Merge tag 'for-linus-2019-08-17' of git://git.kernel.dk/linux-block
[sfrench/cifs-2.6.git] / drivers / infiniband / hw / hfi1 / verbs.c
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56 #include <rdma/opa_addr.h>
57 #include <linux/nospec.h>
58
59 #include "hfi.h"
60 #include "common.h"
61 #include "device.h"
62 #include "trace.h"
63 #include "qp.h"
64 #include "verbs_txreq.h"
65 #include "debugfs.h"
66 #include "vnic.h"
67 #include "fault.h"
68 #include "affinity.h"
69
70 static unsigned int hfi1_lkey_table_size = 16;
71 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
72                    S_IRUGO);
73 MODULE_PARM_DESC(lkey_table_size,
74                  "LKEY table size in bits (2^n, 1 <= n <= 23)");
75
76 static unsigned int hfi1_max_pds = 0xFFFF;
77 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
78 MODULE_PARM_DESC(max_pds,
79                  "Maximum number of protection domains to support");
80
81 static unsigned int hfi1_max_ahs = 0xFFFF;
82 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
83 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
84
85 unsigned int hfi1_max_cqes = 0x2FFFFF;
86 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
87 MODULE_PARM_DESC(max_cqes,
88                  "Maximum number of completion queue entries to support");
89
90 unsigned int hfi1_max_cqs = 0x1FFFF;
91 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
92 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
93
94 unsigned int hfi1_max_qp_wrs = 0x3FFF;
95 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
96 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
97
98 unsigned int hfi1_max_qps = 32768;
99 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
100 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
101
102 unsigned int hfi1_max_sges = 0x60;
103 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
104 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
105
106 unsigned int hfi1_max_mcast_grps = 16384;
107 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
108 MODULE_PARM_DESC(max_mcast_grps,
109                  "Maximum number of multicast groups to support");
110
111 unsigned int hfi1_max_mcast_qp_attached = 16;
112 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
113                    uint, S_IRUGO);
114 MODULE_PARM_DESC(max_mcast_qp_attached,
115                  "Maximum number of attached QPs to support");
116
117 unsigned int hfi1_max_srqs = 1024;
118 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
119 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
120
121 unsigned int hfi1_max_srq_sges = 128;
122 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
123 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
124
125 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
126 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
127 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
128
129 unsigned short piothreshold = 256;
130 module_param(piothreshold, ushort, S_IRUGO);
131 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
132
133 static unsigned int sge_copy_mode;
134 module_param(sge_copy_mode, uint, S_IRUGO);
135 MODULE_PARM_DESC(sge_copy_mode,
136                  "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
137
138 static void verbs_sdma_complete(
139         struct sdma_txreq *cookie,
140         int status);
141
142 static int pio_wait(struct rvt_qp *qp,
143                     struct send_context *sc,
144                     struct hfi1_pkt_state *ps,
145                     u32 flag);
146
147 /* Length of buffer to create verbs txreq cache name */
148 #define TXREQ_NAME_LEN 24
149
150 /* 16B trailing buffer */
151 static const u8 trail_buf[MAX_16B_PADDING];
152
153 static uint wss_threshold = 80;
154 module_param(wss_threshold, uint, S_IRUGO);
155 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
156 static uint wss_clean_period = 256;
157 module_param(wss_clean_period, uint, S_IRUGO);
158 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
159
160 /*
161  * Translate ib_wr_opcode into ib_wc_opcode.
162  */
163 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
164         [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
165         [IB_WR_TID_RDMA_WRITE] = IB_WC_RDMA_WRITE,
166         [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
167         [IB_WR_SEND] = IB_WC_SEND,
168         [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
169         [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
170         [IB_WR_TID_RDMA_READ] = IB_WC_RDMA_READ,
171         [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
172         [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
173         [IB_WR_SEND_WITH_INV] = IB_WC_SEND,
174         [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
175         [IB_WR_REG_MR] = IB_WC_REG_MR
176 };
177
178 /*
179  * Length of header by opcode, 0 --> not supported
180  */
181 const u8 hdr_len_by_opcode[256] = {
182         /* RC */
183         [IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
184         [IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
185         [IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
186         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
187         [IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
188         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
189         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
190         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
191         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
192         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
193         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
194         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
195         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
196         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
197         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
198         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
199         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
200         [IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
201         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4 + 8,
202         [IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
203         [IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
204         [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
205         [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
206         [IB_OPCODE_TID_RDMA_READ_REQ]                 = 12 + 8 + 36,
207         [IB_OPCODE_TID_RDMA_READ_RESP]                = 12 + 8 + 36,
208         [IB_OPCODE_TID_RDMA_WRITE_REQ]                = 12 + 8 + 36,
209         [IB_OPCODE_TID_RDMA_WRITE_RESP]               = 12 + 8 + 36,
210         [IB_OPCODE_TID_RDMA_WRITE_DATA]               = 12 + 8 + 36,
211         [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST]          = 12 + 8 + 36,
212         [IB_OPCODE_TID_RDMA_ACK]                      = 12 + 8 + 36,
213         [IB_OPCODE_TID_RDMA_RESYNC]                   = 12 + 8 + 36,
214         /* UC */
215         [IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
216         [IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
217         [IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
218         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
219         [IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
220         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
221         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
222         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
223         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
224         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
225         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
226         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
227         /* UD */
228         [IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
229         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
230 };
231
232 static const opcode_handler opcode_handler_tbl[256] = {
233         /* RC */
234         [IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
235         [IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
236         [IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
237         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
238         [IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
239         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
240         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
241         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
242         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
243         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
244         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
245         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
246         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
247         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
248         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
249         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
250         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
251         [IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
252         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
253         [IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
254         [IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
255         [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = &hfi1_rc_rcv,
256         [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = &hfi1_rc_rcv,
257
258         /* TID RDMA has separate handlers for different opcodes.*/
259         [IB_OPCODE_TID_RDMA_WRITE_REQ]       = &hfi1_rc_rcv_tid_rdma_write_req,
260         [IB_OPCODE_TID_RDMA_WRITE_RESP]      = &hfi1_rc_rcv_tid_rdma_write_resp,
261         [IB_OPCODE_TID_RDMA_WRITE_DATA]      = &hfi1_rc_rcv_tid_rdma_write_data,
262         [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST] = &hfi1_rc_rcv_tid_rdma_write_data,
263         [IB_OPCODE_TID_RDMA_READ_REQ]        = &hfi1_rc_rcv_tid_rdma_read_req,
264         [IB_OPCODE_TID_RDMA_READ_RESP]       = &hfi1_rc_rcv_tid_rdma_read_resp,
265         [IB_OPCODE_TID_RDMA_RESYNC]          = &hfi1_rc_rcv_tid_rdma_resync,
266         [IB_OPCODE_TID_RDMA_ACK]             = &hfi1_rc_rcv_tid_rdma_ack,
267
268         /* UC */
269         [IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
270         [IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
271         [IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
272         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
273         [IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
274         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
275         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
276         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
277         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
278         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
279         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
280         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
281         /* UD */
282         [IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
283         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
284         /* CNP */
285         [IB_OPCODE_CNP]                               = &hfi1_cnp_rcv
286 };
287
288 #define OPMASK 0x1f
289
290 static const u32 pio_opmask[BIT(3)] = {
291         /* RC */
292         [IB_OPCODE_RC >> 5] =
293                 BIT(RC_OP(SEND_ONLY) & OPMASK) |
294                 BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
295                 BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
296                 BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
297                 BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
298                 BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
299                 BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
300                 BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
301                 BIT(RC_OP(FETCH_ADD) & OPMASK),
302         /* UC */
303         [IB_OPCODE_UC >> 5] =
304                 BIT(UC_OP(SEND_ONLY) & OPMASK) |
305                 BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
306                 BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
307                 BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
308 };
309
310 /*
311  * System image GUID.
312  */
313 __be64 ib_hfi1_sys_image_guid;
314
315 /*
316  * Make sure the QP is ready and able to accept the given opcode.
