
3517
3518         pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3519
3520         sdev = ch->sport->sdev;
3521         spin_lock_irq(&sdev->spinlock);
3522         BUG_ON(ch->release_done);
3523         ch->release_done = &release_done;
3524         __srpt_close_ch(ch);
3525         spin_unlock_irq(&sdev->spinlock);
3526
3527         res = wait_for_completion_timeout(&release_done, 60 * HZ);
3528         WARN_ON(res <= 0);
3529 }
3530
3531 /**
3532  * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3533  *
3534  * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3535  * This object represents an arbitrary integer used to uniquely identify a
3536  * particular attached remote initiator port to a particular SCSI target port
3537  * within a particular SCSI target device within a particular SCSI instance.
3538  */
3539 static u32 srpt_sess_get_index(struct se_session *se_sess)
3540 {
3541         return 0;
3542 }
3543
3544 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3545 {
3546 }
3547
3548 static u32 srpt_get_task_tag(struct se_cmd *se_cmd)
3549 {
3550         struct srpt_send_ioctx *ioctx;
3551
3552         ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3553         return ioctx->tag;
3554 }
3555
3556 /* Note: only used from inside debug printk's by the TCM core. */
3557 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3558 {
3559         struct srpt_send_ioctx *ioctx;
3560
3561         ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3562         return srpt_get_cmd_state(ioctx);
3563 }
3564
3565 /**
3566  * srpt_parse_i_port_id() - Parse an initiator port ID.
3567  * @name: ASCII representation of a 128-bit initiator port ID.
3568  * @i_port_id: Binary 128-bit port ID.
3569  */
3570 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3571 {
3572         const char *p;
3573         unsigned len, count, leading_zero_bytes;
3574         int ret, rc;
3575
3576         p = name;
3577         if (strnicmp(p, "0x", 2) == 0)
3578                 p += 2;
3579         ret = -EINVAL;
3580         len = strlen(p);
3581         if (len % 2)
3582                 goto out;
3583         count = min(len / 2, 16U);
3584         leading_zero_bytes = 16 - count;
3585         memset(i_port_id, 0, leading_zero_bytes);
3586         rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3587         if (rc < 0)
3588                 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3589         ret = 0;
3590 out:
3591         return ret;
3592 }
3593
3594 /*
3595  * configfs callback function invoked for
3596  * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3597  */
3598 static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg,
3599                                              struct config_group *group,
3600                                              const char *name)
3601 {
3602         struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3603         struct se_node_acl *se_nacl, *se_nacl_new;
3604         struct srpt_node_acl *nacl;
3605         int ret = 0;
3606         u32 nexus_depth = 1;
3607         u8 i_port_id[16];
3608
3609         if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3610                 printk(KERN_ERR "invalid initiator port ID %s\n", name);
3611                 ret = -EINVAL;
3612                 goto err;
3613         }
3614
3615         se_nacl_new = srpt_alloc_fabric_acl(tpg);
3616         if (!se_nacl_new) {
3617                 ret = -ENOMEM;
3618                 goto err;
3619         }
3620         /*
3621          * nacl_new may be released by core_tpg_add_initiator_node_acl()
3622          * when converting a node ACL from demo mode to explict
3623          */
3624         se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name,
3625                                                   nexus_depth);
3626         if (IS_ERR(se_nacl)) {
3627                 ret = PTR_ERR(se_nacl);
3628              &