Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[sfrench/cifs-2.6.git] / drivers / infiniband / hw / mlx5 / odp.c
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36
37 #include "mlx5_ib.h"
38 #include "cmd.h"
39
40 #include <linux/mlx5/eq.h>
41
42 /* Contains the details of a pagefault. */
43 struct mlx5_pagefault {
44         u32                     bytes_committed;
45         u32                     token;
46         u8                      event_subtype;
47         u8                      type;
48         union {
49                 /* Initiator or send message responder pagefault details. */
50                 struct {
51                         /* Received packet size, only valid for responders. */
52                         u32     packet_size;
53                         /*
54                          * Number of resource holding WQE, depends on type.
55                          */
56                         u32     wq_num;
57                         /*
58                          * WQE index. Refers to either the send queue or
59                          * receive queue, according to event_subtype.
60                          */
61                         u16     wqe_index;
62                 } wqe;
63                 /* RDMA responder pagefault details */
64                 struct {
65                         u32     r_key;
66                         /*
67                          * Received packet size, minimal size page fault
68                          * resolution required for forward progress.
69                          */
70                         u32     packet_size;
71                         u32     rdma_op_len;
72                         u64     rdma_va;
73                 } rdma;
74         };
75
76         struct mlx5_ib_pf_eq    *eq;
77         struct work_struct      work;
78 };
79
80 #define MAX_PREFETCH_LEN (4*1024*1024U)
81
82 /* Timeout in ms to wait for an active mmu notifier to complete when handling
83  * a pagefault. */
84 #define MMU_NOTIFIER_TIMEOUT 1000
85
86 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
87 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
88 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
89 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
90 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
91
92 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
93
94 static u64 mlx5_imr_ksm_entries;
95
96 static int check_parent(struct ib_umem_odp *odp,
97                                struct mlx5_ib_mr *parent)
98 {
99         struct mlx5_ib_mr *mr = odp->private;
100
101         return mr && mr->parent == parent && !odp->dying;
102 }
103
104 static struct ib_ucontext_per_mm *mr_to_per_mm(struct mlx5_ib_mr *mr)
105 {
106         if (WARN_ON(!mr || !is_odp_mr(mr)))
107                 return NULL;
108
109         return to_ib_umem_odp(mr->umem)->per_mm;
110 }
111
112 static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp)
113 {
114         struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent;
115         struct ib_ucontext_per_mm *per_mm = odp->per_mm;
116         struct rb_node *rb;
117
118         down_read(&per_mm->umem_rwsem);
119         while (1) {
120                 rb = rb_next(&odp->interval_tree.rb);
121                 if (!rb)
122                         goto not_found;
123                 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
124                 if (check_parent(odp, parent))
125                         goto end;
126         }
127 not_found:
128         odp = NULL;
129 end:
130         up_read(&per_mm->umem_rwsem);
131         return odp;
132 }
133
134 static struct ib_umem_odp *odp_lookup(u64 start, u64 length,
135                                       struct mlx5_ib_mr *parent)
136 {
137         struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(parent);
138         struct ib_umem_odp *odp;
139         struct rb_node *rb;
140
141         down_read(&per_mm->umem_rwsem);
142         odp = rbt_ib_umem_lookup(&per_mm->umem_tree, start, length);
143         if (!odp)
144                 goto end;
145
146         while (1) {
147                 if (check_parent(odp, parent))
148                         goto end;
149                 rb = rb_next(&odp->interval_tree.rb);
150                 if (!rb)
151                         goto not_found;
152                 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
153                 if (ib_umem_start(odp) > start + length)
154                         goto not_found;
155         }
156 not_found:
157         odp = NULL;
158 end:
159         up_read(&per_mm->umem_rwsem);
160         return odp;
161 }
162
163 void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset,
164                            size_t nentries, struct mlx5_ib_mr *mr, int flags)
165 {
166         struct ib_pd *pd = mr->ibmr.pd;
167         struct mlx5_ib_dev *dev = to_mdev(pd->device);
168         struct ib_umem_odp *odp;
169         unsigned long va;
170         int i;
171
172         if (flags & MLX5_IB_UPD_XLT_ZAP) {
173                 for (i = 0; i < nentries; i++, pklm++) {
174                         pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
175                         pklm->key = cpu_to_be32(dev->null_mkey);
176                         pklm->va = 0;
177                 }
178                 return;
179         }
180
181         odp = odp_lookup(offset * MLX5_IMR_MTT_SIZE,
182                          nentries * MLX5_IMR_MTT_SIZE, mr);
183
184         for (i = 0; i < nentries; i++, pklm++) {
185                 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
186                 va = (offset + i) * MLX5_IMR_MTT_SIZE;
187                 if (odp && odp->umem.address == va) {
188                         struct mlx5_ib_mr *mtt = odp->private;
189
190                         pklm->key = cpu_to_be32(mtt->ibmr.lkey);
191                         odp = odp_next(odp);
192                 } else {
193                         pklm->key = cpu_to_be32(dev->null_mkey);
194                 }
195                 mlx5_ib_dbg(dev, "[%d] va %lx key %x\n",
196                             i, va, be32_to_cpu(pklm->key));
197         }
198 }
199
200 static void mr_leaf_free_action(struct work_struct *work)
201 {
202         struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work);
203         int idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
204         struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent;
205
206         mr->parent = NULL;
207         synchronize_srcu(&mr->dev->mr_srcu);
208
209         ib_umem_release(&odp->umem);
210         if (imr->live)
211                 mlx5_ib_update_xlt(imr, idx, 1, 0,
212                                    MLX5_IB_UPD_XLT_INDIRECT |
213                                    MLX5_IB_UPD_XLT_ATOMIC);
214         mlx5_mr_cache_free(mr->dev, mr);
215
216         if (atomic_dec_and_test(&imr->num_leaf_free))
217                 wake_up(&imr->q_leaf_free);
218 }
219
220 void mlx5_ib_invalidate_range(struct ib_umem_odp *umem_odp, unsigned long start,
221                               unsigned long end)
222 {
223         struct mlx5_ib_mr *mr;
224         const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
225                                     sizeof(struct mlx5_mtt)) - 1;
226         u64 idx = 0, blk_start_idx = 0;
227         int in_block = 0;
228         u64 addr;
229
230         if (!umem_odp) {
231                 pr_err("invalidation called on NULL umem or non-ODP umem\n");
232                 return;
233         }
234
235         mr = umem_odp->private;
236
237         if (!mr || !mr->ibmr.pd)
238                 return;
239
240         start = max_t(u64, ib_umem_start(umem_odp), start);
241         end = min_t(u64, ib_umem_end(umem_odp), end);
242
243         /*
244          * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
245          * while we are doing the invalidation, no page fault will attempt to
246          * overwrite the same MTTs.  Concurent invalidations might race us,
247          * but they will write 0s as well, so no difference in the end result.
248          */
249         mutex_lock(&umem_odp->umem_mutex);
250         for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
251                 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
252                 /*
253                  * Strive to write the MTTs in chunks, but avoid overwriting
254                  * non-existing MTTs. The huristic here can be improved to
255                  * estimate the cost of another UMR vs. the cost of bigger
256                  * UMR.