317  */
318 static inline opcode_handler qp_ok(struct hfi1_packet *packet)
319 {
320         if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
321                 return NULL;
322         if (((packet->opcode & RVT_OPCODE_QP_MASK) ==
323              packet->qp->allowed_ops) ||
324             (packet->opcode == IB_OPCODE_CNP))
325                 return opcode_handler_tbl[packet->opcode];
326
327         return NULL;
328 }
329
330 static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc)
331 {
332 #ifdef CONFIG_FAULT_INJECTION
333         if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP) {
334                 /*
335                  * In order to drop non-IB traffic we
336                  * set PbcInsertHrc to NONE (0x2).
337                  * The packet will still be delivered
338                  * to the receiving node but a
339                  * KHdrHCRCErr (KDETH packet with a bad
340                  * HCRC) will be triggered and the
341                  * packet will not be delivered to the
342                  * correct context.
343                  */
344                 pbc &= ~PBC_INSERT_HCRC_SMASK;
345                 pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT;
346         } else {
347                 /*
348                  * In order to drop regular verbs
349                  * traffic we set the PbcTestEbp
350                  * flag. The packet will still be
351                  * delivered to the receiving node but
352                  * a 'late ebp error' will be
353                  * triggered and will be dropped.
354                  */
355                 pbc |= PBC_TEST_EBP;
356         }
357 #endif
358         return pbc;
359 }
360
361 static opcode_handler tid_qp_ok(int opcode, struct hfi1_packet *packet)
362 {
363         if (packet->qp->ibqp.qp_type != IB_QPT_RC ||
364             !(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
365                 return NULL;
366         if ((opcode & RVT_OPCODE_QP_MASK) == IB_OPCODE_TID_RDMA)
367                 return opcode_handler_tbl[opcode];
368         return NULL;
369 }
370
371 void hfi1_kdeth_eager_rcv(struct hfi1_packet *packet)
372 {
373         struct hfi1_ctxtdata *rcd = packet->rcd;
374         struct ib_header *hdr = packet->hdr;
375         u32 tlen = packet->tlen;
376         struct hfi1_pportdata *ppd = rcd->ppd;
377         struct hfi1_ibport *ibp = &ppd->ibport_data;
378         struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
379         opcode_handler opcode_handler;
380         unsigned long flags;
381         u32 qp_num;
382         int lnh;
383         u8 opcode;
384
385         /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */
386         if (unlikely(tlen < 15 * sizeof(u32)))
387                 goto drop;
388
389         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
390         if (lnh != HFI1_LRH_BTH)
391                 goto drop;
392
393         packet->ohdr = &hdr->u.oth;
394         trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
395
396         opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
397         inc_opstats(tlen, &rcd->opstats->stats[opcode]);
398
399         /* verbs_qp can be picked up from any tid_rdma header struct */
400         qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_req.verbs_qp) &
401                 RVT_QPN_MASK;
402
403         rcu_read_lock();
404         packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
405         if (!packet->qp)
406                 goto drop_rcu;
407         spin_lock_irqsave(&packet->qp->r_lock, flags);
408         opcode_handler = tid_qp_ok(opcode, packet);
409         if (likely(opcode_handler))
410                 opcode_handler(packet);
411         else
412                 goto drop_unlock;
413         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
414         rcu_read_unlock();
415
416         return;
417 drop_unlock:
418         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
419 drop_rcu:
420         rcu_read_unlock();
421 drop:
422         ibp->rvp.n_pkt_drops++;
423 }
424
425 void hfi1_kdeth_expected_rcv(struct hfi1_packet *packet)
426 {
427         struct hfi1_ctxtdata *rcd = packet->rcd;
428         struct ib_header *hdr = packet->hdr;
429         u32 tlen = packet->tlen;
430         struct hfi1_pportdata *ppd = rcd->ppd;
431         struct hfi1_ibport *ibp = &ppd->ibport_data;
432         struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
433         opcode_handler opcode_handler;
434         unsigned long flags;
435         u32 qp_num;
436         int lnh;
437         u8 opcode;
438
439         /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */
440         if (unlikely(tlen < 15 * sizeof(u32)))
441                 goto drop;
442
443         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
444         if (lnh != HFI1_LRH_BTH)
445                 goto drop;
446
447         packet->ohdr = &hdr->u.oth;
448         trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
449
450         opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
451         inc_opstats(tlen, &rcd->opstats->stats[opcode]);
452
453         /* verbs_qp can be picked up from any tid_rdma header struct */
454         qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_rsp.verbs_qp) &
455                 RVT_QPN_MASK;
456
457         rcu_read_lock();
458         packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
459         if (!packet->qp)
460                 goto drop_rcu;
461         spin_lock_irqsave(&packet->qp->r_lock, flags);
462         opcode_handler = tid_qp_ok(opcode, packet);
463         if (likely(opcode_handler))
464                 opcode_handler(packet);
465         else
466                 goto drop_unlock;
467         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
468         rcu_read_unlock();
469
470         return;
471 drop_unlock:
472         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
473 drop_rcu:
474         rcu_read_unlock();
475 drop:
476         ibp->rvp.n_pkt_drops++;
477 }
478
479 static int hfi1_do_pkey_check(struct hfi1_packet *packet)
480 {
481         struct hfi1_ctxtdata *rcd = packet->rcd;
482         struct hfi1_pportdata *ppd = rcd->ppd;
483         struct hfi1_16b_header *hdr = packet->hdr;
484         u16 pkey;
485
486         /* Pkey check needed only for bypass packets */
487         if (packet->etype != RHF_RCV_TYPE_BYPASS)
488                 return 0;
489
490         /* Perform pkey check */
491         pkey = hfi1_16B_get_pkey(hdr);
492         return ingress_pkey_check(ppd, pkey, packet->sc,
493                                   packet->qp->s_pkey_index,
494                                   packet->slid, true);
495 }
496
497 static inline void hfi1_handle_packet(struct hfi1_packet *packet,
498                                       bool is_mcast)
499 {
500         u32 qp_num;
501         struct hfi1_ctxtdata *rcd = packet->rcd;
502         struct hfi1_pportdata *ppd = rcd->ppd;
503         struct hfi1_ibport *ibp = rcd_to_iport(rcd);
504         struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
505         opcode_handler packet_handler;
506         unsigned long flags;
507
508         inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]);
509
510         if (unlikely(is_mcast)) {
511                 struct rvt_mcast *mcast;
512                 struct rvt_mcast_qp *p;
513
514                 if (!packet->grh)
515                         goto drop;
516                 mcast = rvt_mcast_find(&ibp->rvp,
517                                        &packet->grh->dgid,
518                                        opa_get_lid(packet->dlid, 9B));
519                 if (!mcast)
520                         goto drop;
521                 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
522                         packet->qp = p->qp;
523                         if (hfi1_do_pkey_check(packet))
524                                 goto drop;
525                         spin_lock_irqsave(&packet->qp->r_lock, flags);
526                         packet_handler = qp_ok(packet);
527                         if (likely(packet_handler))
528                                 packet_handler(packet);
529                         else
530                                 ibp->rvp.n_pkt_drops++;
531                         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
532                 }
533                 /*
534                  * Notify rvt_multicast_detach() if it is waiting for us
535                  * to finish.
536                  */
537                 if (atomic_dec_return(&mcast->refcount) <= 1)
538                         wake_up(&mcast->wait);
539         } else {
540                 /* Get the destination QP number. */
541                 if (packet->etype == RHF_RCV_TYPE_BYPASS &&
542                     hfi1_16B_get_l4(packet->hdr) == OPA_16B_L4_FM)
543                         qp_num = hfi1_16B_get_dest_qpn(packet->mgmt);
544                 else
545                         qp_num = ib_bth_get_qpn(packet->ohdr);
546
547                 rcu_read_lock();
548                 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
549                 if (!packet->qp)
550                         goto unlock_drop;
551
552                 if (hfi1_do_pkey_check(packet))
553                         goto unlock_drop;
554
555                 spin_lock_irqsave(&packet->qp->r_lock, flags);
556                 packet_handler = qp_ok(packet);
557                 if (likely(packet_handler))
558                         packet_handler(packet);
559                 else
560                         ibp->rvp.n_pkt_drops++;
561                 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
562                 rcu_read_unlock();
563         }
564         return;
565 unlock_drop:
566         rcu_read_unlock();
567 drop:
568         ibp->rvp.n_pkt_drops++;
569 }
570
571 /**
572  * hfi1_ib_rcv - process an incoming packet
573  * @packet: data packet information
574  *
575  * This is called to process an incoming packet at interrupt level.