257                  */
258                 if (umem_odp->dma_list[idx] &
259                     (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
260                         if (!in_block) {
261                                 blk_start_idx = idx;
262                                 in_block = 1;
263                         }
264                 } else {
265                         u64 umr_offset = idx & umr_block_mask;
266
267                         if (in_block && umr_offset == 0) {
268                                 mlx5_ib_update_xlt(mr, blk_start_idx,
269                                                    idx - blk_start_idx, 0,
270                                                    MLX5_IB_UPD_XLT_ZAP |
271                                                    MLX5_IB_UPD_XLT_ATOMIC);
272                                 in_block = 0;
273                         }
274                 }
275         }
276         if (in_block)
277                 mlx5_ib_update_xlt(mr, blk_start_idx,
278                                    idx - blk_start_idx + 1, 0,
279                                    MLX5_IB_UPD_XLT_ZAP |
280                                    MLX5_IB_UPD_XLT_ATOMIC);
281         mutex_unlock(&umem_odp->umem_mutex);
282         /*
283          * We are now sure that the device will not access the
284          * memory. We can safely unmap it, and mark it as dirty if
285          * needed.
286          */
287
288         ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
289
290         if (unlikely(!umem_odp->npages && mr->parent &&
291                      !umem_odp->dying)) {
292                 WRITE_ONCE(umem_odp->dying, 1);
293                 atomic_inc(&mr->parent->num_leaf_free);
294                 schedule_work(&umem_odp->work);
295         }
296 }
297
298 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
299 {
300         struct ib_odp_caps *caps = &dev->odp_caps;
301
302         memset(caps, 0, sizeof(*caps));
303
304         if (!MLX5_CAP_GEN(dev->mdev, pg))
305                 return;
306
307         caps->general_caps = IB_ODP_SUPPORT;
308
309         if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
310                 dev->odp_max_size = U64_MAX;
311         else
312                 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
313
314         if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
315                 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
316
317         if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
318                 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
319
320         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
321                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
322
323         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
324                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
325
326         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
327                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
328
329         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
330                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
331
332         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
333                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
334
335         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
336                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
337
338         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
339                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
340
341         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
342                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
343
344         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
345                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
346
347         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
348                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
349
350         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
351                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
352
353         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
354                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
355
356         if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
357             MLX5_CAP_GEN(dev->mdev, null_mkey) &&
358             MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
359                 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
360
361         return;
362 }
363
364 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
365                                       struct mlx5_pagefault *pfault,
366                                       int error)
367 {
368         int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
369                      pfault->wqe.wq_num : pfault->token;
370         u32 out[MLX5_ST_SZ_DW(page_fault_resume_out)] = { };
371         u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)]   = { };
372         int err;
373
374         MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
375         MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
376         MLX5_SET(page_fault_resume_in, in, token, pfault->token);
377         MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
378         MLX5_SET(page_fault_resume_in, in, error, !!error);
379
380         err = mlx5_cmd_exec(dev->mdev, in, sizeof(in), out, sizeof(out));
381         if (err)
382                 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
383                             wq_num, err);
384 }
385
386 static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd,
387                                             struct ib_umem *umem,
388                                             bool ksm, int access_flags)
389 {
390         struct mlx5_ib_dev *dev = to_mdev(pd->device);
391         struct mlx5_ib_mr *mr;
392         int err;
393
394         mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY :
395                                             MLX5_IMR_MTT_CACHE_ENTRY);
396
397         if (IS_ERR(mr))
398                 return mr;
399
400         mr->ibmr.pd = pd;
401
402         mr->dev = dev;
403         mr->access_flags = access_flags;
404         mr->mmkey.iova = 0;
405         mr->umem = umem;
406
407         if (ksm) {
408                 err = mlx5_ib_update_xlt(mr, 0,
409                                          mlx5_imr_ksm_entries,
410                                          MLX5_KSM_PAGE_SHIFT,
411                                          MLX5_IB_UPD_XLT_INDIRECT |
412                                          MLX5_IB_UPD_XLT_ZAP |
413                                          MLX5_IB_UPD_XLT_ENABLE);
414
415         } else {
416                 err = mlx5_ib_update_xlt(mr, 0,
417                                          MLX5_IMR_MTT_ENTRIES,
418                                          PAGE_SHIFT,
419                                          MLX5_IB_UPD_XLT_ZAP |
420                                          MLX5_IB_UPD_XLT_ENABLE |
421                                          MLX5_IB_UPD_XLT_ATOMIC);
422         }
423
424         if (err)
425                 goto fail;
426
427         mr->ibmr.lkey = mr->mmkey.key;
428         mr->ibmr.rkey = mr->mmkey.key;
429
430         mr->live = 1;
431
432         mlx5_ib_dbg(dev, "key %x dev %p mr %p\n",
433                     mr->mmkey.key, dev->mdev, mr);
434
435         return mr;
436
437 fail:
438         mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
439         mlx5_mr_cache_free(dev, mr);
440
441         return ERR_PTR(err);
442 }
443
444 static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr,
445                                                 u64 io_virt, size_t bcnt)
446 {
447         struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device);
448         struct ib_umem_odp *odp, *result = NULL;
449         struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
450         u64 addr = io_virt & MLX5_IMR_MTT_MASK;
451         int nentries = 0, start_idx = 0, ret;
452         struct mlx5_ib_mr *mtt;
453
454         mutex_lock(&odp_mr->umem_mutex);
455         odp = odp_lookup(addr, 1, mr);
456
457         mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n",
458                     io_virt, bcnt, addr, odp);
459
460 next_mr:
461         if (likely(odp)) {
462                 if (nentries)
463                         nentries++;
464         } else {
465                 odp = ib_alloc_odp_umem(odp_mr, addr,
466                                         MLX5_IMR_MTT_SIZE);
467                 if (IS_ERR(odp)) {
468                         mutex_unlock(&odp_mr->umem_mutex);
469                         return ERR_CAST(odp);
470                 }
471
472                 mtt = implicit_mr_alloc(mr->ibmr.pd, &odp->umem, 0,
473                                         mr->access_flags);
474                 if (IS_ERR(mtt)) {
475                         mutex_unlock(&odp_mr->umem_mutex);