576  */
577 void hfi1_ib_rcv(struct hfi1_packet *packet)
578 {
579         struct hfi1_ctxtdata *rcd = packet->rcd;
580
581         trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
582         hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
583 }
584
585 void hfi1_16B_rcv(struct hfi1_packet *packet)
586 {
587         struct hfi1_ctxtdata *rcd = packet->rcd;
588
589         trace_input_ibhdr(rcd->dd, packet, false);
590         hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
591 }
592
593 /*
594  * This is called from a timer to check for QPs
595  * which need kernel memory in order to send a packet.
596  */
597 static void mem_timer(struct timer_list *t)
598 {
599         struct hfi1_ibdev *dev = from_timer(dev, t, mem_timer);
600         struct list_head *list = &dev->memwait;
601         struct rvt_qp *qp = NULL;
602         struct iowait *wait;
603         unsigned long flags;
604         struct hfi1_qp_priv *priv;
605
606         write_seqlock_irqsave(&dev->iowait_lock, flags);
607         if (!list_empty(list)) {
608                 wait = list_first_entry(list, struct iowait, list);
609                 qp = iowait_to_qp(wait);
610                 priv = qp->priv;
611                 list_del_init(&priv->s_iowait.list);
612                 priv->s_iowait.lock = NULL;
613                 /* refcount held until actual wake up */
614                 if (!list_empty(list))
615                         mod_timer(&dev->mem_timer, jiffies + 1);
616         }
617         write_sequnlock_irqrestore(&dev->iowait_lock, flags);
618
619         if (qp)
620                 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
621 }
622
623 /*
624  * This is called with progress side lock held.
625  */
626 /* New API */
627 static void verbs_sdma_complete(
628         struct sdma_txreq *cookie,
629         int status)
630 {
631         struct verbs_txreq *tx =
632                 container_of(cookie, struct verbs_txreq, txreq);
633         struct rvt_qp *qp = tx->qp;
634
635         spin_lock(&qp->s_lock);
636         if (tx->wqe) {
637                 rvt_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
638         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
639                 struct hfi1_opa_header *hdr;
640
641                 hdr = &tx->phdr.hdr;
642                 if (unlikely(status == SDMA_TXREQ_S_ABORTED))
643                         hfi1_rc_verbs_aborted(qp, hdr);
644                 hfi1_rc_send_complete(qp, hdr);
645         }
646         spin_unlock(&qp->s_lock);
647
648         hfi1_put_txreq(tx);
649 }
650
651 void hfi1_wait_kmem(struct rvt_qp *qp)
652 {
653         struct hfi1_qp_priv *priv = qp->priv;
654         struct ib_qp *ibqp = &qp->ibqp;
655         struct ib_device *ibdev = ibqp->device;
656         struct hfi1_ibdev *dev = to_idev(ibdev);
657
658         if (list_empty(&priv->s_iowait.list)) {
659                 if (list_empty(&dev->memwait))
660                         mod_timer(&dev->mem_timer, jiffies + 1);
661                 qp->s_flags |= RVT_S_WAIT_KMEM;
662                 list_add_tail(&priv->s_iowait.list, &dev->memwait);
663                 priv->s_iowait.lock = &dev->iowait_lock;
664                 trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
665                 rvt_get_qp(qp);
666         }
667 }
668
669 static int wait_kmem(struct hfi1_ibdev *dev,
670                      struct rvt_qp *qp,
671                      struct hfi1_pkt_state *ps)
672 {
673         unsigned long flags;
674         int ret = 0;
675
676         spin_lock_irqsave(&qp->s_lock, flags);
677         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
678                 write_seqlock(&dev->iowait_lock);
679                 list_add_tail(&ps->s_txreq->txreq.list,
680                               &ps->wait->tx_head);
681                 hfi1_wait_kmem(qp);
682                 write_sequnlock(&dev->iowait_lock);
683                 hfi1_qp_unbusy(qp, ps->wait);
684                 ret = -EBUSY;
685         }
686         spin_unlock_irqrestore(&qp->s_lock, flags);
687
688         return ret;
689 }
690
691 /*
692  * This routine calls txadds for each sg entry.
693  *
694  * Add failures will revert the sge cursor
695  */
696 static noinline int build_verbs_ulp_payload(
697         struct sdma_engine *sde,
698         u32 length,
699         struct verbs_txreq *tx)
700 {
701         struct rvt_sge_state *ss = tx->ss;
702         struct rvt_sge *sg_list = ss->sg_list;
703         struct rvt_sge sge = ss->sge;
704         u8 num_sge = ss->num_sge;
705         u32 len;
706         int ret = 0;
707
708         while (length) {
709                 len = rvt_get_sge_length(&ss->sge, length);
710                 WARN_ON_ONCE(len == 0);
711                 ret = sdma_txadd_kvaddr(
712                         sde->dd,
713                         &tx->txreq,
714                         ss->sge.vaddr,
715                         len);
716                 if (ret)
717                         goto bail_txadd;
718                 rvt_update_sge(ss, len, false);
719                 length -= len;
720         }
721         return ret;
722 bail_txadd:
723         /* unwind cursor */
724         ss->sge = sge;
725         ss->num_sge = num_sge;
726         ss->sg_list = sg_list;
727         return ret;
728 }
729
730 /**
731  * update_tx_opstats - record stats by opcode
732  * @qp; the qp
733  * @ps: transmit packet state
734  * @plen: the plen in dwords
735  *
736  * This is a routine to record the tx opstats after a
737  * packet has been presented to the egress mechanism.
738  */
739 static void update_tx_opstats(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
740                               u32 plen)
741 {
742 #ifdef CONFIG_DEBUG_FS
743         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
744         struct hfi1_opcode_stats_perctx *s = get_cpu_ptr(dd->tx_opstats);
745
746         inc_opstats(plen * 4, &s->stats[ps->opcode]);
747         put_cpu_ptr(s);
748 #endif
749 }
750
751 /*
752  * Build the number of DMA descriptors needed to send length bytes of data.
753  *
754  * NOTE: DMA mapping is held in the tx until completed in the ring or
755  *       the tx desc is freed without having been submitted to the ring
756  *
757  * This routine ensures all the helper routine calls succeed.
758  */
759 /* New API */
760 static int build_verbs_tx_desc(
761         struct sdma_engine *sde,
762         u32 length,
763         struct verbs_txreq *tx,
764         struct hfi1_ahg_info *ahg_info,
765         u64 pbc)
766 {
767         int ret = 0;
768         struct hfi1_sdma_header *phdr = &tx->phdr;
769         u16 hdrbytes = (tx->hdr_dwords + sizeof(pbc) / 4) << 2;
770         u8 extra_bytes = 0;
771
772         if (tx->phdr.hdr.hdr_type) {
773                 /*
774                  * hdrbytes accounts for PBC. Need to subtract 8 bytes
775                  * before calculating padding.