476                         ib_umem_release(&odp->umem);
477                         return ERR_CAST(mtt);
478                 }
479
480                 odp->private = mtt;
481                 mtt->umem = &odp->umem;
482                 mtt->mmkey.iova = addr;
483                 mtt->parent = mr;
484                 INIT_WORK(&odp->work, mr_leaf_free_action);
485
486                 if (!nentries)
487                         start_idx = addr >> MLX5_IMR_MTT_SHIFT;
488                 nentries++;
489         }
490
491         /* Return first odp if region not covered by single one */
492         if (likely(!result))
493                 result = odp;
494
495         addr += MLX5_IMR_MTT_SIZE;
496         if (unlikely(addr < io_virt + bcnt)) {
497                 odp = odp_next(odp);
498                 if (odp && odp->umem.address != addr)
499                         odp = NULL;
500                 goto next_mr;
501         }
502
503         if (unlikely(nentries)) {
504                 ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0,
505                                          MLX5_IB_UPD_XLT_INDIRECT |
506                                          MLX5_IB_UPD_XLT_ATOMIC);
507                 if (ret) {
508                         mlx5_ib_err(dev, "Failed to update PAS\n");
509                         result = ERR_PTR(ret);
510                 }
511         }
512
513         mutex_unlock(&odp_mr->umem_mutex);
514         return result;
515 }
516
517 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
518                                              struct ib_udata *udata,
519                                              int access_flags)
520 {
521         struct mlx5_ib_mr *imr;
522         struct ib_umem *umem;
523
524         umem = ib_umem_get(udata, 0, 0, access_flags, 0);
525         if (IS_ERR(umem))
526                 return ERR_CAST(umem);
527
528         imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags);
529         if (IS_ERR(imr)) {
530                 ib_umem_release(umem);
531                 return ERR_CAST(imr);
532         }
533
534         imr->umem = umem;
535         init_waitqueue_head(&imr->q_leaf_free);
536         atomic_set(&imr->num_leaf_free, 0);
537         atomic_set(&imr->num_pending_prefetch, 0);
538
539         return imr;
540 }
541
542 static int mr_leaf_free(struct ib_umem_odp *umem_odp, u64 start, u64 end,
543                         void *cookie)
544 {
545         struct mlx5_ib_mr *mr = umem_odp->private, *imr = cookie;
546
547         if (mr->parent != imr)
548                 return 0;
549
550         ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem_odp),
551                                     ib_umem_end(umem_odp));
552
553         if (umem_odp->dying)
554                 return 0;
555
556         WRITE_ONCE(umem_odp->dying, 1);
557         atomic_inc(&imr->num_leaf_free);
558         schedule_work(&umem_odp->work);
559
560         return 0;
561 }
562
563 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
564 {
565         struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(imr);
566
567         down_read(&per_mm->umem_rwsem);
568         rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, 0, ULLONG_MAX,
569                                       mr_leaf_free, true, imr);
570         up_read(&per_mm->umem_rwsem);
571
572         wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free));
573 }
574
575 #define MLX5_PF_FLAGS_PREFETCH  BIT(0)
576 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
577 static int pagefault_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
578                         u64 io_virt, size_t bcnt, u32 *bytes_mapped,
579                         u32 flags)
580 {
581         int npages = 0, current_seq, page_shift, ret, np;
582         struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
583         bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
584         bool prefetch = flags & MLX5_PF_FLAGS_PREFETCH;
585         u64 access_mask;
586         u64 start_idx, page_mask;
587         struct ib_umem_odp *odp;
588         size_t size;
589
590         if (!odp_mr->page_list) {
591                 odp = implicit_mr_get_data(mr, io_virt, bcnt);
592
593                 if (IS_ERR(odp))
594                         return PTR_ERR(odp);
595                 mr = odp->private;
596         } else {
597                 odp = odp_mr;
598         }
599
600 next_mr:
601         size = min_t(size_t, bcnt, ib_umem_end(odp) - io_virt);
602
603         page_shift = odp->page_shift;
604         page_mask = ~(BIT(page_shift) - 1);
605         start_idx = (io_virt - (mr->mmkey.iova & page_mask)) >> page_shift;
606         access_mask = ODP_READ_ALLOWED_BIT;
607
608         if (prefetch && !downgrade && !mr->umem->writable) {
609                 /* prefetch with write-access must
610                  * be supported by the MR
611                  */
612                 ret = -EINVAL;
613                 goto out;
614         }
615
616         if (mr->umem->writable && !downgrade)
617                 access_mask |= ODP_WRITE_ALLOWED_BIT;
618
619         current_seq = READ_ONCE(odp->notifiers_seq);
620         /*
621          * Ensure the sequence number is valid for some time before we call
622          * gup.
623          */
624         smp_rmb();
625
626         ret = ib_umem_odp_map_dma_pages(to_ib_umem_odp(mr->umem), io_virt, size,
627                                         access_mask, current_seq);
628
629         if (ret < 0)
630                 goto out;
631
632         np = ret;
633
634         mutex_lock(&odp->umem_mutex);
635         if (!ib_umem_mmu_notifier_retry(to_ib_umem_odp(mr->umem),
636                                         current_seq)) {
637                 /*
638                  * No need to check whether the MTTs really belong to
639                  * this MR, since ib_umem_odp_map_dma_pages already
640                  * checks this.
641                  */
642                 ret = mlx5_ib_update_xlt(mr, start_idx, np,
643                                          page_shift, MLX5_IB_UPD_XLT_ATOMIC);
644         } else {
645                 ret = -EAGAIN;
646         }
647         mutex_unlock(&odp->umem_mutex);
648
649         if (ret < 0) {
650                 if (ret != -EAGAIN)
651                         mlx5_ib_err(dev, "Failed to update mkey page tables\n");
652                 goto out;
653         }
654
655         if (bytes_mapped) {
656                 u32 new_mappings = (np << page_shift) -
657                         (io_virt - round_down(io_virt, 1 << page_shift));
658                 *bytes_mapped += min_t(u32, new_mappings, size);
659         }
660
661         npages += np << (page_shift - PAGE_SHIFT);
662         bcnt -= size;
663
664         if (unlikely(bcnt)) {
665                 struct ib_umem_odp *next;
666
667                 io_virt += size;
668                 next = odp_next(odp);
669                 if (unlikely(!next || next->umem.address != io_virt)) {
670                         mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n",
671                                     io_virt, next);
672                         return -EAGAIN;
673                 }
674                 odp = next;
675                 mr = odp->private;
676                 goto next_mr;
677         }
678
679         return npages;
680
681 out:
682         if (ret == -EAGAIN) {
683                 unsigned long timeout = msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
684
685                 if (!wait_for_completion_timeout(&odp->notifier_completion,
686                                                  timeout)) {
687                         mlx5_ib_warn(
688                                 dev,
689                                 "timeout waiting for mmu notifier. seq %d against %d. notifiers_count=%d\n",
690                                 current_seq, odp->notifiers_seq,
691                                 odp->notifiers_count);
692                 }
693         }
694
695         return ret;
696 }
697
698 struct pf_frame {
699         struct pf_frame *next;
700         u32 key;
701         u64 io_virt;
702         size_t bcnt;
703         int depth;
704 };
705
706 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
707 {
708         if (!mmkey)
709                 return false;
710         if (mmkey->type == MLX5_MKEY_MW)
711                 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
712         return mmkey->key == key;
713 }
714
715 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
716 {
717         struct mlx5_ib_mw *mw;
718         struct mlx5_ib_devx_mr *devx_mr;
719
720         if (mmkey->type == MLX5_MKEY_MW) {
721                 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
722                 return mw->ndescs;
723         }
724
725         devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
726                                mmkey);
727         return devx_mr->ndescs;
728 }
729
730 /*
731  * Handle a single data segment in a page-fault WQE or RDMA region.
732  *
733  * Returns number of OS pages retrieved on success. The caller may continue to
734  * the next data segment.
735  * Can return the following error codes:
736  * -EAGAIN to designate a temporary error. The caller will abort handling the
737  *  page fault and resolve it.
738  * -EFAULT when there's an error mapping the requested pages. The caller will
739  *  abort the page fault handling.
740  */
741 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
742                                          struct ib_pd *pd, u32 key,
743                                          u64 io_virt, size_t bcnt,
744                                          u32 *bytes_committed,
745                                          u32 *bytes_mapped, u32 flags)
746 {
747         int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
748         bool prefetch = flags & MLX5_PF_FLAGS_PREFETCH;
749         struct pf_frame *head = NULL, *frame;
750         struct mlx5_core_mkey *mmkey;
751         struct mlx5_ib_mr *mr;
752         struct mlx5_klm *pklm;
753         u32 *out = NULL;
754         size_t offset;
755         int ndescs;
756
757         srcu_key = srcu_read_lock(&dev->mr_srcu);
758
759         io_virt += *bytes_committed;
760         bcnt -= *bytes_committed;
761
762 next_mr:
763         mmkey = xa_load(&dev->mdev->priv.mkey_table, mlx5_base_mkey(key));
764         if (!mkey_is_eq(mmkey, key)) {
765                 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
766                 ret = -EFAULT;
767                 goto srcu_unlock;
768         }
769
770         if (prefetch && mmkey->type != MLX5_MKEY_MR) {
771                 mlx5_ib_dbg(dev, "prefetch is allowed only for MR\n");
772                 ret = -EINVAL;
773                 goto srcu_unlock;
774         }
775
776         switch (mmkey->type) {
777         case MLX5_MKEY_MR:
778                 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
779                 if (!mr->live || !mr->ibmr.pd) {
780                         mlx5_ib_dbg(dev, "got dead MR\n");
781                         ret = -EFAULT;
782                         goto srcu_unlock;
783                 }
784
785                 if (prefetch) {
786                         if (!is_odp_mr(mr) ||
787                             mr->ibmr.pd != pd) {
788                                 mlx5_ib_dbg(dev, "Invalid prefetch request: %s\n",
789                                             is_odp_mr(mr) ?  "MR is not ODP" :
790                                             "PD is not of the MR");
791                                 ret = -EINVAL;
792                                 goto srcu_unlock;
793                         }
794                 }
795
796                 if (!is_odp_mr(mr)) {
797                         mlx5_ib_dbg(dev, "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
798                                     key);
799                         if (bytes_mapped)
800                                 *bytes_mapped += bcnt;
801                         ret = 0;
802                         goto srcu_unlock;
803                 }
804
805                 ret = pagefault_mr(dev, mr, io_virt, bcnt, bytes_mapped, flags);
806                 if (ret < 0)
807                         goto srcu_unlock;
808
809                 npages += ret;
810                 ret = 0;
811                 break;
812
813         case MLX5_MKEY_MW:
814         case MLX5_MKEY_INDIRECT_DEVX:
815                 ndescs = get_indirect_num_descs(mmkey);
816
817                 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
818                         mlx5_ib_dbg(dev, "indirection level exceeded\n");
819                         ret = -EFAULT;
820                         goto srcu_unlock;
821                 }
822
823                 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
824                         sizeof(*pklm) * (ndescs - 2);
825
826                 if (outlen > cur_outlen) {
827                         kfree(out);
828                         out = kzalloc(outlen, GFP_KERNEL);
829                         if (!out) {
830                                 ret = -ENOMEM;
831                                 goto srcu_unlock;
832                         }
833                         cur_outlen = outlen;
834                 }
835
836                 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
837                                                        bsf0_klm0_pas_mtt0_1);
838
839                 ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
840                 if (ret)
841                         goto srcu_unlock;
842
843                 offset = io_virt - MLX5_GET64(query_mkey_out, out,
844                                               memory_key_mkey_entry.start_addr);
845
846                 for (i = 0; bcnt && i < ndescs; i++, pklm++) {
847                         if (offset >= be32_to_cpu(pklm->bcount)) {
848                                 offset -= be32_to_cpu(pklm->bcount);
849                                 continue;
850                         }
851
852                         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
853                         if (!frame) {
854                                 ret = -ENOMEM;
855                                 goto srcu_unlock;
856                         }
857
858                         frame->key = be32_to_cpu(pklm->key);
859                         frame->io_virt = be64_to_cpu(pklm->va) + offset;
860                         frame->bcnt = min_t(size_t, bcnt,
861                                             be32_to_cpu(pklm->bcount) - offset);
862                         frame->depth = depth + 1;
863                         frame->next = head;
864                         head = frame;
865
866                         bcnt -= frame->bcnt;
867                         offset = 0;
868                 }
869                 break;
870
871         default:
872                 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
873                 ret = -EFAULT;
874                 goto srcu_unlock;
875         }
876
877         if (head) {
878                 frame = head;
879                 head = frame->next;
880
881                 key = frame->key;
882                 io_virt = frame->io_virt;
883                 bcnt = frame->bcnt;
884                 depth = frame->depth;
885                 kfree(frame);
886
887                 goto next_mr;
888         }
889
890 srcu_unlock:
891         while (head) {
892                 frame = head;
893                 head = frame->next;
894                 kfree(frame);
895         }
896         kfree(out);
897
898         srcu_read_unlock(&dev->mr_srcu, srcu_key);
899         *bytes_committed = 0;
900         return ret ? ret : npages;
901 }
902
903 /**
904  * Parse a series of data segments for page fault handling.
905  *
906  * @pfault contains page fault information.
907  * @wqe points at the first data segment in the WQE.
908  * @wqe_end points after the end of the WQE.
909  * @bytes_mapped receives the number of bytes that the function was able to
910  *               map. This allows the caller to decide intelligently whether
911  *               enough memory was mapped to resolve the page fault
912  *               successfully (e.g. enough for the next MTU, or the entire
913  *               WQE).
914  * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
915  *                  the committed bytes).
916  *
917  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
918  * negative error code.