776                  */
777                 extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) +
778                               (SIZE_OF_CRC << 2) + SIZE_OF_LT;
779         }
780         if (!ahg_info->ahgcount) {
781                 ret = sdma_txinit_ahg(
782                         &tx->txreq,
783                         ahg_info->tx_flags,
784                         hdrbytes + length +
785                         extra_bytes,
786                         ahg_info->ahgidx,
787                         0,
788                         NULL,
789                         0,
790                         verbs_sdma_complete);
791                 if (ret)
792                         goto bail_txadd;
793                 phdr->pbc = cpu_to_le64(pbc);
794                 ret = sdma_txadd_kvaddr(
795                         sde->dd,
796                         &tx->txreq,
797                         phdr,
798                         hdrbytes);
799                 if (ret)
800                         goto bail_txadd;
801         } else {
802                 ret = sdma_txinit_ahg(
803                         &tx->txreq,
804                         ahg_info->tx_flags,
805                         length,
806                         ahg_info->ahgidx,
807                         ahg_info->ahgcount,
808                         ahg_info->ahgdesc,
809                         hdrbytes,
810                         verbs_sdma_complete);
811                 if (ret)
812                         goto bail_txadd;
813         }
814         /* add the ulp payload - if any. tx->ss can be NULL for acks */
815         if (tx->ss) {
816                 ret = build_verbs_ulp_payload(sde, length, tx);
817                 if (ret)
818                         goto bail_txadd;
819         }
820
821         /* add icrc, lt byte, and padding to flit */
822         if (extra_bytes)
823                 ret = sdma_txadd_kvaddr(sde->dd, &tx->txreq,
824                                         (void *)trail_buf, extra_bytes);
825
826 bail_txadd:
827         return ret;
828 }
829
830 static u64 update_hcrc(u8 opcode, u64 pbc)
831 {
832         if ((opcode & IB_OPCODE_TID_RDMA) == IB_OPCODE_TID_RDMA) {
833                 pbc &= ~PBC_INSERT_HCRC_SMASK;
834                 pbc |= (u64)PBC_IHCRC_LKDETH << PBC_INSERT_HCRC_SHIFT;
835         }
836         return pbc;
837 }
838
839 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
840                         u64 pbc)
841 {
842         struct hfi1_qp_priv *priv = qp->priv;
843         struct hfi1_ahg_info *ahg_info = priv->s_ahg;
844         u32 hdrwords = ps->s_txreq->hdr_dwords;
845         u32 len = ps->s_txreq->s_cur_size;
846         u32 plen;
847         struct hfi1_ibdev *dev = ps->dev;
848         struct hfi1_pportdata *ppd = ps->ppd;
849         struct verbs_txreq *tx;
850         u8 sc5 = priv->s_sc;
851         int ret;
852         u32 dwords;
853
854         if (ps->s_txreq->phdr.hdr.hdr_type) {
855                 u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len);
856
857                 dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) +
858                           SIZE_OF_LT) >> 2;
859         } else {
860                 dwords = (len + 3) >> 2;
861         }
862         plen = hdrwords + dwords + sizeof(pbc) / 4;
863
864         tx = ps->s_txreq;
865         if (!sdma_txreq_built(&tx->txreq)) {
866                 if (likely(pbc == 0)) {
867                         u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
868
869                         /* No vl15 here */
870                         /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
871                         if (ps->s_txreq->phdr.hdr.hdr_type)
872                                 pbc |= PBC_PACKET_BYPASS |
873                                        PBC_INSERT_BYPASS_ICRC;
874                         else
875                                 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
876
877                         if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
878                                 pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
879                         pbc = create_pbc(ppd,
880                                          pbc,
881                                          qp->srate_mbps,
882                                          vl,
883                                          plen);
884
885                         /* Update HCRC based on packet opcode */
886                         pbc = update_hcrc(ps->opcode, pbc);
887                 }
888                 tx->wqe = qp->s_wqe;
889                 ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
890                 if (unlikely(ret))
891                         goto bail_build;
892         }
893         ret =  sdma_send_txreq(tx->sde, ps->wait, &tx->txreq, ps->pkts_sent);
894         if (unlikely(ret < 0)) {
895                 if (ret == -ECOMM)
896                         goto bail_ecomm;
897                 return ret;
898         }
899
900         update_tx_opstats(qp, ps, plen);
901         trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
902                                 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
903         return ret;
904
905 bail_ecomm:
906         /* The current one got "sent" */
907         return 0;
908 bail_build:
909         ret = wait_kmem(dev, qp, ps);
910         if (!ret) {
911                 /* free txreq - bad state */
912                 hfi1_put_txreq(ps->s_txreq);
913                 ps->s_txreq = NULL;
914         }
915         return ret;
916 }
917
918 /*
919  * If we are now in the error state, return zero to flush the
920  * send work request.
921  */
922 static int pio_wait(struct rvt_qp *qp,
923                     struct send_context *sc,
924                     struct hfi1_pkt_state *ps,
925                     u32 flag)
926 {
927         struct hfi1_qp_priv *priv = qp->priv;
928         struct hfi1_devdata *dd = sc->dd;
929         unsigned long flags;
930         int ret = 0;
931
932         /*
933          * Note that as soon as want_buffer() is called and
934          * possibly before it returns, sc_piobufavail()
935          * could be called. Therefore, put QP on the I/O wait list before
936          * enabling the PIO avail interrupt.
937          */
938         spin_lock_irqsave(&qp->s_lock, flags);
939         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
940                 write_seqlock(&sc->waitlock);
941                 list_add_tail(&ps->s_txreq->txreq.list,
942                               &ps->wait->tx_head);
943                 if (list_empty(&priv->s_iowait.list)) {
944                         struct hfi1_ibdev *dev = &dd->verbs_dev;
945                         int was_empty;
946
947                         dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
948                         dev->n_piodrain += !!(flag & HFI1_S_WAIT_PIO_DRAIN);
949                         qp->s_flags |= flag;
950                         was_empty = list_empty(&sc->piowait);
951                         iowait_get_priority(&priv->s_iowait);
952                         iowait_queue(ps->pkts_sent, &priv->s_iowait,
953                                      &sc->piowait);
954                         priv->s_iowait.lock = &sc->waitlock;
955                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
956                         rvt_get_qp(qp);
957                         /* counting: only call wantpiobuf_intr if first user */
958                         if (was_empty)
959                                 hfi1_sc_wantpiobuf_intr(sc, 1);
960                 }
961                 write_sequnlock(&sc->waitlock);
962                 hfi1_qp_unbusy(qp, ps->wait);
963                 ret = -EBUSY;
964         }
965         spin_unlock_irqrestore(&qp->s_lock, flags);
966         return ret;
967 }
968
969 static void verbs_pio_complete(void *arg, int code)
970 {
971         struct rvt_qp *qp = (struct rvt_qp *)arg;
972         struct hfi1_qp_priv *priv = qp->priv;
973
974         if (iowait_pio_dec(&priv->s_iowait))
975                 iowait_drain_wakeup(&priv->s_iowait);
976 }
977
978 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
979                         u64 pbc)
980 {
981         struct hfi1_qp_priv *priv = qp->priv;
982         u32 hdrwords = ps->s_txreq->hdr_dwords;
983         struct rvt_sge_state *ss = ps->s_txreq->ss;
984         u32 len = ps->s_txreq->s_cur_size;
985         u32 dwords;
986         u32 plen;
987         struct hfi1_pportdata *ppd = ps->ppd;
988         u32 *hdr;
989         u8 sc5;
990         unsigned long flags = 0;
991         struct send_context *sc;
992         struct pio_buf *pbuf;
993         int wc_status = IB_WC_SUCCESS;
994         int ret = 0;
995         pio_release_cb cb = NULL;
996         u8 extra_bytes = 0;
997
998         if (ps->s_txreq->phdr.hdr.hdr_type) {
999                 u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len);
1000
1001                 extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT;
1002                 dwords = (len + extra_bytes) >> 2;
1003                 hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah;
1004         } else {
1005                 dwords = (len + 3) >> 2;
1006                 hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh;
1007         }
1008         plen = hdrwords + dwords + sizeof(pbc) / 4;
1009
1010         /* only RC/UC use complete */
1011         switch (qp->ibqp.qp_type) {
1012         case IB_QPT_RC:
1013         case IB_QPT_UC:
1014                 cb = verbs_pio_complete;
1015                 break;
1016         default:
1017                 break;
1018         }
1019
1020         /* vl15 special case taken care of in ud.c */
1021         sc5 = priv->s_sc;
1022         sc = ps->s_txreq->psc;
1023
1024         if (likely(pbc == 0)) {
1025                 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1026
1027                 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
1028                 if (ps->s_txreq->phdr.hdr.hdr_type)
1029                         pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC;
1030                 else
1031                         pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
1032
1033                 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
1034                         pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
1035                 pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen);
1036
1037                 /* Update HCRC based on packet opcode */
1038                 pbc = update_hcrc(ps->opcode, pbc);
1039         }
1040         if (cb)
1041                 iowait_pio_inc(&priv->s_iowait);
1042         pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1043         if (unlikely(IS_ERR_OR_NULL(pbuf))) {
1044                 if (cb)
1045                         verbs_pio_complete(qp, 0);
1046                 if (IS_ERR(pbuf)) {
1047                         /*
1048                          * If we have filled the PIO buffers to capacity and are
1049                          * not in an active state this request is not going to
1050                          * go out to so just complete it with an error or else a
1051                          * ULP or the core may be stuck waiting.