919  */
920 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
921                                    struct mlx5_pagefault *pfault,
922                                    void *wqe,
923                                    void *wqe_end, u32 *bytes_mapped,
924                                    u32 *total_wqe_bytes, bool receive_queue)
925 {
926         int ret = 0, npages = 0;
927         u64 io_virt;
928         u32 key;
929         u32 byte_count;
930         size_t bcnt;
931         int inline_segment;
932
933         if (bytes_mapped)
934                 *bytes_mapped = 0;
935         if (total_wqe_bytes)
936                 *total_wqe_bytes = 0;
937
938         while (wqe < wqe_end) {
939                 struct mlx5_wqe_data_seg *dseg = wqe;
940
941                 io_virt = be64_to_cpu(dseg->addr);
942                 key = be32_to_cpu(dseg->lkey);
943                 byte_count = be32_to_cpu(dseg->byte_count);
944                 inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
945                 bcnt           = byte_count & ~MLX5_INLINE_SEG;
946
947                 if (inline_segment) {
948                         bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
949                         wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
950                                      16);
951                 } else {
952                         wqe += sizeof(*dseg);
953                 }
954
955                 /* receive WQE end of sg list. */
956                 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
957                     io_virt == 0)
958                         break;
959
960                 if (!inline_segment && total_wqe_bytes) {
961                         *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
962                                         pfault->bytes_committed);
963                 }
964
965                 /* A zero length data segment designates a length of 2GB. */
966                 if (bcnt == 0)
967                         bcnt = 1U << 31;
968
969                 if (inline_segment || bcnt <= pfault->bytes_committed) {
970                         pfault->bytes_committed -=
971                                 min_t(size_t, bcnt,
972                                       pfault->bytes_committed);
973                         continue;
974                 }
975
976                 ret = pagefault_single_data_segment(dev, NULL, key,
977                                                     io_virt, bcnt,
978                                                     &pfault->bytes_committed,
979                                                     bytes_mapped, 0);
980                 if (ret < 0)
981                         break;
982                 npages += ret;
983         }
984
985         return ret < 0 ? ret : npages;
986 }
987
988 static const u32 mlx5_ib_odp_opcode_cap[] = {
989         [MLX5_OPCODE_SEND]             = IB_ODP_SUPPORT_SEND,
990         [MLX5_OPCODE_SEND_IMM]         = IB_ODP_SUPPORT_SEND,
991         [MLX5_OPCODE_SEND_INVAL]       = IB_ODP_SUPPORT_SEND,
992         [MLX5_OPCODE_RDMA_WRITE]       = IB_ODP_SUPPORT_WRITE,
993         [MLX5_OPCODE_RDMA_WRITE_IMM]   = IB_ODP_SUPPORT_WRITE,
994         [MLX5_OPCODE_RDMA_READ]        = IB_ODP_SUPPORT_READ,
995         [MLX5_OPCODE_ATOMIC_CS]        = IB_ODP_SUPPORT_ATOMIC,
996         [MLX5_OPCODE_ATOMIC_FA]        = IB_ODP_SUPPORT_ATOMIC,
997 };
998
999 /*
1000  * Parse initiator WQE. Advances the wqe pointer to point at the
1001  * scatter-gather list, and set wqe_end to the end of the WQE.
1002  */
1003 static int mlx5_ib_mr_initiator_pfault_handler(
1004         struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1005         struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1006 {
1007         struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1008         u16 wqe_index = pfault->wqe.wqe_index;
1009         u32 transport_caps;
1010         struct mlx5_base_av *av;
1011         unsigned ds, opcode;
1012 #if defined(DEBUG)
1013         u32 ctrl_wqe_index, ctrl_qpn;
1014 #endif
1015         u32 qpn = qp->trans_qp.base.mqp.qpn;
1016
1017         ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1018         if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1019                 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1020                             ds, wqe_length);
1021                 return -EFAULT;
1022         }
1023
1024         if (ds == 0) {
1025                 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1026                             wqe_index, qpn);
1027                 return -EFAULT;
1028         }
1029
1030 #if defined(DEBUG)
1031         ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
1032                         MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
1033                         MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
1034         if (wqe_index != ctrl_wqe_index) {
1035                 mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
1036                             wqe_index, qpn,
1037                             ctrl_wqe_index);
1038                 return -EFAULT;
1039         }
1040
1041         ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
1042                 MLX5_WQE_CTRL_QPN_SHIFT;
1043         if (qpn != ctrl_qpn) {
1044                 mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
1045                             wqe_index, qpn,
1046                             ctrl_qpn);
1047                 return -EFAULT;
1048         }
1049 #endif /* DEBUG */
1050
1051         *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1052         *wqe += sizeof(*ctrl);
1053
1054         opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1055                  MLX5_WQE_CTRL_OPCODE_MASK;
1056
1057         switch (qp->ibqp.qp_type) {
1058         case IB_QPT_XRC_INI:
1059                 *wqe += sizeof(struct mlx5_wqe_xrc_seg);
1060                 transport_caps = dev->odp_caps.per_transport_caps.xrc_odp_caps;
1061                 break;
1062         case IB_QPT_RC:
1063                 transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps;
1064                 break;
1065         case IB_QPT_UD:
1066                 transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps;
1067                 break;
1068         default:
1069                 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n",
1070                             qp->ibqp.qp_type);
1071                 return -EFAULT;
1072         }
1073
1074         if (unlikely(opcode >= ARRAY_SIZE(mlx5_ib_odp_opcode_cap) ||
1075                      !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) {
1076                 mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n",
1077                             opcode);
1078                 return -EFAULT;
1079         }
1080
1081         if (qp->ibqp.qp_type == IB_QPT_UD) {
1082                 av = *wqe;
1083                 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1084                         *wqe += sizeof(struct mlx5_av);
1085                 else
1086                         *wqe += sizeof(struct mlx5_base_av);
1087         }
1088
1089         switch (opcode) {
1090         case MLX5_OPCODE_RDMA_WRITE:
1091         case MLX5_OPCODE_RDMA_WRITE_IMM:
1092         case MLX5_OPCODE_RDMA_READ:
1093                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1094                 break;
1095         case MLX5_OPCODE_ATOMIC_CS:
1096         case MLX5_OPCODE_ATOMIC_FA:
1097                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1098                 *wqe += sizeof(struct mlx5_wqe_atomic_seg);
1099                 break;
1100         }
1101
1102         return 0;
1103 }
1104
1105 /*
1106  * Parse responder WQE and set wqe_end to the end of the WQE.
1107  */
1108 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1109                                                    struct mlx5_ib_srq *srq,
1110                                                    void **wqe, void **wqe_end,
1111                                                    int wqe_length)
1112 {
1113         int wqe_size = 1 << srq->msrq.wqe_shift;
1114
1115         if (wqe_size > wqe_length) {
1116                 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1117                 return -EFAULT;
1118         }
1119
1120         *wqe_end = *wqe + wqe_size;
1121         *wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1122
1123         return 0;
1124 }
1125
1126 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1127                                                   struct mlx5_ib_qp *qp,
1128                                                   void *wqe, void **wqe_end,
1129                                                   int wqe_length)
1130 {
1131         struct mlx5_ib_wq *wq = &qp->rq;
1132         int wqe_size = 1 << wq->wqe_shift;
1133
1134         if (qp->wq_sig) {
1135                 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1136                 return -EFAULT;
1137         }
1138
1139         if (wqe_size > wqe_length) {
1140                 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1141                 return -EFAULT;
1142         }
1143
1144         switch (qp->ibqp.qp_type) {
1145         case IB_QPT_RC:
1146                 if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
1147                       IB_ODP_SUPPORT_RECV))
1148                         goto invalid_transport_or_opcode;
1149                 break;
1150         default:
1151 invalid_transport_or_opcode:
1152                 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
1153                             qp->ibqp.qp_type);
1154                 return -EFAULT;
1155         }
1156
1157         *wqe_end = wqe + wqe_size;
1158
1159         return 0;
1160 }
1161
1162 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1163                                                        u32 wq_num, int pf_type)
1164 {
1165         struct mlx5_core_rsc_common *common = NULL;
1166         struct mlx5_core_srq *srq;
1167
1168         switch (pf_type) {
1169         case MLX5_WQE_PF_TYPE_RMP:
1170                 srq = mlx5_cmd_get_srq(dev, wq_num);
1171                 if (srq)
1172                         common = &srq->common;
1173                 break;
1174         case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1175         case MLX5_WQE_PF_TYPE_RESP:
1176         case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1177                 common = mlx5_core_res_hold(dev->mdev, wq_num, MLX5_RES_QP);
1178                 break;
1179         default:
1180                 break;
1181         }
1182
1183         return common;
1184 }
1185
1186 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1187 {
1188         struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1189
1190         return to_mibqp(mqp);
1191 }
1192
1193 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1194 {
1195         struct mlx5_core_srq *msrq =
1196                 container_of(res, struct mlx5_core_srq, common);
1197
1198         return to_mibsrq(msrq);
1199 }
1200
1201 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1202                                           struct mlx5_pagefault *pfault)
1203 {
1204         bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1205         u16 wqe_index = pfault->wqe.wqe_index;
1206         void *wqe = NULL, *wqe_end = NULL;
1207         u32 bytes_mapped, total_wqe_bytes;
1208         struct mlx5_core_rsc_common *res;
1209         int resume_with_error = 1;
1210         struct mlx5_ib_qp *qp;
1211         size_t bytes_copied;
1212         int ret = 0;
1213
1214         res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1215         if (!res) {
1216                 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1217                 return;
1218         }
1219
1220         if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1221             res->res != MLX5_RES_XSRQ) {
1222                 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1223                             pfault->type);
1224                 goto resolve_page_fault;
1225         }
1226
1227         wqe = (void *)__get_free_page(GFP_KERNEL);
1228         if (!wqe) {
1229                 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1230                 goto resolve_page_fault;
1231         }
1232
1233         qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1234         if (qp && sq) {
1235                 ret = mlx5_ib_read_user_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1236                                                &bytes_copied);
1237                 if (ret)
1238                         goto read_user;
1239                 ret = mlx5_ib_mr_initiator_pfault_handler(
1240                         dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1241         } else if (qp && !sq) {
1242                 ret = mlx5_ib_read_user_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1243                                                &bytes_copied);
1244                 if (ret)
1245                         goto read_user;
1246                 ret = mlx5_ib_mr_responder_pfault_handler_rq(
1247                         dev, qp, wqe, &wqe_end, bytes_copied);
1248         } else if (!qp) {
1249                 struct mlx5_ib_srq *srq = res_to_srq(res);
1250
1251                 ret = mlx5_ib_read_user_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1252                                                 &bytes_copied);
1253                 if (ret)
1254                         goto read_user;
1255                 ret = mlx5_ib_mr_responder_pfault_handler_srq(
1256                         dev, srq, &wqe, &wqe_end, bytes_copied);
1257         }
1258
1259         if (ret < 0 || wqe >= wqe_end)
1260                 goto resolve_page_fault;
1261
1262         ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1263                                       &total_wqe_bytes, !sq);
1264         if (ret == -EAGAIN)
1265                 goto out;
1266
1267         if (ret < 0 || total_wqe_bytes > bytes_mapped)
1268                 goto resolve_page_fault;
1269
1270 out:
1271         ret = 0;
1272         resume_with_error = 0;
1273
1274 read_user:
1275         if (ret)
1276                 mlx5_ib_err(
1277                         dev,
1278                         "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1279                         ret, wqe_index, pfault->token);
1280
1281 resolve_page_fault:
1282         mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1283         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1284                     pfault->wqe.wq_num, resume_with_error,
1285                     pfault->type);
1286         mlx5_core_res_put(res);
1287         free_page((unsigned long)wqe);
1288 }
1289
1290 static int pages_in_range(u64 address, u32 length)
1291 {
1292         return (ALIGN(address + length, PAGE_SIZE) -
1293                 (address & PAGE_MASK)) >> PAGE_SHIFT;
1294 }
1295
1296 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1297                                            struct mlx5_pagefault *pfault)
1298 {
1299         u64 address;
1300         u32 length;
1301         u32 prefetch_len = pfault->bytes_committed;
1302         int prefetch_activated = 0;
1303         u32 rkey = pfault->rdma.r_key;
1304         int ret;
1305
1306         /* The RDMA responder handler handles the page fault in two parts.
1307          * First it brings the necessary pages for the current packet
1308          * (and uses the pfault context), and then (after resuming the QP)
1309          * prefetches more pages. The second operation cannot use the pfault
1310          * context and therefore uses the dummy_pfault context allocated on
1311          * the stack */
1312         pfault->rdma.rdma_va += pfault->bytes_committed;
1313         pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1314                                          pfault->rdma.rdma_op_len);
1315         pfault->bytes_committed = 0;
1316
1317         address = pfault->rdma.rdma_va;
1318         length  = pfault->rdma.rdma_op_len;
1319
1320         /* For some operations, the hardware cannot tell the exact message
1321          * length, and in those cases it reports zero. Use prefetch
1322          * logic. */
1323         if (length == 0) {
1324                 prefetch_activated = 1;
1325                 length = pfault->rdma.packet_size;
1326                 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1327         }
1328
1329         ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1330                                             &pfault->bytes_committed, NULL,
1331                                             0);
1332         if (ret == -EAGAIN) {
1333                 /* We're racing with an invalidation, don't prefetch */
1334                 prefetch_activated = 0;
1335         } else if (ret < 0 || pages_in_range(address, length) > ret) {
1336                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1337                 if (ret != -ENOENT)