1052                          */
1053                         hfi1_cdbg(
1054                                 PIO,
1055                                 "alloc failed. state not active, completing");
1056                         wc_status = IB_WC_GENERAL_ERR;
1057                         goto pio_bail;
1058                 } else {
1059                         /*
1060                          * This is a normal occurrence. The PIO buffs are full
1061                          * up but we are still happily sending, well we could be
1062                          * so lets continue to queue the request.
1063                          */
1064                         hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1065                         ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1066                         if (!ret)
1067                                 /* txreq not queued - free */
1068                                 goto bail;
1069                         /* tx consumed in wait */
1070                         return ret;
1071                 }
1072         }
1073
1074         if (dwords == 0) {
1075                 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1076         } else {
1077                 seg_pio_copy_start(pbuf, pbc,
1078                                    hdr, hdrwords * 4);
1079                 if (ss) {
1080                         while (len) {
1081                                 void *addr = ss->sge.vaddr;
1082                                 u32 slen = rvt_get_sge_length(&ss->sge, len);
1083
1084                                 rvt_update_sge(ss, slen, false);
1085                                 seg_pio_copy_mid(pbuf, addr, slen);
1086                                 len -= slen;
1087                         }
1088                 }
1089                 /* add icrc, lt byte, and padding to flit */
1090                 if (extra_bytes)
1091                         seg_pio_copy_mid(pbuf, trail_buf, extra_bytes);
1092
1093                 seg_pio_copy_end(pbuf);
1094         }
1095
1096         update_tx_opstats(qp, ps, plen);
1097         trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1098                                &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
1099
1100 pio_bail:
1101         spin_lock_irqsave(&qp->s_lock, flags);
1102         if (qp->s_wqe) {
1103                 rvt_send_complete(qp, qp->s_wqe, wc_status);
1104         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1105                 if (unlikely(wc_status == IB_WC_GENERAL_ERR))
1106                         hfi1_rc_verbs_aborted(qp, &ps->s_txreq->phdr.hdr);
1107                 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1108         }
1109         spin_unlock_irqrestore(&qp->s_lock, flags);
1110
1111         ret = 0;
1112
1113 bail:
1114         hfi1_put_txreq(ps->s_txreq);
1115         return ret;
1116 }
1117
1118 /*
1119  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1120  * being an entry from the partition key table), return 0
1121  * otherwise. Use the matching criteria for egress partition keys
1122  * specified in the OPAv1 spec., section 9.1l.7.
1123  */
1124 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1125 {
1126         u16 mkey = pkey & PKEY_LOW_15_MASK;
1127         u16 mentry = ent & PKEY_LOW_15_MASK;
1128
1129         if (mkey == mentry) {
1130                 /*
1131                  * If pkey[15] is set (full partition member),
1132                  * is bit 15 in the corresponding table element
1133                  * clear (limited member)?
1134                  */
1135                 if (pkey & PKEY_MEMBER_MASK)
1136                         return !!(ent & PKEY_MEMBER_MASK);
1137                 return 1;
1138         }
1139         return 0;
1140 }
1141
1142 /**
1143  * egress_pkey_check - check P_KEY of a packet
1144  * @ppd:  Physical IB port data
1145  * @slid: SLID for packet
1146  * @bkey: PKEY for header
1147  * @sc5:  SC for packet
1148  * @s_pkey_index: It will be used for look up optimization for kernel contexts
1149  * only. If it is negative value, then it means user contexts is calling this
1150  * function.
1151  *
1152  * It checks if hdr's pkey is valid.
1153  *
1154  * Return: 0 on success, otherwise, 1
1155  */
1156 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
1157                       u8 sc5, int8_t s_pkey_index)
1158 {
1159         struct hfi1_devdata *dd;
1160         int i;
1161         int is_user_ctxt_mechanism = (s_pkey_index < 0);
1162
1163         if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1164                 return 0;
1165
1166         /* If SC15, pkey[0:14] must be 0x7fff */
1167         if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1168                 goto bad;
1169
1170         /* Is the pkey = 0x0, or 0x8000? */
1171         if ((pkey & PKEY_LOW_15_MASK) == 0)
1172                 goto bad;
1173
1174         /*
1175          * For the kernel contexts only, if a qp is passed into the function,
1176          * the most likely matching pkey has index qp->s_pkey_index
1177          */
1178         if (!is_user_ctxt_mechanism &&
1179             egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1180                 return 0;
1181         }
1182
1183         for (i = 0; i < MAX_PKEY_VALUES; i++) {
1184                 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1185                         return 0;
1186         }
1187 bad:
1188         /*
1189          * For the user-context mechanism, the P_KEY check would only happen
1190          * once per SDMA request, not once per packet.  Therefore, there's no
1191          * need to increment the counter for the user-context mechanism.
1192          */
1193         if (!is_user_ctxt_mechanism) {
1194                 incr_cntr64(&ppd->port_xmit_constraint_errors);
1195                 dd = ppd->dd;
1196                 if (!(dd->err_info_xmit_constraint.status &
1197                       OPA_EI_STATUS_SMASK)) {
1198                         dd->err_info_xmit_constraint.status |=
1199                                 OPA_EI_STATUS_SMASK;
1200                         dd->err_info_xmit_constraint.slid = slid;
1201                         dd->err_info_xmit_constraint.pkey = pkey;
1202                 }
1203         }
1204         return 1;
1205 }
1206
1207 /**
1208  * get_send_routine - choose an egress routine
1209  *
1210  * Choose an egress routine based on QP type
1211  * and size
1212  */
1213 static inline send_routine get_send_routine(struct rvt_qp *qp,
1214                                             struct hfi1_pkt_state *ps)
1215 {
1216         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1217         struct hfi1_qp_priv *priv = qp->priv;
1218         struct verbs_txreq *tx = ps->s_txreq;
1219
1220         if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1221                 return dd->process_pio_send;
1222         switch (qp->ibqp.qp_type) {
1223         case IB_QPT_SMI:
1224                 return dd->process_pio_send;
1225         case IB_QPT_GSI:
1226         case IB_QPT_UD:
1227                 break;
1228         case IB_QPT_UC:
1229         case IB_QPT_RC:
1230                 priv->s_running_pkt_size =
1231                         (tx->s_cur_size + priv->s_running_pkt_size) / 2;
1232                 if (piothreshold &&
1233                     priv->s_running_pkt_size <= min(piothreshold, qp->pmtu) &&
1234                     (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) &&
1235                     iowait_sdma_pending(&priv->s_iowait) == 0 &&
1236                     !sdma_txreq_built(&tx->txreq))
1237                         return dd->process_pio_send;
1238                 break;
1239         default:
1240                 break;
1241         }
1242         return dd->process_dma_send;
1243 }
1244
1245 /**
1246  * hfi1_verbs_send - send a packet
1247  * @qp: the QP to send on
1248  * @ps: the state of the packet to send
1249  *
1250  * Return zero if packet is sent or queued OK.
1251  * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1252  */
1253 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1254 {
1255         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1256         struct hfi1_qp_priv *priv = qp->priv;
1257         struct ib_other_headers *ohdr = NULL;
1258         send_routine sr;
1259         int ret;
1260         u16 pkey;
1261         u32 slid;
1262         u8 l4 = 0;
1263
1264         /* locate the pkey within the headers */
1265         if (ps->s_txreq->phdr.hdr.hdr_type) {
1266                 struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah;
1267
1268                 l4 = hfi1_16B_get_l4(hdr);
1269                 if (l4 == OPA_16B_L4_IB_LOCAL)
1270                         ohdr = &hdr->u.oth;
1271                 else if (l4 == OPA_16B_L4_IB_GLOBAL)
1272                         ohdr = &hdr->u.l.oth;
1273
1274                 slid = hfi1_16B_get_slid(hdr);
1275                 pkey = hfi1_16B_get_pkey(hdr);
1276         } else {
1277                 struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh;
1278                 u8 lnh = ib_get_lnh(hdr);
1279
1280                 if (lnh == HFI1_LRH_GRH)
1281                         ohdr = &hdr->u.l.oth;
1282                 else
1283                         ohdr = &hdr->u.oth;
1284                 slid = ib_get_slid(hdr);
1285                 pkey = ib_bth_get_pkey(ohdr);
1286         }
1287
1288         if (likely(l4 != OPA_16B_L4_FM))
1289                 ps->opcode = ib_bth_get_opcode(ohdr);
1290         else
1291                 ps->opcode = IB_OPCODE_UD_SEND_ONLY;
1292
1293         sr = get_send_routine(qp, ps);
1294         ret = egress_pkey_check(dd->pport, slid, pkey,
1295                                 priv->s_sc, qp->s_pkey_index);
1296         if (unlikely(ret)) {
1297                 /*
1298                  * The value we are returning here does not get propagated to
1299                  * the verbs caller. Thus we need to complete the request with
1300                  * error otherwise the caller could be sitting waiting on the
1301                  * completion event. Only do this for PIO. SDMA has its own
1302                  * mechanism for handling the errors. So for SDMA we can just
1303                  * return.
1304                  */
1305                 if (sr == dd->process_pio_send) {
1306                         unsigned long flags;
1307
1308                         hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1309                                   __func__);
1310                         spin_lock_irqsave(&qp->s_lock, flags);
1311                         rvt_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1312                         spin_unlock_irqrestore(&qp->s_lock, flags);
1313                 }
1314                 return -EINVAL;
1315         }
1316         if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1317                 return pio_wait(qp,
1318                                 ps->s_txreq->psc,
1319                                 ps,
1320                                 HFI1_S_WAIT_PIO_DRAIN);
1321         return sr(qp, ps, 0);
1322 }
1323
1324 /**
1325  * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1326  * @dd: the device data structure
1327  */
1328 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1329 {
1330         struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1331         u32 ver = dd->dc8051_ver;
1332
1333         memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1334
1335         rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) |
1336                 ((u64)(dc8051_ver_min(ver)) << 16) |
1337                 (u64)dc8051_ver_patch(ver);
1338
1339         rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1340                         IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1341                         IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1342                         IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1343                         IB_DEVICE_MEM_MGT_EXTENSIONS |
1344                         IB_DEVICE_RDMA_NETDEV_OPA_VNIC;
1345         rdi->dparms.props.page_size_cap = PAGE_SIZE;
1346         rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1347         rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1348         rdi->dparms.props.hw_ver = dd->minrev;
1349         rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1350         rdi->dparms.props.max_mr_size = U64_MAX;
1351         rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1352         rdi->dparms.props.max_qp = hfi1_max_qps;
1353         rdi->dparms.props.max_qp_wr =
1354                 (hfi1_max_qp_wrs >= HFI1_QP_WQE_INVALID ?
1355                  HFI1_QP_WQE_INVALID - 1 : hfi1_max_qp_wrs);
1356         rdi->dparms.props.max_send_sge = hfi1_max_sges;
1357         rdi->dparms.props.max_recv_sge = hfi1_max_sges;
1358         rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1359         rdi->dparms.props.max_cq = hfi1_max_cqs;
1360         rdi->dparms.props.max_ah = hfi1_max_ahs;
1361         rdi->dparms.props.max_cqe = hfi1_max_cqes;
1362         rdi->dparms.props.max_map_per_fmr = 32767;
1363         rdi->dparms.props.max_pd = hfi1_max_pds;
1364         rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1365         rdi->dparms.props.max_qp_init_rd_atom = 255;
1366         rdi->dparms.props.max_srq = hfi1_max_srqs;
1367         rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1368         rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1369         rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1370         rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1371         rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1372         rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1373         rdi->dparms.props.max_total_mcast_qp_attach =
1374                                         rdi->dparms.props.max_mcast_qp_attach *
1375                                         rdi->dparms.props.max_mcast_grp;
1376 }
1377
1378 static inline u16 opa_speed_to_ib(u16 in)
1379 {
1380         u16 out = 0;
1381
1382         if (in & OPA_LINK_SPEED_25G)
1383                 out |= IB_SPEED_EDR;
1384         if (in & OPA_LINK_SPEED_12_5G)
1385                 out |= IB_SPEED_FDR;
1386
1387         return out;
1388 }
1389
1390 /*
1391  * Convert a single OPA link width (no multiple flags) to an IB value.
1392  * A zero OPA link width means link down, which means the IB width value
1393  * is a don't care.
1394  */
1395 static inline u16 opa_width_to_ib(u16 in)
1396 {
1397         switch (in) {
1398         case OPA_LINK_WIDTH_1X:
1399         /* map 2x and 3x to 1x as they don't exist in IB */
1400         case OPA_LINK_WIDTH_2X:
1401         case OPA_LINK_WIDTH_3X:
1402                 return IB_WIDTH_1X;
1403         default: /* link down or unknown, return our largest width */
1404         case OPA_LINK_WIDTH_4X:
1405                 return IB_WIDTH_4X;
1406         }
1407 }
1408
1409 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1410                       struct ib_port_attr *props)
1411 {
1412         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1413         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1414         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1415         u32 lid = ppd->lid;
1416
1417         /* props being zeroed by the caller, avoid zeroing it here */
1418         props->lid = lid ? lid : 0;
1419         props->lmc = ppd->lmc;
1420         /* OPA logical states match IB logical states */
1421         props->state = driver_lstate(ppd);
1422         props->phys_state = driver_pstate(ppd);
1423         props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1424         props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1425         /* see rate_show() in ib core/sysfs.c */
1426         props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1427         props->max_vl_num = ppd->vls_supported;
1428
1429         /* Once we are a "first class" citizen and have added the OPA MTUs to
1430          * the core we can advertise the larger MTU enum to the ULPs, for now
1431          * advertise only 4K.
1432          *
1433          * Those applications which are either OPA aware or pass the MTU enum
1434          * from the Path Records to us will get the new 8k MTU.  Those that
1435          * attempt to process the MTU enum may fail in various ways.
1436          */
1437         props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1438                                       4096 : hfi1_max_mtu), IB_MTU_4096);
1439         props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1440                 mtu_to_enum(ppd->ibmtu, IB_MTU_4096);
1441
1442         return 0;
1443 }
1444
1445 static int modify_device(struct ib_device *device,
1446                          int device_modify_mask,
1447                          struct ib_device_modify *device_modify)
1448 {
1449         struct hfi1_devdata *dd = dd_from_ibdev(device);
1450         unsigned i;
1451         int ret;
1452
1453         if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1454                                    IB_DEVICE_MODIFY_NODE_DESC)) {
1455                 ret = -EOPNOTSUPP;
1456                 goto bail;
1457         }
1458
1459         if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1460                 memcpy(device->node_desc, device_modify->node_desc,
1461                        IB_DEVICE_NODE_DESC_MAX);
1462                 for (i = 0; i < dd->num_pports; i++) {
1463                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1464
1465                         hfi1_node_desc_chg(ibp);
1466                 }
1467         }
1468
1469         if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1470                 ib_hfi1_sys_image_guid =
1471                         cpu_to_be64(device_modify->sys_image_guid);
1472                 for (i = 0; i < dd->num_pports; i++) {
1473                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1474
1475                         hfi1_sys_guid_chg(ibp);
1476                 }
1477         }
1478
1479         ret = 0;
1480
1481 bail:
1482         return ret;
1483 }
1484
1485 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1486 {
1487         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1488         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1489         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1490         int ret;
1491
1492         set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1493                              OPA_LINKDOWN_REASON_UNKNOWN);
1494         ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1495         return ret;
1496 }
1497
1498 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1499                             int guid_index, __be64 *guid)
1500 {
1501         struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1502
1503         if (guid_index >= HFI1_GUIDS_PER_PORT)
1504                 return -EINVAL;
1505
1506         *guid = get_sguid(ibp, guid_index);
1507         return 0;
1508 }
1509
1510 /*
1511  * convert ah port,sl to sc
1512  */
1513 u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah)
1514 {
1515         struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah));
1516
1517         return ibp->sl_to_sc[rdma_ah_get_sl(ah)];
1518 }
1519
1520 static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr)
1521 {
1522         struct hfi1_ibport *ibp;
1523         struct hfi1_pportdata *ppd;
1524         struct hfi1_devdata *dd;
1525         u8 sc5;
1526         u8 sl;
1527
1528         if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) &&
1529             !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH))
1530                 return -EINVAL;
1531
1532         /* test the mapping for validity */
1533         ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1534         ppd = ppd_from_ibp(ibp);
1535         dd = dd_from_ppd(ppd);
1536
1537         sl = rdma_ah_get_sl(ah_attr);
1538         if (sl >= ARRAY_SIZE(ibp->sl_to_sc))
1539                 return -EINVAL;
1540         sl = array_index_nospec(sl, ARRAY_SIZE(ibp->sl_to_sc));
1541
1542         sc5 = ibp->sl_to_sc[sl];
1543         if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1544                 return -EINVAL;
1545         return 0;
1546 }
1547
1548 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1549                                struct rdma_ah_attr *ah_attr,
1550                                struct rvt_ah *ah)
1551 {
1552         struct hfi1_ibport *ibp;
1553         struct hfi1_pportdata *ppd;
1554         struct hfi1_devdata *dd;
1555         u8 sc5;
1556         struct rdma_ah_attr *attr = &ah->attr;
1557
1558         /*
1559          * Do not trust reading anything from rvt_ah at this point as it is not
1560          * done being setup. We can however modify things which we need to set.