1338                         mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1339                                     ret, pfault->token, pfault->type);
1340                 return;
1341         }
1342
1343         mlx5_ib_page_fault_resume(dev, pfault, 0);
1344         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1345                     pfault->token, pfault->type,
1346                     prefetch_activated);
1347
1348         /* At this point, there might be a new pagefault already arriving in
1349          * the eq, switch to the dummy pagefault for the rest of the
1350          * processing. We're still OK with the objects being alive as the
1351          * work-queue is being fenced. */
1352
1353         if (prefetch_activated) {
1354                 u32 bytes_committed = 0;
1355
1356                 ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1357                                                     prefetch_len,
1358                                                     &bytes_committed, NULL,
1359                                                     0);
1360                 if (ret < 0 && ret != -EAGAIN) {
1361                         mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1362                                     ret, pfault->token, address, prefetch_len);
1363                 }
1364         }
1365 }
1366
1367 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1368 {
1369         u8 event_subtype = pfault->event_subtype;
1370
1371         switch (event_subtype) {
1372         case MLX5_PFAULT_SUBTYPE_WQE:
1373                 mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1374                 break;
1375         case MLX5_PFAULT_SUBTYPE_RDMA:
1376                 mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1377                 break;
1378         default:
1379                 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1380                             event_subtype);
1381                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1382         }
1383 }
1384
1385 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1386 {
1387         struct mlx5_pagefault *pfault = container_of(work,
1388                                                      struct mlx5_pagefault,
1389                                                      work);
1390         struct mlx5_ib_pf_eq *eq = pfault->eq;
1391
1392         mlx5_ib_pfault(eq->dev, pfault);
1393         mempool_free(pfault, eq->pool);
1394 }
1395
1396 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1397 {
1398         struct mlx5_eqe_page_fault *pf_eqe;
1399         struct mlx5_pagefault *pfault;
1400         struct mlx5_eqe *eqe;
1401         int cc = 0;
1402
1403         while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1404                 pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1405                 if (!pfault) {
1406                         schedule_work(&eq->work);
1407                         break;
1408                 }
1409
1410                 pf_eqe = &eqe->data.page_fault;
1411                 pfault->event_subtype = eqe->sub_type;
1412                 pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1413
1414                 mlx5_ib_dbg(eq->dev,
1415                             "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1416                             eqe->sub_type, pfault->bytes_committed);
1417
1418                 switch (eqe->sub_type) {
1419                 case MLX5_PFAULT_SUBTYPE_RDMA:
1420                         /* RDMA based event */
1421                         pfault->type =
1422                                 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1423                         pfault->token =
1424                                 be32_to_cpu(pf_eqe->rdma.pftype_token) &
1425                                 MLX5_24BIT_MASK;
1426                         pfault->rdma.r_key =
1427                                 be32_to_cpu(pf_eqe->rdma.r_key);
1428                         pfault->rdma.packet_size =
1429                                 be16_to_cpu(pf_eqe->rdma.packet_length);
1430                         pfault->rdma.rdma_op_len =
1431                                 be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1432                         pfault->rdma.rdma_va =
1433                                 be64_to_cpu(pf_eqe->rdma.rdma_va);
1434                         mlx5_ib_dbg(eq->dev,
1435                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1436                                     pfault->type, pfault->token,
1437                                     pfault->rdma.r_key);
1438                         mlx5_ib_dbg(eq->dev,
1439                                     "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1440                                     pfault->rdma.rdma_op_len,
1441                                     pfault->rdma.rdma_va);
1442                         break;
1443
1444                 case MLX5_PFAULT_SUBTYPE_WQE:
1445                         /* WQE based event */
1446                         pfault->type =
1447                                 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1448                         pfault->token =
1449                                 be32_to_cpu(pf_eqe->wqe.token);
1450                         pfault->wqe.wq_num =
1451                                 be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1452                                 MLX5_24BIT_MASK;
1453                         pfault->wqe.wqe_index =
1454                                 be16_to_cpu(pf_eqe->wqe.wqe_index);
1455                         pfault->wqe.packet_size =
1456                                 be16_to_cpu(pf_eqe->wqe.packet_length);
1457                         mlx5_ib_dbg(eq->dev,
1458                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1459                                     pfault->type, pfault->token,
1460                                     pfault->wqe.wq_num,
1461                                     pfault->wqe.wqe_index);
1462                         break;
1463
1464                 default:
1465                         mlx5_ib_warn(eq->dev,
1466                                      "Unsupported page fault event sub-type: 0x%02hhx\n",
1467                                      eqe->sub_type);
1468                         /* Unsupported page faults should still be
1469                          * resolved by the page fault handler
1470                          */
1471                 }
1472
1473                 pfault->eq = eq;
1474                 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1475                 queue_work(eq->wq, &pfault->work);
1476
1477                 cc = mlx5_eq_update_cc(eq->core, ++cc);
1478         }
1479
1480         mlx5_eq_update_ci(eq->core, cc, 1);
1481 }
1482
1483 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1484                              void *data)
1485 {
1486         struct mlx5_ib_pf_eq *eq =
1487                 container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1488         unsigned long flags;
1489
1490         if (spin_trylock_irqsave(&eq->lock, flags)) {
1491                 mlx5_ib_eq_pf_process(eq);
1492                 spin_unlock_irqrestore(&eq->lock, flags);
1493         } else {
1494                 schedule_work(&eq->work);
1495         }
1496
1497         return IRQ_HANDLED;
1498 }
1499
1500 /* mempool_refill() was proposed but unfortunately wasn't accepted
1501  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1502  * Cheap workaround.
1503  */
1504 static void mempool_refill(mempool_t *pool)
1505 {
1506         while (pool->curr_nr < pool->min_nr)
1507                 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1508 }
1509
1510 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1511 {
1512         struct mlx5_ib_pf_eq *eq =
1513                 container_of(work, struct mlx5_ib_pf_eq, work);
1514
1515         mempool_refill(eq->pool);
1516
1517         spin_lock_irq(&eq->lock);
1518         mlx5_ib_eq_pf_process(eq);
1519         spin_unlock_irq(&eq->lock);
1520 }
1521
1522 enum {
1523         MLX5_IB_NUM_PF_EQE      = 0x1000,
1524         MLX5_IB_NUM_PF_DRAIN    = 64,
1525 };
1526
1527 static int
1528 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1529 {
1530         struct mlx5_eq_param param = {};
1531         int err;
1532
1533         INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1534         spin_lock_init(&eq->lock);
1535         eq->dev = dev;
1536
1537         eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1538                                                sizeof(struct mlx5_pagefault));
1539         if (!eq->pool)
1540                 return -ENOMEM;
1541
1542         eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1543                                  WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1544                                  MLX5_NUM_CMD_EQE);
1545         if (!eq->wq) {
1546                 err = -ENOMEM;
1547                 goto err_mempool;
1548         }
1549
1550         eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1551         param = (struct mlx5_eq_param) {
1552                 .irq_index = 0,
1553                 .nent = MLX5_IB_NUM_PF_EQE,