1561          */
1562
1563         ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1564         ppd = ppd_from_ibp(ibp);
1565         sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)];
1566         hfi1_update_ah_attr(ibdev, attr);
1567         hfi1_make_opa_lid(attr);
1568         dd = dd_from_ppd(ppd);
1569         ah->vl = sc_to_vlt(dd, sc5);
1570         if (ah->vl < num_vls || ah->vl == 15)
1571                 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1572 }
1573
1574 /**
1575  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1576  * @dd: the hfi1_ib device
1577  */
1578 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1579 {
1580         return ARRAY_SIZE(dd->pport[0].pkeys);
1581 }
1582
1583 static void init_ibport(struct hfi1_pportdata *ppd)
1584 {
1585         struct hfi1_ibport *ibp = &ppd->ibport_data;
1586         size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1587         int i;
1588
1589         for (i = 0; i < sz; i++) {
1590                 ibp->sl_to_sc[i] = i;
1591                 ibp->sc_to_sl[i] = i;
1592         }
1593
1594         for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++)
1595                 INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list);
1596         timer_setup(&ibp->rvp.trap_timer, hfi1_handle_trap_timer, 0);
1597
1598         spin_lock_init(&ibp->rvp.lock);
1599         /* Set the prefix to the default value (see ch. 4.1.1) */
1600         ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1601         ibp->rvp.sm_lid = 0;
1602         /*
1603          * Below should only set bits defined in OPA PortInfo.CapabilityMask
1604          * and PortInfo.CapabilityMask3
1605          */
1606         ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1607                 IB_PORT_CAP_MASK_NOTICE_SUP;
1608         ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported;
1609         ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1610         ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1611         ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1612         ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1613         ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1614
1615         RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1616         RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1617 }
1618
1619 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str)
1620 {
1621         struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1622         struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1623         u32 ver = dd_from_dev(dev)->dc8051_ver;
1624
1625         snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver),
1626                  dc8051_ver_min(ver), dc8051_ver_patch(ver));
1627 }
1628
1629 static const char * const driver_cntr_names[] = {
1630         /* must be element 0*/
1631         "DRIVER_KernIntr",
1632         "DRIVER_ErrorIntr",
1633         "DRIVER_Tx_Errs",
1634         "DRIVER_Rcv_Errs",
1635         "DRIVER_HW_Errs",
1636         "DRIVER_NoPIOBufs",
1637         "DRIVER_CtxtsOpen",
1638         "DRIVER_RcvLen_Errs",
1639         "DRIVER_EgrBufFull",
1640         "DRIVER_EgrHdrFull"
1641 };
1642
1643 static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */
1644 static const char **dev_cntr_names;
1645 static const char **port_cntr_names;
1646 int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
1647 static int num_dev_cntrs;
1648 static int num_port_cntrs;
1649 static int cntr_names_initialized;
1650
1651 /*
1652  * Convert a list of names separated by '\n' into an array of NULL terminated
1653  * strings. Optionally some entries can be reserved in the array to hold extra
1654  * external strings.
1655  */
1656 static int init_cntr_names(const char *names_in,
1657                            const size_t names_len,
1658                            int num_extra_names,
1659                            int *num_cntrs,
1660                            const char ***cntr_names)
1661 {
1662         char *names_out, *p, **q;
1663         int i, n;
1664
1665         n = 0;
1666         for (i = 0; i < names_len; i++)
1667                 if (names_in[i] == '\n')
1668                         n++;
1669
1670         names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len,
1671                             GFP_KERNEL);
1672         if (!names_out) {
1673                 *num_cntrs = 0;
1674                 *cntr_names = NULL;
1675                 return -ENOMEM;
1676         }
1677
1678         p = names_out + (n + num_extra_names) * sizeof(char *);
1679         memcpy(p, names_in, names_len);
1680
1681         q = (char **)names_out;
1682         for (i = 0; i < n; i++) {
1683                 q[i] = p;
1684                 p = strchr(p, '\n');
1685                 *p++ = '\0';
1686         }
1687
1688         *num_cntrs = n;
1689         *cntr_names = (const char **)names_out;
1690         return 0;
1691 }
1692
1693 static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev,
1694                                             u8 port_num)
1695 {
1696         int i, err;
1697
1698         mutex_lock(&cntr_names_lock);
1699         if (!cntr_names_initialized) {
1700                 struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1701
1702                 err = init_cntr_names(dd->cntrnames,
1703                                       dd->cntrnameslen,
1704                                       num_driver_cntrs,
1705                                       &num_dev_cntrs,
1706                                       &dev_cntr_names);
1707                 if (err) {
1708                         mutex_unlock(&cntr_names_lock);
1709                         return NULL;
1710                 }
1711
1712                 for (i = 0; i < num_driver_cntrs; i++)
1713                         dev_cntr_names[num_dev_cntrs + i] =
1714                                 driver_cntr_names[i];
1715
1716                 err = init_cntr_names(dd->portcntrnames,
1717                                       dd->portcntrnameslen,
1718                                       0,
1719                                       &num_port_cntrs,
1720                                       &port_cntr_names);
1721                 if (err) {
1722                         kfree(dev_cntr_names);
1723                         dev_cntr_names = NULL;
1724                         mutex_unlock(&cntr_names_lock);
1725                         return NULL;
1726                 }
1727                 cntr_names_initialized = 1;
1728         }
1729         mutex_unlock(&cntr_names_lock);
1730
1731         if (!port_num)
1732                 return rdma_alloc_hw_stats_struct(
1733                                 dev_cntr_names,
1734                                 num_dev_cntrs + num_driver_cntrs,
1735                                 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1736         else
1737                 return rdma_alloc_hw_stats_struct(
1738                                 port_cntr_names,
1739                                 num_port_cntrs,
1740                                 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1741 }
1742
1743 static u64 hfi1_sps_ints(void)
1744 {
1745         unsigned long index, flags;
1746         struct hfi1_devdata *dd;
1747         u64 sps_ints = 0;
1748
1749         xa_lock_irqsave(&hfi1_dev_table, flags);
1750         xa_for_each(&hfi1_dev_table, index, dd) {
1751                 sps_ints += get_all_cpu_total(dd->int_counter);
1752         }
1753         xa_unlock_irqrestore(&hfi1_dev_table, flags);
1754         return sps_ints;
1755 }
1756
1757 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
1758                         u8 port, int index)
1759 {
1760         u64 *values;
1761         int count;
1762
1763         if (!port) {
1764                 u64 *stats = (u64 *)&hfi1_stats;
1765                 int i;
1766
1767                 hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
1768                 values[num_dev_cntrs] = hfi1_sps_ints();
1769                 for (i = 1; i < num_driver_cntrs; i++)
1770                         values[num_dev_cntrs + i] = stats[i];
1771                 count = num_dev_cntrs + num_driver_cntrs;
1772         } else {
1773                 struct hfi1_ibport *ibp = to_iport(ibdev, port);
1774
1775                 hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
1776                 count = num_port_cntrs;
1777         }
1778
1779         memcpy(stats->value, values, count * sizeof(u64));
1780         return count;
1781 }
1782
1783 static const struct ib_device_ops hfi1_dev_ops = {
1784         .owner = THIS_MODULE,
1785         .driver_id = RDMA_DRIVER_HFI1,
1786
1787         .alloc_hw_stats = alloc_hw_stats,
1788         .alloc_rdma_netdev = hfi1_vnic_alloc_rn,
1789         .get_dev_fw_str = hfi1_get_dev_fw_str,
1790         .get_hw_stats = get_hw_stats,
1791         .init_port = hfi1_create_port_files,
1792         .modify_device = modify_device,
1793         /* keep process mad in the driver */
1794         .process_mad = hfi1_process_mad,
1795 };
1796
1797 /**
1798  * hfi1_register_ib_device - register our device with the infiniband core
1799  * @dd: the device data structure
1800  * Return 0 if successful, errno if unsuccessful.