1554         };
1555         param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1556         eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1557         if (IS_ERR(eq->core)) {
1558                 err = PTR_ERR(eq->core);
1559                 goto err_wq;
1560         }
1561         err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1562         if (err) {
1563                 mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1564                 goto err_eq;
1565         }
1566
1567         return 0;
1568 err_eq:
1569         mlx5_eq_destroy_generic(dev->mdev, eq->core);
1570 err_wq:
1571         destroy_workqueue(eq->wq);
1572 err_mempool:
1573         mempool_destroy(eq->pool);
1574         return err;
1575 }
1576
1577 static int
1578 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1579 {
1580         int err;
1581
1582         mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1583         err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1584         cancel_work_sync(&eq->work);
1585         destroy_workqueue(eq->wq);
1586         mempool_destroy(eq->pool);
1587
1588         return err;
1589 }
1590
1591 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1592 {
1593         if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1594                 return;
1595
1596         switch (ent->order - 2) {
1597         case MLX5_IMR_MTT_CACHE_ENTRY:
1598                 ent->page = PAGE_SHIFT;
1599                 ent->xlt = MLX5_IMR_MTT_ENTRIES *
1600                            sizeof(struct mlx5_mtt) /
1601                            MLX5_IB_UMR_OCTOWORD;
1602                 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1603                 ent->limit = 0;
1604                 break;
1605
1606         case MLX5_IMR_KSM_CACHE_ENTRY:
1607                 ent->page = MLX5_KSM_PAGE_SHIFT;
1608                 ent->xlt = mlx5_imr_ksm_entries *
1609                            sizeof(struct mlx5_klm) /
1610                            MLX5_IB_UMR_OCTOWORD;
1611                 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1612                 ent->limit = 0;
1613                 break;
1614         }
1615 }
1616
1617 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1618         .advise_mr = mlx5_ib_advise_mr,
1619 };
1620
1621 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1622 {
1623         int ret = 0;
1624
1625         if (dev->odp_caps.general_caps & IB_ODP_SUPPORT)
1626                 ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1627
1628         if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1629                 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1630                 if (ret) {
1631                         mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1632                         return ret;
1633                 }
1634         }
1635
1636         if (!MLX5_CAP_GEN(dev->mdev, pg))
1637                 return ret;
1638
1639         ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
1640
1641         return ret;
1642 }
1643
1644 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1645 {
1646         if (!MLX5_CAP_GEN(dev->mdev, pg))
1647                 return;
1648
1649         mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
1650 }
1651
1652 int mlx5_ib_odp_init(void)
1653 {
1654         mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1655                                        MLX5_IMR_MTT_BITS);
1656
1657         return 0;
1658 }
1659
1660 struct prefetch_mr_work {
1661         struct work_struct work;
1662         struct ib_pd *pd;
1663         u32 pf_flags;
1664         u32 num_sge;
1665         struct ib_sge sg_list[0];
1666 };
1667
1668 static void num_pending_prefetch_dec(struct mlx5_ib_dev *dev,
1669                                      struct ib_sge *sg_list, u32 num_sge,
1670                                      u32 from)
1671 {
1672         u32 i;
1673         int srcu_key;
1674
1675         srcu_key = srcu_read_lock(&dev->mr_srcu);
1676
1677         for (i = from; i < num_sge; ++i) {
1678                 struct mlx5_core_mkey *mmkey;
1679                 struct mlx5_ib_mr *mr;
1680
1681                 mmkey = xa_load(&dev->mdev->priv.mkey_table,
1682                                 mlx5_base_mkey(sg_list[i].lkey));
1683                 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1684                 atomic_dec(&mr->num_pending_prefetch);
1685         }
1686
1687         srcu_read_unlock(&dev->mr_srcu, srcu_key);
1688 }
1689
1690 static bool num_pending_prefetch_inc(struct ib_pd *pd,
1691                                      struct ib_sge *sg_list, u32 num_sge)
1692 {
1693         struct mlx5_ib_dev *dev = to_mdev(pd->device);
1694         bool ret = true;
1695         u32 i;
1696
1697         for (i = 0; i < num_sge; ++i) {
1698                 struct mlx5_core_mkey *mmkey;
1699                 struct mlx5_ib_mr *mr;
1700
1701                 mmkey = xa_load(&dev->mdev->priv.mkey_table,
1702                                 mlx5_base_mkey(sg_list[i].lkey));
1703                 if (!mmkey || mmkey->key != sg_list[i].lkey) {
1704                         ret = false;
1705                         break;
1706                 }
1707
1708                 if (mmkey->type != MLX5_MKEY_MR) {
1709                         ret = false;
1710                         break;
1711                 }
1712
1713                 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1714
1715                 if (mr->ibmr.pd != pd) {
1716                         ret = false;
1717                         break;
1718                 }
1719
1720                 if (!mr->live) {
1721                         ret = false;
1722                         break;
1723                 }
1724
1725                 atomic_inc(&mr->num_pending_prefetch);
1726         }
1727
1728         if (!ret)
1729                 num_pending_prefetch_dec(dev, sg_list, i, 0);
1730
1731         return ret;
1732 }
1733
1734 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd, u32 pf_flags,
1735                                     struct ib_sge *sg_list, u32 num_sge)
1736 {
1737         u32 i;
1738         int ret = 0;
1739         struct mlx5_ib_dev *dev = to_mdev(pd->device);
1740
1741         for (i = 0; i < num_sge; ++i) {
1742                 struct ib_sge *sg = &sg_list[i];
1743                 int bytes_committed = 0;
1744
1745                 ret = pagefault_single_data_segment(dev, pd, sg->lkey, sg->addr,
1746                                                     sg->length,
1747                                                     &bytes_committed, NULL,
1748                                                     pf_flags);
1749                 if (ret < 0)
1750                         break;
1751         }
1752
1753         return ret < 0 ? ret : 0;
1754 }
1755
1756 static void mlx5_ib_prefetch_mr_work(struct work_struct *work)
1757 {
1758         struct prefetch_mr_work *w =
1759                 container_of(work, struct prefetch_mr_work, work);
1760
1761         if (ib_device_try_get(w->pd->device)) {
1762                 mlx5_ib_prefetch_sg_list(w->pd, w->pf_flags, w->sg_list,
1763                                          w->num_sge);
1764                 ib_device_put(w->pd->device);
1765         }
1766
1767         num_pending_prefetch_dec(to_mdev(w->pd->device), w->sg_list,
1768                                  w->num_sge, 0);
1769         kvfree(w);
1770 }
1771
1772 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1773                                enum ib_uverbs_advise_mr_advice advice,
1774                                u32 flags, struct ib_sge *sg_list, u32 num_sge)
1775 {
1776         struct mlx5_ib_dev *dev = to_mdev(pd->device);
1777         u32 pf_flags = MLX5_PF_FLAGS_PREFETCH;
1778         struct prefetch_mr_work *work;
1779         bool valid_req;
1780         int srcu_key;
1781
1782         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1783                 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1784
1785         if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1786                 return mlx5_ib_prefetch_sg_list(pd, pf_flags, sg_list,
1787                                                 num_sge);
1788
1789         work = kvzalloc(struct_size(work, sg_list, num_sge), GFP_KERNEL);
1790         if (!work)
1791                 return -ENOMEM;
1792
1793         memcpy(work->sg_list, sg_list, num_sge * sizeof(struct ib_sge));
1794
1795         /* It is guaranteed that the pd when work is executed is the pd when
1796          * work was queued since pd can't be destroyed while it holds MRs and
1797          * destroying a MR leads to flushing the workquque
1798          */
1799         work->pd = pd;
1800         work->pf_flags = pf_flags;
1801         work->num_sge = num_sge;
1802
1803         INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1804
1805         srcu_key = srcu_read_lock(&dev->mr_srcu);
1806
1807         valid_req = num_pending_prefetch_inc(pd, sg_list, num_sge);
1808         if (valid_req)
1809                 queue_work(system_unbound_wq, &work->work);
1810         else
1811                 kvfree(work);
1812
1813         srcu_read_unlock(&dev->mr_srcu, srcu_key);
1814
1815         return valid_req ? 0 : -EINVAL;
1816 }