1801  */
1802 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1803 {
1804         struct hfi1_ibdev *dev = &dd->verbs_dev;
1805         struct ib_device *ibdev = &dev->rdi.ibdev;
1806         struct hfi1_pportdata *ppd = dd->pport;
1807         struct hfi1_ibport *ibp = &ppd->ibport_data;
1808         unsigned i;
1809         int ret;
1810
1811         for (i = 0; i < dd->num_pports; i++)
1812                 init_ibport(ppd + i);
1813
1814         /* Only need to initialize non-zero fields. */
1815
1816         timer_setup(&dev->mem_timer, mem_timer, 0);
1817
1818         seqlock_init(&dev->iowait_lock);
1819         seqlock_init(&dev->txwait_lock);
1820         INIT_LIST_HEAD(&dev->txwait);
1821         INIT_LIST_HEAD(&dev->memwait);
1822
1823         ret = verbs_txreq_init(dev);
1824         if (ret)
1825                 goto err_verbs_txreq;
1826
1827         /* Use first-port GUID as node guid */
1828         ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
1829
1830         /*
1831          * The system image GUID is supposed to be the same for all
1832          * HFIs in a single system but since there can be other
1833          * device types in the system, we can't be sure this is unique.
1834          */
1835         if (!ib_hfi1_sys_image_guid)
1836                 ib_hfi1_sys_image_guid = ibdev->node_guid;
1837         ibdev->phys_port_cnt = dd->num_pports;
1838         ibdev->dev.parent = &dd->pcidev->dev;
1839
1840         ib_set_device_ops(ibdev, &hfi1_dev_ops);
1841
1842         strlcpy(ibdev->node_desc, init_utsname()->nodename,
1843                 sizeof(ibdev->node_desc));
1844
1845         /*
1846          * Fill in rvt info object.
1847          */
1848         dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1849         dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1850         dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1851         dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1852         dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1853         dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1854         dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1855         /*
1856          * Fill in rvt info device attributes.
1857          */
1858         hfi1_fill_device_attr(dd);
1859
1860         /* queue pair */
1861         dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1862         dd->verbs_dev.rdi.dparms.qpn_start = 0;
1863         dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1864         dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1865         dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1866         dd->verbs_dev.rdi.dparms.qpn_res_end =
1867         dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1868         dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1869         dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1870         dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1871         dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1872         dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA |
1873                                                 RDMA_CORE_CAP_OPA_AH;
1874         dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1875
1876         dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1877         dd->verbs_dev.rdi.driver_f.qp_priv_init = hfi1_qp_priv_init;
1878         dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1879         dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1880         dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1881         dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt;
1882         dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1883         dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1884         dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1885         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1886         dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1887         dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1888         dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1889         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1890         dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1891         dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1892         dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1893         dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1894         dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc;
1895         dd->verbs_dev.rdi.driver_f.setup_wqe = hfi1_setup_wqe;
1896         dd->verbs_dev.rdi.driver_f.comp_vect_cpu_lookup =
1897                                                 hfi1_comp_vect_mappings_lookup;
1898
1899         /* completeion queue */
1900         dd->verbs_dev.rdi.ibdev.num_comp_vectors = dd->comp_vect_possible_cpus;
1901         dd->verbs_dev.rdi.dparms.node = dd->node;
1902
1903         /* misc settings */
1904         dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1905         dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1906         dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1907         dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1908         dd->verbs_dev.rdi.dparms.sge_copy_mode = sge_copy_mode;
1909         dd->verbs_dev.rdi.dparms.wss_threshold = wss_threshold;
1910         dd->verbs_dev.rdi.dparms.wss_clean_period = wss_clean_period;
1911         dd->verbs_dev.rdi.dparms.reserved_operations = 1;
1912         dd->verbs_dev.rdi.dparms.extra_rdma_atomic = HFI1_TID_RDMA_WRITE_CNT;
1913
1914         /* post send table */
1915         dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1916
1917         /* opcode translation table */
1918         dd->verbs_dev.rdi.wc_opcode = ib_hfi1_wc_opcode;
1919
1920         ppd = dd->pport;
1921         for (i = 0; i < dd->num_pports; i++, ppd++)
1922                 rvt_init_port(&dd->verbs_dev.rdi,
1923                               &ppd->ibport_data.rvp,
1924                               i,
1925                               ppd->pkeys);
1926
1927         rdma_set_device_sysfs_group(&dd->verbs_dev.rdi.ibdev,
1928                                     &ib_hfi1_attr_group);
1929
1930         ret = rvt_register_device(&dd->verbs_dev.rdi);
1931         if (ret)
1932                 goto err_verbs_txreq;
1933
1934         ret = hfi1_verbs_register_sysfs(dd);
1935         if (ret)
1936                 goto err_class;
1937
1938         return ret;
1939
1940 err_class:
1941         rvt_unregister_device(&dd->verbs_dev.rdi);
1942 err_verbs_txreq:
1943         verbs_txreq_exit(dev);
1944         dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1945         return ret;
1946 }
1947
1948 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1949 {
1950         struct hfi1_ibdev *dev = &dd->verbs_dev;
1951
1952         hfi1_verbs_unregister_sysfs(dd);
1953
1954         rvt_unregister_device(&dd->verbs_dev.rdi);
1955
1956         if (!list_empty(&dev->txwait))
1957                 dd_dev_err(dd, "txwait list not empty!\n");
1958         if (!list_empty(&dev->memwait))
1959                 dd_dev_err(dd, "memwait list not empty!\n");
1960
1961         del_timer_sync(&dev->mem_timer);
1962         verbs_txreq_exit(dev);
1963
1964         mutex_lock(&cntr_names_lock);
1965         kfree(dev_cntr_names);
1966         kfree(port_cntr_names);
1967         dev_cntr_names = NULL;
1968         port_cntr_names = NULL;
1969         cntr_names_initialized = 0;
1970         mutex_unlock(&cntr_names_lock);
1971 }
1972
1973 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1974 {
1975         struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1976         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1977         struct ib_header *hdr = packet->hdr;
1978         struct rvt_qp *qp = packet->qp;
1979         u32 lqpn, rqpn = 0;
1980         u16 rlid = 0;
1981         u8 sl, sc5, svc_type;
1982
1983         switch (packet->qp->ibqp.qp_type) {
1984         case IB_QPT_UC:
1985                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1986                 rqpn = qp->remote_qpn;
1987                 svc_type = IB_CC_SVCTYPE_UC;
1988                 break;
1989         case IB_QPT_RC:
1990                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1991                 rqpn = qp->remote_qpn;
1992                 svc_type = IB_CC_SVCTYPE_RC;
1993                 break;
1994         case IB_QPT_SMI:
1995         case IB_QPT_GSI:
1996         case IB_QPT_UD:
1997                 svc_type = IB_CC_SVCTYPE_UD;
1998                 break;
1999         default:
2000                 ibp->rvp.n_pkt_drops++;
2001                 return;
2002         }
2003
2004         sc5 = hfi1_9B_get_sc5(hdr, packet->rhf);
2005         sl = ibp->sc_to_sl[sc5];
2006         lqpn = qp->ibqp.qp_num;
2007
2008         process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
2009 }